drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / edac_mc.c
... / ...
CommitLineData
1/*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
10 *
11 * Modified by Dave Peterson and Doug Thompson
12 *
13 */
14
15#include <linux/module.h>
16#include <linux/proc_fs.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/smp.h>
20#include <linux/init.h>
21#include <linux/sysctl.h>
22#include <linux/highmem.h>
23#include <linux/timer.h>
24#include <linux/slab.h>
25#include <linux/jiffies.h>
26#include <linux/spinlock.h>
27#include <linux/list.h>
28#include <linux/ctype.h>
29#include <linux/edac.h>
30#include <linux/bitops.h>
31#include <asm/uaccess.h>
32#include <asm/page.h>
33#include <asm/edac.h>
34#include "edac_core.h"
35#include "edac_module.h"
36
37#define CREATE_TRACE_POINTS
38#define TRACE_INCLUDE_PATH ../../include/ras
39#include <ras/ras_event.h>
40
41/* lock to memory controller's control array */
42static DEFINE_MUTEX(mem_ctls_mutex);
43static LIST_HEAD(mc_devices);
44
45/*
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
48 */
49static void const *edac_mc_owner;
50
51static struct bus_type mc_bus[EDAC_MAX_MCS];
52
53unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 unsigned len)
55{
56 struct mem_ctl_info *mci = dimm->mci;
57 int i, n, count = 0;
58 char *p = buf;
59
60 for (i = 0; i < mci->n_layers; i++) {
61 n = snprintf(p, len, "%s %d ",
62 edac_layer_name[mci->layers[i].type],
63 dimm->location[i]);
64 p += n;
65 len -= n;
66 count += n;
67 if (!len)
68 break;
69 }
70
71 return count;
72}
73
74#ifdef CONFIG_EDAC_DEBUG
75
76static void edac_mc_dump_channel(struct rank_info *chan)
77{
78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
79 edac_dbg(4, " channel = %p\n", chan);
80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
82}
83
84static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
85{
86 char location[80];
87
88 edac_dimm_info_location(dimm, location, sizeof(location));
89
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm->mci->csbased ? "rank" : "dimm",
92 number, location, dimm->csrow, dimm->cschannel);
93 edac_dbg(4, " dimm = %p\n", dimm);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
98}
99
100static void edac_mc_dump_csrow(struct csrow_info *csrow)
101{
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 edac_dbg(4, " csrow = %p\n", csrow);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
110}
111
112static void edac_mc_dump_mci(struct mem_ctl_info *mci)
113{
114 edac_dbg(3, "\tmci = %p\n", mci);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci->nr_csrows, mci->csrows);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci->tot_dimms, mci->dimms);
123 edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci->mod_name, mci->ctl_name);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
127}
128
129#endif /* CONFIG_EDAC_DEBUG */
130
131/*
132 * keep those in sync with the enum mem_type
133 */
134const char *edac_mem_types[] = {
135 "Empty csrow",
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
145 "Rambus DRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
149 "Rambus XDR",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
152};
153EXPORT_SYMBOL_GPL(edac_mem_types);
154
155/**
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
161 *
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
164 *
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
169 *
170 * At return, the pointer 'p' will be incremented to be used on a next call
171 * to this function.
172 */
173void *edac_align_ptr(void **p, unsigned size, int n_elems)
174{
175 unsigned align, r;
176 void *ptr = *p;
177
178 *p += size * n_elems;
179
180 /*
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
188 */
189 if (size > sizeof(long))
190 align = sizeof(long long);
191 else if (size > sizeof(int))
192 align = sizeof(long);
193 else if (size > sizeof(short))
194 align = sizeof(int);
195 else if (size > sizeof(char))
196 align = sizeof(short);
197 else
198 return (char *)ptr;
199
200 r = (unsigned long)p % align;
201
202 if (r == 0)
203 return (char *)ptr;
204
205 *p += align - r;
206
207 return (void *)(((unsigned long)ptr) + align - r);
208}
209
210static void _edac_mc_free(struct mem_ctl_info *mci)
211{
212 int i, chn, row;
213 struct csrow_info *csr;
214 const unsigned int tot_dimms = mci->tot_dimms;
215 const unsigned int tot_channels = mci->num_cschannel;
216 const unsigned int tot_csrows = mci->nr_csrows;
217
218 if (mci->dimms) {
219 for (i = 0; i < tot_dimms; i++)
220 kfree(mci->dimms[i]);
221 kfree(mci->dimms);
222 }
223 if (mci->csrows) {
224 for (row = 0; row < tot_csrows; row++) {
225 csr = mci->csrows[row];
226 if (csr) {
227 if (csr->channels) {
228 for (chn = 0; chn < tot_channels; chn++)
229 kfree(csr->channels[chn]);
230 kfree(csr->channels);
231 }
232 kfree(csr);
233 }
234 }
235 kfree(mci->csrows);
236 }
237 kfree(mci);
238}
239
240/**
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
246 *
247 *
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
251 *
252 * Use edac_mc_free() to free mc structures allocated by this function.
