[TCP]: Add pluggable congestion control algorithm infrastructure.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_ipv4.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
9 *
10 * IPv4 specific functions
11 *
12 *
13 * code split from:
14 * linux/ipv4/tcp.c
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
17 *
18 * See tcp.c for author information
19 *
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
24 */
25
26/*
27 * Changes:
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
36 * ACK bit.
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
60236fdd 39 * request_sock handling and moved
1da177e4
LT
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen sematics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
47 * coma.
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
53 */
54
55#include <linux/config.h>
56
57#include <linux/types.h>
58#include <linux/fcntl.h>
59#include <linux/module.h>
60#include <linux/random.h>
61#include <linux/cache.h>
62#include <linux/jhash.h>
63#include <linux/init.h>
64#include <linux/times.h>
65
66#include <net/icmp.h>
67#include <net/tcp.h>
68#include <net/ipv6.h>
69#include <net/inet_common.h>
70#include <net/xfrm.h>
71
72#include <linux/inet.h>
73#include <linux/ipv6.h>
74#include <linux/stddef.h>
75#include <linux/proc_fs.h>
76#include <linux/seq_file.h>
77
78extern int sysctl_ip_dynaddr;
79int sysctl_tcp_tw_reuse;
80int sysctl_tcp_low_latency;
81
82/* Check TCP sequence numbers in ICMP packets. */
83#define ICMP_MIN_LENGTH 8
84
85/* Socket used for sending RSTs */
86static struct socket *tcp_socket;
87
88void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
89 struct sk_buff *skb);
90
91struct tcp_hashinfo __cacheline_aligned tcp_hashinfo = {
92 .__tcp_lhash_lock = RW_LOCK_UNLOCKED,
93 .__tcp_lhash_users = ATOMIC_INIT(0),
94 .__tcp_lhash_wait
95 = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.__tcp_lhash_wait),
96 .__tcp_portalloc_lock = SPIN_LOCK_UNLOCKED
97};
98
99/*
100 * This array holds the first and last local port number.
101 * For high-usage systems, use sysctl to change this to
102 * 32768-61000
103 */
104int sysctl_local_port_range[2] = { 1024, 4999 };
105int tcp_port_rover = 1024 - 1;
106
107static __inline__ int tcp_hashfn(__u32 laddr, __u16 lport,
108 __u32 faddr, __u16 fport)
109{
110 int h = (laddr ^ lport) ^ (faddr ^ fport);
111 h ^= h >> 16;
112 h ^= h >> 8;
113 return h & (tcp_ehash_size - 1);
114}
115
116static __inline__ int tcp_sk_hashfn(struct sock *sk)
117{
118 struct inet_sock *inet = inet_sk(sk);
119 __u32 laddr = inet->rcv_saddr;
120 __u16 lport = inet->num;
121 __u32 faddr = inet->daddr;
122 __u16 fport = inet->dport;
123
124 return tcp_hashfn(laddr, lport, faddr, fport);
125}
126
127/* Allocate and initialize a new TCP local port bind bucket.
128 * The bindhash mutex for snum's hash chain must be held here.
