ALSA: module_param: make bool parameters really bool
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / sound / pci / rme9652 / hdspm.c
CommitLineData
ef5fa1a4 1/*
763f356c
TI
2 * ALSA driver for RME Hammerfall DSP MADI audio interface(s)
3 *
4 * Copyright (c) 2003 Winfried Ritsch (IEM)
5 * code based on hdsp.c Paul Davis
6 * Marcus Andersson
7 * Thomas Charbonnel
3cee5a60
RB
8 * Modified 2006-06-01 for AES32 support by Remy Bruno
9 * <remy.bruno@trinnov.com>
763f356c 10 *
0dca1793
AK
11 * Modified 2009-04-13 for proper metering by Florian Faber
12 * <faber@faberman.de>
13 *
14 * Modified 2009-04-14 for native float support by Florian Faber
15 * <faber@faberman.de>
16 *
17 * Modified 2009-04-26 fixed bug in rms metering by Florian Faber
18 * <faber@faberman.de>
19 *
20 * Modified 2009-04-30 added hw serial number support by Florian Faber
21 *
22 * Modified 2011-01-14 added S/PDIF input on RayDATs by Adrian Knoth
23 *
24 * Modified 2011-01-25 variable period sizes on RayDAT/AIO by Adrian Knoth
25 *
763f356c
TI
26 * This program is free software; you can redistribute it and/or modify
27 * it under the terms of the GNU General Public License as published by
28 * the Free Software Foundation; either version 2 of the License, or
29 * (at your option) any later version.
30 *
31 * This program is distributed in the hope that it will be useful,
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
34 * GNU General Public License for more details.
35 *
36 * You should have received a copy of the GNU General Public License
37 * along with this program; if not, write to the Free Software
38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
39 *
40 */
763f356c
TI
41#include <linux/init.h>
42#include <linux/delay.h>
43#include <linux/interrupt.h>
65a77217 44#include <linux/module.h>
763f356c
TI
45#include <linux/slab.h>
46#include <linux/pci.h>
3f7440a6 47#include <linux/math64.h>
763f356c
TI
48#include <asm/io.h>
49
50#include <sound/core.h>
51#include <sound/control.h>
52#include <sound/pcm.h>
0dca1793 53#include <sound/pcm_params.h>
763f356c
TI
54#include <sound/info.h>
55#include <sound/asoundef.h>
56#include <sound/rawmidi.h>
57#include <sound/hwdep.h>
58#include <sound/initval.h>
59
60#include <sound/hdspm.h>
61
62static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
63static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
a67ff6a5 64static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;/* Enable this card */
763f356c 65
763f356c
TI
66module_param_array(index, int, NULL, 0444);
67MODULE_PARM_DESC(index, "Index value for RME HDSPM interface.");
68
69module_param_array(id, charp, NULL, 0444);
70MODULE_PARM_DESC(id, "ID string for RME HDSPM interface.");
71
72module_param_array(enable, bool, NULL, 0444);
73MODULE_PARM_DESC(enable, "Enable/disable specific HDSPM soundcards.");
74
763f356c
TI
75
76MODULE_AUTHOR
0dca1793
AK
77(
78 "Winfried Ritsch <ritsch_AT_iem.at>, "
79 "Paul Davis <paul@linuxaudiosystems.com>, "
80 "Marcus Andersson, Thomas Charbonnel <thomas@undata.org>, "
81 "Remy Bruno <remy.bruno@trinnov.com>, "
82 "Florian Faber <faberman@linuxproaudio.org>, "
83 "Adrian Knoth <adi@drcomp.erfurt.thur.de>"
84);
763f356c
TI
85MODULE_DESCRIPTION("RME HDSPM");
86MODULE_LICENSE("GPL");
87MODULE_SUPPORTED_DEVICE("{{RME HDSPM-MADI}}");
88
0dca1793 89/* --- Write registers. ---
763f356c
TI
90 These are defined as byte-offsets from the iobase value. */
91
0dca1793
AK
92#define HDSPM_WR_SETTINGS 0
93#define HDSPM_outputBufferAddress 32
94#define HDSPM_inputBufferAddress 36
763f356c
TI
95#define HDSPM_controlRegister 64
96#define HDSPM_interruptConfirmation 96
97#define HDSPM_control2Reg 256 /* not in specs ???????? */
ffb2c3c0 98#define HDSPM_freqReg 256 /* for AES32 */
0dca1793
AK
99#define HDSPM_midiDataOut0 352 /* just believe in old code */
100#define HDSPM_midiDataOut1 356
ffb2c3c0 101#define HDSPM_eeprom_wr 384 /* for AES32 */
763f356c
TI
102
103/* DMA enable for 64 channels, only Bit 0 is relevant */
0dca1793 104#define HDSPM_outputEnableBase 512 /* 512-767 input DMA */
763f356c
TI
105#define HDSPM_inputEnableBase 768 /* 768-1023 output DMA */
106
0dca1793 107/* 16 page addresses for each of the 64 channels DMA buffer in and out
763f356c
TI
108 (each 64k=16*4k) Buffer must be 4k aligned (which is default i386 ????) */
109#define HDSPM_pageAddressBufferOut 8192
110#define HDSPM_pageAddressBufferIn (HDSPM_pageAddressBufferOut+64*16*4)
111
112#define HDSPM_MADI_mixerBase 32768 /* 32768-65535 for 2x64x64 Fader */
113
114#define HDSPM_MATRIX_MIXER_SIZE 8192 /* = 2*64*64 * 4 Byte => 32kB */
115
116/* --- Read registers. ---
117 These are defined as byte-offsets from the iobase value */
118#define HDSPM_statusRegister 0
3cee5a60
RB
119/*#define HDSPM_statusRegister2 96 */
120/* after RME Windows driver sources, status2 is 4-byte word # 48 = word at
121 * offset 192, for AES32 *and* MADI
122 * => need to check that offset 192 is working on MADI */
123#define HDSPM_statusRegister2 192
124#define HDSPM_timecodeRegister 128
763f356c 125
0dca1793
AK
126/* AIO, RayDAT */
127#define HDSPM_RD_STATUS_0 0
128#define HDSPM_RD_STATUS_1 64
129#define HDSPM_RD_STATUS_2 128
130#define HDSPM_RD_STATUS_3 192
131
132#define HDSPM_RD_TCO 256
133#define HDSPM_RD_PLL_FREQ 512
134#define HDSPM_WR_TCO 128
135
136#define HDSPM_TCO1_TCO_lock 0x00000001
137#define HDSPM_TCO1_WCK_Input_Range_LSB 0x00000002
138#define HDSPM_TCO1_WCK_Input_Range_MSB 0x00000004
139#define HDSPM_TCO1_LTC_Input_valid 0x00000008
140#define HDSPM_TCO1_WCK_Input_valid 0x00000010
141#define HDSPM_TCO1_Video_Input_Format_NTSC 0x00000020
142#define HDSPM_TCO1_Video_Input_Format_PAL 0x00000040
143
144#define HDSPM_TCO1_set_TC 0x00000100
145#define HDSPM_TCO1_set_drop_frame_flag 0x00000200
146#define HDSPM_TCO1_LTC_Format_LSB 0x00000400
147#define HDSPM_TCO1_LTC_Format_MSB 0x00000800
148
149#define HDSPM_TCO2_TC_run 0x00010000
150#define HDSPM_TCO2_WCK_IO_ratio_LSB 0x00020000
151#define HDSPM_TCO2_WCK_IO_ratio_MSB 0x00040000
152#define HDSPM_TCO2_set_num_drop_frames_LSB 0x00080000
153#define HDSPM_TCO2_set_num_drop_frames_MSB 0x00100000
154#define HDSPM_TCO2_set_jam_sync 0x00200000
155#define HDSPM_TCO2_set_flywheel 0x00400000
156
157#define HDSPM_TCO2_set_01_4 0x01000000
158#define HDSPM_TCO2_set_pull_down 0x02000000
159#define HDSPM_TCO2_set_pull_up 0x04000000
160#define HDSPM_TCO2_set_freq 0x08000000
161#define HDSPM_TCO2_set_term_75R 0x10000000
162#define HDSPM_TCO2_set_input_LSB 0x20000000
163#define HDSPM_TCO2_set_input_MSB 0x40000000
164#define HDSPM_TCO2_set_freq_from_app 0x80000000
165
166
167#define HDSPM_midiDataOut0 352
168#define HDSPM_midiDataOut1 356
169#define HDSPM_midiDataOut2 368
170
763f356c
TI
171#define HDSPM_midiDataIn0 360
172#define HDSPM_midiDataIn1 364
0dca1793
AK
173#define HDSPM_midiDataIn2 372
174#define HDSPM_midiDataIn3 376
763f356c
TI
175
176/* status is data bytes in MIDI-FIFO (0-128) */
0dca1793
AK
177#define HDSPM_midiStatusOut0 384
178#define HDSPM_midiStatusOut1 388
179#define HDSPM_midiStatusOut2 400
180
181#define HDSPM_midiStatusIn0 392
182#define HDSPM_midiStatusIn1 396
183#define HDSPM_midiStatusIn2 404
184#define HDSPM_midiStatusIn3 408
763f356c
TI
185
186
187/* the meters are regular i/o-mapped registers, but offset
188 considerably from the rest. the peak registers are reset
0dca1793 189 when read; the least-significant 4 bits are full-scale counters;
763f356c
TI
190 the actual peak value is in the most-significant 24 bits.
191*/
0dca1793
AK
192
193#define HDSPM_MADI_INPUT_PEAK 4096
194#define HDSPM_MADI_PLAYBACK_PEAK 4352
195#define HDSPM_MADI_OUTPUT_PEAK 4608
196
197#define HDSPM_MADI_INPUT_RMS_L 6144
198#define HDSPM_MADI_PLAYBACK_RMS_L 6400
199#define HDSPM_MADI_OUTPUT_RMS_L 6656
200
201#define HDSPM_MADI_INPUT_RMS_H 7168
202#define HDSPM_MADI_PLAYBACK_RMS_H 7424
203#define HDSPM_MADI_OUTPUT_RMS_H 7680
763f356c
TI
204
205/* --- Control Register bits --------- */
206#define HDSPM_Start (1<<0) /* start engine */
207
208#define HDSPM_Latency0 (1<<1) /* buffer size = 2^n */
209#define HDSPM_Latency1 (1<<2) /* where n is defined */
210#define HDSPM_Latency2 (1<<3) /* by Latency{2,1,0} */
211
0dca1793
AK
212#define HDSPM_ClockModeMaster (1<<4) /* 1=Master, 0=Autosync */
213#define HDSPM_c0Master 0x1 /* Master clock bit in settings
214 register [RayDAT, AIO] */
763f356c
TI
215
216#define HDSPM_AudioInterruptEnable (1<<5) /* what do you think ? */
217
218#define HDSPM_Frequency0 (1<<6) /* 0=44.1kHz/88.2kHz 1=48kHz/96kHz */
219#define HDSPM_Frequency1 (1<<7) /* 0=32kHz/64kHz */
220#define HDSPM_DoubleSpeed (1<<8) /* 0=normal speed, 1=double speed */
3cee5a60 221#define HDSPM_QuadSpeed (1<<31) /* quad speed bit */
763f356c 222
3cee5a60 223#define HDSPM_Professional (1<<9) /* Professional */ /* AES32 ONLY */
763f356c 224#define HDSPM_TX_64ch (1<<10) /* Output 64channel MODE=1,
3cee5a60
RB
225 56channelMODE=0 */ /* MADI ONLY*/
226#define HDSPM_Emphasis (1<<10) /* Emphasis */ /* AES32 ONLY */
763f356c 227
0dca1793 228#define HDSPM_AutoInp (1<<11) /* Auto Input (takeover) == Safe Mode,
3cee5a60
RB
229 0=off, 1=on */ /* MADI ONLY */
230#define HDSPM_Dolby (1<<11) /* Dolby = "NonAudio" ?? */ /* AES32 ONLY */
763f356c 231
ef5fa1a4
TI
232#define HDSPM_InputSelect0 (1<<14) /* Input select 0= optical, 1=coax
233 * -- MADI ONLY
234 */
763f356c
TI
235#define HDSPM_InputSelect1 (1<<15) /* should be 0 */
236
3cee5a60
RB
237#define HDSPM_SyncRef2 (1<<13)
238#define HDSPM_SyncRef3 (1<<25)
763f356c 239
3cee5a60 240#define HDSPM_SMUX (1<<18) /* Frame ??? */ /* MADI ONY */
0dca1793 241#define HDSPM_clr_tms (1<<19) /* clear track marker, do not use
763f356c
TI
242 AES additional bits in
243 lower 5 Audiodatabits ??? */
3cee5a60
RB
244#define HDSPM_taxi_reset (1<<20) /* ??? */ /* MADI ONLY ? */
245#define HDSPM_WCK48 (1<<20) /* Frame ??? = HDSPM_SMUX */ /* AES32 ONLY */
763f356c 246
0dca1793
AK
247#define HDSPM_Midi0InterruptEnable 0x0400000
248#define HDSPM_Midi1InterruptEnable 0x0800000
249#define HDSPM_Midi2InterruptEnable 0x0200000
250#define HDSPM_Midi3InterruptEnable 0x4000000
763f356c
TI
251
252#define HDSPM_LineOut (1<<24) /* Analog Out on channel 63/64 on=1, mute=0 */
0dca1793 253#define HDSPe_FLOAT_FORMAT 0x2000000
763f356c 254
3cee5a60
RB
255#define HDSPM_DS_DoubleWire (1<<26) /* AES32 ONLY */
256#define HDSPM_QS_DoubleWire (1<<27) /* AES32 ONLY */
257#define HDSPM_QS_QuadWire (1<<28) /* AES32 ONLY */
258
259#define HDSPM_wclk_sel (1<<30)
763f356c
TI
260
261/* --- bit helper defines */
262#define HDSPM_LatencyMask (HDSPM_Latency0|HDSPM_Latency1|HDSPM_Latency2)
ef5fa1a4
TI
263#define HDSPM_FrequencyMask (HDSPM_Frequency0|HDSPM_Frequency1|\
264 HDSPM_DoubleSpeed|HDSPM_QuadSpeed)
763f356c
TI
265#define HDSPM_InputMask (HDSPM_InputSelect0|HDSPM_InputSelect1)
266#define HDSPM_InputOptical 0
267#define HDSPM_InputCoaxial (HDSPM_InputSelect0)
ef5fa1a4
TI
268#define HDSPM_SyncRefMask (HDSPM_SyncRef0|HDSPM_SyncRef1|\
269 HDSPM_SyncRef2|HDSPM_SyncRef3)
763f356c 270
0dca1793
AK
271#define HDSPM_c0_SyncRef0 0x2
272#define HDSPM_c0_SyncRef1 0x4
273#define HDSPM_c0_SyncRef2 0x8
274#define HDSPM_c0_SyncRef3 0x10
275#define HDSPM_c0_SyncRefMask (HDSPM_c0_SyncRef0 | HDSPM_c0_SyncRef1 |\
276 HDSPM_c0_SyncRef2 | HDSPM_c0_SyncRef3)
277
278#define HDSPM_SYNC_FROM_WORD 0 /* Preferred sync reference */
279#define HDSPM_SYNC_FROM_MADI 1 /* choices - used by "pref_sync_ref" */
280#define HDSPM_SYNC_FROM_TCO 2
281#define HDSPM_SYNC_FROM_SYNC_IN 3
763f356c
TI
282
283#define HDSPM_Frequency32KHz HDSPM_Frequency0
284#define HDSPM_Frequency44_1KHz HDSPM_Frequency1
285#define HDSPM_Frequency48KHz (HDSPM_Frequency1|HDSPM_Frequency0)
286#define HDSPM_Frequency64KHz (HDSPM_DoubleSpeed|HDSPM_Frequency0)
287#define HDSPM_Frequency88_2KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
288#define HDSPM_Frequency96KHz (HDSPM_DoubleSpeed|HDSPM_Frequency1|\
289 HDSPM_Frequency0)
3cee5a60
RB
290#define HDSPM_Frequency128KHz (HDSPM_QuadSpeed|HDSPM_Frequency0)
291#define HDSPM_Frequency176_4KHz (HDSPM_QuadSpeed|HDSPM_Frequency1)
ef5fa1a4
TI
292#define HDSPM_Frequency192KHz (HDSPM_QuadSpeed|HDSPM_Frequency1|\
293 HDSPM_Frequency0)
763f356c 294
763f356c
TI
295
296/* Synccheck Status */
297#define HDSPM_SYNC_CHECK_NO_LOCK 0
298#define HDSPM_SYNC_CHECK_LOCK 1
299#define HDSPM_SYNC_CHECK_SYNC 2
300
301/* AutoSync References - used by "autosync_ref" control switch */
302#define HDSPM_AUTOSYNC_FROM_WORD 0
303#define HDSPM_AUTOSYNC_FROM_MADI 1
0dca1793
AK
304#define HDSPM_AUTOSYNC_FROM_TCO 2
305#define HDSPM_AUTOSYNC_FROM_SYNC_IN 3
306#define HDSPM_AUTOSYNC_FROM_NONE 4
763f356c
TI
307
308/* Possible sources of MADI input */
309#define HDSPM_OPTICAL 0 /* optical */
310#define HDSPM_COAXIAL 1 /* BNC */
311
312#define hdspm_encode_latency(x) (((x)<<1) & HDSPM_LatencyMask)
0dca1793 313#define hdspm_decode_latency(x) ((((x) & HDSPM_LatencyMask)>>1))
763f356c
TI
314
315#define hdspm_encode_in(x) (((x)&0x3)<<14)
316#define hdspm_decode_in(x) (((x)>>14)&0x3)
317
318/* --- control2 register bits --- */
319#define HDSPM_TMS (1<<0)
320#define HDSPM_TCK (1<<1)
321#define HDSPM_TDI (1<<2)
322#define HDSPM_JTAG (1<<3)
323#define HDSPM_PWDN (1<<4)
324#define HDSPM_PROGRAM (1<<5)
325#define HDSPM_CONFIG_MODE_0 (1<<6)
326#define HDSPM_CONFIG_MODE_1 (1<<7)
327/*#define HDSPM_VERSION_BIT (1<<8) not defined any more*/
328#define HDSPM_BIGENDIAN_MODE (1<<9)
329#define HDSPM_RD_MULTIPLE (1<<10)
330
3cee5a60 331/* --- Status Register bits --- */ /* MADI ONLY */ /* Bits defined here and
ef5fa1a4
TI
332 that do not conflict with specific bits for AES32 seem to be valid also
333 for the AES32
334 */
763f356c 335#define HDSPM_audioIRQPending (1<<0) /* IRQ is high and pending */
ef5fa1a4
TI
336#define HDSPM_RX_64ch (1<<1) /* Input 64chan. MODE=1, 56chn MODE=0 */
337#define HDSPM_AB_int (1<<2) /* InputChannel Opt=0, Coax=1
338 * (like inp0)
339 */
0dca1793 340
763f356c 341#define HDSPM_madiLock (1<<3) /* MADI Locked =1, no=0 */
0dca1793
AK
342#define HDSPM_madiSync (1<<18) /* MADI is in sync */
343
344#define HDSPM_tcoLock 0x00000020 /* Optional TCO locked status FOR HDSPe MADI! */
345#define HDSPM_tcoSync 0x10000000 /* Optional TCO sync status */
346
347#define HDSPM_syncInLock 0x00010000 /* Sync In lock status FOR HDSPe MADI! */
348#define HDSPM_syncInSync 0x00020000 /* Sync In sync status FOR HDSPe MADI! */
763f356c
TI
349
350#define HDSPM_BufferPositionMask 0x000FFC0 /* Bit 6..15 : h/w buffer pointer */
0dca1793
AK
351 /* since 64byte accurate, last 6 bits are not used */
352
353
763f356c 354
763f356c
TI
355#define HDSPM_DoubleSpeedStatus (1<<19) /* (input) card in double speed */
356
357#define HDSPM_madiFreq0 (1<<22) /* system freq 0=error */
358#define HDSPM_madiFreq1 (1<<23) /* 1=32, 2=44.1 3=48 */
359#define HDSPM_madiFreq2 (1<<24) /* 4=64, 5=88.2 6=96 */
360#define HDSPM_madiFreq3 (1<<25) /* 7=128, 8=176.4 9=192 */
361
ef5fa1a4
TI
362#define HDSPM_BufferID (1<<26) /* (Double)Buffer ID toggles with
363 * Interrupt
364 */
0dca1793
AK
365#define HDSPM_tco_detect 0x08000000
366#define HDSPM_tco_lock 0x20000000
367
368#define HDSPM_s2_tco_detect 0x00000040
369#define HDSPM_s2_AEBO_D 0x00000080
370#define HDSPM_s2_AEBI_D 0x00000100
371
372
373#define HDSPM_midi0IRQPending 0x40000000
374#define HDSPM_midi1IRQPending 0x80000000
375#define HDSPM_midi2IRQPending 0x20000000
376#define HDSPM_midi2IRQPendingAES 0x00000020
377#define HDSPM_midi3IRQPending 0x00200000
763f356c
TI
378
379/* --- status bit helpers */
ef5fa1a4
TI
380#define HDSPM_madiFreqMask (HDSPM_madiFreq0|HDSPM_madiFreq1|\
381 HDSPM_madiFreq2|HDSPM_madiFreq3)
763f356c
TI
382#define HDSPM_madiFreq32 (HDSPM_madiFreq0)
383#define HDSPM_madiFreq44_1 (HDSPM_madiFreq1)
384#define HDSPM_madiFreq48 (HDSPM_madiFreq0|HDSPM_madiFreq1)
385#define HDSPM_madiFreq64 (HDSPM_madiFreq2)
386#define HDSPM_madiFreq88_2 (HDSPM_madiFreq0|HDSPM_madiFreq2)
387#define HDSPM_madiFreq96 (HDSPM_madiFreq1|HDSPM_madiFreq2)
388#define HDSPM_madiFreq128 (HDSPM_madiFreq0|HDSPM_madiFreq1|HDSPM_madiFreq2)
389#define HDSPM_madiFreq176_4 (HDSPM_madiFreq3)
390#define HDSPM_madiFreq192 (HDSPM_madiFreq3|HDSPM_madiFreq0)
391
3cee5a60 392/* Status2 Register bits */ /* MADI ONLY */
763f356c 393
25985edc 394#define HDSPM_version0 (1<<0) /* not really defined but I guess */
763f356c
TI
395#define HDSPM_version1 (1<<1) /* in former cards it was ??? */
396#define HDSPM_version2 (1<<2)
397
398#define HDSPM_wcLock (1<<3) /* Wordclock is detected and locked */
399#define HDSPM_wcSync (1<<4) /* Wordclock is in sync with systemclock */
400
401#define HDSPM_wc_freq0 (1<<5) /* input freq detected via autosync */
402#define HDSPM_wc_freq1 (1<<6) /* 001=32, 010==44.1, 011=48, */
403#define HDSPM_wc_freq2 (1<<7) /* 100=64, 101=88.2, 110=96, */
404/* missing Bit for 111=128, 1000=176.4, 1001=192 */
405
0dca1793
AK
406#define HDSPM_SyncRef0 0x10000 /* Sync Reference */
407#define HDSPM_SyncRef1 0x20000
408
409#define HDSPM_SelSyncRef0 (1<<8) /* AutoSync Source */
763f356c
TI
410#define HDSPM_SelSyncRef1 (1<<9) /* 000=word, 001=MADI, */
411#define HDSPM_SelSyncRef2 (1<<10) /* 111=no valid signal */
412
413#define HDSPM_wc_valid (HDSPM_wcLock|HDSPM_wcSync)
414
415#define HDSPM_wcFreqMask (HDSPM_wc_freq0|HDSPM_wc_freq1|HDSPM_wc_freq2)
416#define HDSPM_wcFreq32 (HDSPM_wc_freq0)
417#define HDSPM_wcFreq44_1 (HDSPM_wc_freq1)
418#define HDSPM_wcFreq48 (HDSPM_wc_freq0|HDSPM_wc_freq1)
419#define HDSPM_wcFreq64 (HDSPM_wc_freq2)
420#define HDSPM_wcFreq88_2 (HDSPM_wc_freq0|HDSPM_wc_freq2)
421#define HDSPM_wcFreq96 (HDSPM_wc_freq1|HDSPM_wc_freq2)
422
0dca1793
AK
423#define HDSPM_status1_F_0 0x0400000
424#define HDSPM_status1_F_1 0x0800000
425#define HDSPM_status1_F_2 0x1000000
426#define HDSPM_status1_F_3 0x2000000
427#define HDSPM_status1_freqMask (HDSPM_status1_F_0|HDSPM_status1_F_1|HDSPM_status1_F_2|HDSPM_status1_F_3)
428
763f356c 429
ef5fa1a4
TI
430#define HDSPM_SelSyncRefMask (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
431 HDSPM_SelSyncRef2)
763f356c
TI
432#define HDSPM_SelSyncRef_WORD 0
433#define HDSPM_SelSyncRef_MADI (HDSPM_SelSyncRef0)
0dca1793
AK
434#define HDSPM_SelSyncRef_TCO (HDSPM_SelSyncRef1)
435#define HDSPM_SelSyncRef_SyncIn (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1)
ef5fa1a4
TI
436#define HDSPM_SelSyncRef_NVALID (HDSPM_SelSyncRef0|HDSPM_SelSyncRef1|\
437 HDSPM_SelSyncRef2)
763f356c 438
3cee5a60
RB
439/*
440 For AES32, bits for status, status2 and timecode are different
441*/
442/* status */
443#define HDSPM_AES32_wcLock 0x0200000
444#define HDSPM_AES32_wcFreq_bit 22
0dca1793 445/* (status >> HDSPM_AES32_wcFreq_bit) & 0xF gives WC frequency (cf function
3cee5a60
RB
446 HDSPM_bit2freq */
447#define HDSPM_AES32_syncref_bit 16
448/* (status >> HDSPM_AES32_syncref_bit) & 0xF gives sync source */
449
450#define HDSPM_AES32_AUTOSYNC_FROM_WORD 0
451#define HDSPM_AES32_AUTOSYNC_FROM_AES1 1
452#define HDSPM_AES32_AUTOSYNC_FROM_AES2 2
453#define HDSPM_AES32_AUTOSYNC_FROM_AES3 3
454#define HDSPM_AES32_AUTOSYNC_FROM_AES4 4
455#define HDSPM_AES32_AUTOSYNC_FROM_AES5 5
456#define HDSPM_AES32_AUTOSYNC_FROM_AES6 6
457#define HDSPM_AES32_AUTOSYNC_FROM_AES7 7
458#define HDSPM_AES32_AUTOSYNC_FROM_AES8 8
6534599d 459#define HDSPM_AES32_AUTOSYNC_FROM_NONE 9
3cee5a60
RB
460
461/* status2 */
462/* HDSPM_LockAES_bit is given by HDSPM_LockAES >> (AES# - 1) */
463#define HDSPM_LockAES 0x80
464#define HDSPM_LockAES1 0x80
465#define HDSPM_LockAES2 0x40
466#define HDSPM_LockAES3 0x20
467#define HDSPM_LockAES4 0x10
468#define HDSPM_LockAES5 0x8
469#define HDSPM_LockAES6 0x4
470#define HDSPM_LockAES7 0x2
471#define HDSPM_LockAES8 0x1
472/*
473 Timecode
474 After windows driver sources, bits 4*i to 4*i+3 give the input frequency on
475 AES i+1
476 bits 3210
477 0001 32kHz
478 0010 44.1kHz
479 0011 48kHz
480 0100 64kHz
481 0101 88.2kHz
482 0110 96kHz
483 0111 128kHz
484 1000 176.4kHz
485 1001 192kHz
486 NB: Timecode register doesn't seem to work on AES32 card revision 230
487*/
488
763f356c
TI
489/* Mixer Values */
490#define UNITY_GAIN 32768 /* = 65536/2 */
491#define MINUS_INFINITY_GAIN 0
492
763f356c
TI
493/* Number of channels for different Speed Modes */
494#define MADI_SS_CHANNELS 64
495#define MADI_DS_CHANNELS 32
496#define MADI_QS_CHANNELS 16
497
0dca1793
AK
498#define RAYDAT_SS_CHANNELS 36
499#define RAYDAT_DS_CHANNELS 20
500#define RAYDAT_QS_CHANNELS 12
501
502#define AIO_IN_SS_CHANNELS 14
503#define AIO_IN_DS_CHANNELS 10
504#define AIO_IN_QS_CHANNELS 8
505#define AIO_OUT_SS_CHANNELS 16
506#define AIO_OUT_DS_CHANNELS 12
507#define AIO_OUT_QS_CHANNELS 10
508
d2d10a21
AK
509#define AES32_CHANNELS 16
510
763f356c
TI
511/* the size of a substream (1 mono data stream) */
512#define HDSPM_CHANNEL_BUFFER_SAMPLES (16*1024)
513#define HDSPM_CHANNEL_BUFFER_BYTES (4*HDSPM_CHANNEL_BUFFER_SAMPLES)
514
515/* the size of the area we need to allocate for DMA transfers. the
516 size is the same regardless of the number of channels, and
0dca1793 517 also the latency to use.
763f356c
TI
518 for one direction !!!
519*/
ffb2c3c0 520#define HDSPM_DMA_AREA_BYTES (HDSPM_MAX_CHANNELS * HDSPM_CHANNEL_BUFFER_BYTES)
763f356c
TI
521#define HDSPM_DMA_AREA_KILOBYTES (HDSPM_DMA_AREA_BYTES/1024)
522
0dca1793
AK
523#define HDSPM_RAYDAT_REV 211
524#define HDSPM_AIO_REV 212
525#define HDSPM_MADIFACE_REV 213
3cee5a60 526
6534599d
RB
527/* speed factor modes */
528#define HDSPM_SPEED_SINGLE 0
529#define HDSPM_SPEED_DOUBLE 1
530#define HDSPM_SPEED_QUAD 2
0dca1793 531
6534599d
RB
532/* names for speed modes */
533static char *hdspm_speed_names[] = { "single", "double", "quad" };
534
0dca1793
AK
535static char *texts_autosync_aes_tco[] = { "Word Clock",
536 "AES1", "AES2", "AES3", "AES4",
537 "AES5", "AES6", "AES7", "AES8",
538 "TCO" };
539static char *texts_autosync_aes[] = { "Word Clock",
540 "AES1", "AES2", "AES3", "AES4",
541 "AES5", "AES6", "AES7", "AES8" };
542static char *texts_autosync_madi_tco[] = { "Word Clock",
543 "MADI", "TCO", "Sync In" };
544static char *texts_autosync_madi[] = { "Word Clock",
545 "MADI", "Sync In" };
546
547static char *texts_autosync_raydat_tco[] = {
548 "Word Clock",
549 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
550 "AES", "SPDIF", "TCO", "Sync In"
551};
552static char *texts_autosync_raydat[] = {
553 "Word Clock",
554 "ADAT 1", "ADAT 2", "ADAT 3", "ADAT 4",
555 "AES", "SPDIF", "Sync In"
556};
557static char *texts_autosync_aio_tco[] = {
558 "Word Clock",
559 "ADAT", "AES", "SPDIF", "TCO", "Sync In"
560};
561static char *texts_autosync_aio[] = { "Word Clock",
562 "ADAT", "AES", "SPDIF", "Sync In" };
563
564static char *texts_freq[] = {
565 "No Lock",
566 "32 kHz",
567 "44.1 kHz",
568 "48 kHz",
569 "64 kHz",
570 "88.2 kHz",
571 "96 kHz",
572 "128 kHz",
573 "176.4 kHz",
574 "192 kHz"
575};
576
0dca1793
AK
577static char *texts_ports_madi[] = {
578 "MADI.1", "MADI.2", "MADI.3", "MADI.4", "MADI.5", "MADI.6",
579 "MADI.7", "MADI.8", "MADI.9", "MADI.10", "MADI.11", "MADI.12",
580 "MADI.13", "MADI.14", "MADI.15", "MADI.16", "MADI.17", "MADI.18",
581 "MADI.19", "MADI.20", "MADI.21", "MADI.22", "MADI.23", "MADI.24",
582 "MADI.25", "MADI.26", "MADI.27", "MADI.28", "MADI.29", "MADI.30",
583 "MADI.31", "MADI.32", "MADI.33", "MADI.34", "MADI.35", "MADI.36",
584 "MADI.37", "MADI.38", "MADI.39", "MADI.40", "MADI.41", "MADI.42",
585 "MADI.43", "MADI.44", "MADI.45", "MADI.46", "MADI.47", "MADI.48",
586 "MADI.49", "MADI.50", "MADI.51", "MADI.52", "MADI.53", "MADI.54",
587 "MADI.55", "MADI.56", "MADI.57", "MADI.58", "MADI.59", "MADI.60",
588 "MADI.61", "MADI.62", "MADI.63", "MADI.64",
589};
590
591
592static char *texts_ports_raydat_ss[] = {
593 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4", "ADAT1.5", "ADAT1.6",
594 "ADAT1.7", "ADAT1.8", "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
595 "ADAT2.5", "ADAT2.6", "ADAT2.7", "ADAT2.8", "ADAT3.1", "ADAT3.2",
596 "ADAT3.3", "ADAT3.4", "ADAT3.5", "ADAT3.6", "ADAT3.7", "ADAT3.8",
597 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4", "ADAT4.5", "ADAT4.6",
598 "ADAT4.7", "ADAT4.8",
599 "AES.L", "AES.R",
600 "SPDIF.L", "SPDIF.R"
601};
602
603static char *texts_ports_raydat_ds[] = {
604 "ADAT1.1", "ADAT1.2", "ADAT1.3", "ADAT1.4",
605 "ADAT2.1", "ADAT2.2", "ADAT2.3", "ADAT2.4",
606 "ADAT3.1", "ADAT3.2", "ADAT3.3", "ADAT3.4",
607 "ADAT4.1", "ADAT4.2", "ADAT4.3", "ADAT4.4",
608 "AES.L", "AES.R",
609 "SPDIF.L", "SPDIF.R"
610};
611
612static char *texts_ports_raydat_qs[] = {
613 "ADAT1.1", "ADAT1.2",
614 "ADAT2.1", "ADAT2.2",
615 "ADAT3.1", "ADAT3.2",
616 "ADAT4.1", "ADAT4.2",
617 "AES.L", "AES.R",
618 "SPDIF.L", "SPDIF.R"
619};
620
621
622static char *texts_ports_aio_in_ss[] = {
623 "Analogue.L", "Analogue.R",
624 "AES.L", "AES.R",
625 "SPDIF.L", "SPDIF.R",
626 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
627 "ADAT.7", "ADAT.8"
628};
629
630static char *texts_ports_aio_out_ss[] = {
631 "Analogue.L", "Analogue.R",
632 "AES.L", "AES.R",
633 "SPDIF.L", "SPDIF.R",
634 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4", "ADAT.5", "ADAT.6",
635 "ADAT.7", "ADAT.8",
636 "Phone.L", "Phone.R"
637};
638
639static char *texts_ports_aio_in_ds[] = {
640 "Analogue.L", "Analogue.R",
641 "AES.L", "AES.R",
642 "SPDIF.L", "SPDIF.R",
643 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
644};
645
646static char *texts_ports_aio_out_ds[] = {
647 "Analogue.L", "Analogue.R",
648 "AES.L", "AES.R",
649 "SPDIF.L", "SPDIF.R",
650 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
651 "Phone.L", "Phone.R"
652};
653
654static char *texts_ports_aio_in_qs[] = {
655 "Analogue.L", "Analogue.R",
656 "AES.L", "AES.R",
657 "SPDIF.L", "SPDIF.R",
658 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4"
659};
660
661static char *texts_ports_aio_out_qs[] = {
662 "Analogue.L", "Analogue.R",
663 "AES.L", "AES.R",
664 "SPDIF.L", "SPDIF.R",
665 "ADAT.1", "ADAT.2", "ADAT.3", "ADAT.4",
666 "Phone.L", "Phone.R"
667};
668
432d2500
AK
669static char *texts_ports_aes32[] = {
670 "AES.1", "AES.2", "AES.3", "AES.4", "AES.5", "AES.6", "AES.7",
671 "AES.8", "AES.9.", "AES.10", "AES.11", "AES.12", "AES.13", "AES.14",
672 "AES.15", "AES.16"
673};
674
55a57606
AK
675/* These tables map the ALSA channels 1..N to the channels that we
676 need to use in order to find the relevant channel buffer. RME
677 refers to this kind of mapping as between "the ADAT channel and
678 the DMA channel." We index it using the logical audio channel,
679 and the value is the DMA channel (i.e. channel buffer number)
680 where the data for that channel can be read/written from/to.