253 *
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
259 *
260 * Returns:
261 * On failure: NULL
262 * On success: struct mem_ctl_info pointer
263 */
264struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 unsigned n_layers,
266 struct edac_mc_layer *layers,
267 unsigned sz_pvt)
268{
269 struct mem_ctl_info *mci;
270 struct edac_mc_layer *layer;
271 struct csrow_info *csr;
272 struct rank_info *chan;
273 struct dimm_info *dimm;
274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 unsigned pos[EDAC_MAX_LAYERS];
276 unsigned size, tot_dimms = 1, count = 1;
277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 void *pvt, *p, *ptr = NULL;
279 int i, j, row, chn, n, len, off;
280 bool per_rank = false;
281
282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
283 /*
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
286 */
287 for (i = 0; i < n_layers; i++) {
288 tot_dimms *= layers[i].size;
289 if (layers[i].is_virt_csrow)
290 tot_csrows *= layers[i].size;
291 else
292 tot_channels *= layers[i].size;
293
294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 per_rank = true;
296 }
297
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
302 */
303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 for (i = 0; i < n_layers; i++) {
306 count *= layers[i].size;
307 edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 tot_errcount += 2 * count;
311 }
312
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 size = ((unsigned long)pvt) + sz_pvt;
316
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 size,
319 tot_dimms,
320 per_rank ? "ranks" : "dimms",
321 tot_csrows * tot_channels);
322
323 mci = kzalloc(size, GFP_KERNEL);
324 if (mci == NULL)
325 return NULL;
326
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
329 */
330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 for (i = 0; i < n_layers; i++) {
332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
334 }
335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
336
337 /* setup index and various internal pointers */
338 mci->mc_idx = mc_num;
339 mci->tot_dimms = tot_dimms;
340 mci->pvt_info = pvt;
341 mci->n_layers = n_layers;
342 mci->layers = layer;
343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 mci->nr_csrows = tot_csrows;
345 mci->num_cschannel = tot_channels;
346 mci->csbased = per_rank;
347
348 /*
349 * Alocate and fill the csrow/channels structs
350 */
351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 if (!mci->csrows)
353 goto error;
354 for (row = 0; row < tot_csrows; row++) {
355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 if (!csr)
357 goto error;
358 mci->csrows[row] = csr;
359 csr->csrow_idx = row;
360 csr->mci = mci;
361 csr->nr_channels = tot_channels;
362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 GFP_KERNEL);
364 if (!csr->channels)
365 goto error;
366
367 for (chn = 0; chn < tot_channels; chn++) {
368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 if (!chan)
370 goto error;
371 csr->channels[chn] = chan;
372 chan->chan_idx = chn;
373 chan->csrow = csr;
374 }
375 }
376
377 /*
378 * Allocate and fill the dimm structs
379 */
380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 if (!mci->dimms)
382 goto error;
383
384 memset(&pos, 0, sizeof(pos));
385 row = 0;
386 chn = 0;
387 for (i = 0; i < tot_dimms; i++) {
388 chan = mci->csrows[row]->channels[chn];
389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 if (off < 0 || off >= tot_dimms) {
391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 goto error;
393 }
394
395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 if (!dimm)
397 goto error;
398 mci->dimms[off] = dimm;
399 dimm->mci = mci;
400
401 /*
402 * Copy DIMM location and initialize it.