129 */
130struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head,
131 unsigned short snum)
132{
133 struct tcp_bind_bucket *tb = kmem_cache_alloc(tcp_bucket_cachep,
134 SLAB_ATOMIC);
135 if (tb) {
136 tb->port = snum;
137 tb->fastreuse = 0;
138 INIT_HLIST_HEAD(&tb->owners);
139 hlist_add_head(&tb->node, &head->chain);
140 }
141 return tb;
142}
143
144/* Caller must hold hashbucket lock for this tb with local BH disabled */
145void tcp_bucket_destroy(struct tcp_bind_bucket *tb)
146{
147 if (hlist_empty(&tb->owners)) {
148 __hlist_del(&tb->node);
149 kmem_cache_free(tcp_bucket_cachep, tb);
150 }
151}
152
153/* Caller must disable local BH processing. */
154static __inline__ void __tcp_inherit_port(struct sock *sk, struct sock *child)
155{
156 struct tcp_bind_hashbucket *head =
157 &tcp_bhash[tcp_bhashfn(inet_sk(child)->num)];
158 struct tcp_bind_bucket *tb;
159
160 spin_lock(&head->lock);
161 tb = tcp_sk(sk)->bind_hash;
162 sk_add_bind_node(child, &tb->owners);
163 tcp_sk(child)->bind_hash = tb;
164 spin_unlock(&head->lock);
165}
166
167inline void tcp_inherit_port(struct sock *sk, struct sock *child)
168{
169 local_bh_disable();
170 __tcp_inherit_port(sk, child);
171 local_bh_enable();
172}
173
174void tcp_bind_hash(struct sock *sk, struct tcp_bind_bucket *tb,
175 unsigned short snum)
176{
177 inet_sk(sk)->num = snum;
178 sk_add_bind_node(sk, &tb->owners);
179 tcp_sk(sk)->bind_hash = tb;
180}
181
182static inline int tcp_bind_conflict(struct sock *sk, struct tcp_bind_bucket *tb)
183{
184 const u32 sk_rcv_saddr = tcp_v4_rcv_saddr(sk);
185 struct sock *sk2;
186 struct hlist_node *node;
187 int reuse = sk->sk_reuse;
188
189 sk_for_each_bound(sk2, node, &tb->owners) {
190 if (sk != sk2 &&
191 !tcp_v6_ipv6only(sk2) &&
192 (!sk->sk_bound_dev_if ||
193 !sk2->sk_bound_dev_if ||
194 sk->sk_bound_dev_if == sk2->sk_bound_dev_if)) {
195 if (!reuse || !sk2->sk_reuse ||
196 sk2->sk_state == TCP_LISTEN) {
197 const u32 sk2_rcv_saddr = tcp_v4_rcv_saddr(sk2);
198 if (!sk2_rcv_saddr || !sk_rcv_saddr ||
199 sk2_rcv_saddr == sk_rcv_saddr)
200 break;
201 }
202 }
203 }
204 return node != NULL;
205}
206
207/* Obtain a reference to a local port for the given sock,
208 * if snum is zero it means select any available local port.
209 */
210static int tcp_v4_get_port(struct sock *sk, unsigned short snum)
211{
212 struct tcp_bind_hashbucket *head;
213 struct hlist_node *node;
214 struct tcp_bind_bucket *tb;
215 int ret;
216
217 local_bh_disable();
218 if (!snum) {
219 int low = sysctl_local_port_range[0];
220 int high = sysctl_local_port_range[1];
221 int remaining = (high - low) + 1;
222 int rover;
223
224 spin_lock(&tcp_portalloc_lock);
0b2531bd
FH
225 if (tcp_port_rover < low)
226 rover = low;
227 else
228 rover = tcp_port_rover;
1da177e4
LT
229 do {
230 rover++;
0b2531bd 231 if (rover > high)
1da177e4
LT
232 rover = low;
233 head = &tcp_bhash[tcp_bhashfn(rover)];
234 spin_lock(&head->lock);
235 tb_for_each(tb, node, &head->chain)
236 if (tb->port == rover)
237 goto next;
238 break;
239 next:
240 spin_unlock(&head->lock);
241 } while (--remaining > 0);
242 tcp_port_rover = rover;
243 spin_unlock(&tcp_portalloc_lock);
244
245 /* Exhausted local port range during search? */
246 ret = 1;
247 if (remaining <= 0)
248 goto fail;
249
250 /* OK, here is the one we will use. HEAD is
251 * non-NULL and we hold it's mutex.
252 */
253 snum = rover;
254 } else {
255 head = &tcp_bhash[tcp_bhashfn(snum)];
256 spin_lock(&head->lock);
257 tb_for_each(tb, node, &head->chain)
258 if (tb->port == snum)
259 goto tb_found;
260 }
261 tb = NULL;
262 goto tb_not_found;
263tb_found:
264 if (!hlist_empty(&tb->owners)) {
265 if (sk->sk_reuse > 1)
266 goto success;
267 if (tb->fastreuse > 0 &&
268 sk->sk_reuse && sk->sk_state != TCP_LISTEN) {
269 goto success;
270 } else {
271 ret = 1;
272 if (tcp_bind_conflict(sk, tb))
273 goto fail_unlock;
274 }
275 }
276tb_not_found:
277 ret = 1;
278 if (!tb && (tb = tcp_bucket_create(head, snum)) == NULL)
279 goto fail_unlock;
280 if (hlist_empty(&tb->owners)) {
281 if (sk->sk_reuse && sk->sk_state != TCP_LISTEN)
282 tb->fastreuse = 1;
283 else
284 tb->fastreuse = 0;
285 } else if (tb->fastreuse &&
286 (!sk->sk_reuse || sk->sk_state == TCP_LISTEN))
287 tb->fastreuse = 0;
288success:
289 if (!tcp_sk(sk)->bind_hash)
290 tcp_bind_hash(sk, tb, snum);
291 BUG_TRAP(tcp_sk(sk)->bind_hash == tb);
292 ret = 0;
293
294fail_unlock:
295 spin_unlock(&head->lock);
296fail:
297 local_bh_enable();
298 return ret;
299}
300
301/* Get rid of any references to a local port held by the
302 * given sock.
