[PATCH] selinux: enable configuration of max policy version
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / ss / policydb.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the policy database.
3 *
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5 */
6
7/*
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
17 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License as published by
20 * the Free Software Foundation, version 2.
21 */
22
23#include <linux/kernel.h>
24#include <linux/slab.h>
25#include <linux/string.h>
26#include <linux/errno.h>
27#include "security.h"
28
29#include "policydb.h"
30#include "conditional.h"
31#include "mls.h"
32
33#define _DEBUG_HASHES
34
35#ifdef DEBUG_HASHES
36static char *symtab_name[SYM_NUM] = {
37 "common prefixes",
38 "classes",
39 "roles",
40 "types",
41 "users",
42 "bools",
43 "levels",
44 "categories",
45};
46#endif
47
48int selinux_mls_enabled = 0;
49
50static unsigned int symtab_sizes[SYM_NUM] = {
51 2,
52 32,
53 16,
54 512,
55 128,
56 16,
57 16,
58 16,
59};
60
61struct policydb_compat_info {
62 int version;
63 int sym_num;
64 int ocon_num;
65};
66
67/* These need to be updated if SYM_NUM or OCON_NUM changes */
68static struct policydb_compat_info policydb_compat[] = {
69 {
70 .version = POLICYDB_VERSION_BASE,
71 .sym_num = SYM_NUM - 3,
72 .ocon_num = OCON_NUM - 1,
73 },
74 {
75 .version = POLICYDB_VERSION_BOOL,
76 .sym_num = SYM_NUM - 2,
77 .ocon_num = OCON_NUM - 1,
78 },
79 {
80 .version = POLICYDB_VERSION_IPV6,
81 .sym_num = SYM_NUM - 2,
82 .ocon_num = OCON_NUM,
83 },
84 {
85 .version = POLICYDB_VERSION_NLCLASS,
86 .sym_num = SYM_NUM - 2,
87 .ocon_num = OCON_NUM,
88 },
89 {
90 .version = POLICYDB_VERSION_MLS,
91 .sym_num = SYM_NUM,
92 .ocon_num = OCON_NUM,
93 },
782ebb99
SS
94 {
95 .version = POLICYDB_VERSION_AVTAB,
96 .sym_num = SYM_NUM,
97 .ocon_num = OCON_NUM,
98 },
1da177e4
LT
99};
100
101static struct policydb_compat_info *policydb_lookup_compat(int version)
102{
103 int i;
104 struct policydb_compat_info *info = NULL;
105
32725ad8 106 for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
1da177e4
LT
107 if (policydb_compat[i].version == version) {
108 info = &policydb_compat[i];
109 break;
110 }
111 }
112 return info;
113}
114
115/*
116 * Initialize the role table.
117 */
118static int roles_init(struct policydb *p)
119{
120 char *key = NULL;
121 int rc;
122 struct role_datum *role;
123
89d155ef 124 role = kzalloc(sizeof(*role), GFP_KERNEL);
1da177e4
LT
125 if (!role) {
126 rc = -ENOMEM;
127 goto out;
128 }
1da177e4
LT
129 role->value = ++p->p_roles.nprim;
130 if (role->value != OBJECT_R_VAL) {
131 rc = -EINVAL;
132 goto out_free_role;
133 }
134 key = kmalloc(strlen(OBJECT_R)+1,GFP_KERNEL);
135 if (!key) {
136 rc = -ENOMEM;
137 goto out_free_role;
138 }
139 strcpy(key, OBJECT_R);
140 rc = hashtab_insert(p->p_roles.table, key, role);
141 if (rc)
142 goto out_free_key;
143out:
144 return rc;
145
146out_free_key:
147 kfree(key);
148out_free_role:
149 kfree(role);
150 goto out;
151}
152
153/*
154 * Initialize a policy database structure.
155 */
156static int policydb_init(struct policydb *p)
157{
158 int i, rc;
159
160 memset(p, 0, sizeof(*p));
161
162 for (i = 0; i < SYM_NUM; i++) {
163 rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
164 if (rc)
165 goto out_free_symtab;
166 }
167
168 rc = avtab_init(&p->te_avtab);
169 if (rc)
170 goto out_free_symtab;
171
172 rc = roles_init(p);
173 if (rc)
174 goto out_free_avtab;
175
176 rc = cond_policydb_init(p);
177 if (rc)
178 goto out_free_avtab;
179
180out:
181 return rc;
182
183out_free_avtab:
184 avtab_destroy(&p->te_avtab);
185
186out_free_symtab:
187 for (i = 0; i < SYM_NUM; i++)
188 hashtab_destroy(p->symtab[i].table);
189 goto out;
190}
191
192/*
193 * The following *_index functions are used to
194 * define the val_to_name and val_to_struct arrays
195 * in a policy database structure. The val_to_name
196 * arrays are used when converting security context
197 * structures into string representations. The
198 * val_to_struct arrays are used when the attributes
199 * of a class, role, or user are needed.
200 */
201
202static int common_index(void *key, void *datum, void *datap)
203{
204 struct policydb *p;
205 struct common_datum *comdatum;
206
207 comdatum = datum;
208 p = datap;
209 if (!comdatum->value || comdatum->value > p->p_commons.nprim)
210 return -EINVAL;
211 p->p_common_val_to_name[comdatum->value - 1] = key;
212 return 0;
213}
214
215static int class_index(void *key, void *datum, void *datap)
216{
217 struct policydb *p;
218 struct class_datum *cladatum;
219
220 cladatum = datum;
221 p = datap;
222 if (!cladatum->value || cladatum->value > p->p_classes.nprim)
223 return -EINVAL;
224 p->p_class_val_to_name[cladatum->value - 1] = key;
225 p->class_val_to_struct[cladatum->value - 1] = cladatum;
226 return 0;
227}
228
229static int role_index(void *key, void *datum, void *datap)
230{
231 struct policydb *p;
232 struct role_datum *role;
233
234 role = datum;
235 p = datap;
236 if (!role->value || role->value > p->p_roles.nprim)
237 return -EINVAL;
238 p->p_role_val_to_name[role->value - 1] = key;
239 p->role_val_to_struct[role->value - 1] = role;
240 return 0;
241}
242
243static int type_index(void *key, void *datum, void *datap)
244{
245 struct policydb *p;
246 struct type_datum *typdatum;
247
248 typdatum = datum;
249 p = datap;
250
251 if (typdatum->primary) {
252 if (!typdatum->value || typdatum->value > p->p_types.nprim)
253 return -EINVAL;
254 p->p_type_val_to_name[typdatum->value - 1] = key;
255 }
256
257 return 0;
258}
259
260static int user_index(void *key, void *datum, void *datap)
261{
262 struct policydb *p;
263 struct user_datum *usrdatum;
264
265 usrdatum = datum;
266 p = datap;
267 if (!usrdatum->value || usrdatum->value > p->p_users.nprim)
268 return -EINVAL;
269 p->p_user_val_to_name[usrdatum->value - 1] = key;
270 p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
271 return 0;
272}
273
274static int sens_index(void *key, void *datum, void *datap)
275{
276 struct policydb *p;
277 struct level_datum *levdatum;
278
279 levdatum = datum;
280 p = datap;
281
282 if (!levdatum->isalias) {
283 if (!levdatum->level->sens ||
284 levdatum->level->sens > p->p_levels.nprim)
285 return -EINVAL;
286 p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
287 }
288
289 return 0;
290}
291
292static int cat_index(void *key, void *datum, void *datap)
293{
294 struct policydb *p;
295 struct cat_datum *catdatum;
296
297 catdatum = datum;
298 p = datap;
299
300 if (!catdatum->isalias) {
301 if (!catdatum->value || catdatum->value > p->p_cats.nprim)
302 return -EINVAL;
303 p->p_cat_val_to_name[catdatum->value - 1] = key;
304 }
305
306 return 0;
307}
308
309static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
310{
311 common_index,
312 class_index,
313 role_index,
314 type_index,
315 user_index,
316 cond_index_bool,
317 sens_index,
318 cat_index,
319};
320
321/*
322 * Define the common val_to_name array and the class
323 * val_to_name and val_to_struct arrays in a policy
324 * database structure.
