Merge tag 'v3.10.95' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / tools / lguest / lguest.c
CommitLineData
2e04ef76
RR
1/*P:100
2 * This is the Launcher code, a simple program which lays out the "physical"
3 * memory for the new Guest by mapping the kernel image and the virtual
4 * devices, then opens /dev/lguest to tell the kernel about the Guest and
5 * control it.
6:*/
8ca47e00
RR
7#define _LARGEFILE64_SOURCE
8#define _GNU_SOURCE
9#include <stdio.h>
10#include <string.h>
11#include <unistd.h>
12#include <err.h>
13#include <stdint.h>
14#include <stdlib.h>
15#include <elf.h>
16#include <sys/mman.h>
6649bb7a 17#include <sys/param.h>
8ca47e00
RR
18#include <sys/types.h>
19#include <sys/stat.h>
20#include <sys/wait.h>
659a0e66 21#include <sys/eventfd.h>
8ca47e00
RR
22#include <fcntl.h>
23#include <stdbool.h>
24#include <errno.h>
25#include <ctype.h>
26#include <sys/socket.h>
27#include <sys/ioctl.h>
28#include <sys/time.h>
29#include <time.h>
30#include <netinet/in.h>
31#include <net/if.h>
32#include <linux/sockios.h>
33#include <linux/if_tun.h>
34#include <sys/uio.h>
35#include <termios.h>
36#include <getopt.h>
17cbca2b
RR
37#include <assert.h>
38#include <sched.h>
a586d4f6
RR
39#include <limits.h>
40#include <stddef.h>
a161883a 41#include <signal.h>
8aeb36e8
PS
42#include <pwd.h>
43#include <grp.h>
44
f846619e
RR
45#include <linux/virtio_config.h>
46#include <linux/virtio_net.h>
47#include <linux/virtio_blk.h>
48#include <linux/virtio_console.h>
49#include <linux/virtio_rng.h>
50#include <linux/virtio_ring.h>
51#include <asm/bootparam.h>
07fe9977 52#include "../../include/linux/lguest_launcher.h"
2e04ef76 53/*L:110
9f54288d 54 * We can ignore the 43 include files we need for this program, but I do want
2e04ef76 55 * to draw attention to the use of kernel-style types.
db24e8c2
RR
56 *
57 * As Linus said, "C is a Spartan language, and so should your naming be." I
58 * like these abbreviations, so we define them here. Note that u64 is always
59 * unsigned long long, which works on all Linux systems: this means that we can
2e04ef76
RR
60 * use %llu in printf for any u64.
61 */
db24e8c2
RR
62typedef unsigned long long u64;
63typedef uint32_t u32;
64typedef uint16_t u16;
65typedef uint8_t u8;
dde79789 66/*:*/
8ca47e00 67
8ca47e00
RR
68#define BRIDGE_PFX "bridge:"
69#ifndef SIOCBRADDIF
70#define SIOCBRADDIF 0x89a2 /* add interface to bridge */
71#endif
3c6b5bfa
RR
72/* We can have up to 256 pages for devices. */
73#define DEVICE_PAGES 256
0f0c4fab
RR
74/* This will occupy 3 pages: it must be a power of 2. */
75#define VIRTQUEUE_NUM 256
8ca47e00 76
2e04ef76
RR
77/*L:120
78 * verbose is both a global flag and a macro. The C preprocessor allows
79 * this, and although I wouldn't recommend it, it works quite nicely here.
80 */
8ca47e00
RR
81static bool verbose;
82#define verbose(args...) \
83 do { if (verbose) printf(args); } while(0)
dde79789
RR
84/*:*/
85
3c6b5bfa
RR
86/* The pointer to the start of guest memory. */
87static void *guest_base;
88/* The maximum guest physical address allowed, and maximum possible. */
89static unsigned long guest_limit, guest_max;
56739c80
RR
90/* The /dev/lguest file descriptor. */
91static int lguest_fd;
8ca47e00 92
e3283fa0
GOC
93/* a per-cpu variable indicating whose vcpu is currently running */
94static unsigned int __thread cpu_id;
95
dde79789 96/* This is our list of devices. */
1842f23c 97struct device_list {
17cbca2b
RR
98 /* Counter to assign interrupt numbers. */
99 unsigned int next_irq;
100
101 /* Counter to print out convenient device numbers. */
102 unsigned int device_num;
103
dde79789 104 /* The descriptor page for the devices. */
17cbca2b
RR
105 u8 *descpage;
106
dde79789 107 /* A single linked list of devices. */
8ca47e00 108 struct device *dev;
2e04ef76 109 /* And a pointer to the last device for easy append. */
a586d4f6 110 struct device *lastdev;
8ca47e00
RR
111};
112
17cbca2b
RR
113/* The list of Guest devices, based on command line arguments. */
114static struct device_list devices;
115
dde79789 116/* The device structure describes a single device. */
1842f23c 117struct device {
dde79789 118 /* The linked-list pointer. */
8ca47e00 119 struct device *next;
17cbca2b 120
713b15b3 121 /* The device's descriptor, as mapped into the Guest. */
8ca47e00 122 struct lguest_device_desc *desc;
17cbca2b 123
713b15b3
RR
124 /* We can't trust desc values once Guest has booted: we use these. */
125 unsigned int feature_len;
126 unsigned int num_vq;
127
17cbca2b
RR
128 /* The name of this device, for --verbose. */
129 const char *name;
8ca47e00 130
17cbca2b
RR
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
8ca47e00 133
659a0e66
RR
134 /* Is it operational */
135 bool running;
a007a751 136
8ca47e00
RR
137 /* Device-specific data. */
138 void *priv;
139};
140
17cbca2b 141/* The virtqueue structure describes a queue attached to a device. */
1842f23c 142struct virtqueue {
17cbca2b
RR
143 struct virtqueue *next;
144
145 /* Which device owns me. */
146 struct device *dev;
147
148 /* The configuration for this queue. */
149 struct lguest_vqconfig config;
150
151 /* The actual ring of buffers. */
152 struct vring vring;
153
154 /* Last available index we saw. */
155 u16 last_avail_idx;
156
95c517c0
RR
157 /* How many are used since we sent last irq? */
158 unsigned int pending_used;
159
659a0e66
RR
160 /* Eventfd where Guest notifications arrive. */
161 int eventfd;
20887611 162
659a0e66
RR
163 /* Function for the thread which is servicing this virtqueue. */
164 void (*service)(struct virtqueue *vq);
165 pid_t thread;
17cbca2b
RR
166};
167
ec04b13f
BR
168/* Remember the arguments to the program so we can "reboot" */
169static char **main_args;
170
659a0e66
RR
171/* The original tty settings to restore on exit. */
172static struct termios orig_term;
173
2e04ef76
RR
174/*
175 * We have to be careful with barriers: our devices are all run in separate
f7027c63 176 * threads and so we need to make sure that changes visible to the Guest happen
2e04ef76
RR
177 * in precise order.
178 */
f7027c63 179#define wmb() __asm__ __volatile__("" : : : "memory")
b60da13f 180#define mb() __asm__ __volatile__("" : : : "memory")
17cbca2b 181
b5111790
RR
182/* Wrapper for the last available index. Makes it easier to change. */
183#define lg_last_avail(vq) ((vq)->last_avail_idx)
184
2e04ef76
RR
185/*
186 * The virtio configuration space is defined to be little-endian. x86 is
187 * little-endian too, but it's nice to be explicit so we have these helpers.
188 */
17cbca2b
RR
189#define cpu_to_le16(v16) (v16)
190#define cpu_to_le32(v32) (v32)
191#define cpu_to_le64(v64) (v64)
192#define le16_to_cpu(v16) (v16)
193#define le32_to_cpu(v32) (v32)
a586d4f6 194#define le64_to_cpu(v64) (v64)
17cbca2b 195
28fd6d7f
RR
196/* Is this iovec empty? */
197static bool iov_empty(const struct iovec iov[], unsigned int num_iov)
198{
199 unsigned int i;
200
201 for (i = 0; i < num_iov; i++)
202 if (iov[i].iov_len)
203 return false;
204 return true;
205}
206
207/* Take len bytes from the front of this iovec. */
c0316a94
RR
208static void iov_consume(struct iovec iov[], unsigned num_iov,
209 void *dest, unsigned len)
28fd6d7f
RR
210{
211 unsigned int i;
212
213 for (i = 0; i < num_iov; i++) {
214 unsigned int used;
215
216 used = iov[i].iov_len < len ? iov[i].iov_len : len;
c0316a94
RR
217 if (dest) {
218 memcpy(dest, iov[i].iov_base, used);
219 dest += used;
220 }
28fd6d7f
RR
221 iov[i].iov_base += used;
222 iov[i].iov_len -= used;
223 len -= used;
224 }
c0316a94
RR
225 if (len != 0)
226 errx(1, "iovec too short!");
28fd6d7f
RR
227}
228
6e5aa7ef
RR
229/* The device virtqueue descriptors are followed by feature bitmasks. */
230static u8 *get_feature_bits(struct device *dev)
231{
232 return (u8 *)(dev->desc + 1)
713b15b3 233 + dev->num_vq * sizeof(struct lguest_vqconfig);
6e5aa7ef
RR
234}
235
2e04ef76
RR
236/*L:100
237 * The Launcher code itself takes us out into userspace, that scary place where
238 * pointers run wild and free! Unfortunately, like most userspace programs,
239 * it's quite boring (which is why everyone likes to hack on the kernel!).
240 * Perhaps if you make up an Lguest Drinking Game at this point, it will get
241 * you through this section. Or, maybe not.
3c6b5bfa
RR
242 *
243 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
244 * memory and stores it in "guest_base". In other words, Guest physical ==
245 * Launcher virtual with an offset.
246 *
247 * This can be tough to get your head around, but usually it just means that we
a33f3224 248 * use these trivial conversion functions when the Guest gives us its
2e04ef76
RR
249 * "physical" addresses:
250 */
3c6b5bfa
RR
251static void *from_guest_phys(unsigned long addr)
252{
253 return guest_base + addr;
254}
255
256static unsigned long to_guest_phys(const void *addr)
257{
258 return (addr - guest_base);
259}
260
dde79789
RR
261/*L:130
262 * Loading the Kernel.
263 *
264 * We start with couple of simple helper routines. open_or_die() avoids
2e04ef76
RR
265 * error-checking code cluttering the callers:
266 */
8ca47e00
RR
267static int open_or_die(const char *name, int flags)
268{
269 int fd = open(name, flags);
270 if (fd < 0)
271 err(1, "Failed to open %s", name);
272 return fd;
273}
274
3c6b5bfa
RR
275/* map_zeroed_pages() takes a number of pages. */
276static void *map_zeroed_pages(unsigned int num)
8ca47e00 277{
3c6b5bfa
RR
278 int fd = open_or_die("/dev/zero", O_RDONLY);
279 void *addr;
8ca47e00 280
2e04ef76
RR
281 /*
282 * We use a private mapping (ie. if we write to the page, it will be
5230ff0c
PS
283 * copied). We allocate an extra two pages PROT_NONE to act as guard
284 * pages against read/write attempts that exceed allocated space.