303 */
304static void __tcp_put_port(struct sock *sk)
305{
306 struct inet_sock *inet = inet_sk(sk);
307 struct tcp_bind_hashbucket *head = &tcp_bhash[tcp_bhashfn(inet->num)];
308 struct tcp_bind_bucket *tb;
309
310 spin_lock(&head->lock);
311 tb = tcp_sk(sk)->bind_hash;
312 __sk_del_bind_node(sk);
313 tcp_sk(sk)->bind_hash = NULL;
314 inet->num = 0;
315 tcp_bucket_destroy(tb);
316 spin_unlock(&head->lock);
317}
318
319void tcp_put_port(struct sock *sk)
320{
321 local_bh_disable();
322 __tcp_put_port(sk);
323 local_bh_enable();
324}
325
326/* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it can be very bad on SMP.
327 * Look, when several writers sleep and reader wakes them up, all but one
328 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
329 * this, _but_ remember, it adds useless work on UP machines (wake up each
330 * exclusive lock release). It should be ifdefed really.
331 */
332
333void tcp_listen_wlock(void)
334{
335 write_lock(&tcp_lhash_lock);
336
337 if (atomic_read(&tcp_lhash_users)) {
338 DEFINE_WAIT(wait);
339
340 for (;;) {
341 prepare_to_wait_exclusive(&tcp_lhash_wait,
342 &wait, TASK_UNINTERRUPTIBLE);
343 if (!atomic_read(&tcp_lhash_users))
344 break;
345 write_unlock_bh(&tcp_lhash_lock);
346 schedule();
347 write_lock_bh(&tcp_lhash_lock);
348 }
349
350 finish_wait(&tcp_lhash_wait, &wait);
351 }
352}
353
354static __inline__ void __tcp_v4_hash(struct sock *sk, const int listen_possible)
355{
356 struct hlist_head *list;
357 rwlock_t *lock;
358
359 BUG_TRAP(sk_unhashed(sk));
360 if (listen_possible && sk->sk_state == TCP_LISTEN) {
361 list = &tcp_listening_hash[tcp_sk_listen_hashfn(sk)];
362 lock = &tcp_lhash_lock;
363 tcp_listen_wlock();
364 } else {
365 list = &tcp_ehash[(sk->sk_hashent = tcp_sk_hashfn(sk))].chain;
366 lock = &tcp_ehash[sk->sk_hashent].lock;
367 write_lock(lock);
368 }
369 __sk_add_node(sk, list);
370 sock_prot_inc_use(sk->sk_prot);
371 write_unlock(lock);
372 if (listen_possible && sk->sk_state == TCP_LISTEN)
373 wake_up(&tcp_lhash_wait);
374}
375
376static void tcp_v4_hash(struct sock *sk)
377{
378 if (sk->sk_state != TCP_CLOSE) {
379 local_bh_disable();
380 __tcp_v4_hash(sk, 1);
381 local_bh_enable();
382 }
383}
384
385void tcp_unhash(struct sock *sk)
386{
387 rwlock_t *lock;
388
389 if (sk_unhashed(sk))
390 goto ende;
391
392 if (sk->sk_state == TCP_LISTEN) {
393 local_bh_disable();
394 tcp_listen_wlock();
395 lock = &tcp_lhash_lock;
396 } else {
397 struct tcp_ehash_bucket *head = &tcp_ehash[sk->sk_hashent];
398 lock = &head->lock;
399 write_lock_bh(&head->lock);
400 }
401
402 if (__sk_del_node_init(sk))
403 sock_prot_dec_use(sk->sk_prot);
404 write_unlock_bh(lock);
405
406 ende:
407 if (sk->sk_state == TCP_LISTEN)
408 wake_up(&tcp_lhash_wait);
409}
410
411/* Don't inline this cruft. Here are some nice properties to
412 * exploit here. The BSD API does not allow a listening TCP
413 * to specify the remote port nor the remote address for the
414 * connection. So always assume those are both wildcarded
415 * during the search since they can never be otherwise.
