[PATCH] slab: remove kmem_cache_t
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / security / selinux / avc.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the kernel access vector cache (AVC).
3 *
4 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
8 * Replaced the avc_lock spinlock by RCU.
9 *
10 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2,
14 * as published by the Free Software Foundation.
15 */
16#include <linux/types.h>
17#include <linux/stddef.h>
18#include <linux/kernel.h>
19#include <linux/slab.h>
20#include <linux/fs.h>
21#include <linux/dcache.h>
22#include <linux/init.h>
23#include <linux/skbuff.h>
24#include <linux/percpu.h>
25#include <net/sock.h>
26#include <linux/un.h>
27#include <net/af_unix.h>
28#include <linux/ip.h>
29#include <linux/audit.h>
30#include <linux/ipv6.h>
31#include <net/ipv6.h>
32#include "avc.h"
33#include "avc_ss.h"
34
5c458998 35static const struct av_perm_to_string av_perm_to_string[] = {
1da177e4
LT
36#define S_(c, v, s) { c, v, s },
37#include "av_perm_to_string.h"
38#undef S_
39};
40
1da177e4
LT
41static const char *class_to_string[] = {
42#define S_(s) s,
43#include "class_to_string.h"
44#undef S_
45};
1da177e4
LT
46
47#define TB_(s) static const char * s [] = {
48#define TE_(s) };
49#define S_(s) s,
50#include "common_perm_to_string.h"
51#undef TB_
52#undef TE_
53#undef S_
54
5c458998 55static const struct av_inherit av_inherit[] = {
1da177e4
LT
56#define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57#include "av_inherit.h"
58#undef S_
59};
60
5c458998
CS
61const struct selinux_class_perm selinux_class_perm = {
62 av_perm_to_string,
63 ARRAY_SIZE(av_perm_to_string),
64 class_to_string,
65 ARRAY_SIZE(class_to_string),
66 av_inherit,
67 ARRAY_SIZE(av_inherit)
68};
69
1da177e4
LT
70#define AVC_CACHE_SLOTS 512
71#define AVC_DEF_CACHE_THRESHOLD 512
72#define AVC_CACHE_RECLAIM 16
73
74#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75#define avc_cache_stats_incr(field) \
76do { \
77 per_cpu(avc_cache_stats, get_cpu()).field++; \
78 put_cpu(); \
79} while (0)
80#else
81#define avc_cache_stats_incr(field) do {} while (0)
82#endif
83
84struct avc_entry {
85 u32 ssid;
86 u32 tsid;
87 u16 tclass;
88 struct av_decision avd;
89 atomic_t used; /* used recently */
90};
91
92struct avc_node {
93 struct avc_entry ae;
94 struct list_head list;
95 struct rcu_head rhead;
96};
97
98struct avc_cache {
99 struct list_head slots[AVC_CACHE_SLOTS];
100 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 atomic_t lru_hint; /* LRU hint for reclaim scan */
102 atomic_t active_nodes;
103 u32 latest_notif; /* latest revocation notification */
104};
105
106struct avc_callback_node {
107 int (*callback) (u32 event, u32 ssid, u32 tsid,
108 u16 tclass, u32 perms,
109 u32 *out_retained);
110 u32 events;
111 u32 ssid;
112 u32 tsid;
113 u16 tclass;
114 u32 perms;
115 struct avc_callback_node *next;
116};
117
118/* Exported via selinufs */
119unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120
121#ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123#endif
124
125static struct avc_cache avc_cache;
126static struct avc_callback_node *avc_callbacks;
e18b890b 127static struct kmem_cache *avc_node_cachep;
1da177e4
LT
128
129static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130{
131 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132}
133
134/**
135 * avc_dump_av - Display an access vector in human-readable form.