681*/
682
683static char channel_map_unity_ss[HDSPM_MAX_CHANNELS] = {
684 0, 1, 2, 3, 4, 5, 6, 7,
685 8, 9, 10, 11, 12, 13, 14, 15,
686 16, 17, 18, 19, 20, 21, 22, 23,
687 24, 25, 26, 27, 28, 29, 30, 31,
688 32, 33, 34, 35, 36, 37, 38, 39,
689 40, 41, 42, 43, 44, 45, 46, 47,
690 48, 49, 50, 51, 52, 53, 54, 55,
691 56, 57, 58, 59, 60, 61, 62, 63
692};
693
55a57606
AK
694static char channel_map_raydat_ss[HDSPM_MAX_CHANNELS] = {
695 4, 5, 6, 7, 8, 9, 10, 11, /* ADAT 1 */
696 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT 2 */
697 20, 21, 22, 23, 24, 25, 26, 27, /* ADAT 3 */
698 28, 29, 30, 31, 32, 33, 34, 35, /* ADAT 4 */
699 0, 1, /* AES */
700 2, 3, /* SPDIF */
701 -1, -1, -1, -1,
702 -1, -1, -1, -1, -1, -1, -1, -1,
703 -1, -1, -1, -1, -1, -1, -1, -1,
704 -1, -1, -1, -1, -1, -1, -1, -1,
705};
706
707static char channel_map_raydat_ds[HDSPM_MAX_CHANNELS] = {
708 4, 5, 6, 7, /* ADAT 1 */
709 8, 9, 10, 11, /* ADAT 2 */
710 12, 13, 14, 15, /* ADAT 3 */
711 16, 17, 18, 19, /* ADAT 4 */
712 0, 1, /* AES */
713 2, 3, /* SPDIF */
714 -1, -1, -1, -1,
715 -1, -1, -1, -1, -1, -1, -1, -1,
716 -1, -1, -1, -1, -1, -1, -1, -1,
717 -1, -1, -1, -1, -1, -1, -1, -1,
718 -1, -1, -1, -1, -1, -1, -1, -1,
719 -1, -1, -1, -1, -1, -1, -1, -1,
720};
721
722static char channel_map_raydat_qs[HDSPM_MAX_CHANNELS] = {
723 4, 5, /* ADAT 1 */
724 6, 7, /* ADAT 2 */
725 8, 9, /* ADAT 3 */
726 10, 11, /* ADAT 4 */
727 0, 1, /* AES */
728 2, 3, /* SPDIF */
729 -1, -1, -1, -1,
730 -1, -1, -1, -1, -1, -1, -1, -1,
731 -1, -1, -1, -1, -1, -1, -1, -1,
732 -1, -1, -1, -1, -1, -1, -1, -1,
733 -1, -1, -1, -1, -1, -1, -1, -1,
734 -1, -1, -1, -1, -1, -1, -1, -1,
735 -1, -1, -1, -1, -1, -1, -1, -1,
736};
737
738static char channel_map_aio_in_ss[HDSPM_MAX_CHANNELS] = {
739 0, 1, /* line in */
740 8, 9, /* aes in, */
741 10, 11, /* spdif in */
742 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT in */
743 -1, -1,
744 -1, -1, -1, -1, -1, -1, -1, -1,
745 -1, -1, -1, -1, -1, -1, -1, -1,
746 -1, -1, -1, -1, -1, -1, -1, -1,
747 -1, -1, -1, -1, -1, -1, -1, -1,
748 -1, -1, -1, -1, -1, -1, -1, -1,
749 -1, -1, -1, -1, -1, -1, -1, -1,
750};
751
752static char channel_map_aio_out_ss[HDSPM_MAX_CHANNELS] = {
753 0, 1, /* line out */
754 8, 9, /* aes out */
755 10, 11, /* spdif out */
756 12, 13, 14, 15, 16, 17, 18, 19, /* ADAT out */
757 6, 7, /* phone out */
758 -1, -1, -1, -1, -1, -1, -1, -1,
759 -1, -1, -1, -1, -1, -1, -1, -1,
760 -1, -1, -1, -1, -1, -1, -1, -1,
761 -1, -1, -1, -1, -1, -1, -1, -1,
762 -1, -1, -1, -1, -1, -1, -1, -1,
763 -1, -1, -1, -1, -1, -1, -1, -1,
764};
765
766static char channel_map_aio_in_ds[HDSPM_MAX_CHANNELS] = {
767 0, 1, /* line in */
768 8, 9, /* aes in */
769 10, 11, /* spdif in */
770 12, 14, 16, 18, /* adat in */
771 -1, -1, -1, -1, -1, -1,
772 -1, -1, -1, -1, -1, -1, -1, -1,
773 -1, -1, -1, -1, -1, -1, -1, -1,
774 -1, -1, -1, -1, -1, -1, -1, -1,
775 -1, -1, -1, -1, -1, -1, -1, -1,
776 -1, -1, -1, -1, -1, -1, -1, -1,
777 -1, -1, -1, -1, -1, -1, -1, -1
778};
779
780static char channel_map_aio_out_ds[HDSPM_MAX_CHANNELS] = {
781 0, 1, /* line out */
782 8, 9, /* aes out */
783 10, 11, /* spdif out */
784 12, 14, 16, 18, /* adat out */
785 6, 7, /* phone out */
786 -1, -1, -1, -1,
787 -1, -1, -1, -1, -1, -1, -1, -1,
788 -1, -1, -1, -1, -1, -1, -1, -1,
789 -1, -1, -1, -1, -1, -1, -1, -1,
790 -1, -1, -1, -1, -1, -1, -1, -1,
791 -1, -1, -1, -1, -1, -1, -1, -1,
792 -1, -1, -1, -1, -1, -1, -1, -1
793};
794
795static char channel_map_aio_in_qs[HDSPM_MAX_CHANNELS] = {
796 0, 1, /* line in */
797 8, 9, /* aes in */
798 10, 11, /* spdif in */
799 12, 16, /* adat in */
800 -1, -1, -1, -1, -1, -1, -1, -1,
801 -1, -1, -1, -1, -1, -1, -1, -1,
802 -1, -1, -1, -1, -1, -1, -1, -1,
803 -1, -1, -1, -1, -1, -1, -1, -1,
804 -1, -1, -1, -1, -1, -1, -1, -1,
805 -1, -1, -1, -1, -1, -1, -1, -1,
806 -1, -1, -1, -1, -1, -1, -1, -1
807};
808
809static char channel_map_aio_out_qs[HDSPM_MAX_CHANNELS] = {
810 0, 1, /* line out */
811 8, 9, /* aes out */
812 10, 11, /* spdif out */
813 12, 16, /* adat out */
814 6, 7, /* phone out */
815 -1, -1, -1, -1, -1, -1,
816 -1, -1, -1, -1, -1, -1, -1, -1,
817 -1, -1, -1, -1, -1, -1, -1, -1,
818 -1, -1, -1, -1, -1, -1, -1, -1,
819 -1, -1, -1, -1, -1, -1, -1, -1,
820 -1, -1, -1, -1, -1, -1, -1, -1,
821 -1, -1, -1, -1, -1, -1, -1, -1
822};
823
432d2500
AK
824static char channel_map_aes32[HDSPM_MAX_CHANNELS] = {
825 0, 1, 2, 3, 4, 5, 6, 7,
826 8, 9, 10, 11, 12, 13, 14, 15,
827 -1, -1, -1, -1, -1, -1, -1, -1,
828 -1, -1, -1, -1, -1, -1, -1, -1,
829 -1, -1, -1, -1, -1, -1, -1, -1,
830 -1, -1, -1, -1, -1, -1, -1, -1,
831 -1, -1, -1, -1, -1, -1, -1, -1,
832 -1, -1, -1, -1, -1, -1, -1, -1
833};
834
98274f07
TI
835struct hdspm_midi {
836 struct hdspm *hdspm;
763f356c 837 int id;
98274f07
TI
838 struct snd_rawmidi *rmidi;
839 struct snd_rawmidi_substream *input;
840 struct snd_rawmidi_substream *output;
763f356c
TI
841 char istimer; /* timer in use */
842 struct timer_list timer;
843 spinlock_t lock;
844 int pending;
0dca1793
AK
845 int dataIn;
846 int statusIn;
847 int dataOut;
848 int statusOut;
849 int ie;
850 int irq;
851};
852
853struct hdspm_tco {
854 int input;
855 int framerate;
856 int wordclock;
857 int samplerate;
858 int pull;
859 int term; /* 0 = off, 1 = on */
763f356c
TI
860};
861
98274f07 862struct hdspm {
763f356c 863 spinlock_t lock;
ef5fa1a4
TI
864 /* only one playback and/or capture stream */
865 struct snd_pcm_substream *capture_substream;
866 struct snd_pcm_substream *playback_substream;
763f356c
TI
867
868 char *card_name; /* for procinfo */
3cee5a60
RB
869 unsigned short firmware_rev; /* dont know if relevant (yes if AES32)*/
870
0dca1793 871 uint8_t io_type;
763f356c 872
763f356c
TI
873 int monitor_outs; /* set up monitoring outs init flag */
874
875 u32 control_register; /* cached value */
876 u32 control2_register; /* cached value */
0dca1793 877 u32 settings_register;
763f356c 878
0dca1793 879 struct hdspm_midi midi[4];
763f356c
TI
880 struct tasklet_struct midi_tasklet;
881
882 size_t period_bytes;
0dca1793
AK
883 unsigned char ss_in_channels;
884 unsigned char ds_in_channels;
885 unsigned char qs_in_channels;
886 unsigned char ss_out_channels;
887 unsigned char ds_out_channels;
888 unsigned char qs_out_channels;
889
890 unsigned char max_channels_in;
891 unsigned char max_channels_out;
892
286bed0f
TI
893 signed char *channel_map_in;
894 signed char *channel_map_out;
0dca1793 895
286bed0f
TI
896 signed char *channel_map_in_ss, *channel_map_in_ds, *channel_map_in_qs;
897 signed char *channel_map_out_ss, *channel_map_out_ds, *channel_map_out_qs;
0dca1793
AK
898
899 char **port_names_in;
900 char **port_names_out;
901
902 char **port_names_in_ss, **port_names_in_ds, **port_names_in_qs;
903 char **port_names_out_ss, **port_names_out_ds, **port_names_out_qs;
763f356c
TI
904
905 unsigned char *playback_buffer; /* suitably aligned address */
906 unsigned char *capture_buffer; /* suitably aligned address */
907
908 pid_t capture_pid; /* process id which uses capture */
909 pid_t playback_pid; /* process id which uses capture */
910 int running; /* running status */
911
912 int last_external_sample_rate; /* samplerate mystic ... */
913 int last_internal_sample_rate;
914 int system_sample_rate;
915
763f356c
TI
916 int dev; /* Hardware vars... */
917 int irq;
918 unsigned long port;
919 void __iomem *iobase;
920
921 int irq_count; /* for debug */
0dca1793 922 int midiPorts;
763f356c 923
98274f07
TI
924 struct snd_card *card; /* one card */
925 struct snd_pcm *pcm; /* has one pcm */
926 struct snd_hwdep *hwdep; /* and a hwdep for additional ioctl */
763f356c
TI
927 struct pci_dev *pci; /* and an pci info */
928
929 /* Mixer vars */
ef5fa1a4
TI
930 /* fast alsa mixer */
931 struct snd_kcontrol *playback_mixer_ctls[HDSPM_MAX_CHANNELS];
932 /* but input to much, so not used */
933 struct snd_kcontrol *input_mixer_ctls[HDSPM_MAX_CHANNELS];
25985edc 934 /* full mixer accessible over mixer ioctl or hwdep-device */
ef5fa1a4 935 struct hdspm_mixer *mixer;
763f356c 936
0dca1793 937 struct hdspm_tco *tco; /* NULL if no TCO detected */
763f356c 938
0dca1793
AK
939 char **texts_autosync;
940 int texts_autosync_items;
763f356c 941
0dca1793 942 cycles_t last_interrupt;
730a5865
JK
943
944 struct hdspm_peak_rms peak_rms;
763f356c
TI
945};
946
763f356c 947
cebe41d4 948static DEFINE_PCI_DEVICE_TABLE(snd_hdspm_ids) = {
763f356c
TI
949 {
950 .vendor = PCI_VENDOR_ID_XILINX,
951 .device = PCI_DEVICE_ID_XILINX_HAMMERFALL_DSP_MADI,
952 .subvendor = PCI_ANY_ID,
953 .subdevice = PCI_ANY_ID,
954 .class = 0,
955 .class_mask = 0,
956 .driver_data = 0},
957 {0,}
958};
959
960MODULE_DEVICE_TABLE(pci, snd_hdspm_ids);
961
962/* prototypes */
98274f07
TI
963static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
964 struct hdspm * hdspm);
965static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
966 struct hdspm * hdspm);
967
0dca1793
AK
968static inline void snd_hdspm_initialize_midi_flush(struct hdspm *hdspm);
969static int hdspm_update_simple_mixer_controls(struct hdspm *hdspm);
970static int hdspm_autosync_ref(struct hdspm *hdspm);
971static int snd_hdspm_set_defaults(struct hdspm *hdspm);
972static void hdspm_set_sgbuf(struct hdspm *hdspm,
77a23f26 973 struct snd_pcm_substream *substream,
763f356c
TI
974 unsigned int reg, int channels);
975
3cee5a60
RB
976static inline int HDSPM_bit2freq(int n)
977{
62cef821
DV
978 static const int bit2freq_tab[] = {
979 0, 32000, 44100, 48000, 64000, 88200,
3cee5a60
RB
980 96000, 128000, 176400, 192000 };
981 if (n < 1 || n > 9)
982 return 0;
983 return bit2freq_tab[n];
984}
985
0dca1793 986/* Write/read to/from HDSPM with Adresses in Bytes
763f356c
TI
987 not words but only 32Bit writes are allowed */
988
98274f07 989static inline void hdspm_write(struct hdspm * hdspm, unsigned int reg,
763f356c
TI
990 unsigned int val)
991{
992 writel(val, hdspm->iobase + reg);
993}
994
98274f07 995static inline unsigned int hdspm_read(struct hdspm * hdspm, unsigned int reg)
763f356c
TI
996{
997 return readl(hdspm->iobase + reg);
998}
999
0dca1793
AK
1000/* for each output channel (chan) I have an Input (in) and Playback (pb) Fader
1001 mixer is write only on hardware so we have to cache him for read
763f356c
TI
1002 each fader is a u32, but uses only the first 16 bit */
1003
98274f07 1004static inline int hdspm_read_in_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
1005 unsigned int in)
1006{
5bab2482 1007 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
763f356c
TI
1008 return 0;
1009
1010 return hdspm->mixer->ch[chan].in[in];
1011}
1012
98274f07 1013static inline int hdspm_read_pb_gain(struct hdspm * hdspm, unsigned int chan,
763f356c
TI
1014 unsigned int pb)
1015{
5bab2482 1016 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
763f356c
TI
1017 return 0;
1018 return hdspm->mixer->ch[chan].pb[pb];
1019}
1020
62cef821 1021static int hdspm_write_in_gain(struct hdspm *hdspm, unsigned int chan,
763f356c
TI
1022 unsigned int in, unsigned short data)
1023{
1024 if (chan >= HDSPM_MIXER_CHANNELS || in >= HDSPM_MIXER_CHANNELS)
1025 return -1;
1026
1027 hdspm_write(hdspm,
1028 HDSPM_MADI_mixerBase +
1029 ((in + 128 * chan) * sizeof(u32)),
1030 (hdspm->mixer->ch[chan].in[in] = data & 0xFFFF));
1031 return 0;
1032}
1033
62cef821 1034static int hdspm_write_pb_gain(struct hdspm *hdspm, unsigned int chan,
763f356c
TI
1035 unsigned int pb, unsigned short data)
1036{
1037 if (chan >= HDSPM_MIXER_CHANNELS || pb >= HDSPM_MIXER_CHANNELS)
1038 return -1;
1039
1040 hdspm_write(hdspm,
1041 HDSPM_MADI_mixerBase +
1042 ((64 + pb + 128 * chan) * sizeof(u32)),
1043 (hdspm->mixer->ch[chan].pb[pb] = data & 0xFFFF));
1044 return 0;
1045}
1046
1047
1048/* enable DMA for specific channels, now available for DSP-MADI */
98274f07 1049static inline void snd_hdspm_enable_in(struct hdspm * hdspm, int i, int v)
763f356c
TI
1050{
1051 hdspm_write(hdspm, HDSPM_inputEnableBase + (4 * i), v);
1052}
1053
98274f07 1054static inline void snd_hdspm_enable_out(struct hdspm * hdspm, int i, int v)
763f356c
TI
1055{
1056 hdspm_write(hdspm, HDSPM_outputEnableBase + (4 * i), v);
1057}
1058
1059/* check if same process is writing and reading */
62cef821 1060static int snd_hdspm_use_is_exclusive(struct hdspm *hdspm)
763f356c
TI
1061{
1062 unsigned long flags;
1063 int ret = 1;
1064
1065 spin_lock_irqsave(&hdspm->lock, flags);
1066 if ((hdspm->playback_pid != hdspm->capture_pid) &&
1067 (hdspm->playback_pid >= 0) && (hdspm->capture_pid >= 0)) {
1068 ret = 0;
1069 }
1070 spin_unlock_irqrestore(&hdspm->lock, flags);
1071 return ret;
1072}
1073
1074/* check for external sample rate */
62cef821 1075static int hdspm_external_sample_rate(struct hdspm *hdspm)
763f356c 1076{
0dca1793
AK
1077 unsigned int status, status2, timecode;
1078 int syncref, rate = 0, rate_bits;
3cee5a60 1079
0dca1793
AK
1080 switch (hdspm->io_type) {
1081 case AES32:
1082 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1083 status = hdspm_read(hdspm, HDSPM_statusRegister);
7c4a95b5 1084 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
0dca1793
AK
1085
1086 syncref = hdspm_autosync_ref(hdspm);
3cee5a60
RB
1087
1088 if (syncref == HDSPM_AES32_AUTOSYNC_FROM_WORD &&
1089 status & HDSPM_AES32_wcLock)
0dca1793
AK
1090 return HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF);
1091
3cee5a60 1092 if (syncref >= HDSPM_AES32_AUTOSYNC_FROM_AES1 &&
0dca1793
AK
1093 syncref <= HDSPM_AES32_AUTOSYNC_FROM_AES8 &&
1094 status2 & (HDSPM_LockAES >>
1095 (syncref - HDSPM_AES32_AUTOSYNC_FROM_AES1)))
1096 return HDSPM_bit2freq((timecode >> (4*(syncref-HDSPM_AES32_AUTOSYNC_FROM_AES1))) & 0xF);
3cee5a60 1097 return 0;
0dca1793
AK
1098 break;
1099
1100 case MADIface:
1101 status = hdspm_read(hdspm, HDSPM_statusRegister);
1102
1103 if (!(status & HDSPM_madiLock)) {
1104 rate = 0; /* no lock */
1105 } else {
1106 switch (status & (HDSPM_status1_freqMask)) {
1107 case HDSPM_status1_F_0*1:
1108 rate = 32000; break;
1109 case HDSPM_status1_F_0*2:
1110 rate = 44100; break;
1111 case HDSPM_status1_F_0*3:
1112 rate = 48000; break;
1113 case HDSPM_status1_F_0*4:
1114 rate = 64000; break;
1115 case HDSPM_status1_F_0*5:
1116 rate = 88200; break;
1117 case HDSPM_status1_F_0*6:
1118 rate = 96000; break;
1119 case HDSPM_status1_F_0*7:
1120 rate = 128000; break;
1121 case HDSPM_status1_F_0*8:
1122 rate = 176400; break;
1123 case HDSPM_status1_F_0*9:
1124 rate = 192000; break;
1125 default:
1126 rate = 0; break;
1127 }
1128 }
1129
1130 break;
1131
1132 case MADI:
1133 case AIO:
1134 case RayDAT:
1135 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
1136 status = hdspm_read(hdspm, HDSPM_statusRegister);
1137 rate = 0;
763f356c 1138
3cee5a60
RB
1139 /* if wordclock has synced freq and wordclock is valid */
1140 if ((status2 & HDSPM_wcLock) != 0 &&
fedf1535 1141 (status2 & HDSPM_SelSyncRef0) == 0) {
763f356c 1142
3cee5a60 1143 rate_bits = status2 & HDSPM_wcFreqMask;
763f356c 1144
0dca1793 1145
3cee5a60
RB
1146 switch (rate_bits) {
1147 case HDSPM_wcFreq32:
1148 rate = 32000;
1149 break;
1150 case HDSPM_wcFreq44_1:
1151 rate = 44100;
1152 break;
1153 case HDSPM_wcFreq48:
1154 rate = 48000;
1155 break;
1156 case HDSPM_wcFreq64:
1157 rate = 64000;
1158 break;
1159 case HDSPM_wcFreq88_2:
1160 rate = 88200;
1161 break;
1162 case HDSPM_wcFreq96:
1163 rate = 96000;
1164 break;
3cee5a60
RB
1165 default:
1166 rate = 0;
1167 break;
1168 }
763f356c 1169 }
763f356c 1170
ef5fa1a4
TI
1171 /* if rate detected and Syncref is Word than have it,
1172 * word has priority to MADI
1173 */
3cee5a60 1174 if (rate != 0 &&
0dca1793 1175 (status2 & HDSPM_SelSyncRefMask) == HDSPM_SelSyncRef_WORD)
3cee5a60 1176 return rate;
763f356c 1177
0dca1793 1178 /* maybe a madi input (which is taken if sel sync is madi) */
3cee5a60
RB
1179 if (status & HDSPM_madiLock) {
1180 rate_bits = status & HDSPM_madiFreqMask;
763f356c 1181
3cee5a60
RB
1182 switch (rate_bits) {
1183 case HDSPM_madiFreq32:
1184 rate = 32000;
1185 break;
1186 case HDSPM_madiFreq44_1:
1187 rate = 44100;
1188 break;
1189 case HDSPM_madiFreq48:
1190 rate = 48000;
1191 break;
1192 case HDSPM_madiFreq64:
1193 rate = 64000;
1194 break;
1195 case HDSPM_madiFreq88_2:
1196 rate = 88200;
1197 break;
1198 case HDSPM_madiFreq96:
1199 rate = 96000;
1200 break;
1201 case HDSPM_madiFreq128:
1202 rate = 128000;
1203 break;
1204 case HDSPM_madiFreq176_4:
1205 rate = 176400;
1206 break;
1207 case HDSPM_madiFreq192:
1208 rate = 192000;
1209 break;
1210 default:
1211 rate = 0;
1212 break;
1213 }
d12c51d8
AK
1214
1215 /* QS and DS rates normally can not be detected
1216 * automatically by the card. Only exception is MADI
1217 * in 96k frame mode.
1218 *
1219 * So if we read SS values (32 .. 48k), check for
1220 * user-provided DS/QS bits in the control register
1221 * and multiply the base frequency accordingly.
1222 */
1223 if (rate <= 48000) {
1224 if (hdspm->control_register & HDSPM_QuadSpeed)
1225 rate *= 4;
1226 else if (hdspm->control_register &
1227 HDSPM_DoubleSpeed)
1228 rate *= 2;
1229 }
763f356c 1230 }
0dca1793 1231 break;
763f356c 1232 }
0dca1793
AK
1233
1234 return rate;
763f356c
TI
1235}
1236
7cb155ff
AK
1237/* return latency in samples per period */
1238static int hdspm_get_latency(struct hdspm *hdspm)
1239{
1240 int n;
1241
1242 n = hdspm_decode_latency(hdspm->control_register);
1243
1244 /* Special case for new RME cards with 32 samples period size.
1245 * The three latency bits in the control register
1246 * (HDSP_LatencyMask) encode latency values of 64 samples as
1247 * 0, 128 samples as 1 ... 4096 samples as 6. For old cards, 7
1248 * denotes 8192 samples, but on new cards like RayDAT or AIO,
1249 * it corresponds to 32 samples.
1250 */
1251 if ((7 == n) && (RayDAT == hdspm->io_type || AIO == hdspm->io_type))
1252 n = -1;
1253
1254 return 1 << (n + 6);
1255}
1256
763f356c 1257/* Latency function */
0dca1793 1258static inline void hdspm_compute_period_size(struct hdspm *hdspm)
763f356c 1259{
7cb155ff 1260 hdspm->period_bytes = 4 * hdspm_get_latency(hdspm);
763f356c
TI
1261}
1262
0dca1793
AK
1263
1264static snd_pcm_uframes_t hdspm_hw_pointer(struct hdspm *hdspm)
763f356c
TI
1265{
1266 int position;
1267
1268 position = hdspm_read(hdspm, HDSPM_statusRegister);
483cee77
AK
1269
1270 switch (hdspm->io_type) {
1271 case RayDAT:
1272 case AIO:
1273 position &= HDSPM_BufferPositionMask;
1274 position /= 4; /* Bytes per sample */
1275 break;
1276 default:
1277 position = (position & HDSPM_BufferID) ?
1278 (hdspm->period_bytes / 4) : 0;
1279 }
763f356c
TI
1280
1281 return position;
1282}
1283
1284
98274f07 1285static inline void hdspm_start_audio(struct hdspm * s)
763f356c
TI
1286{
1287 s->control_register |= (HDSPM_AudioInterruptEnable | HDSPM_Start);
1288 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1289}
1290
98274f07 1291static inline void hdspm_stop_audio(struct hdspm * s)
763f356c
TI
1292{
1293 s->control_register &= ~(HDSPM_Start | HDSPM_AudioInterruptEnable);
1294 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1295}
1296
1297/* should I silence all or only opened ones ? doit all for first even is 4MB*/
62cef821 1298static void hdspm_silence_playback(struct hdspm *hdspm)
763f356c
TI
1299{
1300 int i;
1301 int n = hdspm->period_bytes;
1302 void *buf = hdspm->playback_buffer;
1303
3cee5a60
RB
1304 if (buf == NULL)
1305 return;
763f356c
TI
1306
1307 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
1308 memset(buf, 0, n);
1309 buf += HDSPM_CHANNEL_BUFFER_BYTES;
1310 }
1311}
1312
0dca1793 1313static int hdspm_set_interrupt_interval(struct hdspm *s, unsigned int frames)
763f356c
TI
1314{
1315 int n;
1316
1317 spin_lock_irq(&s->lock);
1318
2e610270
AK
1319 if (32 == frames) {
1320 /* Special case for new RME cards like RayDAT/AIO which
1321 * support period sizes of 32 samples. Since latency is
1322 * encoded in the three bits of HDSP_LatencyMask, we can only
1323 * have values from 0 .. 7. While 0 still means 64 samples and
1324 * 6 represents 4096 samples on all cards, 7 represents 8192
1325 * on older cards and 32 samples on new cards.
1326 *
1327 * In other words, period size in samples is calculated by
1328 * 2^(n+6) with n ranging from 0 .. 7.
1329 */
1330 n = 7;
1331 } else {
1332 frames >>= 7;
1333 n = 0;
1334 while (frames) {
1335 n++;
1336 frames >>= 1;
1337 }
763f356c 1338 }
2e610270 1339
763f356c
TI
1340 s->control_register &= ~HDSPM_LatencyMask;
1341 s->control_register |= hdspm_encode_latency(n);
1342
1343 hdspm_write(s, HDSPM_controlRegister, s->control_register);
1344
1345 hdspm_compute_period_size(s);
1346
1347 spin_unlock_irq(&s->lock);
1348
1349 return 0;
1350}
1351
0dca1793
AK
1352static u64 hdspm_calc_dds_value(struct hdspm *hdspm, u64 period)
1353{
1354 u64 freq_const;
1355
1356 if (period == 0)
1357 return 0;
1358
1359 switch (hdspm->io_type) {
1360 case MADI:
1361 case AES32:
1362 freq_const = 110069313433624ULL;
1363 break;
1364 case RayDAT:
1365 case AIO:
1366 freq_const = 104857600000000ULL;
1367 break;
1368 case MADIface:
1369 freq_const = 131072000000000ULL;
3d56c8e6
TI
1370 break;
1371 default:
1372 snd_BUG();
1373 return 0;
0dca1793
AK
1374 }
1375
1376 return div_u64(freq_const, period);
1377}
1378
1379
ffb2c3c0
RB
1380static void hdspm_set_dds_value(struct hdspm *hdspm, int rate)
1381{
1382 u64 n;
0dca1793 1383
ffb2c3c0
RB
1384 if (rate >= 112000)
1385 rate /= 4;
1386 else if (rate >= 56000)
1387 rate /= 2;
1388
0dca1793
AK
1389 switch (hdspm->io_type) {
1390 case MADIface:
3d56c8e6
TI
1391 n = 131072000000000ULL; /* 125 MHz */
1392 break;
0dca1793
AK
1393 case MADI:
1394 case AES32:
3d56c8e6
TI
1395 n = 110069313433624ULL; /* 105 MHz */
1396 break;
0dca1793
AK
1397 case RayDAT:
1398 case AIO:
3d56c8e6
TI
1399 n = 104857600000000ULL; /* 100 MHz */
1400 break;
1401 default:
1402 snd_BUG();
1403 return;
0dca1793
AK
1404 }
1405
3f7440a6 1406 n = div_u64(n, rate);
ffb2c3c0 1407 /* n should be less than 2^32 for being written to FREQ register */
da3cec35 1408 snd_BUG_ON(n >> 32);
ffb2c3c0
RB
1409 hdspm_write(hdspm, HDSPM_freqReg, (u32)n);
1410}
763f356c
TI
1411
1412/* dummy set rate lets see what happens */
98274f07 1413static int hdspm_set_rate(struct hdspm * hdspm, int rate, int called_internally)
763f356c 1414{
763f356c
TI
1415 int current_rate;
1416 int rate_bits;
1417 int not_set = 0;
6534599d 1418 int current_speed, target_speed;
763f356c
TI
1419
1420 /* ASSUMPTION: hdspm->lock is either set, or there is no need for
1421 it (e.g. during module initialization).
1422 */
1423
1424 if (!(hdspm->control_register & HDSPM_ClockModeMaster)) {
1425
0dca1793 1426 /* SLAVE --- */
763f356c
TI
1427 if (called_internally) {
1428
0dca1793
AK
1429 /* request from ctl or card initialization
1430 just make a warning an remember setting
1431 for future master mode switching */
1432
ef5fa1a4
TI
1433 snd_printk(KERN_WARNING "HDSPM: "
1434 "Warning: device is not running "
1435 "as a clock master.\n");
763f356c
TI
1436 not_set = 1;
1437 } else {
1438
1439 /* hw_param request while in AutoSync mode */
1440 int external_freq =
1441 hdspm_external_sample_rate(hdspm);
1442
ef5fa1a4
TI
1443 if (hdspm_autosync_ref(hdspm) ==
1444 HDSPM_AUTOSYNC_FROM_NONE) {
763f356c 1445
ef5fa1a4
TI
1446 snd_printk(KERN_WARNING "HDSPM: "
1447 "Detected no Externel Sync \n");
763f356c
TI
1448 not_set = 1;
1449
1450 } else if (rate != external_freq) {
1451
ef5fa1a4
TI
1452 snd_printk(KERN_WARNING "HDSPM: "
1453 "Warning: No AutoSync source for "
1454 "requested rate\n");
763f356c
TI
1455 not_set = 1;
1456 }
1457 }
1458 }
1459
1460 current_rate = hdspm->system_sample_rate;
1461
1462 /* Changing between Singe, Double and Quad speed is not
1463 allowed if any substreams are open. This is because such a change
1464 causes a shift in the location of the DMA buffers and a reduction
1465 in the number of available buffers.
1466
1467 Note that a similar but essentially insoluble problem exists for
1468 externally-driven rate changes. All we can do is to flag rate
0dca1793 1469 changes in the read/write routines.