416 */
417static struct sock *__tcp_v4_lookup_listener(struct hlist_head *head, u32 daddr,
418 unsigned short hnum, int dif)
419{
420 struct sock *result = NULL, *sk;
421 struct hlist_node *node;
422 int score, hiscore;
423
424 hiscore=-1;
425 sk_for_each(sk, node, head) {
426 struct inet_sock *inet = inet_sk(sk);
427
428 if (inet->num == hnum && !ipv6_only_sock(sk)) {
429 __u32 rcv_saddr = inet->rcv_saddr;
430
431 score = (sk->sk_family == PF_INET ? 1 : 0);
432 if (rcv_saddr) {
433 if (rcv_saddr != daddr)
434 continue;
435 score+=2;
436 }
437 if (sk->sk_bound_dev_if) {
438 if (sk->sk_bound_dev_if != dif)
439 continue;
440 score+=2;
441 }
442 if (score == 5)
443 return sk;
444 if (score > hiscore) {
445 hiscore = score;
446 result = sk;
447 }
448 }
449 }
450 return result;
451}
452
453/* Optimize the common listener case. */
454static inline struct sock *tcp_v4_lookup_listener(u32 daddr,
455 unsigned short hnum, int dif)
456{
457 struct sock *sk = NULL;
458 struct hlist_head *head;
459
460 read_lock(&tcp_lhash_lock);
461 head = &tcp_listening_hash[tcp_lhashfn(hnum)];
462 if (!hlist_empty(head)) {
463 struct inet_sock *inet = inet_sk((sk = __sk_head(head)));
464
465 if (inet->num == hnum && !sk->sk_node.next &&
466 (!inet->rcv_saddr || inet->rcv_saddr == daddr) &&
467 (sk->sk_family == PF_INET || !ipv6_only_sock(sk)) &&
468 !sk->sk_bound_dev_if)
469 goto sherry_cache;
470 sk = __tcp_v4_lookup_listener(head, daddr, hnum, dif);
471 }
472 if (sk) {
473sherry_cache:
474 sock_hold(sk);
475 }
476 read_unlock(&tcp_lhash_lock);
477 return sk;
478}
479
480/* Sockets in TCP_CLOSE state are _always_ taken out of the hash, so
481 * we need not check it for TCP lookups anymore, thanks Alexey. -DaveM
482 *
483 * Local BH must be disabled here.
484 */
485
486static inline struct sock *__tcp_v4_lookup_established(u32 saddr, u16 sport,
487 u32 daddr, u16 hnum,
488 int dif)
489{
490 struct tcp_ehash_bucket *head;
491 TCP_V4_ADDR_COOKIE(acookie, saddr, daddr)
492 __u32 ports = TCP_COMBINED_PORTS(sport, hnum);
493 struct sock *sk;
494 struct hlist_node *node;
495 /* Optimize here for direct hit, only listening connections can
496 * have wildcards anyways.
