drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / kernel / traps.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14/*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/user.h>
26#include <linux/interrupt.h>
27#include <linux/init.h>
28#include <linux/module.h>
29#include <linux/prctl.h>
30#include <linux/delay.h>
31#include <linux/kprobes.h>
32#include <linux/kexec.h>
33#include <linux/backlight.h>
34#include <linux/bug.h>
35#include <linux/kdebug.h>
36#include <linux/debugfs.h>
37#include <linux/ratelimit.h>
38#include <linux/context_tracking.h>
39
40#include <asm/emulated_ops.h>
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
43#include <asm/io.h>
44#include <asm/machdep.h>
45#include <asm/rtas.h>
46#include <asm/pmc.h>
47#include <asm/reg.h>
48#ifdef CONFIG_PMAC_BACKLIGHT
49#include <asm/backlight.h>
50#endif
51#ifdef CONFIG_PPC64
52#include <asm/firmware.h>
53#include <asm/processor.h>
54#include <asm/tm.h>
55#endif
56#include <asm/kexec.h>
57#include <asm/ppc-opcode.h>
58#include <asm/rio.h>
59#include <asm/fadump.h>
60#include <asm/switch_to.h>
61#include <asm/tm.h>
62#include <asm/debug.h>
63
64#if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
65int (*__debugger)(struct pt_regs *regs) __read_mostly;
66int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
67int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
68int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
69int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
70int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
71int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
72
73EXPORT_SYMBOL(__debugger);
74EXPORT_SYMBOL(__debugger_ipi);
75EXPORT_SYMBOL(__debugger_bpt);
76EXPORT_SYMBOL(__debugger_sstep);
77EXPORT_SYMBOL(__debugger_iabr_match);
78EXPORT_SYMBOL(__debugger_break_match);
79EXPORT_SYMBOL(__debugger_fault_handler);
80#endif
81
82/* Transactional Memory trap debug */
83#ifdef TM_DEBUG_SW
84#define TM_DEBUG(x...) printk(KERN_INFO x)
85#else
86#define TM_DEBUG(x...) do { } while(0)
87#endif
88
89/*
90 * Trap & Exception support
91 */
92
93#ifdef CONFIG_PMAC_BACKLIGHT
94static void pmac_backlight_unblank(void)
95{
96 mutex_lock(&pmac_backlight_mutex);
97 if (pmac_backlight) {
98 struct backlight_properties *props;
99
100 props = &pmac_backlight->props;
101 props->brightness = props->max_brightness;
102 props->power = FB_BLANK_UNBLANK;
103 backlight_update_status(pmac_backlight);
104 }
105 mutex_unlock(&pmac_backlight_mutex);
106}
107#else
108static inline void pmac_backlight_unblank(void) { }
109#endif
110
111static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
112static int die_owner = -1;
113static unsigned int die_nest_count;
114static int die_counter;
115
116static unsigned __kprobes long oops_begin(struct pt_regs *regs)
117{
118 int cpu;
119 unsigned long flags;
120
121 if (debugger(regs))
122 return 1;
123
124 oops_enter();
125
126 /* racy, but better than risking deadlock. */
127 raw_local_irq_save(flags);
128 cpu = smp_processor_id();
129 if (!arch_spin_trylock(&die_lock)) {
130 if (cpu == die_owner)
131 /* nested oops. should stop eventually */;
132 else
133 arch_spin_lock(&die_lock);
134 }
135 die_nest_count++;
136 die_owner = cpu;
137 console_verbose();
138 bust_spinlocks(1);
139 if (machine_is(powermac))
140 pmac_backlight_unblank();
141 return flags;
142}
143
144static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
145 int signr)
146{
147 bust_spinlocks(0);
148 die_owner = -1;
149 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
150 die_nest_count--;
151 oops_exit();
152 printk("\n");
153 if (!die_nest_count)
154 /* Nest count reaches zero, release the lock. */
155 arch_spin_unlock(&die_lock);
156 raw_local_irq_restore(flags);
157
158 crash_fadump(regs, "die oops");
159
160 /*
161 * A system reset (0x100) is a request to dump, so we always send
162 * it through the crashdump code.
163 */
164 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
165 crash_kexec(regs);
166
167 /*
168 * We aren't the primary crash CPU. We need to send it
169 * to a holding pattern to avoid it ending up in the panic
170 * code.
171 */
172 crash_kexec_secondary(regs);
173 }
174
175 if (!signr)
176 return;
177
178 /*
179 * While our oops output is serialised by a spinlock, output
180 * from panic() called below can race and corrupt it. If we
181 * know we are going to panic, delay for 1 second so we have a
182 * chance to get clean backtraces from all CPUs that are oopsing.
183 */
184 if (in_interrupt() || panic_on_oops || !current->pid ||
185 is_global_init(current)) {
186 mdelay(MSEC_PER_SEC);
187 }
188
189 if (in_interrupt())
190 panic("Fatal exception in interrupt");
191 if (panic_on_oops)
192 panic("Fatal exception");
193 do_exit(signr);
194}
195
196static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
197{
198 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
199#ifdef CONFIG_PREEMPT
200 printk("PREEMPT ");
201#endif
202#ifdef CONFIG_SMP
203 printk("SMP NR_CPUS=%d ", NR_CPUS);
204#endif
205#ifdef CONFIG_DEBUG_PAGEALLOC
206 printk("DEBUG_PAGEALLOC ");
207#endif
208#ifdef CONFIG_NUMA
209 printk("NUMA ");
210#endif
211 printk("%s\n", ppc_md.name ? ppc_md.name : "");
212
213 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 return 1;
215
216 print_modules();
217 show_regs(regs);
218
219 return 0;
220}
221
222void die(const char *str, struct pt_regs *regs, long err)
223{
224 unsigned long flags = oops_begin(regs);
225
226 if (__die(str, regs, err))
227 err = 0;
228 oops_end(flags, regs, err);
229}
230
231void user_single_step_siginfo(struct task_struct *tsk,
232 struct pt_regs *regs, siginfo_t *info)
233{
234 memset(info, 0, sizeof(*info));
235 info->si_signo = SIGTRAP;
236 info->si_code = TRAP_TRACE;
237 info->si_addr = (void __user *)regs->nip;
238}
239
240void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241{
242 siginfo_t info;
243 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 "at %08lx nip %08lx lr %08lx code %x\n";
245 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %016lx nip %016lx lr %016lx code %x\n";
247
248 if (!user_mode(regs)) {
249 die("Exception in kernel mode", regs, signr);
250 return;
251 }
252
253 if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 current->comm, current->pid, signr,
256 addr, regs->nip, regs->link, code);
257 }
258
259 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 local_irq_enable();
261
262 current->thread.trap_nr = code;
263 memset(&info, 0, sizeof(info));
264 info.si_signo = signr;
265 info.si_code = code;
266 info.si_addr = (void __user *) addr;
267 force_sig_info(signr, &info, current);
268}
269
270#ifdef CONFIG_PPC64
271void system_reset_exception(struct pt_regs *regs)
272{
273 /* See if any machine dependent calls */
274 if (ppc_md.system_reset_exception) {
275 if (ppc_md.system_reset_exception(regs))
276 return;
277 }
278
279 die("System Reset", regs, SIGABRT);
280
281 /* Must die if the interrupt is not recoverable */
282 if (!(regs->msr & MSR_RI))
283 panic("Unrecoverable System Reset");
284
285 /* What should we do here? We could issue a shutdown or hard reset. */
286}
287#endif
288
289/*
290 * I/O accesses can cause machine checks on powermacs.
