[ALSA] sparc dbri: more driver cleanup
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / sparc / dbri.c
CommitLineData
1bd9debf
TI
1/*
2 * Driver for DBRI sound chip found on Sparcs.
4338829e 3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
1bd9debf
TI
4 *
5 * Based entirely upon drivers/sbus/audio/dbri.c which is:
6 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
7 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
8 *
9 * This is the lowlevel driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
10 * on Sun SPARCstation 10, 20, LX and Voyager models.
11 *
12 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
13 * data time multiplexer with ISDN support (aka T7259)
14 * Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
15 * CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
16 * Documentation:
17 * - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Tranceiver" from
18 * Sparc Technology Business (courtesy of Sun Support)
19 * - Data sheet of the T7903, a newer but very similar ISA bus equivalent
20 * available from the Lucent (formarly AT&T microelectronics) home
21 * page.
22 * - http://www.freesoft.org/Linux/DBRI/
23 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
24 * Interfaces: CHI, Audio In & Out, 2 bits parallel
25 * Documentation: from the Crystal Semiconductor home page.
26 *
27 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
28 * memory and a serial device (long pipes, nr 0-15) or between two serial
29 * devices (short pipes, nr 16-31), or simply send a fixed data to a serial
30 * device (short pipes).
31 * A timeslot defines the bit-offset and nr of bits read from a serial device.
32 * The timeslots are linked to 6 circular lists, one for each direction for
33 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
34 * (the second one is a monitor/tee pipe, valid only for serial input).
35 *
36 * The mmcodec is connected via the CHI bus and needs the data & some
5fc3a2b2 37 * parameters (volume, output selection) timemultiplexed in 8 byte
1bd9debf
TI
38 * chunks. It also has a control mode, which serves for audio format setting.
39 *
40 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
41 * the same CHI bus, so I thought perhaps it is possible to use the onboard
42 * & the speakerbox codec simultanously, giving 2 (not very independent :-)
43 * audio devices. But the SUN HW group decided against it, at least on my
44 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
45 * connected.
4338829e
MH
46 *
47 * I've tried to stick to the following function naming conventions:
48 * snd_* ALSA stuff
d254c8f7 49 * cs4215_* CS4215 codec specific stuff
4338829e
MH
50 * dbri_* DBRI high-level stuff
51 * other DBRI low-level stuff
1bd9debf
TI
52 */
53
54#include <sound/driver.h>
55#include <linux/interrupt.h>
56#include <linux/delay.h>
57
58#include <sound/core.h>
59#include <sound/pcm.h>
60#include <sound/pcm_params.h>
61#include <sound/info.h>
62#include <sound/control.h>
63#include <sound/initval.h>
64
65#include <asm/irq.h>
66#include <asm/io.h>
67#include <asm/sbus.h>
68#include <asm/atomic.h>
69
70MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
71MODULE_DESCRIPTION("Sun DBRI");
72MODULE_LICENSE("GPL");
73MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
74
75static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
76static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
77static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
78
79module_param_array(index, int, NULL, 0444);
80MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
81module_param_array(id, charp, NULL, 0444);
82MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
83module_param_array(enable, bool, NULL, 0444);
84MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
85
86#define DBRI_DEBUG
87
88#define D_INT (1<<0)
89#define D_GEN (1<<1)
90#define D_CMD (1<<2)
91#define D_MM (1<<3)
92#define D_USR (1<<4)
93#define D_DESC (1<<5)
94
6581f4e7 95static int dbri_debug;
4338829e 96module_param(dbri_debug, int, 0644);
1bd9debf
TI
97MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
98
99#ifdef DBRI_DEBUG
100static char *cmds[] = {
101 "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
102 "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
103};
104
105#define dprintk(a, x...) if(dbri_debug & a) printk(KERN_DEBUG x)
106
1bd9debf
TI
107#else
108#define dprintk(a, x...)
109
1bd9debf
TI
110#endif /* DBRI_DEBUG */
111
42fe7647
KH
112#define DBRI_CMD(cmd, intr, value) ((cmd << 28) | \
113 (intr << 27) | \
114 value)
115
1bd9debf
TI
116/***************************************************************************
117 CS4215 specific definitions and structures
118****************************************************************************/
119
120struct cs4215 {
121 __u8 data[4]; /* Data mode: Time slots 5-8 */
122 __u8 ctrl[4]; /* Ctrl mode: Time slots 1-4 */
123 __u8 onboard;
124 __u8 offset; /* Bit offset from frame sync to time slot 1 */
125 volatile __u32 status;
126 volatile __u32 version;
127 __u8 precision; /* In bits, either 8 or 16 */
128 __u8 channels; /* 1 or 2 */
129};
130
131/*
132 * Control mode first
133 */
134
135/* Time Slot 1, Status register */
136#define CS4215_CLB (1<<2) /* Control Latch Bit */
137#define CS4215_OLB (1<<3) /* 1: line: 2.0V, speaker 4V */
138 /* 0: line: 2.8V, speaker 8V */
139#define CS4215_MLB (1<<4) /* 1: Microphone: 20dB gain disabled */
140#define CS4215_RSRVD_1 (1<<5)
141
142/* Time Slot 2, Data Format Register */
143#define CS4215_DFR_LINEAR16 0
144#define CS4215_DFR_ULAW 1
145#define CS4215_DFR_ALAW 2
146#define CS4215_DFR_LINEAR8 3
147#define CS4215_DFR_STEREO (1<<2)
148static struct {
149 unsigned short freq;
150 unsigned char xtal;
151 unsigned char csval;
152} CS4215_FREQ[] = {
153 { 8000, (1 << 4), (0 << 3) },
154 { 16000, (1 << 4), (1 << 3) },
155 { 27429, (1 << 4), (2 << 3) }, /* Actually 24428.57 */
156 { 32000, (1 << 4), (3 << 3) },
157 /* { NA, (1 << 4), (4 << 3) }, */
158 /* { NA, (1 << 4), (5 << 3) }, */
159 { 48000, (1 << 4), (6 << 3) },
160 { 9600, (1 << 4), (7 << 3) },
161 { 5513, (2 << 4), (0 << 3) }, /* Actually 5512.5 */
162 { 11025, (2 << 4), (1 << 3) },
163 { 18900, (2 << 4), (2 << 3) },
164 { 22050, (2 << 4), (3 << 3) },
165 { 37800, (2 << 4), (4 << 3) },
166 { 44100, (2 << 4), (5 << 3) },
167 { 33075, (2 << 4), (6 << 3) },
168 { 6615, (2 << 4), (7 << 3) },
169 { 0, 0, 0}
170};
171
172#define CS4215_HPF (1<<7) /* High Pass Filter, 1: Enabled */
173
174#define CS4215_12_MASK 0xfcbf /* Mask off reserved bits in slot 1 & 2 */
175
176/* Time Slot 3, Serial Port Control register */
177#define CS4215_XEN (1<<0) /* 0: Enable serial output */
178#define CS4215_XCLK (1<<1) /* 1: Master mode: Generate SCLK */
179#define CS4215_BSEL_64 (0<<2) /* Bitrate: 64 bits per frame */
180#define CS4215_BSEL_128 (1<<2)
181#define CS4215_BSEL_256 (2<<2)
182#define CS4215_MCK_MAST (0<<4) /* Master clock */
183#define CS4215_MCK_XTL1 (1<<4) /* 24.576 MHz clock source */
184#define CS4215_MCK_XTL2 (2<<4) /* 16.9344 MHz clock source */
185#define CS4215_MCK_CLK1 (3<<4) /* Clockin, 256 x Fs */
186#define CS4215_MCK_CLK2 (4<<4) /* Clockin, see DFR */
187
188/* Time Slot 4, Test Register */
189#define CS4215_DAD (1<<0) /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
190#define CS4215_ENL (1<<1) /* Enable Loopback Testing */
191
192/* Time Slot 5, Parallel Port Register */
193/* Read only here and the same as the in data mode */
194
195/* Time Slot 6, Reserved */
196
197/* Time Slot 7, Version Register */
198#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
199
200/* Time Slot 8, Reserved */
201
202/*
203 * Data mode
204 */
205/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data */
206
207/* Time Slot 5, Output Setting */
208#define CS4215_LO(v) v /* Left Output Attenuation 0x3f: -94.5 dB */
209#define CS4215_LE (1<<6) /* Line Out Enable */
210#define CS4215_HE (1<<7) /* Headphone Enable */
211
212/* Time Slot 6, Output Setting */
213#define CS4215_RO(v) v /* Right Output Attenuation 0x3f: -94.5 dB */
214#define CS4215_SE (1<<6) /* Speaker Enable */
215#define CS4215_ADI (1<<7) /* A/D Data Invalid: Busy in calibration */
216
217/* Time Slot 7, Input Setting */
218#define CS4215_LG(v) v /* Left Gain Setting 0xf: 22.5 dB */
219#define CS4215_IS (1<<4) /* Input Select: 1=Microphone, 0=Line */
220#define CS4215_OVR (1<<5) /* 1: Overrange condition occurred */
221#define CS4215_PIO0 (1<<6) /* Parallel I/O 0 */
222#define CS4215_PIO1 (1<<7)
223
224/* Time Slot 8, Input Setting */
225#define CS4215_RG(v) v /* Right Gain Setting 0xf: 22.5 dB */
226#define CS4215_MA(v) (v<<4) /* Monitor Path Attenuation 0xf: mute */
227
228/***************************************************************************
229 DBRI specific definitions and structures
230****************************************************************************/
231
232/* DBRI main registers */
233#define REG0 0x00UL /* Status and Control */
234#define REG1 0x04UL /* Mode and Interrupt */
235#define REG2 0x08UL /* Parallel IO */
236#define REG3 0x0cUL /* Test */
237#define REG8 0x20UL /* Command Queue Pointer */
238#define REG9 0x24UL /* Interrupt Queue Pointer */
239
240#define DBRI_NO_CMDS 64
1bd9debf
TI
241#define DBRI_INT_BLK 64
242#define DBRI_NO_DESCS 64
243#define DBRI_NO_PIPES 32
470f1f1a 244#define DBRI_MAX_PIPE (DBRI_NO_PIPES - 1)
1bd9debf
TI
245
246#define DBRI_REC 0
247#define DBRI_PLAY 1
248#define DBRI_NO_STREAMS 2
249
250/* One transmit/receive descriptor */
c2735446 251/* When ba != 0 descriptor is used */
1bd9debf
TI
252struct dbri_mem {
253 volatile __u32 word1;
16727d94
KH
254 __u32 ba; /* Transmit/Receive Buffer Address */
255 __u32 nda; /* Next Descriptor Address */
1bd9debf
TI
256 volatile __u32 word4;
257};
258
259/* This structure is in a DMA region where it can accessed by both
260 * the CPU and the DBRI
261 */
262struct dbri_dma {
263 volatile s32 cmd[DBRI_NO_CMDS]; /* Place for commands */
6fb98280 264 volatile s32 intr[DBRI_INT_BLK]; /* Interrupt field */
1bd9debf
TI
265 struct dbri_mem desc[DBRI_NO_DESCS]; /* Xmit/receive descriptors */
266};
267
268#define dbri_dma_off(member, elem) \
269 ((u32)(unsigned long) \
270 (&(((struct dbri_dma *)0)->member[elem])))
271
272enum in_or_out { PIPEinput, PIPEoutput };
273
274struct dbri_pipe {
275 u32 sdp; /* SDP command word */
1bd9debf 276 int nextpipe; /* Next pipe in linked list */
1bd9debf
TI
277 int cycle; /* Offset of timeslot (bits) */
278 int length; /* Length of timeslot (bits) */
279 int first_desc; /* Index of first descriptor */
280 int desc; /* Index of active descriptor */
281 volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
282};
283
1bd9debf 284/* Per stream (playback or record) information */
475675d6
TI
285struct dbri_streaminfo {
286 struct snd_pcm_substream *substream;
1bd9debf
TI
287 u32 dvma_buffer; /* Device view of Alsa DMA buffer */
288 int left; /* # of bytes left in DMA buffer */
289 int size; /* Size of DMA buffer */
290 size_t offset; /* offset in user buffer */
291 int pipe; /* Data pipe used */
292 int left_gain; /* mixer elements */
293 int right_gain;
475675d6 294};
1bd9debf
TI
295
296/* This structure holds the information for both chips (DBRI & CS4215) */
475675d6
TI
297struct snd_dbri {
298 struct snd_card *card; /* ALSA card */
1bd9debf
TI
299
300 int regs_size, irq; /* Needed for unload */
301 struct sbus_dev *sdev; /* SBUS device info */
302 spinlock_t lock;
303
16727d94 304 struct dbri_dma *dma; /* Pointer to our DMA block */
1bd9debf
TI
305 u32 dma_dvma; /* DBRI visible DMA address */
306
307 void __iomem *regs; /* dbri HW regs */
1bd9debf 308 int dbri_irqp; /* intr queue pointer */
4338829e
MH
309 int wait_send; /* sequence of command buffers send */
310 int wait_ackd; /* sequence of command buffers acknowledged */
1bd9debf
TI
311
312 struct dbri_pipe pipes[DBRI_NO_PIPES]; /* DBRI's 32 data pipes */
c2735446 313 int next_desc[DBRI_NO_DESCS]; /* Index of next desc, or -1 */
1bd9debf
TI
314
315 int chi_in_pipe;
316 int chi_out_pipe;
317 int chi_bpf;
318
319 struct cs4215 mm; /* mmcodec special info */
320 /* per stream (playback/record) info */
321 struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
322
323 struct snd_dbri *next;
475675d6 324};
1bd9debf 325
1bd9debf
TI
326#define DBRI_MAX_VOLUME 63 /* Output volume */