763f356c
TI
1470 */
1471
6534599d
RB
1472 if (current_rate <= 48000)
1473 current_speed = HDSPM_SPEED_SINGLE;
1474 else if (current_rate <= 96000)
1475 current_speed = HDSPM_SPEED_DOUBLE;
1476 else
1477 current_speed = HDSPM_SPEED_QUAD;
1478
1479 if (rate <= 48000)
1480 target_speed = HDSPM_SPEED_SINGLE;
1481 else if (rate <= 96000)
1482 target_speed = HDSPM_SPEED_DOUBLE;
1483 else
1484 target_speed = HDSPM_SPEED_QUAD;
3cee5a60 1485
763f356c
TI
1486 switch (rate) {
1487 case 32000:
763f356c
TI
1488 rate_bits = HDSPM_Frequency32KHz;
1489 break;
1490 case 44100:
763f356c
TI
1491 rate_bits = HDSPM_Frequency44_1KHz;
1492 break;
1493 case 48000:
763f356c
TI
1494 rate_bits = HDSPM_Frequency48KHz;
1495 break;
1496 case 64000:
763f356c
TI
1497 rate_bits = HDSPM_Frequency64KHz;
1498 break;
1499 case 88200:
763f356c
TI
1500 rate_bits = HDSPM_Frequency88_2KHz;
1501 break;
1502 case 96000:
763f356c
TI
1503 rate_bits = HDSPM_Frequency96KHz;
1504 break;
3cee5a60 1505 case 128000:
3cee5a60
RB
1506 rate_bits = HDSPM_Frequency128KHz;
1507 break;
1508 case 176400:
3cee5a60
RB
1509 rate_bits = HDSPM_Frequency176_4KHz;
1510 break;
1511 case 192000:
3cee5a60
RB
1512 rate_bits = HDSPM_Frequency192KHz;
1513 break;
763f356c
TI
1514 default:
1515 return -EINVAL;
1516 }
1517
6534599d 1518 if (current_speed != target_speed
763f356c
TI
1519 && (hdspm->capture_pid >= 0 || hdspm->playback_pid >= 0)) {
1520 snd_printk
ef5fa1a4 1521 (KERN_ERR "HDSPM: "
6534599d 1522 "cannot change from %s speed to %s speed mode "
ef5fa1a4 1523 "(capture PID = %d, playback PID = %d)\n",
6534599d
RB
1524 hdspm_speed_names[current_speed],
1525 hdspm_speed_names[target_speed],
763f356c
TI
1526 hdspm->capture_pid, hdspm->playback_pid);
1527 return -EBUSY;
1528 }
1529
1530 hdspm->control_register &= ~HDSPM_FrequencyMask;
1531 hdspm->control_register |= rate_bits;
1532 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1533
ffb2c3c0
RB
1534 /* For AES32, need to set DDS value in FREQ register
1535 For MADI, also apparently */
1536 hdspm_set_dds_value(hdspm, rate);
0dca1793
AK
1537
1538 if (AES32 == hdspm->io_type && rate != current_rate)
ffb2c3c0 1539 hdspm_write(hdspm, HDSPM_eeprom_wr, 0);
763f356c
TI
1540
1541 hdspm->system_sample_rate = rate;
1542
0dca1793
AK
1543 if (rate <= 48000) {
1544 hdspm->channel_map_in = hdspm->channel_map_in_ss;
1545 hdspm->channel_map_out = hdspm->channel_map_out_ss;
1546 hdspm->max_channels_in = hdspm->ss_in_channels;
1547 hdspm->max_channels_out = hdspm->ss_out_channels;
1548 hdspm->port_names_in = hdspm->port_names_in_ss;
1549 hdspm->port_names_out = hdspm->port_names_out_ss;
1550 } else if (rate <= 96000) {
1551 hdspm->channel_map_in = hdspm->channel_map_in_ds;
1552 hdspm->channel_map_out = hdspm->channel_map_out_ds;
1553 hdspm->max_channels_in = hdspm->ds_in_channels;
1554 hdspm->max_channels_out = hdspm->ds_out_channels;
1555 hdspm->port_names_in = hdspm->port_names_in_ds;
1556 hdspm->port_names_out = hdspm->port_names_out_ds;
1557 } else {
1558 hdspm->channel_map_in = hdspm->channel_map_in_qs;
1559 hdspm->channel_map_out = hdspm->channel_map_out_qs;
1560 hdspm->max_channels_in = hdspm->qs_in_channels;
1561 hdspm->max_channels_out = hdspm->qs_out_channels;
1562 hdspm->port_names_in = hdspm->port_names_in_qs;
1563 hdspm->port_names_out = hdspm->port_names_out_qs;
1564 }
1565
763f356c
TI
1566 if (not_set != 0)
1567 return -1;
1568
1569 return 0;
1570}
1571
1572/* mainly for init to 0 on load */
98274f07 1573static void all_in_all_mixer(struct hdspm * hdspm, int sgain)
763f356c
TI
1574{
1575 int i, j;
ef5fa1a4
TI
1576 unsigned int gain;
1577
1578 if (sgain > UNITY_GAIN)
1579 gain = UNITY_GAIN;
1580 else if (sgain < 0)
1581 gain = 0;
1582 else
1583 gain = sgain;
763f356c
TI
1584
1585 for (i = 0; i < HDSPM_MIXER_CHANNELS; i++)
1586 for (j = 0; j < HDSPM_MIXER_CHANNELS; j++) {
1587 hdspm_write_in_gain(hdspm, i, j, gain);
1588 hdspm_write_pb_gain(hdspm, i, j, gain);
1589 }
1590}
1591
1592/*----------------------------------------------------------------------------
1593 MIDI
1594 ----------------------------------------------------------------------------*/
1595
ef5fa1a4
TI
1596static inline unsigned char snd_hdspm_midi_read_byte (struct hdspm *hdspm,
1597 int id)
763f356c
TI
1598{
1599 /* the hardware already does the relevant bit-mask with 0xff */
0dca1793 1600 return hdspm_read(hdspm, hdspm->midi[id].dataIn);
763f356c
TI
1601}
1602
ef5fa1a4
TI
1603static inline void snd_hdspm_midi_write_byte (struct hdspm *hdspm, int id,
1604 int val)
763f356c
TI
1605{
1606 /* the hardware already does the relevant bit-mask with 0xff */
0dca1793 1607 return hdspm_write(hdspm, hdspm->midi[id].dataOut, val);
763f356c
TI
1608}
1609
98274f07 1610static inline int snd_hdspm_midi_input_available (struct hdspm *hdspm, int id)
763f356c 1611{
0dca1793 1612 return hdspm_read(hdspm, hdspm->midi[id].statusIn) & 0xFF;
763f356c
TI
1613}
1614
98274f07 1615static inline int snd_hdspm_midi_output_possible (struct hdspm *hdspm, int id)
763f356c
TI
1616{
1617 int fifo_bytes_used;
1618
0dca1793 1619 fifo_bytes_used = hdspm_read(hdspm, hdspm->midi[id].statusOut) & 0xFF;
763f356c
TI
1620
1621 if (fifo_bytes_used < 128)
1622 return 128 - fifo_bytes_used;
1623 else
1624 return 0;
1625}
1626
62cef821 1627static void snd_hdspm_flush_midi_input(struct hdspm *hdspm, int id)
763f356c
TI
1628{
1629 while (snd_hdspm_midi_input_available (hdspm, id))
1630 snd_hdspm_midi_read_byte (hdspm, id);
1631}
1632
98274f07 1633static int snd_hdspm_midi_output_write (struct hdspm_midi *hmidi)
763f356c
TI
1634{
1635 unsigned long flags;
1636 int n_pending;
1637 int to_write;
1638 int i;
1639 unsigned char buf[128];
1640
1641 /* Output is not interrupt driven */
0dca1793 1642
763f356c 1643 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1644 if (hmidi->output &&
1645 !snd_rawmidi_transmit_empty (hmidi->output)) {
1646 n_pending = snd_hdspm_midi_output_possible (hmidi->hdspm,
1647 hmidi->id);
1648 if (n_pending > 0) {
1649 if (n_pending > (int)sizeof (buf))
1650 n_pending = sizeof (buf);
0dca1793 1651
ef5fa1a4
TI
1652 to_write = snd_rawmidi_transmit (hmidi->output, buf,
1653 n_pending);
1654 if (to_write > 0) {
0dca1793 1655 for (i = 0; i < to_write; ++i)
ef5fa1a4
TI
1656 snd_hdspm_midi_write_byte (hmidi->hdspm,
1657 hmidi->id,
1658 buf[i]);
763f356c
TI
1659 }
1660 }
1661 }
1662 spin_unlock_irqrestore (&hmidi->lock, flags);
1663 return 0;
1664}
1665
98274f07 1666static int snd_hdspm_midi_input_read (struct hdspm_midi *hmidi)
763f356c 1667{
ef5fa1a4
TI
1668 unsigned char buf[128]; /* this buffer is designed to match the MIDI
1669 * input FIFO size
1670 */
763f356c
TI
1671 unsigned long flags;
1672 int n_pending;
1673 int i;
1674
1675 spin_lock_irqsave (&hmidi->lock, flags);
ef5fa1a4
TI
1676 n_pending = snd_hdspm_midi_input_available (hmidi->hdspm, hmidi->id);
1677 if (n_pending > 0) {
763f356c 1678 if (hmidi->input) {
ef5fa1a4 1679 if (n_pending > (int)sizeof (buf))
763f356c 1680 n_pending = sizeof (buf);
ef5fa1a4
TI
1681 for (i = 0; i < n_pending; ++i)
1682 buf[i] = snd_hdspm_midi_read_byte (hmidi->hdspm,
1683 hmidi->id);
1684 if (n_pending)
1685 snd_rawmidi_receive (hmidi->input, buf,
1686 n_pending);
763f356c
TI
1687 } else {
1688 /* flush the MIDI input FIFO */
ef5fa1a4
TI
1689 while (n_pending--)
1690 snd_hdspm_midi_read_byte (hmidi->hdspm,
1691 hmidi->id);
763f356c
TI
1692 }
1693 }
1694 hmidi->pending = 0;
c0da0014 1695 spin_unlock_irqrestore(&hmidi->lock, flags);
0dca1793 1696
c0da0014 1697 spin_lock_irqsave(&hmidi->hdspm->lock, flags);
0dca1793 1698 hmidi->hdspm->control_register |= hmidi->ie;
ef5fa1a4
TI
1699 hdspm_write(hmidi->hdspm, HDSPM_controlRegister,
1700 hmidi->hdspm->control_register);
c0da0014 1701 spin_unlock_irqrestore(&hmidi->hdspm->lock, flags);
0dca1793 1702
763f356c
TI
1703 return snd_hdspm_midi_output_write (hmidi);
1704}
1705
ef5fa1a4
TI
1706static void
1707snd_hdspm_midi_input_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1708{
98274f07
TI
1709 struct hdspm *hdspm;
1710 struct hdspm_midi *hmidi;
763f356c 1711 unsigned long flags;
763f356c 1712
ef5fa1a4 1713 hmidi = substream->rmidi->private_data;
763f356c 1714 hdspm = hmidi->hdspm;
0dca1793 1715
763f356c
TI
1716 spin_lock_irqsave (&hdspm->lock, flags);
1717 if (up) {
0dca1793 1718 if (!(hdspm->control_register & hmidi->ie)) {
763f356c 1719 snd_hdspm_flush_midi_input (hdspm, hmidi->id);
0dca1793 1720 hdspm->control_register |= hmidi->ie;
763f356c
TI
1721 }
1722 } else {
0dca1793 1723 hdspm->control_register &= ~hmidi->ie;
763f356c
TI
1724 }
1725
1726 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
1727 spin_unlock_irqrestore (&hdspm->lock, flags);
1728}
1729
1730static void snd_hdspm_midi_output_timer(unsigned long data)
1731{
98274f07 1732 struct hdspm_midi *hmidi = (struct hdspm_midi *) data;
763f356c 1733 unsigned long flags;
0dca1793 1734
763f356c
TI
1735 snd_hdspm_midi_output_write(hmidi);
1736 spin_lock_irqsave (&hmidi->lock, flags);
1737
1738 /* this does not bump hmidi->istimer, because the
1739 kernel automatically removed the timer when it
1740 expired, and we are now adding it back, thus
0dca1793 1741 leaving istimer wherever it was set before.
763f356c
TI
1742 */
1743
1744 if (hmidi->istimer) {
1745 hmidi->timer.expires = 1 + jiffies;
1746 add_timer(&hmidi->timer);
1747 }
1748
1749 spin_unlock_irqrestore (&hmidi->lock, flags);
1750}
1751
ef5fa1a4
TI
1752static void
1753snd_hdspm_midi_output_trigger(struct snd_rawmidi_substream *substream, int up)
763f356c 1754{
98274f07 1755 struct hdspm_midi *hmidi;
763f356c
TI
1756 unsigned long flags;
1757
ef5fa1a4 1758 hmidi = substream->rmidi->private_data;
763f356c
TI
1759 spin_lock_irqsave (&hmidi->lock, flags);
1760 if (up) {
1761 if (!hmidi->istimer) {
1762 init_timer(&hmidi->timer);
1763 hmidi->timer.function = snd_hdspm_midi_output_timer;
1764 hmidi->timer.data = (unsigned long) hmidi;
1765 hmidi->timer.expires = 1 + jiffies;
1766 add_timer(&hmidi->timer);
1767 hmidi->istimer++;
1768 }
1769 } else {
ef5fa1a4 1770 if (hmidi->istimer && --hmidi->istimer <= 0)
763f356c 1771 del_timer (&hmidi->timer);
763f356c
TI
1772 }
1773 spin_unlock_irqrestore (&hmidi->lock, flags);
1774 if (up)
1775 snd_hdspm_midi_output_write(hmidi);
1776}
1777
98274f07 1778static int snd_hdspm_midi_input_open(struct snd_rawmidi_substream *substream)
763f356c 1779{
98274f07 1780 struct hdspm_midi *hmidi;
763f356c 1781
ef5fa1a4 1782 hmidi = substream->rmidi->private_data;
763f356c
TI
1783 spin_lock_irq (&hmidi->lock);
1784 snd_hdspm_flush_midi_input (hmidi->hdspm, hmidi->id);
1785 hmidi->input = substream;
1786 spin_unlock_irq (&hmidi->lock);
1787
1788 return 0;
1789}
1790
98274f07 1791static int snd_hdspm_midi_output_open(struct snd_rawmidi_substream *substream)
763f356c 1792{
98274f07 1793 struct hdspm_midi *hmidi;
763f356c 1794
ef5fa1a4 1795 hmidi = substream->rmidi->private_data;
763f356c
TI
1796 spin_lock_irq (&hmidi->lock);
1797 hmidi->output = substream;
1798 spin_unlock_irq (&hmidi->lock);
1799
1800 return 0;
1801}
1802
98274f07 1803static int snd_hdspm_midi_input_close(struct snd_rawmidi_substream *substream)
763f356c 1804{
98274f07 1805 struct hdspm_midi *hmidi;
763f356c
TI
1806
1807 snd_hdspm_midi_input_trigger (substream, 0);
1808
ef5fa1a4 1809 hmidi = substream->rmidi->private_data;
763f356c
TI
1810 spin_lock_irq (&hmidi->lock);
1811 hmidi->input = NULL;
1812 spin_unlock_irq (&hmidi->lock);
1813
1814 return 0;
1815}
1816
98274f07 1817static int snd_hdspm_midi_output_close(struct snd_rawmidi_substream *substream)
763f356c 1818{
98274f07 1819 struct hdspm_midi *hmidi;
763f356c
TI
1820
1821 snd_hdspm_midi_output_trigger (substream, 0);
1822
ef5fa1a4 1823 hmidi = substream->rmidi->private_data;
763f356c
TI
1824 spin_lock_irq (&hmidi->lock);
1825 hmidi->output = NULL;
1826 spin_unlock_irq (&hmidi->lock);
1827
1828 return 0;
1829}
1830
98274f07 1831static struct snd_rawmidi_ops snd_hdspm_midi_output =
763f356c
TI
1832{
1833 .open = snd_hdspm_midi_output_open,
1834 .close = snd_hdspm_midi_output_close,
1835 .trigger = snd_hdspm_midi_output_trigger,
1836};
1837
98274f07 1838static struct snd_rawmidi_ops snd_hdspm_midi_input =
763f356c
TI
1839{
1840 .open = snd_hdspm_midi_input_open,
1841 .close = snd_hdspm_midi_input_close,
1842 .trigger = snd_hdspm_midi_input_trigger,
1843};
1844
ef5fa1a4
TI
1845static int __devinit snd_hdspm_create_midi (struct snd_card *card,
1846 struct hdspm *hdspm, int id)
763f356c
TI
1847{
1848 int err;
1849 char buf[32];
1850
1851 hdspm->midi[id].id = id;
763f356c 1852 hdspm->midi[id].hdspm = hdspm;
763f356c
TI
1853 spin_lock_init (&hdspm->midi[id].lock);
1854
0dca1793
AK
1855 if (0 == id) {
1856 if (MADIface == hdspm->io_type) {
1857 /* MIDI-over-MADI on HDSPe MADIface */
1858 hdspm->midi[0].dataIn = HDSPM_midiDataIn2;
1859 hdspm->midi[0].statusIn = HDSPM_midiStatusIn2;
1860 hdspm->midi[0].dataOut = HDSPM_midiDataOut2;
1861 hdspm->midi[0].statusOut = HDSPM_midiStatusOut2;
1862 hdspm->midi[0].ie = HDSPM_Midi2InterruptEnable;
1863 hdspm->midi[0].irq = HDSPM_midi2IRQPending;
1864 } else {
1865 hdspm->midi[0].dataIn = HDSPM_midiDataIn0;
1866 hdspm->midi[0].statusIn = HDSPM_midiStatusIn0;
1867 hdspm->midi[0].dataOut = HDSPM_midiDataOut0;
1868 hdspm->midi[0].statusOut = HDSPM_midiStatusOut0;
1869 hdspm->midi[0].ie = HDSPM_Midi0InterruptEnable;
1870 hdspm->midi[0].irq = HDSPM_midi0IRQPending;
1871 }
1872 } else if (1 == id) {
1873 hdspm->midi[1].dataIn = HDSPM_midiDataIn1;
1874 hdspm->midi[1].statusIn = HDSPM_midiStatusIn1;
1875 hdspm->midi[1].dataOut = HDSPM_midiDataOut1;
1876 hdspm->midi[1].statusOut = HDSPM_midiStatusOut1;
1877 hdspm->midi[1].ie = HDSPM_Midi1InterruptEnable;
1878 hdspm->midi[1].irq = HDSPM_midi1IRQPending;
1879 } else if ((2 == id) && (MADI == hdspm->io_type)) {
1880 /* MIDI-over-MADI on HDSPe MADI */
1881 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1882 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1883 hdspm->midi[2].dataOut = HDSPM_midiDataOut2;
1884 hdspm->midi[2].statusOut = HDSPM_midiStatusOut2;
1885 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1886 hdspm->midi[2].irq = HDSPM_midi2IRQPending;
1887 } else if (2 == id) {
1888 /* TCO MTC, read only */
1889 hdspm->midi[2].dataIn = HDSPM_midiDataIn2;
1890 hdspm->midi[2].statusIn = HDSPM_midiStatusIn2;
1891 hdspm->midi[2].dataOut = -1;
1892 hdspm->midi[2].statusOut = -1;
1893 hdspm->midi[2].ie = HDSPM_Midi2InterruptEnable;
1894 hdspm->midi[2].irq = HDSPM_midi2IRQPendingAES;
1895 } else if (3 == id) {
1896 /* TCO MTC on HDSPe MADI */
1897 hdspm->midi[3].dataIn = HDSPM_midiDataIn3;
1898 hdspm->midi[3].statusIn = HDSPM_midiStatusIn3;
1899 hdspm->midi[3].dataOut = -1;
1900 hdspm->midi[3].statusOut = -1;
1901 hdspm->midi[3].ie = HDSPM_Midi3InterruptEnable;
1902 hdspm->midi[3].irq = HDSPM_midi3IRQPending;
1903 }
1904
1905 if ((id < 2) || ((2 == id) && ((MADI == hdspm->io_type) ||
1906 (MADIface == hdspm->io_type)))) {
1907 if ((id == 0) && (MADIface == hdspm->io_type)) {
1908 sprintf(buf, "%s MIDIoverMADI", card->shortname);
1909 } else if ((id == 2) && (MADI == hdspm->io_type)) {
1910 sprintf(buf, "%s MIDIoverMADI", card->shortname);
1911 } else {
1912 sprintf(buf, "%s MIDI %d", card->shortname, id+1);
1913 }
1914 err = snd_rawmidi_new(card, buf, id, 1, 1,
1915 &hdspm->midi[id].rmidi);
1916 if (err < 0)
1917 return err;
763f356c 1918
0dca1793
AK
1919 sprintf(hdspm->midi[id].rmidi->name, "%s MIDI %d",
1920 card->id, id+1);
1921 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
1922
1923 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1924 SNDRV_RAWMIDI_STREAM_OUTPUT,
1925 &snd_hdspm_midi_output);
1926 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1927 SNDRV_RAWMIDI_STREAM_INPUT,
1928 &snd_hdspm_midi_input);
1929
1930 hdspm->midi[id].rmidi->info_flags |=
1931 SNDRV_RAWMIDI_INFO_OUTPUT |
1932 SNDRV_RAWMIDI_INFO_INPUT |
1933 SNDRV_RAWMIDI_INFO_DUPLEX;
1934 } else {
1935 /* TCO MTC, read only */
1936 sprintf(buf, "%s MTC %d", card->shortname, id+1);
1937 err = snd_rawmidi_new(card, buf, id, 1, 1,
1938 &hdspm->midi[id].rmidi);
1939 if (err < 0)
1940 return err;
1941
1942 sprintf(hdspm->midi[id].rmidi->name,
1943 "%s MTC %d", card->id, id+1);
1944 hdspm->midi[id].rmidi->private_data = &hdspm->midi[id];
763f356c 1945
0dca1793
AK
1946 snd_rawmidi_set_ops(hdspm->midi[id].rmidi,
1947 SNDRV_RAWMIDI_STREAM_INPUT,
1948 &snd_hdspm_midi_input);
763f356c 1949
0dca1793
AK
1950 hdspm->midi[id].rmidi->info_flags |= SNDRV_RAWMIDI_INFO_INPUT;
1951 }
763f356c
TI
1952
1953 return 0;
1954}
1955
1956
1957static void hdspm_midi_tasklet(unsigned long arg)
1958{
98274f07 1959 struct hdspm *hdspm = (struct hdspm *)arg;
0dca1793
AK
1960 int i = 0;
1961
1962 while (i < hdspm->midiPorts) {
1963 if (hdspm->midi[i].pending)
1964 snd_hdspm_midi_input_read(&hdspm->midi[i]);
1965
1966 i++;
1967 }
1968}
763f356c
TI
1969
1970
1971/*-----------------------------------------------------------------------------
1972 Status Interface
1973 ----------------------------------------------------------------------------*/
1974
1975/* get the system sample rate which is set */
1976
0dca1793
AK
1977
1978/**
1979 * Calculate the real sample rate from the
1980 * current DDS value.
1981 **/
1982static int hdspm_get_system_sample_rate(struct hdspm *hdspm)
1983{
1984 unsigned int period, rate;
1985
1986 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
1987 rate = hdspm_calc_dds_value(hdspm, period);
1988
1989 return rate;
1990}
1991
1992
763f356c 1993#define HDSPM_SYSTEM_SAMPLE_RATE(xname, xindex) \
67ed4161 1994{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
1995 .name = xname, \
1996 .index = xindex, \
1997 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
1998 .info = snd_hdspm_info_system_sample_rate, \
1999 .get = snd_hdspm_get_system_sample_rate \
2000}
2001
98274f07
TI
2002static int snd_hdspm_info_system_sample_rate(struct snd_kcontrol *kcontrol,
2003 struct snd_ctl_elem_info *uinfo)
763f356c
TI
2004{
2005 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2006 uinfo->count = 1;
0dca1793
AK
2007 uinfo->value.integer.min = 27000;
2008 uinfo->value.integer.max = 207000;
2009 uinfo->value.integer.step = 1;
763f356c
TI
2010 return 0;
2011}
2012
0dca1793 2013
98274f07
TI
2014static int snd_hdspm_get_system_sample_rate(struct snd_kcontrol *kcontrol,
2015 struct snd_ctl_elem_value *
763f356c
TI
2016 ucontrol)
2017{
98274f07 2018 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2019
0dca1793
AK
2020 ucontrol->value.integer.value[0] = hdspm_get_system_sample_rate(hdspm);
2021 return 0;
2022}
2023
2024
2025/**
2026 * Returns the WordClock sample rate class for the given card.
2027 **/
2028static int hdspm_get_wc_sample_rate(struct hdspm *hdspm)
2029{
2030 int status;
2031
2032 switch (hdspm->io_type) {
2033 case RayDAT:
2034 case AIO:
2035 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2036 return (status >> 16) & 0xF;
2037 break;
2038 default:
2039 break;
2040 }
2041
2042
2043 return 0;
2044}
2045
2046
2047/**
2048 * Returns the TCO sample rate class for the given card.
2049 **/
2050static int hdspm_get_tco_sample_rate(struct hdspm *hdspm)
2051{
2052 int status;
2053
2054 if (hdspm->tco) {
2055 switch (hdspm->io_type) {
2056 case RayDAT:
2057 case AIO:
2058 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
2059 return (status >> 20) & 0xF;
2060 break;
2061 default:
2062 break;
2063 }
2064 }
2065
2066 return 0;
2067}
2068
2069
2070/**
2071 * Returns the SYNC_IN sample rate class for the given card.
2072 **/
2073static int hdspm_get_sync_in_sample_rate(struct hdspm *hdspm)
2074{
2075 int status;
2076
2077 if (hdspm->tco) {
2078 switch (hdspm->io_type) {
2079 case RayDAT:
2080 case AIO:
2081 status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2082 return (status >> 12) & 0xF;
2083 break;
2084 default:
2085 break;
2086 }
2087 }
2088
763f356c
TI
2089 return 0;
2090}
2091
0dca1793
AK
2092
2093/**
2094 * Returns the sample rate class for input source <idx> for
2095 * 'new style' cards like the AIO and RayDAT.
2096 **/
2097static int hdspm_get_s1_sample_rate(struct hdspm *hdspm, unsigned int idx)
2098{
2099 int status = hdspm_read(hdspm, HDSPM_RD_STATUS_2);
2100
2101 return (status >> (idx*4)) & 0xF;
2102}
2103
2104
2105
763f356c 2106#define HDSPM_AUTOSYNC_SAMPLE_RATE(xname, xindex) \
0dca1793
AK
2107{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2108 .name = xname, \
2109 .private_value = xindex, \
2110 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2111 .info = snd_hdspm_info_autosync_sample_rate, \
2112 .get = snd_hdspm_get_autosync_sample_rate \
763f356c
TI
2113}
2114
0dca1793 2115
98274f07
TI
2116static int snd_hdspm_info_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2117 struct snd_ctl_elem_info *uinfo)
763f356c 2118{
763f356c
TI
2119 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2120 uinfo->count = 1;
2121 uinfo->value.enumerated.items = 10;
0dca1793 2122
763f356c 2123 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
0dca1793 2124 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
763f356c 2125 strcpy(uinfo->value.enumerated.name,
0dca1793 2126 texts_freq[uinfo->value.enumerated.item]);
763f356c
TI
2127 return 0;
2128}
2129
0dca1793 2130
98274f07
TI
2131static int snd_hdspm_get_autosync_sample_rate(struct snd_kcontrol *kcontrol,
2132 struct snd_ctl_elem_value *
763f356c
TI
2133 ucontrol)
2134{
98274f07 2135 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2136
0dca1793
AK
2137 switch (hdspm->io_type) {
2138 case RayDAT:
2139 switch (kcontrol->private_value) {
2140 case 0:
2141 ucontrol->value.enumerated.item[0] =
2142 hdspm_get_wc_sample_rate(hdspm);
2143 break;
2144 case 7:
2145 ucontrol->value.enumerated.item[0] =
2146 hdspm_get_tco_sample_rate(hdspm);
2147 break;
2148 case 8:
2149 ucontrol->value.enumerated.item[0] =
2150 hdspm_get_sync_in_sample_rate(hdspm);
2151 break;
2152 default:
2153 ucontrol->value.enumerated.item[0] =
2154 hdspm_get_s1_sample_rate(hdspm,
2155 kcontrol->private_value-1);
2156 }
763f356c 2157
0dca1793
AK
2158 case AIO:
2159 switch (kcontrol->private_value) {
2160 case 0: /* WC */
2161 ucontrol->value.enumerated.item[0] =
2162 hdspm_get_wc_sample_rate(hdspm);
2163 break;
2164 case 4: /* TCO */
2165 ucontrol->value.enumerated.item[0] =
2166 hdspm_get_tco_sample_rate(hdspm);
2167 break;
2168 case 5: /* SYNC_IN */
2169 ucontrol->value.enumerated.item[0] =
2170 hdspm_get_sync_in_sample_rate(hdspm);
2171 break;
2172 default:
2173 ucontrol->value.enumerated.item[0] =
2174 hdspm_get_s1_sample_rate(hdspm,
2175 ucontrol->id.index-1);
2176 }
7c4a95b5
AK
2177
2178 case AES32:
2179
2180 switch (kcontrol->private_value) {
2181 case 0: /* WC */
2182 ucontrol->value.enumerated.item[0] =
2183 hdspm_get_wc_sample_rate(hdspm);
2184 break;
2185 case 9: /* TCO */
2186 ucontrol->value.enumerated.item[0] =
2187 hdspm_get_tco_sample_rate(hdspm);
2188 break;
2189 case 10: /* SYNC_IN */
2190 ucontrol->value.enumerated.item[0] =
2191 hdspm_get_sync_in_sample_rate(hdspm);
2192 break;
2193 default: /* AES1 to AES8 */
2194 ucontrol->value.enumerated.item[0] =
2195 hdspm_get_s1_sample_rate(hdspm,
2196 kcontrol->private_value-1);
2197 break;
2198
2199 }
763f356c 2200 default:
0dca1793 2201 break;
763f356c 2202 }
763f356c 2203
0dca1793 2204 return 0;
763f356c
TI
2205}
2206
2207
0dca1793
AK
2208#define HDSPM_SYSTEM_CLOCK_MODE(xname, xindex) \
2209{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2210 .name = xname, \
2211 .index = xindex, \
2212 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2213 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2214 .info = snd_hdspm_info_system_clock_mode, \
2215 .get = snd_hdspm_get_system_clock_mode, \
2216 .put = snd_hdspm_put_system_clock_mode, \
2217}
2218
2219
2220/**
2221 * Returns the system clock mode for the given card.
2222 * @returns 0 - master, 1 - slave
2223 **/
2224static int hdspm_system_clock_mode(struct hdspm *hdspm)
2225{
2226 switch (hdspm->io_type) {
2227 case AIO:
2228 case RayDAT:
2229 if (hdspm->settings_register & HDSPM_c0Master)
2230 return 0;
2231 break;
763f356c 2232
0dca1793
AK
2233 default:
2234 if (hdspm->control_register & HDSPM_ClockModeMaster)
2235 return 0;
2236 }
763f356c 2237
763f356c
TI
2238 return 1;
2239}
2240
0dca1793
AK
2241
2242/**
2243 * Sets the system clock mode.
2244 * @param mode 0 - master, 1 - slave
2245 **/
2246static void hdspm_set_system_clock_mode(struct hdspm *hdspm, int mode)
2247{
2248 switch (hdspm->io_type) {
2249 case AIO:
2250 case RayDAT:
2251 if (0 == mode)
2252 hdspm->settings_register |= HDSPM_c0Master;
2253 else
2254 hdspm->settings_register &= ~HDSPM_c0Master;
2255
2256 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2257 break;
2258
2259 default:
2260 if (0 == mode)
2261 hdspm->control_register |= HDSPM_ClockModeMaster;
2262 else
2263 hdspm->control_register &= ~HDSPM_ClockModeMaster;
2264
2265 hdspm_write(hdspm, HDSPM_controlRegister,
2266 hdspm->control_register);
2267 }
2268}
2269
2270
2271static int snd_hdspm_info_system_clock_mode(struct snd_kcontrol *kcontrol,
98274f07 2272 struct snd_ctl_elem_info *uinfo)
763f356c 2273{
0dca1793 2274 static char *texts[] = { "Master", "AutoSync" };
763f356c
TI
2275
2276 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2277 uinfo->count = 1;
2278 uinfo->value.enumerated.items = 2;
2279 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2280 uinfo->value.enumerated.item =
2281 uinfo->value.enumerated.items - 1;
2282 strcpy(uinfo->value.enumerated.name,
2283 texts[uinfo->value.enumerated.item]);
2284 return 0;
2285}
2286
98274f07
TI
2287static int snd_hdspm_get_system_clock_mode(struct snd_kcontrol *kcontrol,
2288 struct snd_ctl_elem_value *ucontrol)
763f356c 2289{
98274f07 2290 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2291
0dca1793 2292 ucontrol->value.enumerated.item[0] = hdspm_system_clock_mode(hdspm);
763f356c
TI
2293 return 0;
2294}
2295
0dca1793
AK
2296static int snd_hdspm_put_system_clock_mode(struct snd_kcontrol *kcontrol,
2297 struct snd_ctl_elem_value *ucontrol)
2298{
2299 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
2300 int val;
2301
2302 if (!snd_hdspm_use_is_exclusive(hdspm))
2303 return -EBUSY;
2304
2305 val = ucontrol->value.enumerated.item[0];
2306 if (val < 0)
2307 val = 0;
2308 else if (val > 1)
2309 val = 1;
2310
2311 hdspm_set_system_clock_mode(hdspm, val);
2312
2313 return 0;
2314}
2315
2316
2317#define HDSPM_INTERNAL_CLOCK(xname, xindex) \
2318{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2319 .name = xname, \
2320 .index = xindex, \
2321 .info = snd_hdspm_info_clock_source, \
2322 .get = snd_hdspm_get_clock_source, \
2323 .put = snd_hdspm_put_clock_source \
763f356c
TI
2324}
2325
0dca1793 2326
98274f07 2327static int hdspm_clock_source(struct hdspm * hdspm)
763f356c 2328{
0dca1793
AK
2329 switch (hdspm->system_sample_rate) {
2330 case 32000: return 0;
2331 case 44100: return 1;
2332 case 48000: return 2;
2333 case 64000: return 3;
2334 case 88200: return 4;
2335 case 96000: return 5;
2336 case 128000: return 6;
2337 case 176400: return 7;
2338 case 192000: return 8;
763f356c 2339 }
0dca1793
AK
2340
2341 return -1;
763f356c
TI
2342}
2343
98274f07 2344static int hdspm_set_clock_source(struct hdspm * hdspm, int mode)
763f356c
TI
2345{
2346 int rate;
2347 switch (mode) {
0dca1793
AK
2348 case 0:
2349 rate = 32000; break;
2350 case 1:
2351 rate = 44100; break;
2352 case 2:
2353 rate = 48000; break;
2354 case 3:
2355 rate = 64000; break;
2356 case 4:
2357 rate = 88200; break;
2358 case 5:
2359 rate = 96000; break;
2360 case 6:
2361 rate = 128000; break;
2362 case 7:
2363 rate = 176400; break;
2364 case 8:
2365 rate = 192000; break;
763f356c 2366 default:
0dca1793 2367 rate = 48000;
763f356c 2368 }
763f356c
TI
2369 hdspm_set_rate(hdspm, rate, 1);
2370 return 0;
2371}
2372
98274f07
TI
2373static int snd_hdspm_info_clock_source(struct snd_kcontrol *kcontrol,
2374 struct snd_ctl_elem_info *uinfo)
763f356c 2375{
763f356c
TI
2376 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2377 uinfo->count = 1;
0dca1793 2378 uinfo->value.enumerated.items = 9;
763f356c
TI
2379
2380 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2381 uinfo->value.enumerated.item =
2382 uinfo->value.enumerated.items - 1;
2383
2384 strcpy(uinfo->value.enumerated.name,
0dca1793 2385 texts_freq[uinfo->value.enumerated.item+1]);
763f356c
TI
2386
2387 return 0;
2388}
2389
98274f07
TI
2390static int snd_hdspm_get_clock_source(struct snd_kcontrol *kcontrol,
2391 struct snd_ctl_elem_value *ucontrol)
763f356c 2392{
98274f07 2393 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2394
2395 ucontrol->value.enumerated.item[0] = hdspm_clock_source(hdspm);
2396 return 0;
2397}
2398
98274f07
TI
2399static int snd_hdspm_put_clock_source(struct snd_kcontrol *kcontrol,
2400 struct snd_ctl_elem_value *ucontrol)
763f356c 2401{
98274f07 2402 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2403 int change;
2404 int val;
2405
2406 if (!snd_hdspm_use_is_exclusive(hdspm))
2407 return -EBUSY;
2408 val = ucontrol->value.enumerated.item[0];
2409 if (val < 0)
2410 val = 0;
6534599d
RB
2411 if (val > 9)
2412 val = 9;
763f356c
TI
2413 spin_lock_irq(&hdspm->lock);
2414 if (val != hdspm_clock_source(hdspm))
2415 change = (hdspm_set_clock_source(hdspm, val) == 0) ? 1 : 0;
2416 else
2417 change = 0;
2418 spin_unlock_irq(&hdspm->lock);
2419 return change;
2420}
2421
763f356c 2422
0dca1793
AK
2423#define HDSPM_PREF_SYNC_REF(xname, xindex) \
2424{.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
2425 .name = xname, \
2426 .index = xindex, \
2427 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
2428 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
2429 .info = snd_hdspm_info_pref_sync_ref, \
2430 .get = snd_hdspm_get_pref_sync_ref, \
2431 .put = snd_hdspm_put_pref_sync_ref \
2432}
2433
2434
2435/**
2436 * Returns the current preferred sync reference setting.
2437 * The semantics of the return value are depending on the
2438 * card, please see the comments for clarification.