2e04ef76 285 */
5230ff0c
PS
286 addr = mmap(NULL, getpagesize() * (num+2),
287 PROT_NONE, MAP_PRIVATE, fd, 0);
288
3c6b5bfa 289 if (addr == MAP_FAILED)
af901ca1 290 err(1, "Mmapping %u pages of /dev/zero", num);
a91d74a3 291
5230ff0c
PS
292 if (mprotect(addr + getpagesize(), getpagesize() * num,
293 PROT_READ|PROT_WRITE) == -1)
294 err(1, "mprotect rw %u pages failed", num);
295
a91d74a3
RR
296 /*
297 * One neat mmap feature is that you can close the fd, and it
298 * stays mapped.
299 */
34bdaab4 300 close(fd);
3c6b5bfa 301
5230ff0c
PS
302 /* Return address after PROT_NONE page */
303 return addr + getpagesize();
3c6b5bfa
RR
304}
305
306/* Get some more pages for a device. */
307static void *get_pages(unsigned int num)
308{
309 void *addr = from_guest_phys(guest_limit);
310
311 guest_limit += num * getpagesize();
312 if (guest_limit > guest_max)
313 errx(1, "Not enough memory for devices");
314 return addr;
8ca47e00
RR
315}
316
2e04ef76
RR
317/*
318 * This routine is used to load the kernel or initrd. It tries mmap, but if
6649bb7a 319 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
2e04ef76
RR
320 * it falls back to reading the memory in.
321 */
6649bb7a
RM
322static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
323{
324 ssize_t r;
325
2e04ef76
RR
326 /*
327 * We map writable even though for some segments are marked read-only.
6649bb7a
RM
328 * The kernel really wants to be writable: it patches its own
329 * instructions.
330 *
331 * MAP_PRIVATE means that the page won't be copied until a write is
332 * done to it. This allows us to share untouched memory between
2e04ef76
RR
333 * Guests.
334 */
5230ff0c 335 if (mmap(addr, len, PROT_READ|PROT_WRITE,
6649bb7a
RM
336 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
337 return;
338
339 /* pread does a seek and a read in one shot: saves a few lines. */
340 r = pread(fd, addr, len, offset);
341 if (r != len)
342 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
343}
344
2e04ef76
RR
345/*
346 * This routine takes an open vmlinux image, which is in ELF, and maps it into
dde79789
RR
347 * the Guest memory. ELF = Embedded Linking Format, which is the format used
348 * by all modern binaries on Linux including the kernel.
349 *
350 * The ELF headers give *two* addresses: a physical address, and a virtual
47436aa4
RR
351 * address. We use the physical address; the Guest will map itself to the
352 * virtual address.
dde79789 353 *
2e04ef76
RR
354 * We return the starting address.
355 */
47436aa4 356static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
8ca47e00 357{
8ca47e00
RR
358 Elf32_Phdr phdr[ehdr->e_phnum];
359 unsigned int i;
8ca47e00 360
2e04ef76
RR
361 /*
362 * Sanity checks on the main ELF header: an x86 executable with a
363 * reasonable number of correctly-sized program headers.
364 */
8ca47e00
RR
365 if (ehdr->e_type != ET_EXEC
366 || ehdr->e_machine != EM_386
367 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
368 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
369 errx(1, "Malformed elf header");
370
2e04ef76
RR
371 /*
372 * An ELF executable contains an ELF header and a number of "program"
dde79789 373 * headers which indicate which parts ("segments") of the program to
2e04ef76
RR
374 * load where.
375 */
dde79789
RR
376
377 /* We read in all the program headers at once: */
8ca47e00
RR
378 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
379 err(1, "Seeking to program headers");
380 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
381 err(1, "Reading program headers");
382
2e04ef76
RR
383 /*
384 * Try all the headers: there are usually only three. A read-only one,
385 * a read-write one, and a "note" section which we don't load.
386 */
8ca47e00 387 for (i = 0; i < ehdr->e_phnum; i++) {
dde79789 388 /* If this isn't a loadable segment, we ignore it */
8ca47e00
RR
389 if (phdr[i].p_type != PT_LOAD)
390 continue;
391
392 verbose("Section %i: size %i addr %p\n",
393 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
394
6649bb7a 395 /* We map this section of the file at its physical address. */
3c6b5bfa 396 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
6649bb7a 397 phdr[i].p_offset, phdr[i].p_filesz);
8ca47e00
RR
398 }
399
814a0e5c
RR
400 /* The entry point is given in the ELF header. */
401 return ehdr->e_entry;
8ca47e00
RR
402}
403
2e04ef76
RR
404/*L:150
405 * A bzImage, unlike an ELF file, is not meant to be loaded. You're supposed
406 * to jump into it and it will unpack itself. We used to have to perform some
407 * hairy magic because the unpacking code scared me.
dde79789 408 *
5bbf89fc
RR
409 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
410 * a small patch to jump over the tricky bits in the Guest, so now we just read
2e04ef76
RR
411 * the funky header so we know where in the file to load, and away we go!
412 */
47436aa4 413static unsigned long load_bzimage(int fd)
8ca47e00 414{
43d33b21 415 struct boot_params boot;
5bbf89fc
RR
416 int r;
417 /* Modern bzImages get loaded at 1M. */
418 void *p = from_guest_phys(0x100000);
419
2e04ef76
RR
420 /*
421 * Go back to the start of the file and read the header. It should be
395cf969 422 * a Linux boot header (see Documentation/x86/boot.txt)
2e04ef76 423 */
5bbf89fc 424 lseek(fd, 0, SEEK_SET);
43d33b21 425 read(fd, &boot, sizeof(boot));
5bbf89fc 426
43d33b21
RR
427 /* Inside the setup_hdr, we expect the magic "HdrS" */
428 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
5bbf89fc
RR
429 errx(1, "This doesn't look like a bzImage to me");
430
43d33b21
RR
431 /* Skip over the extra sectors of the header. */
432 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
5bbf89fc
RR
433
434 /* Now read everything into memory. in nice big chunks. */
435 while ((r = read(fd, p, 65536)) > 0)
436 p += r;
437
43d33b21
RR
438 /* Finally, code32_start tells us where to enter the kernel. */
439 return boot.hdr.code32_start;
8ca47e00
RR
440}
441
2e04ef76
RR
442/*L:140
443 * Loading the kernel is easy when it's a "vmlinux", but most kernels
e1e72965 444 * come wrapped up in the self-decompressing "bzImage" format. With a little
2e04ef76
RR
445 * work, we can load those, too.
446 */
47436aa4 447static unsigned long load_kernel(int fd)
8ca47e00
RR
448{
449 Elf32_Ehdr hdr;
450
dde79789 451 /* Read in the first few bytes. */
8ca47e00
RR
452 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
453 err(1, "Reading kernel");
454
dde79789 455 /* If it's an ELF file, it starts with "\177ELF" */
8ca47e00 456 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
47436aa4 457 return map_elf(fd, &hdr);
8ca47e00 458
a6bd8e13 459 /* Otherwise we assume it's a bzImage, and try to load it. */
47436aa4 460 return load_bzimage(fd);
8ca47e00
RR
461}
462
2e04ef76
RR
463/*
464 * This is a trivial little helper to align pages. Andi Kleen hated it because
dde79789
RR
465 * it calls getpagesize() twice: "it's dumb code."
466 *
467 * Kernel guys get really het up about optimization, even when it's not
2e04ef76
RR
468 * necessary. I leave this code as a reaction against that.
469 */
8ca47e00
RR
470static inline unsigned long page_align(unsigned long addr)
471{
dde79789 472 /* Add upwards and truncate downwards. */
8ca47e00
RR
473 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
474}
475
2e04ef76
RR
476/*L:180
477 * An "initial ram disk" is a disk image loaded into memory along with the
478 * kernel which the kernel can use to boot from without needing any drivers.
479 * Most distributions now use this as standard: the initrd contains the code to
480 * load the appropriate driver modules for the current machine.
dde79789
RR
481 *
482 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
2e04ef76
RR
483 * kernels. He sent me this (and tells me when I break it).
484 */
8ca47e00
RR
485static unsigned long load_initrd(const char *name, unsigned long mem)
486{
487 int ifd;
488 struct stat st;
489 unsigned long len;
8ca47e00
RR
490
491 ifd = open_or_die(name, O_RDONLY);
dde79789 492 /* fstat() is needed to get the file size. */
8ca47e00
RR
493 if (fstat(ifd, &st) < 0)
494 err(1, "fstat() on initrd '%s'", name);
495
2e04ef76
RR
496 /*
497 * We map the initrd at the top of memory, but mmap wants it to be
498 * page-aligned, so we round the size up for that.
499 */
8ca47e00 500 len = page_align(st.st_size);
3c6b5bfa 501 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
2e04ef76
RR
502 /*
503 * Once a file is mapped, you can close the file descriptor. It's a
504 * little odd, but quite useful.
505 */
8ca47e00 506 close(ifd);
6649bb7a 507 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
dde79789
RR
508
509 /* We return the initrd size. */
8ca47e00
RR
510 return len;
511}
e1e72965 512/*:*/
8ca47e00 513
2e04ef76
RR
514/*
515 * Simple routine to roll all the commandline arguments together with spaces
516 * between them.
517 */
8ca47e00
RR
518static void concat(char *dst, char *args[])
519{
520 unsigned int i, len = 0;
521
522 for (i = 0; args[i]; i++) {
1ef36fa6
PB
523 if (i) {
524 strcat(dst+len, " ");
525 len++;
526 }
8ca47e00 527 strcpy(dst+len, args[i]);
1ef36fa6 528 len += strlen(args[i]);
8ca47e00
RR
529 }
530 /* In case it's empty. */
531 dst[len] = '\0';
532}
533
2e04ef76
RR
534/*L:185
535 * This is where we actually tell the kernel to initialize the Guest. We
e1e72965 536 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
58a24566 537 * the base of Guest "physical" memory, the top physical page to allow and the
2e04ef76
RR
538 * entry point for the Guest.
539 */
56739c80 540static void tell_kernel(unsigned long start)
8ca47e00 541{
511801dc
JS
542 unsigned long args[] = { LHREQ_INITIALIZE,
543 (unsigned long)guest_base,
58a24566 544 guest_limit / getpagesize(), start };
3c6b5bfa
RR
545 verbose("Guest: %p - %p (%#lx)\n",
546 guest_base, guest_base + guest_limit, guest_limit);
56739c80
RR
547 lguest_fd = open_or_die("/dev/lguest", O_RDWR);
548 if (write(lguest_fd, args, sizeof(args)) < 0)
8ca47e00 549 err(1, "Writing to /dev/lguest");
8ca47e00 550}
dde79789 551/*:*/
8ca47e00 552
a91d74a3 553/*L:200
dde79789
RR
554 * Device Handling.
