[BNX2]: simplify parameter checks in bnx2_{get,set}_eeprom
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / sunrpc / svcsock.c
CommitLineData
1da177e4
LT
1/*
2 * linux/net/sunrpc/svcsock.c
3 *
4 * These are the RPC server socket internals.
5 *
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
9 *
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
18 *
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
20 */
21
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/net.h>
26#include <linux/in.h>
27#include <linux/inet.h>
28#include <linux/udp.h>
91483c4b 29#include <linux/tcp.h>
1da177e4
LT
30#include <linux/unistd.h>
31#include <linux/slab.h>
32#include <linux/netdevice.h>
33#include <linux/skbuff.h>
34#include <net/sock.h>
35#include <net/checksum.h>
36#include <net/ip.h>
c752f073 37#include <net/tcp_states.h>
1da177e4
LT
38#include <asm/uaccess.h>
39#include <asm/ioctls.h>
40
41#include <linux/sunrpc/types.h>
42#include <linux/sunrpc/xdr.h>
43#include <linux/sunrpc/svcsock.h>
44#include <linux/sunrpc/stats.h>
45
46/* SMP locking strategy:
47 *
48 * svc_serv->sv_lock protects most stuff for that service.
49 *
50 * Some flags can be set to certain values at any time
51 * providing that certain rules are followed:
52 *
53 * SK_BUSY can be set to 0 at any time.
54 * svc_sock_enqueue must be called afterwards
55 * SK_CONN, SK_DATA, can be set or cleared at any time.
56 * after a set, svc_sock_enqueue must be called.
57 * after a clear, the socket must be read/accepted
58 * if this succeeds, it must be set again.
59 * SK_CLOSE can set at any time. It is never cleared.
60 *
61 */
62
63#define RPCDBG_FACILITY RPCDBG_SVCSOCK
64
65
66static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
67 int *errp, int pmap_reg);
68static void svc_udp_data_ready(struct sock *, int);
69static int svc_udp_recvfrom(struct svc_rqst *);
70static int svc_udp_sendto(struct svc_rqst *);
71
72static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
73static int svc_deferred_recv(struct svc_rqst *rqstp);
74static struct cache_deferred_req *svc_defer(struct cache_req *req);
75
76/*
77 * Queue up an idle server thread. Must have serv->sv_lock held.
78 * Note: this is really a stack rather than a queue, so that we only
79 * use as many different threads as we need, and the rest don't polute
80 * the cache.
81 */
82static inline void
83svc_serv_enqueue(struct svc_serv *serv, struct svc_rqst *rqstp)
84{
85 list_add(&rqstp->rq_list, &serv->sv_threads);
86}
87
88/*
89 * Dequeue an nfsd thread. Must have serv->sv_lock held.
90 */
91static inline void
92svc_serv_dequeue(struct svc_serv *serv, struct svc_rqst *rqstp)
93{
94 list_del(&rqstp->rq_list);
95}
96
97/*
98 * Release an skbuff after use
99 */
100static inline void
101svc_release_skb(struct svc_rqst *rqstp)
102{
103 struct sk_buff *skb = rqstp->rq_skbuff;
104 struct svc_deferred_req *dr = rqstp->rq_deferred;
105
106 if (skb) {
107 rqstp->rq_skbuff = NULL;
108
109 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
110 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
111 }
112 if (dr) {
113 rqstp->rq_deferred = NULL;
114 kfree(dr);
115 }
116}
117
118/*
119 * Any space to write?
120 */
121static inline unsigned long
122svc_sock_wspace(struct svc_sock *svsk)
123{
124 int wspace;
125
126 if (svsk->sk_sock->type == SOCK_STREAM)
127 wspace = sk_stream_wspace(svsk->sk_sk);
128 else
129 wspace = sock_wspace(svsk->sk_sk);
130
131 return wspace;
132}
133
134/*
135 * Queue up a socket with data pending. If there are idle nfsd
136 * processes, wake 'em up.
137 *
138 */
139static void
140svc_sock_enqueue(struct svc_sock *svsk)
141{
142 struct svc_serv *serv = svsk->sk_server;
143 struct svc_rqst *rqstp;
144
145 if (!(svsk->sk_flags &
146 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
147 return;
148 if (test_bit(SK_DEAD, &svsk->sk_flags))
149 return;
150
151 spin_lock_bh(&serv->sv_lock);
152
153 if (!list_empty(&serv->sv_threads) &&
154 !list_empty(&serv->sv_sockets))
155 printk(KERN_ERR
156 "svc_sock_enqueue: threads and sockets both waiting??\n");
157
158 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
159 /* Don't enqueue dead sockets */
160 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
161 goto out_unlock;
162 }
163
164 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
165 /* Don't enqueue socket while daemon is receiving */
166 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
167 goto out_unlock;
168 }
169
170 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
171 if (((svsk->sk_reserved + serv->sv_bufsz)*2
172 > svc_sock_wspace(svsk))
173 && !test_bit(SK_CLOSE, &svsk->sk_flags)
174 && !test_bit(SK_CONN, &svsk->sk_flags)) {
175 /* Don't enqueue while not enough space for reply */
176 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
177 svsk->sk_sk, svsk->sk_reserved+serv->sv_bufsz,
178 svc_sock_wspace(svsk));
179 goto out_unlock;
180 }
181 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
182
183 /* Mark socket as busy. It will remain in this state until the
184 * server has processed all pending data and put the socket back
185 * on the idle list.
186 */
187 set_bit(SK_BUSY, &svsk->sk_flags);
188
189 if (!list_empty(&serv->sv_threads)) {
190 rqstp = list_entry(serv->sv_threads.next,
191 struct svc_rqst,
192 rq_list);
193 dprintk("svc: socket %p served by daemon %p\n",
194 svsk->sk_sk, rqstp);
195 svc_serv_dequeue(serv, rqstp);
196 if (rqstp->rq_sock)
197 printk(KERN_ERR
198 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
199 rqstp, rqstp->rq_sock);
200 rqstp->rq_sock = svsk;
201 svsk->sk_inuse++;
202 rqstp->rq_reserved = serv->sv_bufsz;
203 svsk->sk_reserved += rqstp->rq_reserved;
204 wake_up(&rqstp->rq_wait);
205 } else {
206 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
207 list_add_tail(&svsk->sk_ready, &serv->sv_sockets);
208 }
209
210out_unlock:
211 spin_unlock_bh(&serv->sv_lock);
212}
213
214/*
215 * Dequeue the first socket. Must be called with the serv->sv_lock held.