291 * Check if the NIP corresponds to the address of a sync
292 * instruction for which there is an entry in the exception
293 * table.
294 * Note that the 601 only takes a machine check on TEA
295 * (transfer error ack) signal assertion, and does not
296 * set any of the top 16 bits of SRR1.
297 * -- paulus.
298 */
299static inline int check_io_access(struct pt_regs *regs)
300{
301#ifdef CONFIG_PPC32
302 unsigned long msr = regs->msr;
303 const struct exception_table_entry *entry;
304 unsigned int *nip = (unsigned int *)regs->nip;
305
306 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
307 && (entry = search_exception_tables(regs->nip)) != NULL) {
308 /*
309 * Check that it's a sync instruction, or somewhere
310 * in the twi; isync; nop sequence that inb/inw/inl uses.
311 * As the address is in the exception table
312 * we should be able to read the instr there.
313 * For the debug message, we look at the preceding
314 * load or store.
315 */
316 if (*nip == 0x60000000) /* nop */
317 nip -= 2;
318 else if (*nip == 0x4c00012c) /* isync */
319 --nip;
320 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
321 /* sync or twi */
322 unsigned int rb;
323
324 --nip;
325 rb = (*nip >> 11) & 0x1f;
326 printk(KERN_DEBUG "%s bad port %lx at %p\n",
327 (*nip & 0x100)? "OUT to": "IN from",
328 regs->gpr[rb] - _IO_BASE, nip);
329 regs->msr |= MSR_RI;
330 regs->nip = entry->fixup;
331 return 1;
332 }
333 }
334#endif /* CONFIG_PPC32 */
335 return 0;
336}
337
338#ifdef CONFIG_PPC_ADV_DEBUG_REGS
339/* On 4xx, the reason for the machine check or program exception
340 is in the ESR. */
341#define get_reason(regs) ((regs)->dsisr)
342#ifndef CONFIG_FSL_BOOKE
343#define get_mc_reason(regs) ((regs)->dsisr)
344#else
345#define get_mc_reason(regs) (mfspr(SPRN_MCSR))
346#endif
347#define REASON_FP ESR_FP
348#define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
349#define REASON_PRIVILEGED ESR_PPR
350#define REASON_TRAP ESR_PTR
351
352/* single-step stuff */
353#define single_stepping(regs) (current->thread.dbcr0 & DBCR0_IC)
354#define clear_single_step(regs) (current->thread.dbcr0 &= ~DBCR0_IC)
355
356#else
357/* On non-4xx, the reason for the machine check or program
358 exception is in the MSR. */
359#define get_reason(regs) ((regs)->msr)
360#define get_mc_reason(regs) ((regs)->msr)
361#define REASON_TM 0x200000
362#define REASON_FP 0x100000
363#define REASON_ILLEGAL 0x80000
364#define REASON_PRIVILEGED 0x40000
365#define REASON_TRAP 0x20000
366
367#define single_stepping(regs) ((regs)->msr & MSR_SE)
368#define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
369#endif
370
371#if defined(CONFIG_4xx)
372int machine_check_4xx(struct pt_regs *regs)
373{
374 unsigned long reason = get_mc_reason(regs);
375
376 if (reason & ESR_IMCP) {
377 printk("Instruction");
378 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
379 } else
380 printk("Data");
381 printk(" machine check in kernel mode.\n");
382
383 return 0;
384}
385
386int machine_check_440A(struct pt_regs *regs)
387{
388 unsigned long reason = get_mc_reason(regs);
389
390 printk("Machine check in kernel mode.\n");
391 if (reason & ESR_IMCP){
392 printk("Instruction Synchronous Machine Check exception\n");
393 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
394 }
395 else {
396 u32 mcsr = mfspr(SPRN_MCSR);
397 if (mcsr & MCSR_IB)
398 printk("Instruction Read PLB Error\n");
399 if (mcsr & MCSR_DRB)
400 printk("Data Read PLB Error\n");
401 if (mcsr & MCSR_DWB)
402 printk("Data Write PLB Error\n");
403 if (mcsr & MCSR_TLBP)
404 printk("TLB Parity Error\n");
405 if (mcsr & MCSR_ICP){
406 flush_instruction_cache();
407 printk("I-Cache Parity Error\n");
408 }
409 if (mcsr & MCSR_DCSP)
410 printk("D-Cache Search Parity Error\n");
411 if (mcsr & MCSR_DCFP)
412 printk("D-Cache Flush Parity Error\n");
413 if (mcsr & MCSR_IMPE)
414 printk("Machine Check exception is imprecise\n");
415
416 /* Clear MCSR */
417 mtspr(SPRN_MCSR, mcsr);
418 }
419 return 0;
420}
421
422int machine_check_47x(struct pt_regs *regs)
423{
424 unsigned long reason = get_mc_reason(regs);
425 u32 mcsr;
426
427 printk(KERN_ERR "Machine check in kernel mode.\n");
428 if (reason & ESR_IMCP) {
429 printk(KERN_ERR
430 "Instruction Synchronous Machine Check exception\n");
431 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
432 return 0;
433 }
434 mcsr = mfspr(SPRN_MCSR);
435 if (mcsr & MCSR_IB)
436 printk(KERN_ERR "Instruction Read PLB Error\n");
437 if (mcsr & MCSR_DRB)
438 printk(KERN_ERR "Data Read PLB Error\n");
439 if (mcsr & MCSR_DWB)
440 printk(KERN_ERR "Data Write PLB Error\n");
441 if (mcsr & MCSR_TLBP)
442 printk(KERN_ERR "TLB Parity Error\n");
443 if (mcsr & MCSR_ICP) {
444 flush_instruction_cache();
445 printk(KERN_ERR "I-Cache Parity Error\n");
446 }
447 if (mcsr & MCSR_DCSP)
448 printk(KERN_ERR "D-Cache Search Parity Error\n");
449 if (mcsr & PPC47x_MCSR_GPR)
450 printk(KERN_ERR "GPR Parity Error\n");
451 if (mcsr & PPC47x_MCSR_FPR)
452 printk(KERN_ERR "FPR Parity Error\n");
453 if (mcsr & PPC47x_MCSR_IPR)
454 printk(KERN_ERR "Machine Check exception is imprecise\n");
455
456 /* Clear MCSR */
457 mtspr(SPRN_MCSR, mcsr);
458
459 return 0;
460}
461#elif defined(CONFIG_E500)
462int machine_check_e500mc(struct pt_regs *regs)
463{
464 unsigned long mcsr = mfspr(SPRN_MCSR);
465 unsigned long reason = mcsr;
466 int recoverable = 1;
467
468 if (reason & MCSR_LD) {
469 recoverable = fsl_rio_mcheck_exception(regs);
470 if (recoverable == 1)
471 goto silent_out;
472 }
473
474 printk("Machine check in kernel mode.\n");
475 printk("Caused by (from MCSR=%lx): ", reason);
476
477 if (reason & MCSR_MCP)
478 printk("Machine Check Signal\n");
479
480 if (reason & MCSR_ICPERR) {
481 printk("Instruction Cache Parity Error\n");
482
483 /*
484 * This is recoverable by invalidating the i-cache.