327#define DBRI_MAX_GAIN 15 /* Input gain */
1bd9debf
TI
328
329/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
330#define D_P (1<<15) /* Program command & queue pointer valid */
331#define D_G (1<<14) /* Allow 4-Word SBus Burst */
332#define D_S (1<<13) /* Allow 16-Word SBus Burst */
333#define D_E (1<<12) /* Allow 8-Word SBus Burst */
334#define D_X (1<<7) /* Sanity Timer Disable */
335#define D_T (1<<6) /* Permit activation of the TE interface */
336#define D_N (1<<5) /* Permit activation of the NT interface */
337#define D_C (1<<4) /* Permit activation of the CHI interface */
338#define D_F (1<<3) /* Force Sanity Timer Time-Out */
339#define D_D (1<<2) /* Disable Master Mode */
340#define D_H (1<<1) /* Halt for Analysis */
341#define D_R (1<<0) /* Soft Reset */
342
343/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
344#define D_LITTLE_END (1<<8) /* Byte Order */
345#define D_BIG_END (0<<8) /* Byte Order */
346#define D_MRR (1<<4) /* Multiple Error Ack on SBus (readonly) */
347#define D_MLE (1<<3) /* Multiple Late Error on SBus (readonly) */
348#define D_LBG (1<<2) /* Lost Bus Grant on SBus (readonly) */
349#define D_MBE (1<<1) /* Burst Error on SBus (readonly) */
350#define D_IR (1<<0) /* Interrupt Indicator (readonly) */
351
352/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
353#define D_ENPIO3 (1<<7) /* Enable Pin 3 */
354#define D_ENPIO2 (1<<6) /* Enable Pin 2 */
355#define D_ENPIO1 (1<<5) /* Enable Pin 1 */
356#define D_ENPIO0 (1<<4) /* Enable Pin 0 */
357#define D_ENPIO (0xf0) /* Enable all the pins */
358#define D_PIO3 (1<<3) /* Pin 3: 1: Data mode, 0: Ctrl mode */
359#define D_PIO2 (1<<2) /* Pin 2: 1: Onboard PDN */
360#define D_PIO1 (1<<1) /* Pin 1: 0: Reset */
361#define D_PIO0 (1<<0) /* Pin 0: 1: Speakerbox PDN */
362
363/* DBRI Commands (Page 20) */
364#define D_WAIT 0x0 /* Stop execution */
365#define D_PAUSE 0x1 /* Flush long pipes */
366#define D_JUMP 0x2 /* New command queue */
367#define D_IIQ 0x3 /* Initialize Interrupt Queue */
368#define D_REX 0x4 /* Report command execution via interrupt */
369#define D_SDP 0x5 /* Setup Data Pipe */
370#define D_CDP 0x6 /* Continue Data Pipe (reread NULL Pointer) */
371#define D_DTS 0x7 /* Define Time Slot */
372#define D_SSP 0x8 /* Set short Data Pipe */
373#define D_CHI 0x9 /* Set CHI Global Mode */
374#define D_NT 0xa /* NT Command */
375#define D_TE 0xb /* TE Command */
376#define D_CDEC 0xc /* Codec setup */
377#define D_TEST 0xd /* No comment */
378#define D_CDM 0xe /* CHI Data mode command */
379
380/* Special bits for some commands */
381#define D_PIPE(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
382
383/* Setup Data Pipe */
384/* IRM */
385#define D_SDP_2SAME (1<<18) /* Report 2nd time in a row value rcvd */
386#define D_SDP_CHANGE (2<<18) /* Report any changes */
387#define D_SDP_EVERY (3<<18) /* Report any changes */
388#define D_SDP_EOL (1<<17) /* EOL interrupt enable */
389#define D_SDP_IDLE (1<<16) /* HDLC idle interrupt enable */
390
391/* Pipe data MODE */
392#define D_SDP_MEM (0<<13) /* To/from memory */
393#define D_SDP_HDLC (2<<13)
394#define D_SDP_HDLC_D (3<<13) /* D Channel (prio control) */
395#define D_SDP_SER (4<<13) /* Serial to serial */
396#define D_SDP_FIXED (6<<13) /* Short only */
397#define D_SDP_MODE(v) ((v)&(7<<13))
398
399#define D_SDP_TO_SER (1<<12) /* Direction */
400#define D_SDP_FROM_SER (0<<12) /* Direction */
401#define D_SDP_MSB (1<<11) /* Bit order within Byte */
402#define D_SDP_LSB (0<<11) /* Bit order within Byte */
403#define D_SDP_P (1<<10) /* Pointer Valid */
404#define D_SDP_A (1<<8) /* Abort */
405#define D_SDP_C (1<<7) /* Clear */
406
407/* Define Time Slot */
408#define D_DTS_VI (1<<17) /* Valid Input Time-Slot Descriptor */
409#define D_DTS_VO (1<<16) /* Valid Output Time-Slot Descriptor */
410#define D_DTS_INS (1<<15) /* Insert Time Slot */
411#define D_DTS_DEL (0<<15) /* Delete Time Slot */
412#define D_DTS_PRVIN(v) ((v)<<10) /* Previous In Pipe */
413#define D_DTS_PRVOUT(v) ((v)<<5) /* Previous Out Pipe */
414
415/* Time Slot defines */
416#define D_TS_LEN(v) ((v)<<24) /* Number of bits in this time slot */
417#define D_TS_CYCLE(v) ((v)<<14) /* Bit Count at start of TS */
418#define D_TS_DI (1<<13) /* Data Invert */
419#define D_TS_1CHANNEL (0<<10) /* Single Channel / Normal mode */
420#define D_TS_MONITOR (2<<10) /* Monitor pipe */
421#define D_TS_NONCONTIG (3<<10) /* Non contiguous mode */
422#define D_TS_ANCHOR (7<<10) /* Starting short pipes */
423#define D_TS_MON(v) ((v)<<5) /* Monitor Pipe */
424#define D_TS_NEXT(v) ((v)<<0) /* Pipe Nr: 0-15 long, 16-21 short */
425
426/* Concentration Highway Interface Modes */
427#define D_CHI_CHICM(v) ((v)<<16) /* Clock mode */
428#define D_CHI_IR (1<<15) /* Immediate Interrupt Report */
429#define D_CHI_EN (1<<14) /* CHIL Interrupt enabled */
430#define D_CHI_OD (1<<13) /* Open Drain Enable */
431#define D_CHI_FE (1<<12) /* Sample CHIFS on Rising Frame Edge */
432#define D_CHI_FD (1<<11) /* Frame Drive */
433#define D_CHI_BPF(v) ((v)<<0) /* Bits per Frame */
434
435/* NT: These are here for completeness */
436#define D_NT_FBIT (1<<17) /* Frame Bit */
437#define D_NT_NBF (1<<16) /* Number of bad frames to loose framing */
438#define D_NT_IRM_IMM (1<<15) /* Interrupt Report & Mask: Immediate */
439#define D_NT_IRM_EN (1<<14) /* Interrupt Report & Mask: Enable */
440#define D_NT_ISNT (1<<13) /* Configfure interface as NT */
441#define D_NT_FT (1<<12) /* Fixed Timing */
442#define D_NT_EZ (1<<11) /* Echo Channel is Zeros */
443#define D_NT_IFA (1<<10) /* Inhibit Final Activation */
444#define D_NT_ACT (1<<9) /* Activate Interface */
445#define D_NT_MFE (1<<8) /* Multiframe Enable */
446#define D_NT_RLB(v) ((v)<<5) /* Remote Loopback */
447#define D_NT_LLB(v) ((v)<<2) /* Local Loopback */
448#define D_NT_FACT (1<<1) /* Force Activation */
449#define D_NT_ABV (1<<0) /* Activate Bipolar Violation */
450
451/* Codec Setup */
452#define D_CDEC_CK(v) ((v)<<24) /* Clock Select */
453#define D_CDEC_FED(v) ((v)<<12) /* FSCOD Falling Edge Delay */
454#define D_CDEC_RED(v) ((v)<<0) /* FSCOD Rising Edge Delay */
455
456/* Test */
457#define D_TEST_RAM(v) ((v)<<16) /* RAM Pointer */
458#define D_TEST_SIZE(v) ((v)<<11) /* */
459#define D_TEST_ROMONOFF 0x5 /* Toggle ROM opcode monitor on/off */
460#define D_TEST_PROC 0x6 /* MicroProcessor test */
461#define D_TEST_SER 0x7 /* Serial-Controller test */
462#define D_TEST_RAMREAD 0x8 /* Copy from Ram to system memory */
463#define D_TEST_RAMWRITE 0x9 /* Copy into Ram from system memory */
464#define D_TEST_RAMBIST 0xa /* RAM Built-In Self Test */
465#define D_TEST_MCBIST 0xb /* Microcontroller Built-In Self Test */
466#define D_TEST_DUMP 0xe /* ROM Dump */
467
468/* CHI Data Mode */
469#define D_CDM_THI (1<<8) /* Transmit Data on CHIDR Pin */
470#define D_CDM_RHI (1<<7) /* Receive Data on CHIDX Pin */
471#define D_CDM_RCE (1<<6) /* Receive on Rising Edge of CHICK */
472#define D_CDM_XCE (1<<2) /* Transmit Data on Rising Edge of CHICK */
473#define D_CDM_XEN (1<<1) /* Transmit Highway Enable */
474#define D_CDM_REN (1<<0) /* Receive Highway Enable */
475
476/* The Interrupts */
477#define D_INTR_BRDY 1 /* Buffer Ready for processing */
478#define D_INTR_MINT 2 /* Marked Interrupt in RD/TD */
479#define D_INTR_IBEG 3 /* Flag to idle transition detected (HDLC) */
480#define D_INTR_IEND 4 /* Idle to flag transition detected (HDLC) */
481#define D_INTR_EOL 5 /* End of List */
482#define D_INTR_CMDI 6 /* Command has bean read */
483#define D_INTR_XCMP 8 /* Transmission of frame complete */
484#define D_INTR_SBRI 9 /* BRI status change info */
485#define D_INTR_FXDT 10 /* Fixed data change */
486#define D_INTR_CHIL 11 /* CHI lost frame sync (channel 36 only) */
487#define D_INTR_COLL 11 /* Unrecoverable D-Channel collision */
488#define D_INTR_DBYT 12 /* Dropped by frame slip */
489#define D_INTR_RBYT 13 /* Repeated by frame slip */
490#define D_INTR_LINT 14 /* Lost Interrupt */
491#define D_INTR_UNDR 15 /* DMA underrun */
492
493#define D_INTR_TE 32
494#define D_INTR_NT 34
495#define D_INTR_CHI 36
496#define D_INTR_CMD 38
497
498#define D_INTR_GETCHAN(v) (((v)>>24) & 0x3f)
499#define D_INTR_GETCODE(v) (((v)>>20) & 0xf)
500#define D_INTR_GETCMD(v) (((v)>>16) & 0xf)
501#define D_INTR_GETVAL(v) ((v) & 0xffff)
502#define D_INTR_GETRVAL(v) ((v) & 0xfffff)
503
504#define D_P_0 0 /* TE receive anchor */
505#define D_P_1 1 /* TE transmit anchor */
506#define D_P_2 2 /* NT transmit anchor */
507#define D_P_3 3 /* NT receive anchor */
508#define D_P_4 4 /* CHI send data */
509#define D_P_5 5 /* CHI receive data */
510#define D_P_6 6 /* */
511#define D_P_7 7 /* */
512#define D_P_8 8 /* */
513#define D_P_9 9 /* */
514#define D_P_10 10 /* */
515#define D_P_11 11 /* */
516#define D_P_12 12 /* */
517#define D_P_13 13 /* */
518#define D_P_14 14 /* */
519#define D_P_15 15 /* */
520#define D_P_16 16 /* CHI anchor pipe */
521#define D_P_17 17 /* CHI send */
522#define D_P_18 18 /* CHI receive */
523#define D_P_19 19 /* CHI receive */
524#define D_P_20 20 /* CHI receive */
525#define D_P_21 21 /* */
526#define D_P_22 22 /* */
527#define D_P_23 23 /* */
528#define D_P_24 24 /* */
529#define D_P_25 25 /* */
530#define D_P_26 26 /* */
531#define D_P_27 27 /* */
532#define D_P_28 28 /* */
533#define D_P_29 29 /* */
534#define D_P_30 30 /* */
535#define D_P_31 31 /* */
536
537/* Transmit descriptor defines */
538#define DBRI_TD_F (1<<31) /* End of Frame */
539#define DBRI_TD_D (1<<30) /* Do not append CRC */
540#define DBRI_TD_CNT(v) ((v)<<16) /* Number of valid bytes in the buffer */
541#define DBRI_TD_B (1<<15) /* Final interrupt */
542#define DBRI_TD_M (1<<14) /* Marker interrupt */
543#define DBRI_TD_I (1<<13) /* Transmit Idle Characters */
544#define DBRI_TD_FCNT(v) (v) /* Flag Count */
545#define DBRI_TD_UNR (1<<3) /* Underrun: transmitter is out of data */
546#define DBRI_TD_ABT (1<<2) /* Abort: frame aborted */
547#define DBRI_TD_TBC (1<<0) /* Transmit buffer Complete */
548#define DBRI_TD_STATUS(v) ((v)&0xff) /* Transmit status */
549 /* Maximum buffer size per TD: almost 8Kb */
550#define DBRI_TD_MAXCNT ((1 << 13) - 1)
551
552/* Receive descriptor defines */
553#define DBRI_RD_F (1<<31) /* End of Frame */
554#define DBRI_RD_C (1<<30) /* Completed buffer */
555#define DBRI_RD_B (1<<15) /* Final interrupt */
556#define DBRI_RD_M (1<<14) /* Marker interrupt */
557#define DBRI_RD_BCNT(v) (v) /* Buffer size */
558#define DBRI_RD_CRC (1<<7) /* 0: CRC is correct */
559#define DBRI_RD_BBC (1<<6) /* 1: Bad Byte received */
560#define DBRI_RD_ABT (1<<5) /* Abort: frame aborted */
561#define DBRI_RD_OVRN (1<<3) /* Overrun: data lost */
562#define DBRI_RD_STATUS(v) ((v)&0xff) /* Receive status */
563#define DBRI_RD_CNT(v) (((v)>>16)&0x1fff) /* Valid bytes in the buffer */
564
565/* stream_info[] access */
566/* Translate the ALSA direction into the array index */
567#define DBRI_STREAMNO(substream) \
568 (substream->stream == \
569 SNDRV_PCM_STREAM_PLAYBACK? DBRI_PLAY: DBRI_REC)
570
571/* Return a pointer to dbri_streaminfo */
572#define DBRI_STREAM(dbri, substream) &dbri->stream_info[DBRI_STREAMNO(substream)]
573
6581f4e7 574static struct snd_dbri *dbri_list; /* All DBRI devices */
1bd9debf
TI
575
576/*
577 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
578 * So we have to reverse the bits. Note: not all bit lengths are supported
579 */
580static __u32 reverse_bytes(__u32 b, int len)
581{
582 switch (len) {
583 case 32:
584 b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
585 case 16:
586 b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
587 case 8:
588 b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
589 case 4:
590 b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
591 case 2:
592 b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
593 case 1:
594 case 0:
595 break;
596 default:
597 printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
598 };
599
600 return b;
601}
602
603/*
604****************************************************************************
605************** DBRI initialization and command synchronization *************
606****************************************************************************
607
608Commands are sent to the DBRI by building a list of them in memory,
609then writing the address of the first list item to DBRI register 8.