325 *
326 * Caller must clean up upon failure.
327 */
328static int policydb_index_classes(struct policydb *p)
329{
330 int rc;
331
332 p->p_common_val_to_name =
333 kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
334 if (!p->p_common_val_to_name) {
335 rc = -ENOMEM;
336 goto out;
337 }
338
339 rc = hashtab_map(p->p_commons.table, common_index, p);
340 if (rc)
341 goto out;
342
343 p->class_val_to_struct =
344 kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
345 if (!p->class_val_to_struct) {
346 rc = -ENOMEM;
347 goto out;
348 }
349
350 p->p_class_val_to_name =
351 kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
352 if (!p->p_class_val_to_name) {
353 rc = -ENOMEM;
354 goto out;
355 }
356
357 rc = hashtab_map(p->p_classes.table, class_index, p);
358out:
359 return rc;
360}
361
362#ifdef DEBUG_HASHES
363static void symtab_hash_eval(struct symtab *s)
364{
365 int i;
366
367 for (i = 0; i < SYM_NUM; i++) {
368 struct hashtab *h = s[i].table;
369 struct hashtab_info info;
370
371 hashtab_stat(h, &info);
372 printk(KERN_INFO "%s: %d entries and %d/%d buckets used, "
373 "longest chain length %d\n", symtab_name[i], h->nel,
374 info.slots_used, h->size, info.max_chain_len);
375 }
376}
377#endif
378
379/*
380 * Define the other val_to_name and val_to_struct arrays
381 * in a policy database structure.
382 *
383 * Caller must clean up on failure.
384 */
385static int policydb_index_others(struct policydb *p)
386{
387 int i, rc = 0;
388
389 printk(KERN_INFO "security: %d users, %d roles, %d types, %d bools",
390 p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
391 if (selinux_mls_enabled)
392 printk(", %d sens, %d cats", p->p_levels.nprim,
393 p->p_cats.nprim);
394 printk("\n");
395
396 printk(KERN_INFO "security: %d classes, %d rules\n",
397 p->p_classes.nprim, p->te_avtab.nel);
398
399#ifdef DEBUG_HASHES
400 avtab_hash_eval(&p->te_avtab, "rules");
401 symtab_hash_eval(p->symtab);
402#endif
403
404 p->role_val_to_struct =
405 kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
406 GFP_KERNEL);
407 if (!p->role_val_to_struct) {
408 rc = -ENOMEM;
409 goto out;
410 }
411
412 p->user_val_to_struct =
413 kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
414 GFP_KERNEL);
415 if (!p->user_val_to_struct) {
416 rc = -ENOMEM;
417 goto out;
418 }
419
420 if (cond_init_bool_indexes(p)) {
421 rc = -ENOMEM;
422 goto out;
423 }
424
425 for (i = SYM_ROLES; i < SYM_NUM; i++) {
426 p->sym_val_to_name[i] =
427 kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
428 if (!p->sym_val_to_name[i]) {
429 rc = -ENOMEM;
430 goto out;
431 }
432 rc = hashtab_map(p->symtab[i].table, index_f[i], p);
433 if (rc)
434 goto out;
435 }
436
437out:
438 return rc;
439}
440
441/*
442 * The following *_destroy functions are used to
443 * free any memory allocated for each kind of
444 * symbol data in the policy database.
445 */
446
447static int perm_destroy(void *key, void *datum, void *p)
448{
449 kfree(key);
450 kfree(datum);
451 return 0;
452}
453
454static int common_destroy(void *key, void *datum, void *p)
455{
456 struct common_datum *comdatum;
457
458 kfree(key);
459 comdatum = datum;
460 hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
461 hashtab_destroy(comdatum->permissions.table);
462 kfree(datum);
463 return 0;
464}
465
466static int class_destroy(void *key, void *datum, void *p)
467{
468 struct class_datum *cladatum;
469 struct constraint_node *constraint, *ctemp;
470 struct constraint_expr *e, *etmp;
471
472 kfree(key);
473 cladatum = datum;
474 hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
475 hashtab_destroy(cladatum->permissions.table);
476 constraint = cladatum->constraints;
477 while (constraint) {
478 e = constraint->expr;
479 while (e) {
480 ebitmap_destroy(&e->names);
481 etmp = e;
482 e = e->next;
483 kfree(etmp);
484 }
485 ctemp = constraint;
486 constraint = constraint->next;
487 kfree(ctemp);
488 }
489
490 constraint = cladatum->validatetrans;
491 while (constraint) {
492 e = constraint->expr;
493 while (e) {
494 ebitmap_destroy(&e->names);
495 etmp = e;
496 e = e->next;
497 kfree(etmp);
498 }
499 ctemp = constraint;
500 constraint = constraint->next;
501 kfree(ctemp);
502 }
503
504 kfree(cladatum->comkey);
505 kfree(datum);
506 return 0;
507}
508
509static int role_destroy(void *key, void *datum, void *p)
510{
511 struct role_datum *role;
512
513 kfree(key);
514 role = datum;
515 ebitmap_destroy(&role->dominates);
516 ebitmap_destroy(&role->types);
517 kfree(datum);
518 return 0;
519}
520
521static int type_destroy(void *key, void *datum, void *p)
522{
523 kfree(key);
524 kfree(datum);
525 return 0;
526}
527
528static int user_destroy(void *key, void *datum, void *p)
529{
530 struct user_datum *usrdatum;
531
532 kfree(key);
533 usrdatum = datum;
534 ebitmap_destroy(&usrdatum->roles);
535 ebitmap_destroy(&usrdatum->range.level[0].cat);
536 ebitmap_destroy(&usrdatum->range.level[1].cat);
537 ebitmap_destroy(&usrdatum->dfltlevel.cat);
538 kfree(datum);
539 return 0;
540}
541
542static int sens_destroy(void *key, void *datum, void *p)
543{
544 struct level_datum *levdatum;
545
546 kfree(key);
547 levdatum = datum;
548 ebitmap_destroy(&levdatum->level->cat);
549 kfree(levdatum->level);
550 kfree(datum);
551 return 0;
552}
553
554static int cat_destroy(void *key, void *datum, void *p)
555{
556 kfree(key);
557 kfree(datum);
558 return 0;
559}
560
561static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
562{
563 common_destroy,
564 class_destroy,
565 role_destroy,
566 type_destroy,
567 user_destroy,
568 cond_destroy_bool,
569 sens_destroy,
570 cat_destroy,
571};
572
573static void ocontext_destroy(struct ocontext *c, int i)
574{
575 context_destroy(&c->context[0]);
576 context_destroy(&c->context[1]);
577 if (i == OCON_ISID || i == OCON_FS ||
578 i == OCON_NETIF || i == OCON_FSUSE)
579 kfree(c->u.name);
580 kfree(c);
581}
582
583/*
584 * Free any memory allocated by a policy database structure.