555 *
e1e72965 556 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
dde79789 557 * We need to make sure it's not trying to reach into the Launcher itself, so
e1e72965 558 * we have a convenient routine which checks it and exits with an error message
dde79789
RR
559 * if something funny is going on:
560 */
8ca47e00
RR
561static void *_check_pointer(unsigned long addr, unsigned int size,
562 unsigned int line)
563{
2e04ef76 564 /*
5230ff0c
PS
565 * Check if the requested address and size exceeds the allocated memory,
566 * or addr + size wraps around.
2e04ef76 567 */
5230ff0c 568 if ((addr + size) > guest_limit || (addr + size) < addr)
17cbca2b 569 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
2e04ef76
RR
570 /*
571 * We return a pointer for the caller's convenience, now we know it's
572 * safe to use.
573 */
3c6b5bfa 574 return from_guest_phys(addr);
8ca47e00 575}
dde79789 576/* A macro which transparently hands the line number to the real function. */
8ca47e00
RR
577#define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
578
2e04ef76
RR
579/*
580 * Each buffer in the virtqueues is actually a chain of descriptors. This
e1e72965 581 * function returns the next descriptor in the chain, or vq->vring.num if we're
2e04ef76
RR
582 * at the end.
583 */
d1f0132e
MM
584static unsigned next_desc(struct vring_desc *desc,
585 unsigned int i, unsigned int max)
17cbca2b
RR
586{
587 unsigned int next;
588
589 /* If this descriptor says it doesn't chain, we're done. */
d1f0132e
MM
590 if (!(desc[i].flags & VRING_DESC_F_NEXT))
591 return max;
17cbca2b
RR
592
593 /* Check they're not leading us off end of descriptors. */
d1f0132e 594 next = desc[i].next;
17cbca2b
RR
595 /* Make sure compiler knows to grab that: we don't want it changing! */
596 wmb();
597
d1f0132e 598 if (next >= max)
17cbca2b
RR
599 errx(1, "Desc next is %u", next);
600
601 return next;
602}
603
a91d74a3
RR
604/*
605 * This actually sends the interrupt for this virtqueue, if we've used a
606 * buffer.
607 */
38bc2b8c
RR
608static void trigger_irq(struct virtqueue *vq)
609{
610 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
611
95c517c0
RR
612 /* Don't inform them if nothing used. */
613 if (!vq->pending_used)
614 return;
615 vq->pending_used = 0;
616
ca60a42c
RR
617 /* If they don't want an interrupt, don't send one... */
618 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) {
990c91f0 619 return;
ca60a42c 620 }
38bc2b8c
RR
621
622 /* Send the Guest an interrupt tell them we used something up. */
623 if (write(lguest_fd, buf, sizeof(buf)) != 0)
624 err(1, "Triggering irq %i", vq->config.irq);
625}
626
2e04ef76 627/*
a91d74a3 628 * This looks in the virtqueue for the first available buffer, and converts
17cbca2b
RR
629 * it to an iovec for convenient access. Since descriptors consist of some
630 * number of output then some number of input descriptors, it's actually two
631 * iovecs, but we pack them into one and note how many of each there were.
632 *
a91d74a3 633 * This function waits if necessary, and returns the descriptor number found.
2e04ef76 634 */
659a0e66
RR
635static unsigned wait_for_vq_desc(struct virtqueue *vq,
636 struct iovec iov[],
637 unsigned int *out_num, unsigned int *in_num)
17cbca2b 638{
d1f0132e
MM
639 unsigned int i, head, max;
640 struct vring_desc *desc;
659a0e66
RR
641 u16 last_avail = lg_last_avail(vq);
642
a91d74a3 643 /* There's nothing available? */
659a0e66
RR
644 while (last_avail == vq->vring.avail->idx) {
645 u64 event;
646
a91d74a3
RR
647 /*
648 * Since we're about to sleep, now is a good time to tell the
649 * Guest about what we've used up to now.
650 */
38bc2b8c
RR
651 trigger_irq(vq);
652
b60da13f
RR
653 /* OK, now we need to know about added descriptors. */
654 vq->vring.used->flags &= ~VRING_USED_F_NO_NOTIFY;
655
2e04ef76
RR
656 /*
657 * They could have slipped one in as we were doing that: make
658 * sure it's written, then check again.
659 */
b60da13f
RR
660 mb();
661 if (last_avail != vq->vring.avail->idx) {
662 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
663 break;
664 }
665
659a0e66
RR
666 /* Nothing new? Wait for eventfd to tell us they refilled. */
667 if (read(vq->eventfd, &event, sizeof(event)) != sizeof(event))
668 errx(1, "Event read failed?");
b60da13f
RR
669
670 /* We don't need to be notified again. */
671 vq->vring.used->flags |= VRING_USED_F_NO_NOTIFY;
659a0e66 672 }
17cbca2b
RR
673
674 /* Check it isn't doing very strange things with descriptor numbers. */
b5111790 675 if ((u16)(vq->vring.avail->idx - last_avail) > vq->vring.num)
17cbca2b 676 errx(1, "Guest moved used index from %u to %u",
b5111790 677 last_avail, vq->vring.avail->idx);
17cbca2b 678
2e04ef76
RR
679 /*
680 * Grab the next descriptor number they're advertising, and increment
681 * the index we've seen.
682 */
b5111790
RR
683 head = vq->vring.avail->ring[last_avail % vq->vring.num];
684 lg_last_avail(vq)++;
17cbca2b
RR
685
686 /* If their number is silly, that's a fatal mistake. */
687 if (head >= vq->vring.num)
688 errx(1, "Guest says index %u is available", head);
689
690 /* When we start there are none of either input nor output. */
691 *out_num = *in_num = 0;
692
d1f0132e
MM
693 max = vq->vring.num;
694 desc = vq->vring.desc;
17cbca2b 695 i = head;
d1f0132e 696
2e04ef76
RR
697 /*
698 * If this is an indirect entry, then this buffer contains a descriptor
699 * table which we handle as if it's any normal descriptor chain.
700 */
d1f0132e
MM
701 if (desc[i].flags & VRING_DESC_F_INDIRECT) {
702 if (desc[i].len % sizeof(struct vring_desc))
703 errx(1, "Invalid size for indirect buffer table");
704
705 max = desc[i].len / sizeof(struct vring_desc);
706 desc = check_pointer(desc[i].addr, desc[i].len);
707 i = 0;
708 }
709
17cbca2b
RR
710 do {
711 /* Grab the first descriptor, and check it's OK. */
d1f0132e 712 iov[*out_num + *in_num].iov_len = desc[i].len;
17cbca2b 713 iov[*out_num + *in_num].iov_base
d1f0132e 714 = check_pointer(desc[i].addr, desc[i].len);
17cbca2b 715 /* If this is an input descriptor, increment that count. */
d1f0132e 716 if (desc[i].flags & VRING_DESC_F_WRITE)
17cbca2b
RR
717 (*in_num)++;
718 else {
2e04ef76
RR
719 /*
720 * If it's an output descriptor, they're all supposed
721 * to come before any input descriptors.
722 */
17cbca2b
RR
723 if (*in_num)
724 errx(1, "Descriptor has out after in");
725 (*out_num)++;
726 }
727
728 /* If we've got too many, that implies a descriptor loop. */
d1f0132e 729 if (*out_num + *in_num > max)
17cbca2b 730 errx(1, "Looped descriptor");
d1f0132e 731 } while ((i = next_desc(desc, i, max)) != max);
dde79789 732
17cbca2b 733 return head;
8ca47e00
RR
734}
735
2e04ef76 736/*
a91d74a3
RR
737 * After we've used one of their buffers, we tell the Guest about it. Sometime
738 * later we'll want to send them an interrupt using trigger_irq(); note that
739 * wait_for_vq_desc() does that for us if it has to wait.
2e04ef76 740 */
17cbca2b 741static void add_used(struct virtqueue *vq, unsigned int head, int len)
8ca47e00 742{
17cbca2b
RR
743 struct vring_used_elem *used;
744
2e04ef76
RR
745 /*
746 * The virtqueue contains a ring of used buffers. Get a pointer to the
747 * next entry in that used ring.
748 */
17cbca2b
RR
749 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
750 used->id = head;
751 used->len = len;
752 /* Make sure buffer is written before we update index. */
753 wmb();
754 vq->vring.used->idx++;
95c517c0 755 vq->pending_used++;
8ca47e00
RR
756}
757
17cbca2b 758/* And here's the combo meal deal. Supersize me! */
56739c80 759static void add_used_and_trigger(struct virtqueue *vq, unsigned head, int len)
8ca47e00 760{
17cbca2b 761 add_used(vq, head, len);
56739c80 762 trigger_irq(vq);
8ca47e00
RR
763}
764
e1e72965
RR
765/*
766 * The Console
767 *
2e04ef76
RR
768 * We associate some data with the console for our exit hack.
769 */
1842f23c 770struct console_abort {
dde79789 771 /* How many times have they hit ^C? */
8ca47e00 772 int count;
dde79789 773 /* When did they start? */
8ca47e00
RR
774 struct timeval start;
775};
776
dde79789 777/* This is the routine which handles console input (ie. stdin). */
659a0e66 778static void console_input(struct virtqueue *vq)
8ca47e00 779{
8ca47e00 780 int len;
17cbca2b 781 unsigned int head, in_num, out_num;
659a0e66
RR
782 struct console_abort *abort = vq->dev->priv;
783 struct iovec iov[vq->vring.num];
56ae43df 784
a91d74a3 785 /* Make sure there's a descriptor available. */
659a0e66 786 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
56ae43df 787 if (out_num)
17cbca2b 788 errx(1, "Output buffers in console in queue?");
8ca47e00 789
a91d74a3 790 /* Read into it. This is where we usually wait. */
659a0e66 791 len = readv(STDIN_FILENO, iov, in_num);
8ca47e00 792 if (len <= 0) {
659a0e66 793 /* Ran out of input? */
8ca47e00 794 warnx("Failed to get console input, ignoring console.");
2e04ef76
RR
795 /*
796 * For simplicity, dying threads kill the whole Launcher. So
797 * just nap here.
798 */
659a0e66
RR
799 for (;;)
800 pause();
8ca47e00
RR
801 }
802
a91d74a3 803 /* Tell the Guest we used a buffer. */
659a0e66 804 add_used_and_trigger(vq, head, len);
8ca47e00 805
2e04ef76
RR
806 /*
807 * Three ^C within one second? Exit.
dde79789 808 *
659a0e66
RR
809 * This is such a hack, but works surprisingly well. Each ^C has to
810 * be in a buffer by itself, so they can't be too fast. But we check
811 * that we get three within about a second, so they can't be too
2e04ef76
RR
812 * slow.