4338829e
MH
610The list is terminated with a WAIT command, which generates a
611CPU interrupt to signal completion.
1bd9debf
TI
612
613Since the DBRI can run in parallel with the CPU, several means of
4338829e
MH
614synchronization present themselves. The method implemented here is close
615to the original scheme (Rudolf's), and uses 2 counters (wait_send and
616wait_ackd) to synchronize the command buffer between the CPU and the DBRI.
1bd9debf
TI
617
618A more sophisticated scheme might involve a circular command buffer
619or an array of command buffers. A routine could fill one with
620commands and link it onto a list. When a interrupt signaled
621completion of the current command buffer, look on the list for
622the next one.
623
1bd9debf
TI
624Every time a routine wants to write commands to the DBRI, it must
625first call dbri_cmdlock() and get an initial pointer into dbri->dma->cmd
4338829e
MH
626in return. dbri_cmdlock() will block if the previous commands have not
627been completed yet. After this the commands can be written to the buffer,
628and dbri_cmdsend() is called with the final pointer value to send them
629to the DBRI.
1bd9debf
TI
630
631*/
632
475675d6 633static void dbri_process_interrupt_buffer(struct snd_dbri * dbri);
4338829e 634
475675d6 635enum dbri_lock { NoGetLock, GetLock };
4338829e 636#define MAXLOOPS 10
1bd9debf 637
475675d6 638static volatile s32 *dbri_cmdlock(struct snd_dbri * dbri, enum dbri_lock get)
1bd9debf 639{
4338829e
MH
640 int maxloops = MAXLOOPS;
641
1bd9debf
TI
642#ifndef SMP
643 if ((get == GetLock) && spin_is_locked(&dbri->lock)) {
644 printk(KERN_ERR "DBRI: cmdlock called while in spinlock.");
645 }
646#endif
647
4338829e
MH
648 /* Delay if previous commands are still being processed */
649 while ((--maxloops) > 0 && (dbri->wait_send != dbri->wait_ackd)) {
650 msleep_interruptible(1);
4338829e
MH
651 }
652 if (maxloops == 0) {
653 printk(KERN_ERR "DBRI: Chip never completed command buffer %d\n",
654 dbri->wait_send);
655 } else {
656 dprintk(D_CMD, "Chip completed command buffer (%d)\n",
657 MAXLOOPS - maxloops - 1);
658 }
659
1bd9debf
TI
660 /*if (get == GetLock) spin_lock(&dbri->lock); */
661 return &dbri->dma->cmd[0];
662}
663
475675d6 664static void dbri_cmdsend(struct snd_dbri * dbri, volatile s32 * cmd)
1bd9debf 665{
1bd9debf
TI
666 volatile s32 *ptr;
667
668 for (ptr = &dbri->dma->cmd[0]; ptr < cmd; ptr++) {
669 dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
670 }
671
672 if ((cmd - &dbri->dma->cmd[0]) >= DBRI_NO_CMDS - 1) {
4338829e 673 printk(KERN_ERR "DBRI: Command buffer overflow! (bug in driver)\n");
1bd9debf
TI
674 /* Ignore the last part. */
675 cmd = &dbri->dma->cmd[DBRI_NO_CMDS - 3];
676 }
677
4338829e
MH
678 dbri->wait_send++;
679 dbri->wait_send &= 0xffff; /* restrict it to a 16 bit counter. */
1bd9debf 680 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
4338829e
MH
681 *(cmd++) = DBRI_CMD(D_WAIT, 1, dbri->wait_send);
682
683 /* Set command pointer and signal it is valid. */
1bd9debf 684 sbus_writel(dbri->dma_dvma, dbri->regs + REG8);
1bd9debf
TI
685
686 /*spin_unlock(&dbri->lock); */
687}
688
689/* Lock must be held when calling this */
475675d6 690static void dbri_reset(struct snd_dbri * dbri)
1bd9debf
TI
691{
692 int i;
693
694 dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
695 sbus_readl(dbri->regs + REG0),
696 sbus_readl(dbri->regs + REG2),
697 sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
698
699 sbus_writel(D_R, dbri->regs + REG0); /* Soft Reset */
700 for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
701 udelay(10);
702}
703
704/* Lock must not be held before calling this */
475675d6 705static void dbri_initialize(struct snd_dbri * dbri)
1bd9debf
TI
706{
707 volatile s32 *cmd;
708 u32 dma_addr, tmp;
709 unsigned long flags;
710 int n;
711
712 spin_lock_irqsave(&dbri->lock, flags);
713
714 dbri_reset(dbri);
715
716 cmd = dbri_cmdlock(dbri, NoGetLock);
717 dprintk(D_GEN, "init: cmd: %p, int: %p\n",
718 &dbri->dma->cmd[0], &dbri->dma->intr[0]);
719
1bd9debf
TI
720 /* Initialize pipes */
721 for (n = 0; n < DBRI_NO_PIPES; n++)
722 dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
723
4338829e
MH
724 /* A brute approach - DBRI falls back to working burst size by itself
725 * On SS20 D_S does not work, so do not try so high. */
1bd9debf 726 tmp = sbus_readl(dbri->regs + REG0);
4338829e
MH
727 tmp |= D_G | D_E;
728 tmp &= ~D_S;
1bd9debf
TI
729 sbus_writel(tmp, dbri->regs + REG0);
730
731 /*
6fb98280 732 * Initialize the interrupt ringbuffer.
1bd9debf
TI
733 */
734 dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
6fb98280
KH
735 dbri->dma->intr[0] = dma_addr;
736 dbri->dbri_irqp = 1;
737 /*
738 * Set up the interrupt queue
739 */
1bd9debf
TI
740 *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
741 *(cmd++) = dma_addr;
742
743 dbri_cmdsend(dbri, cmd);
744 spin_unlock_irqrestore(&dbri->lock, flags);
745}
746
747/*
748****************************************************************************
749************************** DBRI data pipe management ***********************
750****************************************************************************
751
752While DBRI control functions use the command and interrupt buffers, the
753main data path takes the form of data pipes, which can be short (command
754and interrupt driven), or long (attached to DMA buffers). These functions
755provide a rudimentary means of setting up and managing the DBRI's pipes,
756but the calling functions have to make sure they respect the pipes' linked
757list ordering, among other things. The transmit and receive functions
758here interface closely with the transmit and receive interrupt code.
759
760*/
475675d6 761static int pipe_active(struct snd_dbri * dbri, int pipe)
1bd9debf
TI
762{
763 return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
764}
765
766/* reset_pipe(dbri, pipe)
767 *
768 * Called on an in-use pipe to clear anything being transmitted or received
769 * Lock must be held before calling this.
770 */
475675d6 771static void reset_pipe(struct snd_dbri * dbri, int pipe)
1bd9debf
TI
772{
773 int sdp;
774 int desc;
775 volatile int *cmd;
776
470f1f1a 777 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
4338829e 778 printk(KERN_ERR "DBRI: reset_pipe called with illegal pipe number\n");
1bd9debf
TI
779 return;
780 }
781
782 sdp = dbri->pipes[pipe].sdp;
783 if (sdp == 0) {
4338829e 784 printk(KERN_ERR "DBRI: reset_pipe called on uninitialized pipe\n");
1bd9debf
TI
785 return;
786 }
787
788 cmd = dbri_cmdlock(dbri, NoGetLock);
789 *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
790 *(cmd++) = 0;
791 dbri_cmdsend(dbri, cmd);
792
793 desc = dbri->pipes[pipe].first_desc;
794 while (desc != -1) {
c2735446
KH
795 dbri->dma->desc[desc].nda = dbri->dma->desc[desc].ba = 0;
796 desc = dbri->next_desc[desc];
1bd9debf
TI
797 }
798
799 dbri->pipes[pipe].desc = -1;
800 dbri->pipes[pipe].first_desc = -1;
801}
802
475675d6 803static void setup_pipe(struct snd_dbri * dbri, int pipe, int sdp)
1bd9debf 804{
470f1f1a 805 if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
4338829e 806 printk(KERN_ERR "DBRI: setup_pipe called with illegal pipe number\n");
1bd9debf
TI
807 return;
808 }
809
810 if ((sdp & 0xf800) != sdp) {
4338829e 811 printk(KERN_ERR "DBRI: setup_pipe called with strange SDP value\n");
1bd9debf
TI
812 /* sdp &= 0xf800; */
813 }
814
815 /* If this is a fixed receive pipe, arrange for an interrupt
816 * every time its data changes
817 */
818 if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
819 sdp |= D_SDP_CHANGE;
820
821 sdp |= D_PIPE(pipe);
822 dbri->pipes[pipe].sdp = sdp;
823 dbri->pipes[pipe].desc = -1;
824 dbri->pipes[pipe].first_desc = -1;
1bd9debf
TI
825
826 reset_pipe(dbri, pipe);
827}
828
829/* FIXME: direction not needed */
475675d6 830static void link_time_slot(struct snd_dbri * dbri, int pipe,
1bd9debf
TI
831 enum in_or_out direction, int basepipe,
832 int length, int cycle)
833{
834 volatile s32 *cmd;
835 int val;
836 int prevpipe;
837 int nextpipe;
838
470f1f1a 839 if (pipe < 0 || pipe > DBRI_MAX_PIPE || basepipe < 0 || basepipe > DBRI_MAX_PIPE) {
4338829e
MH
840 printk(KERN_ERR
841 "DBRI: link_time_slot called with illegal pipe number\n");
1bd9debf
TI
842 return;
843 }
844
845 if (dbri->pipes[pipe].sdp == 0 || dbri->pipes[basepipe].sdp == 0) {
4338829e 846 printk(KERN_ERR "DBRI: link_time_slot called on uninitialized pipe\n");
1bd9debf
TI
847 return;
848 }
849
850 /* Deal with CHI special case:
851 * "If transmission on edges 0 or 1 is desired, then cycle n
852 * (where n = # of bit times per frame...) must be used."