497 */
498 int hash = tcp_hashfn(daddr, hnum, saddr, sport);
499 head = &tcp_ehash[hash];
500 read_lock(&head->lock);
501 sk_for_each(sk, node, &head->chain) {
502 if (TCP_IPV4_MATCH(sk, acookie, saddr, daddr, ports, dif))
503 goto hit; /* You sunk my battleship! */
504 }
505
506 /* Must check for a TIME_WAIT'er before going to listener hash. */
507 sk_for_each(sk, node, &(head + tcp_ehash_size)->chain) {
508 if (TCP_IPV4_TW_MATCH(sk, acookie, saddr, daddr, ports, dif))
509 goto hit;
510 }
511 sk = NULL;
512out:
513 read_unlock(&head->lock);
514 return sk;
515hit:
516 sock_hold(sk);
517 goto out;
518}
519
520static inline struct sock *__tcp_v4_lookup(u32 saddr, u16 sport,
521 u32 daddr, u16 hnum, int dif)
522{
523 struct sock *sk = __tcp_v4_lookup_established(saddr, sport,
524 daddr, hnum, dif);
525
526 return sk ? : tcp_v4_lookup_listener(daddr, hnum, dif);
527}
528
529inline struct sock *tcp_v4_lookup(u32 saddr, u16 sport, u32 daddr,
530 u16 dport, int dif)
531{
532 struct sock *sk;
533
534 local_bh_disable();
535 sk = __tcp_v4_lookup(saddr, sport, daddr, ntohs(dport), dif);
536 local_bh_enable();
537
538 return sk;
539}
540
541EXPORT_SYMBOL_GPL(tcp_v4_lookup);
542
543static inline __u32 tcp_v4_init_sequence(struct sock *sk, struct sk_buff *skb)
544{
545 return secure_tcp_sequence_number(skb->nh.iph->daddr,
546 skb->nh.iph->saddr,
547 skb->h.th->dest,
548 skb->h.th->source);
549}
550
551/* called with local bh disabled */
552static int __tcp_v4_check_established(struct sock *sk, __u16 lport,
553 struct tcp_tw_bucket **twp)
554{
555 struct inet_sock *inet = inet_sk(sk);
556 u32 daddr = inet->rcv_saddr;
557 u32 saddr = inet->daddr;
558 int dif = sk->sk_bound_dev_if;
559 TCP_V4_ADDR_COOKIE(acookie, saddr, daddr)
560 __u32 ports = TCP_COMBINED_PORTS(inet->dport, lport);
561 int hash = tcp_hashfn(daddr, lport, saddr, inet->dport);
562 struct tcp_ehash_bucket *head = &tcp_ehash[hash];
563 struct sock *sk2;
564 struct hlist_node *node;
565 struct tcp_tw_bucket *tw;
566
567 write_lock(&head->lock);
568
569 /* Check TIME-WAIT sockets first. */
570 sk_for_each(sk2, node, &(head + tcp_ehash_size)->chain) {
571 tw = (struct tcp_tw_bucket *)sk2;
572
573 if (TCP_IPV4_TW_MATCH(sk2, acookie, saddr, daddr, ports, dif)) {
574 struct tcp_sock *tp = tcp_sk(sk);
575
576 /* With PAWS, it is safe from the viewpoint
577 of data integrity. Even without PAWS it
578 is safe provided sequence spaces do not
579 overlap i.e. at data rates <= 80Mbit/sec.
580
581 Actually, the idea is close to VJ's one,
582 only timestamp cache is held not per host,
583 but per port pair and TW bucket is used
584 as state holder.
585
586 If TW bucket has been already destroyed we
587 fall back to VJ's scheme and use initial
588 timestamp retrieved from peer table.
589 */
590 if (tw->tw_ts_recent_stamp &&
591 (!twp || (sysctl_tcp_tw_reuse &&
592 xtime.tv_sec -
593 tw->tw_ts_recent_stamp > 1))) {
594 if ((tp->write_seq =
595 tw->tw_snd_nxt + 65535 + 2) == 0)
596 tp->write_seq = 1;
597 tp->rx_opt.ts_recent = tw->tw_ts_recent;
598 tp->rx_opt.ts_recent_stamp = tw->tw_ts_recent_stamp;
599 sock_hold(sk2);
600 goto unique;
601 } else
602 goto not_unique;
603 }
604 }
605 tw = NULL;
606
607 /* And established part... */
608 sk_for_each(sk2, node, &head->chain) {
609 if (TCP_IPV4_MATCH(sk2, acookie, saddr, daddr, ports, dif))
610 goto not_unique;
611 }
612
613unique:
614 /* Must record num and sport now. Otherwise we will see
615 * in hash table socket with a funny identity. */
616 inet->num = lport;
617 inet->sport = htons(lport);
618 sk->sk_hashent = hash;
619 BUG_TRAP(sk_unhashed(sk));
620 __sk_add_node(sk, &head->chain);
621 sock_prot_inc_use(sk->sk_prot);
622 write_unlock(&head->lock);
623
624 if (twp) {
625 *twp = tw;
626 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
627 } else if (tw) {
628 /* Silly. Should hash-dance instead... */
629 tcp_tw_deschedule(tw);
630 NET_INC_STATS_BH(LINUX_MIB_TIMEWAITRECYCLED);
631
632 tcp_tw_put(tw);
633 }
634
635 return 0;
636
637not_unique:
638 write_unlock(&head->lock);
639 return -EADDRNOTAVAIL;
640}
641
642static inline u32 connect_port_offset(const struct sock *sk)
643{
644 const struct inet_sock *inet = inet_sk(sk);
645
646 return secure_tcp_port_ephemeral(inet->rcv_saddr, inet->daddr,
647 inet->dport);
648}
649
650/*
651 * Bind a port for a connect operation and hash it.