216 */
217static inline struct svc_sock *
218svc_sock_dequeue(struct svc_serv *serv)
219{
220 struct svc_sock *svsk;
221
222 if (list_empty(&serv->sv_sockets))
223 return NULL;
224
225 svsk = list_entry(serv->sv_sockets.next,
226 struct svc_sock, sk_ready);
227 list_del_init(&svsk->sk_ready);
228
229 dprintk("svc: socket %p dequeued, inuse=%d\n",
230 svsk->sk_sk, svsk->sk_inuse);
231
232 return svsk;
233}
234
235/*
236 * Having read something from a socket, check whether it
237 * needs to be re-enqueued.
238 * Note: SK_DATA only gets cleared when a read-attempt finds
239 * no (or insufficient) data.
240 */
241static inline void
242svc_sock_received(struct svc_sock *svsk)
243{
244 clear_bit(SK_BUSY, &svsk->sk_flags);
245 svc_sock_enqueue(svsk);
246}
247
248
249/**
250 * svc_reserve - change the space reserved for the reply to a request.
251 * @rqstp: The request in question
252 * @space: new max space to reserve
253 *
254 * Each request reserves some space on the output queue of the socket
255 * to make sure the reply fits. This function reduces that reserved
256 * space to be the amount of space used already, plus @space.
257 *
258 */
259void svc_reserve(struct svc_rqst *rqstp, int space)
260{
261 space += rqstp->rq_res.head[0].iov_len;
262
263 if (space < rqstp->rq_reserved) {
264 struct svc_sock *svsk = rqstp->rq_sock;
265 spin_lock_bh(&svsk->sk_server->sv_lock);
266 svsk->sk_reserved -= (rqstp->rq_reserved - space);
267 rqstp->rq_reserved = space;
268 spin_unlock_bh(&svsk->sk_server->sv_lock);
269
270 svc_sock_enqueue(svsk);
271 }
272}
273
274/*
275 * Release a socket after use.
276 */
277static inline void
278svc_sock_put(struct svc_sock *svsk)
279{
280 struct svc_serv *serv = svsk->sk_server;
281
282 spin_lock_bh(&serv->sv_lock);
283 if (!--(svsk->sk_inuse) && test_bit(SK_DEAD, &svsk->sk_flags)) {
284 spin_unlock_bh(&serv->sv_lock);
285 dprintk("svc: releasing dead socket\n");
286 sock_release(svsk->sk_sock);
287 kfree(svsk);
288 }
289 else
290 spin_unlock_bh(&serv->sv_lock);
291}
292
293static void
294svc_sock_release(struct svc_rqst *rqstp)
295{
296 struct svc_sock *svsk = rqstp->rq_sock;
297
298 svc_release_skb(rqstp);
299
300 svc_free_allpages(rqstp);
301 rqstp->rq_res.page_len = 0;
302 rqstp->rq_res.page_base = 0;
303
304
305 /* Reset response buffer and release
306 * the reservation.
307 * But first, check that enough space was reserved
308 * for the reply, otherwise we have a bug!
309 */
310 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
311 printk(KERN_ERR "RPC request reserved %d but used %d\n",
312 rqstp->rq_reserved,
313 rqstp->rq_res.len);
314
315 rqstp->rq_res.head[0].iov_len = 0;
316 svc_reserve(rqstp, 0);
317 rqstp->rq_sock = NULL;
318
319 svc_sock_put(svsk);
320}
321
322/*
323 * External function to wake up a server waiting for data
324 */
325void
326svc_wake_up(struct svc_serv *serv)
327{
328 struct svc_rqst *rqstp;
329
330 spin_lock_bh(&serv->sv_lock);
331 if (!list_empty(&serv->sv_threads)) {
332 rqstp = list_entry(serv->sv_threads.next,
333 struct svc_rqst,
334 rq_list);
335 dprintk("svc: daemon %p woken up.\n", rqstp);
336 /*
337 svc_serv_dequeue(serv, rqstp);
338 rqstp->rq_sock = NULL;
339 */
340 wake_up(&rqstp->rq_wait);
341 }
342 spin_unlock_bh(&serv->sv_lock);
343}
344
345/*
346 * Generic sendto routine
347 */
348static int
349svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
350{
351 struct svc_sock *svsk = rqstp->rq_sock;
352 struct socket *sock = svsk->sk_sock;
353 int slen;
354 char buffer[CMSG_SPACE(sizeof(struct in_pktinfo))];
355 struct cmsghdr *cmh = (struct cmsghdr *)buffer;
356 struct in_pktinfo *pki = (struct in_pktinfo *)CMSG_DATA(cmh);
357 int len = 0;
358 int result;
359 int size;
360 struct page **ppage = xdr->pages;
361 size_t base = xdr->page_base;
362 unsigned int pglen = xdr->page_len;
363 unsigned int flags = MSG_MORE;
364
365 slen = xdr->len;
366
367 if (rqstp->rq_prot == IPPROTO_UDP) {
368 /* set the source and destination */
369 struct msghdr msg;
370 msg.msg_name = &rqstp->rq_addr;
371 msg.msg_namelen = sizeof(rqstp->rq_addr);
372 msg.msg_iov = NULL;
373 msg.msg_iovlen = 0;
374 msg.msg_flags = MSG_MORE;
375
376 msg.msg_control = cmh;
377 msg.msg_controllen = sizeof(buffer);
378 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
379 cmh->cmsg_level = SOL_IP;
380 cmh->cmsg_type = IP_PKTINFO;
381 pki->ipi_ifindex = 0;
382 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr;
383
384 if (sock_sendmsg(sock, &msg, 0) < 0)
385 goto out;
386 }
387
388 /* send head */
389 if (slen == xdr->head[0].iov_len)
390 flags = 0;
391 len = sock->ops->sendpage(sock, rqstp->rq_respages[0], 0, xdr->head[0].iov_len, flags);
392 if (len != xdr->head[0].iov_len)
393 goto out;
394 slen -= xdr->head[0].iov_len;
395 if (slen == 0)
396 goto out;
397
398 /* send page data */
399 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
400 while (pglen > 0) {
401 if (slen == size)
402 flags = 0;
403 result = sock->ops->sendpage(sock, *ppage, base, size, flags);
404 if (result > 0)
405 len += result;
406 if (result != size)
407 goto out;
408 slen -= size;
409 pglen -= size;
410 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
411 base = 0;
412 ppage++;
413 }
414 /* send tail */
415 if (xdr->tail[0].iov_len) {
416 result = sock->ops->sendpage(sock, rqstp->rq_respages[rqstp->rq_restailpage],
417 ((unsigned long)xdr->tail[0].iov_base)& (PAGE_SIZE-1),
418 xdr->tail[0].iov_len, 0);
419
420 if (result > 0)
421 len += result;
422 }
423out:
424 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %x)\n",
425 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len, xdr->len, len,
426 rqstp->rq_addr.sin_addr.s_addr);
427
428 return len;
429}
430
431/*
432 * Check input queue length
433 */
434static int
435svc_recv_available(struct svc_sock *svsk)
436{
437 mm_segment_t oldfs;
438 struct socket *sock = svsk->sk_sock;
439 int avail, err;
440
441 oldfs = get_fs(); set_fs(KERNEL_DS);
442 err = sock->ops->ioctl(sock, TIOCINQ, (unsigned long) &avail);
443 set_fs(oldfs);
444
445 return (err >= 0)? avail : err;
446}
447
448/*
449 * Generic recvfrom routine.