853 * - DBRI data sheet, page 11
854 */
855 if (basepipe == 16 && direction == PIPEoutput && cycle == 0)
856 cycle = dbri->chi_bpf;
857
858 if (basepipe == pipe) {
859 prevpipe = pipe;
860 nextpipe = pipe;
861 } else {
862 /* We're not initializing a new linked list (basepipe != pipe),
863 * so run through the linked list and find where this pipe
864 * should be sloted in, based on its cycle. CHI confuses
865 * things a bit, since it has a single anchor for both its
866 * transmit and receive lists.
867 */
868 if (basepipe == 16) {
869 if (direction == PIPEinput) {
870 prevpipe = dbri->chi_in_pipe;
871 } else {
872 prevpipe = dbri->chi_out_pipe;
873 }
874 } else {
875 prevpipe = basepipe;
876 }
877
878 nextpipe = dbri->pipes[prevpipe].nextpipe;
879
880 while (dbri->pipes[nextpipe].cycle < cycle
881 && dbri->pipes[nextpipe].nextpipe != basepipe) {
882 prevpipe = nextpipe;
883 nextpipe = dbri->pipes[nextpipe].nextpipe;
884 }
885 }
886
887 if (prevpipe == 16) {
888 if (direction == PIPEinput) {
889 dbri->chi_in_pipe = pipe;
890 } else {
891 dbri->chi_out_pipe = pipe;
892 }
893 } else {
894 dbri->pipes[prevpipe].nextpipe = pipe;
895 }
896
897 dbri->pipes[pipe].nextpipe = nextpipe;
898 dbri->pipes[pipe].cycle = cycle;
899 dbri->pipes[pipe].length = length;
900
901 cmd = dbri_cmdlock(dbri, NoGetLock);
902
903 if (direction == PIPEinput) {
904 val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
905 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
906 *(cmd++) =
907 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
908 *(cmd++) = 0;
909 } else {
910 val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
911 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
912 *(cmd++) = 0;
913 *(cmd++) =
914 D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
915 }
916
917 dbri_cmdsend(dbri, cmd);
918}
919
475675d6 920static void unlink_time_slot(struct snd_dbri * dbri, int pipe,
1bd9debf
TI
921 enum in_or_out direction, int prevpipe,
922 int nextpipe)
923{
924 volatile s32 *cmd;
925 int val;
926
470f1f1a
KH
927 if (pipe < 0 || pipe > DBRI_MAX_PIPE
928 || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE) {
4338829e
MH
929 printk(KERN_ERR
930 "DBRI: unlink_time_slot called with illegal pipe number\n");
1bd9debf
TI
931 return;
932 }
933
934 cmd = dbri_cmdlock(dbri, NoGetLock);
935
936 if (direction == PIPEinput) {
937 val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
938 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
939 *(cmd++) = D_TS_NEXT(nextpipe);
940 *(cmd++) = 0;
941 } else {
942 val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
943 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
944 *(cmd++) = 0;
945 *(cmd++) = D_TS_NEXT(nextpipe);
946 }
947
948 dbri_cmdsend(dbri, cmd);
949}
950
951/* xmit_fixed() / recv_fixed()
952 *
953 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
954 * expected to change much, and which we don't need to buffer.
955 * The DBRI only interrupts us when the data changes (receive pipes),
956 * or only changes the data when this function is called (transmit pipes).
957 * Only short pipes (numbers 16-31) can be used in fixed data mode.
958 *
959 * These function operate on a 32-bit field, no matter how large
960 * the actual time slot is. The interrupt handler takes care of bit
961 * ordering and alignment. An 8-bit time slot will always end up
962 * in the low-order 8 bits, filled either MSB-first or LSB-first,
963 * depending on the settings passed to setup_pipe()
964 */
475675d6 965static void xmit_fixed(struct snd_dbri * dbri, int pipe, unsigned int data)
1bd9debf
TI
966{
967 volatile s32 *cmd;
968
470f1f1a 969 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
4338829e 970 printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1bd9debf
TI
971 return;
972 }
973
974 if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
4338829e 975 printk(KERN_ERR "DBRI: xmit_fixed: Uninitialized pipe %d\n", pipe);
1bd9debf
TI
976 return;
977 }
978
979 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
4338829e 980 printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1bd9debf
TI
981 return;
982 }
983
984 if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
4338829e 985 printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n", pipe);
1bd9debf
TI
986 return;
987 }
988
989 /* DBRI short pipes always transmit LSB first */
990
991 if (dbri->pipes[pipe].sdp & D_SDP_MSB)
992 data = reverse_bytes(data, dbri->pipes[pipe].length);
993
994 cmd = dbri_cmdlock(dbri, GetLock);
995
996 *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
997 *(cmd++) = data;
998
999 dbri_cmdsend(dbri, cmd);
1000}
1001
475675d6 1002static void recv_fixed(struct snd_dbri * dbri, int pipe, volatile __u32 * ptr)
1bd9debf 1003{
470f1f1a 1004 if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
4338829e 1005 printk(KERN_ERR "DBRI: recv_fixed called with illegal pipe number\n");
1bd9debf
TI
1006 return;
1007 }
1008
1009 if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
4338829e 1010 printk(KERN_ERR "DBRI: recv_fixed called on non-fixed pipe %d\n", pipe);
1bd9debf
TI
1011 return;
1012 }
1013
1014 if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
4338829e 1015 printk(KERN_ERR "DBRI: recv_fixed called on transmit pipe %d\n", pipe);
1bd9debf
TI
1016 return;
1017 }
1018
1019 dbri->pipes[pipe].recv_fixed_ptr = ptr;
1020}
1021
1022/* setup_descs()
1023 *
1024 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1025 * with a DMA buffer.
1026 *
1027 * Only pipe numbers 0-15 can be used in this mode.
1028 *
1029 * This function takes a stream number pointing to a data buffer,
1030 * and work by building chains of descriptors which identify the
1031 * data buffers. Buffers too large for a single descriptor will
1032 * be spread across multiple descriptors.
1033 */
475675d6 1034static int setup_descs(struct snd_dbri * dbri, int streamno, unsigned int period)
1bd9debf 1035{
475675d6 1036 struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1bd9debf
TI
1037 __u32 dvma_buffer;
1038 int desc = 0;
1039 int len;
1040 int first_desc = -1;
1041 int last_desc = -1;
1042
1043 if (info->pipe < 0 || info->pipe > 15) {
4338829e 1044 printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1bd9debf
TI
1045 return -2;
1046 }
1047
1048 if (dbri->pipes[info->pipe].sdp == 0) {
4338829e 1049 printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1bd9debf
TI
1050 info->pipe);
1051 return -2;
1052 }
1053
1054 dvma_buffer = info->dvma_buffer;
1055 len = info->size;
1056
1057 if (streamno == DBRI_PLAY) {
1058 if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
4338829e 1059 printk(KERN_ERR "DBRI: setup_descs: Called on receive pipe %d\n",
1bd9debf
TI
1060 info->pipe);
1061 return -2;
1062 }
1063 } else {
1064 if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
4338829e
MH
1065 printk(KERN_ERR
1066 "DBRI: setup_descs: Called on transmit pipe %d\n",
1bd9debf
TI
1067 info->pipe);
1068 return -2;
1069 }
1070 /* Should be able to queue multiple buffers to receive on a pipe */
1071 if (pipe_active(dbri, info->pipe)) {
4338829e 1072 printk(KERN_ERR "DBRI: recv_on_pipe: Called on active pipe %d\n",
1bd9debf
TI
1073 info->pipe);
1074 return -2;
1075 }
1076
1077 /* Make sure buffer size is multiple of four */
1078 len &= ~3;
1079 }
1080
1081 while (len > 0) {
1082 int mylen;
1083
1084 for (; desc < DBRI_NO_DESCS; desc++) {
c2735446 1085 if (!dbri->dma->desc[desc].ba)
1bd9debf
TI
1086 break;
1087 }
1088 if (desc == DBRI_NO_DESCS) {
4338829e 1089 printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1bd9debf
TI
1090 return -1;
1091 }
1092
1093 if (len > DBRI_TD_MAXCNT) {
1094 mylen = DBRI_TD_MAXCNT; /* 8KB - 1 */
1095 } else {
1096 mylen = len;
1097 }
1098 if (mylen > period) {
1099 mylen = period;
1100 }
1101
c2735446 1102 dbri->next_desc[desc] = -1;
1bd9debf
TI
1103 dbri->dma->desc[desc].ba = dvma_buffer;
1104 dbri->dma->desc[desc].nda = 0;
1105
1106 if (streamno == DBRI_PLAY) {
1bd9debf
TI
1107 dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1108 dbri->dma->desc[desc].word4 = 0;
1109 if (first_desc != -1)
1110 dbri->dma->desc[desc].word1 |= DBRI_TD_M;
1111 } else {
1bd9debf
TI
1112 dbri->dma->desc[desc].word1 = 0;
1113 dbri->dma->desc[desc].word4 =
1114 DBRI_RD_B | DBRI_RD_BCNT(mylen);
1115 }
1116
1117 if (first_desc == -1) {
1118 first_desc = desc;
1119 } else {
c2735446 1120 dbri->next_desc[last_desc] = desc;
1bd9debf
TI
1121 dbri->dma->desc[last_desc].nda =
1122 dbri->dma_dvma + dbri_dma_off(desc, desc);
1123 }
1124
1125 last_desc = desc;
1126 dvma_buffer += mylen;
1127 len -= mylen;
1128 }
1129
1130 if (first_desc == -1 || last_desc == -1) {
4338829e 1131 printk(KERN_ERR "DBRI: setup_descs: Not enough descriptors available\n");
1bd9debf
TI
1132 return -1;
1133 }
1134
1135 dbri->dma->desc[last_desc].word1 &= ~DBRI_TD_M;
1136 if (streamno == DBRI_PLAY) {
1137 dbri->dma->desc[last_desc].word1 |=
1138 DBRI_TD_I | DBRI_TD_F | DBRI_TD_B;
1139 }
1140 dbri->pipes[info->pipe].first_desc = first_desc;
1141 dbri->pipes[info->pipe].desc = first_desc;
1142
c2735446 1143 for (desc = first_desc; desc != -1; desc = dbri->next_desc[desc]) {
1bd9debf
TI
1144 dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1145 desc,
1146 dbri->dma->desc[desc].word1,
1147 dbri->dma->desc[desc].ba,
1148 dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1149 }
1150 return 0;
1151}
1152
1153/*
1154****************************************************************************
1155************************** DBRI - CHI interface ****************************
1156****************************************************************************
1157
1158The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1159multiplexed serial interface which the DBRI can operate in either master
1160(give clock/frame sync) or slave (take clock/frame sync) mode.