136 * @tclass: target security class
137 * @av: access vector
138 */
139static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140{
141 const char **common_pts = NULL;
142 u32 common_base = 0;
143 int i, i2, perm;
144
145 if (av == 0) {
146 audit_log_format(ab, " null");
147 return;
148 }
149
150 for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 if (av_inherit[i].tclass == tclass) {
152 common_pts = av_inherit[i].common_pts;
153 common_base = av_inherit[i].common_base;
154 break;
155 }
156 }
157
158 audit_log_format(ab, " {");
159 i = 0;
160 perm = 1;
161 while (perm < common_base) {
162 if (perm & av) {
163 audit_log_format(ab, " %s", common_pts[i]);
164 av &= ~perm;
165 }
166 i++;
167 perm <<= 1;
168 }
169
170 while (i < sizeof(av) * 8) {
171 if (perm & av) {
172 for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 if ((av_perm_to_string[i2].tclass == tclass) &&
174 (av_perm_to_string[i2].value == perm))
175 break;
176 }
177 if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 audit_log_format(ab, " %s",
179 av_perm_to_string[i2].name);
180 av &= ~perm;
181 }
182 }
183 i++;
184 perm <<= 1;
185 }
186
187 if (av)
188 audit_log_format(ab, " 0x%x", av);
189
190 audit_log_format(ab, " }");
191}
192
193/**
194 * avc_dump_query - Display a SID pair and a class in human-readable form.
195 * @ssid: source security identifier
196 * @tsid: target security identifier
197 * @tclass: target security class
198 */
199static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200{
201 int rc;
202 char *scontext;
203 u32 scontext_len;
204
205 rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 if (rc)
207 audit_log_format(ab, "ssid=%d", ssid);
208 else {
209 audit_log_format(ab, "scontext=%s", scontext);
210 kfree(scontext);
211 }
212
213 rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 if (rc)
215 audit_log_format(ab, " tsid=%d", tsid);
216 else {
217 audit_log_format(ab, " tcontext=%s", scontext);
218 kfree(scontext);
219 }
220 audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
221}
222
223/**
224 * avc_init - Initialize the AVC.
225 *
226 * Initialize the access vector cache.
227 */
228void __init avc_init(void)
229{
230 int i;
231
232 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
233 INIT_LIST_HEAD(&avc_cache.slots[i]);
234 spin_lock_init(&avc_cache.slots_lock[i]);
235 }
236 atomic_set(&avc_cache.active_nodes, 0);
237 atomic_set(&avc_cache.lru_hint, 0);
238
239 avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
240 0, SLAB_PANIC, NULL, NULL);
241
9ad9ad38 242 audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
1da177e4
LT
243}
244
245int avc_get_hash_stats(char *page)
246{
247 int i, chain_len, max_chain_len, slots_used;
248 struct avc_node *node;
249
250 rcu_read_lock();
251
252 slots_used = 0;
253 max_chain_len = 0;
254 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
255 if (!list_empty(&avc_cache.slots[i])) {
256 slots_used++;
257 chain_len = 0;
258 list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
259 chain_len++;
260 if (chain_len > max_chain_len)
261 max_chain_len = chain_len;
262 }
263 }
264
265 rcu_read_unlock();
266
267 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
268 "longest chain: %d\n",
269 atomic_read(&avc_cache.active_nodes),
270 slots_used, AVC_CACHE_SLOTS, max_chain_len);
271}
272
273static void avc_node_free(struct rcu_head *rhead)
274{
275 struct avc_node *node = container_of(rhead, struct avc_node, rhead);
276 kmem_cache_free(avc_node_cachep, node);
277 avc_cache_stats_incr(frees);
278}
279
280static void avc_node_delete(struct avc_node *node)
281{
282 list_del_rcu(&node->list);
283 call_rcu(&node->rhead, avc_node_free);
284 atomic_dec(&avc_cache.active_nodes);
285}
286
287static void avc_node_kill(struct avc_node *node)
288{
289 kmem_cache_free(avc_node_cachep, node);
290 avc_cache_stats_incr(frees);