485 */
486 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
487 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
488 ;
489
490 /*
491 * This will generally be accompanied by an instruction
492 * fetch error report -- only treat MCSR_IF as fatal
493 * if it wasn't due to an L1 parity error.
494 */
495 reason &= ~MCSR_IF;
496 }
497
498 if (reason & MCSR_DCPERR_MC) {
499 printk("Data Cache Parity Error\n");
500
501 /*
502 * In write shadow mode we auto-recover from the error, but it
503 * may still get logged and cause a machine check. We should
504 * only treat the non-write shadow case as non-recoverable.
505 */
506 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
507 recoverable = 0;
508 }
509
510 if (reason & MCSR_L2MMU_MHIT) {
511 printk("Hit on multiple TLB entries\n");
512 recoverable = 0;
513 }
514
515 if (reason & MCSR_NMI)
516 printk("Non-maskable interrupt\n");
517
518 if (reason & MCSR_IF) {
519 printk("Instruction Fetch Error Report\n");
520 recoverable = 0;
521 }
522
523 if (reason & MCSR_LD) {
524 printk("Load Error Report\n");
525 recoverable = 0;
526 }
527
528 if (reason & MCSR_ST) {
529 printk("Store Error Report\n");
530 recoverable = 0;
531 }
532
533 if (reason & MCSR_LDG) {
534 printk("Guarded Load Error Report\n");
535 recoverable = 0;
536 }
537
538 if (reason & MCSR_TLBSYNC)
539 printk("Simultaneous tlbsync operations\n");
540
541 if (reason & MCSR_BSL2_ERR) {
542 printk("Level 2 Cache Error\n");
543 recoverable = 0;
544 }
545
546 if (reason & MCSR_MAV) {
547 u64 addr;
548
549 addr = mfspr(SPRN_MCAR);
550 addr |= (u64)mfspr(SPRN_MCARU) << 32;
551
552 printk("Machine Check %s Address: %#llx\n",
553 reason & MCSR_MEA ? "Effective" : "Physical", addr);
554 }
555
556silent_out:
557 mtspr(SPRN_MCSR, mcsr);
558 return mfspr(SPRN_MCSR) == 0 && recoverable;
559}
560
561int machine_check_e500(struct pt_regs *regs)
562{
563 unsigned long reason = get_mc_reason(regs);
564
565 if (reason & MCSR_BUS_RBERR) {
566 if (fsl_rio_mcheck_exception(regs))
567 return 1;
568 }
569
570 printk("Machine check in kernel mode.\n");
571 printk("Caused by (from MCSR=%lx): ", reason);
572
573 if (reason & MCSR_MCP)
574 printk("Machine Check Signal\n");
575 if (reason & MCSR_ICPERR)
576 printk("Instruction Cache Parity Error\n");
577 if (reason & MCSR_DCP_PERR)
578 printk("Data Cache Push Parity Error\n");
579 if (reason & MCSR_DCPERR)
580 printk("Data Cache Parity Error\n");
581 if (reason & MCSR_BUS_IAERR)
582 printk("Bus - Instruction Address Error\n");
583 if (reason & MCSR_BUS_RAERR)
584 printk("Bus - Read Address Error\n");
585 if (reason & MCSR_BUS_WAERR)
586 printk("Bus - Write Address Error\n");
587 if (reason & MCSR_BUS_IBERR)
588 printk("Bus - Instruction Data Error\n");
589 if (reason & MCSR_BUS_RBERR)
590 printk("Bus - Read Data Bus Error\n");
591 if (reason & MCSR_BUS_WBERR)
592 printk("Bus - Read Data Bus Error\n");
593 if (reason & MCSR_BUS_IPERR)
594 printk("Bus - Instruction Parity Error\n");
595 if (reason & MCSR_BUS_RPERR)
596 printk("Bus - Read Parity Error\n");
597
598 return 0;
599}
600
601int machine_check_generic(struct pt_regs *regs)
602{
603 return 0;
604}
605#elif defined(CONFIG_E200)
606int machine_check_e200(struct pt_regs *regs)
607{
608 unsigned long reason = get_mc_reason(regs);
609
610 printk("Machine check in kernel mode.\n");
611 printk("Caused by (from MCSR=%lx): ", reason);
612
613 if (reason & MCSR_MCP)
614 printk("Machine Check Signal\n");
615 if (reason & MCSR_CP_PERR)
616 printk("Cache Push Parity Error\n");
617 if (reason & MCSR_CPERR)
618 printk("Cache Parity Error\n");
619 if (reason & MCSR_EXCP_ERR)
620 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
621 if (reason & MCSR_BUS_IRERR)
622 printk("Bus - Read Bus Error on instruction fetch\n");
623 if (reason & MCSR_BUS_DRERR)
624 printk("Bus - Read Bus Error on data load\n");
625 if (reason & MCSR_BUS_WRERR)
626 printk("Bus - Write Bus Error on buffered store or cache line push\n");
627
628 return 0;
629}
630#else
631int machine_check_generic(struct pt_regs *regs)
632{
633 unsigned long reason = get_mc_reason(regs);
634
635 printk("Machine check in kernel mode.\n");
636 printk("Caused by (from SRR1=%lx): ", reason);
637 switch (reason & 0x601F0000) {
638 case 0x80000:
639 printk("Machine check signal\n");
640 break;
641 case 0: /* for 601 */
642 case 0x40000:
643 case 0x140000: /* 7450 MSS error and TEA */
644 printk("Transfer error ack signal\n");
645 break;
646 case 0x20000:
647 printk("Data parity error signal\n");
648 break;
649 case 0x10000:
650 printk("Address parity error signal\n");
651 break;
652 case 0x20000000:
653 printk("L1 Data Cache error\n");
654 break;
655 case 0x40000000:
656 printk("L1 Instruction Cache error\n");
657 break;
658 case 0x00100000:
659 printk("L2 data cache parity error\n");
660 break;
661 default:
662 printk("Unknown values in msr\n");
663 }
664 return 0;
665}
666#endif /* everything else */
667
668void machine_check_exception(struct pt_regs *regs)
669{
670 enum ctx_state prev_state = exception_enter();
671 int recover = 0;
672
673 __get_cpu_var(irq_stat).mce_exceptions++;
674
675 /* See if any machine dependent calls. In theory, we would want
676 * to call the CPU first, and call the ppc_md. one if the CPU
677 * one returns a positive number. However there is existing code
678 * that assumes the board gets a first chance, so let's keep it
679 * that way for now and fix things later. --BenH.
680 */
681 if (ppc_md.machine_check_exception)
682 recover = ppc_md.machine_check_exception(regs);
683 else if (cur_cpu_spec->machine_check)
684 recover = cur_cpu_spec->machine_check(regs);
685
686 if (recover > 0)
687 goto bail;
688
689#if defined(CONFIG_8xx) && defined(CONFIG_PCI)
690 /* the qspan pci read routines can cause machine checks -- Cort
691 *
692 * yuck !!! that totally needs to go away ! There are better ways
693 * to deal with that than having a wart in the mcheck handler.