1161
1162*/
1163
1164enum master_or_slave { CHImaster, CHIslave };
1165
475675d6 1166static void reset_chi(struct snd_dbri * dbri, enum master_or_slave master_or_slave,
1bd9debf
TI
1167 int bits_per_frame)
1168{
1169 volatile s32 *cmd;
1170 int val;
1171 static int chi_initialized = 0; /* FIXME: mutex? */
1172
1173 if (!chi_initialized) {
1174
1175 cmd = dbri_cmdlock(dbri, GetLock);
1176
1177 /* Set CHI Anchor: Pipe 16 */
1178
470f1f1a
KH
1179 val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1180 | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1bd9debf
TI
1181 *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1182 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1bd9debf
TI
1183 *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1184
1185 dbri->pipes[16].sdp = 1;
1186 dbri->pipes[16].nextpipe = 16;
1bd9debf
TI
1187
1188#if 0
1189 chi_initialized++;
1190#endif
1191 } else {
1192 int pipe;
1193
1194 for (pipe = dbri->chi_in_pipe;
1195 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1196 unlink_time_slot(dbri, pipe, PIPEinput,
1197 16, dbri->pipes[pipe].nextpipe);
1198 }
1199 for (pipe = dbri->chi_out_pipe;
1200 pipe != 16; pipe = dbri->pipes[pipe].nextpipe) {
1201 unlink_time_slot(dbri, pipe, PIPEoutput,
1202 16, dbri->pipes[pipe].nextpipe);
1203 }
1204
1bd9debf
TI
1205 cmd = dbri_cmdlock(dbri, GetLock);
1206 }
470f1f1a
KH
1207 dbri->chi_in_pipe = 16;
1208 dbri->chi_out_pipe = 16;
1bd9debf
TI
1209
1210 if (master_or_slave == CHIslave) {
1211 /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1212 *
1213 * CHICM = 0 (slave mode, 8 kHz frame rate)
1214 * IR = give immediate CHI status interrupt
1215 * EN = give CHI status interrupt upon change
1216 */
1217 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1218 } else {
1219 /* Setup DBRI for CHI Master - generate clock, FS
1220 *
1221 * BPF = bits per 8 kHz frame
1222 * 12.288 MHz / CHICM_divisor = clock rate
1223 * FD = 1 - drive CHIFS on rising edge of CHICK
1224 */
1225 int clockrate = bits_per_frame * 8;
1226 int divisor = 12288 / clockrate;
1227
1228 if (divisor > 255 || divisor * clockrate != 12288)
4338829e 1229 printk(KERN_ERR "DBRI: illegal bits_per_frame in setup_chi\n");
1bd9debf
TI
1230
1231 *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1232 | D_CHI_BPF(bits_per_frame));
1233 }
1234
1235 dbri->chi_bpf = bits_per_frame;
1236
1237 /* CHI Data Mode
1238 *
1239 * RCE = 0 - receive on falling edge of CHICK
1240 * XCE = 1 - transmit on rising edge of CHICK
1241 * XEN = 1 - enable transmitter
1242 * REN = 1 - enable receiver
1243 */
1244
1245 *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1246 *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1247
1248 dbri_cmdsend(dbri, cmd);
1249}
1250
1251/*
1252****************************************************************************
1253*********************** CS4215 audio codec management **********************
1254****************************************************************************
1255
1256In the standard SPARC audio configuration, the CS4215 codec is attached
1257to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1258
1259*/
475675d6 1260static void cs4215_setup_pipes(struct snd_dbri * dbri)
1bd9debf
TI
1261{
1262 /*
1263 * Data mode:
1264 * Pipe 4: Send timeslots 1-4 (audio data)
1265 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1266 * Pipe 6: Receive timeslots 1-4 (audio data)
1267 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1268 * interrupt, and the rest of the data (slot 5 and 8) is
1269 * not relevant for us (only for doublechecking).
1270 *
1271 * Control mode:
1272 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1273 * Pipe 18: Receive timeslot 1 (clb).
1274 * Pipe 19: Receive timeslot 7 (version).
1275 */
1276
1277 setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1278 setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1279 setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1280 setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1281
1282 setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1283 setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1284 setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1285}
1286
1287static int cs4215_init_data(struct cs4215 *mm)
1288{
1289 /*
1290 * No action, memory resetting only.
1291 *
1292 * Data Time Slot 5-8
1293 * Speaker,Line and Headphone enable. Gain set to the half.
1294 * Input is mike.
1295 */
1296 mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1297 mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1298 mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1299 mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1300
1301 /*
1302 * Control Time Slot 1-4
1303 * 0: Default I/O voltage scale
1304 * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1305 * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1306 * 3: Tests disabled
1307 */
1308 mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1309 mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1310 mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1311 mm->ctrl[3] = 0;
1312
1313 mm->status = 0;
1314 mm->version = 0xff;
1315 mm->precision = 8; /* For ULAW */
1316 mm->channels = 2;
1317
1318 return 0;
1319}
1320
475675d6 1321static void cs4215_setdata(struct snd_dbri * dbri, int muted)
1bd9debf
TI
1322{
1323 if (muted) {
1324 dbri->mm.data[0] |= 63;
1325 dbri->mm.data[1] |= 63;
1326 dbri->mm.data[2] &= ~15;
1327 dbri->mm.data[3] &= ~15;
1328 } else {
1329 /* Start by setting the playback attenuation. */
475675d6 1330 struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
470f1f1a
KH
1331 int left_gain = info->left_gain & 0x3f;
1332 int right_gain = info->right_gain & 0x3f;
1bd9debf 1333
1bd9debf
TI
1334 dbri->mm.data[0] &= ~0x3f; /* Reset the volume bits */
1335 dbri->mm.data[1] &= ~0x3f;
1336 dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1337 dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1338
1339 /* Now set the recording gain. */
1340 info = &dbri->stream_info[DBRI_REC];
470f1f1a
KH
1341 left_gain = info->left_gain & 0xf;
1342 right_gain = info->right_gain & 0xf;
1bd9debf
TI
1343 dbri->mm.data[2] |= CS4215_LG(left_gain);
1344 dbri->mm.data[3] |= CS4215_RG(right_gain);
1345 }
1346
1347 xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1348}
1349
1350/*
1351 * Set the CS4215 to data mode.
1352 */
475675d6 1353static void cs4215_open(struct snd_dbri * dbri)
1bd9debf
TI
1354{
1355 int data_width;
1356 u32 tmp;
1357
1358 dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1359 dbri->mm.channels, dbri->mm.precision);
1360
1361 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1362 * to make sure this takes. This avoids clicking noises.
1363 */
1364
1365 cs4215_setdata(dbri, 1);
1366 udelay(125);
1367
1368 /*
1369 * Data mode:
1370 * Pipe 4: Send timeslots 1-4 (audio data)
1371 * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1372 * Pipe 6: Receive timeslots 1-4 (audio data)
1373 * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1374 * interrupt, and the rest of the data (slot 5 and 8) is
1375 * not relevant for us (only for doublechecking).
1376 *
1377 * Just like in control mode, the time slots are all offset by eight
1378 * bits. The CS4215, it seems, observes TSIN (the delayed signal)
1379 * even if it's the CHI master. Don't ask me...
1380 */
1381 tmp = sbus_readl(dbri->regs + REG0);
1382 tmp &= ~(D_C); /* Disable CHI */
1383 sbus_writel(tmp, dbri->regs + REG0);
1384
1385 /* Switch CS4215 to data mode - set PIO3 to 1 */
1386 sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1387 (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1388
1389 reset_chi(dbri, CHIslave, 128);
1390
1391 /* Note: this next doesn't work for 8-bit stereo, because the two
1392 * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1393 * (See CS4215 datasheet Fig 15)
1394 *
1395 * DBRI non-contiguous mode would be required to make this work.
1396 */
1397 data_width = dbri->mm.channels * dbri->mm.precision;
1398
1399 link_time_slot(dbri, 20, PIPEoutput, 16, 32, dbri->mm.offset + 32);
1400 link_time_slot(dbri, 4, PIPEoutput, 16, data_width, dbri->mm.offset);
1401 link_time_slot(dbri, 6, PIPEinput, 16, data_width, dbri->mm.offset);
1402 link_time_slot(dbri, 21, PIPEinput, 16, 16, dbri->mm.offset + 40);
1403
1404 /* FIXME: enable CHI after _setdata? */
1405 tmp = sbus_readl(dbri->regs + REG0);
1406 tmp |= D_C; /* Enable CHI */
1407 sbus_writel(tmp, dbri->regs + REG0);
1408
1409 cs4215_setdata(dbri, 0);
1410}
1411
1412/*
1413 * Send the control information (i.e. audio format)
1414 */
475675d6 1415static int cs4215_setctrl(struct snd_dbri * dbri)
1bd9debf
TI
1416{
1417 int i, val;
1418 u32 tmp;
1419
1420 /* FIXME - let the CPU do something useful during these delays */
1421
1422 /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1423 * to make sure this takes. This avoids clicking noises.
1424 */
1bd9debf
TI
1425 cs4215_setdata(dbri, 1);
1426 udelay(125);
1427
1428 /*
1429 * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1430 * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1431 */
1432 val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1433 sbus_writel(val, dbri->regs + REG2);
1434 dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1435 udelay(34);
1436
1437 /* In Control mode, the CS4215 is a slave device, so the DBRI must
1438 * operate as CHI master, supplying clocking and frame synchronization.
1439 *
1440 * In Data mode, however, the CS4215 must be CHI master to insure
1441 * that its data stream is synchronous with its codec.
1442 *
1443 * The upshot of all this? We start by putting the DBRI into master
1444 * mode, program the CS4215 in Control mode, then switch the CS4215
1445 * into Data mode and put the DBRI into slave mode. Various timing
1446 * requirements must be observed along the way.
1447 *
1448 * Oh, and one more thing, on a SPARCStation 20 (and maybe
1449 * others?), the addressing of the CS4215's time slots is
1450 * offset by eight bits, so we add eight to all the "cycle"
1451 * values in the Define Time Slot (DTS) commands. This is
1452 * done in hardware by a TI 248 that delays the DBRI->4215
1453 * frame sync signal by eight clock cycles. Anybody know why?
1454 */
1455 tmp = sbus_readl(dbri->regs + REG0);
1456 tmp &= ~D_C; /* Disable CHI */
1457 sbus_writel(tmp, dbri->regs + REG0);
1458
1459 reset_chi(dbri, CHImaster, 128);
1460
1461 /*
1462 * Control mode:
1463 * Pipe 17: Send timeslots 1-4 (slots 5-8 are readonly)
1464 * Pipe 18: Receive timeslot 1 (clb).
1465 * Pipe 19: Receive timeslot 7 (version).
1466 */
1467
1468 link_time_slot(dbri, 17, PIPEoutput, 16, 32, dbri->mm.offset);
1469 link_time_slot(dbri, 18, PIPEinput, 16, 8, dbri->mm.offset);
1470 link_time_slot(dbri, 19, PIPEinput, 16, 8, dbri->mm.offset + 48);
1471
1472 /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1473 dbri->mm.ctrl[0] &= ~CS4215_CLB;
1474 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1475
1476 tmp = sbus_readl(dbri->regs + REG0);
1477 tmp |= D_C; /* Enable CHI */
1478 sbus_writel(tmp, dbri->regs + REG0);
1479
4338829e
MH
1480 for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i) {
1481 msleep_interruptible(1);
1bd9debf
TI
1482 }
1483 if (i == 0) {
1484 dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1485 dbri->mm.status);
1486 return -1;
1487 }
1488
1489 /* Disable changes to our copy of the version number, as we are about
1490 * to leave control mode.
1491 */
1492 recv_fixed(dbri, 19, NULL);
1493
1494 /* Terminate CS4215 control mode - data sheet says
1495 * "Set CLB=1 and send two more frames of valid control info"
1496 */
1497 dbri->mm.ctrl[0] |= CS4215_CLB;
1498 xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1499
1500 /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1501 udelay(250);
1502
1503 cs4215_setdata(dbri, 0);
1504
1505 return 0;
1506}
1507
1508/*
1509 * Setup the codec with the sampling rate, audio format and number of
1510 * channels.
1511 * As part of the process we resend the settings for the data
1512 * timeslots as well.
1513 */
475675d6 1514static int cs4215_prepare(struct snd_dbri * dbri, unsigned int rate,
1bd9debf
TI
1515 snd_pcm_format_t format, unsigned int channels)
1516{
1517 int freq_idx;
1518 int ret = 0;
1519
1520 /* Lookup index for this rate */
1521 for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1522 if (CS4215_FREQ[freq_idx].freq == rate)
1523 break;
1524 }
1525 if (CS4215_FREQ[freq_idx].freq != rate) {
1526 printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1527 return -1;
1528 }
1529
1530 switch (format) {
1531 case SNDRV_PCM_FORMAT_MU_LAW:
1532 dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1533 dbri->mm.precision = 8;
1534 break;
1535 case SNDRV_PCM_FORMAT_A_LAW:
1536 dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1537 dbri->mm.precision = 8;
1538 break;
1539 case SNDRV_PCM_FORMAT_U8:
1540 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1541 dbri->mm.precision = 8;
1542 break;
1543 case SNDRV_PCM_FORMAT_S16_BE:
1544 dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1545 dbri->mm.precision = 16;
1546 break;
1547 default:
1548 printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1549 return -1;
1550 }
1551
1552 /* Add rate parameters */
1553 dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1554 dbri->mm.ctrl[2] = CS4215_XCLK |
1555 CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1556
1557 dbri->mm.channels = channels;
1558 /* Stereo bit: 8 bit stereo not working yet. */
1559 if ((channels > 1) && (dbri->mm.precision == 16))
1560 dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1561
1562 ret = cs4215_setctrl(dbri);
1563 if (ret == 0)
1564 cs4215_open(dbri); /* set codec to data mode */
1565
1566 return ret;
1567}
1568
1569/*
1570 *
1571 */
475675d6 1572static int cs4215_init(struct snd_dbri * dbri)
1bd9debf
TI
1573{
1574 u32 reg2 = sbus_readl(dbri->regs + REG2);
1575 dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1576
1577 /* Look for the cs4215 chips */
1578 if (reg2 & D_PIO2) {
1579 dprintk(D_MM, "Onboard CS4215 detected\n");
1580 dbri->mm.onboard = 1;
1581 }
1582 if (reg2 & D_PIO0) {
1583 dprintk(D_MM, "Speakerbox detected\n");
1584 dbri->mm.onboard = 0;
1585
1586 if (reg2 & D_PIO2) {
1587 printk(KERN_INFO "DBRI: Using speakerbox / "
1588 "ignoring onboard mmcodec.\n");
1589 sbus_writel(D_ENPIO2, dbri->regs + REG2);
1590 }
1591 }
1592
1593 if (!(reg2 & (D_PIO0 | D_PIO2))) {
1594 printk(KERN_ERR "DBRI: no mmcodec found.\n");
1595 return -EIO;
1596 }
1597
1598 cs4215_setup_pipes(dbri);
1599
1600 cs4215_init_data(&dbri->mm);
1601
1602 /* Enable capture of the status & version timeslots. */
1603 recv_fixed(dbri, 18, &dbri->mm.status);
1604 recv_fixed(dbri, 19, &dbri->mm.version);
1605
1606 dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1607 if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1608 dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1609 dbri->mm.offset);
1610 return -EIO;
1611 }
1612 dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1613
1614 return 0;
1615}
1616
1617/*
1618****************************************************************************
1619*************************** DBRI interrupt handler *************************
1620****************************************************************************
1621
1622The DBRI communicates with the CPU mainly via a circular interrupt
1623buffer. When an interrupt is signaled, the CPU walks through the
1624buffer and calls dbri_process_one_interrupt() for each interrupt word.