585 */
586void policydb_destroy(struct policydb *p)
587{
588 struct ocontext *c, *ctmp;
589 struct genfs *g, *gtmp;
590 int i;
782ebb99
SS
591 struct role_allow *ra, *lra = NULL;
592 struct role_trans *tr, *ltr = NULL;
593 struct range_trans *rt, *lrt = NULL;
1da177e4
LT
594
595 for (i = 0; i < SYM_NUM; i++) {
596 hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
597 hashtab_destroy(p->symtab[i].table);
598 }
599
9a5f04bf
JJ
600 for (i = 0; i < SYM_NUM; i++)
601 kfree(p->sym_val_to_name[i]);
1da177e4 602
9a5f04bf
JJ
603 kfree(p->class_val_to_struct);
604 kfree(p->role_val_to_struct);
605 kfree(p->user_val_to_struct);
1da177e4
LT
606
607 avtab_destroy(&p->te_avtab);
608
609 for (i = 0; i < OCON_NUM; i++) {
610 c = p->ocontexts[i];
611 while (c) {
612 ctmp = c;
613 c = c->next;
614 ocontext_destroy(ctmp,i);
615 }
616 }
617
618 g = p->genfs;
619 while (g) {
620 kfree(g->fstype);
621 c = g->head;
622 while (c) {
623 ctmp = c;
624 c = c->next;
625 ocontext_destroy(ctmp,OCON_FSUSE);
626 }
627 gtmp = g;
628 g = g->next;
629 kfree(gtmp);
630 }
631
632 cond_policydb_destroy(p);
633
782ebb99 634 for (tr = p->role_tr; tr; tr = tr->next) {
a7f988ba 635 kfree(ltr);
782ebb99
SS
636 ltr = tr;
637 }
a7f988ba 638 kfree(ltr);
782ebb99
SS
639
640 for (ra = p->role_allow; ra; ra = ra -> next) {
a7f988ba 641 kfree(lra);
782ebb99
SS
642 lra = ra;
643 }
a7f988ba 644 kfree(lra);
782ebb99
SS
645
646 for (rt = p->range_tr; rt; rt = rt -> next) {
ddccef3b
DG
647 if (lrt) {
648 ebitmap_destroy(&lrt->range.level[0].cat);
649 ebitmap_destroy(&lrt->range.level[1].cat);
650 kfree(lrt);
651 }
782ebb99
SS
652 lrt = rt;
653 }
ddccef3b
DG
654 if (lrt) {
655 ebitmap_destroy(&lrt->range.level[0].cat);
656 ebitmap_destroy(&lrt->range.level[1].cat);
657 kfree(lrt);
658 }
782ebb99 659
282c1f5e
SS
660 if (p->type_attr_map) {
661 for (i = 0; i < p->p_types.nprim; i++)
662 ebitmap_destroy(&p->type_attr_map[i]);
663 }
782ebb99
SS
664 kfree(p->type_attr_map);
665
1da177e4
LT
666 return;
667}
668
669/*
670 * Load the initial SIDs specified in a policy database
671 * structure into a SID table.
672 */
673int policydb_load_isids(struct policydb *p, struct sidtab *s)
674{
675 struct ocontext *head, *c;
676 int rc;
677
678 rc = sidtab_init(s);
679 if (rc) {
680 printk(KERN_ERR "security: out of memory on SID table init\n");
681 goto out;
682 }
683
684 head = p->ocontexts[OCON_ISID];
685 for (c = head; c; c = c->next) {
686 if (!c->context[0].user) {
687 printk(KERN_ERR "security: SID %s was never "
688 "defined.\n", c->u.name);
689 rc = -EINVAL;
690 goto out;
691 }
692 if (sidtab_insert(s, c->sid[0], &c->context[0])) {
693 printk(KERN_ERR "security: unable to load initial "
694 "SID %s.\n", c->u.name);
695 rc = -EINVAL;
696 goto out;
697 }
698 }
699out:
700 return rc;
701}
702
703/*
704 * Return 1 if the fields in the security context
705 * structure `c' are valid. Return 0 otherwise.
706 */
707int policydb_context_isvalid(struct policydb *p, struct context *c)
708{
709 struct role_datum *role;
710 struct user_datum *usrdatum;
711
712 if (!c->role || c->role > p->p_roles.nprim)
713 return 0;
714
715 if (!c->user || c->user > p->p_users.nprim)
716 return 0;
717
718 if (!c->type || c->type > p->p_types.nprim)
719 return 0;
720
721 if (c->role != OBJECT_R_VAL) {
722 /*
723 * Role must be authorized for the type.
724 */
725 role = p->role_val_to_struct[c->role - 1];
726 if (!ebitmap_get_bit(&role->types,
727 c->type - 1))
728 /* role may not be associated with type */
729 return 0;
730
731 /*
732 * User must be authorized for the role.
733 */
734 usrdatum = p->user_val_to_struct[c->user - 1];
735 if (!usrdatum)
736 return 0;
737
738 if (!ebitmap_get_bit(&usrdatum->roles,
739 c->role - 1))
740 /* user may not be associated with role */
741 return 0;
742 }
743
744 if (!mls_context_isvalid(p, c))
745 return 0;
746
747 return 1;
748}
749
750/*
751 * Read a MLS range structure from a policydb binary
752 * representation file.
753 */
754static int mls_read_range_helper(struct mls_range *r, void *fp)
755{
b5bf6c55
AD
756 __le32 buf[2];
757 u32 items;
1da177e4
LT
758 int rc;
759
760 rc = next_entry(buf, fp, sizeof(u32));
761 if (rc < 0)
762 goto out;
763
764 items = le32_to_cpu(buf[0]);
765 if (items > ARRAY_SIZE(buf)) {
766 printk(KERN_ERR "security: mls: range overflow\n");
767 rc = -EINVAL;
768 goto out;
769 }
770 rc = next_entry(buf, fp, sizeof(u32) * items);
771 if (rc < 0) {
772 printk(KERN_ERR "security: mls: truncated range\n");
773 goto out;
774 }
775 r->level[0].sens = le32_to_cpu(buf[0]);
776 if (items > 1)
777 r->level[1].sens = le32_to_cpu(buf[1]);
778 else
779 r->level[1].sens = r->level[0].sens;
780
781 rc = ebitmap_read(&r->level[0].cat, fp);
782 if (rc) {
783 printk(KERN_ERR "security: mls: error reading low "
784 "categories\n");
785 goto out;
786 }
787 if (items > 1) {
788 rc = ebitmap_read(&r->level[1].cat, fp);
789 if (rc) {
790 printk(KERN_ERR "security: mls: error reading high "
791 "categories\n");
792 goto bad_high;
793 }
794 } else {
795 rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
796 if (rc) {
797 printk(KERN_ERR "security: mls: out of memory\n");
798 goto bad_high;
799 }
800 }
801
802 rc = 0;
803out:
804 return rc;
805bad_high:
806 ebitmap_destroy(&r->level[0].cat);
807 goto out;
808}
809
810/*
811 * Read and validate a security context structure
812 * from a policydb binary representation file.