694 * -- BenH
695 */
696 bad_page_fault(regs, regs->dar, SIGBUS);
697 goto bail;
698#endif
699
700 if (debugger_fault_handler(regs))
701 goto bail;
702
703 if (check_io_access(regs))
704 goto bail;
705
706 die("Machine check", regs, SIGBUS);
707
708 /* Must die if the interrupt is not recoverable */
709 if (!(regs->msr & MSR_RI))
710 panic("Unrecoverable Machine check");
711
712bail:
713 exception_exit(prev_state);
714}
715
716void SMIException(struct pt_regs *regs)
717{
718 die("System Management Interrupt", regs, SIGABRT);
719}
720
721void unknown_exception(struct pt_regs *regs)
722{
723 enum ctx_state prev_state = exception_enter();
724
725 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
726 regs->nip, regs->msr, regs->trap);
727
728 _exception(SIGTRAP, regs, 0, 0);
729
730 exception_exit(prev_state);
731}
732
733void instruction_breakpoint_exception(struct pt_regs *regs)
734{
735 enum ctx_state prev_state = exception_enter();
736
737 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
738 5, SIGTRAP) == NOTIFY_STOP)
739 goto bail;
740 if (debugger_iabr_match(regs))
741 goto bail;
742 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
743
744bail:
745 exception_exit(prev_state);
746}
747
748void RunModeException(struct pt_regs *regs)
749{
750 _exception(SIGTRAP, regs, 0, 0);
751}
752
753void __kprobes single_step_exception(struct pt_regs *regs)
754{
755 enum ctx_state prev_state = exception_enter();
756
757 clear_single_step(regs);
758
759 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
760 5, SIGTRAP) == NOTIFY_STOP)
761 goto bail;
762 if (debugger_sstep(regs))
763 goto bail;
764
765 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
766
767bail:
768 exception_exit(prev_state);
769}
770
771/*
772 * After we have successfully emulated an instruction, we have to
773 * check if the instruction was being single-stepped, and if so,
774 * pretend we got a single-step exception. This was pointed out
775 * by Kumar Gala. -- paulus
776 */
777static void emulate_single_step(struct pt_regs *regs)
778{
779 if (single_stepping(regs))
780 single_step_exception(regs);
781}
782
783static inline int __parse_fpscr(unsigned long fpscr)
784{
785 int ret = 0;
786
787 /* Invalid operation */
788 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
789 ret = FPE_FLTINV;
790
791 /* Overflow */
792 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
793 ret = FPE_FLTOVF;
794
795 /* Underflow */
796 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
797 ret = FPE_FLTUND;
798
799 /* Divide by zero */
800 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
801 ret = FPE_FLTDIV;
802
803 /* Inexact result */
804 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
805 ret = FPE_FLTRES;
806
807 return ret;
808}
809
810static void parse_fpe(struct pt_regs *regs)
811{
812 int code = 0;
813
814 flush_fp_to_thread(current);
815
816 code = __parse_fpscr(current->thread.fpscr.val);
817
818 _exception(SIGFPE, regs, code, regs->nip);
819}
820
821/*
822 * Illegal instruction emulation support. Originally written to
823 * provide the PVR to user applications using the mfspr rd, PVR.
824 * Return non-zero if we can't emulate, or -EFAULT if the associated
825 * memory access caused an access fault. Return zero on success.
826 *
827 * There are a couple of ways to do this, either "decode" the instruction
828 * or directly match lots of bits. In this case, matching lots of
829 * bits is faster and easier.
830 *
831 */
832static int emulate_string_inst(struct pt_regs *regs, u32 instword)
833{
834 u8 rT = (instword >> 21) & 0x1f;
835 u8 rA = (instword >> 16) & 0x1f;
836 u8 NB_RB = (instword >> 11) & 0x1f;
837 u32 num_bytes;
838 unsigned long EA;
839 int pos = 0;
840
841 /* Early out if we are an invalid form of lswx */
842 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
843 if ((rT == rA) || (rT == NB_RB))
844 return -EINVAL;
845
846 EA = (rA == 0) ? 0 : regs->gpr[rA];
847
848 switch (instword & PPC_INST_STRING_MASK) {
849 case PPC_INST_LSWX:
850 case PPC_INST_STSWX:
851 EA += NB_RB;
852 num_bytes = regs->xer & 0x7f;
853 break;
854 case PPC_INST_LSWI:
855 case PPC_INST_STSWI:
856 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
857 break;
858 default:
859 return -EINVAL;
860 }
861
862 while (num_bytes != 0)
863 {
864 u8 val;
865 u32 shift = 8 * (3 - (pos & 0x3));
866
867 switch ((instword & PPC_INST_STRING_MASK)) {
868 case PPC_INST_LSWX:
869 case PPC_INST_LSWI:
870 if (get_user(val, (u8 __user *)EA))
871 return -EFAULT;
872 /* first time updating this reg,
873 * zero it out */
874 if (pos == 0)
875 regs->gpr[rT] = 0;
876 regs->gpr[rT] |= val << shift;
877 break;
878 case PPC_INST_STSWI:
879 case PPC_INST_STSWX:
880 val = regs->gpr[rT] >> shift;
881 if (put_user(val, (u8 __user *)EA))
882 return -EFAULT;
883 break;
884 }
885 /* move EA to next address */
886 EA += 1;
887 num_bytes--;
888
889 /* manage our position within the register */
890 if (++pos == 4) {
891 pos = 0;
892 if (++rT == 32)
893 rT = 0;
894 }
895 }
896
897 return 0;
898}
899
900static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
901{
902 u32 ra,rs;
903 unsigned long tmp;
904
905 ra = (instword >> 16) & 0x1f;
906 rs = (instword >> 21) & 0x1f;
907
908 tmp = regs->gpr[rs];
909 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
910 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
911 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
912 regs->gpr[ra] = tmp;
913
914 return 0;
915}
916
917static int emulate_isel(struct pt_regs *regs, u32 instword)
918{
919 u8 rT = (instword >> 21) & 0x1f;
920 u8 rA = (instword >> 16) & 0x1f;
921 u8 rB = (instword >> 11) & 0x1f;
922 u8 BC = (instword >> 6) & 0x1f;
923 u8 bit;
924 unsigned long tmp;
925
926 tmp = (rA == 0) ? 0 : regs->gpr[rA];
927 bit = (regs->ccr >> (31 - BC)) & 0x1;
928
929 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
930
931 return 0;
932}
933
934#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
935static inline bool tm_abort_check(struct pt_regs *regs, int cause)
936{
937 /* If we're emulating a load/store in an active transaction, we cannot
938 * emulate it as the kernel operates in transaction suspended context.
939 * We need to abort the transaction. This creates a persistent TM
940 * abort so tell the user what caused it with a new code.