652 */
653static inline int tcp_v4_hash_connect(struct sock *sk)
654{
655 unsigned short snum = inet_sk(sk)->num;
656 struct tcp_bind_hashbucket *head;
657 struct tcp_bind_bucket *tb;
658 int ret;
659
660 if (!snum) {
661 int low = sysctl_local_port_range[0];
662 int high = sysctl_local_port_range[1];
663 int range = high - low;
664 int i;
665 int port;
666 static u32 hint;
667 u32 offset = hint + connect_port_offset(sk);
668 struct hlist_node *node;
669 struct tcp_tw_bucket *tw = NULL;
670
671 local_bh_disable();
672 for (i = 1; i <= range; i++) {
673 port = low + (i + offset) % range;
674 head = &tcp_bhash[tcp_bhashfn(port)];
675 spin_lock(&head->lock);
676
677 /* Does not bother with rcv_saddr checks,
678 * because the established check is already
679 * unique enough.
680 */
681 tb_for_each(tb, node, &head->chain) {
682 if (tb->port == port) {
683 BUG_TRAP(!hlist_empty(&tb->owners));
684 if (tb->fastreuse >= 0)
685 goto next_port;
686 if (!__tcp_v4_check_established(sk,
687 port,
688 &tw))
689 goto ok;
690 goto next_port;
691 }
692 }
693
694 tb = tcp_bucket_create(head, port);
695 if (!tb) {
696 spin_unlock(&head->lock);
697 break;
698 }
699 tb->fastreuse = -1;
700 goto ok;
701
702 next_port:
703 spin_unlock(&head->lock);
704 }
705 local_bh_enable();
706
707 return -EADDRNOTAVAIL;
708
709ok:
710 hint += i;
711
712 /* Head lock still held and bh's disabled */
713 tcp_bind_hash(sk, tb, port);
714 if (sk_unhashed(sk)) {
715 inet_sk(sk)->sport = htons(port);
716 __tcp_v4_hash(sk, 0);
717 }
718 spin_unlock(&head->lock);
719
720 if (tw) {
721 tcp_tw_deschedule(tw);
722 tcp_tw_put(tw);
723 }
724
725 ret = 0;
726 goto out;
727 }
728
729 head = &tcp_bhash[tcp_bhashfn(snum)];
730 tb = tcp_sk(sk)->bind_hash;
731 spin_lock_bh(&head->lock);
732 if (sk_head(&tb->owners) == sk && !sk->sk_bind_node.next) {
733 __tcp_v4_hash(sk, 0);
734 spin_unlock_bh(&head->lock);
735 return 0;
736 } else {
737 spin_unlock(&head->lock);
738 /* No definite answer... Walk to established hash table */
739 ret = __tcp_v4_check_established(sk, snum, NULL);
740out:
741 local_bh_enable();
742 return ret;
743 }
744}
745
746/* This will initiate an outgoing connection. */
747int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
748{
749 struct inet_sock *inet = inet_sk(sk);
750 struct tcp_sock *tp = tcp_sk(sk);
751 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
752 struct rtable *rt;
753 u32 daddr, nexthop;
754 int tmp;
755 int err;
756
757 if (addr_len < sizeof(struct sockaddr_in))
758 return -EINVAL;
759
760 if (usin->sin_family != AF_INET)
761 return -EAFNOSUPPORT;
762
763 nexthop = daddr = usin->sin_addr.s_addr;
764 if (inet->opt && inet->opt->srr) {
765 if (!daddr)
766 return -EINVAL;
767 nexthop = inet->opt->faddr;
768 }
769
770 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
771 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
772 IPPROTO_TCP,
773 inet->sport, usin->sin_port, sk);
774 if (tmp < 0)
775 return tmp;
776
777 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
778 ip_rt_put(rt);
779 return -ENETUNREACH;
780 }
781
782 if (!inet->opt || !inet->opt->srr)
783 daddr = rt->rt_dst;
784
785 if (!inet->saddr)
786 inet->saddr = rt->rt_src;
787 inet->rcv_saddr = inet->saddr;
788
789 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
790 /* Reset inherited state */
791 tp->rx_opt.ts_recent = 0;
792 tp->rx_opt.ts_recent_stamp = 0;
793 tp->write_seq = 0;
794 }
795
796 if (sysctl_tcp_tw_recycle &&
797 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
798 struct inet_peer *peer = rt_get_peer(rt);
799
800 /* VJ's idea. We save last timestamp seen from
801 * the destination in peer table, when entering state TIME-WAIT
802 * and initialize rx_opt.ts_recent from it, when trying new connection.