450 */
451static int
452svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
453{
454 struct msghdr msg;
455 struct socket *sock;
456 int len, alen;
457
458 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
459 sock = rqstp->rq_sock->sk_sock;
460
461 msg.msg_name = &rqstp->rq_addr;
462 msg.msg_namelen = sizeof(rqstp->rq_addr);
463 msg.msg_control = NULL;
464 msg.msg_controllen = 0;
465
466 msg.msg_flags = MSG_DONTWAIT;
467
468 len = kernel_recvmsg(sock, &msg, iov, nr, buflen, MSG_DONTWAIT);
469
470 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
471 * possibly we should cache this in the svc_sock structure
472 * at accept time. FIXME
473 */
474 alen = sizeof(rqstp->rq_addr);
475 sock->ops->getname(sock, (struct sockaddr *)&rqstp->rq_addr, &alen, 1);
476
477 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
478 rqstp->rq_sock, iov[0].iov_base, iov[0].iov_len, len);
479
480 return len;
481}
482
483/*
484 * Set socket snd and rcv buffer lengths
485 */
486static inline void
487svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
488{
489#if 0
490 mm_segment_t oldfs;
491 oldfs = get_fs(); set_fs(KERNEL_DS);
492 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
493 (char*)&snd, sizeof(snd));
494 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
495 (char*)&rcv, sizeof(rcv));
496#else
497 /* sock_setsockopt limits use to sysctl_?mem_max,
498 * which isn't acceptable. Until that is made conditional
499 * on not having CAP_SYS_RESOURCE or similar, we go direct...
500 * DaveM said I could!
501 */
502 lock_sock(sock->sk);
503 sock->sk->sk_sndbuf = snd * 2;
504 sock->sk->sk_rcvbuf = rcv * 2;
505 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
506 release_sock(sock->sk);
507#endif
508}
509/*
510 * INET callback when data has been received on the socket.
511 */
512static void
513svc_udp_data_ready(struct sock *sk, int count)
514{
939bb7ef 515 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1da177e4 516
939bb7ef
NB
517 if (svsk) {
518 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
519 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
520 set_bit(SK_DATA, &svsk->sk_flags);
521 svc_sock_enqueue(svsk);
522 }
1da177e4
LT
523 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
524 wake_up_interruptible(sk->sk_sleep);
525}
526
527/*
528 * INET callback when space is newly available on the socket.
529 */
530static void
531svc_write_space(struct sock *sk)
532{
533 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
534
535 if (svsk) {
536 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
537 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
538 svc_sock_enqueue(svsk);
539 }
540
541 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
939bb7ef 542 dprintk("RPC svc_write_space: someone sleeping on %p\n",
1da177e4
LT
543 svsk);
544 wake_up_interruptible(sk->sk_sleep);
545 }
546}
547
548/*
549 * Receive a datagram from a UDP socket.
550 */
1da177e4
LT
551static int
552svc_udp_recvfrom(struct svc_rqst *rqstp)
553{
554 struct svc_sock *svsk = rqstp->rq_sock;
555 struct svc_serv *serv = svsk->sk_server;
556 struct sk_buff *skb;
557 int err, len;
558
559 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
560 /* udp sockets need large rcvbuf as all pending
561 * requests are still in that buffer. sndbuf must
562 * also be large enough that there is enough space
563 * for one reply per thread.
564 */
565 svc_sock_setbufsize(svsk->sk_sock,
566 (serv->sv_nrthreads+3) * serv->sv_bufsz,
567 (serv->sv_nrthreads+3) * serv->sv_bufsz);
568
569 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
570 svc_sock_received(svsk);
571 return svc_deferred_recv(rqstp);
572 }
573
574 clear_bit(SK_DATA, &svsk->sk_flags);
575 while ((skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
576 if (err == -EAGAIN) {
577 svc_sock_received(svsk);
578 return err;
579 }
580 /* possibly an icmp error */
581 dprintk("svc: recvfrom returned error %d\n", -err);
582 }
a61bbcf2
PM
583 if (skb->tstamp.off_sec == 0) {
584 struct timeval tv;
585
586 tv.tv_sec = xtime.tv_sec;
4bcde03d 587 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
a61bbcf2 588 skb_set_timestamp(skb, &tv);
1da177e4
LT
589 /* Don't enable netstamp, sunrpc doesn't
590 need that much accuracy */
591 }
a61bbcf2 592 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
1da177e4
LT
593 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
594
595 /*
596 * Maybe more packets - kick another thread ASAP.
597 */
598 svc_sock_received(svsk);
599
600 len = skb->len - sizeof(struct udphdr);
601 rqstp->rq_arg.len = len;
602
603 rqstp->rq_prot = IPPROTO_UDP;
604
605 /* Get sender address */
606 rqstp->rq_addr.sin_family = AF_INET;
607 rqstp->rq_addr.sin_port = skb->h.uh->source;
608 rqstp->rq_addr.sin_addr.s_addr = skb->nh.iph->saddr;
609 rqstp->rq_daddr = skb->nh.iph->daddr;
610
611 if (skb_is_nonlinear(skb)) {
612 /* we have to copy */
613 local_bh_disable();
614 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
615 local_bh_enable();
616 /* checksum error */
617 skb_free_datagram(svsk->sk_sk, skb);
618 return 0;
619 }
620 local_bh_enable();
621 skb_free_datagram(svsk->sk_sk, skb);
622 } else {
623 /* we can use it in-place */
624 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
625 rqstp->rq_arg.head[0].iov_len = len;
626 if (skb->ip_summed != CHECKSUM_UNNECESSARY) {
627 if ((unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum))) {
628 skb_free_datagram(svsk->sk_sk, skb);
629 return 0;
630 }
631 skb->ip_summed = CHECKSUM_UNNECESSARY;
632 }
633 rqstp->rq_skbuff = skb;
634 }
635
636 rqstp->rq_arg.page_base = 0;
637 if (len <= rqstp->rq_arg.head[0].iov_len) {
638 rqstp->rq_arg.head[0].iov_len = len;
639 rqstp->rq_arg.page_len = 0;
640 } else {
641 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
642 rqstp->rq_argused += (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
643 }
644
645 if (serv->sv_stats)
646 serv->sv_stats->netudpcnt++;
647
648 return len;
649}
650
651static int
652svc_udp_sendto(struct svc_rqst *rqstp)
653{
654 int error;
655
656 error = svc_sendto(rqstp, &rqstp->rq_res);
657 if (error == -ECONNREFUSED)
658 /* ICMP error on earlier request. */
659 error = svc_sendto(rqstp, &rqstp->rq_res);
660
661 return error;
662}
663
664static void
665svc_udp_init(struct svc_sock *svsk)
666{
667 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
668 svsk->sk_sk->sk_write_space = svc_write_space;
669 svsk->sk_recvfrom = svc_udp_recvfrom;
670 svsk->sk_sendto = svc_udp_sendto;
671
672 /* initialise setting must have enough space to
673 * receive and respond to one request.