291 atomic_dec(&avc_cache.active_nodes);
292}
293
294static void avc_node_replace(struct avc_node *new, struct avc_node *old)
295{
296 list_replace_rcu(&old->list, &new->list);
297 call_rcu(&old->rhead, avc_node_free);
298 atomic_dec(&avc_cache.active_nodes);
299}
300
301static inline int avc_reclaim_node(void)
302{
303 struct avc_node *node;
304 int hvalue, try, ecx;
305 unsigned long flags;
306
307 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
308 hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
309
310 if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
311 continue;
312
313 list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
314 if (atomic_dec_and_test(&node->ae.used)) {
315 /* Recently Unused */
316 avc_node_delete(node);
317 avc_cache_stats_incr(reclaims);
318 ecx++;
319 if (ecx >= AVC_CACHE_RECLAIM) {
320 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
321 goto out;
322 }
323 }
324 }
325 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
326 }
327out:
328 return ecx;
329}
330
331static struct avc_node *avc_alloc_node(void)
332{
333 struct avc_node *node;
334
54e6ecb2 335 node = kmem_cache_alloc(avc_node_cachep, GFP_ATOMIC);
1da177e4
LT
336 if (!node)
337 goto out;
338
339 memset(node, 0, sizeof(*node));
340 INIT_RCU_HEAD(&node->rhead);
341 INIT_LIST_HEAD(&node->list);
342 atomic_set(&node->ae.used, 1);
343 avc_cache_stats_incr(allocations);
344
345 if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
346 avc_reclaim_node();
347
348out:
349 return node;
350}
351
352static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
353{
354 node->ae.ssid = ssid;
355 node->ae.tsid = tsid;
356 node->ae.tclass = tclass;
357 memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
358}
359
360static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
361{
362 struct avc_node *node, *ret = NULL;
363 int hvalue;
364
365 hvalue = avc_hash(ssid, tsid, tclass);
366 list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
367 if (ssid == node->ae.ssid &&
368 tclass == node->ae.tclass &&
369 tsid == node->ae.tsid) {
370 ret = node;
371 break;
372 }
373 }
374
375 if (ret == NULL) {
376 /* cache miss */
377 goto out;
378 }
379
380 /* cache hit */
381 if (atomic_read(&ret->ae.used) != 1)
382 atomic_set(&ret->ae.used, 1);
383out:
384 return ret;
385}
386
387/**
388 * avc_lookup - Look up an AVC entry.
389 * @ssid: source security identifier
390 * @tsid: target security identifier
391 * @tclass: target security class
392 * @requested: requested permissions, interpreted based on @tclass
393 *
394 * Look up an AVC entry that is valid for the
395 * @requested permissions between the SID pair
396 * (@ssid, @tsid), interpreting the permissions
397 * based on @tclass. If a valid AVC entry exists,
398 * then this function return the avc_node.
399 * Otherwise, this function returns NULL.
400 */
401static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
402{
403 struct avc_node *node;
404
405 avc_cache_stats_incr(lookups);
406 node = avc_search_node(ssid, tsid, tclass);
407
408 if (node && ((node->ae.avd.decided & requested) == requested)) {
409 avc_cache_stats_incr(hits);
410 goto out;
411 }
412
413 node = NULL;
414 avc_cache_stats_incr(misses);
415out:
416 return node;
417}
418
419static int avc_latest_notif_update(int seqno, int is_insert)
420{
421 int ret = 0;
422 static DEFINE_SPINLOCK(notif_lock);
423 unsigned long flag;
424
425 spin_lock_irqsave(&notif_lock, flag);
426 if (is_insert) {
427 if (seqno < avc_cache.latest_notif) {
428 printk(KERN_WARNING "avc: seqno %d < latest_notif %d\n",
429 seqno, avc_cache.latest_notif);
430 ret = -EAGAIN;
431 }
432 } else {
433 if (seqno > avc_cache.latest_notif)
434 avc_cache.latest_notif = seqno;
435 }
436 spin_unlock_irqrestore(&notif_lock, flag);
437
438 return ret;
439}
440
441/**
442 * avc_insert - Insert an AVC entry.