813 */
814static int context_read_and_validate(struct context *c,
815 struct policydb *p,
816 void *fp)
817{
b5bf6c55 818 __le32 buf[3];
1da177e4
LT
819 int rc;
820
821 rc = next_entry(buf, fp, sizeof buf);
822 if (rc < 0) {
823 printk(KERN_ERR "security: context truncated\n");
824 goto out;
825 }
826 c->user = le32_to_cpu(buf[0]);
827 c->role = le32_to_cpu(buf[1]);
828 c->type = le32_to_cpu(buf[2]);
829 if (p->policyvers >= POLICYDB_VERSION_MLS) {
830 if (mls_read_range_helper(&c->range, fp)) {
831 printk(KERN_ERR "security: error reading MLS range of "
832 "context\n");
833 rc = -EINVAL;
834 goto out;
835 }
836 }
837
838 if (!policydb_context_isvalid(p, c)) {
839 printk(KERN_ERR "security: invalid security context\n");
840 context_destroy(c);
841 rc = -EINVAL;
842 }
843out:
844 return rc;
845}
846
847/*
848 * The following *_read functions are used to
849 * read the symbol data from a policy database
850 * binary representation file.
851 */
852
853static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
854{
855 char *key = NULL;
856 struct perm_datum *perdatum;
857 int rc;
b5bf6c55
AD
858 __le32 buf[2];
859 u32 len;
1da177e4 860
89d155ef 861 perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
1da177e4
LT
862 if (!perdatum) {
863 rc = -ENOMEM;
864 goto out;
865 }
1da177e4
LT
866
867 rc = next_entry(buf, fp, sizeof buf);
868 if (rc < 0)
869 goto bad;
870
871 len = le32_to_cpu(buf[0]);
872 perdatum->value = le32_to_cpu(buf[1]);
873
874 key = kmalloc(len + 1,GFP_KERNEL);
875 if (!key) {
876 rc = -ENOMEM;
877 goto bad;
878 }
879 rc = next_entry(key, fp, len);
880 if (rc < 0)
881 goto bad;
882 key[len] = 0;
883
884 rc = hashtab_insert(h, key, perdatum);
885 if (rc)
886 goto bad;
887out:
888 return rc;
889bad:
890 perm_destroy(key, perdatum, NULL);
891 goto out;
892}
893
894static int common_read(struct policydb *p, struct hashtab *h, void *fp)
895{
896 char *key = NULL;
897 struct common_datum *comdatum;
b5bf6c55
AD
898 __le32 buf[4];
899 u32 len, nel;
1da177e4
LT
900 int i, rc;
901
89d155ef 902 comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
1da177e4
LT
903 if (!comdatum) {
904 rc = -ENOMEM;
905 goto out;
906 }
1da177e4
LT
907
908 rc = next_entry(buf, fp, sizeof buf);
909 if (rc < 0)
910 goto bad;
911
912 len = le32_to_cpu(buf[0]);
913 comdatum->value = le32_to_cpu(buf[1]);
914
915 rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
916 if (rc)
917 goto bad;
918 comdatum->permissions.nprim = le32_to_cpu(buf[2]);
919 nel = le32_to_cpu(buf[3]);
920
921 key = kmalloc(len + 1,GFP_KERNEL);
922 if (!key) {
923 rc = -ENOMEM;
924 goto bad;
925 }
926 rc = next_entry(key, fp, len);
927 if (rc < 0)
928 goto bad;
929 key[len] = 0;
930
931 for (i = 0; i < nel; i++) {
932 rc = perm_read(p, comdatum->permissions.table, fp);
933 if (rc)
934 goto bad;
935 }
936
937 rc = hashtab_insert(h, key, comdatum);
938 if (rc)
939 goto bad;
940out:
941 return rc;
942bad:
943 common_destroy(key, comdatum, NULL);
944 goto out;
945}
946
947static int read_cons_helper(struct constraint_node **nodep, int ncons,
948 int allowxtarget, void *fp)
949{
950 struct constraint_node *c, *lc;
951 struct constraint_expr *e, *le;
b5bf6c55
AD
952 __le32 buf[3];
953 u32 nexpr;
1da177e4
LT
954 int rc, i, j, depth;
955
956 lc = NULL;
957 for (i = 0; i < ncons; i++) {
89d155ef 958 c = kzalloc(sizeof(*c), GFP_KERNEL);
1da177e4
LT
959 if (!c)
960 return -ENOMEM;
1da177e4
LT
961
962 if (lc) {
963 lc->next = c;
964 } else {
965 *nodep = c;
966 }
967
968 rc = next_entry(buf, fp, (sizeof(u32) * 2));
969 if (rc < 0)
970 return rc;
971 c->permissions = le32_to_cpu(buf[0]);
972 nexpr = le32_to_cpu(buf[1]);
973 le = NULL;
974 depth = -1;
975 for (j = 0; j < nexpr; j++) {
89d155ef 976 e = kzalloc(sizeof(*e), GFP_KERNEL);
1da177e4
LT
977 if (!e)
978 return -ENOMEM;
1da177e4
LT
979
980 if (le) {
981 le->next = e;
982 } else {
983 c->expr = e;
984 }
985
986 rc = next_entry(buf, fp, (sizeof(u32) * 3));
987 if (rc < 0)
988 return rc;
989 e->expr_type = le32_to_cpu(buf[0]);
990 e->attr = le32_to_cpu(buf[1]);
991 e->op = le32_to_cpu(buf[2]);
992
993 switch (e->expr_type) {
994 case CEXPR_NOT:
995 if (depth < 0)
996 return -EINVAL;
997 break;
998 case CEXPR_AND:
999 case CEXPR_OR:
1000 if (depth < 1)
1001 return -EINVAL;
1002 depth--;
1003 break;
1004 case CEXPR_ATTR:
1005 if (depth == (CEXPR_MAXDEPTH - 1))
1006 return -EINVAL;
1007 depth++;
1008 break;
1009 case CEXPR_NAMES:
1010 if (!allowxtarget && (e->attr & CEXPR_XTARGET))
1011 return -EINVAL;
1012 if (depth == (CEXPR_MAXDEPTH - 1))
1013 return -EINVAL;
1014 depth++;
1015 if (ebitmap_read(&e->names, fp))
1016 return -EINVAL;
1017 break;
1018 default:
1019 return -EINVAL;