674 * svc_udp_recvfrom will re-adjust if necessary
675 */
676 svc_sock_setbufsize(svsk->sk_sock,
677 3 * svsk->sk_server->sv_bufsz,
678 3 * svsk->sk_server->sv_bufsz);
679
680 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
681 set_bit(SK_CHNGBUF, &svsk->sk_flags);
682}
683
684/*
685 * A data_ready event on a listening socket means there's a connection
686 * pending. Do not use state_change as a substitute for it.
687 */
688static void
689svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
690{
939bb7ef 691 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1da177e4
LT
692
693 dprintk("svc: socket %p TCP (listen) state change %d\n",
939bb7ef 694 sk, sk->sk_state);
1da177e4 695
939bb7ef
NB
696 /*
697 * This callback may called twice when a new connection
698 * is established as a child socket inherits everything
699 * from a parent LISTEN socket.
700 * 1) data_ready method of the parent socket will be called
701 * when one of child sockets become ESTABLISHED.
702 * 2) data_ready method of the child socket may be called
703 * when it receives data before the socket is accepted.
704 * In case of 2, we should ignore it silently.
705 */
706 if (sk->sk_state == TCP_LISTEN) {
707 if (svsk) {
708 set_bit(SK_CONN, &svsk->sk_flags);
709 svc_sock_enqueue(svsk);
710 } else
711 printk("svc: socket %p: no user data\n", sk);
1da177e4 712 }
939bb7ef 713
1da177e4
LT
714 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
715 wake_up_interruptible_all(sk->sk_sleep);
716}
717
718/*
719 * A state change on a connected socket means it's dying or dead.
720 */
721static void
722svc_tcp_state_change(struct sock *sk)
723{
939bb7ef 724 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1da177e4
LT
725
726 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
939bb7ef 727 sk, sk->sk_state, sk->sk_user_data);
1da177e4 728
939bb7ef 729 if (!svsk)
1da177e4 730 printk("svc: socket %p: no user data\n", sk);
939bb7ef
NB
731 else {
732 set_bit(SK_CLOSE, &svsk->sk_flags);
733 svc_sock_enqueue(svsk);
1da177e4 734 }
1da177e4
LT
735 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
736 wake_up_interruptible_all(sk->sk_sleep);
737}
738
739static void
740svc_tcp_data_ready(struct sock *sk, int count)
741{
939bb7ef 742 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
1da177e4
LT
743
744 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
939bb7ef
NB
745 sk, sk->sk_user_data);
746 if (svsk) {
747 set_bit(SK_DATA, &svsk->sk_flags);
748 svc_sock_enqueue(svsk);
749 }
1da177e4
LT
750 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
751 wake_up_interruptible(sk->sk_sleep);
752}
753
754/*
755 * Accept a TCP connection
756 */
757static void
758svc_tcp_accept(struct svc_sock *svsk)
759{
760 struct sockaddr_in sin;
761 struct svc_serv *serv = svsk->sk_server;
762 struct socket *sock = svsk->sk_sock;
763 struct socket *newsock;
764 struct proto_ops *ops;
765 struct svc_sock *newsvsk;
766 int err, slen;
767
768 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
769 if (!sock)
770 return;
771
772 err = sock_create_lite(PF_INET, SOCK_STREAM, IPPROTO_TCP, &newsock);
773 if (err) {
774 if (err == -ENOMEM)
775 printk(KERN_WARNING "%s: no more sockets!\n",
776 serv->sv_name);
777 return;
778 }
779
780 dprintk("svc: tcp_accept %p allocated\n", newsock);
781 newsock->ops = ops = sock->ops;
782
783 clear_bit(SK_CONN, &svsk->sk_flags);
784 if ((err = ops->accept(sock, newsock, O_NONBLOCK)) < 0) {
785 if (err != -EAGAIN && net_ratelimit())
786 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
787 serv->sv_name, -err);
788 goto failed; /* aborted connection or whatever */
789 }
790 set_bit(SK_CONN, &svsk->sk_flags);
791 svc_sock_enqueue(svsk);
792
793 slen = sizeof(sin);
794 err = ops->getname(newsock, (struct sockaddr *) &sin, &slen, 1);
795 if (err < 0) {
796 if (net_ratelimit())
797 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
798 serv->sv_name, -err);
799 goto failed; /* aborted connection or whatever */
800 }
801
802 /* Ideally, we would want to reject connections from unauthorized
803 * hosts here, but when we get encription, the IP of the host won't
804 * tell us anything. For now just warn about unpriv connections.
805 */
806 if (ntohs(sin.sin_port) >= 1024) {
807 dprintk(KERN_WARNING
808 "%s: connect from unprivileged port: %u.%u.%u.%u:%d\n",
809 serv->sv_name,
810 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
811 }
812
813 dprintk("%s: connect from %u.%u.%u.%u:%04x\n", serv->sv_name,
814 NIPQUAD(sin.sin_addr.s_addr), ntohs(sin.sin_port));
815
816 /* make sure that a write doesn't block forever when
817 * low on memory
818 */
819 newsock->sk->sk_sndtimeo = HZ*30;
820
821 if (!(newsvsk = svc_setup_socket(serv, newsock, &err, 0)))
822 goto failed;
823
824
825 /* make sure that we don't have too many active connections.
826 * If we have, something must be dropped.
827 *
828 * There's no point in trying to do random drop here for
829 * DoS prevention. The NFS clients does 1 reconnect in 15
830 * seconds. An attacker can easily beat that.