443 * @ssid: source security identifier
444 * @tsid: target security identifier
445 * @tclass: target security class
446 * @ae: AVC entry
447 *
448 * Insert an AVC entry for the SID pair
449 * (@ssid, @tsid) and class @tclass.
450 * The access vectors and the sequence number are
451 * normally provided by the security server in
452 * response to a security_compute_av() call. If the
453 * sequence number @ae->avd.seqno is not less than the latest
454 * revocation notification, then the function copies
455 * the access vectors into a cache entry, returns
456 * avc_node inserted. Otherwise, this function returns NULL.
457 */
458static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
459{
460 struct avc_node *pos, *node = NULL;
461 int hvalue;
462 unsigned long flag;
463
464 if (avc_latest_notif_update(ae->avd.seqno, 1))
465 goto out;
466
467 node = avc_alloc_node();
468 if (node) {
469 hvalue = avc_hash(ssid, tsid, tclass);
470 avc_node_populate(node, ssid, tsid, tclass, ae);
471
472 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
473 list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
474 if (pos->ae.ssid == ssid &&
475 pos->ae.tsid == tsid &&
476 pos->ae.tclass == tclass) {
477 avc_node_replace(node, pos);
478 goto found;
479 }
480 }
481 list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
482found:
483 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
484 }
485out:
486 return node;
487}
488
489static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
b5bf6c55 490 struct in6_addr *addr, __be16 port,
1da177e4
LT
491 char *name1, char *name2)
492{
493 if (!ipv6_addr_any(addr))
46b86a2d 494 audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
1da177e4
LT
495 if (port)
496 audit_log_format(ab, " %s=%d", name2, ntohs(port));
497}
498
87fcd70d 499static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
b5bf6c55 500 __be16 port, char *name1, char *name2)
1da177e4
LT
501{
502 if (addr)
46b86a2d 503 audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
1da177e4
LT
504 if (port)
505 audit_log_format(ab, " %s=%d", name2, ntohs(port));
506}
507
508/**
509 * avc_audit - Audit the granting or denial of permissions.
510 * @ssid: source security identifier
511 * @tsid: target security identifier
512 * @tclass: target security class
513 * @requested: requested permissions
514 * @avd: access vector decisions
515 * @result: result from avc_has_perm_noaudit
516 * @a: auxiliary audit data
517 *
518 * Audit the granting or denial of permissions in accordance
519 * with the policy. This function is typically called by
520 * avc_has_perm() after a permission check, but can also be
521 * called directly by callers who use avc_has_perm_noaudit()
522 * in order to separate the permission check from the auditing.
523 * For example, this separation is useful when the permission check must
524 * be performed under a lock, to allow the lock to be released
525 * before calling the auditing code.