2439 **/
98274f07 2440static int hdspm_pref_sync_ref(struct hdspm * hdspm)
763f356c 2441{
0dca1793
AK
2442 switch (hdspm->io_type) {
2443 case AES32:
3cee5a60 2444 switch (hdspm->control_register & HDSPM_SyncRefMask) {
0dca1793
AK
2445 case 0: return 0; /* WC */
2446 case HDSPM_SyncRef0: return 1; /* AES 1 */
2447 case HDSPM_SyncRef1: return 2; /* AES 2 */
2448 case HDSPM_SyncRef1+HDSPM_SyncRef0: return 3; /* AES 3 */
2449 case HDSPM_SyncRef2: return 4; /* AES 4 */
2450 case HDSPM_SyncRef2+HDSPM_SyncRef0: return 5; /* AES 5 */
2451 case HDSPM_SyncRef2+HDSPM_SyncRef1: return 6; /* AES 6 */
2452 case HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0:
2453 return 7; /* AES 7 */
2454 case HDSPM_SyncRef3: return 8; /* AES 8 */
2455 case HDSPM_SyncRef3+HDSPM_SyncRef0: return 9; /* TCO */
3cee5a60 2456 }
0dca1793
AK
2457 break;
2458
2459 case MADI:
2460 case MADIface:
2461 if (hdspm->tco) {
2462 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2463 case 0: return 0; /* WC */
2464 case HDSPM_SyncRef0: return 1; /* MADI */
2465 case HDSPM_SyncRef1: return 2; /* TCO */
2466 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2467 return 3; /* SYNC_IN */
2468 }
2469 } else {
2470 switch (hdspm->control_register & HDSPM_SyncRefMask) {
2471 case 0: return 0; /* WC */
2472 case HDSPM_SyncRef0: return 1; /* MADI */
2473 case HDSPM_SyncRef1+HDSPM_SyncRef0:
2474 return 2; /* SYNC_IN */
2475 }
2476 }
2477 break;
2478
2479 case RayDAT:
2480 if (hdspm->tco) {
2481 switch ((hdspm->settings_register &
2482 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2483 case 0: return 0; /* WC */
2484 case 3: return 1; /* ADAT 1 */
2485 case 4: return 2; /* ADAT 2 */
2486 case 5: return 3; /* ADAT 3 */
2487 case 6: return 4; /* ADAT 4 */
2488 case 1: return 5; /* AES */
2489 case 2: return 6; /* SPDIF */
2490 case 9: return 7; /* TCO */
2491 case 10: return 8; /* SYNC_IN */
2492 }
2493 } else {
2494 switch ((hdspm->settings_register &
2495 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2496 case 0: return 0; /* WC */
2497 case 3: return 1; /* ADAT 1 */
2498 case 4: return 2; /* ADAT 2 */
2499 case 5: return 3; /* ADAT 3 */
2500 case 6: return 4; /* ADAT 4 */
2501 case 1: return 5; /* AES */
2502 case 2: return 6; /* SPDIF */
2503 case 10: return 7; /* SYNC_IN */
2504 }
3cee5a60 2505 }
0dca1793
AK
2506
2507 break;
2508
2509 case AIO:
2510 if (hdspm->tco) {
2511 switch ((hdspm->settings_register &
2512 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2513 case 0: return 0; /* WC */
2514 case 3: return 1; /* ADAT */
2515 case 1: return 2; /* AES */
2516 case 2: return 3; /* SPDIF */
2517 case 9: return 4; /* TCO */
2518 case 10: return 5; /* SYNC_IN */
2519 }
2520 } else {
2521 switch ((hdspm->settings_register &
2522 HDSPM_c0_SyncRefMask) / HDSPM_c0_SyncRef0) {
2523 case 0: return 0; /* WC */
2524 case 3: return 1; /* ADAT */
2525 case 1: return 2; /* AES */
2526 case 2: return 3; /* SPDIF */
2527 case 10: return 4; /* SYNC_IN */
2528 }
2529 }
2530
2531 break;
763f356c
TI
2532 }
2533
0dca1793 2534 return -1;
763f356c
TI
2535}
2536
0dca1793
AK
2537
2538/**
2539 * Set the preferred sync reference to <pref>. The semantics
2540 * of <pref> are depending on the card type, see the comments
2541 * for clarification.
2542 **/
98274f07 2543static int hdspm_set_pref_sync_ref(struct hdspm * hdspm, int pref)
763f356c 2544{
0dca1793 2545 int p = 0;
763f356c 2546
0dca1793
AK
2547 switch (hdspm->io_type) {
2548 case AES32:
2549 hdspm->control_register &= ~HDSPM_SyncRefMask;
3cee5a60 2550 switch (pref) {
0dca1793
AK
2551 case 0: /* WC */
2552 break;
2553 case 1: /* AES 1 */
2554 hdspm->control_register |= HDSPM_SyncRef0;
2555 break;
2556 case 2: /* AES 2 */
2557 hdspm->control_register |= HDSPM_SyncRef1;
2558 break;
2559 case 3: /* AES 3 */
2560 hdspm->control_register |=
2561 HDSPM_SyncRef1+HDSPM_SyncRef0;
2562 break;
2563 case 4: /* AES 4 */
2564 hdspm->control_register |= HDSPM_SyncRef2;
2565 break;
2566 case 5: /* AES 5 */
2567 hdspm->control_register |=
2568 HDSPM_SyncRef2+HDSPM_SyncRef0;
2569 break;
2570 case 6: /* AES 6 */
2571 hdspm->control_register |=
2572 HDSPM_SyncRef2+HDSPM_SyncRef1;
2573 break;
2574 case 7: /* AES 7 */
2575 hdspm->control_register |=
2576 HDSPM_SyncRef2+HDSPM_SyncRef1+HDSPM_SyncRef0;
3cee5a60 2577 break;
0dca1793
AK
2578 case 8: /* AES 8 */
2579 hdspm->control_register |= HDSPM_SyncRef3;
2580 break;
2581 case 9: /* TCO */
2582 hdspm->control_register |=
2583 HDSPM_SyncRef3+HDSPM_SyncRef0;
3cee5a60
RB
2584 break;
2585 default:
2586 return -1;
2587 }
0dca1793
AK
2588
2589 break;
2590
2591 case MADI:
2592 case MADIface:
2593 hdspm->control_register &= ~HDSPM_SyncRefMask;
2594 if (hdspm->tco) {
2595 switch (pref) {
2596 case 0: /* WC */
2597 break;
2598 case 1: /* MADI */
2599 hdspm->control_register |= HDSPM_SyncRef0;
2600 break;
2601 case 2: /* TCO */
2602 hdspm->control_register |= HDSPM_SyncRef1;
2603 break;
2604 case 3: /* SYNC_IN */
2605 hdspm->control_register |=
2606 HDSPM_SyncRef0+HDSPM_SyncRef1;
2607 break;
2608 default:
2609 return -1;
2610 }
2611 } else {
2612 switch (pref) {
2613 case 0: /* WC */
2614 break;
2615 case 1: /* MADI */
2616 hdspm->control_register |= HDSPM_SyncRef0;
2617 break;
2618 case 2: /* SYNC_IN */
2619 hdspm->control_register |=
2620 HDSPM_SyncRef0+HDSPM_SyncRef1;
2621 break;
2622 default:
2623 return -1;
2624 }
2625 }
2626
2627 break;
2628
2629 case RayDAT:
2630 if (hdspm->tco) {
2631 switch (pref) {
2632 case 0: p = 0; break; /* WC */
2633 case 1: p = 3; break; /* ADAT 1 */
2634 case 2: p = 4; break; /* ADAT 2 */
2635 case 3: p = 5; break; /* ADAT 3 */
2636 case 4: p = 6; break; /* ADAT 4 */
2637 case 5: p = 1; break; /* AES */
2638 case 6: p = 2; break; /* SPDIF */
2639 case 7: p = 9; break; /* TCO */
2640 case 8: p = 10; break; /* SYNC_IN */
2641 default: return -1;
2642 }
2643 } else {
2644 switch (pref) {
2645 case 0: p = 0; break; /* WC */
2646 case 1: p = 3; break; /* ADAT 1 */
2647 case 2: p = 4; break; /* ADAT 2 */
2648 case 3: p = 5; break; /* ADAT 3 */
2649 case 4: p = 6; break; /* ADAT 4 */
2650 case 5: p = 1; break; /* AES */
2651 case 6: p = 2; break; /* SPDIF */
2652 case 7: p = 10; break; /* SYNC_IN */
2653 default: return -1;
2654 }
2655 }
2656 break;
2657
2658 case AIO:
2659 if (hdspm->tco) {
2660 switch (pref) {
2661 case 0: p = 0; break; /* WC */
2662 case 1: p = 3; break; /* ADAT */
2663 case 2: p = 1; break; /* AES */
2664 case 3: p = 2; break; /* SPDIF */
2665 case 4: p = 9; break; /* TCO */
2666 case 5: p = 10; break; /* SYNC_IN */
2667 default: return -1;
2668 }
2669 } else {
2670 switch (pref) {
2671 case 0: p = 0; break; /* WC */
2672 case 1: p = 3; break; /* ADAT */
2673 case 2: p = 1; break; /* AES */
2674 case 3: p = 2; break; /* SPDIF */
2675 case 4: p = 10; break; /* SYNC_IN */
2676 default: return -1;
2677 }
2678 }
2679 break;
763f356c 2680 }
0dca1793
AK
2681
2682 switch (hdspm->io_type) {
2683 case RayDAT:
2684 case AIO:
2685 hdspm->settings_register &= ~HDSPM_c0_SyncRefMask;
2686 hdspm->settings_register |= HDSPM_c0_SyncRef0 * p;
2687 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
2688 break;
2689
2690 case MADI:
2691 case MADIface:
2692 case AES32:
2693 hdspm_write(hdspm, HDSPM_controlRegister,
2694 hdspm->control_register);
2695 }
2696
763f356c
TI
2697 return 0;
2698}
2699
0dca1793 2700
98274f07
TI
2701static int snd_hdspm_info_pref_sync_ref(struct snd_kcontrol *kcontrol,
2702 struct snd_ctl_elem_info *uinfo)
763f356c 2703{
3cee5a60 2704 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2705
0dca1793
AK
2706 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2707 uinfo->count = 1;
2708 uinfo->value.enumerated.items = hdspm->texts_autosync_items;
3cee5a60 2709
0dca1793
AK
2710 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2711 uinfo->value.enumerated.item =
2712 uinfo->value.enumerated.items - 1;
3cee5a60 2713
0dca1793
AK
2714 strcpy(uinfo->value.enumerated.name,
2715 hdspm->texts_autosync[uinfo->value.enumerated.item]);
3cee5a60 2716
763f356c
TI
2717 return 0;
2718}
2719
98274f07
TI
2720static int snd_hdspm_get_pref_sync_ref(struct snd_kcontrol *kcontrol,
2721 struct snd_ctl_elem_value *ucontrol)
763f356c 2722{
98274f07 2723 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
0dca1793 2724 int psf = hdspm_pref_sync_ref(hdspm);
763f356c 2725
0dca1793
AK
2726 if (psf >= 0) {
2727 ucontrol->value.enumerated.item[0] = psf;
2728 return 0;
2729 }
2730
2731 return -1;
763f356c
TI
2732}
2733
98274f07
TI
2734static int snd_hdspm_put_pref_sync_ref(struct snd_kcontrol *kcontrol,
2735 struct snd_ctl_elem_value *ucontrol)
763f356c 2736{
98274f07 2737 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
0dca1793 2738 int val, change = 0;
763f356c
TI
2739
2740 if (!snd_hdspm_use_is_exclusive(hdspm))
2741 return -EBUSY;
2742
0dca1793
AK
2743 val = ucontrol->value.enumerated.item[0];
2744
2745 if (val < 0)
2746 val = 0;
2747 else if (val >= hdspm->texts_autosync_items)
2748 val = hdspm->texts_autosync_items-1;
763f356c
TI
2749
2750 spin_lock_irq(&hdspm->lock);
0dca1793
AK
2751 if (val != hdspm_pref_sync_ref(hdspm))
2752 change = (0 == hdspm_set_pref_sync_ref(hdspm, val)) ? 1 : 0;
2753
763f356c
TI
2754 spin_unlock_irq(&hdspm->lock);
2755 return change;
2756}
2757
0dca1793 2758
763f356c 2759#define HDSPM_AUTOSYNC_REF(xname, xindex) \
67ed4161 2760{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2761 .name = xname, \
2762 .index = xindex, \
2763 .access = SNDRV_CTL_ELEM_ACCESS_READ, \
2764 .info = snd_hdspm_info_autosync_ref, \
2765 .get = snd_hdspm_get_autosync_ref, \
2766}
2767
0dca1793 2768static int hdspm_autosync_ref(struct hdspm *hdspm)
763f356c 2769{
0dca1793 2770 if (AES32 == hdspm->io_type) {
3cee5a60 2771 unsigned int status = hdspm_read(hdspm, HDSPM_statusRegister);
0dca1793
AK
2772 unsigned int syncref =
2773 (status >> HDSPM_AES32_syncref_bit) & 0xF;
3cee5a60
RB
2774 if (syncref == 0)
2775 return HDSPM_AES32_AUTOSYNC_FROM_WORD;
2776 if (syncref <= 8)
2777 return syncref;
2778 return HDSPM_AES32_AUTOSYNC_FROM_NONE;
0dca1793 2779 } else if (MADI == hdspm->io_type) {
3cee5a60
RB
2780 /* This looks at the autosync selected sync reference */
2781 unsigned int status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
2782
2783 switch (status2 & HDSPM_SelSyncRefMask) {
2784 case HDSPM_SelSyncRef_WORD:
2785 return HDSPM_AUTOSYNC_FROM_WORD;
2786 case HDSPM_SelSyncRef_MADI:
2787 return HDSPM_AUTOSYNC_FROM_MADI;
0dca1793
AK
2788 case HDSPM_SelSyncRef_TCO:
2789 return HDSPM_AUTOSYNC_FROM_TCO;
2790 case HDSPM_SelSyncRef_SyncIn:
2791 return HDSPM_AUTOSYNC_FROM_SYNC_IN;
3cee5a60
RB
2792 case HDSPM_SelSyncRef_NVALID:
2793 return HDSPM_AUTOSYNC_FROM_NONE;
2794 default:
2795 return 0;
2796 }
763f356c 2797
763f356c 2798 }
0dca1793 2799 return 0;
763f356c
TI
2800}
2801
0dca1793 2802
98274f07
TI
2803static int snd_hdspm_info_autosync_ref(struct snd_kcontrol *kcontrol,
2804 struct snd_ctl_elem_info *uinfo)
763f356c 2805{
3cee5a60 2806 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2807
0dca1793 2808 if (AES32 == hdspm->io_type) {
3cee5a60
RB
2809 static char *texts[] = { "WordClock", "AES1", "AES2", "AES3",
2810 "AES4", "AES5", "AES6", "AES7", "AES8", "None"};
2811
2812 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2813 uinfo->count = 1;
2814 uinfo->value.enumerated.items = 10;
ef5fa1a4
TI
2815 if (uinfo->value.enumerated.item >=
2816 uinfo->value.enumerated.items)
3cee5a60
RB
2817 uinfo->value.enumerated.item =
2818 uinfo->value.enumerated.items - 1;
2819 strcpy(uinfo->value.enumerated.name,
2820 texts[uinfo->value.enumerated.item]);
0dca1793
AK
2821 } else if (MADI == hdspm->io_type) {
2822 static char *texts[] = {"Word Clock", "MADI", "TCO",
2823 "Sync In", "None" };
3cee5a60
RB
2824
2825 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2826 uinfo->count = 1;
0dca1793 2827 uinfo->value.enumerated.items = 5;
ef5fa1a4 2828 if (uinfo->value.enumerated.item >=
0dca1793 2829 uinfo->value.enumerated.items)
3cee5a60
RB
2830 uinfo->value.enumerated.item =
2831 uinfo->value.enumerated.items - 1;
2832 strcpy(uinfo->value.enumerated.name,
2833 texts[uinfo->value.enumerated.item]);
2834 }
763f356c
TI
2835 return 0;
2836}
2837
98274f07
TI
2838static int snd_hdspm_get_autosync_ref(struct snd_kcontrol *kcontrol,
2839 struct snd_ctl_elem_value *ucontrol)
763f356c 2840{
98274f07 2841 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 2842
6534599d 2843 ucontrol->value.enumerated.item[0] = hdspm_autosync_ref(hdspm);
763f356c
TI
2844 return 0;
2845}
2846
0dca1793 2847
763f356c 2848#define HDSPM_LINE_OUT(xname, xindex) \
67ed4161 2849{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2850 .name = xname, \
2851 .index = xindex, \
2852 .info = snd_hdspm_info_line_out, \
2853 .get = snd_hdspm_get_line_out, \
2854 .put = snd_hdspm_put_line_out \
2855}
2856
98274f07 2857static int hdspm_line_out(struct hdspm * hdspm)
763f356c
TI
2858{
2859 return (hdspm->control_register & HDSPM_LineOut) ? 1 : 0;
2860}
2861
2862
98274f07 2863static int hdspm_set_line_output(struct hdspm * hdspm, int out)
763f356c
TI
2864{
2865 if (out)
2866 hdspm->control_register |= HDSPM_LineOut;
2867 else
2868 hdspm->control_register &= ~HDSPM_LineOut;
2869 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2870
2871 return 0;
2872}
2873
a5ce8890 2874#define snd_hdspm_info_line_out snd_ctl_boolean_mono_info
763f356c 2875
98274f07
TI
2876static int snd_hdspm_get_line_out(struct snd_kcontrol *kcontrol,
2877 struct snd_ctl_elem_value *ucontrol)
763f356c 2878{
98274f07 2879 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2880
2881 spin_lock_irq(&hdspm->lock);
2882 ucontrol->value.integer.value[0] = hdspm_line_out(hdspm);
2883 spin_unlock_irq(&hdspm->lock);
2884 return 0;
2885}
2886
98274f07
TI
2887static int snd_hdspm_put_line_out(struct snd_kcontrol *kcontrol,
2888 struct snd_ctl_elem_value *ucontrol)
763f356c 2889{
98274f07 2890 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2891 int change;
2892 unsigned int val;
2893
2894 if (!snd_hdspm_use_is_exclusive(hdspm))
2895 return -EBUSY;
2896 val = ucontrol->value.integer.value[0] & 1;
2897 spin_lock_irq(&hdspm->lock);
2898 change = (int) val != hdspm_line_out(hdspm);
2899 hdspm_set_line_output(hdspm, val);
2900 spin_unlock_irq(&hdspm->lock);
2901 return change;
2902}
2903
0dca1793 2904
763f356c 2905#define HDSPM_TX_64(xname, xindex) \
67ed4161 2906{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2907 .name = xname, \
2908 .index = xindex, \
2909 .info = snd_hdspm_info_tx_64, \
2910 .get = snd_hdspm_get_tx_64, \
2911 .put = snd_hdspm_put_tx_64 \
2912}
2913
98274f07 2914static int hdspm_tx_64(struct hdspm * hdspm)
763f356c
TI
2915{
2916 return (hdspm->control_register & HDSPM_TX_64ch) ? 1 : 0;
2917}
2918
98274f07 2919static int hdspm_set_tx_64(struct hdspm * hdspm, int out)
763f356c
TI
2920{
2921 if (out)
2922 hdspm->control_register |= HDSPM_TX_64ch;
2923 else
2924 hdspm->control_register &= ~HDSPM_TX_64ch;
2925 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2926
2927 return 0;
2928}
2929
a5ce8890 2930#define snd_hdspm_info_tx_64 snd_ctl_boolean_mono_info
763f356c 2931
98274f07
TI
2932static int snd_hdspm_get_tx_64(struct snd_kcontrol *kcontrol,
2933 struct snd_ctl_elem_value *ucontrol)
763f356c 2934{
98274f07 2935 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2936
2937 spin_lock_irq(&hdspm->lock);
2938 ucontrol->value.integer.value[0] = hdspm_tx_64(hdspm);
2939 spin_unlock_irq(&hdspm->lock);
2940 return 0;
2941}
2942
98274f07
TI
2943static int snd_hdspm_put_tx_64(struct snd_kcontrol *kcontrol,
2944 struct snd_ctl_elem_value *ucontrol)
763f356c 2945{
98274f07 2946 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2947 int change;
2948 unsigned int val;
2949
2950 if (!snd_hdspm_use_is_exclusive(hdspm))
2951 return -EBUSY;
2952 val = ucontrol->value.integer.value[0] & 1;
2953 spin_lock_irq(&hdspm->lock);
2954 change = (int) val != hdspm_tx_64(hdspm);
2955 hdspm_set_tx_64(hdspm, val);
2956 spin_unlock_irq(&hdspm->lock);
2957 return change;
2958}
2959
0dca1793 2960
763f356c 2961#define HDSPM_C_TMS(xname, xindex) \
67ed4161 2962{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
2963 .name = xname, \
2964 .index = xindex, \
2965 .info = snd_hdspm_info_c_tms, \
2966 .get = snd_hdspm_get_c_tms, \
2967 .put = snd_hdspm_put_c_tms \
2968}
2969
98274f07 2970static int hdspm_c_tms(struct hdspm * hdspm)
763f356c
TI
2971{
2972 return (hdspm->control_register & HDSPM_clr_tms) ? 1 : 0;
2973}
2974
98274f07 2975static int hdspm_set_c_tms(struct hdspm * hdspm, int out)
763f356c
TI
2976{
2977 if (out)
2978 hdspm->control_register |= HDSPM_clr_tms;
2979 else
2980 hdspm->control_register &= ~HDSPM_clr_tms;
2981 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
2982
2983 return 0;
2984}
2985
a5ce8890 2986#define snd_hdspm_info_c_tms snd_ctl_boolean_mono_info
763f356c 2987
98274f07
TI
2988static int snd_hdspm_get_c_tms(struct snd_kcontrol *kcontrol,
2989 struct snd_ctl_elem_value *ucontrol)
763f356c 2990{
98274f07 2991 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
2992
2993 spin_lock_irq(&hdspm->lock);
2994 ucontrol->value.integer.value[0] = hdspm_c_tms(hdspm);
2995 spin_unlock_irq(&hdspm->lock);
2996 return 0;
2997}
2998
98274f07
TI
2999static int snd_hdspm_put_c_tms(struct snd_kcontrol *kcontrol,
3000 struct snd_ctl_elem_value *ucontrol)
763f356c 3001{
98274f07 3002 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3003 int change;
3004 unsigned int val;
3005
3006 if (!snd_hdspm_use_is_exclusive(hdspm))
3007 return -EBUSY;
3008 val = ucontrol->value.integer.value[0] & 1;
3009 spin_lock_irq(&hdspm->lock);
3010 change = (int) val != hdspm_c_tms(hdspm);
3011 hdspm_set_c_tms(hdspm, val);
3012 spin_unlock_irq(&hdspm->lock);
3013 return change;
3014}
3015
0dca1793 3016
763f356c 3017#define HDSPM_SAFE_MODE(xname, xindex) \
67ed4161 3018{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
3019 .name = xname, \
3020 .index = xindex, \
3021 .info = snd_hdspm_info_safe_mode, \
3022 .get = snd_hdspm_get_safe_mode, \
3023 .put = snd_hdspm_put_safe_mode \
3024}
3025
3cee5a60
RB
3026static int hdspm_safe_mode(struct hdspm * hdspm)
3027{
3028 return (hdspm->control_register & HDSPM_AutoInp) ? 1 : 0;
3029}
3030
3031static int hdspm_set_safe_mode(struct hdspm * hdspm, int out)
3032{
3033 if (out)
3034 hdspm->control_register |= HDSPM_AutoInp;
3035 else
3036 hdspm->control_register &= ~HDSPM_AutoInp;
3037 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3038
3039 return 0;
3040}
3041
a5ce8890 3042#define snd_hdspm_info_safe_mode snd_ctl_boolean_mono_info
3cee5a60
RB
3043
3044static int snd_hdspm_get_safe_mode(struct snd_kcontrol *kcontrol,
3045 struct snd_ctl_elem_value *ucontrol)
3046{
3047 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3048
3049 spin_lock_irq(&hdspm->lock);
3050 ucontrol->value.integer.value[0] = hdspm_safe_mode(hdspm);
3051 spin_unlock_irq(&hdspm->lock);
3052 return 0;
3053}
3054
3055static int snd_hdspm_put_safe_mode(struct snd_kcontrol *kcontrol,
3056 struct snd_ctl_elem_value *ucontrol)
3057{
3058 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3059 int change;
3060 unsigned int val;
3061
3062 if (!snd_hdspm_use_is_exclusive(hdspm))
3063 return -EBUSY;
3064 val = ucontrol->value.integer.value[0] & 1;
3065 spin_lock_irq(&hdspm->lock);
3066 change = (int) val != hdspm_safe_mode(hdspm);
3067 hdspm_set_safe_mode(hdspm, val);
3068 spin_unlock_irq(&hdspm->lock);
3069 return change;
3070}
3071
0dca1793 3072
3cee5a60
RB
3073#define HDSPM_EMPHASIS(xname, xindex) \
3074{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3075 .name = xname, \
3076 .index = xindex, \
3077 .info = snd_hdspm_info_emphasis, \
3078 .get = snd_hdspm_get_emphasis, \
3079 .put = snd_hdspm_put_emphasis \
3080}
3081
3082static int hdspm_emphasis(struct hdspm * hdspm)
3083{
3084 return (hdspm->control_register & HDSPM_Emphasis) ? 1 : 0;
3085}
3086
3087static int hdspm_set_emphasis(struct hdspm * hdspm, int emp)
3088{
3089 if (emp)
3090 hdspm->control_register |= HDSPM_Emphasis;
3091 else
3092 hdspm->control_register &= ~HDSPM_Emphasis;
3093 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3094
3095 return 0;
3096}
3097
a5ce8890 3098#define snd_hdspm_info_emphasis snd_ctl_boolean_mono_info
3cee5a60
RB
3099
3100static int snd_hdspm_get_emphasis(struct snd_kcontrol *kcontrol,
3101 struct snd_ctl_elem_value *ucontrol)
3102{
3103 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3104
3105 spin_lock_irq(&hdspm->lock);
3106 ucontrol->value.enumerated.item[0] = hdspm_emphasis(hdspm);
3107 spin_unlock_irq(&hdspm->lock);
3108 return 0;
3109}
3110
3111static int snd_hdspm_put_emphasis(struct snd_kcontrol *kcontrol,
3112 struct snd_ctl_elem_value *ucontrol)
3113{
3114 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3115 int change;
3116 unsigned int val;
3117
3118 if (!snd_hdspm_use_is_exclusive(hdspm))
3119 return -EBUSY;
3120 val = ucontrol->value.integer.value[0] & 1;
3121 spin_lock_irq(&hdspm->lock);
3122 change = (int) val != hdspm_emphasis(hdspm);
3123 hdspm_set_emphasis(hdspm, val);
3124 spin_unlock_irq(&hdspm->lock);
3125 return change;
3126}
3127
0dca1793 3128
3cee5a60
RB
3129#define HDSPM_DOLBY(xname, xindex) \
3130{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3131 .name = xname, \
3132 .index = xindex, \
3133 .info = snd_hdspm_info_dolby, \
3134 .get = snd_hdspm_get_dolby, \
3135 .put = snd_hdspm_put_dolby \
3136}
3137
3138static int hdspm_dolby(struct hdspm * hdspm)
3139{
3140 return (hdspm->control_register & HDSPM_Dolby) ? 1 : 0;
3141}
3142
3143static int hdspm_set_dolby(struct hdspm * hdspm, int dol)
3144{
3145 if (dol)
3146 hdspm->control_register |= HDSPM_Dolby;
3147 else
3148 hdspm->control_register &= ~HDSPM_Dolby;
3149 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3150
3151 return 0;
3152}
3153
a5ce8890 3154#define snd_hdspm_info_dolby snd_ctl_boolean_mono_info
3cee5a60
RB
3155
3156static int snd_hdspm_get_dolby(struct snd_kcontrol *kcontrol,
3157 struct snd_ctl_elem_value *ucontrol)
3158{
3159 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3160
3161 spin_lock_irq(&hdspm->lock);
3162 ucontrol->value.enumerated.item[0] = hdspm_dolby(hdspm);
3163 spin_unlock_irq(&hdspm->lock);
3164 return 0;
3165}
3166
3167static int snd_hdspm_put_dolby(struct snd_kcontrol *kcontrol,
3168 struct snd_ctl_elem_value *ucontrol)
3169{
3170 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3171 int change;
3172 unsigned int val;
3173
3174 if (!snd_hdspm_use_is_exclusive(hdspm))
3175 return -EBUSY;
3176 val = ucontrol->value.integer.value[0] & 1;
3177 spin_lock_irq(&hdspm->lock);
3178 change = (int) val != hdspm_dolby(hdspm);
3179 hdspm_set_dolby(hdspm, val);
3180 spin_unlock_irq(&hdspm->lock);
3181 return change;
3182}
3183
0dca1793 3184
3cee5a60
RB
3185#define HDSPM_PROFESSIONAL(xname, xindex) \
3186{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3187 .name = xname, \
3188 .index = xindex, \
3189 .info = snd_hdspm_info_professional, \
3190 .get = snd_hdspm_get_professional, \
3191 .put = snd_hdspm_put_professional \
3192}
3193
3194static int hdspm_professional(struct hdspm * hdspm)
3195{
3196 return (hdspm->control_register & HDSPM_Professional) ? 1 : 0;
3197}
3198
3199static int hdspm_set_professional(struct hdspm * hdspm, int dol)
3200{
3201 if (dol)
3202 hdspm->control_register |= HDSPM_Professional;
3203 else
3204 hdspm->control_register &= ~HDSPM_Professional;
3205 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3206
3207 return 0;
3208}
3209
a5ce8890 3210#define snd_hdspm_info_professional snd_ctl_boolean_mono_info
3cee5a60
RB
3211
3212static int snd_hdspm_get_professional(struct snd_kcontrol *kcontrol,
3213 struct snd_ctl_elem_value *ucontrol)
3214{
3215 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3216
3217 spin_lock_irq(&hdspm->lock);
3218 ucontrol->value.enumerated.item[0] = hdspm_professional(hdspm);
3219 spin_unlock_irq(&hdspm->lock);
3220 return 0;
3221}
3222
3223static int snd_hdspm_put_professional(struct snd_kcontrol *kcontrol,
3224 struct snd_ctl_elem_value *ucontrol)
3225{
3226 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3227 int change;
3228 unsigned int val;
3229
3230 if (!snd_hdspm_use_is_exclusive(hdspm))
3231 return -EBUSY;
3232 val = ucontrol->value.integer.value[0] & 1;
3233 spin_lock_irq(&hdspm->lock);
3234 change = (int) val != hdspm_professional(hdspm);
3235 hdspm_set_professional(hdspm, val);
3236 spin_unlock_irq(&hdspm->lock);
3237 return change;
3238}
3239
3240#define HDSPM_INPUT_SELECT(xname, xindex) \
3241{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3242 .name = xname, \
3243 .index = xindex, \
3244 .info = snd_hdspm_info_input_select, \
3245 .get = snd_hdspm_get_input_select, \
3246 .put = snd_hdspm_put_input_select \
3247}
3248
3249static int hdspm_input_select(struct hdspm * hdspm)
3250{
3251 return (hdspm->control_register & HDSPM_InputSelect0) ? 1 : 0;
3252}
3253
3254static int hdspm_set_input_select(struct hdspm * hdspm, int out)
3255{
3256 if (out)
3257 hdspm->control_register |= HDSPM_InputSelect0;
3258 else
3259 hdspm->control_register &= ~HDSPM_InputSelect0;
3260 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3261
3262 return 0;
3263}
3264
3265static int snd_hdspm_info_input_select(struct snd_kcontrol *kcontrol,
3266 struct snd_ctl_elem_info *uinfo)
3267{
3268 static char *texts[] = { "optical", "coaxial" };
3269
3270 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3271 uinfo->count = 1;
3272 uinfo->value.enumerated.items = 2;
3273
3274 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3275 uinfo->value.enumerated.item =
3276 uinfo->value.enumerated.items - 1;
3277 strcpy(uinfo->value.enumerated.name,
3278 texts[uinfo->value.enumerated.item]);
3279
3280 return 0;
3281}
3282
3283static int snd_hdspm_get_input_select(struct snd_kcontrol *kcontrol,
3284 struct snd_ctl_elem_value *ucontrol)
3285{
3286 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3287
3288 spin_lock_irq(&hdspm->lock);
3289 ucontrol->value.enumerated.item[0] = hdspm_input_select(hdspm);
3290 spin_unlock_irq(&hdspm->lock);
3291 return 0;
3292}
3293
3294static int snd_hdspm_put_input_select(struct snd_kcontrol *kcontrol,
3295 struct snd_ctl_elem_value *ucontrol)
3296{
3297 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3298 int change;
3299 unsigned int val;
3300
3301 if (!snd_hdspm_use_is_exclusive(hdspm))
3302 return -EBUSY;
3303 val = ucontrol->value.integer.value[0] & 1;
3304 spin_lock_irq(&hdspm->lock);
3305 change = (int) val != hdspm_input_select(hdspm);
3306 hdspm_set_input_select(hdspm, val);
3307 spin_unlock_irq(&hdspm->lock);
3308 return change;
3309}
3310
0dca1793 3311
3cee5a60
RB
3312#define HDSPM_DS_WIRE(xname, xindex) \
3313{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3314 .name = xname, \
3315 .index = xindex, \
3316 .info = snd_hdspm_info_ds_wire, \
3317 .get = snd_hdspm_get_ds_wire, \
3318 .put = snd_hdspm_put_ds_wire \
3319}
3320
3321static int hdspm_ds_wire(struct hdspm * hdspm)
763f356c 3322{
3cee5a60 3323 return (hdspm->control_register & HDSPM_DS_DoubleWire) ? 1 : 0;
763f356c
TI
3324}
3325
3cee5a60 3326static int hdspm_set_ds_wire(struct hdspm * hdspm, int ds)
763f356c 3327{
3cee5a60
RB
3328 if (ds)
3329 hdspm->control_register |= HDSPM_DS_DoubleWire;
763f356c 3330 else
3cee5a60 3331 hdspm->control_register &= ~HDSPM_DS_DoubleWire;
763f356c
TI
3332 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3333
3334 return 0;
3335}
3336
3cee5a60
RB
3337static int snd_hdspm_info_ds_wire(struct snd_kcontrol *kcontrol,
3338 struct snd_ctl_elem_info *uinfo)
763f356c 3339{
3cee5a60
RB
3340 static char *texts[] = { "Single", "Double" };
3341
3342 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
763f356c 3343 uinfo->count = 1;
3cee5a60
RB
3344 uinfo->value.enumerated.items = 2;
3345
3346 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3347 uinfo->value.enumerated.item =
3348 uinfo->value.enumerated.items - 1;
3349 strcpy(uinfo->value.enumerated.name,
3350 texts[uinfo->value.enumerated.item]);
3351
763f356c
TI
3352 return 0;
3353}
3354
3cee5a60
RB
3355static int snd_hdspm_get_ds_wire(struct snd_kcontrol *kcontrol,
3356 struct snd_ctl_elem_value *ucontrol)
763f356c 3357{
98274f07 3358 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3359
3360 spin_lock_irq(&hdspm->lock);
3cee5a60 3361 ucontrol->value.enumerated.item[0] = hdspm_ds_wire(hdspm);
763f356c
TI
3362 spin_unlock_irq(&hdspm->lock);
3363 return 0;
3364}
3365
3cee5a60
RB
3366static int snd_hdspm_put_ds_wire(struct snd_kcontrol *kcontrol,
3367 struct snd_ctl_elem_value *ucontrol)
763f356c 3368{
98274f07 3369 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3370 int change;
3371 unsigned int val;
3372
3373 if (!snd_hdspm_use_is_exclusive(hdspm))
3374 return -EBUSY;
3375 val = ucontrol->value.integer.value[0] & 1;
3376 spin_lock_irq(&hdspm->lock);
3cee5a60
RB
3377 change = (int) val != hdspm_ds_wire(hdspm);
3378 hdspm_set_ds_wire(hdspm, val);
763f356c
TI
3379 spin_unlock_irq(&hdspm->lock);
3380 return change;
3381}
3382
0dca1793 3383
3cee5a60 3384#define HDSPM_QS_WIRE(xname, xindex) \
67ed4161 3385{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
763f356c
TI
3386 .name = xname, \
3387 .index = xindex, \
3cee5a60
RB
3388 .info = snd_hdspm_info_qs_wire, \
3389 .get = snd_hdspm_get_qs_wire, \
3390 .put = snd_hdspm_put_qs_wire \
763f356c
TI
3391}
3392
3cee5a60 3393static int hdspm_qs_wire(struct hdspm * hdspm)
763f356c 3394{
3cee5a60
RB
3395 if (hdspm->control_register & HDSPM_QS_DoubleWire)
3396 return 1;
3397 if (hdspm->control_register & HDSPM_QS_QuadWire)
3398 return 2;
3399 return 0;
763f356c
TI
3400}
3401
3cee5a60 3402static int hdspm_set_qs_wire(struct hdspm * hdspm, int mode)
763f356c 3403{
3cee5a60
RB
3404 hdspm->control_register &= ~(HDSPM_QS_DoubleWire | HDSPM_QS_QuadWire);
3405 switch (mode) {
3406 case 0:
3407 break;
3408 case 1:
3409 hdspm->control_register |= HDSPM_QS_DoubleWire;
3410 break;
3411 case 2:
3412 hdspm->control_register |= HDSPM_QS_QuadWire;
3413 break;
3414 }
763f356c
TI
3415 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3416
3417 return 0;
3418}
3419
3cee5a60 3420static int snd_hdspm_info_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3421 struct snd_ctl_elem_info *uinfo)
763f356c 3422{
3cee5a60 3423 static char *texts[] = { "Single", "Double", "Quad" };
763f356c
TI
3424
3425 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3426 uinfo->count = 1;
3cee5a60 3427 uinfo->value.enumerated.items = 3;
763f356c
TI
3428
3429 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3430 uinfo->value.enumerated.item =
3431 uinfo->value.enumerated.items - 1;
3432 strcpy(uinfo->value.enumerated.name,
3433 texts[uinfo->value.enumerated.item]);
3434
3435 return 0;
3436}
3437
3cee5a60 3438static int snd_hdspm_get_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3439 struct snd_ctl_elem_value *ucontrol)
763f356c 3440{
98274f07 3441 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3442
3443 spin_lock_irq(&hdspm->lock);
3cee5a60 3444 ucontrol->value.enumerated.item[0] = hdspm_qs_wire(hdspm);
763f356c
TI
3445 spin_unlock_irq(&hdspm->lock);
3446 return 0;
3447}
3448
3cee5a60 3449static int snd_hdspm_put_qs_wire(struct snd_kcontrol *kcontrol,
98274f07 3450 struct snd_ctl_elem_value *ucontrol)
763f356c 3451{
98274f07 3452 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 3453 int change;
3cee5a60 3454 int val;
763f356c
TI
3455
3456 if (!snd_hdspm_use_is_exclusive(hdspm))
3457 return -EBUSY;
3cee5a60
RB
3458 val = ucontrol->value.integer.value[0];
3459 if (val < 0)
3460 val = 0;
3461 if (val > 2)
3462 val = 2;
763f356c 3463 spin_lock_irq(&hdspm->lock);
ef5fa1a4 3464 change = val != hdspm_qs_wire(hdspm);
3cee5a60 3465 hdspm_set_qs_wire(hdspm, val);
763f356c
TI
3466 spin_unlock_irq(&hdspm->lock);
3467 return change;
3468}
3469
700d1ef3
AK
3470#define HDSPM_MADI_SPEEDMODE(xname, xindex) \
3471{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3472 .name = xname, \
3473 .index = xindex, \
3474 .info = snd_hdspm_info_madi_speedmode, \
3475 .get = snd_hdspm_get_madi_speedmode, \
3476 .put = snd_hdspm_put_madi_speedmode \
3477}
3478
3479static int hdspm_madi_speedmode(struct hdspm *hdspm)
3480{
3481 if (hdspm->control_register & HDSPM_QuadSpeed)
3482 return 2;
3483 if (hdspm->control_register & HDSPM_DoubleSpeed)
3484 return 1;
3485 return 0;
3486}
3487
3488static int hdspm_set_madi_speedmode(struct hdspm *hdspm, int mode)
3489{
3490 hdspm->control_register &= ~(HDSPM_DoubleSpeed | HDSPM_QuadSpeed);
3491 switch (mode) {
3492 case 0:
3493 break;
3494 case 1:
3495 hdspm->control_register |= HDSPM_DoubleSpeed;
3496 break;
3497 case 2:
3498 hdspm->control_register |= HDSPM_QuadSpeed;
3499 break;
3500 }
3501 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
3502
3503 return 0;
3504}
3505
3506static int snd_hdspm_info_madi_speedmode(struct snd_kcontrol *kcontrol,
3507 struct snd_ctl_elem_info *uinfo)
3508{
3509 static char *texts[] = { "Single", "Double", "Quad" };
3510
3511 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3512 uinfo->count = 1;
3513 uinfo->value.enumerated.items = 3;
3514
3515 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3516 uinfo->value.enumerated.item =
3517 uinfo->value.enumerated.items - 1;
3518 strcpy(uinfo->value.enumerated.name,
3519 texts[uinfo->value.enumerated.item]);
3520
3521 return 0;
3522}
3523
3524static int snd_hdspm_get_madi_speedmode(struct snd_kcontrol *kcontrol,
3525 struct snd_ctl_elem_value *ucontrol)
3526{
3527 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3528
3529 spin_lock_irq(&hdspm->lock);
3530 ucontrol->value.enumerated.item[0] = hdspm_madi_speedmode(hdspm);
3531 spin_unlock_irq(&hdspm->lock);
3532 return 0;
3533}
3534
3535static int snd_hdspm_put_madi_speedmode(struct snd_kcontrol *kcontrol,
3536 struct snd_ctl_elem_value *ucontrol)
3537{
3538 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3539 int change;
3540 int val;
3541
3542 if (!snd_hdspm_use_is_exclusive(hdspm))
3543 return -EBUSY;
3544 val = ucontrol->value.integer.value[0];
3545 if (val < 0)
3546 val = 0;
3547 if (val > 2)
3548 val = 2;
3549 spin_lock_irq(&hdspm->lock);
3550 change = val != hdspm_madi_speedmode(hdspm);
3551 hdspm_set_madi_speedmode(hdspm, val);
3552 spin_unlock_irq(&hdspm->lock);
3553 return change;
3554}
763f356c
TI
3555
3556#define HDSPM_MIXER(xname, xindex) \
3557{ .iface = SNDRV_CTL_ELEM_IFACE_HWDEP, \
3558 .name = xname, \
3559 .index = xindex, \
67ed4161 3560 .device = 0, \
763f356c
TI
3561 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
3562 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3563 .info = snd_hdspm_info_mixer, \
3564 .get = snd_hdspm_get_mixer, \
3565 .put = snd_hdspm_put_mixer \
3566}
3567
98274f07
TI
3568static int snd_hdspm_info_mixer(struct snd_kcontrol *kcontrol,
3569 struct snd_ctl_elem_info *uinfo)
763f356c
TI
3570{
3571 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3572 uinfo->count = 3;
3573 uinfo->value.integer.min = 0;
3574 uinfo->value.integer.max = 65535;
3575 uinfo->value.integer.step = 1;
3576 return 0;
3577}
3578
98274f07
TI
3579static int snd_hdspm_get_mixer(struct snd_kcontrol *kcontrol,
3580 struct snd_ctl_elem_value *ucontrol)
763f356c 3581{
98274f07 3582 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3583 int source;
3584 int destination;
3585
3586 source = ucontrol->value.integer.value[0];
3587 if (source < 0)
3588 source = 0;
3589 else if (source >= 2 * HDSPM_MAX_CHANNELS)
3590 source = 2 * HDSPM_MAX_CHANNELS - 1;
3591
3592 destination = ucontrol->value.integer.value[1];
3593 if (destination < 0)
3594 destination = 0;
3595 else if (destination >= HDSPM_MAX_CHANNELS)
3596 destination = HDSPM_MAX_CHANNELS - 1;
3597
3598 spin_lock_irq(&hdspm->lock);
3599 if (source >= HDSPM_MAX_CHANNELS)
3600 ucontrol->value.integer.value[2] =
3601 hdspm_read_pb_gain(hdspm, destination,
3602 source - HDSPM_MAX_CHANNELS);
3603 else
3604 ucontrol->value.integer.value[2] =
3605 hdspm_read_in_gain(hdspm, destination, source);
3606
3607 spin_unlock_irq(&hdspm->lock);
3608
3609 return 0;
3610}
3611
98274f07
TI
3612static int snd_hdspm_put_mixer(struct snd_kcontrol *kcontrol,
3613 struct snd_ctl_elem_value *ucontrol)
763f356c 3614{
98274f07 3615 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3616 int change;
3617 int source;
3618 int destination;
3619 int gain;
3620
3621 if (!snd_hdspm_use_is_exclusive(hdspm))
3622 return -EBUSY;
3623
3624 source = ucontrol->value.integer.value[0];
3625 destination = ucontrol->value.integer.value[1];
3626
3627 if (source < 0 || source >= 2 * HDSPM_MAX_CHANNELS)
3628 return -1;
3629 if (destination < 0 || destination >= HDSPM_MAX_CHANNELS)
3630 return -1;
3631
3632 gain = ucontrol->value.integer.value[2];
3633
3634 spin_lock_irq(&hdspm->lock);
3635
3636 if (source >= HDSPM_MAX_CHANNELS)
3637 change = gain != hdspm_read_pb_gain(hdspm, destination,
3638 source -
3639 HDSPM_MAX_CHANNELS);
3640 else
ef5fa1a4
TI
3641 change = gain != hdspm_read_in_gain(hdspm, destination,
3642 source);
763f356c
TI
3643
3644 if (change) {
3645 if (source >= HDSPM_MAX_CHANNELS)
3646 hdspm_write_pb_gain(hdspm, destination,
3647 source - HDSPM_MAX_CHANNELS,
3648 gain);
3649 else
3650 hdspm_write_in_gain(hdspm, destination, source,
3651 gain);
3652 }
3653 spin_unlock_irq(&hdspm->lock);
3654
3655 return change;
3656}
3657
3658/* The simple mixer control(s) provide gain control for the
3659 basic 1:1 mappings of playback streams to output
0dca1793 3660 streams.