831 *
832 * The only somewhat efficient mechanism would be if drop
833 * old connections from the same IP first. But right now
834 * we don't even record the client IP in svc_sock.
835 */
836 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
837 struct svc_sock *svsk = NULL;
838 spin_lock_bh(&serv->sv_lock);
839 if (!list_empty(&serv->sv_tempsocks)) {
840 if (net_ratelimit()) {
841 /* Try to help the admin */
842 printk(KERN_NOTICE "%s: too many open TCP "
843 "sockets, consider increasing the "
844 "number of nfsd threads\n",
845 serv->sv_name);
846 printk(KERN_NOTICE "%s: last TCP connect from "
847 "%u.%u.%u.%u:%d\n",
848 serv->sv_name,
849 NIPQUAD(sin.sin_addr.s_addr),
850 ntohs(sin.sin_port));
851 }
852 /*
853 * Always select the oldest socket. It's not fair,
854 * but so is life
855 */
856 svsk = list_entry(serv->sv_tempsocks.prev,
857 struct svc_sock,
858 sk_list);
859 set_bit(SK_CLOSE, &svsk->sk_flags);
860 svsk->sk_inuse ++;
861 }
862 spin_unlock_bh(&serv->sv_lock);
863
864 if (svsk) {
865 svc_sock_enqueue(svsk);
866 svc_sock_put(svsk);
867 }
868
869 }
870
871 if (serv->sv_stats)
872 serv->sv_stats->nettcpconn++;
873
874 return;
875
876failed:
877 sock_release(newsock);
878 return;
879}
880
881/*
882 * Receive data from a TCP socket.
883 */
884static int
885svc_tcp_recvfrom(struct svc_rqst *rqstp)
886{
887 struct svc_sock *svsk = rqstp->rq_sock;
888 struct svc_serv *serv = svsk->sk_server;
889 int len;
890 struct kvec vec[RPCSVC_MAXPAGES];
891 int pnum, vlen;
892
893 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
894 svsk, test_bit(SK_DATA, &svsk->sk_flags),
895 test_bit(SK_CONN, &svsk->sk_flags),
896 test_bit(SK_CLOSE, &svsk->sk_flags));
897
898 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
899 svc_sock_received(svsk);
900 return svc_deferred_recv(rqstp);
901 }
902
903 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
904 svc_delete_socket(svsk);
905 return 0;
906 }
907
908 if (test_bit(SK_CONN, &svsk->sk_flags)) {
909 svc_tcp_accept(svsk);
910 svc_sock_received(svsk);
911 return 0;
912 }
913
914 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
915 /* sndbuf needs to have room for one request
916 * per thread, otherwise we can stall even when the
917 * network isn't a bottleneck.
918 * rcvbuf just needs to be able to hold a few requests.
919 * Normally they will be removed from the queue
920 * as soon a a complete request arrives.
921 */
922 svc_sock_setbufsize(svsk->sk_sock,
923 (serv->sv_nrthreads+3) * serv->sv_bufsz,
924 3 * serv->sv_bufsz);
925
926 clear_bit(SK_DATA, &svsk->sk_flags);
927
928 /* Receive data. If we haven't got the record length yet, get
929 * the next four bytes. Otherwise try to gobble up as much as
930 * possible up to the complete record length.
931 */
932 if (svsk->sk_tcplen < 4) {
933 unsigned long want = 4 - svsk->sk_tcplen;
934 struct kvec iov;
935
936 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
937 iov.iov_len = want;
938 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
939 goto error;
940 svsk->sk_tcplen += len;
941
942 if (len < want) {
943 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
944 len, want);
945 svc_sock_received(svsk);
946 return -EAGAIN; /* record header not complete */
947 }
948
949 svsk->sk_reclen = ntohl(svsk->sk_reclen);
950 if (!(svsk->sk_reclen & 0x80000000)) {
951 /* FIXME: technically, a record can be fragmented,
952 * and non-terminal fragments will not have the top
953 * bit set in the fragment length header.
954 * But apparently no known nfs clients send fragmented
955 * records. */
956 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (non-terminal)\n",
957 (unsigned long) svsk->sk_reclen);
958 goto err_delete;
959 }
960 svsk->sk_reclen &= 0x7fffffff;
961 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
962 if (svsk->sk_reclen > serv->sv_bufsz) {
963 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx (large)\n",
964 (unsigned long) svsk->sk_reclen);
965 goto err_delete;
966 }
967 }
968
969 /* Check whether enough data is available */
970 len = svc_recv_available(svsk);
971 if (len < 0)
972 goto error;
973
974 if (len < svsk->sk_reclen) {
975 dprintk("svc: incomplete TCP record (%d of %d)\n",
976 len, svsk->sk_reclen);
977 svc_sock_received(svsk);
978 return -EAGAIN; /* record not complete */
979 }
980 len = svsk->sk_reclen;
981 set_bit(SK_DATA, &svsk->sk_flags);
982
983 vec[0] = rqstp->rq_arg.head[0];
984 vlen = PAGE_SIZE;
985 pnum = 1;
986 while (vlen < len) {
987 vec[pnum].iov_base = page_address(rqstp->rq_argpages[rqstp->rq_argused++]);
988 vec[pnum].iov_len = PAGE_SIZE;
989 pnum++;
990 vlen += PAGE_SIZE;
991 }
992
993 /* Now receive data */
994 len = svc_recvfrom(rqstp, vec, pnum, len);
995 if (len < 0)
996 goto error;
997
998 dprintk("svc: TCP complete record (%d bytes)\n", len);
999 rqstp->rq_arg.len = len;
1000 rqstp->rq_arg.page_base = 0;
1001 if (len <= rqstp->rq_arg.head[0].iov_len) {
1002 rqstp->rq_arg.head[0].iov_len = len;
1003 rqstp->rq_arg.page_len = 0;
1004 } else {
1005 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1006 }
1007
1008 rqstp->rq_skbuff = NULL;
1009 rqstp->rq_prot = IPPROTO_TCP;
1010
1011 /* Reset TCP read info */
1012 svsk->sk_reclen = 0;
1013 svsk->sk_tcplen = 0;
1014
1015 svc_sock_received(svsk);
1016 if (serv->sv_stats)
1017 serv->sv_stats->nettcpcnt++;
1018
1019 return len;
1020
1021 err_delete:
1022 svc_delete_socket(svsk);
1023 return -EAGAIN;
1024
1025 error:
1026 if (len == -EAGAIN) {
1027 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1028 svc_sock_received(svsk);
1029 } else {
1030 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1031 svsk->sk_server->sv_name, -len);
1032 svc_sock_received(svsk);
1033 }
1034
1035 return len;
1036}
1037
1038/*
1039 * Send out data on TCP socket.