1625Complicated interrupts are handled by dedicated functions (which
1626appear first in this file). Any pending interrupts can be serviced by
1627calling dbri_process_interrupt_buffer(), which works even if the CPU's
4338829e
MH
1628interrupts are disabled. This function is used by dbri_cmdlock()
1629to make sure we're synced up with the chip before each command sequence,
1bd9debf
TI
1630even if we're running cli'ed.
1631
1632*/
1633
1634/* xmit_descs()
1635 *
1636 * Transmit the current TD's for recording/playing, if needed.
1637 * For playback, ALSA has filled the DMA memory with new data (we hope).
1638 */
1639static void xmit_descs(unsigned long data)
1640{
475675d6
TI
1641 struct snd_dbri *dbri = (struct snd_dbri *) data;
1642 struct dbri_streaminfo *info;
1bd9debf
TI
1643 volatile s32 *cmd;
1644 unsigned long flags;
1645 int first_td;
1646
1647 if (dbri == NULL)
1648 return; /* Disabled */
1649
1650 /* First check the recording stream for buffer overflow */
1651 info = &dbri->stream_info[DBRI_REC];
1652 spin_lock_irqsave(&dbri->lock, flags);
1653
1654 if ((info->left >= info->size) && (info->pipe >= 0)) {
1655 first_td = dbri->pipes[info->pipe].first_desc;
1656
1657 dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1658
1659 /* Stream could be closed by the time we run. */
1660 if (first_td < 0) {
1661 goto play;
1662 }
1663
1664 cmd = dbri_cmdlock(dbri, NoGetLock);
1665 *(cmd++) = DBRI_CMD(D_SDP, 0,
1666 dbri->pipes[info->pipe].sdp
1667 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1668 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1669 dbri_cmdsend(dbri, cmd);
1670
1671 /* Reset our admin of the pipe & bytes read. */
1672 dbri->pipes[info->pipe].desc = first_td;
1673 info->left = 0;
1674 }
1675
1676play:
1677 spin_unlock_irqrestore(&dbri->lock, flags);
1678
1679 /* Now check the playback stream for buffer underflow */
1680 info = &dbri->stream_info[DBRI_PLAY];
1681 spin_lock_irqsave(&dbri->lock, flags);
1682
1683 if ((info->left <= 0) && (info->pipe >= 0)) {
1684 first_td = dbri->pipes[info->pipe].first_desc;
1685
1686 dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1687
1688 /* Stream could be closed by the time we run. */
1689 if (first_td < 0) {
1690 spin_unlock_irqrestore(&dbri->lock, flags);
1691 return;
1692 }
1693
1694 cmd = dbri_cmdlock(dbri, NoGetLock);
1695 *(cmd++) = DBRI_CMD(D_SDP, 0,
1696 dbri->pipes[info->pipe].sdp
1697 | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1698 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, first_td);
1699 dbri_cmdsend(dbri, cmd);
1700
1701 /* Reset our admin of the pipe & bytes written. */
1702 dbri->pipes[info->pipe].desc = first_td;
1703 info->left = info->size;
1704 }
1705 spin_unlock_irqrestore(&dbri->lock, flags);
1706}
1707
063859c8 1708static DECLARE_TASKLET(xmit_descs_task, xmit_descs, 0);
1bd9debf
TI
1709
1710/* transmission_complete_intr()
1711 *
1712 * Called by main interrupt handler when DBRI signals transmission complete
1713 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1714 *
4338829e
MH
1715 * Walks through the pipe's list of transmit buffer descriptors and marks
1716 * them as available. Stops when the first descriptor is found without
1bd9debf 1717 * TBC (Transmit Buffer Complete) set, or we've run through them all.
4338829e
MH
1718 *
1719 * The DMA buffers are not released, but re-used. Since the transmit buffer
1720 * descriptors are not clobbered, they can be re-submitted as is. This is
1721 * done by the xmit_descs() tasklet above since that could take longer.
1bd9debf
TI
1722 */
1723
475675d6 1724static void transmission_complete_intr(struct snd_dbri * dbri, int pipe)
1bd9debf 1725{
475675d6 1726 struct dbri_streaminfo *info;
1bd9debf
TI
1727 int td;
1728 int status;
c2735446 1729 int len;
1bd9debf
TI
1730
1731 info = &dbri->stream_info[DBRI_PLAY];
1732
1733 td = dbri->pipes[pipe].desc;
1734 while (td >= 0) {
1735 if (td >= DBRI_NO_DESCS) {
1736 printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1737 return;
1738 }
1739
1740 status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1741 if (!(status & DBRI_TD_TBC)) {
1742 break;
1743 }
1744
1745 dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1746
1747 dbri->dma->desc[td].word4 = 0; /* Reset it for next time. */
c2735446
KH
1748 len = DBRI_RD_CNT(dbri->dma->desc[td].word1);
1749 info->offset += len;
1750 info->left -= len;
1bd9debf
TI
1751
1752 /* On the last TD, transmit them all again. */
c2735446 1753 if (dbri->next_desc[td] == -1) {
1bd9debf
TI
1754 if (info->left > 0) {
1755 printk(KERN_WARNING
1756 "%d bytes left after last transfer.\n",
1757 info->left);
1758 info->left = 0;
1759 }
1760 tasklet_schedule(&xmit_descs_task);
1761 }
1762
c2735446 1763 td = dbri->next_desc[td];
1bd9debf
TI
1764 dbri->pipes[pipe].desc = td;
1765 }
1766
1767 /* Notify ALSA */
1768 if (spin_is_locked(&dbri->lock)) {
1769 spin_unlock(&dbri->lock);
1770 snd_pcm_period_elapsed(info->substream);
1771 spin_lock(&dbri->lock);
1772 } else
1773 snd_pcm_period_elapsed(info->substream);
1774}
1775
475675d6 1776static void reception_complete_intr(struct snd_dbri * dbri, int pipe)
1bd9debf 1777{
475675d6 1778 struct dbri_streaminfo *info;
1bd9debf
TI
1779 int rd = dbri->pipes[pipe].desc;
1780 s32 status;
1781
1782 if (rd < 0 || rd >= DBRI_NO_DESCS) {
1783 printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1784 return;
1785 }
1786
c2735446
KH
1787 dbri->dma->desc[rd].ba = 0;
1788 dbri->pipes[pipe].desc = dbri->next_desc[rd];
1bd9debf
TI
1789 status = dbri->dma->desc[rd].word1;
1790 dbri->dma->desc[rd].word1 = 0; /* Reset it for next time. */
1791
1792 info = &dbri->stream_info[DBRI_REC];
1793 info->offset += DBRI_RD_CNT(status);
1794 info->left += DBRI_RD_CNT(status);
1795
1796 /* FIXME: Check status */
1797
1798 dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1799 rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1800
1801 /* On the last TD, transmit them all again. */
c2735446 1802 if (dbri->next_desc[rd] == -1) {
1bd9debf
TI
1803 if (info->left > info->size) {
1804 printk(KERN_WARNING
1805 "%d bytes recorded in %d size buffer.\n",
1806 info->left, info->size);
1807 }
1808 tasklet_schedule(&xmit_descs_task);
1809 }
1810
1811 /* Notify ALSA */
1812 if (spin_is_locked(&dbri->lock)) {
1813 spin_unlock(&dbri->lock);
1814 snd_pcm_period_elapsed(info->substream);
1815 spin_lock(&dbri->lock);
1816 } else
1817 snd_pcm_period_elapsed(info->substream);
1818}
1819
475675d6 1820static void dbri_process_one_interrupt(struct snd_dbri * dbri, int x)
1bd9debf
TI
1821{
1822 int val = D_INTR_GETVAL(x);
1823 int channel = D_INTR_GETCHAN(x);
1824 int command = D_INTR_GETCMD(x);
1825 int code = D_INTR_GETCODE(x);
1826#ifdef DBRI_DEBUG
1827 int rval = D_INTR_GETRVAL(x);
1828#endif
1829
1830 if (channel == D_INTR_CMD) {
1831 dprintk(D_CMD, "INTR: Command: %-5s Value:%d\n",
1832 cmds[command], val);
1833 } else {
1834 dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1835 channel, code, rval);
1836 }
1837
1838 if (channel == D_INTR_CMD && command == D_WAIT) {
4338829e
MH
1839 dbri->wait_ackd = val;
1840 if (dbri->wait_send != val) {
1841 printk(KERN_ERR "Processing wait command %d when %d was send.\n",
1842 val, dbri->wait_send);
1843 }
1bd9debf
TI
1844 return;
1845 }
1846
1847 switch (code) {
1848 case D_INTR_BRDY:
1849 reception_complete_intr(dbri, channel);
1850 break;
1851 case D_INTR_XCMP:
1852 case D_INTR_MINT:
1853 transmission_complete_intr(dbri, channel);
1854 break;
1855 case D_INTR_UNDR:
1856 /* UNDR - Transmission underrun
1857 * resend SDP command with clear pipe bit (C) set
1858 */
1859 {
1860 volatile s32 *cmd;
1861
1862 int pipe = channel;
1863 int td = dbri->pipes[pipe].desc;
1864
1865 dbri->dma->desc[td].word4 = 0;
1866 cmd = dbri_cmdlock(dbri, NoGetLock);
1867 *(cmd++) = DBRI_CMD(D_SDP, 0,
1868 dbri->pipes[pipe].sdp
1869 | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1870 *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1871 dbri_cmdsend(dbri, cmd);
1872 }
1873 break;
1874 case D_INTR_FXDT:
1875 /* FXDT - Fixed data change */
1876 if (dbri->pipes[channel].sdp & D_SDP_MSB)
1877 val = reverse_bytes(val, dbri->pipes[channel].length);
1878
1879 if (dbri->pipes[channel].recv_fixed_ptr)
1880 *(dbri->pipes[channel].recv_fixed_ptr) = val;
1881 break;
1882 default:
1883 if (channel != D_INTR_CMD)
1884 printk(KERN_WARNING
1885 "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1886 }
1887}
1888
1889/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1890 * buffer until it finds a zero word (indicating nothing more to do
1891 * right now). Non-zero words require processing and are handed off
1892 * to dbri_process_one_interrupt AFTER advancing the pointer. This
1893 * order is important since we might recurse back into this function
1894 * and need to make sure the pointer has been advanced first.
1895 */
475675d6 1896static void dbri_process_interrupt_buffer(struct snd_dbri * dbri)
1bd9debf
TI
1897{
1898 s32 x;
1899
1900 while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1901 dbri->dma->intr[dbri->dbri_irqp] = 0;
1902 dbri->dbri_irqp++;
6fb98280 1903 if (dbri->dbri_irqp == DBRI_INT_BLK)
1bd9debf 1904 dbri->dbri_irqp = 1;
1bd9debf
TI
1905
1906 dbri_process_one_interrupt(dbri, x);
1907 }
1908}
1909
1910static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id,
1911 struct pt_regs *regs)
1912{
475675d6 1913 struct snd_dbri *dbri = dev_id;
1bd9debf
TI
1914 static int errcnt = 0;
1915 int x;
1916
1917 if (dbri == NULL)
1918 return IRQ_NONE;
1919 spin_lock(&dbri->lock);
1920
1921 /*
1922 * Read it, so the interrupt goes away.
1923 */
1924 x = sbus_readl(dbri->regs + REG1);
1925
1926 if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1927 u32 tmp;
1928
1929 if (x & D_MRR)
1930 printk(KERN_ERR
1931 "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1932 x);
1933 if (x & D_MLE)
1934 printk(KERN_ERR
1935 "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1936 x);
1937 if (x & D_LBG)
1938 printk(KERN_ERR
1939 "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1940 if (x & D_MBE)
1941 printk(KERN_ERR
1942 "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1943
1944 /* Some of these SBus errors cause the chip's SBus circuitry
1945 * to be disabled, so just re-enable and try to keep going.