813 */
659a0e66 814 if (len != 1 || ((char *)iov[0].iov_base)[0] != 3) {
8ca47e00 815 abort->count = 0;
659a0e66
RR
816 return;
817 }
8ca47e00 818
659a0e66
RR
819 abort->count++;
820 if (abort->count == 1)
821 gettimeofday(&abort->start, NULL);
822 else if (abort->count == 3) {
823 struct timeval now;
824 gettimeofday(&now, NULL);
825 /* Kill all Launcher processes with SIGINT, like normal ^C */
826 if (now.tv_sec <= abort->start.tv_sec+1)
827 kill(0, SIGINT);
828 abort->count = 0;
829 }
8ca47e00
RR
830}
831
659a0e66
RR
832/* This is the routine which handles console output (ie. stdout). */
833static void console_output(struct virtqueue *vq)
8ca47e00 834{
17cbca2b 835 unsigned int head, out, in;
17cbca2b
RR
836 struct iovec iov[vq->vring.num];
837
a91d74a3 838 /* We usually wait in here, for the Guest to give us something. */
659a0e66
RR
839 head = wait_for_vq_desc(vq, iov, &out, &in);
840 if (in)
841 errx(1, "Input buffers in console output queue?");
a91d74a3
RR
842
843 /* writev can return a partial write, so we loop here. */
659a0e66
RR
844 while (!iov_empty(iov, out)) {
845 int len = writev(STDOUT_FILENO, iov, out);
e0377e25
SA
846 if (len <= 0) {
847 warn("Write to stdout gave %i (%d)", len, errno);
848 break;
849 }
c0316a94 850 iov_consume(iov, out, NULL, len);
17cbca2b 851 }
a91d74a3
RR
852
853 /*
854 * We're finished with that buffer: if we're going to sleep,
855 * wait_for_vq_desc() will prod the Guest with an interrupt.
856 */
38bc2b8c 857 add_used(vq, head, 0);
a161883a
RR
858}
859
e1e72965
RR
860/*
861 * The Network
862 *
863 * Handling output for network is also simple: we get all the output buffers
659a0e66 864 * and write them to /dev/net/tun.
a6bd8e13 865 */
659a0e66
RR
866struct net_info {
867 int tunfd;
868};
869
870static void net_output(struct virtqueue *vq)
8ca47e00 871{
659a0e66
RR
872 struct net_info *net_info = vq->dev->priv;
873 unsigned int head, out, in;
17cbca2b 874 struct iovec iov[vq->vring.num];
a161883a 875
a91d74a3 876 /* We usually wait in here for the Guest to give us a packet. */
659a0e66
RR
877 head = wait_for_vq_desc(vq, iov, &out, &in);
878 if (in)
879 errx(1, "Input buffers in net output queue?");
a91d74a3
RR
880 /*
881 * Send the whole thing through to /dev/net/tun. It expects the exact
882 * same format: what a coincidence!
883 */
659a0e66 884 if (writev(net_info->tunfd, iov, out) < 0)
e0377e25 885 warnx("Write to tun failed (%d)?", errno);
a91d74a3
RR
886
887 /*
888 * Done with that one; wait_for_vq_desc() will send the interrupt if
889 * all packets are processed.
890 */
38bc2b8c 891 add_used(vq, head, 0);
8ca47e00
RR
892}
893
a91d74a3
RR
894/*
895 * Handling network input is a bit trickier, because I've tried to optimize it.
896 *
897 * First we have a helper routine which tells is if from this file descriptor
898 * (ie. the /dev/net/tun device) will block:
899 */
4a8962e2
RR
900static bool will_block(int fd)
901{
902 fd_set fdset;
903 struct timeval zero = { 0, 0 };
904 FD_ZERO(&fdset);
905 FD_SET(fd, &fdset);
906 return select(fd+1, &fdset, NULL, NULL, &zero) != 1;
907}
908
a91d74a3
RR
909/*
910 * This handles packets coming in from the tun device to our Guest. Like all
911 * service routines, it gets called again as soon as it returns, so you don't
912 * see a while(1) loop here.
913 */
659a0e66 914static void net_input(struct virtqueue *vq)
8ca47e00 915{
8ca47e00 916 int len;
659a0e66
RR
917 unsigned int head, out, in;
918 struct iovec iov[vq->vring.num];
919 struct net_info *net_info = vq->dev->priv;
920
a91d74a3
RR
921 /*
922 * Get a descriptor to write an incoming packet into. This will also
923 * send an interrupt if they're out of descriptors.
924 */
659a0e66
RR
925 head = wait_for_vq_desc(vq, iov, &out, &in);
926 if (out)
927 errx(1, "Output buffers in net input queue?");
4a8962e2 928
a91d74a3
RR
929 /*
930 * If it looks like we'll block reading from the tun device, send them
931 * an interrupt.
932 */
4a8962e2
RR
933 if (vq->pending_used && will_block(net_info->tunfd))
934 trigger_irq(vq);
935
a91d74a3
RR
936 /*
937 * Read in the packet. This is where we normally wait (when there's no
938 * incoming network traffic).
939 */
659a0e66 940 len = readv(net_info->tunfd, iov, in);
8ca47e00 941 if (len <= 0)
e0377e25 942 warn("Failed to read from tun (%d).", errno);
a91d74a3
RR
943
944 /*
945 * Mark that packet buffer as used, but don't interrupt here. We want
946 * to wait until we've done as much work as we can.
947 */
4a8962e2 948 add_used(vq, head, len);
659a0e66 949}
a91d74a3 950/*:*/
dde79789 951
a91d74a3 952/* This is the helper to create threads: run the service routine in a loop. */
659a0e66
RR
953static int do_thread(void *_vq)
954{
955 struct virtqueue *vq = _vq;
17cbca2b 956
659a0e66
RR
957 for (;;)
958 vq->service(vq);
959 return 0;
960}
17cbca2b 961
2e04ef76
RR
962/*
963 * When a child dies, we kill our entire process group with SIGTERM. This
964 * also has the side effect that the shell restores the console for us!
965 */
659a0e66
RR
966static void kill_launcher(int signal)
967{
968 kill(0, SIGTERM);
8ca47e00
RR
969}
970
659a0e66 971static void reset_device(struct device *dev)
56ae43df 972{
659a0e66
RR
973 struct virtqueue *vq;
974
975 verbose("Resetting device %s\n", dev->name);
976
977 /* Clear any features they've acked. */
978 memset(get_feature_bits(dev) + dev->feature_len, 0, dev->feature_len);
979
980 /* We're going to be explicitly killing threads, so ignore them. */
981 signal(SIGCHLD, SIG_IGN);
982
983 /* Zero out the virtqueues, get rid of their threads */
984 for (vq = dev->vq; vq; vq = vq->next) {
985 if (vq->thread != (pid_t)-1) {
986 kill(vq->thread, SIGTERM);
987 waitpid(vq->thread, NULL, 0);
988 vq->thread = (pid_t)-1;
989 }
990 memset(vq->vring.desc, 0,
991 vring_size(vq->config.num, LGUEST_VRING_ALIGN));
992 lg_last_avail(vq) = 0;
993 }
994 dev->running = false;
995
996 /* Now we care if threads die. */
997 signal(SIGCHLD, (void *)kill_launcher);
56ae43df
RR
998}
999
a91d74a3
RR
1000/*L:216
1001 * This actually creates the thread which services the virtqueue for a device.
1002 */
659a0e66 1003static void create_thread(struct virtqueue *vq)
5dae785a 1004{
2e04ef76 1005 /*
a91d74a3
RR
1006 * Create stack for thread. Since the stack grows upwards, we point
1007 * the stack pointer to the end of this region.
2e04ef76 1008 */
659a0e66
RR
1009 char *stack = malloc(32768);
1010 unsigned long args[] = { LHREQ_EVENTFD,
1011 vq->config.pfn*getpagesize(), 0 };
1012
1013 /* Create a zero-initialized eventfd. */
1014 vq->eventfd = eventfd(0, 0);
1015 if (vq->eventfd < 0)
1016 err(1, "Creating eventfd");
1017 args[2] = vq->eventfd;
1018
a91d74a3
RR
1019 /*
1020 * Attach an eventfd to this virtqueue: it will go off when the Guest
1021 * does an LHCALL_NOTIFY for this vq.
1022 */
659a0e66
RR
1023 if (write(lguest_fd, &args, sizeof(args)) != 0)
1024 err(1, "Attaching eventfd");
1025
a91d74a3
RR
1026 /*
1027 * CLONE_VM: because it has to access the Guest memory, and SIGCHLD so
1028 * we get a signal if it dies.
1029 */
659a0e66
RR
1030 vq->thread = clone(do_thread, stack + 32768, CLONE_VM | SIGCHLD, vq);
1031 if (vq->thread == (pid_t)-1)
1032 err(1, "Creating clone");
a91d74a3
RR
1033
1034 /* We close our local copy now the child has it. */
659a0e66 1035 close(vq->eventfd);
5dae785a
RR
1036}
1037
659a0e66 1038static void start_device(struct device *dev)
6e5aa7ef 1039{
659a0e66 1040 unsigned int i;
6e5aa7ef
RR
1041 struct virtqueue *vq;
1042
659a0e66
RR
1043 verbose("Device %s OK: offered", dev->name);
1044 for (i = 0; i < dev->feature_len; i++)
1045 verbose(" %02x", get_feature_bits(dev)[i]);
1046 verbose(", accepted");
1047 for (i = 0; i < dev->feature_len; i++)
1048 verbose(" %02x", get_feature_bits(dev)
1049 [dev->feature_len+i]);
1050
1051 for (vq = dev->vq; vq; vq = vq->next) {
1052 if (vq->service)
1053 create_thread(vq);
1054 }
1055 dev->running = true;
1056}
1057
1058static void cleanup_devices(void)
1059{
1060 struct device *dev;
1061
1062 for (dev = devices.dev; dev; dev = dev->next)
1063 reset_device(dev);
6e5aa7ef 1064
659a0e66
RR
1065 /* If we saved off the original terminal settings, restore them now. */
1066 if (orig_term.c_lflag & (ISIG|ICANON|ECHO))
1067 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
1068}
6e5aa7ef 1069
659a0e66
RR
1070/* When the Guest tells us they updated the status field, we handle it. */
1071static void update_device_status(struct device *dev)
1072{
1073 /* A zero status is a reset, otherwise it's a set of flags. */
1074 if (dev->desc->status == 0)
1075 reset_device(dev);
1076 else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
a007a751 1077 warnx("Device %s configuration FAILED", dev->name);
659a0e66
RR
1078 if (dev->running)
1079 reset_device(dev);
3c3ed482
RR
1080 } else {
1081 if (dev->running)
1082 err(1, "Device %s features finalized twice", dev->name);
1083 start_device(dev);
6e5aa7ef
RR
1084 }
1085}
1086
a91d74a3
RR
1087/*L:215
1088 * This is the generic routine we call when the Guest uses LHCALL_NOTIFY. In
1089 * particular, it's used to notify us of device status changes during boot.