1040 */
1041static int
1042svc_tcp_sendto(struct svc_rqst *rqstp)
1043{
1044 struct xdr_buf *xbufp = &rqstp->rq_res;
1045 int sent;
1046 u32 reclen;
1047
1048 /* Set up the first element of the reply kvec.
1049 * Any other kvecs that may be in use have been taken
1050 * care of by the server implementation itself.
1051 */
1052 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1053 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1054
1055 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1056 return -ENOTCONN;
1057
1058 sent = svc_sendto(rqstp, &rqstp->rq_res);
1059 if (sent != xbufp->len) {
1060 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1061 rqstp->rq_sock->sk_server->sv_name,
1062 (sent<0)?"got error":"sent only",
1063 sent, xbufp->len);
1064 svc_delete_socket(rqstp->rq_sock);
1065 sent = -EAGAIN;
1066 }
1067 return sent;
1068}
1069
1070static void
1071svc_tcp_init(struct svc_sock *svsk)
1072{
1073 struct sock *sk = svsk->sk_sk;
1074 struct tcp_sock *tp = tcp_sk(sk);
1075
1076 svsk->sk_recvfrom = svc_tcp_recvfrom;
1077 svsk->sk_sendto = svc_tcp_sendto;
1078
1079 if (sk->sk_state == TCP_LISTEN) {
1080 dprintk("setting up TCP socket for listening\n");
1081 sk->sk_data_ready = svc_tcp_listen_data_ready;
1082 set_bit(SK_CONN, &svsk->sk_flags);
1083 } else {
1084 dprintk("setting up TCP socket for reading\n");
1085 sk->sk_state_change = svc_tcp_state_change;
1086 sk->sk_data_ready = svc_tcp_data_ready;
1087 sk->sk_write_space = svc_write_space;
1088
1089 svsk->sk_reclen = 0;
1090 svsk->sk_tcplen = 0;
1091
1092 tp->nonagle = 1; /* disable Nagle's algorithm */
1093
1094 /* initialise setting must have enough space to
1095 * receive and respond to one request.
1096 * svc_tcp_recvfrom will re-adjust if necessary
1097 */
1098 svc_sock_setbufsize(svsk->sk_sock,
1099 3 * svsk->sk_server->sv_bufsz,
1100 3 * svsk->sk_server->sv_bufsz);
1101
1102 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1103 set_bit(SK_DATA, &svsk->sk_flags);
1104 if (sk->sk_state != TCP_ESTABLISHED)
1105 set_bit(SK_CLOSE, &svsk->sk_flags);
1106 }
1107}
1108
1109void
1110svc_sock_update_bufs(struct svc_serv *serv)
1111{
1112 /*
1113 * The number of server threads has changed. Update
1114 * rcvbuf and sndbuf accordingly on all sockets
1115 */
1116 struct list_head *le;
1117
1118 spin_lock_bh(&serv->sv_lock);
1119 list_for_each(le, &serv->sv_permsocks) {
1120 struct svc_sock *svsk =
1121 list_entry(le, struct svc_sock, sk_list);
1122 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1123 }
1124 list_for_each(le, &serv->sv_tempsocks) {
1125 struct svc_sock *svsk =
1126 list_entry(le, struct svc_sock, sk_list);
1127 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1128 }
1129 spin_unlock_bh(&serv->sv_lock);
1130}
1131
1132/*
1133 * Receive the next request on any socket.
1134 */
1135int
1136svc_recv(struct svc_serv *serv, struct svc_rqst *rqstp, long timeout)
1137{
1138 struct svc_sock *svsk =NULL;
1139 int len;
1140 int pages;
1141 struct xdr_buf *arg;
1142 DECLARE_WAITQUEUE(wait, current);
1143
1144 dprintk("svc: server %p waiting for data (to = %ld)\n",
1145 rqstp, timeout);
1146
1147 if (rqstp->rq_sock)
1148 printk(KERN_ERR
1149 "svc_recv: service %p, socket not NULL!\n",
1150 rqstp);
1151 if (waitqueue_active(&rqstp->rq_wait))
1152 printk(KERN_ERR
1153 "svc_recv: service %p, wait queue active!\n",
1154 rqstp);
1155
1156 /* Initialize the buffers */
1157 /* first reclaim pages that were moved to response list */
1158 svc_pushback_allpages(rqstp);
1159
1160 /* now allocate needed pages. If we get a failure, sleep briefly */
1161 pages = 2 + (serv->sv_bufsz + PAGE_SIZE -1) / PAGE_SIZE;
1162 while (rqstp->rq_arghi < pages) {
1163 struct page *p = alloc_page(GFP_KERNEL);
1164 if (!p) {
121caf57 1165 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1da177e4
LT
1166 continue;
1167 }
1168 rqstp->rq_argpages[rqstp->rq_arghi++] = p;
1169 }
1170
1171 /* Make arg->head point to first page and arg->pages point to rest */
1172 arg = &rqstp->rq_arg;
1173 arg->head[0].iov_base = page_address(rqstp->rq_argpages[0]);
1174 arg->head[0].iov_len = PAGE_SIZE;
1175 rqstp->rq_argused = 1;
1176 arg->pages = rqstp->rq_argpages + 1;
1177 arg->page_base = 0;
1178 /* save at least one page for response */
1179 arg->page_len = (pages-2)*PAGE_SIZE;
1180 arg->len = (pages-1)*PAGE_SIZE;
1181 arg->tail[0].iov_len = 0;
3e1d1d28
CL
1182
1183 try_to_freeze();
1da177e4
LT
1184 if (signalled())
1185 return -EINTR;
1186
1187 spin_lock_bh(&serv->sv_lock);
1188 if (!list_empty(&serv->sv_tempsocks)) {
1189 svsk = list_entry(serv->sv_tempsocks.next,
1190 struct svc_sock, sk_list);
1191 /* apparently the "standard" is that clients close
1192 * idle connections after 5 minutes, servers after
1193 * 6 minutes
1194 * http://www.connectathon.org/talks96/nfstcp.pdf
1195 */
1196 if (get_seconds() - svsk->sk_lastrecv < 6*60
1197 || test_bit(SK_BUSY, &svsk->sk_flags))
1198 svsk = NULL;
1199 }
1200 if (svsk) {
1201 set_bit(SK_BUSY, &svsk->sk_flags);
1202 set_bit(SK_CLOSE, &svsk->sk_flags);
1203 rqstp->rq_sock = svsk;
1204 svsk->sk_inuse++;
1205 } else if ((svsk = svc_sock_dequeue(serv)) != NULL) {
1206 rqstp->rq_sock = svsk;
1207 svsk->sk_inuse++;
1208 rqstp->rq_reserved = serv->sv_bufsz;
1209 svsk->sk_reserved += rqstp->rq_reserved;
1210 } else {
1211 /* No data pending. Go to sleep */
1212 svc_serv_enqueue(serv, rqstp);
1213
1214 /*
1215 * We have to be able to interrupt this wait
1216 * to bring down the daemons ...