763f356c
TI
3661*/
3662
3663#define HDSPM_PLAYBACK_MIXER \
3664{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3665 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_WRITE | \
3666 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3667 .info = snd_hdspm_info_playback_mixer, \
3668 .get = snd_hdspm_get_playback_mixer, \
3669 .put = snd_hdspm_put_playback_mixer \
3670}
3671
98274f07
TI
3672static int snd_hdspm_info_playback_mixer(struct snd_kcontrol *kcontrol,
3673 struct snd_ctl_elem_info *uinfo)
763f356c
TI
3674{
3675 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
3676 uinfo->count = 1;
3677 uinfo->value.integer.min = 0;
0dca1793 3678 uinfo->value.integer.max = 64;
763f356c
TI
3679 uinfo->value.integer.step = 1;
3680 return 0;
3681}
3682
98274f07
TI
3683static int snd_hdspm_get_playback_mixer(struct snd_kcontrol *kcontrol,
3684 struct snd_ctl_elem_value *ucontrol)
763f356c 3685{
98274f07 3686 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 3687 int channel;
763f356c
TI
3688
3689 channel = ucontrol->id.index - 1;
3690
da3cec35
TI
3691 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3692 return -EINVAL;
763f356c 3693
763f356c
TI
3694 spin_lock_irq(&hdspm->lock);
3695 ucontrol->value.integer.value[0] =
0dca1793 3696 (hdspm_read_pb_gain(hdspm, channel, channel)*64)/UNITY_GAIN;
763f356c
TI
3697 spin_unlock_irq(&hdspm->lock);
3698
763f356c
TI
3699 return 0;
3700}
3701
98274f07
TI
3702static int snd_hdspm_put_playback_mixer(struct snd_kcontrol *kcontrol,
3703 struct snd_ctl_elem_value *ucontrol)
763f356c 3704{
98274f07 3705 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c
TI
3706 int change;
3707 int channel;
763f356c
TI
3708 int gain;
3709
3710 if (!snd_hdspm_use_is_exclusive(hdspm))
3711 return -EBUSY;
3712
3713 channel = ucontrol->id.index - 1;
3714
da3cec35
TI
3715 if (snd_BUG_ON(channel < 0 || channel >= HDSPM_MAX_CHANNELS))
3716 return -EINVAL;
763f356c 3717
0dca1793 3718 gain = ucontrol->value.integer.value[0]*UNITY_GAIN/64;
763f356c
TI
3719
3720 spin_lock_irq(&hdspm->lock);
3721 change =
0dca1793
AK
3722 gain != hdspm_read_pb_gain(hdspm, channel,
3723 channel);
763f356c 3724 if (change)
0dca1793 3725 hdspm_write_pb_gain(hdspm, channel, channel,
763f356c
TI
3726 gain);
3727 spin_unlock_irq(&hdspm->lock);
3728 return change;
3729}
3730
0dca1793
AK
3731#define HDSPM_SYNC_CHECK(xname, xindex) \
3732{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
3733 .name = xname, \
3734 .private_value = xindex, \
3735 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
3736 .info = snd_hdspm_info_sync_check, \
3737 .get = snd_hdspm_get_sync_check \
763f356c
TI
3738}
3739
0dca1793 3740
98274f07
TI
3741static int snd_hdspm_info_sync_check(struct snd_kcontrol *kcontrol,
3742 struct snd_ctl_elem_info *uinfo)
763f356c 3743{
0dca1793 3744 static char *texts[] = { "No Lock", "Lock", "Sync", "N/A" };
763f356c
TI
3745 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3746 uinfo->count = 1;
0dca1793 3747 uinfo->value.enumerated.items = 4;
763f356c
TI
3748 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
3749 uinfo->value.enumerated.item =
0dca1793 3750 uinfo->value.enumerated.items - 1;
763f356c 3751 strcpy(uinfo->value.enumerated.name,
0dca1793 3752 texts[uinfo->value.enumerated.item]);
763f356c
TI
3753 return 0;
3754}
3755
0dca1793 3756static int hdspm_wc_sync_check(struct hdspm *hdspm)
763f356c 3757{
0dca1793
AK
3758 int status, status2;
3759
3760 switch (hdspm->io_type) {
3761 case AES32:
3762 status = hdspm_read(hdspm, HDSPM_statusRegister);
3763 if (status & HDSPM_wcSync)
763f356c 3764 return 2;
0dca1793
AK
3765 else if (status & HDSPM_wcLock)
3766 return 1;
3cee5a60 3767 return 0;
0dca1793
AK
3768 break;
3769
3770 case MADI:
3771 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3cee5a60
RB
3772 if (status2 & HDSPM_wcLock) {
3773 if (status2 & HDSPM_wcSync)
3774 return 2;
3775 else
3776 return 1;
3777 }
3778 return 0;
0dca1793 3779 break;
763f356c 3780
0dca1793
AK
3781 case RayDAT:
3782 case AIO:
3783 status = hdspm_read(hdspm, HDSPM_statusRegister);
763f356c 3784
0dca1793
AK
3785 if (status & 0x2000000)
3786 return 2;
3787 else if (status & 0x1000000)
3788 return 1;
3789 return 0;
763f356c 3790
0dca1793 3791 break;
763f356c 3792
0dca1793
AK
3793 case MADIface:
3794 break;
3795 }
3796
3797
3798 return 3;
763f356c
TI
3799}
3800
0dca1793
AK
3801
3802static int hdspm_madi_sync_check(struct hdspm *hdspm)
763f356c
TI
3803{
3804 int status = hdspm_read(hdspm, HDSPM_statusRegister);
3805 if (status & HDSPM_madiLock) {
3806 if (status & HDSPM_madiSync)
3807 return 2;
3808 else
3809 return 1;
3810 }
3811 return 0;
3812}
3813
763f356c 3814
0dca1793
AK
3815static int hdspm_s1_sync_check(struct hdspm *hdspm, int idx)
3816{
3817 int status, lock, sync;
763f356c 3818
0dca1793 3819 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
763f356c 3820
0dca1793
AK
3821 lock = (status & (0x1<<idx)) ? 1 : 0;
3822 sync = (status & (0x100<<idx)) ? 1 : 0;
3cee5a60 3823
0dca1793 3824 if (lock && sync)
3cee5a60 3825 return 2;
0dca1793
AK
3826 else if (lock)
3827 return 1;
3cee5a60
RB
3828 return 0;
3829}
3830
0dca1793
AK
3831
3832static int hdspm_sync_in_sync_check(struct hdspm *hdspm)
3833{
3834 int status, lock = 0, sync = 0;
3835
3836 switch (hdspm->io_type) {
3837 case RayDAT:
3838 case AIO:
3839 status = hdspm_read(hdspm, HDSPM_RD_STATUS_3);
3840 lock = (status & 0x400) ? 1 : 0;
3841 sync = (status & 0x800) ? 1 : 0;
3842 break;
3843
3844 case MADI:
3845 case AES32:
3846 status = hdspm_read(hdspm, HDSPM_statusRegister2);
a7edbd5b
AK
3847 lock = (status & HDSPM_syncInLock) ? 1 : 0;
3848 sync = (status & HDSPM_syncInSync) ? 1 : 0;
0dca1793
AK
3849 break;
3850
3851 case MADIface:
3852 break;
3853 }
3854
3855 if (lock && sync)
3856 return 2;
3857 else if (lock)
3858 return 1;
3859
3860 return 0;
3861}
3862
3863static int hdspm_aes_sync_check(struct hdspm *hdspm, int idx)
3864{
3865 int status2, lock, sync;
3866 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
3867
3868 lock = (status2 & (0x0080 >> idx)) ? 1 : 0;
3869 sync = (status2 & (0x8000 >> idx)) ? 1 : 0;
3870
3871 if (sync)
3872 return 2;
3873 else if (lock)
3874 return 1;
3875 return 0;
3876}
3877
3878
3879static int hdspm_tco_sync_check(struct hdspm *hdspm)
3880{
3881 int status;
3882
3883 if (hdspm->tco) {
3884 switch (hdspm->io_type) {
3885 case MADI:
3886 case AES32:
3887 status = hdspm_read(hdspm, HDSPM_statusRegister);
3888 if (status & HDSPM_tcoLock) {
3889 if (status & HDSPM_tcoSync)
3890 return 2;
3891 else
3892 return 1;
3893 }
3894 return 0;
3895
3896 break;
3897
3898 case RayDAT:
3899 case AIO:
3900 status = hdspm_read(hdspm, HDSPM_RD_STATUS_1);
3901
3902 if (status & 0x8000000)
3903 return 2; /* Sync */
3904 if (status & 0x4000000)
3905 return 1; /* Lock */
3906 return 0; /* No signal */
3907 break;
3908
3909 default:
3910 break;
3911 }
3912 }
3913
3914 return 3; /* N/A */
3915}
3916
3917
3918static int snd_hdspm_get_sync_check(struct snd_kcontrol *kcontrol,
3919 struct snd_ctl_elem_value *ucontrol)
3920{
3921 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
3922 int val = -1;
3923
3924 switch (hdspm->io_type) {
3925 case RayDAT:
3926 switch (kcontrol->private_value) {
3927 case 0: /* WC */
3928 val = hdspm_wc_sync_check(hdspm); break;
3929 case 7: /* TCO */
3930 val = hdspm_tco_sync_check(hdspm); break;
3931 case 8: /* SYNC IN */
3932 val = hdspm_sync_in_sync_check(hdspm); break;
3933 default:
3934 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3935 }
3936
3937 case AIO:
3938 switch (kcontrol->private_value) {
3939 case 0: /* WC */
3940 val = hdspm_wc_sync_check(hdspm); break;
3941 case 4: /* TCO */
3942 val = hdspm_tco_sync_check(hdspm); break;
3943 case 5: /* SYNC IN */
3944 val = hdspm_sync_in_sync_check(hdspm); break;
3945 default:
3946 val = hdspm_s1_sync_check(hdspm, ucontrol->id.index-1);
3947 }
3948
3949 case MADI:
3950 switch (kcontrol->private_value) {
3951 case 0: /* WC */
3952 val = hdspm_wc_sync_check(hdspm); break;
3953 case 1: /* MADI */
3954 val = hdspm_madi_sync_check(hdspm); break;
3955 case 2: /* TCO */
3956 val = hdspm_tco_sync_check(hdspm); break;
3957 case 3: /* SYNC_IN */
3958 val = hdspm_sync_in_sync_check(hdspm); break;
3959 }
3960
3961 case MADIface:
3962 val = hdspm_madi_sync_check(hdspm); /* MADI */
3963 break;
3964
3965 case AES32:
3966 switch (kcontrol->private_value) {
3967 case 0: /* WC */
3968 val = hdspm_wc_sync_check(hdspm); break;
3969 case 9: /* TCO */
3970 val = hdspm_tco_sync_check(hdspm); break;
3971 case 10 /* SYNC IN */:
3972 val = hdspm_sync_in_sync_check(hdspm); break;
7c4a95b5 3973 default: /* AES1 to AES8 */
0dca1793 3974 val = hdspm_aes_sync_check(hdspm,
7c4a95b5 3975 kcontrol->private_value-1);
0dca1793
AK
3976 }
3977
3978 }
3979
3980 if (-1 == val)
3981 val = 3;
3982
3983 ucontrol->value.enumerated.item[0] = val;
3984 return 0;
3985}
3986
3987
3988
3989/**
3990 * TCO controls
3991 **/
3992static void hdspm_tco_write(struct hdspm *hdspm)
3993{
3994 unsigned int tc[4] = { 0, 0, 0, 0};
3995
3996 switch (hdspm->tco->input) {
3997 case 0:
3998 tc[2] |= HDSPM_TCO2_set_input_MSB;
3999 break;
4000 case 1:
4001 tc[2] |= HDSPM_TCO2_set_input_LSB;
4002 break;
4003 default:
4004 break;
4005 }
4006
4007 switch (hdspm->tco->framerate) {
4008 case 1:
4009 tc[1] |= HDSPM_TCO1_LTC_Format_LSB;
4010 break;
4011 case 2:
4012 tc[1] |= HDSPM_TCO1_LTC_Format_MSB;
4013 break;
4014 case 3:
4015 tc[1] |= HDSPM_TCO1_LTC_Format_MSB +
4016 HDSPM_TCO1_set_drop_frame_flag;
4017 break;
4018 case 4:
4019 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4020 HDSPM_TCO1_LTC_Format_MSB;
4021 break;
4022 case 5:
4023 tc[1] |= HDSPM_TCO1_LTC_Format_LSB +
4024 HDSPM_TCO1_LTC_Format_MSB +
4025 HDSPM_TCO1_set_drop_frame_flag;
4026 break;
4027 default:
4028 break;
4029 }
4030
4031 switch (hdspm->tco->wordclock) {
4032 case 1:
4033 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_LSB;
4034 break;
4035 case 2:
4036 tc[2] |= HDSPM_TCO2_WCK_IO_ratio_MSB;
4037 break;
4038 default:
4039 break;
4040 }
4041
4042 switch (hdspm->tco->samplerate) {
4043 case 1:
4044 tc[2] |= HDSPM_TCO2_set_freq;
4045 break;
4046 case 2:
4047 tc[2] |= HDSPM_TCO2_set_freq_from_app;
4048 break;
4049 default:
4050 break;
4051 }
4052
4053 switch (hdspm->tco->pull) {
4054 case 1:
4055 tc[2] |= HDSPM_TCO2_set_pull_up;
4056 break;
4057 case 2:
4058 tc[2] |= HDSPM_TCO2_set_pull_down;
4059 break;
4060 case 3:
4061 tc[2] |= HDSPM_TCO2_set_pull_up + HDSPM_TCO2_set_01_4;
4062 break;
4063 case 4:
4064 tc[2] |= HDSPM_TCO2_set_pull_down + HDSPM_TCO2_set_01_4;
4065 break;
4066 default:
4067 break;
4068 }
4069
4070 if (1 == hdspm->tco->term) {
4071 tc[2] |= HDSPM_TCO2_set_term_75R;
4072 }
4073
4074 hdspm_write(hdspm, HDSPM_WR_TCO, tc[0]);
4075 hdspm_write(hdspm, HDSPM_WR_TCO+4, tc[1]);
4076 hdspm_write(hdspm, HDSPM_WR_TCO+8, tc[2]);
4077 hdspm_write(hdspm, HDSPM_WR_TCO+12, tc[3]);
4078}
4079
4080
4081#define HDSPM_TCO_SAMPLE_RATE(xname, xindex) \
4082{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4083 .name = xname, \
4084 .index = xindex, \
4085 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4086 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4087 .info = snd_hdspm_info_tco_sample_rate, \
4088 .get = snd_hdspm_get_tco_sample_rate, \
4089 .put = snd_hdspm_put_tco_sample_rate \
4090}
4091
4092static int snd_hdspm_info_tco_sample_rate(struct snd_kcontrol *kcontrol,
4093 struct snd_ctl_elem_info *uinfo)
4094{
4095 static char *texts[] = { "44.1 kHz", "48 kHz" };
4096 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4097 uinfo->count = 1;
4098 uinfo->value.enumerated.items = 2;
4099
4100 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4101 uinfo->value.enumerated.item =
4102 uinfo->value.enumerated.items - 1;
4103
4104 strcpy(uinfo->value.enumerated.name,
4105 texts[uinfo->value.enumerated.item]);
4106
4107 return 0;
4108}
4109
4110static int snd_hdspm_get_tco_sample_rate(struct snd_kcontrol *kcontrol,
4111 struct snd_ctl_elem_value *ucontrol)
4112{
4113 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4114
4115 ucontrol->value.enumerated.item[0] = hdspm->tco->samplerate;
4116
4117 return 0;
4118}
4119
4120static int snd_hdspm_put_tco_sample_rate(struct snd_kcontrol *kcontrol,
4121 struct snd_ctl_elem_value *ucontrol)
4122{
4123 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4124
4125 if (hdspm->tco->samplerate != ucontrol->value.enumerated.item[0]) {
4126 hdspm->tco->samplerate = ucontrol->value.enumerated.item[0];
4127
4128 hdspm_tco_write(hdspm);
4129
4130 return 1;
4131 }
4132
4133 return 0;
4134}
4135
4136
4137#define HDSPM_TCO_PULL(xname, xindex) \
4138{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4139 .name = xname, \
4140 .index = xindex, \
4141 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4142 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4143 .info = snd_hdspm_info_tco_pull, \
4144 .get = snd_hdspm_get_tco_pull, \
4145 .put = snd_hdspm_put_tco_pull \
4146}
4147
4148static int snd_hdspm_info_tco_pull(struct snd_kcontrol *kcontrol,
4149 struct snd_ctl_elem_info *uinfo)
4150{
4151 static char *texts[] = { "0", "+ 0.1 %", "- 0.1 %", "+ 4 %", "- 4 %" };
4152 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4153 uinfo->count = 1;
4154 uinfo->value.enumerated.items = 5;
4155
4156 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4157 uinfo->value.enumerated.item =
4158 uinfo->value.enumerated.items - 1;
4159
4160 strcpy(uinfo->value.enumerated.name,
4161 texts[uinfo->value.enumerated.item]);
4162
4163 return 0;
4164}
4165
4166static int snd_hdspm_get_tco_pull(struct snd_kcontrol *kcontrol,
4167 struct snd_ctl_elem_value *ucontrol)
4168{
4169 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4170
4171 ucontrol->value.enumerated.item[0] = hdspm->tco->pull;
4172
4173 return 0;
4174}
4175
4176static int snd_hdspm_put_tco_pull(struct snd_kcontrol *kcontrol,
4177 struct snd_ctl_elem_value *ucontrol)
4178{
4179 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4180
4181 if (hdspm->tco->pull != ucontrol->value.enumerated.item[0]) {
4182 hdspm->tco->pull = ucontrol->value.enumerated.item[0];
4183
4184 hdspm_tco_write(hdspm);
4185
4186 return 1;
4187 }
4188
4189 return 0;
4190}
4191
4192#define HDSPM_TCO_WCK_CONVERSION(xname, xindex) \
4193{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4194 .name = xname, \
4195 .index = xindex, \
4196 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4197 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4198 .info = snd_hdspm_info_tco_wck_conversion, \
4199 .get = snd_hdspm_get_tco_wck_conversion, \
4200 .put = snd_hdspm_put_tco_wck_conversion \
4201}
4202
4203static int snd_hdspm_info_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4204 struct snd_ctl_elem_info *uinfo)
4205{
4206 static char *texts[] = { "1:1", "44.1 -> 48", "48 -> 44.1" };
4207 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4208 uinfo->count = 1;
4209 uinfo->value.enumerated.items = 3;
4210
4211 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4212 uinfo->value.enumerated.item =
4213 uinfo->value.enumerated.items - 1;
4214
4215 strcpy(uinfo->value.enumerated.name,
4216 texts[uinfo->value.enumerated.item]);
4217
4218 return 0;
4219}
4220
4221static int snd_hdspm_get_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4222 struct snd_ctl_elem_value *ucontrol)
4223{
4224 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4225
4226 ucontrol->value.enumerated.item[0] = hdspm->tco->wordclock;
4227
4228 return 0;
4229}
4230
4231static int snd_hdspm_put_tco_wck_conversion(struct snd_kcontrol *kcontrol,
4232 struct snd_ctl_elem_value *ucontrol)
4233{
4234 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4235
4236 if (hdspm->tco->wordclock != ucontrol->value.enumerated.item[0]) {
4237 hdspm->tco->wordclock = ucontrol->value.enumerated.item[0];
4238
4239 hdspm_tco_write(hdspm);
4240
4241 return 1;
4242 }
4243
4244 return 0;
4245}
4246
4247
4248#define HDSPM_TCO_FRAME_RATE(xname, xindex) \
4249{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4250 .name = xname, \
4251 .index = xindex, \
4252 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4253 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4254 .info = snd_hdspm_info_tco_frame_rate, \
4255 .get = snd_hdspm_get_tco_frame_rate, \
4256 .put = snd_hdspm_put_tco_frame_rate \
4257}
4258
4259static int snd_hdspm_info_tco_frame_rate(struct snd_kcontrol *kcontrol,
4260 struct snd_ctl_elem_info *uinfo)
4261{
4262 static char *texts[] = { "24 fps", "25 fps", "29.97fps",
4263 "29.97 dfps", "30 fps", "30 dfps" };
4264 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4265 uinfo->count = 1;
4266 uinfo->value.enumerated.items = 6;
4267
4268 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4269 uinfo->value.enumerated.item =
4270 uinfo->value.enumerated.items - 1;
4271
4272 strcpy(uinfo->value.enumerated.name,
4273 texts[uinfo->value.enumerated.item]);
4274
4275 return 0;
4276}
4277
4278static int snd_hdspm_get_tco_frame_rate(struct snd_kcontrol *kcontrol,
3cee5a60
RB
4279 struct snd_ctl_elem_value *ucontrol)
4280{
3cee5a60
RB
4281 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4282
0dca1793 4283 ucontrol->value.enumerated.item[0] = hdspm->tco->framerate;
3cee5a60 4284
3cee5a60
RB
4285 return 0;
4286}
763f356c 4287
0dca1793
AK
4288static int snd_hdspm_put_tco_frame_rate(struct snd_kcontrol *kcontrol,
4289 struct snd_ctl_elem_value *ucontrol)
4290{
4291 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
763f356c 4292
0dca1793
AK
4293 if (hdspm->tco->framerate != ucontrol->value.enumerated.item[0]) {
4294 hdspm->tco->framerate = ucontrol->value.enumerated.item[0];
763f356c 4295
0dca1793
AK
4296 hdspm_tco_write(hdspm);
4297
4298 return 1;
4299 }
4300
4301 return 0;
4302}
763f356c 4303
0dca1793
AK
4304
4305#define HDSPM_TCO_SYNC_SOURCE(xname, xindex) \
4306{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4307 .name = xname, \
4308 .index = xindex, \
4309 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4310 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4311 .info = snd_hdspm_info_tco_sync_source, \
4312 .get = snd_hdspm_get_tco_sync_source, \
4313 .put = snd_hdspm_put_tco_sync_source \
4314}
4315
4316static int snd_hdspm_info_tco_sync_source(struct snd_kcontrol *kcontrol,
4317 struct snd_ctl_elem_info *uinfo)
4318{
4319 static char *texts[] = { "LTC", "Video", "WCK" };
4320 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
4321 uinfo->count = 1;
4322 uinfo->value.enumerated.items = 3;
4323
4324 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
4325 uinfo->value.enumerated.item =
4326 uinfo->value.enumerated.items - 1;
4327
4328 strcpy(uinfo->value.enumerated.name,
4329 texts[uinfo->value.enumerated.item]);
4330
4331 return 0;
4332}
4333
4334static int snd_hdspm_get_tco_sync_source(struct snd_kcontrol *kcontrol,
4335 struct snd_ctl_elem_value *ucontrol)
4336{
4337 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4338
4339 ucontrol->value.enumerated.item[0] = hdspm->tco->input;
4340
4341 return 0;
4342}
4343
4344static int snd_hdspm_put_tco_sync_source(struct snd_kcontrol *kcontrol,
4345 struct snd_ctl_elem_value *ucontrol)
4346{
4347 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4348
4349 if (hdspm->tco->input != ucontrol->value.enumerated.item[0]) {
4350 hdspm->tco->input = ucontrol->value.enumerated.item[0];
4351
4352 hdspm_tco_write(hdspm);
4353
4354 return 1;
4355 }
4356
4357 return 0;
4358}
4359
4360
4361#define HDSPM_TCO_WORD_TERM(xname, xindex) \
4362{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
4363 .name = xname, \
4364 .index = xindex, \
4365 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |\
4366 SNDRV_CTL_ELEM_ACCESS_VOLATILE, \
4367 .info = snd_hdspm_info_tco_word_term, \
4368 .get = snd_hdspm_get_tco_word_term, \
4369 .put = snd_hdspm_put_tco_word_term \
4370}
4371
4372static int snd_hdspm_info_tco_word_term(struct snd_kcontrol *kcontrol,
4373 struct snd_ctl_elem_info *uinfo)
4374{
4375 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
4376 uinfo->count = 1;
4377 uinfo->value.integer.min = 0;
4378 uinfo->value.integer.max = 1;
4379
4380 return 0;
4381}
4382
4383
4384static int snd_hdspm_get_tco_word_term(struct snd_kcontrol *kcontrol,
4385 struct snd_ctl_elem_value *ucontrol)
4386{
4387 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4388
4389 ucontrol->value.enumerated.item[0] = hdspm->tco->term;
4390
4391 return 0;
4392}
4393
4394
4395static int snd_hdspm_put_tco_word_term(struct snd_kcontrol *kcontrol,
4396 struct snd_ctl_elem_value *ucontrol)
4397{
4398 struct hdspm *hdspm = snd_kcontrol_chip(kcontrol);
4399
4400 if (hdspm->tco->term != ucontrol->value.enumerated.item[0]) {
4401 hdspm->tco->term = ucontrol->value.enumerated.item[0];
4402
4403 hdspm_tco_write(hdspm);
4404
4405 return 1;
4406 }
4407
4408 return 0;
4409}
4410
4411
4412
4413
4414static struct snd_kcontrol_new snd_hdspm_controls_madi[] = {
4415 HDSPM_MIXER("Mixer", 0),
4416 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
763f356c
TI
4417 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4418 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4419 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4420 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
0dca1793
AK
4421 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4422 HDSPM_SYNC_CHECK("MADI SyncCheck", 1),
4423 HDSPM_SYNC_CHECK("TCO SyncCHeck", 2),
4424 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 3),
763f356c
TI
4425 HDSPM_LINE_OUT("Line Out", 0),
4426 HDSPM_TX_64("TX 64 channels mode", 0),
4427 HDSPM_C_TMS("Clear Track Marker", 0),
4428 HDSPM_SAFE_MODE("Safe Mode", 0),
700d1ef3
AK
4429 HDSPM_INPUT_SELECT("Input Select", 0),
4430 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
0dca1793
AK
4431};
4432
4433
4434static struct snd_kcontrol_new snd_hdspm_controls_madiface[] = {
4435 HDSPM_MIXER("Mixer", 0),
4436 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4437 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4438 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4439 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4440 HDSPM_SYNC_CHECK("MADI SyncCheck", 0),
4441 HDSPM_TX_64("TX 64 channels mode", 0),
4442 HDSPM_C_TMS("Clear Track Marker", 0),
700d1ef3
AK
4443 HDSPM_SAFE_MODE("Safe Mode", 0),
4444 HDSPM_MADI_SPEEDMODE("MADI Speed Mode", 0)
763f356c
TI
4445};
4446
0dca1793
AK
4447static struct snd_kcontrol_new snd_hdspm_controls_aio[] = {
4448 HDSPM_MIXER("Mixer", 0),
4449 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4450 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4451 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4452 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4453 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4454 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
4455 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4456 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4457 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4458 HDSPM_SYNC_CHECK("ADAT SyncCheck", 3),
4459 HDSPM_SYNC_CHECK("TCO SyncCheck", 4),
4460 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 5),
4461 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4462 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4463 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4464 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT Frequency", 3),
4465 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 4),
4466 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 5)
4467
4468 /*
4469 HDSPM_INPUT_SELECT("Input Select", 0),
4470 HDSPM_SPDIF_OPTICAL("SPDIF Out Optical", 0),
4471 HDSPM_PROFESSIONAL("SPDIF Out Professional", 0);
4472 HDSPM_SPDIF_IN("SPDIF In", 0);
4473 HDSPM_BREAKOUT_CABLE("Breakout Cable", 0);
4474 HDSPM_INPUT_LEVEL("Input Level", 0);
4475 HDSPM_OUTPUT_LEVEL("Output Level", 0);
4476 HDSPM_PHONES("Phones", 0);
4477 */
4478};
3cee5a60 4479
0dca1793
AK
4480static struct snd_kcontrol_new snd_hdspm_controls_raydat[] = {
4481 HDSPM_MIXER("Mixer", 0),
4482 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
4483 HDSPM_SYSTEM_CLOCK_MODE("Clock Mode", 0),
4484 HDSPM_PREF_SYNC_REF("Pref Sync Ref", 0),
4485 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
4486 HDSPM_SYNC_CHECK("WC SyncCheck", 0),
4487 HDSPM_SYNC_CHECK("AES SyncCheck", 1),
4488 HDSPM_SYNC_CHECK("SPDIF SyncCheck", 2),
4489 HDSPM_SYNC_CHECK("ADAT1 SyncCheck", 3),
4490 HDSPM_SYNC_CHECK("ADAT2 SyncCheck", 4),
4491 HDSPM_SYNC_CHECK("ADAT3 SyncCheck", 5),
4492 HDSPM_SYNC_CHECK("ADAT4 SyncCheck", 6),
4493 HDSPM_SYNC_CHECK("TCO SyncCheck", 7),
4494 HDSPM_SYNC_CHECK("SYNC IN SyncCheck", 8),
4495 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4496 HDSPM_AUTOSYNC_SAMPLE_RATE("AES Frequency", 1),
4497 HDSPM_AUTOSYNC_SAMPLE_RATE("SPDIF Frequency", 2),
4498 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT1 Frequency", 3),