1946 *
1947 * The only one I've seen is MRR, which will be triggered
1948 * if you let a transmit pipe underrun, then try to CDP it.
1949 *
4338829e 1950 * If these things persist, we reset the chip.
1bd9debf
TI
1951 */
1952 if ((++errcnt) % 10 == 0) {
1953 dprintk(D_INT, "Interrupt errors exceeded.\n");
1954 dbri_reset(dbri);
1955 } else {
1956 tmp = sbus_readl(dbri->regs + REG0);
1957 tmp &= ~(D_D);
1958 sbus_writel(tmp, dbri->regs + REG0);
1959 }
1960 }
1961
1962 dbri_process_interrupt_buffer(dbri);
1963
1964 /* FIXME: Write 0 into regs to ACK interrupt */
1965
1966 spin_unlock(&dbri->lock);
1967
1968 return IRQ_HANDLED;
1969}
1970
1971/****************************************************************************
1972 PCM Interface
1973****************************************************************************/
475675d6 1974static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1bd9debf
TI
1975 .info = (SNDRV_PCM_INFO_MMAP |
1976 SNDRV_PCM_INFO_INTERLEAVED |
1977 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978 SNDRV_PCM_INFO_MMAP_VALID),
1979 .formats = SNDRV_PCM_FMTBIT_MU_LAW |
1980 SNDRV_PCM_FMTBIT_A_LAW |
1981 SNDRV_PCM_FMTBIT_U8 |
1982 SNDRV_PCM_FMTBIT_S16_BE,
1983 .rates = SNDRV_PCM_RATE_8000_48000,
1984 .rate_min = 8000,
1985 .rate_max = 48000,
1986 .channels_min = 1,
1987 .channels_max = 2,
1988 .buffer_bytes_max = (64 * 1024),
1989 .period_bytes_min = 1,
1990 .period_bytes_max = DBRI_TD_MAXCNT,
1991 .periods_min = 1,
1992 .periods_max = 1024,
1993};
1994
475675d6 1995static int snd_dbri_open(struct snd_pcm_substream *substream)
1bd9debf 1996{
475675d6
TI
1997 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
1998 struct snd_pcm_runtime *runtime = substream->runtime;
1999 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2000 unsigned long flags;
2001
2002 dprintk(D_USR, "open audio output.\n");
2003 runtime->hw = snd_dbri_pcm_hw;
2004
2005 spin_lock_irqsave(&dbri->lock, flags);
2006 info->substream = substream;
2007 info->left = 0;
2008 info->offset = 0;
2009 info->dvma_buffer = 0;
2010 info->pipe = -1;
2011 spin_unlock_irqrestore(&dbri->lock, flags);
2012
2013 cs4215_open(dbri);
2014
2015 return 0;
2016}
2017
475675d6 2018static int snd_dbri_close(struct snd_pcm_substream *substream)
1bd9debf 2019{
475675d6
TI
2020 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2021 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2022
2023 dprintk(D_USR, "close audio output.\n");
2024 info->substream = NULL;
2025 info->left = 0;
2026 info->offset = 0;
2027
2028 return 0;
2029}
2030
475675d6
TI
2031static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2032 struct snd_pcm_hw_params *hw_params)
1bd9debf 2033{
475675d6
TI
2034 struct snd_pcm_runtime *runtime = substream->runtime;
2035 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2036 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2037 int direction;
2038 int ret;
2039
2040 /* set sampling rate, audio format and number of channels */
2041 ret = cs4215_prepare(dbri, params_rate(hw_params),
2042 params_format(hw_params),
2043 params_channels(hw_params));
2044 if (ret != 0)
2045 return ret;
2046
2047 if ((ret = snd_pcm_lib_malloc_pages(substream,
2048 params_buffer_bytes(hw_params))) < 0) {
4338829e 2049 printk(KERN_ERR "malloc_pages failed with %d\n", ret);
1bd9debf
TI
2050 return ret;
2051 }
2052
2053 /* hw_params can get called multiple times. Only map the DMA once.
2054 */
2055 if (info->dvma_buffer == 0) {
2056 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2057 direction = SBUS_DMA_TODEVICE;
2058 else
2059 direction = SBUS_DMA_FROMDEVICE;
2060
2061 info->dvma_buffer = sbus_map_single(dbri->sdev,
2062 runtime->dma_area,
2063 params_buffer_bytes(hw_params),
2064 direction);
2065 }
2066
2067 direction = params_buffer_bytes(hw_params);
2068 dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2069 direction, info->dvma_buffer);
2070 return 0;
2071}
2072
475675d6 2073static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
1bd9debf 2074{
475675d6
TI
2075 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2077 int direction;
2078 dprintk(D_USR, "hw_free.\n");
2079
2080 /* hw_free can get called multiple times. Only unmap the DMA once.
2081 */
2082 if (info->dvma_buffer) {
2083 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2084 direction = SBUS_DMA_TODEVICE;
2085 else
2086 direction = SBUS_DMA_FROMDEVICE;
2087
2088 sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2089 substream->runtime->buffer_size, direction);
2090 info->dvma_buffer = 0;
2091 }
2092 info->pipe = -1;
2093
2094 return snd_pcm_lib_free_pages(substream);
2095}
2096
475675d6 2097static int snd_dbri_prepare(struct snd_pcm_substream *substream)
1bd9debf 2098{
475675d6
TI
2099 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2100 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2101 struct snd_pcm_runtime *runtime = substream->runtime;
1bd9debf
TI
2102 int ret;
2103
2104 info->size = snd_pcm_lib_buffer_bytes(substream);
2105 if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2106 info->pipe = 4; /* Send pipe */
2107 else {
2108 info->pipe = 6; /* Receive pipe */
2109 info->left = info->size; /* To trigger submittal */
2110 }
2111
2112 spin_lock_irq(&dbri->lock);
2113
2114 /* Setup the all the transmit/receive desciptors to cover the
2115 * whole DMA buffer.
2116 */
2117 ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2118 snd_pcm_lib_period_bytes(substream));
2119
2120 runtime->stop_threshold = DBRI_TD_MAXCNT / runtime->channels;
2121
2122 spin_unlock_irq(&dbri->lock);
2123
2124 dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2125 return ret;
2126}
2127
475675d6 2128static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
1bd9debf 2129{
475675d6
TI
2130 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2131 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2132 int ret = 0;
2133
2134 switch (cmd) {
2135 case SNDRV_PCM_TRIGGER_START:
2136 dprintk(D_USR, "start audio, period is %d bytes\n",
2137 (int)snd_pcm_lib_period_bytes(substream));
2138 /* Enable & schedule the tasklet that re-submits the TDs. */
2139 xmit_descs_task.data = (unsigned long)dbri;
2140 tasklet_schedule(&xmit_descs_task);
2141 break;
2142 case SNDRV_PCM_TRIGGER_STOP:
2143 dprintk(D_USR, "stop audio.\n");
2144 /* Make the tasklet bail out immediately. */
2145 xmit_descs_task.data = 0;
2146 reset_pipe(dbri, info->pipe);
2147 break;
2148 default:
2149 ret = -EINVAL;
2150 }
2151
2152 return ret;
2153}
2154
475675d6 2155static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
1bd9debf 2156{
475675d6
TI
2157 struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2158 struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
1bd9debf
TI
2159 snd_pcm_uframes_t ret;
2160
2161 ret = bytes_to_frames(substream->runtime, info->offset)
2162 % substream->runtime->buffer_size;
2163 dprintk(D_USR, "I/O pointer: %ld frames, %d bytes left.\n",
2164 ret, info->left);
2165 return ret;
2166}
2167
475675d6 2168static struct snd_pcm_ops snd_dbri_ops = {
1bd9debf
TI
2169 .open = snd_dbri_open,
2170 .close = snd_dbri_close,
2171 .ioctl = snd_pcm_lib_ioctl,
2172 .hw_params = snd_dbri_hw_params,
2173 .hw_free = snd_dbri_hw_free,
2174 .prepare = snd_dbri_prepare,
2175 .trigger = snd_dbri_trigger,
2176 .pointer = snd_dbri_pointer,
2177};
2178
475675d6 2179static int __devinit snd_dbri_pcm(struct snd_dbri * dbri)
1bd9debf 2180{
475675d6 2181 struct snd_pcm *pcm;
1bd9debf
TI
2182 int err;
2183
2184 if ((err = snd_pcm_new(dbri->card,
2185 /* ID */ "sun_dbri",
2186 /* device */ 0,
2187 /* playback count */ 1,
2188 /* capture count */ 1, &pcm)) < 0)
2189 return err;
2190 snd_assert(pcm != NULL, return -EINVAL);
2191
2192 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2193 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2194
2195 pcm->private_data = dbri;
2196 pcm->info_flags = 0;
2197 strcpy(pcm->name, dbri->card->shortname);
1bd9debf
TI
2198
2199 if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2200 SNDRV_DMA_TYPE_CONTINUOUS,
2201 snd_dma_continuous_data(GFP_KERNEL),
2202 64 * 1024, 64 * 1024)) < 0) {
2203 return err;
2204 }
2205
2206 return 0;
2207}
2208
2209/*****************************************************************************
2210 Mixer interface
2211*****************************************************************************/
2212
475675d6
TI
2213static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2214 struct snd_ctl_elem_info *uinfo)
1bd9debf
TI
2215{
2216 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2217 uinfo->count = 2;
2218 uinfo->value.integer.min = 0;
2219 if (kcontrol->private_value == DBRI_PLAY) {
2220 uinfo->value.integer.max = DBRI_MAX_VOLUME;
2221 } else {
2222 uinfo->value.integer.max = DBRI_MAX_GAIN;
2223 }
2224 return 0;
2225}
2226
475675d6
TI
2227static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2228 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2229{
475675d6
TI
2230 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2231 struct dbri_streaminfo *info;
1bd9debf
TI
2232 snd_assert(dbri != NULL, return -EINVAL);
2233 info = &dbri->stream_info[kcontrol->private_value];
2234 snd_assert(info != NULL, return -EINVAL);
2235
2236 ucontrol->value.integer.value[0] = info->left_gain;
2237 ucontrol->value.integer.value[1] = info->right_gain;
2238 return 0;
2239}
2240
475675d6
TI
2241static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2242 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2243{
475675d6
TI
2244 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2245 struct dbri_streaminfo *info = &dbri->stream_info[kcontrol->private_value];
1bd9debf
TI
2246 unsigned long flags;
2247 int changed = 0;
2248
2249 if (info->left_gain != ucontrol->value.integer.value[0]) {
2250 info->left_gain = ucontrol->value.integer.value[0];
2251 changed = 1;
2252 }
2253 if (info->right_gain != ucontrol->value.integer.value[1]) {
2254 info->right_gain = ucontrol->value.integer.value[1];
2255 changed = 1;
2256 }
2257 if (changed == 1) {
2258 /* First mute outputs, and wait 1/8000 sec (125 us)
2259 * to make sure this takes. This avoids clicking noises.
2260 */
2261 spin_lock_irqsave(&dbri->lock, flags);
2262
2263 cs4215_setdata(dbri, 1);
2264 udelay(125);
2265 cs4215_setdata(dbri, 0);
2266
2267 spin_unlock_irqrestore(&dbri->lock, flags);
2268 }
2269 return changed;
2270}
2271
475675d6
TI
2272static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2273 struct snd_ctl_elem_info *uinfo)
1bd9debf
TI
2274{
2275 int mask = (kcontrol->private_value >> 16) & 0xff;
2276
2277 uinfo->type = (mask == 1) ?