1217 */
1218 set_current_state(TASK_INTERRUPTIBLE);
1219 add_wait_queue(&rqstp->rq_wait, &wait);
1220 spin_unlock_bh(&serv->sv_lock);
1221
1222 schedule_timeout(timeout);
1223
3e1d1d28 1224 try_to_freeze();
1da177e4
LT
1225
1226 spin_lock_bh(&serv->sv_lock);
1227 remove_wait_queue(&rqstp->rq_wait, &wait);
1228
1229 if (!(svsk = rqstp->rq_sock)) {
1230 svc_serv_dequeue(serv, rqstp);
1231 spin_unlock_bh(&serv->sv_lock);
1232 dprintk("svc: server %p, no data yet\n", rqstp);
1233 return signalled()? -EINTR : -EAGAIN;
1234 }
1235 }
1236 spin_unlock_bh(&serv->sv_lock);
1237
1238 dprintk("svc: server %p, socket %p, inuse=%d\n",
1239 rqstp, svsk, svsk->sk_inuse);
1240 len = svsk->sk_recvfrom(rqstp);
1241 dprintk("svc: got len=%d\n", len);
1242
1243 /* No data, incomplete (TCP) read, or accept() */
1244 if (len == 0 || len == -EAGAIN) {
1245 rqstp->rq_res.len = 0;
1246 svc_sock_release(rqstp);
1247 return -EAGAIN;
1248 }
1249 svsk->sk_lastrecv = get_seconds();
1250 if (test_bit(SK_TEMP, &svsk->sk_flags)) {
1251 /* push active sockets to end of list */
1252 spin_lock_bh(&serv->sv_lock);
1253 if (!list_empty(&svsk->sk_list))
1254 list_move_tail(&svsk->sk_list, &serv->sv_tempsocks);
1255 spin_unlock_bh(&serv->sv_lock);
1256 }
1257
1258 rqstp->rq_secure = ntohs(rqstp->rq_addr.sin_port) < 1024;
1259 rqstp->rq_chandle.defer = svc_defer;
1260
1261 if (serv->sv_stats)
1262 serv->sv_stats->netcnt++;
1263 return len;
1264}
1265
1266/*
1267 * Drop request
1268 */
1269void
1270svc_drop(struct svc_rqst *rqstp)
1271{
1272 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1273 svc_sock_release(rqstp);
1274}
1275
1276/*
1277 * Return reply to client.
1278 */
1279int
1280svc_send(struct svc_rqst *rqstp)
1281{
1282 struct svc_sock *svsk;
1283 int len;
1284 struct xdr_buf *xb;
1285
1286 if ((svsk = rqstp->rq_sock) == NULL) {
1287 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1288 __FILE__, __LINE__);
1289 return -EFAULT;
1290 }
1291
1292 /* release the receive skb before sending the reply */
1293 svc_release_skb(rqstp);
1294
1295 /* calculate over-all length */
1296 xb = & rqstp->rq_res;
1297 xb->len = xb->head[0].iov_len +
1298 xb->page_len +
1299 xb->tail[0].iov_len;
1300
1301 /* Grab svsk->sk_sem to serialize outgoing data. */
1302 down(&svsk->sk_sem);
1303 if (test_bit(SK_DEAD, &svsk->sk_flags))
1304 len = -ENOTCONN;
1305 else
1306 len = svsk->sk_sendto(rqstp);
1307 up(&svsk->sk_sem);
1308 svc_sock_release(rqstp);
1309
1310 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1311 return 0;
1312 return len;
1313}
1314
1315/*
1316 * Initialize socket for RPC use and create svc_sock struct
1317 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1318 */
1319static struct svc_sock *
1320svc_setup_socket(struct svc_serv *serv, struct socket *sock,
1321 int *errp, int pmap_register)
1322{
1323 struct svc_sock *svsk;
1324 struct sock *inet;
1325
1326 dprintk("svc: svc_setup_socket %p\n", sock);
1327 if (!(svsk = kmalloc(sizeof(*svsk), GFP_KERNEL))) {
1328 *errp = -ENOMEM;
1329 return NULL;
1330 }
1331 memset(svsk, 0, sizeof(*svsk));
1332
1333 inet = sock->sk;
1334
1335 /* Register socket with portmapper */
1336 if (*errp >= 0 && pmap_register)
1337 *errp = svc_register(serv, inet->sk_protocol,
1338 ntohs(inet_sk(inet)->sport));
1339
1340 if (*errp < 0) {
1341 kfree(svsk);
1342 return NULL;
1343 }
1344
1345 set_bit(SK_BUSY, &svsk->sk_flags);
1346 inet->sk_user_data = svsk;
1347 svsk->sk_sock = sock;
1348 svsk->sk_sk = inet;
1349 svsk->sk_ostate = inet->sk_state_change;
1350 svsk->sk_odata = inet->sk_data_ready;
1351 svsk->sk_owspace = inet->sk_write_space;
1352 svsk->sk_server = serv;
1353 svsk->sk_lastrecv = get_seconds();
1354 INIT_LIST_HEAD(&svsk->sk_deferred);
1355 INIT_LIST_HEAD(&svsk->sk_ready);
1356 sema_init(&svsk->sk_sem, 1);
1357
1358 /* Initialize the socket */
1359 if (sock->type == SOCK_DGRAM)
1360 svc_udp_init(svsk);
1361 else
1362 svc_tcp_init(svsk);
1363
1364 spin_lock_bh(&serv->sv_lock);
1365 if (!pmap_register) {
1366 set_bit(SK_TEMP, &svsk->sk_flags);
1367 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1368 serv->sv_tmpcnt++;
1369 } else {
1370 clear_bit(SK_TEMP, &svsk->sk_flags);
1371 list_add(&svsk->sk_list, &serv->sv_permsocks);
1372 }
1373 spin_unlock_bh(&serv->sv_lock);
1374
1375 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1376 svsk, svsk->sk_sk);
1377
1378 clear_bit(SK_BUSY, &svsk->sk_flags);
1379 svc_sock_enqueue(svsk);
1380 return svsk;
1381}
1382
1383/*
1384 * Create socket for RPC service.