4499 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT2 Frequency", 4),
4500 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT3 Frequency", 5),
4501 HDSPM_AUTOSYNC_SAMPLE_RATE("ADAT4 Frequency", 6),
4502 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 7),
4503 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 8)
4504};
4505
4506static struct snd_kcontrol_new snd_hdspm_controls_aes32[] = {
3cee5a60 4507 HDSPM_MIXER("Mixer", 0),
0dca1793 4508 HDSPM_INTERNAL_CLOCK("Internal Clock", 0),
3cee5a60
RB
4509 HDSPM_SYSTEM_CLOCK_MODE("System Clock Mode", 0),
4510 HDSPM_PREF_SYNC_REF("Preferred Sync Reference", 0),
4511 HDSPM_AUTOSYNC_REF("AutoSync Reference", 0),
4512 HDSPM_SYSTEM_SAMPLE_RATE("System Sample Rate", 0),
3cee5a60 4513 HDSPM_AUTOSYNC_SAMPLE_RATE("External Rate", 0),
0dca1793
AK
4514 HDSPM_SYNC_CHECK("WC Sync Check", 0),
4515 HDSPM_SYNC_CHECK("AES1 Sync Check", 1),
4516 HDSPM_SYNC_CHECK("AES2 Sync Check", 2),
4517 HDSPM_SYNC_CHECK("AES3 Sync Check", 3),
4518 HDSPM_SYNC_CHECK("AES4 Sync Check", 4),
4519 HDSPM_SYNC_CHECK("AES5 Sync Check", 5),
4520 HDSPM_SYNC_CHECK("AES6 Sync Check", 6),
4521 HDSPM_SYNC_CHECK("AES7 Sync Check", 7),
4522 HDSPM_SYNC_CHECK("AES8 Sync Check", 8),
4523 HDSPM_SYNC_CHECK("TCO Sync Check", 9),
4524 HDSPM_SYNC_CHECK("SYNC IN Sync Check", 10),
4525 HDSPM_AUTOSYNC_SAMPLE_RATE("WC Frequency", 0),
4526 HDSPM_AUTOSYNC_SAMPLE_RATE("AES1 Frequency", 1),
4527 HDSPM_AUTOSYNC_SAMPLE_RATE("AES2 Frequency", 2),
4528 HDSPM_AUTOSYNC_SAMPLE_RATE("AES3 Frequency", 3),
4529 HDSPM_AUTOSYNC_SAMPLE_RATE("AES4 Frequency", 4),
4530 HDSPM_AUTOSYNC_SAMPLE_RATE("AES5 Frequency", 5),
4531 HDSPM_AUTOSYNC_SAMPLE_RATE("AES6 Frequency", 6),
4532 HDSPM_AUTOSYNC_SAMPLE_RATE("AES7 Frequency", 7),
4533 HDSPM_AUTOSYNC_SAMPLE_RATE("AES8 Frequency", 8),
4534 HDSPM_AUTOSYNC_SAMPLE_RATE("TCO Frequency", 9),
4535 HDSPM_AUTOSYNC_SAMPLE_RATE("SYNC IN Frequency", 10),
3cee5a60
RB
4536 HDSPM_LINE_OUT("Line Out", 0),
4537 HDSPM_EMPHASIS("Emphasis", 0),
4538 HDSPM_DOLBY("Non Audio", 0),
4539 HDSPM_PROFESSIONAL("Professional", 0),
4540 HDSPM_C_TMS("Clear Track Marker", 0),
4541 HDSPM_DS_WIRE("Double Speed Wire Mode", 0),
4542 HDSPM_QS_WIRE("Quad Speed Wire Mode", 0),
4543};
4544
0dca1793
AK
4545
4546
4547/* Control elements for the optional TCO module */
4548static struct snd_kcontrol_new snd_hdspm_controls_tco[] = {
4549 HDSPM_TCO_SAMPLE_RATE("TCO Sample Rate", 0),
4550 HDSPM_TCO_PULL("TCO Pull", 0),
4551 HDSPM_TCO_WCK_CONVERSION("TCO WCK Conversion", 0),
4552 HDSPM_TCO_FRAME_RATE("TCO Frame Rate", 0),
4553 HDSPM_TCO_SYNC_SOURCE("TCO Sync Source", 0),
4554 HDSPM_TCO_WORD_TERM("TCO Word Term", 0)
4555};
4556
4557
98274f07 4558static struct snd_kcontrol_new snd_hdspm_playback_mixer = HDSPM_PLAYBACK_MIXER;
763f356c
TI
4559
4560
98274f07 4561static int hdspm_update_simple_mixer_controls(struct hdspm * hdspm)
763f356c
TI
4562{
4563 int i;
4564
0dca1793 4565 for (i = hdspm->ds_out_channels; i < hdspm->ss_out_channels; ++i) {
763f356c
TI
4566 if (hdspm->system_sample_rate > 48000) {
4567 hdspm->playback_mixer_ctls[i]->vd[0].access =
0dca1793
AK
4568 SNDRV_CTL_ELEM_ACCESS_INACTIVE |
4569 SNDRV_CTL_ELEM_ACCESS_READ |
4570 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
763f356c
TI
4571 } else {
4572 hdspm->playback_mixer_ctls[i]->vd[0].access =
0dca1793
AK
4573 SNDRV_CTL_ELEM_ACCESS_READWRITE |
4574 SNDRV_CTL_ELEM_ACCESS_VOLATILE;
763f356c
TI
4575 }
4576 snd_ctl_notify(hdspm->card, SNDRV_CTL_EVENT_MASK_VALUE |
0dca1793
AK
4577 SNDRV_CTL_EVENT_MASK_INFO,
4578 &hdspm->playback_mixer_ctls[i]->id);
763f356c
TI
4579 }
4580
4581 return 0;
4582}
4583
4584
0dca1793
AK
4585static int snd_hdspm_create_controls(struct snd_card *card,
4586 struct hdspm *hdspm)
763f356c
TI
4587{
4588 unsigned int idx, limit;
4589 int err;
98274f07 4590 struct snd_kcontrol *kctl;
0dca1793 4591 struct snd_kcontrol_new *list = NULL;
763f356c 4592
0dca1793
AK
4593 switch (hdspm->io_type) {
4594 case MADI:
4595 list = snd_hdspm_controls_madi;
4596 limit = ARRAY_SIZE(snd_hdspm_controls_madi);
4597 break;
4598 case MADIface:
4599 list = snd_hdspm_controls_madiface;
4600 limit = ARRAY_SIZE(snd_hdspm_controls_madiface);
4601 break;
4602 case AIO:
4603 list = snd_hdspm_controls_aio;
4604 limit = ARRAY_SIZE(snd_hdspm_controls_aio);
4605 break;
4606 case RayDAT:
4607 list = snd_hdspm_controls_raydat;
4608 limit = ARRAY_SIZE(snd_hdspm_controls_raydat);
4609 break;
4610 case AES32:
4611 list = snd_hdspm_controls_aes32;
4612 limit = ARRAY_SIZE(snd_hdspm_controls_aes32);
4613 break;
4614 }
3cee5a60 4615
0dca1793
AK
4616 if (NULL != list) {
4617 for (idx = 0; idx < limit; idx++) {
3cee5a60 4618 err = snd_ctl_add(card,
0dca1793 4619 snd_ctl_new1(&list[idx], hdspm));
3cee5a60
RB
4620 if (err < 0)
4621 return err;
763f356c
TI
4622 }
4623 }
4624
763f356c 4625
0dca1793 4626 /* create simple 1:1 playback mixer controls */
763f356c 4627 snd_hdspm_playback_mixer.name = "Chn";
0dca1793
AK
4628 if (hdspm->system_sample_rate >= 128000) {
4629 limit = hdspm->qs_out_channels;
4630 } else if (hdspm->system_sample_rate >= 64000) {
4631 limit = hdspm->ds_out_channels;
4632 } else {
4633 limit = hdspm->ss_out_channels;
4634 }
763f356c
TI
4635 for (idx = 0; idx < limit; ++idx) {
4636 snd_hdspm_playback_mixer.index = idx + 1;
ef5fa1a4
TI
4637 kctl = snd_ctl_new1(&snd_hdspm_playback_mixer, hdspm);
4638 err = snd_ctl_add(card, kctl);
4639 if (err < 0)
763f356c 4640 return err;
763f356c
TI
4641 hdspm->playback_mixer_ctls[idx] = kctl;
4642 }
4643
0dca1793
AK
4644
4645 if (hdspm->tco) {
4646 /* add tco control elements */
4647 list = snd_hdspm_controls_tco;
4648 limit = ARRAY_SIZE(snd_hdspm_controls_tco);
4649 for (idx = 0; idx < limit; idx++) {
4650 err = snd_ctl_add(card,
4651 snd_ctl_new1(&list[idx], hdspm));
4652 if (err < 0)
4653 return err;
4654 }
4655 }
4656
763f356c
TI
4657 return 0;
4658}
4659
4660/*------------------------------------------------------------
0dca1793 4661 /proc interface
763f356c
TI
4662 ------------------------------------------------------------*/
4663
4664static void
3cee5a60
RB
4665snd_hdspm_proc_read_madi(struct snd_info_entry * entry,
4666 struct snd_info_buffer *buffer)
763f356c 4667{
ef5fa1a4 4668 struct hdspm *hdspm = entry->private_data;
0dca1793
AK
4669 unsigned int status, status2, control, freq;
4670
763f356c
TI
4671 char *pref_sync_ref;
4672 char *autosync_ref;
4673 char *system_clock_mode;
763f356c 4674 char *insel;
763f356c
TI
4675 int x, x2;
4676
0dca1793
AK
4677 /* TCO stuff */
4678 int a, ltc, frames, seconds, minutes, hours;
4679 unsigned int period;
4680 u64 freq_const = 0;
4681 u32 rate;
4682
763f356c
TI
4683 status = hdspm_read(hdspm, HDSPM_statusRegister);
4684 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
0dca1793
AK
4685 control = hdspm->control_register;
4686 freq = hdspm_read(hdspm, HDSPM_timecodeRegister);
763f356c
TI
4687
4688 snd_iprintf(buffer, "%s (Card #%d) Rev.%x Status2first3bits: %x\n",
0dca1793
AK
4689 hdspm->card_name, hdspm->card->number + 1,
4690 hdspm->firmware_rev,
4691 (status2 & HDSPM_version0) |
4692 (status2 & HDSPM_version1) | (status2 &
4693 HDSPM_version2));
4694
4695 snd_iprintf(buffer, "HW Serial: 0x%06x%06x\n",
4696 (hdspm_read(hdspm, HDSPM_midiStatusIn1)>>8) & 0xFFFFFF,
4697 (hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
763f356c
TI
4698
4699 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
0dca1793 4700 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
763f356c
TI
4701
4702 snd_iprintf(buffer, "--- System ---\n");
4703
4704 snd_iprintf(buffer,
0dca1793
AK
4705 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4706 status & HDSPM_audioIRQPending,
4707 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4708 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4709 hdspm->irq_count);
763f356c 4710 snd_iprintf(buffer,
0dca1793
AK
4711 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4712 "estimated= %ld (bytes)\n",
4713 ((status & HDSPM_BufferID) ? 1 : 0),
4714 (status & HDSPM_BufferPositionMask),
4715 (status & HDSPM_BufferPositionMask) %
4716 (2 * (int)hdspm->period_bytes),
4717 ((status & HDSPM_BufferPositionMask) - 64) %
4718 (2 * (int)hdspm->period_bytes),
4719 (long) hdspm_hw_pointer(hdspm) * 4);
763f356c
TI
4720
4721 snd_iprintf(buffer,
0dca1793
AK
4722 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4723 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4724 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4725 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4726 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
763f356c 4727 snd_iprintf(buffer,
0dca1793
AK
4728 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4729 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4730 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4731 snd_iprintf(buffer,
4732 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4733 "status2=0x%x\n",
4734 hdspm->control_register, hdspm->control2_register,
4735 status, status2);
4736 if (status & HDSPM_tco_detect) {
4737 snd_iprintf(buffer, "TCO module detected.\n");
4738 a = hdspm_read(hdspm, HDSPM_RD_TCO+4);
4739 if (a & HDSPM_TCO1_LTC_Input_valid) {
4740 snd_iprintf(buffer, " LTC valid, ");
4741 switch (a & (HDSPM_TCO1_LTC_Format_LSB |
4742 HDSPM_TCO1_LTC_Format_MSB)) {
4743 case 0:
4744 snd_iprintf(buffer, "24 fps, ");
4745 break;
4746 case HDSPM_TCO1_LTC_Format_LSB:
4747 snd_iprintf(buffer, "25 fps, ");
4748 break;
4749 case HDSPM_TCO1_LTC_Format_MSB:
4750 snd_iprintf(buffer, "29.97 fps, ");
4751 break;
4752 default:
4753 snd_iprintf(buffer, "30 fps, ");
4754 break;
4755 }
4756 if (a & HDSPM_TCO1_set_drop_frame_flag) {
4757 snd_iprintf(buffer, "drop frame\n");
4758 } else {
4759 snd_iprintf(buffer, "full frame\n");
4760 }
4761 } else {
4762 snd_iprintf(buffer, " no LTC\n");
4763 }
4764 if (a & HDSPM_TCO1_Video_Input_Format_NTSC) {
4765 snd_iprintf(buffer, " Video: NTSC\n");
4766 } else if (a & HDSPM_TCO1_Video_Input_Format_PAL) {
4767 snd_iprintf(buffer, " Video: PAL\n");
4768 } else {
4769 snd_iprintf(buffer, " No video\n");
4770 }
4771 if (a & HDSPM_TCO1_TCO_lock) {
4772 snd_iprintf(buffer, " Sync: lock\n");
4773 } else {
4774 snd_iprintf(buffer, " Sync: no lock\n");
4775 }
4776
4777 switch (hdspm->io_type) {
4778 case MADI:
4779 case AES32:
4780 freq_const = 110069313433624ULL;
4781 break;
4782 case RayDAT:
4783 case AIO:
4784 freq_const = 104857600000000ULL;
4785 break;
4786 case MADIface:
4787 break; /* no TCO possible */
4788 }
4789
4790 period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
4791 snd_iprintf(buffer, " period: %u\n", period);
4792
4793
4794 /* rate = freq_const/period; */
4795 rate = div_u64(freq_const, period);
4796
4797 if (control & HDSPM_QuadSpeed) {
4798 rate *= 4;
4799 } else if (control & HDSPM_DoubleSpeed) {
4800 rate *= 2;
4801 }
4802
4803 snd_iprintf(buffer, " Frequency: %u Hz\n",
4804 (unsigned int) rate);
4805
4806 ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
4807 frames = ltc & 0xF;
4808 ltc >>= 4;
4809 frames += (ltc & 0x3) * 10;
4810 ltc >>= 4;
4811 seconds = ltc & 0xF;
4812 ltc >>= 4;
4813 seconds += (ltc & 0x7) * 10;
4814 ltc >>= 4;
4815 minutes = ltc & 0xF;
4816 ltc >>= 4;
4817 minutes += (ltc & 0x7) * 10;
4818 ltc >>= 4;
4819 hours = ltc & 0xF;
4820 ltc >>= 4;
4821 hours += (ltc & 0x3) * 10;
4822 snd_iprintf(buffer,
4823 " LTC In: %02d:%02d:%02d:%02d\n",
4824 hours, minutes, seconds, frames);
4825
4826 } else {
4827 snd_iprintf(buffer, "No TCO module detected.\n");
4828 }
763f356c
TI
4829
4830 snd_iprintf(buffer, "--- Settings ---\n");
4831
7cb155ff 4832 x = hdspm_get_latency(hdspm);
763f356c
TI
4833
4834 snd_iprintf(buffer,
0dca1793
AK
4835 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4836 x, (unsigned long) hdspm->period_bytes);
763f356c 4837
0dca1793
AK
4838 snd_iprintf(buffer, "Line out: %s\n",
4839 (hdspm->control_register & HDSPM_LineOut) ? "on " : "off");
763f356c
TI
4840
4841 switch (hdspm->control_register & HDSPM_InputMask) {
4842 case HDSPM_InputOptical:
4843 insel = "Optical";
4844 break;
4845 case HDSPM_InputCoaxial:
4846 insel = "Coaxial";
4847 break;
4848 default:
0dca1793 4849 insel = "Unkown";
763f356c 4850 }
763f356c
TI
4851
4852 snd_iprintf(buffer,
0dca1793
AK
4853 "ClearTrackMarker = %s, Transmit in %s Channel Mode, "
4854 "Auto Input %s\n",
4855 (hdspm->control_register & HDSPM_clr_tms) ? "on" : "off",
4856 (hdspm->control_register & HDSPM_TX_64ch) ? "64" : "56",
4857 (hdspm->control_register & HDSPM_AutoInp) ? "on" : "off");
4858
763f356c 4859
3cee5a60 4860 if (!(hdspm->control_register & HDSPM_ClockModeMaster))
0dca1793 4861 system_clock_mode = "AutoSync";
3cee5a60 4862 else
763f356c 4863 system_clock_mode = "Master";
0dca1793 4864 snd_iprintf(buffer, "AutoSync Reference: %s\n", system_clock_mode);
763f356c
TI
4865
4866 switch (hdspm_pref_sync_ref(hdspm)) {
4867 case HDSPM_SYNC_FROM_WORD:
4868 pref_sync_ref = "Word Clock";
4869 break;
4870 case HDSPM_SYNC_FROM_MADI:
4871 pref_sync_ref = "MADI Sync";
4872 break;
0dca1793
AK
4873 case HDSPM_SYNC_FROM_TCO:
4874 pref_sync_ref = "TCO";
4875 break;
4876 case HDSPM_SYNC_FROM_SYNC_IN:
4877 pref_sync_ref = "Sync In";
4878 break;
763f356c
TI
4879 default:
4880 pref_sync_ref = "XXXX Clock";
4881 break;
4882 }
4883 snd_iprintf(buffer, "Preferred Sync Reference: %s\n",
0dca1793 4884 pref_sync_ref);
763f356c
TI
4885
4886 snd_iprintf(buffer, "System Clock Frequency: %d\n",
0dca1793 4887 hdspm->system_sample_rate);
763f356c
TI
4888
4889
4890 snd_iprintf(buffer, "--- Status:\n");
4891
4892 x = status & HDSPM_madiSync;
4893 x2 = status2 & HDSPM_wcSync;
4894
4895 snd_iprintf(buffer, "Inputs MADI=%s, WordClock=%s\n",
0dca1793
AK
4896 (status & HDSPM_madiLock) ? (x ? "Sync" : "Lock") :
4897 "NoLock",
4898 (status2 & HDSPM_wcLock) ? (x2 ? "Sync" : "Lock") :
4899 "NoLock");
763f356c
TI
4900
4901 switch (hdspm_autosync_ref(hdspm)) {
0dca1793
AK
4902 case HDSPM_AUTOSYNC_FROM_SYNC_IN:
4903 autosync_ref = "Sync In";
4904 break;
4905 case HDSPM_AUTOSYNC_FROM_TCO:
4906 autosync_ref = "TCO";
4907 break;
763f356c
TI
4908 case HDSPM_AUTOSYNC_FROM_WORD:
4909 autosync_ref = "Word Clock";
4910 break;
4911 case HDSPM_AUTOSYNC_FROM_MADI:
4912 autosync_ref = "MADI Sync";
4913 break;
4914 case HDSPM_AUTOSYNC_FROM_NONE:
4915 autosync_ref = "Input not valid";
4916 break;
4917 default:
4918 autosync_ref = "---";
4919 break;
4920 }
4921 snd_iprintf(buffer,
0dca1793
AK
4922 "AutoSync: Reference= %s, Freq=%d (MADI = %d, Word = %d)\n",
4923 autosync_ref, hdspm_external_sample_rate(hdspm),
4924 (status & HDSPM_madiFreqMask) >> 22,
4925 (status2 & HDSPM_wcFreqMask) >> 5);
763f356c
TI
4926
4927 snd_iprintf(buffer, "Input: %s, Mode=%s\n",
0dca1793
AK
4928 (status & HDSPM_AB_int) ? "Coax" : "Optical",
4929 (status & HDSPM_RX_64ch) ? "64 channels" :
4930 "56 channels");
763f356c
TI
4931
4932 snd_iprintf(buffer, "\n");
4933}
4934
3cee5a60
RB
4935static void
4936snd_hdspm_proc_read_aes32(struct snd_info_entry * entry,
4937 struct snd_info_buffer *buffer)
4938{
ef5fa1a4 4939 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
4940 unsigned int status;
4941 unsigned int status2;
4942 unsigned int timecode;
4943 int pref_syncref;
4944 char *autosync_ref;
3cee5a60
RB
4945 int x;
4946
4947 status = hdspm_read(hdspm, HDSPM_statusRegister);
4948 status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
4949 timecode = hdspm_read(hdspm, HDSPM_timecodeRegister);
4950
4951 snd_iprintf(buffer, "%s (Card #%d) Rev.%x\n",
4952 hdspm->card_name, hdspm->card->number + 1,
4953 hdspm->firmware_rev);
4954
4955 snd_iprintf(buffer, "IRQ: %d Registers bus: 0x%lx VM: 0x%lx\n",
4956 hdspm->irq, hdspm->port, (unsigned long)hdspm->iobase);
4957
4958 snd_iprintf(buffer, "--- System ---\n");
4959
4960 snd_iprintf(buffer,
4961 "IRQ Pending: Audio=%d, MIDI0=%d, MIDI1=%d, IRQcount=%d\n",
4962 status & HDSPM_audioIRQPending,
4963 (status & HDSPM_midi0IRQPending) ? 1 : 0,
4964 (status & HDSPM_midi1IRQPending) ? 1 : 0,
4965 hdspm->irq_count);
4966 snd_iprintf(buffer,
ef5fa1a4
TI
4967 "HW pointer: id = %d, rawptr = %d (%d->%d) "
4968 "estimated= %ld (bytes)\n",
3cee5a60
RB
4969 ((status & HDSPM_BufferID) ? 1 : 0),
4970 (status & HDSPM_BufferPositionMask),
ef5fa1a4
TI
4971 (status & HDSPM_BufferPositionMask) %
4972 (2 * (int)hdspm->period_bytes),
4973 ((status & HDSPM_BufferPositionMask) - 64) %
4974 (2 * (int)hdspm->period_bytes),
3cee5a60
RB
4975 (long) hdspm_hw_pointer(hdspm) * 4);
4976
4977 snd_iprintf(buffer,
4978 "MIDI FIFO: Out1=0x%x, Out2=0x%x, In1=0x%x, In2=0x%x \n",
4979 hdspm_read(hdspm, HDSPM_midiStatusOut0) & 0xFF,
4980 hdspm_read(hdspm, HDSPM_midiStatusOut1) & 0xFF,
4981 hdspm_read(hdspm, HDSPM_midiStatusIn0) & 0xFF,
4982 hdspm_read(hdspm, HDSPM_midiStatusIn1) & 0xFF);
4983 snd_iprintf(buffer,
0dca1793
AK
4984 "MIDIoverMADI FIFO: In=0x%x, Out=0x%x \n",
4985 hdspm_read(hdspm, HDSPM_midiStatusIn2) & 0xFF,
4986 hdspm_read(hdspm, HDSPM_midiStatusOut2) & 0xFF);
4987 snd_iprintf(buffer,
4988 "Register: ctrl1=0x%x, ctrl2=0x%x, status1=0x%x, "
4989 "status2=0x%x\n",
4990 hdspm->control_register, hdspm->control2_register,
4991 status, status2);
3cee5a60
RB
4992
4993 snd_iprintf(buffer, "--- Settings ---\n");
4994
7cb155ff 4995 x = hdspm_get_latency(hdspm);
3cee5a60
RB
4996
4997 snd_iprintf(buffer,
4998 "Size (Latency): %d samples (2 periods of %lu bytes)\n",
4999 x, (unsigned long) hdspm->period_bytes);
5000
0dca1793 5001 snd_iprintf(buffer, "Line out: %s\n",
3cee5a60 5002 (hdspm->
0dca1793 5003 control_register & HDSPM_LineOut) ? "on " : "off");
3cee5a60
RB
5004
5005 snd_iprintf(buffer,
5006 "ClearTrackMarker %s, Emphasis %s, Dolby %s\n",
5007 (hdspm->
5008 control_register & HDSPM_clr_tms) ? "on" : "off",
5009 (hdspm->
5010 control_register & HDSPM_Emphasis) ? "on" : "off",
5011 (hdspm->
5012 control_register & HDSPM_Dolby) ? "on" : "off");
5013
3cee5a60
RB
5014
5015 pref_syncref = hdspm_pref_sync_ref(hdspm);
5016 if (pref_syncref == 0)
5017 snd_iprintf(buffer, "Preferred Sync Reference: Word Clock\n");
5018 else
5019 snd_iprintf(buffer, "Preferred Sync Reference: AES%d\n",
5020 pref_syncref);
5021
5022 snd_iprintf(buffer, "System Clock Frequency: %d\n",
5023 hdspm->system_sample_rate);
5024
5025 snd_iprintf(buffer, "Double speed: %s\n",
5026 hdspm->control_register & HDSPM_DS_DoubleWire?
5027 "Double wire" : "Single wire");
5028 snd_iprintf(buffer, "Quad speed: %s\n",
5029 hdspm->control_register & HDSPM_QS_DoubleWire?
5030 "Double wire" :
5031 hdspm->control_register & HDSPM_QS_QuadWire?
5032 "Quad wire" : "Single wire");
5033
5034 snd_iprintf(buffer, "--- Status:\n");
5035
5036 snd_iprintf(buffer, "Word: %s Frequency: %d\n",
0dca1793 5037 (status & HDSPM_AES32_wcLock) ? "Sync " : "No Lock",
ef5fa1a4 5038 HDSPM_bit2freq((status >> HDSPM_AES32_wcFreq_bit) & 0xF));
3cee5a60
RB
5039
5040 for (x = 0; x < 8; x++) {
5041 snd_iprintf(buffer, "AES%d: %s Frequency: %d\n",
ef5fa1a4
TI
5042 x+1,
5043 (status2 & (HDSPM_LockAES >> x)) ?
0dca1793 5044 "Sync " : "No Lock",
ef5fa1a4 5045 HDSPM_bit2freq((timecode >> (4*x)) & 0xF));
3cee5a60
RB
5046 }
5047
5048 switch (hdspm_autosync_ref(hdspm)) {
0dca1793
AK
5049 case HDSPM_AES32_AUTOSYNC_FROM_NONE:
5050 autosync_ref = "None"; break;
5051 case HDSPM_AES32_AUTOSYNC_FROM_WORD:
5052 autosync_ref = "Word Clock"; break;
5053 case HDSPM_AES32_AUTOSYNC_FROM_AES1:
5054 autosync_ref = "AES1"; break;
5055 case HDSPM_AES32_AUTOSYNC_FROM_AES2:
5056 autosync_ref = "AES2"; break;
5057 case HDSPM_AES32_AUTOSYNC_FROM_AES3:
5058 autosync_ref = "AES3"; break;
5059 case HDSPM_AES32_AUTOSYNC_FROM_AES4:
5060 autosync_ref = "AES4"; break;
5061 case HDSPM_AES32_AUTOSYNC_FROM_AES5:
5062 autosync_ref = "AES5"; break;
5063 case HDSPM_AES32_AUTOSYNC_FROM_AES6:
5064 autosync_ref = "AES6"; break;
5065 case HDSPM_AES32_AUTOSYNC_FROM_AES7:
5066 autosync_ref = "AES7"; break;
5067 case HDSPM_AES32_AUTOSYNC_FROM_AES8:
5068 autosync_ref = "AES8"; break;
5069 default:
5070 autosync_ref = "---"; break;
3cee5a60
RB
5071 }
5072 snd_iprintf(buffer, "AutoSync ref = %s\n", autosync_ref);
5073
5074 snd_iprintf(buffer, "\n");
5075}
5076
0dca1793
AK
5077static void
5078snd_hdspm_proc_read_raydat(struct snd_info_entry *entry,
5079 struct snd_info_buffer *buffer)
5080{
5081 struct hdspm *hdspm = entry->private_data;
5082 unsigned int status1, status2, status3, control, i;
5083 unsigned int lock, sync;
5084
5085 status1 = hdspm_read(hdspm, HDSPM_RD_STATUS_1); /* s1 */
5086 status2 = hdspm_read(hdspm, HDSPM_RD_STATUS_2); /* freq */
5087 status3 = hdspm_read(hdspm, HDSPM_RD_STATUS_3); /* s2 */
5088
5089 control = hdspm->control_register;
5090
5091 snd_iprintf(buffer, "STATUS1: 0x%08x\n", status1);
5092 snd_iprintf(buffer, "STATUS2: 0x%08x\n", status2);
5093 snd_iprintf(buffer, "STATUS3: 0x%08x\n", status3);
5094
5095
5096 snd_iprintf(buffer, "\n*** CLOCK MODE\n\n");
5097
5098 snd_iprintf(buffer, "Clock mode : %s\n",
5099 (hdspm_system_clock_mode(hdspm) == 0) ? "master" : "slave");
5100 snd_iprintf(buffer, "System frequency: %d Hz\n",
5101 hdspm_get_system_sample_rate(hdspm));
5102
5103 snd_iprintf(buffer, "\n*** INPUT STATUS\n\n");
5104
5105 lock = 0x1;
5106 sync = 0x100;
5107
5108 for (i = 0; i < 8; i++) {
5109 snd_iprintf(buffer, "s1_input %d: Lock %d, Sync %d, Freq %s\n",
5110 i,
5111 (status1 & lock) ? 1 : 0,
5112 (status1 & sync) ? 1 : 0,
5113 texts_freq[(status2 >> (i * 4)) & 0xF]);
5114
5115 lock = lock<<1;
5116 sync = sync<<1;
5117 }
5118
5119 snd_iprintf(buffer, "WC input: Lock %d, Sync %d, Freq %s\n",
5120 (status1 & 0x1000000) ? 1 : 0,
5121 (status1 & 0x2000000) ? 1 : 0,
5122 texts_freq[(status1 >> 16) & 0xF]);
5123
5124 snd_iprintf(buffer, "TCO input: Lock %d, Sync %d, Freq %s\n",
5125 (status1 & 0x4000000) ? 1 : 0,
5126 (status1 & 0x8000000) ? 1 : 0,
5127 texts_freq[(status1 >> 20) & 0xF]);
5128
5129 snd_iprintf(buffer, "SYNC IN: Lock %d, Sync %d, Freq %s\n",
5130 (status3 & 0x400) ? 1 : 0,
5131 (status3 & 0x800) ? 1 : 0,
5132 texts_freq[(status2 >> 12) & 0xF]);
5133
5134}
5135
3cee5a60
RB
5136#ifdef CONFIG_SND_DEBUG
5137static void
0dca1793 5138snd_hdspm_proc_read_debug(struct snd_info_entry *entry,
3cee5a60
RB
5139 struct snd_info_buffer *buffer)
5140{
ef5fa1a4 5141 struct hdspm *hdspm = entry->private_data;
3cee5a60
RB
5142
5143 int j,i;
5144
ef5fa1a4 5145 for (i = 0; i < 256 /* 1024*64 */; i += j) {
3cee5a60
RB
5146 snd_iprintf(buffer, "0x%08X: ", i);
5147 for (j = 0; j < 16; j += 4)
5148 snd_iprintf(buffer, "%08X ", hdspm_read(hdspm, i + j));
5149 snd_iprintf(buffer, "\n");
5150 }
5151}
5152#endif
5153
5154
0dca1793
AK
5155static void snd_hdspm_proc_ports_in(struct snd_info_entry *entry,
5156 struct snd_info_buffer *buffer)
5157{
5158 struct hdspm *hdspm = entry->private_data;
5159 int i;
5160
5161 snd_iprintf(buffer, "# generated by hdspm\n");
5162
5163 for (i = 0; i < hdspm->max_channels_in; i++) {
5164 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_in[i]);
5165 }
5166}
5167
5168static void snd_hdspm_proc_ports_out(struct snd_info_entry *entry,
5169 struct snd_info_buffer *buffer)
5170{
5171 struct hdspm *hdspm = entry->private_data;
5172 int i;
5173
5174 snd_iprintf(buffer, "# generated by hdspm\n");
5175
5176 for (i = 0; i < hdspm->max_channels_out; i++) {
5177 snd_iprintf(buffer, "%d=%s\n", i+1, hdspm->port_names_out[i]);
5178 }
5179}
5180
3cee5a60 5181
0dca1793 5182static void __devinit snd_hdspm_proc_init(struct hdspm *hdspm)
763f356c 5183{
98274f07 5184 struct snd_info_entry *entry;
763f356c 5185
0dca1793
AK
5186 if (!snd_card_proc_new(hdspm->card, "hdspm", &entry)) {
5187 switch (hdspm->io_type) {
5188 case AES32:
5189 snd_info_set_text_ops(entry, hdspm,
5190 snd_hdspm_proc_read_aes32);
5191 break;
5192 case MADI:
5193 snd_info_set_text_ops(entry, hdspm,
5194 snd_hdspm_proc_read_madi);
5195 break;
5196 case MADIface:
5197 /* snd_info_set_text_ops(entry, hdspm,
5198 snd_hdspm_proc_read_madiface); */
5199 break;
5200 case RayDAT:
5201 snd_info_set_text_ops(entry, hdspm,
5202 snd_hdspm_proc_read_raydat);
5203 break;
5204 case AIO:
5205 break;
5206 }
5207 }
5208
5209 if (!snd_card_proc_new(hdspm->card, "ports.in", &entry)) {
5210 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_in);
5211 }
5212
5213 if (!snd_card_proc_new(hdspm->card, "ports.out", &entry)) {
5214 snd_info_set_text_ops(entry, hdspm, snd_hdspm_proc_ports_out);
5215 }
5216
3cee5a60
RB
5217#ifdef CONFIG_SND_DEBUG
5218 /* debug file to read all hdspm registers */
5219 if (!snd_card_proc_new(hdspm->card, "debug", &entry))
5220 snd_info_set_text_ops(entry, hdspm,
5221 snd_hdspm_proc_read_debug);
5222#endif
763f356c
TI
5223}
5224
5225/*------------------------------------------------------------
0dca1793 5226 hdspm intitialize
763f356c
TI
5227 ------------------------------------------------------------*/
5228
98274f07 5229static int snd_hdspm_set_defaults(struct hdspm * hdspm)
763f356c 5230{
763f356c 5231 /* ASSUMPTION: hdspm->lock is either held, or there is no need to
561de31a 5232 hold it (e.g. during module initialization).