1020 }
1021 le = e;
1022 }
1023 if (depth != 0)
1024 return -EINVAL;
1025 lc = c;
1026 }
1027
1028 return 0;
1029}
1030
1031static int class_read(struct policydb *p, struct hashtab *h, void *fp)
1032{
1033 char *key = NULL;
1034 struct class_datum *cladatum;
b5bf6c55
AD
1035 __le32 buf[6];
1036 u32 len, len2, ncons, nel;
1da177e4
LT
1037 int i, rc;
1038
89d155ef 1039 cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
1da177e4
LT
1040 if (!cladatum) {
1041 rc = -ENOMEM;
1042 goto out;
1043 }
1da177e4
LT
1044
1045 rc = next_entry(buf, fp, sizeof(u32)*6);
1046 if (rc < 0)
1047 goto bad;
1048
1049 len = le32_to_cpu(buf[0]);
1050 len2 = le32_to_cpu(buf[1]);
1051 cladatum->value = le32_to_cpu(buf[2]);
1052
1053 rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
1054 if (rc)
1055 goto bad;
1056 cladatum->permissions.nprim = le32_to_cpu(buf[3]);
1057 nel = le32_to_cpu(buf[4]);
1058
1059 ncons = le32_to_cpu(buf[5]);
1060
1061 key = kmalloc(len + 1,GFP_KERNEL);
1062 if (!key) {
1063 rc = -ENOMEM;
1064 goto bad;
1065 }
1066 rc = next_entry(key, fp, len);
1067 if (rc < 0)
1068 goto bad;
1069 key[len] = 0;
1070
1071 if (len2) {
1072 cladatum->comkey = kmalloc(len2 + 1,GFP_KERNEL);
1073 if (!cladatum->comkey) {
1074 rc = -ENOMEM;
1075 goto bad;
1076 }
1077 rc = next_entry(cladatum->comkey, fp, len2);
1078 if (rc < 0)
1079 goto bad;
1080 cladatum->comkey[len2] = 0;
1081
1082 cladatum->comdatum = hashtab_search(p->p_commons.table,
1083 cladatum->comkey);
1084 if (!cladatum->comdatum) {
1085 printk(KERN_ERR "security: unknown common %s\n",
1086 cladatum->comkey);
1087 rc = -EINVAL;
1088 goto bad;
1089 }
1090 }
1091 for (i = 0; i < nel; i++) {
1092 rc = perm_read(p, cladatum->permissions.table, fp);
1093 if (rc)
1094 goto bad;
1095 }
1096
1097 rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
1098 if (rc)
1099 goto bad;
1100
1101 if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
1102 /* grab the validatetrans rules */
1103 rc = next_entry(buf, fp, sizeof(u32));
1104 if (rc < 0)
1105 goto bad;
1106 ncons = le32_to_cpu(buf[0]);
1107 rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
1108 if (rc)
1109 goto bad;
1110 }
1111
1112 rc = hashtab_insert(h, key, cladatum);
1113 if (rc)
1114 goto bad;
1115
1116 rc = 0;
1117out:
1118 return rc;
1119bad:
1120 class_destroy(key, cladatum, NULL);
1121 goto out;
1122}
1123
1124static int role_read(struct policydb *p, struct hashtab *h, void *fp)
1125{
1126 char *key = NULL;
1127 struct role_datum *role;
1128 int rc;
b5bf6c55
AD
1129 __le32 buf[2];
1130 u32 len;
1da177e4 1131
89d155ef 1132 role = kzalloc(sizeof(*role), GFP_KERNEL);
1da177e4
LT
1133 if (!role) {
1134 rc = -ENOMEM;
1135 goto out;
1136 }
1da177e4
LT
1137
1138 rc = next_entry(buf, fp, sizeof buf);
1139 if (rc < 0)
1140 goto bad;
1141
1142 len = le32_to_cpu(buf[0]);
1143 role->value = le32_to_cpu(buf[1]);
1144
1145 key = kmalloc(len + 1,GFP_KERNEL);
1146 if (!key) {
1147 rc = -ENOMEM;
1148 goto bad;
1149 }
1150 rc = next_entry(key, fp, len);
1151 if (rc < 0)
1152 goto bad;
1153 key[len] = 0;
1154
1155 rc = ebitmap_read(&role->dominates, fp);
1156 if (rc)
1157 goto bad;
1158
1159 rc = ebitmap_read(&role->types, fp);
1160 if (rc)
1161 goto bad;
1162
1163 if (strcmp(key, OBJECT_R) == 0) {
1164 if (role->value != OBJECT_R_VAL) {
1165 printk(KERN_ERR "Role %s has wrong value %d\n",
1166 OBJECT_R, role->value);
1167 rc = -EINVAL;
1168 goto bad;
1169 }
1170 rc = 0;
1171 goto bad;
1172 }
1173
1174 rc = hashtab_insert(h, key, role);
1175 if (rc)
1176 goto bad;
1177out:
1178 return rc;
1179bad:
1180 role_destroy(key, role, NULL);
1181 goto out;
1182}
1183
1184static int type_read(struct policydb *p, struct hashtab *h, void *fp)
1185{
1186 char *key = NULL;
1187 struct type_datum *typdatum;
1188 int rc;
b5bf6c55
AD
1189 __le32 buf[3];
1190 u32 len;
1da177e4 1191
89d155ef 1192 typdatum = kzalloc(sizeof(*typdatum),GFP_KERNEL);
1da177e4
LT
1193 if (!typdatum) {
1194 rc = -ENOMEM;
1195 return rc;
1196 }
1da177e4
LT
1197
1198 rc = next_entry(buf, fp, sizeof buf);
1199 if (rc < 0)
1200 goto bad;
1201
1202 len = le32_to_cpu(buf[0]);
1203 typdatum->value = le32_to_cpu(buf[1]);
1204 typdatum->primary = le32_to_cpu(buf[2]);
1205
1206 key = kmalloc(len + 1,GFP_KERNEL);
1207 if (!key) {
1208 rc = -ENOMEM;
1209 goto bad;
1210 }
1211 rc = next_entry(key, fp, len);
1212 if (rc < 0)
1213 goto bad;
1214 key[len] = 0;
1215
1216 rc = hashtab_insert(h, key, typdatum);
1217 if (rc)
1218 goto bad;
1219out:
1220 return rc;
1221bad:
1222 type_destroy(key, typdatum, NULL);
1223 goto out;
1224}
1225
1226
1227/*
1228 * Read a MLS level structure from a policydb binary
1229 * representation file.