403 */
404 len = sizeof(dimm->label);
405 p = dimm->label;
406 n = snprintf(p, len, "mc#%u", mc_num);
407 p += n;
408 len -= n;
409 for (j = 0; j < n_layers; j++) {
410 n = snprintf(p, len, "%s#%u",
411 edac_layer_name[layers[j].type],
412 pos[j]);
413 p += n;
414 len -= n;
415 dimm->location[j] = pos[j];
416
417 if (len <= 0)
418 break;
419 }
420
421 /* Link it to the csrows old API data */
422 chan->dimm = dimm;
423 dimm->csrow = row;
424 dimm->cschannel = chn;
425
426 /* Increment csrow location */
427 if (layers[0].is_virt_csrow) {
428 chn++;
429 if (chn == tot_channels) {
430 chn = 0;
431 row++;
432 }
433 } else {
434 row++;
435 if (row == tot_csrows) {
436 row = 0;
437 chn++;
438 }
439 }
440
441 /* Increment dimm location */
442 for (j = n_layers - 1; j >= 0; j--) {
443 pos[j]++;
444 if (pos[j] < layers[j].size)
445 break;
446 pos[j] = 0;
447 }
448 }
449
450 mci->op_state = OP_ALLOC;
451
452 return mci;
453
454error:
455 _edac_mc_free(mci);
456
457 return NULL;
458}
459EXPORT_SYMBOL_GPL(edac_mc_alloc);
460
461/**
462 * edac_mc_free
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
465 */
466void edac_mc_free(struct mem_ctl_info *mci)
467{
468 edac_dbg(1, "\n");
469
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
472 */
473 if (!device_is_registered(&mci->dev)) {
474 _edac_mc_free(mci);
475 return;
476 }
477
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci);
480}
481EXPORT_SYMBOL_GPL(edac_mc_free);
482
483
484/**
485 * find_mci_by_dev
486 *
487 * scan list of controllers looking for the one that manages
488 * the 'dev' device
489 * @dev: pointer to a struct device related with the MCI
490 */
491struct mem_ctl_info *find_mci_by_dev(struct device *dev)
492{
493 struct mem_ctl_info *mci;
494 struct list_head *item;
495
496 edac_dbg(3, "\n");
497
498 list_for_each(item, &mc_devices) {
499 mci = list_entry(item, struct mem_ctl_info, link);
500
501 if (mci->pdev == dev)
502 return mci;
503 }
504
505 return NULL;
506}
507EXPORT_SYMBOL_GPL(find_mci_by_dev);
508
509/*
510 * handler for EDAC to check if NMI type handler has asserted interrupt
511 */
512static int edac_mc_assert_error_check_and_clear(void)
513{
514 int old_state;
515
516 if (edac_op_state == EDAC_OPSTATE_POLL)
517 return 1;
518
519 old_state = edac_err_assert;
520 edac_err_assert = 0;
521
522 return old_state;
523}
524
525/*
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
528 */
529static void edac_mc_workq_function(struct work_struct *work_req)
530{
531 struct delayed_work *d_work = to_delayed_work(work_req);
532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
533
534 mutex_lock(&mem_ctls_mutex);
535
536 /* if this control struct has movd to offline state, we are done */
537 if (mci->op_state == OP_OFFLINE) {
538 mutex_unlock(&mem_ctls_mutex);
539 return;
540 }
541
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 mci->edac_check(mci);
545
546 mutex_unlock(&mem_ctls_mutex);
547
548 /* Reschedule */
549 queue_delayed_work(edac_workqueue, &mci->work,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
551}
552
553/*
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
557 *
558 * locking model:
559 *
560 * called with the mem_ctls_mutex held
561 */
562static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
563 bool init)
564{
565 edac_dbg(0, "\n");
566
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci->op_state != OP_RUNNING_POLL)
569 return;
570
571 if (init)
572 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
573
574 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
575}
576
577/*
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
580 *
581 * locking model:
582 *
583 * called WITHOUT lock held
584 */
585static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
586{
587 int status;
588
589 if (mci->op_state != OP_RUNNING_POLL)
590 return;
591
592 status = cancel_delayed_work(&mci->work);
593 if (status == 0) {
594 edac_dbg(0, "not canceled, flush the queue\n");
595
596 /* workq instance might be running, wait for it */
597 flush_workqueue(edac_workqueue);
598 }
599}
600
601/*
602 * edac_mc_reset_delay_period(unsigned long value)
603 *
604 * user space has updated our poll period value, need to
605 * reset our workq delays
606 */
607void edac_mc_reset_delay_period(unsigned long value)
608{
609 struct mem_ctl_info *mci;
610 struct list_head *item;
611
612 mutex_lock(&mem_ctls_mutex);
613
614 list_for_each(item, &mc_devices) {
615 mci = list_entry(item, struct mem_ctl_info, link);
616
617 edac_mc_workq_setup(mci, value, false);
618 }
619
620 mutex_unlock(&mem_ctls_mutex);
621}
622
623
624
625/* Return 0 on success, 1 on failure.