1385 */
1386static int
1387svc_create_socket(struct svc_serv *serv, int protocol, struct sockaddr_in *sin)
1388{
1389 struct svc_sock *svsk;
1390 struct socket *sock;
1391 int error;
1392 int type;
1393
1394 dprintk("svc: svc_create_socket(%s, %d, %u.%u.%u.%u:%d)\n",
1395 serv->sv_program->pg_name, protocol,
1396 NIPQUAD(sin->sin_addr.s_addr),
1397 ntohs(sin->sin_port));
1398
1399 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1400 printk(KERN_WARNING "svc: only UDP and TCP "
1401 "sockets supported\n");
1402 return -EINVAL;
1403 }
1404 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1405
1406 if ((error = sock_create_kern(PF_INET, type, protocol, &sock)) < 0)
1407 return error;
1408
1409 if (sin != NULL) {
1410 if (type == SOCK_STREAM)
1411 sock->sk->sk_reuse = 1; /* allow address reuse */
1412 error = sock->ops->bind(sock, (struct sockaddr *) sin,
1413 sizeof(*sin));
1414 if (error < 0)
1415 goto bummer;
1416 }
1417
1418 if (protocol == IPPROTO_TCP) {
1419 if ((error = sock->ops->listen(sock, 64)) < 0)
1420 goto bummer;
1421 }
1422
1423 if ((svsk = svc_setup_socket(serv, sock, &error, 1)) != NULL)
1424 return 0;
1425
1426bummer:
1427 dprintk("svc: svc_create_socket error = %d\n", -error);
1428 sock_release(sock);
1429 return error;
1430}
1431
1432/*
1433 * Remove a dead socket
1434 */
1435void
1436svc_delete_socket(struct svc_sock *svsk)
1437{
1438 struct svc_serv *serv;
1439 struct sock *sk;
1440
1441 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1442
1443 serv = svsk->sk_server;
1444 sk = svsk->sk_sk;
1445
1446 sk->sk_state_change = svsk->sk_ostate;
1447 sk->sk_data_ready = svsk->sk_odata;
1448 sk->sk_write_space = svsk->sk_owspace;
1449
1450 spin_lock_bh(&serv->sv_lock);
1451
1452 list_del_init(&svsk->sk_list);
1453 list_del_init(&svsk->sk_ready);
1454 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags))
1455 if (test_bit(SK_TEMP, &svsk->sk_flags))
1456 serv->sv_tmpcnt--;
1457
1458 if (!svsk->sk_inuse) {
1459 spin_unlock_bh(&serv->sv_lock);
1460 sock_release(svsk->sk_sock);
1461 kfree(svsk);
1462 } else {
1463 spin_unlock_bh(&serv->sv_lock);
1464 dprintk(KERN_NOTICE "svc: server socket destroy delayed\n");
1465 /* svsk->sk_server = NULL; */
1466 }
1467}
1468
1469/*
1470 * Make a socket for nfsd and lockd
1471 */
1472int
1473svc_makesock(struct svc_serv *serv, int protocol, unsigned short port)
1474{
1475 struct sockaddr_in sin;
1476
1477 dprintk("svc: creating socket proto = %d\n", protocol);
1478 sin.sin_family = AF_INET;
1479 sin.sin_addr.s_addr = INADDR_ANY;
1480 sin.sin_port = htons(port);
1481 return svc_create_socket(serv, protocol, &sin);
1482}
1483
1484/*
1485 * Handle defer and revisit of requests
1486 */
1487
1488static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1489{
1490 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1491 struct svc_serv *serv = dreq->owner;
1492 struct svc_sock *svsk;
1493
1494 if (too_many) {
1495 svc_sock_put(dr->svsk);
1496 kfree(dr);
1497 return;
1498 }
1499 dprintk("revisit queued\n");
1500 svsk = dr->svsk;
1501 dr->svsk = NULL;
1502 spin_lock_bh(&serv->sv_lock);
1503 list_add(&dr->handle.recent, &svsk->sk_deferred);
1504 spin_unlock_bh(&serv->sv_lock);
1505 set_bit(SK_DEFERRED, &svsk->sk_flags);
1506 svc_sock_enqueue(svsk);
1507 svc_sock_put(svsk);
1508}
1509
1510static struct cache_deferred_req *
1511svc_defer(struct cache_req *req)
1512{
1513 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1514 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1515 struct svc_deferred_req *dr;
1516
1517 if (rqstp->rq_arg.page_len)
1518 return NULL; /* if more than a page, give up FIXME */
1519 if (rqstp->rq_deferred) {
1520 dr = rqstp->rq_deferred;
1521 rqstp->rq_deferred = NULL;
1522 } else {
1523 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1524 /* FIXME maybe discard if size too large */
1525 dr = kmalloc(size, GFP_KERNEL);
1526 if (dr == NULL)
1527 return NULL;
1528
1529 dr->handle.owner = rqstp->rq_server;
1530 dr->prot = rqstp->rq_prot;
1531 dr->addr = rqstp->rq_addr;
1532 dr->argslen = rqstp->rq_arg.len >> 2;
1533 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1534 }
1535 spin_lock_bh(&rqstp->rq_server->sv_lock);
1536 rqstp->rq_sock->sk_inuse++;
1537 dr->svsk = rqstp->rq_sock;
1538 spin_unlock_bh(&rqstp->rq_server->sv_lock);
1539
1540 dr->handle.revisit = svc_revisit;
1541 return &dr->handle;
1542}
1543
1544/*
1545 * recv data from a deferred request into an active one
1546 */
1547static int svc_deferred_recv(struct svc_rqst *rqstp)
1548{
1549 struct svc_deferred_req *dr = rqstp->rq_deferred;
1550
1551 rqstp->rq_arg.head[0].iov_base = dr->args;
1552 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1553 rqstp->rq_arg.page_len = 0;
1554 rqstp->rq_arg.len = dr->argslen<<2;
1555 rqstp->rq_prot = dr->prot;
1556 rqstp->rq_addr = dr->addr;
1557 return dr->argslen<<2;
1558}
1559
1560
1561static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1562{
1563 struct svc_deferred_req *dr = NULL;
1564 struct svc_serv *serv = svsk->sk_server;
1565
1566 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1567 return NULL;
1568 spin_lock_bh(&serv->sv_lock);
1569 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1570 if (!list_empty(&svsk->sk_deferred)) {
1571 dr = list_entry(svsk->sk_deferred.next,
1572 struct svc_deferred_req,
1573 handle.recent);
1574 list_del_init(&dr->handle.recent);
1575 set_bit(SK_DEFERRED, &svsk->sk_flags);
1576 }
1577 spin_unlock_bh(&serv->sv_lock);
1578 return dr;
1579}