0dca1793 5233 */
763f356c
TI
5234
5235 /* set defaults: */
5236
0dca1793
AK
5237 hdspm->settings_register = 0;
5238
5239 switch (hdspm->io_type) {
5240 case MADI:
5241 case MADIface:
5242 hdspm->control_register =
5243 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5244 break;
5245
5246 case RayDAT:
5247 case AIO:
5248 hdspm->settings_register = 0x1 + 0x1000;
5249 /* Magic values are: LAT_0, LAT_2, Master, freq1, tx64ch, inp_0,
5250 * line_out */
5251 hdspm->control_register =
5252 0x2 + 0x8 + 0x10 + 0x80 + 0x400 + 0x4000 + 0x1000000;
5253 break;
5254
5255 case AES32:
ef5fa1a4
TI
5256 hdspm->control_register =
5257 HDSPM_ClockModeMaster | /* Master Cloack Mode on */
0dca1793 5258 hdspm_encode_latency(7) | /* latency max=8192samples */
3cee5a60
RB
5259 HDSPM_SyncRef0 | /* AES1 is syncclock */
5260 HDSPM_LineOut | /* Analog output in */
5261 HDSPM_Professional; /* Professional mode */
0dca1793
AK
5262 break;
5263 }
763f356c
TI
5264
5265 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5266
0dca1793 5267 if (AES32 == hdspm->io_type) {
ffb2c3c0 5268 /* No control2 register for AES32 */
763f356c 5269#ifdef SNDRV_BIG_ENDIAN
ffb2c3c0 5270 hdspm->control2_register = HDSPM_BIGENDIAN_MODE;
763f356c 5271#else
ffb2c3c0 5272 hdspm->control2_register = 0;
763f356c
TI
5273#endif
5274
ffb2c3c0
RB
5275 hdspm_write(hdspm, HDSPM_control2Reg, hdspm->control2_register);
5276 }
763f356c
TI
5277 hdspm_compute_period_size(hdspm);
5278
5279 /* silence everything */
5280
5281 all_in_all_mixer(hdspm, 0 * UNITY_GAIN);
5282
0dca1793
AK
5283 if (hdspm->io_type == AIO || hdspm->io_type == RayDAT) {
5284 hdspm_write(hdspm, HDSPM_WR_SETTINGS, hdspm->settings_register);
763f356c
TI
5285 }
5286
5287 /* set a default rate so that the channel map is set up. */
0dca1793 5288 hdspm_set_rate(hdspm, 48000, 1);
763f356c
TI
5289
5290 return 0;
5291}
5292
5293
5294/*------------------------------------------------------------
0dca1793 5295 interrupt
763f356c
TI
5296 ------------------------------------------------------------*/
5297
7d12e780 5298static irqreturn_t snd_hdspm_interrupt(int irq, void *dev_id)
763f356c 5299{
98274f07 5300 struct hdspm *hdspm = (struct hdspm *) dev_id;
763f356c 5301 unsigned int status;
0dca1793
AK
5302 int i, audio, midi, schedule = 0;
5303 /* cycles_t now; */
763f356c
TI
5304
5305 status = hdspm_read(hdspm, HDSPM_statusRegister);
5306
5307 audio = status & HDSPM_audioIRQPending;
0dca1793
AK
5308 midi = status & (HDSPM_midi0IRQPending | HDSPM_midi1IRQPending |
5309 HDSPM_midi2IRQPending | HDSPM_midi3IRQPending);
5310
5311 /* now = get_cycles(); */
5312 /**
5313 * LAT_2..LAT_0 period counter (win) counter (mac)
5314 * 6 4096 ~256053425 ~514672358
5315 * 5 2048 ~128024983 ~257373821
5316 * 4 1024 ~64023706 ~128718089
5317 * 3 512 ~32005945 ~64385999
5318 * 2 256 ~16003039 ~32260176
5319 * 1 128 ~7998738 ~16194507
5320 * 0 64 ~3998231 ~8191558
5321 **/
5322 /*
5323 snd_printk(KERN_INFO "snd_hdspm_interrupt %llu @ %llx\n",
5324 now-hdspm->last_interrupt, status & 0xFFC0);
5325 hdspm->last_interrupt = now;
5326 */
763f356c 5327
0dca1793 5328 if (!audio && !midi)
763f356c
TI
5329 return IRQ_NONE;
5330
5331 hdspm_write(hdspm, HDSPM_interruptConfirmation, 0);
5332 hdspm->irq_count++;
5333
763f356c
TI
5334
5335 if (audio) {
763f356c 5336 if (hdspm->capture_substream)
ef5fa1a4 5337 snd_pcm_period_elapsed(hdspm->capture_substream);
763f356c
TI
5338
5339 if (hdspm->playback_substream)
ef5fa1a4 5340 snd_pcm_period_elapsed(hdspm->playback_substream);
763f356c
TI
5341 }
5342
0dca1793
AK
5343 if (midi) {
5344 i = 0;
5345 while (i < hdspm->midiPorts) {
5346 if ((hdspm_read(hdspm,
5347 hdspm->midi[i].statusIn) & 0xff) &&
5348 (status & hdspm->midi[i].irq)) {
5349 /* we disable interrupts for this input until
5350 * processing is done
5351 */
5352 hdspm->control_register &= ~hdspm->midi[i].ie;
5353 hdspm_write(hdspm, HDSPM_controlRegister,
5354 hdspm->control_register);
5355 hdspm->midi[i].pending = 1;
5356 schedule = 1;
5357 }
5358
5359 i++;
5360 }
5361
5362 if (schedule)
5363 tasklet_hi_schedule(&hdspm->midi_tasklet);
763f356c 5364 }
0dca1793 5365
763f356c
TI
5366 return IRQ_HANDLED;
5367}
5368
5369/*------------------------------------------------------------
0dca1793 5370 pcm interface
763f356c
TI
5371 ------------------------------------------------------------*/
5372
5373
0dca1793
AK
5374static snd_pcm_uframes_t snd_hdspm_hw_pointer(struct snd_pcm_substream
5375 *substream)
763f356c 5376{
98274f07 5377 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5378 return hdspm_hw_pointer(hdspm);
5379}
5380
763f356c 5381
98274f07 5382static int snd_hdspm_reset(struct snd_pcm_substream *substream)
763f356c 5383{
98274f07
TI
5384 struct snd_pcm_runtime *runtime = substream->runtime;
5385 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5386 struct snd_pcm_substream *other;
763f356c
TI
5387
5388 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5389 other = hdspm->capture_substream;
5390 else
5391 other = hdspm->playback_substream;
5392
5393 if (hdspm->running)
5394 runtime->status->hw_ptr = hdspm_hw_pointer(hdspm);
5395 else
5396 runtime->status->hw_ptr = 0;
5397 if (other) {
98274f07
TI
5398 struct snd_pcm_substream *s;
5399 struct snd_pcm_runtime *oruntime = other->runtime;
ef991b95 5400 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
5401 if (s == other) {
5402 oruntime->status->hw_ptr =
0dca1793 5403 runtime->status->hw_ptr;
763f356c
TI
5404 break;
5405 }
5406 }
5407 }
5408 return 0;
5409}
5410
98274f07
TI
5411static int snd_hdspm_hw_params(struct snd_pcm_substream *substream,
5412 struct snd_pcm_hw_params *params)
763f356c 5413{
98274f07 5414 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5415 int err;
5416 int i;
5417 pid_t this_pid;
5418 pid_t other_pid;
763f356c
TI
5419
5420 spin_lock_irq(&hdspm->lock);
5421
5422 if (substream->pstr->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5423 this_pid = hdspm->playback_pid;
5424 other_pid = hdspm->capture_pid;
5425 } else {
5426 this_pid = hdspm->capture_pid;
5427 other_pid = hdspm->playback_pid;
5428 }
5429
ef5fa1a4 5430 if (other_pid > 0 && this_pid != other_pid) {
763f356c
TI
5431
5432 /* The other stream is open, and not by the same
5433 task as this one. Make sure that the parameters
5434 that matter are the same.
0dca1793 5435 */
763f356c
TI
5436
5437 if (params_rate(params) != hdspm->system_sample_rate) {
5438 spin_unlock_irq(&hdspm->lock);
5439 _snd_pcm_hw_param_setempty(params,
0dca1793 5440 SNDRV_PCM_HW_PARAM_RATE);
763f356c
TI
5441 return -EBUSY;
5442 }
5443
5444 if (params_period_size(params) != hdspm->period_bytes / 4) {
5445 spin_unlock_irq(&hdspm->lock);
5446 _snd_pcm_hw_param_setempty(params,
0dca1793 5447 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c
TI
5448 return -EBUSY;
5449 }
5450
5451 }
5452 /* We're fine. */
5453 spin_unlock_irq(&hdspm->lock);
5454
5455 /* how to make sure that the rate matches an externally-set one ? */
5456
5457 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
5458 err = hdspm_set_rate(hdspm, params_rate(params), 0);
5459 if (err < 0) {
0dca1793 5460 snd_printk(KERN_INFO "err on hdspm_set_rate: %d\n", err);
763f356c
TI
5461 spin_unlock_irq(&hdspm->lock);
5462 _snd_pcm_hw_param_setempty(params,
0dca1793 5463 SNDRV_PCM_HW_PARAM_RATE);
763f356c
TI
5464 return err;
5465 }
5466 spin_unlock_irq(&hdspm->lock);
5467
ef5fa1a4 5468 err = hdspm_set_interrupt_interval(hdspm,
0dca1793 5469 params_period_size(params));
ef5fa1a4 5470 if (err < 0) {
0dca1793 5471 snd_printk(KERN_INFO "err on hdspm_set_interrupt_interval: %d\n", err);
763f356c 5472 _snd_pcm_hw_param_setempty(params,
0dca1793 5473 SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c
TI
5474 return err;
5475 }
5476
ef5fa1a4
TI
5477 /* Memory allocation, takashi's method, dont know if we should
5478 * spinlock
5479 */
763f356c 5480 /* malloc all buffer even if not enabled to get sure */
ffb2c3c0
RB
5481 /* Update for MADI rev 204: we need to allocate for all channels,
5482 * otherwise it doesn't work at 96kHz */
0dca1793 5483
763f356c 5484 err =
0dca1793
AK
5485 snd_pcm_lib_malloc_pages(substream, HDSPM_DMA_AREA_BYTES);
5486 if (err < 0) {
5487 snd_printk(KERN_INFO "err on snd_pcm_lib_malloc_pages: %d\n", err);
763f356c 5488 return err;
0dca1793 5489 }
763f356c 5490
763f356c
TI
5491 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5492
77a23f26 5493 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferOut,
763f356c
TI
5494 params_channels(params));
5495
5496 for (i = 0; i < params_channels(params); ++i)
5497 snd_hdspm_enable_out(hdspm, i, 1);
5498
5499 hdspm->playback_buffer =
0dca1793 5500 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 5501 snd_printdd("Allocated sample buffer for playback at %p\n",
3cee5a60 5502 hdspm->playback_buffer);
763f356c 5503 } else {
77a23f26 5504 hdspm_set_sgbuf(hdspm, substream, HDSPM_pageAddressBufferIn,
763f356c
TI
5505 params_channels(params));
5506
5507 for (i = 0; i < params_channels(params); ++i)
5508 snd_hdspm_enable_in(hdspm, i, 1);
5509
5510 hdspm->capture_buffer =
0dca1793 5511 (unsigned char *) substream->runtime->dma_area;
54bf5dd9 5512 snd_printdd("Allocated sample buffer for capture at %p\n",
3cee5a60 5513 hdspm->capture_buffer);
763f356c 5514 }
0dca1793 5515
3cee5a60
RB
5516 /*
5517 snd_printdd("Allocated sample buffer for %s at 0x%08X\n",
5518 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5519 "playback" : "capture",
77a23f26 5520 snd_pcm_sgbuf_get_addr(substream, 0));
0dca1793 5521 */
ffb2c3c0 5522 /*
0dca1793
AK
5523 snd_printdd("set_hwparams: %s %d Hz, %d channels, bs = %d\n",
5524 substream->stream == SNDRV_PCM_STREAM_PLAYBACK ?
5525 "playback" : "capture",
5526 params_rate(params), params_channels(params),
5527 params_buffer_size(params));
5528 */
5529
5530
5531 /* Switch to native float format if requested */
5532 if (SNDRV_PCM_FORMAT_FLOAT_LE == params_format(params)) {
5533 if (!(hdspm->control_register & HDSPe_FLOAT_FORMAT))
5534 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE float format.\n");
5535
5536 hdspm->control_register |= HDSPe_FLOAT_FORMAT;
5537 } else if (SNDRV_PCM_FORMAT_S32_LE == params_format(params)) {
5538 if (hdspm->control_register & HDSPe_FLOAT_FORMAT)
5539 snd_printk(KERN_INFO "hdspm: Switching to native 32bit LE integer format.\n");
5540
5541 hdspm->control_register &= ~HDSPe_FLOAT_FORMAT;
5542 }
5543 hdspm_write(hdspm, HDSPM_controlRegister, hdspm->control_register);
5544
763f356c
TI
5545 return 0;
5546}
5547
98274f07 5548static int snd_hdspm_hw_free(struct snd_pcm_substream *substream)
763f356c
TI
5549{
5550 int i;
98274f07 5551 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5552
5553 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5554
0dca1793 5555 /* params_channels(params) should be enough,
763f356c 5556 but to get sure in case of error */
0dca1793 5557 for (i = 0; i < hdspm->max_channels_out; ++i)
763f356c
TI
5558 snd_hdspm_enable_out(hdspm, i, 0);
5559
5560 hdspm->playback_buffer = NULL;
5561 } else {
0dca1793 5562 for (i = 0; i < hdspm->max_channels_in; ++i)
763f356c
TI
5563 snd_hdspm_enable_in(hdspm, i, 0);
5564
5565 hdspm->capture_buffer = NULL;
5566
5567 }
5568
5569 snd_pcm_lib_free_pages(substream);
5570
5571 return 0;
5572}
5573
0dca1793 5574
98274f07 5575static int snd_hdspm_channel_info(struct snd_pcm_substream *substream,
0dca1793 5576 struct snd_pcm_channel_info *info)
763f356c 5577{
98274f07 5578 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c 5579
0dca1793
AK
5580 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
5581 if (snd_BUG_ON(info->channel >= hdspm->max_channels_out)) {
5582 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel out of range (%d)\n", info->channel);
5583 return -EINVAL;
5584 }
763f356c 5585
0dca1793
AK
5586 if (hdspm->channel_map_out[info->channel] < 0) {
5587 snd_printk(KERN_INFO "snd_hdspm_channel_info: output channel %d mapped out\n", info->channel);
5588 return -EINVAL;
5589 }
5590
5591 info->offset = hdspm->channel_map_out[info->channel] *
5592 HDSPM_CHANNEL_BUFFER_BYTES;
5593 } else {
5594 if (snd_BUG_ON(info->channel >= hdspm->max_channels_in)) {
5595 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel out of range (%d)\n", info->channel);
5596 return -EINVAL;
5597 }
5598
5599 if (hdspm->channel_map_in[info->channel] < 0) {
5600 snd_printk(KERN_INFO "snd_hdspm_channel_info: input channel %d mapped out\n", info->channel);
5601 return -EINVAL;
5602 }
5603
5604 info->offset = hdspm->channel_map_in[info->channel] *
5605 HDSPM_CHANNEL_BUFFER_BYTES;
5606 }
763f356c 5607
763f356c
TI
5608 info->first = 0;
5609 info->step = 32;
5610 return 0;
5611}
5612
0dca1793 5613
98274f07 5614static int snd_hdspm_ioctl(struct snd_pcm_substream *substream,
0dca1793 5615 unsigned int cmd, void *arg)
763f356c
TI
5616{
5617 switch (cmd) {
5618 case SNDRV_PCM_IOCTL1_RESET:
ef5fa1a4 5619 return snd_hdspm_reset(substream);
763f356c
TI
5620
5621 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
0dca1793
AK
5622 {
5623 struct snd_pcm_channel_info *info = arg;
5624 return snd_hdspm_channel_info(substream, info);
5625 }
763f356c
TI
5626 default:
5627 break;
5628 }
5629
5630 return snd_pcm_lib_ioctl(substream, cmd, arg);
5631}
5632
98274f07 5633static int snd_hdspm_trigger(struct snd_pcm_substream *substream, int cmd)
763f356c 5634{
98274f07
TI
5635 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5636 struct snd_pcm_substream *other;
763f356c
TI
5637 int running;
5638
5639 spin_lock(&hdspm->lock);
5640 running = hdspm->running;
5641 switch (cmd) {
5642 case SNDRV_PCM_TRIGGER_START:
5643 running |= 1 << substream->stream;
5644 break;
5645 case SNDRV_PCM_TRIGGER_STOP:
5646 running &= ~(1 << substream->stream);
5647 break;
5648 default:
5649 snd_BUG();
5650 spin_unlock(&hdspm->lock);
5651 return -EINVAL;
5652 }
5653 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
5654 other = hdspm->capture_substream;
5655 else
5656 other = hdspm->playback_substream;
5657
5658 if (other) {
98274f07 5659 struct snd_pcm_substream *s;
ef991b95 5660 snd_pcm_group_for_each_entry(s, substream) {
763f356c
TI
5661 if (s == other) {
5662 snd_pcm_trigger_done(s, substream);
5663 if (cmd == SNDRV_PCM_TRIGGER_START)
5664 running |= 1 << s->stream;
5665 else
5666 running &= ~(1 << s->stream);
5667 goto _ok;
5668 }
5669 }
5670 if (cmd == SNDRV_PCM_TRIGGER_START) {
5671 if (!(running & (1 << SNDRV_PCM_STREAM_PLAYBACK))
0dca1793
AK
5672 && substream->stream ==
5673 SNDRV_PCM_STREAM_CAPTURE)
763f356c
TI
5674 hdspm_silence_playback(hdspm);
5675 } else {
5676 if (running &&
0dca1793 5677 substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
763f356c
TI
5678 hdspm_silence_playback(hdspm);
5679 }
5680 } else {
5681 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
5682 hdspm_silence_playback(hdspm);
5683 }
0dca1793 5684_ok:
763f356c
TI
5685 snd_pcm_trigger_done(substream, substream);
5686 if (!hdspm->running && running)
5687 hdspm_start_audio(hdspm);
5688 else if (hdspm->running && !running)
5689 hdspm_stop_audio(hdspm);
5690 hdspm->running = running;
5691 spin_unlock(&hdspm->lock);
5692
5693 return 0;
5694}
5695
98274f07 5696static int snd_hdspm_prepare(struct snd_pcm_substream *substream)
763f356c
TI
5697{
5698 return 0;
5699}
5700
98274f07 5701static struct snd_pcm_hardware snd_hdspm_playback_subinfo = {
763f356c
TI
5702 .info = (SNDRV_PCM_INFO_MMAP |
5703 SNDRV_PCM_INFO_MMAP_VALID |
5704 SNDRV_PCM_INFO_NONINTERLEAVED |
5705 SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_DOUBLE),
5706 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5707 .rates = (SNDRV_PCM_RATE_32000 |
5708 SNDRV_PCM_RATE_44100 |
5709 SNDRV_PCM_RATE_48000 |
5710 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
5711 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5712 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000 ),
763f356c 5713 .rate_min = 32000,
3cee5a60 5714 .rate_max = 192000,
763f356c
TI
5715 .channels_min = 1,
5716 .channels_max = HDSPM_MAX_CHANNELS,
5717 .buffer_bytes_max =
5718 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
1b6fa108 5719 .period_bytes_min = (32 * 4),
52e6fb48 5720 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
763f356c 5721 .periods_min = 2,
0dca1793 5722 .periods_max = 512,
763f356c
TI
5723 .fifo_size = 0
5724};
5725
98274f07 5726static struct snd_pcm_hardware snd_hdspm_capture_subinfo = {
763f356c
TI
5727 .info = (SNDRV_PCM_INFO_MMAP |
5728 SNDRV_PCM_INFO_MMAP_VALID |
5729 SNDRV_PCM_INFO_NONINTERLEAVED |
5730 SNDRV_PCM_INFO_SYNC_START),
5731 .formats = SNDRV_PCM_FMTBIT_S32_LE,
5732 .rates = (SNDRV_PCM_RATE_32000 |
5733 SNDRV_PCM_RATE_44100 |
5734 SNDRV_PCM_RATE_48000 |
5735 SNDRV_PCM_RATE_64000 |
3cee5a60
RB
5736 SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 |
5737 SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000),
763f356c 5738 .rate_min = 32000,
3cee5a60 5739 .rate_max = 192000,
763f356c
TI
5740 .channels_min = 1,
5741 .channels_max = HDSPM_MAX_CHANNELS,
5742 .buffer_bytes_max =
5743 HDSPM_CHANNEL_BUFFER_BYTES * HDSPM_MAX_CHANNELS,
1b6fa108 5744 .period_bytes_min = (32 * 4),
52e6fb48 5745 .period_bytes_max = (8192 * 4) * HDSPM_MAX_CHANNELS,
763f356c 5746 .periods_min = 2,
0dca1793 5747 .periods_max = 512,
763f356c
TI
5748 .fifo_size = 0
5749};
5750
0dca1793
AK
5751static int snd_hdspm_hw_rule_in_channels_rate(struct snd_pcm_hw_params *params,
5752 struct snd_pcm_hw_rule *rule)
5753{
5754 struct hdspm *hdspm = rule->private;
5755 struct snd_interval *c =
5756 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5757 struct snd_interval *r =
5758 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5759
5760 if (r->min > 96000 && r->max <= 192000) {
5761 struct snd_interval t = {
5762 .min = hdspm->qs_in_channels,
5763 .max = hdspm->qs_in_channels,
5764 .integer = 1,
5765 };
5766 return snd_interval_refine(c, &t);
5767 } else if (r->min > 48000 && r->max <= 96000) {
5768 struct snd_interval t = {
5769 .min = hdspm->ds_in_channels,
5770 .max = hdspm->ds_in_channels,
5771 .integer = 1,
5772 };
5773 return snd_interval_refine(c, &t);
5774 } else if (r->max < 64000) {
5775 struct snd_interval t = {
5776 .min = hdspm->ss_in_channels,
5777 .max = hdspm->ss_in_channels,
5778 .integer = 1,
5779 };
5780 return snd_interval_refine(c, &t);
5781 }
5782
5783 return 0;
5784}
763f356c 5785
0dca1793 5786static int snd_hdspm_hw_rule_out_channels_rate(struct snd_pcm_hw_params *params,
98274f07 5787 struct snd_pcm_hw_rule * rule)
763f356c 5788{
98274f07
TI
5789 struct hdspm *hdspm = rule->private;
5790 struct snd_interval *c =
763f356c 5791 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 5792 struct snd_interval *r =
763f356c
TI
5793 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5794
0dca1793
AK
5795 if (r->min > 96000 && r->max <= 192000) {
5796 struct snd_interval t = {
5797 .min = hdspm->qs_out_channels,
5798 .max = hdspm->qs_out_channels,
5799 .integer = 1,
5800 };
5801 return snd_interval_refine(c, &t);
5802 } else if (r->min > 48000 && r->max <= 96000) {
98274f07 5803 struct snd_interval t = {
0dca1793
AK
5804 .min = hdspm->ds_out_channels,
5805 .max = hdspm->ds_out_channels,
763f356c
TI
5806 .integer = 1,
5807 };
5808 return snd_interval_refine(c, &t);
5809 } else if (r->max < 64000) {
98274f07 5810 struct snd_interval t = {
0dca1793
AK
5811 .min = hdspm->ss_out_channels,
5812 .max = hdspm->ss_out_channels,
763f356c
TI
5813 .integer = 1,
5814 };
5815 return snd_interval_refine(c, &t);
0dca1793 5816 } else {
763f356c
TI
5817 }
5818 return 0;
5819}
5820
0dca1793 5821static int snd_hdspm_hw_rule_rate_in_channels(struct snd_pcm_hw_params *params,
98274f07 5822 struct snd_pcm_hw_rule * rule)
763f356c 5823{
98274f07
TI
5824 struct hdspm *hdspm = rule->private;
5825 struct snd_interval *c =
763f356c 5826 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
98274f07 5827 struct snd_interval *r =
763f356c
TI
5828 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
5829
0dca1793 5830 if (c->min >= hdspm->ss_in_channels) {
98274f07 5831 struct snd_interval t = {
763f356c
TI
5832 .min = 32000,
5833 .max = 48000,
5834 .integer = 1,
5835 };
5836 return snd_interval_refine(r, &t);
0dca1793
AK
5837 } else if (c->max <= hdspm->qs_in_channels) {
5838 struct snd_interval t = {
5839 .min = 128000,
5840 .max = 192000,
5841 .integer = 1,
5842 };
5843 return snd_interval_refine(r, &t);
5844 } else if (c->max <= hdspm->ds_in_channels) {
98274f07 5845 struct snd_interval t = {
763f356c
TI
5846 .min = 64000,
5847 .max = 96000,
5848 .integer = 1,
5849 };
0dca1793
AK
5850 return snd_interval_refine(r, &t);
5851 }
5852
5853 return 0;
5854}
5855static int snd_hdspm_hw_rule_rate_out_channels(struct snd_pcm_hw_params *params,
5856 struct snd_pcm_hw_rule *rule)
5857{
5858 struct hdspm *hdspm = rule->private;
5859 struct snd_interval *c =
5860 hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
5861 struct snd_interval *r =
5862 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
763f356c 5863
0dca1793
AK
5864 if (c->min >= hdspm->ss_out_channels) {
5865 struct snd_interval t = {
5866 .min = 32000,
5867 .max = 48000,
5868 .integer = 1,
5869 };
5870 return snd_interval_refine(r, &t);
5871 } else if (c->max <= hdspm->qs_out_channels) {
5872 struct snd_interval t = {
5873 .min = 128000,
5874 .max = 192000,
5875 .integer = 1,
5876 };
5877 return snd_interval_refine(r, &t);
5878 } else if (c->max <= hdspm->ds_out_channels) {
5879 struct snd_interval t = {
5880 .min = 64000,
5881 .max = 96000,
5882 .integer = 1,
5883 };
763f356c
TI
5884 return snd_interval_refine(r, &t);
5885 }
0dca1793 5886
763f356c
TI
5887 return 0;
5888}
5889
0dca1793 5890static int snd_hdspm_hw_rule_in_channels(struct snd_pcm_hw_params *params,
ffb2c3c0
RB
5891 struct snd_pcm_hw_rule *rule)
5892{
5893 unsigned int list[3];
5894 struct hdspm *hdspm = rule->private;
5895 struct snd_interval *c = hw_param_interval(params,
5896 SNDRV_PCM_HW_PARAM_CHANNELS);
0dca1793
AK
5897
5898 list[0] = hdspm->qs_in_channels;
5899 list[1] = hdspm->ds_in_channels;
5900 list[2] = hdspm->ss_in_channels;
5901 return snd_interval_list(c, 3, list, 0);
5902}
5903
5904static int snd_hdspm_hw_rule_out_channels(struct snd_pcm_hw_params *params,
5905 struct snd_pcm_hw_rule *rule)
5906{
5907 unsigned int list[3];
5908 struct hdspm *hdspm = rule->private;
5909 struct snd_interval *c = hw_param_interval(params,
5910 SNDRV_PCM_HW_PARAM_CHANNELS);
5911
5912 list[0] = hdspm->qs_out_channels;
5913 list[1] = hdspm->ds_out_channels;
5914 list[2] = hdspm->ss_out_channels;
5915 return snd_interval_list(c, 3, list, 0);
ffb2c3c0
RB
5916}
5917
5918
ef5fa1a4
TI
5919static unsigned int hdspm_aes32_sample_rates[] = {
5920 32000, 44100, 48000, 64000, 88200, 96000, 128000, 176400, 192000
5921};
ffb2c3c0 5922
ef5fa1a4
TI
5923static struct snd_pcm_hw_constraint_list
5924hdspm_hw_constraints_aes32_sample_rates = {
ffb2c3c0
RB
5925 .count = ARRAY_SIZE(hdspm_aes32_sample_rates),
5926 .list = hdspm_aes32_sample_rates,
5927 .mask = 0
5928};
5929
98274f07 5930static int snd_hdspm_playback_open(struct snd_pcm_substream *substream)
763f356c 5931{
98274f07
TI
5932 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
5933 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c 5934
763f356c
TI
5935 spin_lock_irq(&hdspm->lock);
5936
5937 snd_pcm_set_sync(substream);
5938
0dca1793 5939
763f356c
TI
5940 runtime->hw = snd_hdspm_playback_subinfo;
5941
5942 if (hdspm->capture_substream == NULL)
5943 hdspm_stop_audio(hdspm);
5944
5945 hdspm->playback_pid = current->pid;
5946 hdspm->playback_substream = substream;
5947
5948 spin_unlock_irq(&hdspm->lock);
5949
5950 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
d877681d 5951 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
763f356c 5952
0dca1793
AK
5953 switch (hdspm->io_type) {
5954 case AIO:
5955 case RayDAT:
d877681d
TI
5956 snd_pcm_hw_constraint_minmax(runtime,
5957 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5958 32, 4096);
5959 /* RayDAT & AIO have a fixed buffer of 16384 samples per channel */
5960 snd_pcm_hw_constraint_minmax(runtime,
5961 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
5962 16384, 16384);
0dca1793
AK
5963 break;
5964
5965 default:
d877681d
TI
5966 snd_pcm_hw_constraint_minmax(runtime,
5967 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
5968 64, 8192);
5969 break;
0dca1793 5970 }
763f356c 5971
0dca1793 5972 if (AES32 == hdspm->io_type) {
3fa9e3d2 5973 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
ffb2c3c0
RB
5974 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
5975 &hdspm_hw_constraints_aes32_sample_rates);
5976 } else {
ffb2c3c0 5977 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
0dca1793
AK
5978 snd_hdspm_hw_rule_rate_out_channels, hdspm,
5979 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
ffb2c3c0 5980 }
88fabbfc
AK
5981
5982 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5983 snd_hdspm_hw_rule_out_channels, hdspm,
5984 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
5985
5986 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
5987 snd_hdspm_hw_rule_out_channels_rate, hdspm,
5988 SNDRV_PCM_HW_PARAM_RATE, -1);
5989
763f356c
TI
5990 return 0;
5991}
5992
98274f07 5993static int snd_hdspm_playback_release(struct snd_pcm_substream *substream)
763f356c 5994{
98274f07 5995 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
5996
5997 spin_lock_irq(&hdspm->lock);
5998
5999 hdspm->playback_pid = -1;
6000 hdspm->playback_substream = NULL;
6001
6002 spin_unlock_irq(&hdspm->lock);
6003
6004 return 0;
6005}
6006
6007
98274f07 6008static int snd_hdspm_capture_open(struct snd_pcm_substream *substream)
763f356c 6009{
98274f07
TI
6010 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
6011 struct snd_pcm_runtime *runtime = substream->runtime;
763f356c
TI
6012
6013 spin_lock_irq(&hdspm->lock);
6014 snd_pcm_set_sync(substream);
6015 runtime->hw = snd_hdspm_capture_subinfo;
6016
6017 if (hdspm->playback_substream == NULL)
6018 hdspm_stop_audio(hdspm);
6019
6020 hdspm->capture_pid = current->pid;
6021 hdspm->capture_substream = substream;
6022
6023 spin_unlock_irq(&hdspm->lock);
6024
6025 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
d877681d
TI
6026 snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE);
6027
0dca1793
AK
6028 switch (hdspm->io_type) {
6029 case AIO:
6030 case RayDAT:
d877681d
TI
6031 snd_pcm_hw_constraint_minmax(runtime,
6032 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6033 32, 4096);
6034 snd_pcm_hw_constraint_minmax(runtime,
6035 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
6036 16384, 16384);
6037 break;
0dca1793
AK
6038
6039 default:
d877681d
TI
6040 snd_pcm_hw_constraint_minmax(runtime,
6041 SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
6042 64, 8192);
6043 break;
0dca1793
AK
6044 }
6045
6046 if (AES32 == hdspm->io_type) {
3fa9e3d2 6047 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
ffb2c3c0
RB
6048 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