626 * Before calling this function, caller must
627 * assign a unique value to mci->mc_idx.
628 *
629 * locking model:
630 *
631 * called with the mem_ctls_mutex lock held
632 */
633static int add_mc_to_global_list(struct mem_ctl_info *mci)
634{
635 struct list_head *item, *insert_before;
636 struct mem_ctl_info *p;
637
638 insert_before = &mc_devices;
639
640 p = find_mci_by_dev(mci->pdev);
641 if (unlikely(p != NULL))
642 goto fail0;
643
644 list_for_each(item, &mc_devices) {
645 p = list_entry(item, struct mem_ctl_info, link);
646
647 if (p->mc_idx >= mci->mc_idx) {
648 if (unlikely(p->mc_idx == mci->mc_idx))
649 goto fail1;
650
651 insert_before = item;
652 break;
653 }
654 }
655
656 list_add_tail_rcu(&mci->link, insert_before);
657 atomic_inc(&edac_handlers);
658 return 0;
659
660fail0:
661 edac_printk(KERN_WARNING, EDAC_MC,
662 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
663 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
664 return 1;
665
666fail1:
667 edac_printk(KERN_WARNING, EDAC_MC,
668 "bug in low-level driver: attempt to assign\n"
669 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
670 return 1;
671}
672
673static int del_mc_from_global_list(struct mem_ctl_info *mci)
674{
675 int handlers = atomic_dec_return(&edac_handlers);
676 list_del_rcu(&mci->link);
677
678 /* these are for safe removal of devices from global list while
679 * NMI handlers may be traversing list
680 */
681 synchronize_rcu();
682 INIT_LIST_HEAD(&mci->link);
683
684 return handlers;
685}
686
687/**
688 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
689 *
690 * If found, return a pointer to the structure.
691 * Else return NULL.
692 *
693 * Caller must hold mem_ctls_mutex.
694 */
695struct mem_ctl_info *edac_mc_find(int idx)
696{
697 struct list_head *item;
698 struct mem_ctl_info *mci;
699
700 list_for_each(item, &mc_devices) {
701 mci = list_entry(item, struct mem_ctl_info, link);
702
703 if (mci->mc_idx >= idx) {
704 if (mci->mc_idx == idx)
705 return mci;
706
707 break;
708 }
709 }
710
711 return NULL;
712}
713EXPORT_SYMBOL(edac_mc_find);
714
715/**
716 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
717 * create sysfs entries associated with mci structure
718 * @mci: pointer to the mci structure to be added to the list
719 *
720 * Return:
721 * 0 Success
722 * !0 Failure
723 */
724
725/* FIXME - should a warning be printed if no error detection? correction? */
726int edac_mc_add_mc(struct mem_ctl_info *mci)
727{
728 int ret = -EINVAL;
729 edac_dbg(0, "\n");
730
731 if (mci->mc_idx >= EDAC_MAX_MCS) {
732 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
733 return -ENODEV;
734 }
735
736#ifdef CONFIG_EDAC_DEBUG
737 if (edac_debug_level >= 3)
738 edac_mc_dump_mci(mci);
739
740 if (edac_debug_level >= 4) {
741 int i;
742
743 for (i = 0; i < mci->nr_csrows; i++) {
744 struct csrow_info *csrow = mci->csrows[i];
745 u32 nr_pages = 0;
746 int j;
747
748 for (j = 0; j < csrow->nr_channels; j++)
749 nr_pages += csrow->channels[j]->dimm->nr_pages;
750 if (!nr_pages)
751 continue;
752 edac_mc_dump_csrow(csrow);
753 for (j = 0; j < csrow->nr_channels; j++)
754 if (csrow->channels[j]->dimm->nr_pages)
755 edac_mc_dump_channel(csrow->channels[j]);
756 }
757 for (i = 0; i < mci->tot_dimms; i++)
758 if (mci->dimms[i]->nr_pages)
759 edac_mc_dump_dimm(mci->dimms[i], i);
760 }
761#endif
762 mutex_lock(&mem_ctls_mutex);
763
764 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