1230 */
1231static int mls_read_level(struct mls_level *lp, void *fp)
1232{
b5bf6c55 1233 __le32 buf[1];
1da177e4
LT
1234 int rc;
1235
1236 memset(lp, 0, sizeof(*lp));
1237
1238 rc = next_entry(buf, fp, sizeof buf);
1239 if (rc < 0) {
1240 printk(KERN_ERR "security: mls: truncated level\n");
1241 goto bad;
1242 }
1243 lp->sens = le32_to_cpu(buf[0]);
1244
1245 if (ebitmap_read(&lp->cat, fp)) {
1246 printk(KERN_ERR "security: mls: error reading level "
1247 "categories\n");
1248 goto bad;
1249 }
1250 return 0;
1251
1252bad:
1253 return -EINVAL;
1254}
1255
1256static int user_read(struct policydb *p, struct hashtab *h, void *fp)
1257{
1258 char *key = NULL;
1259 struct user_datum *usrdatum;
1260 int rc;
b5bf6c55
AD
1261 __le32 buf[2];
1262 u32 len;
1da177e4 1263
89d155ef 1264 usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
1da177e4
LT
1265 if (!usrdatum) {
1266 rc = -ENOMEM;
1267 goto out;
1268 }
1da177e4
LT
1269
1270 rc = next_entry(buf, fp, sizeof buf);
1271 if (rc < 0)
1272 goto bad;
1273
1274 len = le32_to_cpu(buf[0]);
1275 usrdatum->value = le32_to_cpu(buf[1]);
1276
1277 key = kmalloc(len + 1,GFP_KERNEL);
1278 if (!key) {
1279 rc = -ENOMEM;
1280 goto bad;
1281 }
1282 rc = next_entry(key, fp, len);
1283 if (rc < 0)
1284 goto bad;
1285 key[len] = 0;
1286
1287 rc = ebitmap_read(&usrdatum->roles, fp);
1288 if (rc)
1289 goto bad;
1290
1291 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1292 rc = mls_read_range_helper(&usrdatum->range, fp);
1293 if (rc)
1294 goto bad;
1295 rc = mls_read_level(&usrdatum->dfltlevel, fp);
1296 if (rc)
1297 goto bad;
1298 }
1299
1300 rc = hashtab_insert(h, key, usrdatum);
1301 if (rc)
1302 goto bad;
1303out:
1304 return rc;
1305bad:
1306 user_destroy(key, usrdatum, NULL);
1307 goto out;
1308}
1309
1310static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
1311{
1312 char *key = NULL;
1313 struct level_datum *levdatum;
1314 int rc;
b5bf6c55
AD
1315 __le32 buf[2];
1316 u32 len;
1da177e4 1317
89d155ef 1318 levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
1da177e4
LT
1319 if (!levdatum) {
1320 rc = -ENOMEM;
1321 goto out;
1322 }
1da177e4
LT
1323
1324 rc = next_entry(buf, fp, sizeof buf);
1325 if (rc < 0)
1326 goto bad;
1327
1328 len = le32_to_cpu(buf[0]);
1329 levdatum->isalias = le32_to_cpu(buf[1]);
1330
1331 key = kmalloc(len + 1,GFP_ATOMIC);
1332 if (!key) {
1333 rc = -ENOMEM;
1334 goto bad;
1335 }
1336 rc = next_entry(key, fp, len);
1337 if (rc < 0)
1338 goto bad;
1339 key[len] = 0;
1340
1341 levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
1342 if (!levdatum->level) {
1343 rc = -ENOMEM;
1344 goto bad;
1345 }
1346 if (mls_read_level(levdatum->level, fp)) {
1347 rc = -EINVAL;
1348 goto bad;
1349 }
1350
1351 rc = hashtab_insert(h, key, levdatum);
1352 if (rc)
1353 goto bad;
1354out:
1355 return rc;
1356bad:
1357 sens_destroy(key, levdatum, NULL);
1358 goto out;
1359}
1360
1361static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
1362{
1363 char *key = NULL;
1364 struct cat_datum *catdatum;
1365 int rc;
b5bf6c55
AD
1366 __le32 buf[3];
1367 u32 len;
1da177e4 1368
89d155ef 1369 catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
1da177e4
LT
1370 if (!catdatum) {
1371 rc = -ENOMEM;
1372 goto out;
1373 }
1da177e4
LT
1374
1375 rc = next_entry(buf, fp, sizeof buf);
1376 if (rc < 0)
1377 goto bad;
1378
1379 len = le32_to_cpu(buf[0]);
1380 catdatum->value = le32_to_cpu(buf[1]);
1381 catdatum->isalias = le32_to_cpu(buf[2]);
1382
1383 key = kmalloc(len + 1,GFP_ATOMIC);
1384 if (!key) {
1385 rc = -ENOMEM;
1386 goto bad;
1387 }
1388 rc = next_entry(key, fp, len);
1389 if (rc < 0)
1390 goto bad;
1391 key[len] = 0;
1392
1393 rc = hashtab_insert(h, key, catdatum);
1394 if (rc)
1395 goto bad;
1396out:
1397 return rc;
1398
1399bad:
1400 cat_destroy(key, catdatum, NULL);
1401 goto out;
1402}
1403
1404static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
1405{
1406 common_read,
1407 class_read,
1408 role_read,
1409 type_read,
1410 user_read,
1411 cond_read_bool,
1412 sens_read,
1413 cat_read,
1414};
1415
1416extern int ss_initialized;
1417
1418/*
1419 * Read the configuration data from a policy database binary
1420 * representation file into a policy database structure.
1421 */
1422int policydb_read(struct policydb *p, void *fp)
1423{
1424 struct role_allow *ra, *lra;
1425 struct role_trans *tr, *ltr;
1426 struct ocontext *l, *c, *newc;
1427 struct genfs *genfs_p, *genfs, *newgenfs;
1428 int i, j, rc;
b5bf6c55
AD
1429 __le32 buf[8];
1430 u32 len, len2, config, nprim, nel, nel2;
1da177e4
LT
1431 char *policydb_str;
1432 struct policydb_compat_info *info;
1433 struct range_trans *rt, *lrt;
1434
1435 config = 0;
1436
1437 rc = policydb_init(p);
1438 if (rc)
1439 goto out;
1440
1441 /* Read the magic number and string length. */
1442 rc = next_entry(buf, fp, sizeof(u32)* 2);
1443 if (rc < 0)
1444 goto bad;
1445
b5bf6c55 1446 if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
1da177e4
LT
1447 printk(KERN_ERR "security: policydb magic number 0x%x does "
1448 "not match expected magic number 0x%x\n",
b5bf6c55 1449 le32_to_cpu(buf[0]), POLICYDB_MAGIC);
1da177e4
LT
1450 goto bad;
1451 }
1452
b5bf6c55 1453 len = le32_to_cpu(buf[1]);
1da177e4
LT
1454 if (len != strlen(POLICYDB_STRING)) {
1455 printk(KERN_ERR "security: policydb string length %d does not "
1456 "match expected length %Zu\n",
1457 len, strlen(POLICYDB_STRING));
1458 goto bad;
1459 }
1460 policydb_str = kmalloc(len + 1,GFP_KERNEL);
1461 if (!policydb_str) {
1462 printk(KERN_ERR "security: unable to allocate memory for policydb "