6049 &hdspm_hw_constraints_aes32_sample_rates);
6050 } else {
ffb2c3c0 6051 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
88fabbfc
AK
6052 snd_hdspm_hw_rule_rate_in_channels, hdspm,
6053 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
ffb2c3c0 6054 }
88fabbfc
AK
6055
6056 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6057 snd_hdspm_hw_rule_in_channels, hdspm,
6058 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
6059
6060 snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
6061 snd_hdspm_hw_rule_in_channels_rate, hdspm,
6062 SNDRV_PCM_HW_PARAM_RATE, -1);
6063
763f356c
TI
6064 return 0;
6065}
6066
98274f07 6067static int snd_hdspm_capture_release(struct snd_pcm_substream *substream)
763f356c 6068{
98274f07 6069 struct hdspm *hdspm = snd_pcm_substream_chip(substream);
763f356c
TI
6070
6071 spin_lock_irq(&hdspm->lock);
6072
6073 hdspm->capture_pid = -1;
6074 hdspm->capture_substream = NULL;
6075
6076 spin_unlock_irq(&hdspm->lock);
6077 return 0;
6078}
6079
0dca1793
AK
6080static int snd_hdspm_hwdep_dummy_op(struct snd_hwdep *hw, struct file *file)
6081{
6082 /* we have nothing to initialize but the call is required */
6083 return 0;
6084}
6085
6086static inline int copy_u32_le(void __user *dest, void __iomem *src)
6087{
6088 u32 val = readl(src);
6089 return copy_to_user(dest, &val, 4);
6090}
6091
6092static int snd_hdspm_hwdep_ioctl(struct snd_hwdep *hw, struct file *file,
2ca595ab 6093 unsigned int cmd, unsigned long arg)
763f356c 6094{
0dca1793 6095 void __user *argp = (void __user *)arg;
ef5fa1a4 6096 struct hdspm *hdspm = hw->private_data;
98274f07 6097 struct hdspm_mixer_ioctl mixer;
0dca1793
AK
6098 struct hdspm_config info;
6099 struct hdspm_status status;
98274f07 6100 struct hdspm_version hdspm_version;
730a5865 6101 struct hdspm_peak_rms *levels;
0dca1793
AK
6102 struct hdspm_ltc ltc;
6103 unsigned int statusregister;
6104 long unsigned int s;
6105 int i = 0;
763f356c
TI
6106
6107 switch (cmd) {
6108
763f356c 6109 case SNDRV_HDSPM_IOCTL_GET_PEAK_RMS:
730a5865 6110 levels = &hdspm->peak_rms;
0dca1793 6111 for (i = 0; i < HDSPM_MAX_CHANNELS; i++) {
730a5865 6112 levels->input_peaks[i] =
0dca1793
AK
6113 readl(hdspm->iobase +
6114 HDSPM_MADI_INPUT_PEAK + i*4);
730a5865 6115 levels->playback_peaks[i] =
0dca1793
AK
6116 readl(hdspm->iobase +
6117 HDSPM_MADI_PLAYBACK_PEAK + i*4);
730a5865 6118 levels->output_peaks[i] =
0dca1793
AK
6119 readl(hdspm->iobase +
6120 HDSPM_MADI_OUTPUT_PEAK + i*4);
6121
730a5865 6122 levels->input_rms[i] =
0dca1793
AK
6123 ((uint64_t) readl(hdspm->iobase +
6124 HDSPM_MADI_INPUT_RMS_H + i*4) << 32) |
6125 (uint64_t) readl(hdspm->iobase +
6126 HDSPM_MADI_INPUT_RMS_L + i*4);
730a5865 6127 levels->playback_rms[i] =
0dca1793
AK
6128 ((uint64_t)readl(hdspm->iobase +
6129 HDSPM_MADI_PLAYBACK_RMS_H+i*4) << 32) |
6130 (uint64_t)readl(hdspm->iobase +
6131 HDSPM_MADI_PLAYBACK_RMS_L + i*4);
730a5865 6132 levels->output_rms[i] =
0dca1793
AK
6133 ((uint64_t)readl(hdspm->iobase +
6134 HDSPM_MADI_OUTPUT_RMS_H + i*4) << 32) |
6135 (uint64_t)readl(hdspm->iobase +
6136 HDSPM_MADI_OUTPUT_RMS_L + i*4);
6137 }
6138
6139 if (hdspm->system_sample_rate > 96000) {
730a5865 6140 levels->speed = qs;
0dca1793 6141 } else if (hdspm->system_sample_rate > 48000) {
730a5865 6142 levels->speed = ds;
0dca1793 6143 } else {
730a5865 6144 levels->speed = ss;
0dca1793 6145 }
730a5865 6146 levels->status2 = hdspm_read(hdspm, HDSPM_statusRegister2);
0dca1793 6147
730a5865 6148 s = copy_to_user(argp, levels, sizeof(struct hdspm_peak_rms));
0dca1793
AK
6149 if (0 != s) {
6150 /* snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu
6151 [Levels]\n", sizeof(struct hdspm_peak_rms), s);
6152 */
763f356c 6153 return -EFAULT;
0dca1793
AK
6154 }
6155 break;
6156
6157 case SNDRV_HDSPM_IOCTL_GET_LTC:
6158 ltc.ltc = hdspm_read(hdspm, HDSPM_RD_TCO);
6159 i = hdspm_read(hdspm, HDSPM_RD_TCO + 4);
6160 if (i & HDSPM_TCO1_LTC_Input_valid) {
6161 switch (i & (HDSPM_TCO1_LTC_Format_LSB |
6162 HDSPM_TCO1_LTC_Format_MSB)) {
6163 case 0:
6164 ltc.format = fps_24;
6165 break;
6166 case HDSPM_TCO1_LTC_Format_LSB:
6167 ltc.format = fps_25;
6168 break;
6169 case HDSPM_TCO1_LTC_Format_MSB:
6170 ltc.format = fps_2997;
6171 break;
6172 default:
6173 ltc.format = 30;
6174 break;
6175 }
6176 if (i & HDSPM_TCO1_set_drop_frame_flag) {
6177 ltc.frame = drop_frame;
6178 } else {
6179 ltc.frame = full_frame;
6180 }
6181 } else {
6182 ltc.format = format_invalid;
6183 ltc.frame = frame_invalid;
6184 }
6185 if (i & HDSPM_TCO1_Video_Input_Format_NTSC) {
6186 ltc.input_format = ntsc;
6187 } else if (i & HDSPM_TCO1_Video_Input_Format_PAL) {
6188 ltc.input_format = pal;
6189 } else {
6190 ltc.input_format = no_video;
6191 }
6192
6193 s = copy_to_user(argp, &ltc, sizeof(struct hdspm_ltc));
6194 if (0 != s) {
6195 /*
6196 snd_printk(KERN_ERR "copy_to_user(.., .., %lu): %lu [LTC]\n", sizeof(struct hdspm_ltc), s); */
763f356c 6197 return -EFAULT;
0dca1793 6198 }
763f356c
TI
6199
6200 break;
763f356c 6201
0dca1793 6202 case SNDRV_HDSPM_IOCTL_GET_CONFIG:
763f356c 6203
4ab69a2b 6204 memset(&info, 0, sizeof(info));
763f356c 6205 spin_lock_irq(&hdspm->lock);
ef5fa1a4
TI
6206 info.pref_sync_ref = hdspm_pref_sync_ref(hdspm);
6207 info.wordclock_sync_check = hdspm_wc_sync_check(hdspm);
763f356c
TI
6208
6209 info.system_sample_rate = hdspm->system_sample_rate;
6210 info.autosync_sample_rate =
0dca1793 6211 hdspm_external_sample_rate(hdspm);
ef5fa1a4
TI
6212 info.system_clock_mode = hdspm_system_clock_mode(hdspm);
6213 info.clock_source = hdspm_clock_source(hdspm);
6214 info.autosync_ref = hdspm_autosync_ref(hdspm);
6215 info.line_out = hdspm_line_out(hdspm);
763f356c
TI
6216 info.passthru = 0;
6217 spin_unlock_irq(&hdspm->lock);
2ca595ab 6218 if (copy_to_user(argp, &info, sizeof(info)))
763f356c
TI
6219 return -EFAULT;
6220 break;
6221
0dca1793 6222 case SNDRV_HDSPM_IOCTL_GET_STATUS:
643d6bbb
DC
6223 memset(&status, 0, sizeof(status));
6224
0dca1793
AK
6225 status.card_type = hdspm->io_type;
6226
6227 status.autosync_source = hdspm_autosync_ref(hdspm);
6228
6229 status.card_clock = 110069313433624ULL;
6230 status.master_period = hdspm_read(hdspm, HDSPM_RD_PLL_FREQ);
6231
6232 switch (hdspm->io_type) {
6233 case MADI:
6234 case MADIface:
6235 status.card_specific.madi.sync_wc =
6236 hdspm_wc_sync_check(hdspm);
6237 status.card_specific.madi.sync_madi =
6238 hdspm_madi_sync_check(hdspm);
6239 status.card_specific.madi.sync_tco =
6240 hdspm_tco_sync_check(hdspm);
6241 status.card_specific.madi.sync_in =
6242 hdspm_sync_in_sync_check(hdspm);
6243
6244 statusregister =
6245 hdspm_read(hdspm, HDSPM_statusRegister);
6246 status.card_specific.madi.madi_input =
6247 (statusregister & HDSPM_AB_int) ? 1 : 0;
6248 status.card_specific.madi.channel_format =
9e6ff520 6249 (statusregister & HDSPM_RX_64ch) ? 1 : 0;
0dca1793
AK
6250 /* TODO: Mac driver sets it when f_s>48kHz */
6251 status.card_specific.madi.frame_format = 0;
6252
6253 default:
6254 break;
6255 }
6256
2ca595ab 6257 if (copy_to_user(argp, &status, sizeof(status)))
0dca1793
AK
6258 return -EFAULT;
6259
6260
6261 break;
6262
763f356c 6263 case SNDRV_HDSPM_IOCTL_GET_VERSION:
643d6bbb
DC
6264 memset(&hdspm_version, 0, sizeof(hdspm_version));
6265
0dca1793
AK
6266 hdspm_version.card_type = hdspm->io_type;
6267 strncpy(hdspm_version.cardname, hdspm->card_name,
6268 sizeof(hdspm_version.cardname));
6269 hdspm_version.serial = (hdspm_read(hdspm,
6270 HDSPM_midiStatusIn0)>>8) & 0xFFFFFF;
763f356c 6271 hdspm_version.firmware_rev = hdspm->firmware_rev;
0dca1793
AK
6272 hdspm_version.addons = 0;
6273 if (hdspm->tco)
6274 hdspm_version.addons |= HDSPM_ADDON_TCO;
6275
2ca595ab 6276 if (copy_to_user(argp, &hdspm_version,
0dca1793 6277 sizeof(hdspm_version)))
763f356c
TI
6278 return -EFAULT;
6279 break;
6280
6281 case SNDRV_HDSPM_IOCTL_GET_MIXER:
2ca595ab 6282 if (copy_from_user(&mixer, argp, sizeof(mixer)))
763f356c 6283 return -EFAULT;
ef5fa1a4 6284 if (copy_to_user((void __user *)mixer.mixer, hdspm->mixer,
0dca1793 6285 sizeof(struct hdspm_mixer)))
763f356c
TI
6286 return -EFAULT;
6287 break;
6288
6289 default:
6290 return -EINVAL;
6291 }
6292 return 0;
6293}
6294
98274f07 6295static struct snd_pcm_ops snd_hdspm_playback_ops = {
763f356c
TI
6296 .open = snd_hdspm_playback_open,
6297 .close = snd_hdspm_playback_release,
6298 .ioctl = snd_hdspm_ioctl,
6299 .hw_params = snd_hdspm_hw_params,
6300 .hw_free = snd_hdspm_hw_free,
6301 .prepare = snd_hdspm_prepare,
6302 .trigger = snd_hdspm_trigger,
6303 .pointer = snd_hdspm_hw_pointer,
763f356c
TI
6304 .page = snd_pcm_sgbuf_ops_page,
6305};
6306
98274f07 6307static struct snd_pcm_ops snd_hdspm_capture_ops = {
763f356c
TI
6308 .open = snd_hdspm_capture_open,
6309 .close = snd_hdspm_capture_release,
6310 .ioctl = snd_hdspm_ioctl,
6311 .hw_params = snd_hdspm_hw_params,
6312 .hw_free = snd_hdspm_hw_free,
6313 .prepare = snd_hdspm_prepare,
6314 .trigger = snd_hdspm_trigger,
6315 .pointer = snd_hdspm_hw_pointer,
763f356c
TI
6316 .page = snd_pcm_sgbuf_ops_page,
6317};
6318
98274f07
TI
6319static int __devinit snd_hdspm_create_hwdep(struct snd_card *card,
6320 struct hdspm * hdspm)
763f356c 6321{
98274f07 6322 struct snd_hwdep *hw;
763f356c
TI
6323 int err;
6324
ef5fa1a4
TI
6325 err = snd_hwdep_new(card, "HDSPM hwdep", 0, &hw);
6326 if (err < 0)
763f356c
TI
6327 return err;
6328
6329 hdspm->hwdep = hw;
6330 hw->private_data = hdspm;
6331 strcpy(hw->name, "HDSPM hwdep interface");
6332
0dca1793 6333 hw->ops.open = snd_hdspm_hwdep_dummy_op;
763f356c 6334 hw->ops.ioctl = snd_hdspm_hwdep_ioctl;
0dca1793 6335 hw->ops.release = snd_hdspm_hwdep_dummy_op;
763f356c
TI
6336
6337 return 0;
6338}
6339
6340
6341/*------------------------------------------------------------
0dca1793 6342 memory interface
763f356c 6343 ------------------------------------------------------------*/
0dca1793 6344static int __devinit snd_hdspm_preallocate_memory(struct hdspm *hdspm)
763f356c
TI
6345{
6346 int err;
98274f07 6347 struct snd_pcm *pcm;
763f356c
TI
6348 size_t wanted;
6349
6350 pcm = hdspm->pcm;
6351
3cee5a60 6352 wanted = HDSPM_DMA_AREA_BYTES;
763f356c 6353
ef5fa1a4 6354 err =
763f356c 6355 snd_pcm_lib_preallocate_pages_for_all(pcm,
0dca1793 6356 SNDRV_DMA_TYPE_DEV_SG,
763f356c
TI
6357 snd_dma_pci_data(hdspm->pci),
6358 wanted,
ef5fa1a4
TI
6359 wanted);
6360 if (err < 0) {
e2eba3e7 6361 snd_printdd("Could not preallocate %zd Bytes\n", wanted);
763f356c
TI
6362
6363 return err;
6364 } else
e2eba3e7 6365 snd_printdd(" Preallocated %zd Bytes\n", wanted);
763f356c
TI
6366
6367 return 0;
6368}
6369
0dca1793
AK
6370
6371static void hdspm_set_sgbuf(struct hdspm *hdspm,
77a23f26 6372 struct snd_pcm_substream *substream,
763f356c
TI
6373 unsigned int reg, int channels)
6374{
6375 int i;
0dca1793
AK
6376
6377 /* continuous memory segment */
763f356c
TI
6378 for (i = 0; i < (channels * 16); i++)
6379 hdspm_write(hdspm, reg + 4 * i,
0dca1793 6380 snd_pcm_sgbuf_get_addr(substream, 4096 * i));
763f356c
TI
6381}
6382
0dca1793 6383
763f356c 6384/* ------------- ALSA Devices ---------------------------- */
98274f07 6385static int __devinit snd_hdspm_create_pcm(struct snd_card *card,
0dca1793 6386 struct hdspm *hdspm)
763f356c 6387{
98274f07 6388 struct snd_pcm *pcm;
763f356c
TI
6389 int err;
6390
ef5fa1a4
TI
6391 err = snd_pcm_new(card, hdspm->card_name, 0, 1, 1, &pcm);
6392 if (err < 0)
763f356c
TI
6393 return err;
6394
6395 hdspm->pcm = pcm;
6396 pcm->private_data = hdspm;
6397 strcpy(pcm->name, hdspm->card_name);
6398
6399 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
6400 &snd_hdspm_playback_ops);
6401 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
6402 &snd_hdspm_capture_ops);
6403
6404 pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
6405
ef5fa1a4
TI
6406 err = snd_hdspm_preallocate_memory(hdspm);
6407 if (err < 0)
763f356c
TI
6408 return err;
6409
6410 return 0;
6411}
6412
98274f07 6413static inline void snd_hdspm_initialize_midi_flush(struct hdspm * hdspm)
763f356c 6414{
7c7102b7
AK
6415 int i;
6416
6417 for (i = 0; i < hdspm->midiPorts; i++)
6418 snd_hdspm_flush_midi_input(hdspm, i);
763f356c
TI
6419}
6420
98274f07
TI
6421static int __devinit snd_hdspm_create_alsa_devices(struct snd_card *card,
6422 struct hdspm * hdspm)
763f356c 6423{
0dca1793 6424 int err, i;
763f356c
TI
6425
6426 snd_printdd("Create card...\n");
ef5fa1a4
TI
6427 err = snd_hdspm_create_pcm(card, hdspm);
6428 if (err < 0)
763f356c
TI
6429 return err;
6430
0dca1793
AK
6431 i = 0;
6432 while (i < hdspm->midiPorts) {
6433 err = snd_hdspm_create_midi(card, hdspm, i);
6434 if (err < 0) {
6435 return err;
6436 }
6437 i++;
6438 }
763f356c 6439
ef5fa1a4
TI
6440 err = snd_hdspm_create_controls(card, hdspm);
6441 if (err < 0)
763f356c
TI
6442 return err;
6443
ef5fa1a4
TI
6444 err = snd_hdspm_create_hwdep(card, hdspm);
6445 if (err < 0)
763f356c
TI
6446 return err;
6447
6448 snd_printdd("proc init...\n");
6449 snd_hdspm_proc_init(hdspm);
6450
6451 hdspm->system_sample_rate = -1;
6452 hdspm->last_external_sample_rate = -1;
6453 hdspm->last_internal_sample_rate = -1;
6454 hdspm->playback_pid = -1;
6455 hdspm->capture_pid = -1;
6456 hdspm->capture_substream = NULL;
6457 hdspm->playback_substream = NULL;
6458
6459 snd_printdd("Set defaults...\n");
ef5fa1a4
TI
6460 err = snd_hdspm_set_defaults(hdspm);
6461 if (err < 0)
763f356c
TI
6462 return err;
6463
6464 snd_printdd("Update mixer controls...\n");
6465 hdspm_update_simple_mixer_controls(hdspm);
6466
6467 snd_printdd("Initializeing complete ???\n");
6468
ef5fa1a4
TI
6469 err = snd_card_register(card);
6470 if (err < 0) {
763f356c
TI
6471 snd_printk(KERN_ERR "HDSPM: error registering card\n");
6472 return err;
6473 }
6474
6475 snd_printdd("... yes now\n");
6476
6477 return 0;
6478}
6479
ef5fa1a4 6480static int __devinit snd_hdspm_create(struct snd_card *card,
0dca1793
AK
6481 struct hdspm *hdspm) {
6482
763f356c
TI
6483 struct pci_dev *pci = hdspm->pci;
6484 int err;
763f356c
TI
6485 unsigned long io_extent;
6486
6487 hdspm->irq = -1;
763f356c
TI
6488 hdspm->card = card;
6489
6490 spin_lock_init(&hdspm->lock);
6491
763f356c 6492 pci_read_config_word(hdspm->pci,
0dca1793 6493 PCI_CLASS_REVISION, &hdspm->firmware_rev);
3cee5a60 6494
763f356c 6495 strcpy(card->mixername, "Xilinx FPGA");
0dca1793
AK
6496 strcpy(card->driver, "HDSPM");
6497
6498 switch (hdspm->firmware_rev) {
0dca1793
AK
6499 case HDSPM_RAYDAT_REV:
6500 hdspm->io_type = RayDAT;
6501 hdspm->card_name = "RME RayDAT";
6502 hdspm->midiPorts = 2;
6503 break;
6504 case HDSPM_AIO_REV:
6505 hdspm->io_type = AIO;
6506 hdspm->card_name = "RME AIO";
6507 hdspm->midiPorts = 1;
6508 break;
6509 case HDSPM_MADIFACE_REV:
6510 hdspm->io_type = MADIface;
6511 hdspm->card_name = "RME MADIface";
6512 hdspm->midiPorts = 1;
6513 break;
5027f347 6514 default:
c09403dc
AK
6515 if ((hdspm->firmware_rev == 0xf0) ||
6516 ((hdspm->firmware_rev >= 0xe6) &&
6517 (hdspm->firmware_rev <= 0xea))) {
6518 hdspm->io_type = AES32;
6519 hdspm->card_name = "RME AES32";
6520 hdspm->midiPorts = 2;
05c7cc9c 6521 } else if ((hdspm->firmware_rev == 0xd2) ||
c09403dc
AK
6522 ((hdspm->firmware_rev >= 0xc8) &&
6523 (hdspm->firmware_rev <= 0xcf))) {
6524 hdspm->io_type = MADI;
6525 hdspm->card_name = "RME MADI";
6526 hdspm->midiPorts = 3;
6527 } else {
6528 snd_printk(KERN_ERR
6529 "HDSPM: unknown firmware revision %x\n",
5027f347 6530 hdspm->firmware_rev);
c09403dc
AK
6531 return -ENODEV;
6532 }
3cee5a60 6533 }
763f356c 6534
ef5fa1a4
TI
6535 err = pci_enable_device(pci);
6536 if (err < 0)
763f356c
TI
6537 return err;
6538
6539 pci_set_master(hdspm->pci);
6540
ef5fa1a4
TI
6541 err = pci_request_regions(pci, "hdspm");
6542 if (err < 0)
763f356c
TI
6543 return err;
6544
6545 hdspm->port = pci_resource_start(pci, 0);
6546 io_extent = pci_resource_len(pci, 0);
6547
6548 snd_printdd("grabbed memory region 0x%lx-0x%lx\n",
0dca1793 6549 hdspm->port, hdspm->port + io_extent - 1);
763f356c 6550
ef5fa1a4
TI
6551 hdspm->iobase = ioremap_nocache(hdspm->port, io_extent);
6552 if (!hdspm->iobase) {
6553 snd_printk(KERN_ERR "HDSPM: "
0dca1793
AK
6554 "unable to remap region 0x%lx-0x%lx\n",
6555 hdspm->port, hdspm->port + io_extent - 1);
763f356c
TI
6556 return -EBUSY;
6557 }
6558 snd_printdd("remapped region (0x%lx) 0x%lx-0x%lx\n",
0dca1793
AK
6559 (unsigned long)hdspm->iobase, hdspm->port,
6560 hdspm->port + io_extent - 1);
763f356c
TI
6561
6562 if (request_irq(pci->irq, snd_hdspm_interrupt,
934c2b6d 6563 IRQF_SHARED, KBUILD_MODNAME, hdspm)) {
763f356c
TI
6564 snd_printk(KERN_ERR "HDSPM: unable to use IRQ %d\n", pci->irq);
6565 return -EBUSY;
6566 }
6567
6568 snd_printdd("use IRQ %d\n", pci->irq);
6569
6570 hdspm->irq = pci->irq;
763f356c 6571
e2eba3e7 6572 snd_printdd("kmalloc Mixer memory of %zd Bytes\n",
0dca1793 6573 sizeof(struct hdspm_mixer));
ef5fa1a4
TI
6574 hdspm->mixer = kzalloc(sizeof(struct hdspm_mixer), GFP_KERNEL);
6575 if (!hdspm->mixer) {
6576 snd_printk(KERN_ERR "HDSPM: "
0dca1793
AK
6577 "unable to kmalloc Mixer memory of %d Bytes\n",
6578 (int)sizeof(struct hdspm_mixer));
763f356c
TI
6579 return err;
6580 }
6581
0dca1793
AK
6582 hdspm->port_names_in = NULL;
6583 hdspm->port_names_out = NULL;
6584
6585 switch (hdspm->io_type) {
6586 case AES32:
d2d10a21
AK
6587 hdspm->ss_in_channels = hdspm->ss_out_channels = AES32_CHANNELS;
6588 hdspm->ds_in_channels = hdspm->ds_out_channels = AES32_CHANNELS;
6589 hdspm->qs_in_channels = hdspm->qs_out_channels = AES32_CHANNELS;
432d2500
AK
6590
6591 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6592 channel_map_aes32;
6593 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6594 channel_map_aes32;
6595 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6596 channel_map_aes32;
6597 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6598 texts_ports_aes32;
6599 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6600 texts_ports_aes32;
6601 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6602 texts_ports_aes32;
6603
d2d10a21
AK
6604 hdspm->max_channels_out = hdspm->max_channels_in =
6605 AES32_CHANNELS;
432d2500
AK
6606 hdspm->port_names_in = hdspm->port_names_out =
6607 texts_ports_aes32;
6608 hdspm->channel_map_in = hdspm->channel_map_out =
6609 channel_map_aes32;
6610
0dca1793
AK
6611 break;
6612
6613 case MADI:
6614 case MADIface:
6615 hdspm->ss_in_channels = hdspm->ss_out_channels =
6616 MADI_SS_CHANNELS;
6617 hdspm->ds_in_channels = hdspm->ds_out_channels =
6618 MADI_DS_CHANNELS;
6619 hdspm->qs_in_channels = hdspm->qs_out_channels =
6620 MADI_QS_CHANNELS;
6621
6622 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6623 channel_map_unity_ss;
01e96078 6624 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
0dca1793 6625 channel_map_unity_ss;
01e96078 6626 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
0dca1793
AK
6627 channel_map_unity_ss;
6628
6629 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6630 texts_ports_madi;
6631 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6632 texts_ports_madi;
6633 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6634 texts_ports_madi;
6635 break;
6636
6637 case AIO:
6638 if (0 == (hdspm_read(hdspm, HDSPM_statusRegister2) & HDSPM_s2_AEBI_D)) {
6639 snd_printk(KERN_INFO "HDSPM: AEB input board found, but not supported\n");
6640 }
6641
6642 hdspm->ss_in_channels = AIO_IN_SS_CHANNELS;
6643 hdspm->ds_in_channels = AIO_IN_DS_CHANNELS;
6644 hdspm->qs_in_channels = AIO_IN_QS_CHANNELS;
6645 hdspm->ss_out_channels = AIO_OUT_SS_CHANNELS;
6646 hdspm->ds_out_channels = AIO_OUT_DS_CHANNELS;
6647 hdspm->qs_out_channels = AIO_OUT_QS_CHANNELS;
6648
6649 hdspm->channel_map_out_ss = channel_map_aio_out_ss;
6650 hdspm->channel_map_out_ds = channel_map_aio_out_ds;
6651 hdspm->channel_map_out_qs = channel_map_aio_out_qs;
6652
6653 hdspm->channel_map_in_ss = channel_map_aio_in_ss;
6654 hdspm->channel_map_in_ds = channel_map_aio_in_ds;
6655 hdspm->channel_map_in_qs = channel_map_aio_in_qs;
6656
6657 hdspm->port_names_in_ss = texts_ports_aio_in_ss;
6658 hdspm->port_names_out_ss = texts_ports_aio_out_ss;
6659 hdspm->port_names_in_ds = texts_ports_aio_in_ds;
6660 hdspm->port_names_out_ds = texts_ports_aio_out_ds;
6661 hdspm->port_names_in_qs = texts_ports_aio_in_qs;
6662 hdspm->port_names_out_qs = texts_ports_aio_out_qs;
6663
6664 break;
6665
6666 case RayDAT:
6667 hdspm->ss_in_channels = hdspm->ss_out_channels =
6668 RAYDAT_SS_CHANNELS;
6669 hdspm->ds_in_channels = hdspm->ds_out_channels =
6670 RAYDAT_DS_CHANNELS;
6671 hdspm->qs_in_channels = hdspm->qs_out_channels =
6672 RAYDAT_QS_CHANNELS;
6673
6674 hdspm->max_channels_in = RAYDAT_SS_CHANNELS;
6675 hdspm->max_channels_out = RAYDAT_SS_CHANNELS;
6676
6677 hdspm->channel_map_in_ss = hdspm->channel_map_out_ss =
6678 channel_map_raydat_ss;
6679 hdspm->channel_map_in_ds = hdspm->channel_map_out_ds =
6680 channel_map_raydat_ds;
6681 hdspm->channel_map_in_qs = hdspm->channel_map_out_qs =
6682 channel_map_raydat_qs;
6683 hdspm->channel_map_in = hdspm->channel_map_out =
6684 channel_map_raydat_ss;
6685
6686 hdspm->port_names_in_ss = hdspm->port_names_out_ss =
6687 texts_ports_raydat_ss;
6688 hdspm->port_names_in_ds = hdspm->port_names_out_ds =
6689 texts_ports_raydat_ds;
6690 hdspm->port_names_in_qs = hdspm->port_names_out_qs =
6691 texts_ports_raydat_qs;
6692
6693
6694 break;
6695
6696 }
6697
6698 /* TCO detection */
6699 switch (hdspm->io_type) {
6700 case AIO:
6701 case RayDAT:
6702 if (hdspm_read(hdspm, HDSPM_statusRegister2) &
6703 HDSPM_s2_tco_detect) {
6704 hdspm->midiPorts++;
6705 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6706 GFP_KERNEL);
6707 if (NULL != hdspm->tco) {
6708 hdspm_tco_write(hdspm);
6709 }
6710 snd_printk(KERN_INFO "HDSPM: AIO/RayDAT TCO module found\n");
6711 } else {
6712 hdspm->tco = NULL;
6713 }
6714 break;
6715
6716 case MADI:
6717 if (hdspm_read(hdspm, HDSPM_statusRegister) & HDSPM_tco_detect) {
6718 hdspm->midiPorts++;
6719 hdspm->tco = kzalloc(sizeof(struct hdspm_tco),
6720 GFP_KERNEL);
6721 if (NULL != hdspm->tco) {
6722 hdspm_tco_write(hdspm);
6723 }
6724 snd_printk(KERN_INFO "HDSPM: MADI TCO module found\n");
6725 } else {
6726 hdspm->tco = NULL;
6727 }
6728 break;
6729
6730 default:
6731 hdspm->tco = NULL;
6732 }
6733
6734 /* texts */
6735 switch (hdspm->io_type) {
6736 case AES32:
6737 if (hdspm->tco) {
6738 hdspm->texts_autosync = texts_autosync_aes_tco;
6739 hdspm->texts_autosync_items = 10;
6740 } else {
6741 hdspm->texts_autosync = texts_autosync_aes;
6742 hdspm->texts_autosync_items = 9;
6743 }
6744 break;
6745
6746 case MADI:
6747 if (hdspm->tco) {
6748 hdspm->texts_autosync = texts_autosync_madi_tco;
6749 hdspm->texts_autosync_items = 4;
6750 } else {
6751 hdspm->texts_autosync = texts_autosync_madi;
6752 hdspm->texts_autosync_items = 3;
6753 }
6754 break;
6755
6756 case MADIface:
6757
6758 break;
6759
6760 case RayDAT:
6761 if (hdspm->tco) {
6762 hdspm->texts_autosync = texts_autosync_raydat_tco;
6763 hdspm->texts_autosync_items = 9;
6764 } else {
6765 hdspm->texts_autosync = texts_autosync_raydat;
6766 hdspm->texts_autosync_items = 8;
6767 }
6768 break;
6769
6770 case AIO:
6771 if (hdspm->tco) {
6772 hdspm->texts_autosync = texts_autosync_aio_tco;
6773 hdspm->texts_autosync_items = 6;
6774 } else {
6775 hdspm->texts_autosync = texts_autosync_aio;
6776 hdspm->texts_autosync_items = 5;
6777 }
6778 break;
6779
6780 }
6781
6782 tasklet_init(&hdspm->midi_tasklet,
6783 hdspm_midi_tasklet, (unsigned long) hdspm);
763f356c
TI
6784
6785 snd_printdd("create alsa devices.\n");
ef5fa1a4
TI
6786 err = snd_hdspm_create_alsa_devices(card, hdspm);
6787 if (err < 0)
763f356c
TI
6788 return err;
6789
6790 snd_hdspm_initialize_midi_flush(hdspm);
6791
6792 return 0;
6793}
6794
0dca1793 6795
98274f07 6796static int snd_hdspm_free(struct hdspm * hdspm)
763f356c
TI
6797{
6798
6799 if (hdspm->port) {
6800
6801 /* stop th audio, and cancel all interrupts */
6802 hdspm->control_register &=
ef5fa1a4 6803 ~(HDSPM_Start | HDSPM_AudioInterruptEnable |
0dca1793
AK
6804 HDSPM_Midi0InterruptEnable | HDSPM_Midi1InterruptEnable |
6805 HDSPM_Midi2InterruptEnable | HDSPM_Midi3InterruptEnable);
763f356c
TI
6806 hdspm_write(hdspm, HDSPM_controlRegister,
6807 hdspm->control_register);
6808 }
6809
6810 if (hdspm->irq >= 0)
6811 free_irq(hdspm->irq, (void *) hdspm);
6812
fc58422a 6813 kfree(hdspm->mixer);
763f356c
TI
6814
6815 if (hdspm->iobase)
6816 iounmap(hdspm->iobase);
6817
763f356c
TI
6818 if (hdspm->port)
6819 pci_release_regions(hdspm->pci);
6820
6821 pci_disable_device(hdspm->pci);
6822 return 0;
6823}
6824
0dca1793 6825
98274f07 6826static void snd_hdspm_card_free(struct snd_card *card)
763f356c 6827{
ef5fa1a4 6828 struct hdspm *hdspm = card->private_data;
763f356c
TI
6829
6830 if (hdspm)
6831 snd_hdspm_free(hdspm);
6832}
6833
0dca1793 6834
763f356c
TI
6835static int __devinit snd_hdspm_probe(struct pci_dev *pci,
6836 const struct pci_device_id *pci_id)
6837{
6838 static int dev;
98274f07
TI
6839 struct hdspm *hdspm;
6840 struct snd_card *card;
763f356c
TI
6841 int err;
6842
6843 if (dev >= SNDRV_CARDS)
6844 return -ENODEV;
6845 if (!enable[dev]) {
6846 dev++;
6847 return -ENOENT;
6848 }
6849
e58de7ba 6850 err = snd_card_create(index[dev], id[dev],
0dca1793 6851 THIS_MODULE, sizeof(struct hdspm), &card);
e58de7ba
TI
6852 if (err < 0)
6853 return err;
763f356c 6854
ef5fa1a4 6855 hdspm = card->private_data;
763f356c
TI
6856 card->private_free = snd_hdspm_card_free;
6857 hdspm->dev = dev;
6858 hdspm->pci = pci;
6859
c187c041
TI
6860 snd_card_set_dev(card, &pci->dev);
6861
0dca1793 6862 err = snd_hdspm_create(card, hdspm);
ef5fa1a4 6863 if (err < 0) {
763f356c
TI
6864 snd_card_free(card);
6865 return err;
6866 }
6867
0dca1793
AK
6868 if (hdspm->io_type != MADIface) {
6869 sprintf(card->shortname, "%s_%x",
6870 hdspm->card_name,
6871 (hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF);
6872 sprintf(card->longname, "%s S/N 0x%x at 0x%lx, irq %d",
6873 hdspm->card_name,
6874 (hdspm_read(hdspm, HDSPM_midiStatusIn0)>>8) & 0xFFFFFF,
6875 hdspm->port, hdspm->irq);
6876 } else {
6877 sprintf(card->shortname, "%s", hdspm->card_name);
6878 sprintf(card->longname, "%s at 0x%lx, irq %d",
6879 hdspm->card_name, hdspm->port, hdspm->irq);
6880 }
763f356c 6881
ef5fa1a4
TI
6882 err = snd_card_register(card);
6883 if (err < 0) {
763f356c
TI
6884 snd_card_free(card);
6885 return err;
6886 }
6887
6888 pci_set_drvdata(pci, card);
6889
6890 dev++;
6891 return 0;
6892}
6893
6894static void __devexit snd_hdspm_remove(struct pci_dev *pci)
6895{
6896 snd_card_free(pci_get_drvdata(pci));
6897 pci_set_drvdata(pci, NULL);
6898}
6899
6900static struct pci_driver driver = {
3733e424 6901 .name = KBUILD_MODNAME,
763f356c
TI
6902 .id_table = snd_hdspm_ids,
6903 .probe = snd_hdspm_probe,
6904 .remove = __devexit_p(snd_hdspm_remove),
6905};
6906
6907
6908static int __init alsa_card_hdspm_init(void)
6909{
6910 return pci_register_driver(&driver);
6911}
6912
6913static void __exit alsa_card_hdspm_exit(void)
6914{
6915 pci_unregister_driver(&driver);
6916}
6917
6918module_init(alsa_card_hdspm_init)
6919module_exit(alsa_card_hdspm_exit)