765 ret = -EPERM;
766 goto fail0;
767 }
768
769 if (add_mc_to_global_list(mci))
770 goto fail0;
771
772 /* set load time so that error rate can be tracked */
773 mci->start_time = jiffies;
774
775 mci->bus = &mc_bus[mci->mc_idx];
776
777 if (edac_create_sysfs_mci_device(mci)) {
778 edac_mc_printk(mci, KERN_WARNING,
779 "failed to create sysfs device\n");
780 goto fail1;
781 }
782
783 /* If there IS a check routine, then we are running POLLED */
784 if (mci->edac_check != NULL) {
785 /* This instance is NOW RUNNING */
786 mci->op_state = OP_RUNNING_POLL;
787
788 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
789 } else {
790 mci->op_state = OP_RUNNING_INTERRUPT;
791 }
792
793 /* Report action taken */
794 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
795 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
796
797 edac_mc_owner = mci->mod_name;
798
799 mutex_unlock(&mem_ctls_mutex);
800 return 0;
801
802fail1:
803 del_mc_from_global_list(mci);
804
805fail0:
806 mutex_unlock(&mem_ctls_mutex);
807 return ret;
808}
809EXPORT_SYMBOL_GPL(edac_mc_add_mc);
810
811/**
812 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
813 * remove mci structure from global list
814 * @pdev: Pointer to 'struct device' representing mci structure to remove.
815 *
816 * Return pointer to removed mci structure, or NULL if device not found.
817 */
818struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
819{
820 struct mem_ctl_info *mci;
821
822 edac_dbg(0, "\n");
823
824 mutex_lock(&mem_ctls_mutex);
825
826 /* find the requested mci struct in the global list */
827 mci = find_mci_by_dev(dev);
828 if (mci == NULL) {
829 mutex_unlock(&mem_ctls_mutex);
830 return NULL;
831 }
832
833 if (!del_mc_from_global_list(mci))
834 edac_mc_owner = NULL;
835 mutex_unlock(&mem_ctls_mutex);
836
837 /* flush workq processes */
838 edac_mc_workq_teardown(mci);
839
840 /* marking MCI offline */
841 mci->op_state = OP_OFFLINE;
842
843 /* remove from sysfs */
844 edac_remove_sysfs_mci_device(mci);
845
846 edac_printk(KERN_INFO, EDAC_MC,
847 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
848 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
849
850 return mci;
851}
852EXPORT_SYMBOL_GPL(edac_mc_del_mc);
853
854static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
855 u32 size)
856{
857 struct page *pg;
858 void *virt_addr;
859 unsigned long flags = 0;
860
861 edac_dbg(3, "\n");
862
863 /* ECC error page was not in our memory. Ignore it. */
864 if (!pfn_valid(page))
865 return;
866
867 /* Find the actual page structure then map it and fix */
868 pg = pfn_to_page(page);
869
870 if (PageHighMem(pg))
871 local_irq_save(flags);
872
873 virt_addr = kmap_atomic(pg);
874
875 /* Perform architecture specific atomic scrub operation */
876 atomic_scrub(virt_addr + offset, size);
877
878 /* Unmap and complete */
879 kunmap_atomic(virt_addr);
880
881 if (PageHighMem(pg))
882 local_irq_restore(flags);
883}
884
885/* FIXME - should return -1 */
886int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
887{
888 struct csrow_info **csrows = mci->csrows;
889 int row, i, j, n;
890
891 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
892 row = -1;
893
894 for (i = 0; i < mci->nr_csrows; i++) {
895 struct csrow_info *csrow = csrows[i];
896 n = 0;
897 for (j = 0; j < csrow->nr_channels; j++) {
898 struct dimm_info *dimm = csrow->channels[j]->dimm;
899 n += dimm->nr_pages;
900 }
901 if (n == 0)