1090 */
56739c80 1091static void handle_output(unsigned long addr)
8ca47e00
RR
1092{
1093 struct device *i;
17cbca2b 1094
659a0e66 1095 /* Check each device. */
17cbca2b 1096 for (i = devices.dev; i; i = i->next) {
659a0e66
RR
1097 struct virtqueue *vq;
1098
a91d74a3
RR
1099 /*
1100 * Notifications to device descriptors mean they updated the
1101 * device status.
1102 */
6e5aa7ef 1103 if (from_guest_phys(addr) == i->desc) {
a007a751 1104 update_device_status(i);
6e5aa7ef
RR
1105 return;
1106 }
1107
3c3ed482 1108 /* Devices should not be used before features are finalized. */
17cbca2b 1109 for (vq = i->vq; vq; vq = vq->next) {
659a0e66 1110 if (addr != vq->config.pfn*getpagesize())
6e5aa7ef 1111 continue;
3c3ed482 1112 errx(1, "Notification on %s before setup!", i->name);
8ca47e00
RR
1113 }
1114 }
dde79789 1115
2e04ef76
RR
1116 /*
1117 * Early console write is done using notify on a nul-terminated string
1118 * in Guest memory. It's also great for hacking debugging messages
1119 * into a Guest.
1120 */
17cbca2b
RR
1121 if (addr >= guest_limit)
1122 errx(1, "Bad NOTIFY %#lx", addr);
1123
1124 write(STDOUT_FILENO, from_guest_phys(addr),
1125 strnlen(from_guest_phys(addr), guest_limit - addr));
8ca47e00
RR
1126}
1127
dde79789
RR
1128/*L:190
1129 * Device Setup
1130 *
1131 * All devices need a descriptor so the Guest knows it exists, and a "struct
1132 * device" so the Launcher can keep track of it. We have common helper
a6bd8e13
RR
1133 * routines to allocate and manage them.
1134 */
8ca47e00 1135
2e04ef76
RR
1136/*
1137 * The layout of the device page is a "struct lguest_device_desc" followed by a
a586d4f6
RR
1138 * number of virtqueue descriptors, then two sets of feature bits, then an
1139 * array of configuration bytes. This routine returns the configuration
2e04ef76
RR
1140 * pointer.
1141 */
a586d4f6
RR
1142static u8 *device_config(const struct device *dev)
1143{
1144 return (void *)(dev->desc + 1)
713b15b3
RR
1145 + dev->num_vq * sizeof(struct lguest_vqconfig)
1146 + dev->feature_len * 2;
17cbca2b
RR
1147}
1148
2e04ef76
RR
1149/*
1150 * This routine allocates a new "struct lguest_device_desc" from descriptor
a586d4f6 1151 * table page just above the Guest's normal memory. It returns a pointer to
2e04ef76
RR
1152 * that descriptor.
1153 */
a586d4f6 1154static struct lguest_device_desc *new_dev_desc(u16 type)
17cbca2b 1155{
a586d4f6
RR
1156 struct lguest_device_desc d = { .type = type };
1157 void *p;
17cbca2b 1158
a586d4f6
RR
1159 /* Figure out where the next device config is, based on the last one. */
1160 if (devices.lastdev)
1161 p = device_config(devices.lastdev)
1162 + devices.lastdev->desc->config_len;
1163 else
1164 p = devices.descpage;
17cbca2b 1165
a586d4f6
RR
1166 /* We only have one page for all the descriptors. */
1167 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1168 errx(1, "Too many devices");
17cbca2b 1169
a586d4f6
RR
1170 /* p might not be aligned, so we memcpy in. */
1171 return memcpy(p, &d, sizeof(d));
17cbca2b
RR
1172}
1173
2e04ef76
RR
1174/*
1175 * Each device descriptor is followed by the description of its virtqueues. We
1176 * specify how many descriptors the virtqueue is to have.
1177 */
17cbca2b 1178static void add_virtqueue(struct device *dev, unsigned int num_descs,
659a0e66 1179 void (*service)(struct virtqueue *))
17cbca2b
RR
1180{
1181 unsigned int pages;
1182 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1183 void *p;
1184
a6bd8e13 1185 /* First we need some memory for this virtqueue. */
2966af73 1186 pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
42b36cc0 1187 / getpagesize();
17cbca2b
RR
1188 p = get_pages(pages);
1189
d1c856e0
RR
1190 /* Initialize the virtqueue */
1191 vq->next = NULL;
1192 vq->last_avail_idx = 0;
1193 vq->dev = dev;
a91d74a3
RR
1194
1195 /*
1196 * This is the routine the service thread will run, and its Process ID
1197 * once it's running.
1198 */
659a0e66
RR
1199 vq->service = service;
1200 vq->thread = (pid_t)-1;
d1c856e0 1201
17cbca2b
RR
1202 /* Initialize the configuration. */
1203 vq->config.num = num_descs;
1204 vq->config.irq = devices.next_irq++;
1205 vq->config.pfn = to_guest_phys(p) / getpagesize();
1206
1207 /* Initialize the vring. */
2966af73 1208 vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
17cbca2b 1209
2e04ef76
RR
1210 /*
1211 * Append virtqueue to this device's descriptor. We use
a586d4f6
RR
1212 * device_config() to get the end of the device's current virtqueues;
1213 * we check that we haven't added any config or feature information
2e04ef76
RR
1214 * yet, otherwise we'd be overwriting them.
1215 */
a586d4f6
RR
1216 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1217 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
713b15b3 1218 dev->num_vq++;
a586d4f6
RR
1219 dev->desc->num_vq++;
1220
1221 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
17cbca2b 1222
2e04ef76
RR
1223 /*
1224 * Add to tail of list, so dev->vq is first vq, dev->vq->next is
1225 * second.
1226 */
17cbca2b
RR
1227 for (i = &dev->vq; *i; i = &(*i)->next);
1228 *i = vq;
8ca47e00
RR
1229}
1230
2e04ef76
RR
1231/*
1232 * The first half of the feature bitmask is for us to advertise features. The
1233 * second half is for the Guest to accept features.
1234 */
a586d4f6
RR
1235static void add_feature(struct device *dev, unsigned bit)
1236{
6e5aa7ef 1237 u8 *features = get_feature_bits(dev);
a586d4f6
RR
1238
1239 /* We can't extend the feature bits once we've added config bytes */
1240 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1241 assert(dev->desc->config_len == 0);
713b15b3 1242 dev->feature_len = dev->desc->feature_len = (bit/CHAR_BIT) + 1;
a586d4f6
RR
1243 }
1244
a586d4f6
RR
1245 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1246}
1247
2e04ef76
RR
1248/*
1249 * This routine sets the configuration fields for an existing device's
a586d4f6 1250 * descriptor. It only works for the last device, but that's OK because that's
2e04ef76
RR
1251 * how we use it.
1252 */
a586d4f6
RR
1253static void set_config(struct device *dev, unsigned len, const void *conf)
1254{
1255 /* Check we haven't overflowed our single page. */
1256 if (device_config(dev) + len > devices.descpage + getpagesize())
1257 errx(1, "Too many devices");
1258
1259 /* Copy in the config information, and store the length. */
1260 memcpy(device_config(dev), conf, len);
1261 dev->desc->config_len = len;
8ef562d1
RR
1262
1263 /* Size must fit in config_len field (8 bits)! */
1264 assert(dev->desc->config_len == len);
a586d4f6
RR
1265}
1266
2e04ef76
RR
1267/*
1268 * This routine does all the creation and setup of a new device, including
a91d74a3
RR
1269 * calling new_dev_desc() to allocate the descriptor and device memory. We
1270 * don't actually start the service threads until later.
a6bd8e13 1271 *
2e04ef76
RR
1272 * See what I mean about userspace being boring?
1273 */
659a0e66 1274static struct device *new_device(const char *name, u16 type)
8ca47e00
RR
1275{
1276 struct device *dev = malloc(sizeof(*dev));
1277
dde79789 1278 /* Now we populate the fields one at a time. */
17cbca2b 1279 dev->desc = new_dev_desc(type);
17cbca2b 1280 dev->name = name;
d1c856e0 1281 dev->vq = NULL;
713b15b3
RR
1282 dev->feature_len = 0;
1283 dev->num_vq = 0;
659a0e66 1284 dev->running = false;
ca16f580 1285 dev->next = NULL;
a586d4f6 1286
2e04ef76
RR
1287 /*
1288 * Append to device list. Prepending to a single-linked list is
a586d4f6
RR
1289 * easier, but the user expects the devices to be arranged on the bus
1290 * in command-line order. The first network device on the command line
2e04ef76
RR
1291 * is eth0, the first block device /dev/vda, etc.
1292 */
a586d4f6
RR
1293 if (devices.lastdev)
1294 devices.lastdev->next = dev;
1295 else
1296 devices.dev = dev;
1297 devices.lastdev = dev;
1298
8ca47e00
RR
1299 return dev;
1300}
1301
2e04ef76
RR
1302/*
1303 * Our first setup routine is the console. It's a fairly simple device, but
1304 * UNIX tty handling makes it uglier than it could be.
1305 */
17cbca2b 1306static void setup_console(void)
8ca47e00
RR
1307{
1308 struct device *dev;
1309
dde79789 1310 /* If we can save the initial standard input settings... */
8ca47e00
RR
1311 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1312 struct termios term = orig_term;
2e04ef76
RR
1313 /*
1314 * Then we turn off echo, line buffering and ^C etc: We want a
1315 * raw input stream to the Guest.
1316 */
8ca47e00
RR
1317 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1318 tcsetattr(STDIN_FILENO, TCSANOW, &term);
8ca47e00
RR
1319 }
1320
659a0e66
RR
1321 dev = new_device("console", VIRTIO_ID_CONSOLE);
1322
dde79789 1323 /* We store the console state in dev->priv, and initialize it. */
8ca47e00
RR
1324 dev->priv = malloc(sizeof(struct console_abort));
1325 ((struct console_abort *)dev->priv)->count = 0;
8ca47e00 1326
2e04ef76
RR
1327 /*
1328 * The console needs two virtqueues: the input then the output. When
56ae43df
RR
1329 * they put something the input queue, we make sure we're listening to
1330 * stdin. When they put something in the output queue, we write it to
2e04ef76
RR
1331 * stdout.