941 */
942 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
943 tm_enable();
944 tm_abort(cause);
945 return true;
946 }
947 return false;
948}
949#else
950static inline bool tm_abort_check(struct pt_regs *regs, int reason)
951{
952 return false;
953}
954#endif
955
956static int emulate_instruction(struct pt_regs *regs)
957{
958 u32 instword;
959 u32 rd;
960
961 if (!user_mode(regs) || (regs->msr & MSR_LE))
962 return -EINVAL;
963 CHECK_FULL_REGS(regs);
964
965 if (get_user(instword, (u32 __user *)(regs->nip)))
966 return -EFAULT;
967
968 /* Emulate the mfspr rD, PVR. */
969 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
970 PPC_WARN_EMULATED(mfpvr, regs);
971 rd = (instword >> 21) & 0x1f;
972 regs->gpr[rd] = mfspr(SPRN_PVR);
973 return 0;
974 }
975
976 /* Emulating the dcba insn is just a no-op. */
977 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
978 PPC_WARN_EMULATED(dcba, regs);
979 return 0;
980 }
981
982 /* Emulate the mcrxr insn. */
983 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
984 int shift = (instword >> 21) & 0x1c;
985 unsigned long msk = 0xf0000000UL >> shift;
986
987 PPC_WARN_EMULATED(mcrxr, regs);
988 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
989 regs->xer &= ~0xf0000000UL;
990 return 0;
991 }
992
993 /* Emulate load/store string insn. */
994 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
995 if (tm_abort_check(regs,
996 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
997 return -EINVAL;
998 PPC_WARN_EMULATED(string, regs);
999 return emulate_string_inst(regs, instword);
1000 }
1001
1002 /* Emulate the popcntb (Population Count Bytes) instruction. */
1003 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1004 PPC_WARN_EMULATED(popcntb, regs);
1005 return emulate_popcntb_inst(regs, instword);
1006 }
1007
1008 /* Emulate isel (Integer Select) instruction */
1009 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1010 PPC_WARN_EMULATED(isel, regs);
1011 return emulate_isel(regs, instword);
1012 }
1013
1014#ifdef CONFIG_PPC64
1015 /* Emulate the mfspr rD, DSCR. */
1016 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1017 PPC_INST_MFSPR_DSCR_USER) ||
1018 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1019 PPC_INST_MFSPR_DSCR)) &&
1020 cpu_has_feature(CPU_FTR_DSCR)) {
1021 PPC_WARN_EMULATED(mfdscr, regs);
1022 rd = (instword >> 21) & 0x1f;
1023 regs->gpr[rd] = mfspr(SPRN_DSCR);
1024 return 0;
1025 }
1026 /* Emulate the mtspr DSCR, rD. */
1027 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1028 PPC_INST_MTSPR_DSCR_USER) ||
1029 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1030 PPC_INST_MTSPR_DSCR)) &&
1031 cpu_has_feature(CPU_FTR_DSCR)) {
1032 PPC_WARN_EMULATED(mtdscr, regs);
1033 rd = (instword >> 21) & 0x1f;
1034 current->thread.dscr = regs->gpr[rd];
1035 current->thread.dscr_inherit = 1;
1036 mtspr(SPRN_DSCR, current->thread.dscr);
1037 return 0;
1038 }
1039#endif
1040
1041 return -EINVAL;
1042}
1043
1044int is_valid_bugaddr(unsigned long addr)
1045{
1046 return is_kernel_addr(addr);
1047}
1048
1049void __kprobes program_check_exception(struct pt_regs *regs)
1050{
1051 enum ctx_state prev_state = exception_enter();
1052 unsigned int reason = get_reason(regs);
1053 extern int do_mathemu(struct pt_regs *regs);
1054
1055 /* We can now get here via a FP Unavailable exception if the core
1056 * has no FPU, in that case the reason flags will be 0 */
1057
1058 if (reason & REASON_FP) {
1059 /* IEEE FP exception */
1060 parse_fpe(regs);
1061 goto bail;
1062 }
1063 if (reason & REASON_TRAP) {
1064 /* Debugger is first in line to stop recursive faults in
1065 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1066 if (debugger_bpt(regs))
1067 goto bail;
1068
1069 /* trap exception */
1070 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1071 == NOTIFY_STOP)
1072 goto bail;
1073
1074 if (!(regs->msr & MSR_PR) && /* not user-mode */
1075 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1076 regs->nip += 4;
1077 goto bail;
1078 }
1079 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1080 goto bail;
1081 }
1082#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1083 if (reason & REASON_TM) {
1084 /* This is a TM "Bad Thing Exception" program check.
1085 * This occurs when:
1086 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1087 * transition in TM states.
1088 * - A trechkpt is attempted when transactional.
1089 * - A treclaim is attempted when non transactional.
1090 * - A tend is illegally attempted.
1091 * - writing a TM SPR when transactional.
1092 */
1093 if (!user_mode(regs) &&
1094 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1095 regs->nip += 4;
1096 goto bail;
1097 }
1098 /* If usermode caused this, it's done something illegal and
1099 * gets a SIGILL slap on the wrist. We call it an illegal
1100 * operand to distinguish from the instruction just being bad
1101 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1102 * illegal /placement/ of a valid instruction.
1103 */
1104 if (user_mode(regs)) {
1105 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1106 goto bail;
1107 } else {
1108 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1109 "at %lx (msr 0x%x)\n", regs->nip, reason);
1110 die("Unrecoverable exception", regs, SIGABRT);
1111 }
1112 }
1113#endif
1114
1115 /* We restore the interrupt state now */
1116 if (!arch_irq_disabled_regs(regs))
1117 local_irq_enable();
1118
1119#ifdef CONFIG_MATH_EMULATION
1120 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1121 * but there seems to be a hardware bug on the 405GP (RevD)
1122 * that means ESR is sometimes set incorrectly - either to
1123 * ESR_DST (!?) or 0. In the process of chasing this with the
1124 * hardware people - not sure if it can happen on any illegal
1125 * instruction or only on FP instructions, whether there is a
1126 * pattern to occurrences etc. -dgibson 31/Mar/2003 */
1127 switch (do_mathemu(regs)) {
1128 case 0:
1129 emulate_single_step(regs);
1130 goto bail;
1131 case 1: {
1132 int code = 0;
1133 code = __parse_fpscr(current->thread.fpscr.val);
1134 _exception(SIGFPE, regs, code, regs->nip);
1135 goto bail;
1136 }
1137 case -EFAULT:
1138 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1139 goto bail;
1140 }
1141 /* fall through on any other errors */
1142#endif /* CONFIG_MATH_EMULATION */
1143
1144 /* Try to emulate it if we should. */
1145 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1146 switch (emulate_instruction(regs)) {
1147 case 0:
1148 regs->nip += 4;
1149 emulate_single_step(regs);
1150 goto bail;
1151 case -EFAULT:
1152 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1153 goto bail;
1154 }
1155 }
1156
1157 if (reason & REASON_PRIVILEGED)
1158 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1159 else
1160 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1161
1162bail:
1163 exception_exit(prev_state);
1164}
1165
1166/*
1167 * This occurs when running in hypervisor mode on POWER6 or later
1168 * and an illegal instruction is encountered.