902 continue;
903
904 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
905 mci->mc_idx,
906 csrow->first_page, page, csrow->last_page,
907 csrow->page_mask);
908
909 if ((page >= csrow->first_page) &&
910 (page <= csrow->last_page) &&
911 ((page & csrow->page_mask) ==
912 (csrow->first_page & csrow->page_mask))) {
913 row = i;
914 break;
915 }
916 }
917
918 if (row == -1)
919 edac_mc_printk(mci, KERN_ERR,
920 "could not look up page error address %lx\n",
921 (unsigned long)page);
922
923 return row;
924}
925EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
926
927const char *edac_layer_name[] = {
928 [EDAC_MC_LAYER_BRANCH] = "branch",
929 [EDAC_MC_LAYER_CHANNEL] = "channel",
930 [EDAC_MC_LAYER_SLOT] = "slot",
931 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
932 [EDAC_MC_LAYER_ALL_MEM] = "memory",
933};
934EXPORT_SYMBOL_GPL(edac_layer_name);
935
936static void edac_inc_ce_error(struct mem_ctl_info *mci,
937 bool enable_per_layer_report,
938 const int pos[EDAC_MAX_LAYERS],
939 const u16 count)
940{
941 int i, index = 0;
942
943 mci->ce_mc += count;
944
945 if (!enable_per_layer_report) {
946 mci->ce_noinfo_count += count;
947 return;
948 }
949
950 for (i = 0; i < mci->n_layers; i++) {
951 if (pos[i] < 0)
952 break;
953 index += pos[i];
954 mci->ce_per_layer[i][index] += count;
955
956 if (i < mci->n_layers - 1)
957 index *= mci->layers[i + 1].size;
958 }
959}
960
961static void edac_inc_ue_error(struct mem_ctl_info *mci,
962 bool enable_per_layer_report,
963 const int pos[EDAC_MAX_LAYERS],
964 const u16 count)
965{
966 int i, index = 0;
967
968 mci->ue_mc += count;
969
970 if (!enable_per_layer_report) {
971 mci->ue_noinfo_count += count;
972 return;
973 }
974
975 for (i = 0; i < mci->n_layers; i++) {
976 if (pos[i] < 0)
977 break;
978 index += pos[i];
979 mci->ue_per_layer[i][index] += count;
980
981 if (i < mci->n_layers - 1)
982 index *= mci->layers[i + 1].size;
983 }
984}
985
986static void edac_ce_error(struct mem_ctl_info *mci,
987 const u16 error_count,
988 const int pos[EDAC_MAX_LAYERS],
989 const char *msg,
990 const char *location,
991 const char *label,
992 const char *detail,
993 const char *other_detail,
994 const bool enable_per_layer_report,
995 const unsigned long page_frame_number,
996 const unsigned long offset_in_page,
997 long grain)
998{
999 unsigned long remapped_page;
1000 char *msg_aux = "";
1001
1002 if (*msg)
1003 msg_aux = " ";
1004
1005 if (edac_mc_get_log_ce()) {
1006 if (other_detail && *other_detail)
1007 edac_mc_printk(mci, KERN_WARNING,
1008 "%d CE %s%son %s (%s %s - %s)\n",
1009 error_count, msg, msg_aux, label,
1010 location, detail, other_detail);
1011 else
1012 edac_mc_printk(mci, KERN_WARNING,
1013 "%d CE %s%son %s (%s %s)\n",
1014 error_count, msg, msg_aux, label,
1015 location, detail);
1016 }
1017 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1018
1019 if (mci->scrub_mode & SCRUB_SW_SRC) {
1020 /*
1021 * Some memory controllers (called MCs below) can remap
1022 * memory so that it is still available at a different
1023 * address when PCI devices map into memory.
1024 * MC's that can't do this, lose the memory where PCI
1025 * devices are mapped. This mapping is MC-dependent
1026 * and so we call back into the MC driver for it to
1027 * map the MC page to a physical (CPU) page which can
1028 * then be mapped to a virtual page - which can then
1029 * be scrubbed.
1030 */
1031 remapped_page = mci->ctl_page_to_phys ?