1332 */
659a0e66
RR
1333 add_virtqueue(dev, VIRTQUEUE_NUM, console_input);
1334 add_virtqueue(dev, VIRTQUEUE_NUM, console_output);
17cbca2b 1335
659a0e66 1336 verbose("device %u: console\n", ++devices.device_num);
8ca47e00 1337}
17cbca2b 1338/*:*/
8ca47e00 1339
2e04ef76
RR
1340/*M:010
1341 * Inter-guest networking is an interesting area. Simplest is to have a
17cbca2b
RR
1342 * --sharenet=<name> option which opens or creates a named pipe. This can be
1343 * used to send packets to another guest in a 1:1 manner.
dde79789 1344 *
9f54288d 1345 * More sophisticated is to use one of the tools developed for project like UML
17cbca2b 1346 * to do networking.
dde79789 1347 *
17cbca2b
RR
1348 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1349 * completely generic ("here's my vring, attach to your vring") and would work
1350 * for any traffic. Of course, namespace and permissions issues need to be
1351 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1352 * multiple inter-guest channels behind one interface, although it would
1353 * require some manner of hotplugging new virtio channels.
1354 *
9f54288d 1355 * Finally, we could use a virtio network switch in the kernel, ie. vhost.
2e04ef76 1356:*/
8ca47e00
RR
1357
1358static u32 str2ip(const char *ipaddr)
1359{
dec6a2be 1360 unsigned int b[4];
8ca47e00 1361
dec6a2be
MM
1362 if (sscanf(ipaddr, "%u.%u.%u.%u", &b[0], &b[1], &b[2], &b[3]) != 4)
1363 errx(1, "Failed to parse IP address '%s'", ipaddr);
1364 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
1365}
1366
1367static void str2mac(const char *macaddr, unsigned char mac[6])
1368{
1369 unsigned int m[6];
1370 if (sscanf(macaddr, "%02x:%02x:%02x:%02x:%02x:%02x",
1371 &m[0], &m[1], &m[2], &m[3], &m[4], &m[5]) != 6)
1372 errx(1, "Failed to parse mac address '%s'", macaddr);
1373 mac[0] = m[0];
1374 mac[1] = m[1];
1375 mac[2] = m[2];
1376 mac[3] = m[3];
1377 mac[4] = m[4];
1378 mac[5] = m[5];
8ca47e00
RR
1379}
1380
2e04ef76
RR
1381/*
1382 * This code is "adapted" from libbridge: it attaches the Host end of the
dde79789
RR
1383 * network device to the bridge device specified by the command line.
1384 *
1385 * This is yet another James Morris contribution (I'm an IP-level guy, so I
2e04ef76
RR
1386 * dislike bridging), and I just try not to break it.
1387 */
8ca47e00
RR
1388static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1389{
1390 int ifidx;
1391 struct ifreq ifr;
1392
1393 if (!*br_name)
1394 errx(1, "must specify bridge name");
1395
1396 ifidx = if_nametoindex(if_name);
1397 if (!ifidx)
1398 errx(1, "interface %s does not exist!", if_name);
1399
1400 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
dec6a2be 1401 ifr.ifr_name[IFNAMSIZ-1] = '\0';
8ca47e00
RR
1402 ifr.ifr_ifindex = ifidx;
1403 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1404 err(1, "can't add %s to bridge %s", if_name, br_name);
1405}
1406
2e04ef76
RR
1407/*
1408 * This sets up the Host end of the network device with an IP address, brings
dde79789 1409 * it up so packets will flow, the copies the MAC address into the hwaddr
2e04ef76
RR
1410 * pointer.
1411 */
dec6a2be 1412static void configure_device(int fd, const char *tapif, u32 ipaddr)
8ca47e00
RR
1413{
1414 struct ifreq ifr;
f846619e 1415 struct sockaddr_in sin;
8ca47e00
RR
1416
1417 memset(&ifr, 0, sizeof(ifr));
dec6a2be
MM
1418 strcpy(ifr.ifr_name, tapif);
1419
1420 /* Don't read these incantations. Just cut & paste them like I did! */
f846619e
RR
1421 sin.sin_family = AF_INET;
1422 sin.sin_addr.s_addr = htonl(ipaddr);
1423 memcpy(&ifr.ifr_addr, &sin, sizeof(sin));
8ca47e00 1424 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
dec6a2be 1425 err(1, "Setting %s interface address", tapif);
8ca47e00
RR
1426 ifr.ifr_flags = IFF_UP;
1427 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
dec6a2be
MM
1428 err(1, "Bringing interface %s up", tapif);
1429}
1430
dec6a2be 1431static int get_tun_device(char tapif[IFNAMSIZ])
8ca47e00 1432{
8ca47e00 1433 struct ifreq ifr;
dec6a2be
MM
1434 int netfd;
1435
1436 /* Start with this zeroed. Messy but sure. */
1437 memset(&ifr, 0, sizeof(ifr));
8ca47e00 1438
2e04ef76
RR
1439 /*
1440 * We open the /dev/net/tun device and tell it we want a tap device. A
dde79789
RR
1441 * tap device is like a tun device, only somehow different. To tell
1442 * the truth, I completely blundered my way through this code, but it
2e04ef76
RR
1443 * works now!
1444 */
8ca47e00 1445 netfd = open_or_die("/dev/net/tun", O_RDWR);
398f187d 1446 ifr.ifr_flags = IFF_TAP | IFF_NO_PI | IFF_VNET_HDR;
8ca47e00
RR
1447 strcpy(ifr.ifr_name, "tap%d");
1448 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1449 err(1, "configuring /dev/net/tun");
dec6a2be 1450
398f187d
RR
1451 if (ioctl(netfd, TUNSETOFFLOAD,
1452 TUN_F_CSUM|TUN_F_TSO4|TUN_F_TSO6|TUN_F_TSO_ECN) != 0)
1453 err(1, "Could not set features for tun device");
1454
2e04ef76
RR
1455 /*
1456 * We don't need checksums calculated for packets coming in this
1457 * device: trust us!
1458 */
8ca47e00
RR
1459 ioctl(netfd, TUNSETNOCSUM, 1);
1460
dec6a2be
MM
1461 memcpy(tapif, ifr.ifr_name, IFNAMSIZ);
1462 return netfd;
1463}
1464
2e04ef76
RR
1465/*L:195
1466 * Our network is a Host<->Guest network. This can either use bridging or
dec6a2be
MM
1467 * routing, but the principle is the same: it uses the "tun" device to inject
1468 * packets into the Host as if they came in from a normal network card. We
2e04ef76
RR
1469 * just shunt packets between the Guest and the tun device.
1470 */
dec6a2be
MM
1471static void setup_tun_net(char *arg)
1472{
1473 struct device *dev;
659a0e66
RR
1474 struct net_info *net_info = malloc(sizeof(*net_info));
1475 int ipfd;
dec6a2be
MM
1476 u32 ip = INADDR_ANY;
1477 bool bridging = false;
1478 char tapif[IFNAMSIZ], *p;
1479 struct virtio_net_config conf;
1480
659a0e66 1481 net_info->tunfd = get_tun_device(tapif);
dec6a2be 1482
17cbca2b 1483 /* First we create a new network device. */
659a0e66
RR
1484 dev = new_device("net", VIRTIO_ID_NET);
1485 dev->priv = net_info;
dde79789 1486
2e04ef76 1487 /* Network devices need a recv and a send queue, just like console. */
659a0e66
RR
1488 add_virtqueue(dev, VIRTQUEUE_NUM, net_input);
1489 add_virtqueue(dev, VIRTQUEUE_NUM, net_output);
8ca47e00 1490
2e04ef76
RR
1491 /*
1492 * We need a socket to perform the magic network ioctls to bring up the
1493 * tap interface, connect to the bridge etc. Any socket will do!
1494 */
8ca47e00
RR
1495 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1496 if (ipfd < 0)
1497 err(1, "opening IP socket");
1498
dde79789 1499 /* If the command line was --tunnet=bridge:<name> do bridging. */
8ca47e00 1500 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
dec6a2be
MM
1501 arg += strlen(BRIDGE_PFX);
1502 bridging = true;
1503 }
1504
1505 /* A mac address may follow the bridge name or IP address */
1506 p = strchr(arg, ':');
1507 if (p) {
1508 str2mac(p+1, conf.mac);
40c42076 1509 add_feature(dev, VIRTIO_NET_F_MAC);
dec6a2be 1510 *p = '\0';
dec6a2be
MM
1511 }
1512
1513 /* arg is now either an IP address or a bridge name */
1514 if (bridging)
1515 add_to_bridge(ipfd, tapif, arg);
1516 else
8ca47e00
RR
1517 ip = str2ip(arg);
1518
dec6a2be
MM
1519 /* Set up the tun device. */
1520 configure_device(ipfd, tapif, ip);
8ca47e00 1521
398f187d
RR
1522 /* Expect Guest to handle everything except UFO */
1523 add_feature(dev, VIRTIO_NET_F_CSUM);
1524 add_feature(dev, VIRTIO_NET_F_GUEST_CSUM);
398f187d
RR
1525 add_feature(dev, VIRTIO_NET_F_GUEST_TSO4);
1526 add_feature(dev, VIRTIO_NET_F_GUEST_TSO6);
1527 add_feature(dev, VIRTIO_NET_F_GUEST_ECN);
1528 add_feature(dev, VIRTIO_NET_F_HOST_TSO4);
1529 add_feature(dev, VIRTIO_NET_F_HOST_TSO6);
1530 add_feature(dev, VIRTIO_NET_F_HOST_ECN);
d1f0132e
MM
1531 /* We handle indirect ring entries */
1532 add_feature(dev, VIRTIO_RING_F_INDIRECT_DESC);
a586d4f6 1533 set_config(dev, sizeof(conf), &conf);
8ca47e00 1534
a586d4f6 1535 /* We don't need the socket any more; setup is done. */
8ca47e00
RR
1536 close(ipfd);
1537
dec6a2be
MM
1538 devices.device_num++;
1539
1540 if (bridging)
1541 verbose("device %u: tun %s attached to bridge: %s\n",
1542 devices.device_num, tapif, arg);
1543 else
1544 verbose("device %u: tun %s: %s\n",
1545 devices.device_num, tapif, arg);
8ca47e00 1546}
a91d74a3 1547/*:*/
17cbca2b 1548
e1e72965 1549/* This hangs off device->priv. */
1842f23c 1550struct vblk_info {
17cbca2b
RR
1551 /* The size of the file. */
1552 off64_t len;
1553
1554 /* The file descriptor for the file. */
1555 int fd;
1556
17cbca2b
RR
1557};
1558
e1e72965
RR
1559/*L:210
1560 * The Disk
1561 *
a91d74a3
RR
1562 * The disk only has one virtqueue, so it only has one thread. It is really
1563 * simple: the Guest asks for a block number and we read or write that position
1564 * in the file.