1169 */
1170void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1171{
1172 regs->msr |= REASON_ILLEGAL;
1173 program_check_exception(regs);
1174}
1175
1176void alignment_exception(struct pt_regs *regs)
1177{
1178 enum ctx_state prev_state = exception_enter();
1179 int sig, code, fixed = 0;
1180
1181 /* We restore the interrupt state now */
1182 if (!arch_irq_disabled_regs(regs))
1183 local_irq_enable();
1184
1185 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1186 goto bail;
1187
1188 /* we don't implement logging of alignment exceptions */
1189 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1190 fixed = fix_alignment(regs);
1191
1192 if (fixed == 1) {
1193 regs->nip += 4; /* skip over emulated instruction */
1194 emulate_single_step(regs);
1195 goto bail;
1196 }
1197
1198 /* Operand address was bad */
1199 if (fixed == -EFAULT) {
1200 sig = SIGSEGV;
1201 code = SEGV_ACCERR;
1202 } else {
1203 sig = SIGBUS;
1204 code = BUS_ADRALN;
1205 }
1206 if (user_mode(regs))
1207 _exception(sig, regs, code, regs->dar);
1208 else
1209 bad_page_fault(regs, regs->dar, sig);
1210
1211bail:
1212 exception_exit(prev_state);
1213}
1214
1215void StackOverflow(struct pt_regs *regs)
1216{
1217 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1218 current, regs->gpr[1]);
1219 debugger(regs);
1220 show_regs(regs);
1221 panic("kernel stack overflow");
1222}
1223
1224void nonrecoverable_exception(struct pt_regs *regs)
1225{
1226 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1227 regs->nip, regs->msr);
1228 debugger(regs);
1229 die("nonrecoverable exception", regs, SIGKILL);
1230}
1231
1232void trace_syscall(struct pt_regs *regs)
1233{
1234 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1235 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1236 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1237}
1238
1239void kernel_fp_unavailable_exception(struct pt_regs *regs)
1240{
1241 enum ctx_state prev_state = exception_enter();
1242
1243 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1244 "%lx at %lx\n", regs->trap, regs->nip);
1245 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1246
1247 exception_exit(prev_state);
1248}
1249
1250void altivec_unavailable_exception(struct pt_regs *regs)
1251{
1252 enum ctx_state prev_state = exception_enter();
1253
1254 if (user_mode(regs)) {
1255 /* A user program has executed an altivec instruction,
1256 but this kernel doesn't support altivec. */
1257 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1258 goto bail;
1259 }
1260
1261 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1262 "%lx at %lx\n", regs->trap, regs->nip);
1263 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1264
1265bail:
1266 exception_exit(prev_state);
1267}
1268
1269void vsx_unavailable_exception(struct pt_regs *regs)
1270{
1271 if (user_mode(regs)) {
1272 /* A user program has executed an vsx instruction,
1273 but this kernel doesn't support vsx. */
1274 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1275 return;
1276 }
1277
1278 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1279 "%lx at %lx\n", regs->trap, regs->nip);
1280 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1281}
1282
1283#ifdef CONFIG_PPC64
1284void facility_unavailable_exception(struct pt_regs *regs)
1285{
1286 static char *facility_strings[] = {
1287 [FSCR_FP_LG] = "FPU",
1288 [FSCR_VECVSX_LG] = "VMX/VSX",
1289 [FSCR_DSCR_LG] = "DSCR",
1290 [FSCR_PM_LG] = "PMU SPRs",
1291 [FSCR_BHRB_LG] = "BHRB",
1292 [FSCR_TM_LG] = "TM",
1293 [FSCR_EBB_LG] = "EBB",
1294 [FSCR_TAR_LG] = "TAR",
1295 };
1296 char *facility = "unknown";
1297 u64 value;
1298 u8 status;
1299 bool hv;
1300
1301 hv = (regs->trap == 0xf80);
1302 if (hv)
1303 value = mfspr(SPRN_HFSCR);
1304 else
1305 value = mfspr(SPRN_FSCR);
1306
1307 status = value >> 56;
1308 if (status == FSCR_DSCR_LG) {
1309 /* User is acessing the DSCR. Set the inherit bit and allow
1310 * the user to set it directly in future by setting via the
1311 * H/FSCR DSCR bit.
1312 */
1313 current->thread.dscr_inherit = 1;
1314 if (hv)
1315 mtspr(SPRN_HFSCR, value | HFSCR_DSCR);
1316 else
1317 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1318 return;
1319 }
1320
1321 if ((status < ARRAY_SIZE(facility_strings)) &&
1322 facility_strings[status])
1323 facility = facility_strings[status];
1324
1325 /* We restore the interrupt state now */
1326 if (!arch_irq_disabled_regs(regs))
1327 local_irq_enable();
1328
1329 pr_err("%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1330 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1331
1332 if (user_mode(regs)) {
1333 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1334 return;
1335 }
1336
1337 die("Unexpected facility unavailable exception", regs, SIGABRT);
1338}
1339#endif
1340
1341#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1342
1343extern void do_load_up_fpu(struct pt_regs *regs);
1344
1345void fp_unavailable_tm(struct pt_regs *regs)
1346{
1347 /* Note: This does not handle any kind of FP laziness. */
1348
1349 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1350 regs->nip, regs->msr);
1351 tm_enable();
1352
1353 /* We can only have got here if the task started using FP after
1354 * beginning the transaction. So, the transactional regs are just a
1355 * copy of the checkpointed ones. But, we still need to recheckpoint
1356 * as we're enabling FP for the process; it will return, abort the
1357 * transaction, and probably retry but now with FP enabled. So the
1358 * checkpointed FP registers need to be loaded.
1359 */
1360 tm_reclaim(&current->thread, current->thread.regs->msr,
1361 TM_CAUSE_FAC_UNAV);
1362 /* Reclaim didn't save out any FPRs to transact_fprs. */
1363
1364 /* Enable FP for the task: */
1365 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1366
1367 /* This loads and recheckpoints the FP registers from
1368 * thread.fpr[]. They will remain in registers after the
1369 * checkpoint so we don't need to reload them after.
1370 */
1371 tm_recheckpoint(&current->thread, regs->msr);
1372}
1373
1374#ifdef CONFIG_ALTIVEC
1375extern void do_load_up_altivec(struct pt_regs *regs);
1376
1377void altivec_unavailable_tm(struct pt_regs *regs)
1378{
1379 /* See the comments in fp_unavailable_tm(). This function operates
1380 * the same way.
1381 */
1382
1383 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1384 "MSR=%lx\n",
1385 regs->nip, regs->msr);
1386 tm_enable();
1387 tm_reclaim(&current->thread, current->thread.regs->msr,
1388 TM_CAUSE_FAC_UNAV);
1389 regs->msr |= MSR_VEC;
1390 tm_recheckpoint(&current->thread, regs->msr);
1391 current->thread.used_vr = 1;
1392}
1393#endif
1394
1395#ifdef CONFIG_VSX
1396void vsx_unavailable_tm(struct pt_regs *regs)
1397{
1398 /* See the comments in fp_unavailable_tm(). This works similarly,
1399 * though we're loading both FP and VEC registers in here.
1400 *
1401 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1402 * regs. Either way, set MSR_VSX.