1032 mci->ctl_page_to_phys(mci, page_frame_number) :
1033 page_frame_number;
1034
1035 edac_mc_scrub_block(remapped_page,
1036 offset_in_page, grain);
1037 }
1038}
1039
1040static void edac_ue_error(struct mem_ctl_info *mci,
1041 const u16 error_count,
1042 const int pos[EDAC_MAX_LAYERS],
1043 const char *msg,
1044 const char *location,
1045 const char *label,
1046 const char *detail,
1047 const char *other_detail,
1048 const bool enable_per_layer_report)
1049{
1050 char *msg_aux = "";
1051
1052 if (*msg)
1053 msg_aux = " ";
1054
1055 if (edac_mc_get_log_ue()) {
1056 if (other_detail && *other_detail)
1057 edac_mc_printk(mci, KERN_WARNING,
1058 "%d UE %s%son %s (%s %s - %s)\n",
1059 error_count, msg, msg_aux, label,
1060 location, detail, other_detail);
1061 else
1062 edac_mc_printk(mci, KERN_WARNING,
1063 "%d UE %s%son %s (%s %s)\n",
1064 error_count, msg, msg_aux, label,
1065 location, detail);
1066 }
1067
1068 if (edac_mc_get_panic_on_ue()) {
1069 if (other_detail && *other_detail)
1070 panic("UE %s%son %s (%s%s - %s)\n",
1071 msg, msg_aux, label, location, detail, other_detail);
1072 else
1073 panic("UE %s%son %s (%s%s)\n",
1074 msg, msg_aux, label, location, detail);
1075 }
1076
1077 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1078}
1079
1080/**
1081 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1082 * anything to discover the error location
1083 *
1084 * @type: severity of the error (CE/UE/Fatal)
1085 * @mci: a struct mem_ctl_info pointer
1086 * @e: error description
1087 *
1088 * This raw function is used internally by edac_mc_handle_error(). It should
1089 * only be called directly when the hardware error come directly from BIOS,
1090 * like in the case of APEI GHES driver.
1091 */
1092void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1093 struct mem_ctl_info *mci,
1094 struct edac_raw_error_desc *e)
1095{
1096 char detail[80];
1097 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1098
1099 /* Memory type dependent details about the error */
1100 if (type == HW_EVENT_ERR_CORRECTED) {
1101 snprintf(detail, sizeof(detail),
1102 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1103 e->page_frame_number, e->offset_in_page,
1104 e->grain, e->syndrome);
1105 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1106 detail, e->other_detail, e->enable_per_layer_report,
1107 e->page_frame_number, e->offset_in_page, e->grain);
1108 } else {
1109 snprintf(detail, sizeof(detail),
1110 "page:0x%lx offset:0x%lx grain:%ld",
1111 e->page_frame_number, e->offset_in_page, e->grain);
1112
1113 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1114 detail, e->other_detail, e->enable_per_layer_report);
1115 }
1116
1117
1118}
1119EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1120
1121/**
1122 * edac_mc_handle_error - reports a memory event to userspace
1123 *
1124 * @type: severity of the error (CE/UE/Fatal)
1125 * @mci: a struct mem_ctl_info pointer
1126 * @error_count: Number of errors of the same type
1127 * @page_frame_number: mem page where the error occurred
1128 * @offset_in_page: offset of the error inside the page
1129 * @syndrome: ECC syndrome
1130 * @top_layer: Memory layer[0] position
1131 * @mid_layer: Memory layer[1] position
1132 * @low_layer: Memory layer[2] position
1133 * @msg: Message meaningful to the end users that
1134 * explains the event
1135 * @other_detail: Technical details about the event that
1136 * may help hardware manufacturers and
1137 * EDAC developers to analyse the event
1138 */
1139void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1140 struct mem_ctl_info *mci,
1141 const u16 error_count,
1142 const unsigned long page_frame_number,
1143 const unsigned long offset_in_page,
1144 const unsigned long syndrome,
1145 const int top_layer,
1146 const int mid_layer,
1147 const int low_layer,
1148 const char *msg,
1149 const char *other_detail)
1150{
1151 char *p;
1152 int row = -1, chan = -1;
1153 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1154 int i, n_labels = 0;
1155 u8 grain_bits;
1156 struct edac_raw_error_desc *e = &mci->error_desc;
1157
1158 edac_dbg(3, "MC%d\n", mci->mc_idx);
1159
1160 /* Fills the error report buffer */
1161 memset(e, 0, sizeof (*e));
1162 e->error_count = error_count;
1163 e->top_layer = top_layer;
1164 e->mid_layer = mid_layer;
1165 e->low_layer = low_layer;
1166 e->page_frame_number = page_frame_number;
1167 e->offset_in_page = offset_in_page;
1168 e->syndrome = syndrome;
1169 e->msg = msg;
1170 e->other_detail = other_detail;
1171
1172 /*
1173 * Check if the event report is consistent and if the memory
1174 * location is known. If it is known, enable_per_layer_report will be
1175 * true, the DIMM(s) label info will be filled and the per-layer
1176 * error counters will be incremented.