526 */
527void avc_audit(u32 ssid, u32 tsid,
528 u16 tclass, u32 requested,
529 struct av_decision *avd, int result, struct avc_audit_data *a)
530{
cd77b821 531 struct task_struct *tsk = current;
1da177e4
LT
532 struct inode *inode = NULL;
533 u32 denied, audited;
534 struct audit_buffer *ab;
535
536 denied = requested & ~avd->allowed;
537 if (denied) {
538 audited = denied;
539 if (!(audited & avd->auditdeny))
540 return;
541 } else if (result) {
542 audited = denied = requested;
543 } else {
544 audited = requested;
545 if (!(audited & avd->auditallow))
546 return;
547 }
548
9ad9ad38 549 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
1da177e4
LT
550 if (!ab)
551 return; /* audit_panic has been called */
552 audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
553 avc_dump_av(ab, tclass,audited);
554 audit_log_format(ab, " for ");
cd77b821
DW
555 if (a && a->tsk)
556 tsk = a->tsk;
7b5d781c 557 if (tsk && tsk->pid) {
cd77b821
DW
558 audit_log_format(ab, " pid=%d comm=", tsk->pid);
559 audit_log_untrustedstring(ab, tsk->comm);
560 }
1da177e4
LT
561 if (a) {
562 switch (a->type) {
563 case AVC_AUDIT_DATA_IPC:
564 audit_log_format(ab, " key=%d", a->u.ipc_id);
565 break;
566 case AVC_AUDIT_DATA_CAP:
567 audit_log_format(ab, " capability=%d", a->u.cap);
568 break;
569 case AVC_AUDIT_DATA_FS:
570 if (a->u.fs.dentry) {
571 struct dentry *dentry = a->u.fs.dentry;
01116105
SS
572 if (a->u.fs.mnt)
573 audit_avc_path(dentry, a->u.fs.mnt);
37ca5389
SS
574 audit_log_format(ab, " name=");
575 audit_log_untrustedstring(ab, dentry->d_name.name);
1da177e4
LT
576 inode = dentry->d_inode;
577 } else if (a->u.fs.inode) {
578 struct dentry *dentry;
579 inode = a->u.fs.inode;
580 dentry = d_find_alias(inode);
581 if (dentry) {
37ca5389
SS
582 audit_log_format(ab, " name=");
583 audit_log_untrustedstring(ab, dentry->d_name.name);
1da177e4
LT
584 dput(dentry);
585 }
586 }
587 if (inode)
588 audit_log_format(ab, " dev=%s ino=%ld",
589 inode->i_sb->s_id,
590 inode->i_ino);
591 break;
592 case AVC_AUDIT_DATA_NET:
593 if (a->u.net.sk) {
594 struct sock *sk = a->u.net.sk;
595 struct unix_sock *u;
596 int len = 0;
597 char *p = NULL;
598
599 switch (sk->sk_family) {
600 case AF_INET: {
601 struct inet_sock *inet = inet_sk(sk);
602
603 avc_print_ipv4_addr(ab, inet->rcv_saddr,
604 inet->sport,
605 "laddr", "lport");
606 avc_print_ipv4_addr(ab, inet->daddr,
607 inet->dport,
608 "faddr", "fport");
609 break;
610 }
611 case AF_INET6: {
612 struct inet_sock *inet = inet_sk(sk);
613 struct ipv6_pinfo *inet6 = inet6_sk(sk);
614
615 avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
616 inet->sport,
617 "laddr", "lport");
618 avc_print_ipv6_addr(ab, &inet6->daddr,
619 inet->dport,
620 "faddr", "fport");
621 break;
622 }
623 case AF_UNIX:
624 u = unix_sk(sk);
625 if (u->dentry) {
01116105 626 audit_avc_path(u->dentry, u->mnt);
37ca5389
SS
627 audit_log_format(ab, " name=");
628 audit_log_untrustedstring(ab, u->dentry->d_name.name);
1da177e4
LT
629 break;
630 }
631 if (!u->addr)
632 break;
633 len = u->addr->len-sizeof(short);
634 p = &u->addr->name->sun_path[0];
37ca5389 635 audit_log_format(ab, " path=");
1da177e4 636 if (*p)
37ca5389 637 audit_log_untrustedstring(ab, p);
1da177e4 638 else
37ca5389 639 audit_log_hex(ab, p, len);
1da177e4
LT
640 break;
641 }
642 }
643
644 switch (a->u.net.family) {
645 case AF_INET:
646 avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
647 a->u.net.sport,
648 "saddr", "src");
649 avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
650 a->u.net.dport,
651 "daddr", "dest");
652 break;
653 case AF_INET6:
654 avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
655 a->u.net.sport,
656 "saddr", "src");
657 avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
658 a->u.net.dport,
659 "daddr", "dest");
660 break;
661 }
662 if (a->u.net.netif)
663 audit_log_format(ab, " netif=%s",
664 a->u.net.netif);
665 break;
666 }
667 }
668 audit_log_format(ab, " ");
669 avc_dump_query(ab, ssid, tsid, tclass);
670 audit_log_end(ab);
671}
672
673/**
674 * avc_add_callback - Register a callback for security events.