1565 *
1566 * Before we serviced each virtqueue in a separate thread, that was unacceptably
1567 * slow: the Guest waits until the read is finished before running anything
1568 * else, even if it could have been doing useful work.
1569 *
1570 * We could have used async I/O, except it's reputed to suck so hard that
1571 * characters actually go missing from your code when you try to use it.
e1e72965 1572 */
659a0e66 1573static void blk_request(struct virtqueue *vq)
17cbca2b 1574{
659a0e66 1575 struct vblk_info *vblk = vq->dev->priv;
17cbca2b 1576 unsigned int head, out_num, in_num, wlen;
c0316a94 1577 int ret, i;
cb38fa23 1578 u8 *in;
c0316a94 1579 struct virtio_blk_outhdr out;
659a0e66 1580 struct iovec iov[vq->vring.num];
17cbca2b
RR
1581 off64_t off;
1582
a91d74a3
RR
1583 /*
1584 * Get the next request, where we normally wait. It triggers the
1585 * interrupt to acknowledge previously serviced requests (if any).
1586 */
659a0e66 1587 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
17cbca2b 1588
c0316a94
RR
1589 /* Copy the output header from the front of the iov (adjusts iov) */
1590 iov_consume(iov, out_num, &out, sizeof(out));
1591
1592 /* Find and trim end of iov input array, for our status byte. */
1593 in = NULL;
1594 for (i = out_num + in_num - 1; i >= out_num; i--) {
1595 if (iov[i].iov_len > 0) {
1596 in = iov[i].iov_base + iov[i].iov_len - 1;
1597 iov[i].iov_len--;
1598 break;
1599 }
1600 }
1601 if (!in)
1602 errx(1, "Bad virtblk cmd with no room for status");
17cbca2b 1603
a91d74a3
RR
1604 /*
1605 * For historical reasons, block operations are expressed in 512 byte
1606 * "sectors".
1607 */
c0316a94 1608 off = out.sector * 512;
17cbca2b 1609
2e04ef76
RR
1610 /*
1611 * In general the virtio block driver is allowed to try SCSI commands.
1612 * It'd be nice if we supported eject, for example, but we don't.
1613 */
c0316a94 1614 if (out.type & VIRTIO_BLK_T_SCSI_CMD) {
17cbca2b 1615 fprintf(stderr, "Scsi commands unsupported\n");
cb38fa23 1616 *in = VIRTIO_BLK_S_UNSUPP;
1200e646 1617 wlen = sizeof(*in);
c0316a94 1618 } else if (out.type & VIRTIO_BLK_T_OUT) {
2e04ef76
RR
1619 /*
1620 * Write
1621 *
1622 * Move to the right location in the block file. This can fail
1623 * if they try to write past end.
1624 */
17cbca2b 1625 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 1626 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 1627
c0316a94
RR
1628 ret = writev(vblk->fd, iov, out_num);
1629 verbose("WRITE to sector %llu: %i\n", out.sector, ret);
17cbca2b 1630
2e04ef76
RR
1631 /*
1632 * Grr... Now we know how long the descriptor they sent was, we
17cbca2b 1633 * make sure they didn't try to write over the end of the block
2e04ef76
RR
1634 * file (possibly extending it).
1635 */
17cbca2b
RR
1636 if (ret > 0 && off + ret > vblk->len) {
1637 /* Trim it back to the correct length */
1638 ftruncate64(vblk->fd, vblk->len);
1639 /* Die, bad Guest, die. */
1640 errx(1, "Write past end %llu+%u", off, ret);
1641 }
7bc9fdda
TH
1642
1643 wlen = sizeof(*in);
1644 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
c0316a94 1645 } else if (out.type & VIRTIO_BLK_T_FLUSH) {
7bc9fdda
TH
1646 /* Flush */
1647 ret = fdatasync(vblk->fd);
1648 verbose("FLUSH fdatasync: %i\n", ret);
1200e646 1649 wlen = sizeof(*in);
cb38fa23 1650 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
17cbca2b 1651 } else {
2e04ef76
RR
1652 /*
1653 * Read
1654 *
1655 * Move to the right location in the block file. This can fail
1656 * if they try to read past end.
1657 */
17cbca2b 1658 if (lseek64(vblk->fd, off, SEEK_SET) != off)
c0316a94 1659 err(1, "Bad seek to sector %llu", out.sector);
17cbca2b 1660
c0316a94 1661 ret = readv(vblk->fd, iov + out_num, in_num);
17cbca2b 1662 if (ret >= 0) {
1200e646 1663 wlen = sizeof(*in) + ret;
cb38fa23 1664 *in = VIRTIO_BLK_S_OK;
17cbca2b 1665 } else {
1200e646 1666 wlen = sizeof(*in);
cb38fa23 1667 *in = VIRTIO_BLK_S_IOERR;
17cbca2b
RR
1668 }
1669 }
1670
a91d74a3 1671 /* Finished that request. */
38bc2b8c 1672 add_used(vq, head, wlen);
17cbca2b
RR
1673}
1674
e1e72965 1675/*L:198 This actually sets up a virtual block device. */
17cbca2b
RR
1676static void setup_block_file(const char *filename)
1677{
17cbca2b
RR
1678 struct device *dev;
1679 struct vblk_info *vblk;
a586d4f6 1680 struct virtio_blk_config conf;
17cbca2b 1681
2e04ef76 1682 /* Creat the device. */
659a0e66 1683 dev = new_device("block", VIRTIO_ID_BLOCK);
17cbca2b 1684
e1e72965 1685 /* The device has one virtqueue, where the Guest places requests. */
659a0e66 1686 add_virtqueue(dev, VIRTQUEUE_NUM, blk_request);
17cbca2b
RR
1687
1688 /* Allocate the room for our own bookkeeping */
1689 vblk = dev->priv = malloc(sizeof(*vblk));
1690
1691 /* First we open the file and store the length. */
1692 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1693 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1694
7bc9fdda
TH
1695 /* We support FLUSH. */
1696 add_feature(dev, VIRTIO_BLK_F_FLUSH);
a586d4f6 1697
17cbca2b 1698 /* Tell Guest how many sectors this device has. */
a586d4f6 1699 conf.capacity = cpu_to_le64(vblk->len / 512);
17cbca2b 1700
2e04ef76
RR
1701 /*
1702 * Tell Guest not to put in too many descriptors at once: two are used
1703 * for the in and out elements.
1704 */
a586d4f6
RR
1705 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1706 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1707
8ef562d1
RR
1708 /* Don't try to put whole struct: we have 8 bit limit. */
1709 set_config(dev, offsetof(struct virtio_blk_config, geometry), &conf);
17cbca2b 1710
17cbca2b 1711 verbose("device %u: virtblock %llu sectors\n",
659a0e66 1712 ++devices.device_num, le64_to_cpu(conf.capacity));
17cbca2b 1713}
28fd6d7f 1714
2e04ef76
RR
1715/*L:211
1716 * Our random number generator device reads from /dev/random into the Guest's
28fd6d7f
RR
1717 * input buffers. The usual case is that the Guest doesn't want random numbers
1718 * and so has no buffers although /dev/random is still readable, whereas
1719 * console is the reverse.
1720 *
2e04ef76
RR
1721 * The same logic applies, however.
1722 */
1723struct rng_info {
1724 int rfd;
1725};
1726
659a0e66 1727static void rng_input(struct virtqueue *vq)
28fd6d7f
RR
1728{
1729 int len;
1730 unsigned int head, in_num, out_num, totlen = 0;
659a0e66
RR
1731 struct rng_info *rng_info = vq->dev->priv;
1732 struct iovec iov[vq->vring.num];
28fd6d7f
RR
1733
1734 /* First we need a buffer from the Guests's virtqueue. */
659a0e66 1735 head = wait_for_vq_desc(vq, iov, &out_num, &in_num);
28fd6d7f
RR
1736 if (out_num)
1737 errx(1, "Output buffers in rng?");
1738
2e04ef76 1739 /*
a91d74a3
RR
1740 * Just like the console write, we loop to cover the whole iovec.
1741 * In this case, short reads actually happen quite a bit.
2e04ef76 1742 */
28fd6d7f 1743 while (!iov_empty(iov, in_num)) {
659a0e66 1744 len = readv(rng_info->rfd, iov, in_num);
28fd6d7f
RR
1745 if (len <= 0)
1746 err(1, "Read from /dev/random gave %i", len);
c0316a94 1747 iov_consume(iov, in_num, NULL, len);
28fd6d7f
RR
1748 totlen += len;
1749 }
1750
1751 /* Tell the Guest about the new input. */
38bc2b8c 1752 add_used(vq, head, totlen);
28fd6d7f
RR
1753}
1754
2e04ef76
RR
1755/*L:199
1756 * This creates a "hardware" random number device for the Guest.
1757 */
28fd6d7f
RR
1758static void setup_rng(void)
1759{
1760 struct device *dev;
659a0e66 1761 struct rng_info *rng_info = malloc(sizeof(*rng_info));
28fd6d7f 1762
2e04ef76 1763 /* Our device's privat info simply contains the /dev/random fd. */
659a0e66 1764 rng_info->rfd = open_or_die("/dev/random", O_RDONLY);
28fd6d7f 1765
2e04ef76 1766 /* Create the new device. */
659a0e66
RR
1767 dev = new_device("rng", VIRTIO_ID_RNG);
1768 dev->priv = rng_info;
28fd6d7f
RR
1769
1770 /* The device has one virtqueue, where the Guest places inbufs. */
659a0e66 1771 add_virtqueue(dev, VIRTQUEUE_NUM, rng_input);
28fd6d7f
RR
1772
1773 verbose("device %u: rng\n", devices.device_num++);
1774}
a6bd8e13 1775/* That's the end of device setup. */
ec04b13f 1776
a6bd8e13 1777/*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
ec04b13f
BR
1778static void __attribute__((noreturn)) restart_guest(void)
1779{
1780 unsigned int i;
1781
2e04ef76
RR
1782 /*
1783 * Since we don't track all open fds, we simply close everything beyond
1784 * stderr.
1785 */
ec04b13f
BR
1786 for (i = 3; i < FD_SETSIZE; i++)
1787 close(i);
8c79873d 1788
659a0e66
RR
1789 /* Reset all the devices (kills all threads). */
1790 cleanup_devices();
1791
ec04b13f
BR
1792 execv(main_args[0], main_args);
1793 err(1, "Could not exec %s", main_args[0]);
1794}
8ca47e00 1795
2e04ef76
RR
1796/*L:220
1797 * Finally we reach the core of the Launcher which runs the Guest, serves
1798 * its input and output, and finally, lays it to rest.