1463 "string of length %d\n", len);
1464 rc = -ENOMEM;
1465 goto bad;
1466 }
1467 rc = next_entry(policydb_str, fp, len);
1468 if (rc < 0) {
1469 printk(KERN_ERR "security: truncated policydb string identifier\n");
1470 kfree(policydb_str);
1471 goto bad;
1472 }
1473 policydb_str[len] = 0;
1474 if (strcmp(policydb_str, POLICYDB_STRING)) {
1475 printk(KERN_ERR "security: policydb string %s does not match "
1476 "my string %s\n", policydb_str, POLICYDB_STRING);
1477 kfree(policydb_str);
1478 goto bad;
1479 }
1480 /* Done with policydb_str. */
1481 kfree(policydb_str);
1482 policydb_str = NULL;
1483
1484 /* Read the version, config, and table sizes. */
1485 rc = next_entry(buf, fp, sizeof(u32)*4);
1486 if (rc < 0)
1487 goto bad;
1da177e4 1488
b5bf6c55 1489 p->policyvers = le32_to_cpu(buf[0]);
1da177e4
LT
1490 if (p->policyvers < POLICYDB_VERSION_MIN ||
1491 p->policyvers > POLICYDB_VERSION_MAX) {
1492 printk(KERN_ERR "security: policydb version %d does not match "
1493 "my version range %d-%d\n",
b5bf6c55 1494 le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
1da177e4
LT
1495 goto bad;
1496 }
1497
b5bf6c55 1498 if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
1da177e4
LT
1499 if (ss_initialized && !selinux_mls_enabled) {
1500 printk(KERN_ERR "Cannot switch between non-MLS and MLS "
1501 "policies\n");
1502 goto bad;
1503 }
1504 selinux_mls_enabled = 1;
1505 config |= POLICYDB_CONFIG_MLS;
1506
1507 if (p->policyvers < POLICYDB_VERSION_MLS) {
1508 printk(KERN_ERR "security policydb version %d (MLS) "
1509 "not backwards compatible\n", p->policyvers);
1510 goto bad;
1511 }
1512 } else {
1513 if (ss_initialized && selinux_mls_enabled) {
1514 printk(KERN_ERR "Cannot switch between MLS and non-MLS "
1515 "policies\n");
1516 goto bad;
1517 }
1518 }
1519
1520 info = policydb_lookup_compat(p->policyvers);
1521 if (!info) {
1522 printk(KERN_ERR "security: unable to find policy compat info "
1523 "for version %d\n", p->policyvers);
1524 goto bad;
1525 }
1526
b5bf6c55
AD
1527 if (le32_to_cpu(buf[2]) != info->sym_num ||
1528 le32_to_cpu(buf[3]) != info->ocon_num) {
1da177e4 1529 printk(KERN_ERR "security: policydb table sizes (%d,%d) do "
b5bf6c55
AD
1530 "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
1531 le32_to_cpu(buf[3]),
1da177e4
LT
1532 info->sym_num, info->ocon_num);
1533 goto bad;
1534 }
1535
1536 for (i = 0; i < info->sym_num; i++) {
1537 rc = next_entry(buf, fp, sizeof(u32)*2);
1538 if (rc < 0)
1539 goto bad;
1540 nprim = le32_to_cpu(buf[0]);
1541 nel = le32_to_cpu(buf[1]);
1542 for (j = 0; j < nel; j++) {
1543 rc = read_f[i](p, p->symtab[i].table, fp);
1544 if (rc)
1545 goto bad;
1546 }
1547
1548 p->symtab[i].nprim = nprim;
1549 }
1550
782ebb99 1551 rc = avtab_read(&p->te_avtab, fp, p->policyvers);
1da177e4
LT
1552 if (rc)
1553 goto bad;
1554
1555 if (p->policyvers >= POLICYDB_VERSION_BOOL) {
1556 rc = cond_read_list(p, fp);
1557 if (rc)
1558 goto bad;
1559 }
1560
1561 rc = next_entry(buf, fp, sizeof(u32));
1562 if (rc < 0)
1563 goto bad;
1564 nel = le32_to_cpu(buf[0]);
1565 ltr = NULL;
1566 for (i = 0; i < nel; i++) {
89d155ef 1567 tr = kzalloc(sizeof(*tr), GFP_KERNEL);
1da177e4
LT
1568 if (!tr) {
1569 rc = -ENOMEM;
1570 goto bad;
1571 }
1da177e4
LT
1572 if (ltr) {
1573 ltr->next = tr;
1574 } else {
1575 p->role_tr = tr;
1576 }
1577 rc = next_entry(buf, fp, sizeof(u32)*3);
1578 if (rc < 0)
1579 goto bad;
1580 tr->role = le32_to_cpu(buf[0]);
1581 tr->type = le32_to_cpu(buf[1]);
1582 tr->new_role = le32_to_cpu(buf[2]);
1583 ltr = tr;
1584 }
1585
1586 rc = next_entry(buf, fp, sizeof(u32));
1587 if (rc < 0)
1588 goto bad;
1589 nel = le32_to_cpu(buf[0]);
1590 lra = NULL;
1591 for (i = 0; i < nel; i++) {
89d155ef 1592 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1da177e4
LT
1593 if (!ra) {
1594 rc = -ENOMEM;
1595 goto bad;
1596 }
1da177e4
LT
1597 if (lra) {
1598 lra->next = ra;
1599 } else {
1600 p->role_allow = ra;
1601 }
1602 rc = next_entry(buf, fp, sizeof(u32)*2);
1603 if (rc < 0)
1604 goto bad;
1605 ra->role = le32_to_cpu(buf[0]);
1606 ra->new_role = le32_to_cpu(buf[1]);
1607 lra = ra;
1608 }
1609
1610 rc = policydb_index_classes(p);
1611 if (rc)
1612 goto bad;
1613
1614 rc = policydb_index_others(p);
1615 if (rc)
1616 goto bad;
1617
1618 for (i = 0; i < info->ocon_num; i++) {
1619 rc = next_entry(buf, fp, sizeof(u32));
1620 if (rc < 0)
1621 goto bad;
1622 nel = le32_to_cpu(buf[0]);
1623 l = NULL;
1624 for (j = 0; j < nel; j++) {
89d155ef 1625 c = kzalloc(sizeof(*c), GFP_KERNEL);
1da177e4
LT
1626 if (!c) {
1627 rc = -ENOMEM;
1628 goto bad;
1629 }
1da177e4
LT
1630 if (l) {
1631 l->next = c;
1632 } else {
1633 p->ocontexts[i] = c;
1634 }
1635 l = c;
1636 rc = -EINVAL;
1637 switch (i) {
1638 case OCON_ISID:
1639 rc = next_entry(buf, fp, sizeof(u32));
1640 if (rc < 0)
1641 goto bad;
1642 c->sid[0] = le32_to_cpu(buf[0]);
1643 rc = context_read_and_validate(&c->context[0], p, fp);
1644 if (rc)
1645 goto bad;
1646 break;
1647 case OCON_FS:
1648 case OCON_NETIF:
1649 rc = next_entry(buf, fp, sizeof(u32));
1650 if (rc < 0)
1651 goto bad;
1652 len = le32_to_cpu(buf[0]);
1653 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1654 if (!c->u.name) {
1655 rc = -ENOMEM;
1656 goto bad;
1657 }
1658 rc = next_entry(c->u.name, fp, len);
1659 if (rc < 0)
1660 goto bad;
1661 c->u.name[len] = 0;
1662 rc = context_read_and_validate(&c->context[0], p, fp);
1663 if (rc)
1664 goto bad;
1665 rc = context_read_and_validate(&c->context[1], p, fp);
1666 if (rc)
1667 goto bad;
1668 break;
1669 case OCON_PORT:
1670 rc = next_entry(buf, fp, sizeof(u32)*3);
1671 if (rc < 0)
1672 goto bad;
1673 c->u.port.protocol = le32_to_cpu(buf[0]);
1674 c->u.port.low_port = le32_to_cpu(buf[1]);
1675 c->u.port.high_port = le32_to_cpu(buf[2]);
1676 rc = context_read_and_validate(&c->context[0], p, fp);
1677 if (rc)
1678 goto bad;
1679 break;
1680 case OCON_NODE:
1681 rc = next_entry(buf, fp, sizeof(u32)* 2);
1682 if (rc < 0)
1683 goto bad;
1684 c->u.node.addr = le32_to_cpu(buf[0]);
1685 c->u.node.mask = le32_to_cpu(buf[1]);
1686 rc = context_read_and_validate(&c->context[0], p, fp);
1687 if (rc)
1688 goto bad;
1689 break;
1690 case OCON_FSUSE:
1691 rc = next_entry(buf, fp, sizeof(u32)*2);
1692 if (rc < 0)
1693 goto bad;
1694 c->v.behavior = le32_to_cpu(buf[0]);
1695 if (c->v.behavior > SECURITY_FS_USE_NONE)
1696 goto bad;
1697 len = le32_to_cpu(buf[1]);
1698 c->u.name = kmalloc(len + 1,GFP_KERNEL);
1699 if (!c->u.name) {
1700 rc = -ENOMEM;
1701 goto bad;
1702 }
1703 rc = next_entry(c->u.name, fp, len);
1704 if (rc < 0)
1705 goto bad;
1706 c->u.name[len] = 0;
1707 rc = context_read_and_validate(&c->context[0], p, fp);
1708 if (rc)
1709 goto bad;
1710 break;
1711 case OCON_NODE6: {
1712 int k;
1713
1714 rc = next_entry(buf, fp, sizeof(u32) * 8);
1715 if (rc < 0)
1716 goto bad;
1717 for (k = 0; k < 4; k++)
1718 c->u.node6.addr[k] = le32_to_cpu(buf[k]);
1719 for (k = 0; k < 4; k++)
1720 c->u.node6.mask[k] = le32_to_cpu(buf[k+4]);
1721 if (context_read_and_validate(&c->context[0], p, fp))
1722 goto bad;
1723 break;
1724 }
1725 }
1726 }
1727 }
1728
1729 rc = next_entry(buf, fp, sizeof(u32));
1730 if (rc < 0)
1731 goto bad;
1732 nel = le32_to_cpu(buf[0]);
1733 genfs_p = NULL;
1734 rc = -EINVAL;
1735 for (i = 0; i < nel; i++) {
1736 rc = next_entry(buf, fp, sizeof(u32));
1737 if (rc < 0)
1738 goto bad;
1739 len = le32_to_cpu(buf[0]);
89d155ef 1740 newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
1da177e4
LT
1741 if (!newgenfs) {
1742 rc = -ENOMEM;
1743 goto bad;
1744 }
1da177e4
LT
1745
1746 newgenfs->fstype = kmalloc(len + 1,GFP_KERNEL);
1747 if (!newgenfs->fstype) {
1748 rc = -ENOMEM;
1749 kfree(newgenfs);
1750 goto bad;
1751 }
1752 rc = next_entry(newgenfs->fstype, fp, len);
1753 if (rc < 0) {
1754 kfree(newgenfs->fstype);
1755 kfree(newgenfs);
1756 goto bad;
1757 }
1758 newgenfs->fstype[len] = 0;
1759 for (genfs_p = NULL, genfs = p->genfs; genfs;
1760 genfs_p = genfs, genfs = genfs->next) {
1761 if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
1762 printk(KERN_ERR "security: dup genfs "
1763 "fstype %s\n", newgenfs->fstype);
1764 kfree(newgenfs->fstype);
1765 kfree(newgenfs);
1766 goto bad;
1767 }
1768 if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
1769 break;
1770 }
1771 newgenfs->next = genfs;
1772 if (genfs_p)
1773 genfs_p->next = newgenfs;
1774 else
1775 p->genfs = newgenfs;
1776 rc = next_entry(buf, fp, sizeof(u32));
1777 if (rc < 0)
1778 goto bad;
1779 nel2 = le32_to_cpu(buf[0]);
1780 for (j = 0; j < nel2; j++) {
1781 rc = next_entry(buf, fp, sizeof(u32));
1782 if (rc < 0)
1783 goto bad;
1784 len = le32_to_cpu(buf[0]);
1785
89d155ef 1786 newc = kzalloc(sizeof(*newc), GFP_KERNEL);
1da177e4
LT
1787 if (!newc) {
1788 rc = -ENOMEM;
1789 goto bad;
1790 }
1da177e4
LT
1791
1792 newc->u.name = kmalloc(len + 1,GFP_KERNEL);
1793 if (!newc->u.name) {
1794 rc = -ENOMEM;
1795 goto bad_newc;
1796 }
1797 rc = next_entry(newc->u.name, fp, len);
1798 if (rc < 0)
1799 goto bad_newc;
1800 newc->u.name[len] = 0;
1801 rc = next_entry(buf, fp, sizeof(u32));
1802 if (rc < 0)
1803 goto bad_newc;
1804 newc->v.sclass = le32_to_cpu(buf[0]);
1805 if (context_read_and_validate(&newc->context[0], p, fp))
1806 goto bad_newc;
1807 for (l = NULL, c = newgenfs->head; c;
1808 l = c, c = c->next) {
1809 if (!strcmp(newc->u.name, c->u.name) &&
1810 (!c->v.sclass || !newc->v.sclass ||
1811 newc->v.sclass == c->v.sclass)) {
1812 printk(KERN_ERR "security: dup genfs "
1813 "entry (%s,%s)\n",
1814 newgenfs->fstype, c->u.name);
1815 goto bad_newc;
1816 }
1817 len = strlen(newc->u.name);
1818 len2 = strlen(c->u.name);
1819 if (len > len2)
1820 break;
1821 }
1822
1823 newc->next = c;
1824 if (l)
1825 l->next = newc;
1826 else
1827 newgenfs->head = newc;
1828 }
1829 }
1830
1831 if (p->policyvers >= POLICYDB_VERSION_MLS) {
1832 rc = next_entry(buf, fp, sizeof(u32));
1833 if (rc < 0)
1834 goto bad;
1835 nel = le32_to_cpu(buf[0]);
1836 lrt = NULL;
1837 for (i = 0; i < nel; i++) {
89d155ef 1838 rt = kzalloc(sizeof(*rt), GFP_KERNEL);
1da177e4
LT
1839 if (!rt) {
1840 rc = -ENOMEM;
1841 goto bad;
1842 }
1da177e4
LT
1843 if (lrt)
1844 lrt->next = rt;
1845 else
1846 p->range_tr = rt;
1847 rc = next_entry(buf, fp, (sizeof(u32) * 2));
1848 if (rc < 0)
1849 goto bad;
1850 rt->dom = le32_to_cpu(buf[0]);
1851 rt->type = le32_to_cpu(buf[1]);
1852 rc = mls_read_range_helper(&rt->range, fp);
1853 if (rc)
1854 goto bad;
1855 lrt = rt;
1856 }
1857 }
1858
782ebb99
SS
1859 p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
1860 if (!p->type_attr_map)
1861 goto bad;
1862
1863 for (i = 0; i < p->p_types.nprim; i++) {
1864 ebitmap_init(&p->type_attr_map[i]);
1865 if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
1866 if (ebitmap_read(&p->type_attr_map[i], fp))
1867 goto bad;
1868 }
1869 /* add the type itself as the degenerate case */
1870 if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
1871 goto bad;
1872 }
1873
1da177e4
LT
1874 rc = 0;
1875out:
1876 return rc;
1877bad_newc:
1878 ocontext_destroy(newc,OCON_FSUSE);
1879bad:
1880 if (!rc)
1881 rc = -EINVAL;
1882 policydb_destroy(p);
1883 goto out;
1884}