675 * @callback: callback function
676 * @events: security events
677 * @ssid: source security identifier or %SECSID_WILD
678 * @tsid: target security identifier or %SECSID_WILD
679 * @tclass: target security class
680 * @perms: permissions
681 *
682 * Register a callback function for events in the set @events
683 * related to the SID pair (@ssid, @tsid) and
684 * and the permissions @perms, interpreting
685 * @perms based on @tclass. Returns %0 on success or
686 * -%ENOMEM if insufficient memory exists to add the callback.
687 */
688int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
689 u16 tclass, u32 perms,
690 u32 *out_retained),
691 u32 events, u32 ssid, u32 tsid,
692 u16 tclass, u32 perms)
693{
694 struct avc_callback_node *c;
695 int rc = 0;
696
697 c = kmalloc(sizeof(*c), GFP_ATOMIC);
698 if (!c) {
699 rc = -ENOMEM;
700 goto out;
701 }
702
703 c->callback = callback;
704 c->events = events;
705 c->ssid = ssid;
706 c->tsid = tsid;
707 c->perms = perms;
708 c->next = avc_callbacks;
709 avc_callbacks = c;
710out:
711 return rc;
712}
713
714static inline int avc_sidcmp(u32 x, u32 y)
715{
716 return (x == y || x == SECSID_WILD || y == SECSID_WILD);
717}
718
719/**
720 * avc_update_node Update an AVC entry
721 * @event : Updating event
722 * @perms : Permission mask bits
723 * @ssid,@tsid,@tclass : identifier of an AVC entry
724 *
725 * if a valid AVC entry doesn't exist,this function returns -ENOENT.
726 * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
727 * otherwise, this function update the AVC entry. The original AVC-entry object
728 * will release later by RCU.
729 */
730static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
731{
732 int hvalue, rc = 0;
733 unsigned long flag;
734 struct avc_node *pos, *node, *orig = NULL;
735
736 node = avc_alloc_node();
737 if (!node) {
738 rc = -ENOMEM;
739 goto out;
740 }
741
742 /* Lock the target slot */
743 hvalue = avc_hash(ssid, tsid, tclass);
744 spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
745
746 list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
747 if ( ssid==pos->ae.ssid &&
748 tsid==pos->ae.tsid &&
749 tclass==pos->ae.tclass ){
750 orig = pos;
751 break;
752 }
753 }
754
755 if (!orig) {
756 rc = -ENOENT;
757 avc_node_kill(node);
758 goto out_unlock;
759 }
760
761 /*
762 * Copy and replace original node.
763 */
764
765 avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
766
767 switch (event) {
768 case AVC_CALLBACK_GRANT:
769 node->ae.avd.allowed |= perms;
770 break;
771 case AVC_CALLBACK_TRY_REVOKE:
772 case AVC_CALLBACK_REVOKE:
773 node->ae.avd.allowed &= ~perms;
774 break;
775 case AVC_CALLBACK_AUDITALLOW_ENABLE:
776 node->ae.avd.auditallow |= perms;
777 break;
778 case AVC_CALLBACK_AUDITALLOW_DISABLE:
779 node->ae.avd.auditallow &= ~perms;
780 break;
781 case AVC_CALLBACK_AUDITDENY_ENABLE:
782 node->ae.avd.auditdeny |= perms;
783 break;
784 case AVC_CALLBACK_AUDITDENY_DISABLE:
785 node->ae.avd.auditdeny &= ~perms;
786 break;
787 }
788 avc_node_replace(node, orig);
789out_unlock:
790 spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
791out:
792 return rc;
793}
794
795/**
796 * avc_ss_reset - Flush the cache and revalidate migrated permissions.