1177 */
1178 for (i = 0; i < mci->n_layers; i++) {
1179 if (pos[i] >= (int)mci->layers[i].size) {
1180
1181 edac_mc_printk(mci, KERN_ERR,
1182 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1183 edac_layer_name[mci->layers[i].type],
1184 pos[i], mci->layers[i].size);
1185 /*
1186 * Instead of just returning it, let's use what's
1187 * known about the error. The increment routines and
1188 * the DIMM filter logic will do the right thing by
1189 * pointing the likely damaged DIMMs.
1190 */
1191 pos[i] = -1;
1192 }
1193 if (pos[i] >= 0)
1194 e->enable_per_layer_report = true;
1195 }
1196
1197 /*
1198 * Get the dimm label/grain that applies to the match criteria.
1199 * As the error algorithm may not be able to point to just one memory
1200 * stick, the logic here will get all possible labels that could
1201 * pottentially be affected by the error.
1202 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1203 * to have only the MC channel and the MC dimm (also called "branch")
1204 * but the channel is not known, as the memory is arranged in pairs,
1205 * where each memory belongs to a separate channel within the same
1206 * branch.
1207 */
1208 p = e->label;
1209 *p = '\0';
1210
1211 for (i = 0; i < mci->tot_dimms; i++) {
1212 struct dimm_info *dimm = mci->dimms[i];
1213
1214 if (top_layer >= 0 && top_layer != dimm->location[0])
1215 continue;
1216 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1217 continue;
1218 if (low_layer >= 0 && low_layer != dimm->location[2])
1219 continue;
1220
1221 /* get the max grain, over the error match range */
1222 if (dimm->grain > e->grain)
1223 e->grain = dimm->grain;
1224
1225 /*
1226 * If the error is memory-controller wide, there's no need to
1227 * seek for the affected DIMMs because the whole
1228 * channel/memory controller/... may be affected.
1229 * Also, don't show errors for empty DIMM slots.
1230 */
1231 if (e->enable_per_layer_report && dimm->nr_pages) {
1232 if (n_labels >= EDAC_MAX_LABELS) {
1233 e->enable_per_layer_report = false;
1234 break;
1235 }
1236 n_labels++;
1237 if (p != e->label) {
1238 strcpy(p, OTHER_LABEL);
1239 p += strlen(OTHER_LABEL);
1240 }
1241 strcpy(p, dimm->label);
1242 p += strlen(p);
1243 *p = '\0';
1244
1245 /*
1246 * get csrow/channel of the DIMM, in order to allow
1247 * incrementing the compat API counters
1248 */
1249 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1250 mci->csbased ? "rank" : "dimm",
1251 dimm->csrow, dimm->cschannel);
1252 if (row == -1)
1253 row = dimm->csrow;
1254 else if (row >= 0 && row != dimm->csrow)
1255 row = -2;
1256
1257 if (chan == -1)
1258 chan = dimm->cschannel;
1259 else if (chan >= 0 && chan != dimm->cschannel)
1260 chan = -2;
1261 }
1262 }
1263
1264 if (!e->enable_per_layer_report) {
1265 strcpy(e->label, "any memory");
1266 } else {
1267 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1268 if (p == e->label)
1269 strcpy(e->label, "unknown memory");
1270 if (type == HW_EVENT_ERR_CORRECTED) {
1271 if (row >= 0) {
1272 mci->csrows[row]->ce_count += error_count;
1273 if (chan >= 0)
1274 mci->csrows[row]->channels[chan]->ce_count += error_count;
1275 }
1276 } else
1277 if (row >= 0)
1278 mci->csrows[row]->ue_count += error_count;
1279 }
1280
1281 /* Fill the RAM location data */
1282 p = e->location;
1283
1284 for (i = 0; i < mci->n_layers; i++) {
1285 if (pos[i] < 0)
1286 continue;
1287
1288 p += sprintf(p, "%s:%d ",
1289 edac_layer_name[mci->layers[i].type],
1290 pos[i]);
1291 }
1292 if (p > e->location)
1293 *(p - 1) = '\0';
1294
1295 /* Report the error via the trace interface */
1296 grain_bits = fls_long(e->grain) + 1;
1297 trace_mc_event(type, e->msg, e->label, e->error_count,
1298 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1299 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1300 grain_bits, e->syndrome, e->other_detail);
1301
1302 edac_raw_mc_handle_error(type, mci, e);
1303}
1304EXPORT_SYMBOL_GPL(edac_mc_handle_error);