1403 */
1404
1405 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1406 "MSR=%lx\n",
1407 regs->nip, regs->msr);
1408
1409 tm_enable();
1410 /* This reclaims FP and/or VR regs if they're already enabled */
1411 tm_reclaim(&current->thread, current->thread.regs->msr,
1412 TM_CAUSE_FAC_UNAV);
1413
1414 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1415 MSR_VSX;
1416 /* This loads & recheckpoints FP and VRs. */
1417 tm_recheckpoint(&current->thread, regs->msr);
1418 current->thread.used_vsr = 1;
1419}
1420#endif
1421#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1422
1423void performance_monitor_exception(struct pt_regs *regs)
1424{
1425 __get_cpu_var(irq_stat).pmu_irqs++;
1426
1427 perf_irq(regs);
1428}
1429
1430#ifdef CONFIG_8xx
1431void SoftwareEmulation(struct pt_regs *regs)
1432{
1433 extern int do_mathemu(struct pt_regs *);
1434 extern int Soft_emulate_8xx(struct pt_regs *);
1435#if defined(CONFIG_MATH_EMULATION) || defined(CONFIG_8XX_MINIMAL_FPEMU)
1436 int errcode;
1437#endif
1438
1439 CHECK_FULL_REGS(regs);
1440
1441 if (!user_mode(regs)) {
1442 debugger(regs);
1443 die("Kernel Mode Software FPU Emulation", regs, SIGFPE);
1444 }
1445
1446#ifdef CONFIG_MATH_EMULATION
1447 errcode = do_mathemu(regs);
1448 if (errcode >= 0)
1449 PPC_WARN_EMULATED(math, regs);
1450
1451 switch (errcode) {
1452 case 0:
1453 emulate_single_step(regs);
1454 return;
1455 case 1: {
1456 int code = 0;
1457 code = __parse_fpscr(current->thread.fpscr.val);
1458 _exception(SIGFPE, regs, code, regs->nip);
1459 return;
1460 }
1461 case -EFAULT:
1462 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1463 return;
1464 default:
1465 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1466 return;
1467 }
1468
1469#elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1470 errcode = Soft_emulate_8xx(regs);
1471 if (errcode >= 0)
1472 PPC_WARN_EMULATED(8xx, regs);
1473
1474 switch (errcode) {
1475 case 0:
1476 emulate_single_step(regs);
1477 return;
1478 case 1:
1479 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1480 return;
1481 case -EFAULT:
1482 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1483 return;
1484 }
1485#else
1486 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1487#endif
1488}
1489#endif /* CONFIG_8xx */
1490
1491#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1492static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1493{
1494 int changed = 0;
1495 /*
1496 * Determine the cause of the debug event, clear the
1497 * event flags and send a trap to the handler. Torez
1498 */
1499 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1500 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1501#ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1502 current->thread.dbcr2 &= ~DBCR2_DAC12MODE;
1503#endif
1504 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1505 5);
1506 changed |= 0x01;
1507 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1508 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1509 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1510 6);
1511 changed |= 0x01;
1512 } else if (debug_status & DBSR_IAC1) {
1513 current->thread.dbcr0 &= ~DBCR0_IAC1;
1514 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1515 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1516 1);
1517 changed |= 0x01;
1518 } else if (debug_status & DBSR_IAC2) {
1519 current->thread.dbcr0 &= ~DBCR0_IAC2;
1520 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1521 2);
1522 changed |= 0x01;
1523 } else if (debug_status & DBSR_IAC3) {
1524 current->thread.dbcr0 &= ~DBCR0_IAC3;
1525 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1526 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1527 3);
1528 changed |= 0x01;
1529 } else if (debug_status & DBSR_IAC4) {
1530 current->thread.dbcr0 &= ~DBCR0_IAC4;
1531 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1532 4);
1533 changed |= 0x01;
1534 }
1535 /*
1536 * At the point this routine was called, the MSR(DE) was turned off.
1537 * Check all other debug flags and see if that bit needs to be turned
1538 * back on or not.
1539 */
1540 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0, current->thread.dbcr1))
1541 regs->msr |= MSR_DE;
1542 else
1543 /* Make sure the IDM flag is off */
1544 current->thread.dbcr0 &= ~DBCR0_IDM;
1545
1546 if (changed & 0x01)
1547 mtspr(SPRN_DBCR0, current->thread.dbcr0);
1548}
1549
1550void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1551{
1552 current->thread.dbsr = debug_status;
1553
1554 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1555 * on server, it stops on the target of the branch. In order to simulate
1556 * the server behaviour, we thus restart right away with a single step
1557 * instead of stopping here when hitting a BT
1558 */
1559 if (debug_status & DBSR_BT) {
1560 regs->msr &= ~MSR_DE;
1561
1562 /* Disable BT */
1563 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1564 /* Clear the BT event */
1565 mtspr(SPRN_DBSR, DBSR_BT);
1566
1567 /* Do the single step trick only when coming from userspace */
1568 if (user_mode(regs)) {
1569 current->thread.dbcr0 &= ~DBCR0_BT;
1570 current->thread.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1571 regs->msr |= MSR_DE;
1572 return;
1573 }
1574
1575 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1576 5, SIGTRAP) == NOTIFY_STOP) {
1577 return;
1578 }
1579 if (debugger_sstep(regs))
1580 return;
1581 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1582 regs->msr &= ~MSR_DE;
1583
1584 /* Disable instruction completion */
1585 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1586 /* Clear the instruction completion event */
1587 mtspr(SPRN_DBSR, DBSR_IC);
1588
1589 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1590 5, SIGTRAP) == NOTIFY_STOP) {
1591 return;
1592 }
1593
1594 if (debugger_sstep(regs))
1595 return;
1596
1597 if (user_mode(regs)) {
1598 current->thread.dbcr0 &= ~DBCR0_IC;
1599 if (DBCR_ACTIVE_EVENTS(current->thread.dbcr0,
1600 current->thread.dbcr1))
1601 regs->msr |= MSR_DE;
1602 else
1603 /* Make sure the IDM bit is off */
1604 current->thread.dbcr0 &= ~DBCR0_IDM;
1605 }
1606
1607 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1608 } else
1609 handle_debug(regs, debug_status);
1610}
1611#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1612
1613#if !defined(CONFIG_TAU_INT)
1614void TAUException(struct pt_regs *regs)
1615{
1616 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1617 regs->nip, regs->msr, regs->trap, print_tainted());
1618}
1619#endif /* CONFIG_INT_TAU */
1620
1621#ifdef CONFIG_ALTIVEC
1622void altivec_assist_exception(struct pt_regs *regs)
1623{
1624 int err;
1625
1626 if (!user_mode(regs)) {
1627 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1628 " at %lx\n", regs->nip);
1629 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1630 }
1631
1632 flush_altivec_to_thread(current);
1633
1634 PPC_WARN_EMULATED(altivec, regs);
1635 err = emulate_altivec(regs);
1636 if (err == 0) {
1637 regs->nip += 4; /* skip emulated instruction */