797 * @seqno: policy sequence number
798 */
799int avc_ss_reset(u32 seqno)
800{
801 struct avc_callback_node *c;
376bd9cb 802 int i, rc = 0, tmprc;
1da177e4
LT
803 unsigned long flag;
804 struct avc_node *node;
805
806 for (i = 0; i < AVC_CACHE_SLOTS; i++) {
807 spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
808 list_for_each_entry(node, &avc_cache.slots[i], list)
809 avc_node_delete(node);
810 spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
811 }
812
813 for (c = avc_callbacks; c; c = c->next) {
814 if (c->events & AVC_CALLBACK_RESET) {
376bd9cb
DG
815 tmprc = c->callback(AVC_CALLBACK_RESET,
816 0, 0, 0, 0, NULL);
817 /* save the first error encountered for the return
818 value and continue processing the callbacks */
819 if (!rc)
820 rc = tmprc;
1da177e4
LT
821 }
822 }
823
824 avc_latest_notif_update(seqno, 0);
1da177e4
LT
825 return rc;
826}
827
828/**
829 * avc_has_perm_noaudit - Check permissions but perform no auditing.
830 * @ssid: source security identifier
831 * @tsid: target security identifier
832 * @tclass: target security class
833 * @requested: requested permissions, interpreted based on @tclass
834 * @avd: access vector decisions
835 *
836 * Check the AVC to determine whether the @requested permissions are granted
837 * for the SID pair (@ssid, @tsid), interpreting the permissions
838 * based on @tclass, and call the security server on a cache miss to obtain
839 * a new decision and add it to the cache. Return a copy of the decisions
840 * in @avd. Return %0 if all @requested permissions are granted,
841 * -%EACCES if any permissions are denied, or another -errno upon
842 * other errors. This function is typically called by avc_has_perm(),
843 * but may also be called directly to separate permission checking from
844 * auditing, e.g. in cases where a lock must be held for the check but
845 * should be released for the auditing.
846 */
847int avc_has_perm_noaudit(u32 ssid, u32 tsid,
848 u16 tclass, u32 requested,
849 struct av_decision *avd)
850{
851 struct avc_node *node;
852 struct avc_entry entry, *p_ae;
853 int rc = 0;
854 u32 denied;
855
856 rcu_read_lock();
857
858 node = avc_lookup(ssid, tsid, tclass, requested);
859 if (!node) {
860 rcu_read_unlock();
861 rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
862 if (rc)
863 goto out;
864 rcu_read_lock();
865 node = avc_insert(ssid,tsid,tclass,&entry);
866 }
867
868 p_ae = node ? &node->ae : &entry;
869
870 if (avd)
871 memcpy(avd, &p_ae->avd, sizeof(*avd));
872
873 denied = requested & ~(p_ae->avd.allowed);
874
875 if (!requested || denied) {
876 if (selinux_enforcing)
877 rc = -EACCES;
878 else
879 if (node)
880 avc_update_node(AVC_CALLBACK_GRANT,requested,
881 ssid,tsid,tclass);
882 }
883
884 rcu_read_unlock();
885out:
886 return rc;
887}
888
889/**
890 * avc_has_perm - Check permissions and perform any appropriate auditing.
891 * @ssid: source security identifier
892 * @tsid: target security identifier
893 * @tclass: target security class
894 * @requested: requested permissions, interpreted based on @tclass
895 * @auditdata: auxiliary audit data
896 *
897 * Check the AVC to determine whether the @requested permissions are granted
898 * for the SID pair (@ssid, @tsid), interpreting the permissions
899 * based on @tclass, and call the security server on a cache miss to obtain
900 * a new decision and add it to the cache. Audit the granting or denial of
901 * permissions in accordance with the policy. Return %0 if all @requested
902 * permissions are granted, -%EACCES if any permissions are denied, or
903 * another -errno upon other errors.
904 */
905int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
906 u32 requested, struct avc_audit_data *auditdata)
907{
908 struct av_decision avd;
909 int rc;
910
911 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
912 avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
913 return rc;
914}