2278 SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2279 uinfo->count = 1;
2280 uinfo->value.integer.min = 0;
2281 uinfo->value.integer.max = mask;
2282 return 0;
2283}
2284
475675d6
TI
2285static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2286 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2287{
475675d6 2288 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
1bd9debf
TI
2289 int elem = kcontrol->private_value & 0xff;
2290 int shift = (kcontrol->private_value >> 8) & 0xff;
2291 int mask = (kcontrol->private_value >> 16) & 0xff;
2292 int invert = (kcontrol->private_value >> 24) & 1;
2293 snd_assert(dbri != NULL, return -EINVAL);
2294
2295 if (elem < 4) {
2296 ucontrol->value.integer.value[0] =
2297 (dbri->mm.data[elem] >> shift) & mask;
2298 } else {
2299 ucontrol->value.integer.value[0] =
2300 (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2301 }
2302
2303 if (invert == 1) {
2304 ucontrol->value.integer.value[0] =
2305 mask - ucontrol->value.integer.value[0];
2306 }
2307 return 0;
2308}
2309
475675d6
TI
2310static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2311 struct snd_ctl_elem_value *ucontrol)
1bd9debf 2312{
475675d6 2313 struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
1bd9debf
TI
2314 unsigned long flags;
2315 int elem = kcontrol->private_value & 0xff;
2316 int shift = (kcontrol->private_value >> 8) & 0xff;
2317 int mask = (kcontrol->private_value >> 16) & 0xff;
2318 int invert = (kcontrol->private_value >> 24) & 1;
2319 int changed = 0;
2320 unsigned short val;
2321 snd_assert(dbri != NULL, return -EINVAL);
2322
2323 val = (ucontrol->value.integer.value[0] & mask);
2324 if (invert == 1)
2325 val = mask - val;
2326 val <<= shift;
2327
2328 if (elem < 4) {
2329 dbri->mm.data[elem] = (dbri->mm.data[elem] &
2330 ~(mask << shift)) | val;
2331 changed = (val != dbri->mm.data[elem]);
2332 } else {
2333 dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2334 ~(mask << shift)) | val;
2335 changed = (val != dbri->mm.ctrl[elem - 4]);
2336 }
2337
2338 dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2339 "mixer-value=%ld, mm-value=0x%x\n",
2340 mask, changed, ucontrol->value.integer.value[0],
2341 dbri->mm.data[elem & 3]);
2342
2343 if (changed) {
2344 /* First mute outputs, and wait 1/8000 sec (125 us)
2345 * to make sure this takes. This avoids clicking noises.
2346 */
2347 spin_lock_irqsave(&dbri->lock, flags);
2348
2349 cs4215_setdata(dbri, 1);
2350 udelay(125);
2351 cs4215_setdata(dbri, 0);
2352
2353 spin_unlock_irqrestore(&dbri->lock, flags);
2354 }
2355 return changed;
2356}
2357
2358/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2359 timeslots. Shift is the bit offset in the timeslot, mask defines the
2360 number of bits. invert is a boolean for use with attenuation.
2361 */
2362#define CS4215_SINGLE(xname, entry, shift, mask, invert) \
2363{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2364 .info = snd_cs4215_info_single, \
2365 .get = snd_cs4215_get_single, .put = snd_cs4215_put_single, \
2366 .private_value = entry | (shift << 8) | (mask << 16) | (invert << 24) },
2367
475675d6 2368static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
1bd9debf
TI
2369 {
2370 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2371 .name = "Playback Volume",
2372 .info = snd_cs4215_info_volume,
2373 .get = snd_cs4215_get_volume,
2374 .put = snd_cs4215_put_volume,
2375 .private_value = DBRI_PLAY,
2376 },
2377 CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2378 CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2379 CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2380 {
2381 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2382 .name = "Capture Volume",
2383 .info = snd_cs4215_info_volume,
2384 .get = snd_cs4215_get_volume,
2385 .put = snd_cs4215_put_volume,
2386 .private_value = DBRI_REC,
2387 },
2388 /* FIXME: mic/line switch */
2389 CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2390 CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2391 CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2392 CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2393};
2394
475675d6 2395#define NUM_CS4215_CONTROLS (sizeof(dbri_controls)/sizeof(struct snd_kcontrol_new))
1bd9debf 2396
475675d6 2397static int __init snd_dbri_mixer(struct snd_dbri * dbri)
1bd9debf 2398{
475675d6 2399 struct snd_card *card;
1bd9debf
TI
2400 int idx, err;
2401
2402 snd_assert(dbri != NULL && dbri->card != NULL, return -EINVAL);
2403
2404 card = dbri->card;
2405 strcpy(card->mixername, card->shortname);
2406
2407 for (idx = 0; idx < NUM_CS4215_CONTROLS; idx++) {
2408 if ((err = snd_ctl_add(card,
4338829e 2409 snd_ctl_new1(&dbri_controls[idx], dbri))) < 0)
1bd9debf
TI
2410 return err;
2411 }
2412
2413 for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2414 dbri->stream_info[idx].left_gain = 0;
2415 dbri->stream_info[idx].right_gain = 0;
1bd9debf
TI
2416 }
2417
2418 return 0;
2419}
2420
2421/****************************************************************************
2422 /proc interface
2423****************************************************************************/
475675d6 2424static void dbri_regs_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1bd9debf 2425{
475675d6 2426 struct snd_dbri *dbri = entry->private_data;
1bd9debf
TI
2427
2428 snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2429 snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2430 snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2431 snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2432}
2433
2434#ifdef DBRI_DEBUG
475675d6
TI
2435static void dbri_debug_read(struct snd_info_entry * entry,
2436 struct snd_info_buffer *buffer)
1bd9debf 2437{
475675d6 2438 struct snd_dbri *dbri = entry->private_data;
1bd9debf
TI
2439 int pipe;
2440 snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2441
1bd9debf
TI
2442 for (pipe = 0; pipe < 32; pipe++) {
2443 if (pipe_active(dbri, pipe)) {
2444 struct dbri_pipe *pptr = &dbri->pipes[pipe];
2445 snd_iprintf(buffer,
2446 "Pipe %d: %s SDP=0x%x desc=%d, "
5fc3a2b2 2447 "len=%d @ %d next %d\n",
1bd9debf 2448 pipe,
5fc3a2b2
KH
2449 ((pptr->sdp & D_SDP_TO_SER) ? "output" : "input"),
2450 pptr->sdp, pptr->desc,
2451 pptr->length, pptr->cycle, pptr->nextpipe);
1bd9debf
TI
2452 }
2453 }
2454}
1bd9debf
TI
2455#endif
2456
475675d6 2457void snd_dbri_proc(struct snd_dbri * dbri)
1bd9debf 2458{
475675d6 2459 struct snd_info_entry *entry;
1bd9debf 2460
8cb7b63f 2461 if (! snd_card_proc_new(dbri->card, "regs", &entry))
bf850204 2462 snd_info_set_text_ops(entry, dbri, dbri_regs_read);
1bd9debf
TI
2463
2464#ifdef DBRI_DEBUG
8cb7b63f 2465 if (! snd_card_proc_new(dbri->card, "debug", &entry)) {
bf850204 2466 snd_info_set_text_ops(entry, dbri, dbri_debug_read);
8cb7b63f
TI
2467 entry->mode = S_IFREG | S_IRUGO; /* Readable only. */
2468 }
1bd9debf
TI
2469#endif
2470}
2471
2472/*
2473****************************************************************************
2474**************************** Initialization ********************************
2475****************************************************************************
2476*/
475675d6 2477static void snd_dbri_free(struct snd_dbri * dbri);
1bd9debf 2478
475675d6 2479static int __init snd_dbri_create(struct snd_card *card,
1bd9debf
TI
2480 struct sbus_dev *sdev,
2481 struct linux_prom_irqs *irq, int dev)
2482{
475675d6 2483 struct snd_dbri *dbri = card->private_data;
1bd9debf
TI
2484 int err;
2485
2486 spin_lock_init(&dbri->lock);
2487 dbri->card = card;
2488 dbri->sdev = sdev;
2489 dbri->irq = irq->pri;
1bd9debf
TI
2490
2491 dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2492 &dbri->dma_dvma);
2493 memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2494
2495 dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2496 dbri->dma, dbri->dma_dvma);
2497
2498 /* Map the registers into memory. */
2499 dbri->regs_size = sdev->reg_addrs[0].reg_size;
2500 dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2501 dbri->regs_size, "DBRI Registers");
2502 if (!dbri->regs) {
2503 printk(KERN_ERR "DBRI: could not allocate registers\n");
2504 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2505 (void *)dbri->dma, dbri->dma_dvma);
2506 return -EIO;
2507 }
2508
65ca68b3 2509 err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
1bd9debf
TI
2510 "DBRI audio", dbri);
2511 if (err) {
2512 printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2513 sbus_iounmap(dbri->regs, dbri->regs_size);
2514 sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2515 (void *)dbri->dma, dbri->dma_dvma);
2516 return err;
2517 }
2518
2519 /* Do low level initialization of the DBRI and CS4215 chips */
2520 dbri_initialize(dbri);
2521 err = cs4215_init(dbri);
2522 if (err) {
2523 snd_dbri_free(dbri);
2524 return err;
2525 }
2526
2527 dbri->next = dbri_list;
2528 dbri_list = dbri;
2529
2530 return 0;
2531}
2532
475675d6 2533static void snd_dbri_free(struct snd_dbri * dbri)
1bd9debf
TI
2534{
2535 dprintk(D_GEN, "snd_dbri_free\n");
2536 dbri_reset(dbri);
2537
2538 if (dbri->irq)
2539 free_irq(dbri->irq, dbri);
2540
2541 if (dbri->regs)
2542 sbus_iounmap(dbri->regs, dbri->regs_size);
2543
2544 if (dbri->dma)
2545 sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2546 (void *)dbri->dma, dbri->dma_dvma);
2547}
2548
2549static int __init dbri_attach(int prom_node, struct sbus_dev *sdev)
2550{
475675d6 2551 struct snd_dbri *dbri;
1bd9debf
TI
2552 struct linux_prom_irqs irq;
2553 struct resource *rp;
475675d6 2554 struct snd_card *card;
1bd9debf
TI
2555 static int dev = 0;
2556 int err;
2557
2558 if (sdev->prom_name[9] < 'e') {
2559 printk(KERN_ERR "DBRI: unsupported chip version %c found.\n",
2560 sdev->prom_name[9]);
2561 return -EIO;
2562 }
2563
2564 if (dev >= SNDRV_CARDS)
2565 return -ENODEV;
2566 if (!enable[dev]) {
2567 dev++;
2568 return -ENOENT;
2569 }
2570
4338829e
MH
2571 err = prom_getproperty(prom_node, "intr", (char *)&irq, sizeof(irq));
2572 if (err < 0) {
2573 printk(KERN_ERR "DBRI-%d: Firmware node lacks IRQ property.\n", dev);
2574 return -ENODEV;
2575 }
1bd9debf
TI
2576
2577 card = snd_card_new(index[dev], id[dev], THIS_MODULE,
475675d6 2578 sizeof(struct snd_dbri));
1bd9debf
TI
2579 if (card == NULL)
2580 return -ENOMEM;
2581
2582 strcpy(card->driver, "DBRI");
2583 strcpy(card->shortname, "Sun DBRI");
2584 rp = &sdev->resource[0];
5863aa65 2585 sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
1bd9debf 2586 card->shortname,
aa0a2ddc 2587 rp->flags & 0xffL, (unsigned long long)rp->start, irq.pri);
1bd9debf
TI
2588
2589 if ((err = snd_dbri_create(card, sdev, &irq, dev)) < 0) {
2590 snd_card_free(card);
2591 return err;
2592 }
2593
475675d6 2594 dbri = card->private_data;
16dab54b
TI
2595 if ((err = snd_dbri_pcm(dbri)) < 0)
2596 goto _err;
1bd9debf 2597
16dab54b
TI
2598 if ((err = snd_dbri_mixer(dbri)) < 0)
2599 goto _err;
1bd9debf
TI
2600
2601 /* /proc file handling */
2602 snd_dbri_proc(dbri);
2603
16dab54b
TI
2604 if ((err = snd_card_register(card)) < 0)
2605 goto _err;
1bd9debf
TI
2606
2607 printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2608 dev, dbri->regs,
5fc3a2b2 2609 dbri->irq, sdev->prom_name[9], dbri->mm.version);
1bd9debf
TI
2610 dev++;
2611
2612 return 0;
16dab54b
TI
2613
2614 _err:
2615 snd_dbri_free(dbri);
2616 snd_card_free(card);
2617 return err;
1bd9debf
TI
2618}
2619
2620/* Probe for the dbri chip and then attach the driver. */
2621static int __init dbri_init(void)
2622{
2623 struct sbus_bus *sbus;
2624 struct sbus_dev *sdev;
2625 int found = 0;
2626
2627 /* Probe each SBUS for the DBRI chip(s). */
2628 for_all_sbusdev(sdev, sbus) {
2629 /*
2630 * The version is coded in the last character
2631 */
2632 if (!strncmp(sdev->prom_name, "SUNW,DBRI", 9)) {
2633 dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2634 sdev->prom_name, sdev->slot);
2635
2636 if (dbri_attach(sdev->prom_node, sdev) == 0)
2637 found++;
2638 }
2639 }
2640
2641 return (found > 0) ? 0 : -EIO;
2642}
2643
2644static void __exit dbri_exit(void)
2645{
475675d6 2646 struct snd_dbri *this = dbri_list;
1bd9debf
TI
2647
2648 while (this != NULL) {
475675d6
TI
2649 struct snd_dbri *next = this->next;
2650 struct snd_card *card = this->card;
1bd9debf
TI
2651
2652 snd_dbri_free(this);
2653 snd_card_free(card);
2654 this = next;
2655 }
2656 dbri_list = NULL;
2657}
2658
2659module_init(dbri_init);
2660module_exit(dbri_exit);