1799 */
56739c80 1800static void __attribute__((noreturn)) run_guest(void)
8ca47e00
RR
1801{
1802 for (;;) {
17cbca2b 1803 unsigned long notify_addr;
8ca47e00
RR
1804 int readval;
1805
1806 /* We read from the /dev/lguest device to run the Guest. */
e3283fa0
GOC
1807 readval = pread(lguest_fd, &notify_addr,
1808 sizeof(notify_addr), cpu_id);
8ca47e00 1809
17cbca2b
RR
1810 /* One unsigned long means the Guest did HCALL_NOTIFY */
1811 if (readval == sizeof(notify_addr)) {
1812 verbose("Notify on address %#lx\n", notify_addr);
56739c80 1813 handle_output(notify_addr);
dde79789 1814 /* ENOENT means the Guest died. Reading tells us why. */
8ca47e00
RR
1815 } else if (errno == ENOENT) {
1816 char reason[1024] = { 0 };
e3283fa0 1817 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
8ca47e00 1818 errx(1, "%s", reason);
ec04b13f
BR
1819 /* ERESTART means that we need to reboot the guest */
1820 } else if (errno == ERESTART) {
1821 restart_guest();
659a0e66
RR
1822 /* Anything else means a bug or incompatible change. */
1823 } else
8ca47e00 1824 err(1, "Running guest failed");
8ca47e00
RR
1825 }
1826}
a6bd8e13 1827/*L:240
e1e72965
RR
1828 * This is the end of the Launcher. The good news: we are over halfway
1829 * through! The bad news: the most fiendish part of the code still lies ahead
1830 * of us.
dde79789 1831 *
e1e72965
RR
1832 * Are you ready? Take a deep breath and join me in the core of the Host, in
1833 * "make Host".
2e04ef76 1834:*/
8ca47e00
RR
1835
1836static struct option opts[] = {
1837 { "verbose", 0, NULL, 'v' },
8ca47e00
RR
1838 { "tunnet", 1, NULL, 't' },
1839 { "block", 1, NULL, 'b' },
28fd6d7f 1840 { "rng", 0, NULL, 'r' },
8ca47e00 1841 { "initrd", 1, NULL, 'i' },
8aeb36e8
PS
1842 { "username", 1, NULL, 'u' },
1843 { "chroot", 1, NULL, 'c' },
8ca47e00
RR
1844 { NULL },
1845};
1846static void usage(void)
1847{
1848 errx(1, "Usage: lguest [--verbose] "
dec6a2be 1849 "[--tunnet=(<ipaddr>:<macaddr>|bridge:<bridgename>:<macaddr>)\n"
8ca47e00
RR
1850 "|--block=<filename>|--initrd=<filename>]...\n"
1851 "<mem-in-mb> vmlinux [args...]");
1852}
1853
3c6b5bfa 1854/*L:105 The main routine is where the real work begins: */
8ca47e00
RR
1855int main(int argc, char *argv[])
1856{
2e04ef76 1857 /* Memory, code startpoint and size of the (optional) initrd. */
58a24566 1858 unsigned long mem = 0, start, initrd_size = 0;
56739c80
RR
1859 /* Two temporaries. */
1860 int i, c;
3c6b5bfa 1861 /* The boot information for the Guest. */
43d33b21 1862 struct boot_params *boot;
dde79789 1863 /* If they specify an initrd file to load. */
8ca47e00
RR
1864 const char *initrd_name = NULL;
1865
8aeb36e8
PS
1866 /* Password structure for initgroups/setres[gu]id */
1867 struct passwd *user_details = NULL;
1868
1869 /* Directory to chroot to */
1870 char *chroot_path = NULL;
1871
ec04b13f
BR
1872 /* Save the args: we "reboot" by execing ourselves again. */
1873 main_args = argv;
ec04b13f 1874
2e04ef76
RR
1875 /*
1876 * First we initialize the device list. We keep a pointer to the last
659a0e66 1877 * device, and the next interrupt number to use for devices (1:
2e04ef76
RR
1878 * remember that 0 is used by the timer).
1879 */
a586d4f6 1880 devices.lastdev = NULL;
17cbca2b 1881 devices.next_irq = 1;
8ca47e00 1882
a91d74a3 1883 /* We're CPU 0. In fact, that's the only CPU possible right now. */
e3283fa0 1884 cpu_id = 0;
a91d74a3 1885
2e04ef76
RR
1886 /*
1887 * We need to know how much memory so we can set up the device
dde79789
RR
1888 * descriptor and memory pages for the devices as we parse the command
1889 * line. So we quickly look through the arguments to find the amount
2e04ef76
RR
1890 * of memory now.
1891 */
6570c459
RR
1892 for (i = 1; i < argc; i++) {
1893 if (argv[i][0] != '-') {
3c6b5bfa 1894 mem = atoi(argv[i]) * 1024 * 1024;
2e04ef76
RR
1895 /*
1896 * We start by mapping anonymous pages over all of
3c6b5bfa
RR
1897 * guest-physical memory range. This fills it with 0,
1898 * and ensures that the Guest won't be killed when it
2e04ef76
RR
1899 * tries to access it.
1900 */
3c6b5bfa
RR
1901 guest_base = map_zeroed_pages(mem / getpagesize()
1902 + DEVICE_PAGES);
1903 guest_limit = mem;
1904 guest_max = mem + DEVICE_PAGES*getpagesize();
17cbca2b 1905 devices.descpage = get_pages(1);
6570c459
RR
1906 break;
1907 }
1908 }
dde79789
RR
1909
1910 /* The options are fairly straight-forward */
8ca47e00
RR
1911 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1912 switch (c) {
1913 case 'v':
1914 verbose = true;
1915 break;
8ca47e00 1916 case 't':
17cbca2b 1917 setup_tun_net(optarg);
8ca47e00
RR
1918 break;
1919 case 'b':
17cbca2b 1920 setup_block_file(optarg);
8ca47e00 1921 break;
28fd6d7f
RR
1922 case 'r':
1923 setup_rng();
1924 break;
8ca47e00
RR
1925 case 'i':
1926 initrd_name = optarg;
1927 break;
8aeb36e8
PS
1928 case 'u':
1929 user_details = getpwnam(optarg);
1930 if (!user_details)
1931 err(1, "getpwnam failed, incorrect username?");
1932 break;
1933 case 'c':
1934 chroot_path = optarg;
1935 break;
8ca47e00
RR
1936 default:
1937 warnx("Unknown argument %s", argv[optind]);
1938 usage();
1939 }
1940 }
2e04ef76
RR
1941 /*
1942 * After the other arguments we expect memory and kernel image name,
1943 * followed by command line arguments for the kernel.
1944 */
8ca47e00
RR
1945 if (optind + 2 > argc)
1946 usage();
1947
3c6b5bfa
RR
1948 verbose("Guest base is at %p\n", guest_base);
1949
dde79789 1950 /* We always have a console device */
17cbca2b 1951 setup_console();
8ca47e00 1952
8ca47e00 1953 /* Now we load the kernel */
47436aa4 1954 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
8ca47e00 1955
3c6b5bfa
RR
1956 /* Boot information is stashed at physical address 0 */
1957 boot = from_guest_phys(0);
1958
dde79789 1959 /* Map the initrd image if requested (at top of physical memory) */
8ca47e00
RR
1960 if (initrd_name) {
1961 initrd_size = load_initrd(initrd_name, mem);
2e04ef76
RR
1962 /*
1963 * These are the location in the Linux boot header where the
1964 * start and size of the initrd are expected to be found.
1965 */
43d33b21
RR
1966 boot->hdr.ramdisk_image = mem - initrd_size;
1967 boot->hdr.ramdisk_size = initrd_size;
dde79789 1968 /* The bootloader type 0xFF means "unknown"; that's OK. */
43d33b21 1969 boot->hdr.type_of_loader = 0xFF;
8ca47e00
RR
1970 }
1971
2e04ef76
RR
1972 /*
1973 * The Linux boot header contains an "E820" memory map: ours is a
1974 * simple, single region.
1975 */
43d33b21
RR
1976 boot->e820_entries = 1;
1977 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
2e04ef76
RR
1978 /*
1979 * The boot header contains a command line pointer: we put the command
1980 * line after the boot header.
1981 */
43d33b21 1982 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
e1e72965 1983 /* We use a simple helper to copy the arguments separated by spaces. */
43d33b21 1984 concat((char *)(boot + 1), argv+optind+2);
dde79789 1985
e22a5398
RR
1986 /* Set kernel alignment to 16M (CONFIG_PHYSICAL_ALIGN) */
1987 boot->hdr.kernel_alignment = 0x1000000;
1988
814a0e5c 1989 /* Boot protocol version: 2.07 supports the fields for lguest. */
43d33b21 1990 boot->hdr.version = 0x207;
814a0e5c
RR
1991
1992 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
43d33b21 1993 boot->hdr.hardware_subarch = 1;
814a0e5c 1994
43d33b21
RR
1995 /* Tell the entry path not to try to reload segment registers. */
1996 boot->hdr.loadflags |= KEEP_SEGMENTS;
8ca47e00 1997
9f54288d 1998 /* We tell the kernel to initialize the Guest. */
56739c80 1999 tell_kernel(start);
dde79789 2000
a91d74a3 2001 /* Ensure that we terminate if a device-servicing child dies. */
659a0e66
RR
2002 signal(SIGCHLD, kill_launcher);
2003
2004 /* If we exit via err(), this kills all the threads, restores tty. */
2005 atexit(cleanup_devices);
8ca47e00 2006
8aeb36e8
PS
2007 /* If requested, chroot to a directory */
2008 if (chroot_path) {
2009 if (chroot(chroot_path) != 0)
2010 err(1, "chroot(\"%s\") failed", chroot_path);
2011
2012 if (chdir("/") != 0)
2013 err(1, "chdir(\"/\") failed");
2014
2015 verbose("chroot done\n");
2016 }
2017
2018 /* If requested, drop privileges */
2019 if (user_details) {
2020 uid_t u;
2021 gid_t g;
2022
2023 u = user_details->pw_uid;
2024 g = user_details->pw_gid;
2025
2026 if (initgroups(user_details->pw_name, g) != 0)
2027 err(1, "initgroups failed");
2028
2029 if (setresgid(g, g, g) != 0)
2030 err(1, "setresgid failed");
2031
2032 if (setresuid(u, u, u) != 0)
2033 err(1, "setresuid failed");
2034
2035 verbose("Dropping privileges completed\n");
2036 }
2037
dde79789 2038 /* Finally, run the Guest. This doesn't return. */
56739c80 2039 run_guest();
8ca47e00 2040}
f56a384e
RR
2041/*:*/
2042
2043/*M:999
2044 * Mastery is done: you now know everything I do.
2045 *
2046 * But surely you have seen code, features and bugs in your wanderings which
2047 * you now yearn to attack? That is the real game, and I look forward to you
2048 * patching and forking lguest into the Your-Name-Here-visor.
2049 *
2050 * Farewell, and good coding!
2051 * Rusty Russell.
2052 */