1638 emulate_single_step(regs);
1639 return;
1640 }
1641
1642 if (err == -EFAULT) {
1643 /* got an error reading the instruction */
1644 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1645 } else {
1646 /* didn't recognize the instruction */
1647 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1648 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1649 "in %s at %lx\n", current->comm, regs->nip);
1650 current->thread.vscr.u[3] |= 0x10000;
1651 }
1652}
1653#endif /* CONFIG_ALTIVEC */
1654
1655#ifdef CONFIG_VSX
1656void vsx_assist_exception(struct pt_regs *regs)
1657{
1658 if (!user_mode(regs)) {
1659 printk(KERN_EMERG "VSX assist exception in kernel mode"
1660 " at %lx\n", regs->nip);
1661 die("Kernel VSX assist exception", regs, SIGILL);
1662 }
1663
1664 flush_vsx_to_thread(current);
1665 printk(KERN_INFO "VSX assist not supported at %lx\n", regs->nip);
1666 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1667}
1668#endif /* CONFIG_VSX */
1669
1670#ifdef CONFIG_FSL_BOOKE
1671void CacheLockingException(struct pt_regs *regs, unsigned long address,
1672 unsigned long error_code)
1673{
1674 /* We treat cache locking instructions from the user
1675 * as priv ops, in the future we could try to do
1676 * something smarter
1677 */
1678 if (error_code & (ESR_DLK|ESR_ILK))
1679 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1680 return;
1681}
1682#endif /* CONFIG_FSL_BOOKE */
1683
1684#ifdef CONFIG_SPE
1685void SPEFloatingPointException(struct pt_regs *regs)
1686{
1687 extern int do_spe_mathemu(struct pt_regs *regs);
1688 unsigned long spefscr;
1689 int fpexc_mode;
1690 int code = 0;
1691 int err;
1692
1693 flush_spe_to_thread(current);
1694
1695 spefscr = current->thread.spefscr;
1696 fpexc_mode = current->thread.fpexc_mode;
1697
1698 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1699 code = FPE_FLTOVF;
1700 }
1701 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1702 code = FPE_FLTUND;
1703 }
1704 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1705 code = FPE_FLTDIV;
1706 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1707 code = FPE_FLTINV;
1708 }
1709 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1710 code = FPE_FLTRES;
1711
1712 err = do_spe_mathemu(regs);
1713 if (err == 0) {
1714 regs->nip += 4; /* skip emulated instruction */
1715 emulate_single_step(regs);
1716 return;
1717 }
1718
1719 if (err == -EFAULT) {
1720 /* got an error reading the instruction */
1721 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1722 } else if (err == -EINVAL) {
1723 /* didn't recognize the instruction */
1724 printk(KERN_ERR "unrecognized spe instruction "
1725 "in %s at %lx\n", current->comm, regs->nip);
1726 } else {
1727 _exception(SIGFPE, regs, code, regs->nip);
1728 }
1729
1730 return;
1731}
1732
1733void SPEFloatingPointRoundException(struct pt_regs *regs)
1734{
1735 extern int speround_handler(struct pt_regs *regs);
1736 int err;
1737
1738 preempt_disable();
1739 if (regs->msr & MSR_SPE)
1740 giveup_spe(current);
1741 preempt_enable();
1742
1743 regs->nip -= 4;
1744 err = speround_handler(regs);
1745 if (err == 0) {
1746 regs->nip += 4; /* skip emulated instruction */
1747 emulate_single_step(regs);
1748 return;
1749 }
1750
1751 if (err == -EFAULT) {
1752 /* got an error reading the instruction */
1753 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1754 } else if (err == -EINVAL) {
1755 /* didn't recognize the instruction */
1756 printk(KERN_ERR "unrecognized spe instruction "
1757 "in %s at %lx\n", current->comm, regs->nip);
1758 } else {
1759 _exception(SIGFPE, regs, 0, regs->nip);
1760 return;
1761 }
1762}
1763#endif
1764
1765/*
1766 * We enter here if we get an unrecoverable exception, that is, one
1767 * that happened at a point where the RI (recoverable interrupt) bit
1768 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1769 * we therefore lost state by taking this exception.
1770 */
1771void unrecoverable_exception(struct pt_regs *regs)
1772{
1773 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1774 regs->trap, regs->nip);
1775 die("Unrecoverable exception", regs, SIGABRT);
1776}
1777
1778#if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1779/*
1780 * Default handler for a Watchdog exception,
1781 * spins until a reboot occurs
1782 */
1783void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1784{
1785 /* Generic WatchdogHandler, implement your own */
1786 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1787 return;
1788}
1789
1790void WatchdogException(struct pt_regs *regs)
1791{
1792 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1793 WatchdogHandler(regs);
1794}
1795#endif
1796
1797/*
1798 * We enter here if we discover during exception entry that we are
1799 * running in supervisor mode with a userspace value in the stack pointer.
1800 */
1801void kernel_bad_stack(struct pt_regs *regs)
1802{
1803 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1804 regs->gpr[1], regs->nip);
1805 die("Bad kernel stack pointer", regs, SIGABRT);
1806}
1807
1808void __init trap_init(void)
1809{
1810}
1811
1812
1813#ifdef CONFIG_PPC_EMULATED_STATS
1814
1815#define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1816
1817struct ppc_emulated ppc_emulated = {
1818#ifdef CONFIG_ALTIVEC
1819 WARN_EMULATED_SETUP(altivec),
1820#endif
1821 WARN_EMULATED_SETUP(dcba),
1822 WARN_EMULATED_SETUP(dcbz),
1823 WARN_EMULATED_SETUP(fp_pair),
1824 WARN_EMULATED_SETUP(isel),
1825 WARN_EMULATED_SETUP(mcrxr),
1826 WARN_EMULATED_SETUP(mfpvr),
1827 WARN_EMULATED_SETUP(multiple),
1828 WARN_EMULATED_SETUP(popcntb),
1829 WARN_EMULATED_SETUP(spe),
1830 WARN_EMULATED_SETUP(string),
1831 WARN_EMULATED_SETUP(unaligned),
1832#ifdef CONFIG_MATH_EMULATION
1833 WARN_EMULATED_SETUP(math),
1834#elif defined(CONFIG_8XX_MINIMAL_FPEMU)
1835 WARN_EMULATED_SETUP(8xx),
1836#endif
1837#ifdef CONFIG_VSX
1838 WARN_EMULATED_SETUP(vsx),
1839#endif
1840#ifdef CONFIG_PPC64
1841 WARN_EMULATED_SETUP(mfdscr),
1842 WARN_EMULATED_SETUP(mtdscr),
1843#endif
1844};
1845
1846u32 ppc_warn_emulated;
1847
1848void ppc_warn_emulated_print(const char *type)
1849{
1850 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1851 type);
1852}
1853
1854static int __init ppc_warn_emulated_init(void)
1855{
1856 struct dentry *dir, *d;
1857 unsigned int i;
1858 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1859
1860 if (!powerpc_debugfs_root)
1861 return -ENODEV;
1862
1863 dir = debugfs_create_dir("emulated_instructions",
1864 powerpc_debugfs_root);
1865 if (!dir)
1866 return -ENOMEM;
1867
1868 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1869 &ppc_warn_emulated);
1870 if (!d)
1871 goto fail;
1872
1873 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1874 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1875 (u32 *)&entries[i].val.counter);
1876 if (!d)
1877 goto fail;
1878 }
1879
1880 return 0;
1881
1882fail:
1883 debugfs_remove_recursive(dir);
1884 return -ENOMEM;
1885}
1886
1887device_initcall(ppc_warn_emulated_init);
1888
1889#endif /* CONFIG_PPC_EMULATED_STATS */