803 */
804
805 if (peer && peer->tcp_ts_stamp + TCP_PAWS_MSL >= xtime.tv_sec) {
806 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
807 tp->rx_opt.ts_recent = peer->tcp_ts;
808 }
809 }
810
811 inet->dport = usin->sin_port;
812 inet->daddr = daddr;
813
814 tp->ext_header_len = 0;
815 if (inet->opt)
816 tp->ext_header_len = inet->opt->optlen;
817
818 tp->rx_opt.mss_clamp = 536;
819
820 /* Socket identity is still unknown (sport may be zero).
821 * However we set state to SYN-SENT and not releasing socket
822 * lock select source port, enter ourselves into the hash tables and
823 * complete initialization after this.
824 */
825 tcp_set_state(sk, TCP_SYN_SENT);
826 err = tcp_v4_hash_connect(sk);
827 if (err)
828 goto failure;
829
830 err = ip_route_newports(&rt, inet->sport, inet->dport, sk);
831 if (err)
832 goto failure;
833
834 /* OK, now commit destination to socket. */
835 __sk_dst_set(sk, &rt->u.dst);
836 tcp_v4_setup_caps(sk, &rt->u.dst);
837
838 if (!tp->write_seq)
839 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
840 inet->daddr,
841 inet->sport,
842 usin->sin_port);
843
844 inet->id = tp->write_seq ^ jiffies;
845
846 err = tcp_connect(sk);
847 rt = NULL;
848 if (err)
849 goto failure;
850
851 return 0;
852
853failure:
854 /* This unhashes the socket and releases the local port, if necessary. */
855 tcp_set_state(sk, TCP_CLOSE);
856 ip_rt_put(rt);
857 sk->sk_route_caps = 0;
858 inet->dport = 0;
859 return err;
860}
861
862static __inline__ int tcp_v4_iif(struct sk_buff *skb)
863{
864 return ((struct rtable *)skb->dst)->rt_iif;
865}
866
867static __inline__ u32 tcp_v4_synq_hash(u32 raddr, u16 rport, u32 rnd)
868{
869 return (jhash_2words(raddr, (u32) rport, rnd) & (TCP_SYNQ_HSIZE - 1));
870}
871
60236fdd
ACM
872static struct request_sock *tcp_v4_search_req(struct tcp_sock *tp,
873 struct request_sock ***prevp,
1da177e4
LT
874 __u16 rport,
875 __u32 raddr, __u32 laddr)
876{
2ad69c55 877 struct listen_sock *lopt = tp->accept_queue.listen_opt;
60236fdd 878 struct request_sock *req, **prev;
1da177e4
LT
879
880 for (prev = &lopt->syn_table[tcp_v4_synq_hash(raddr, rport, lopt->hash_rnd)];
881 (req = *prev) != NULL;
882 prev = &req->dl_next) {
2e6599cb
ACM
883 const struct inet_request_sock *ireq = inet_rsk(req);
884
885 if (ireq->rmt_port == rport &&
886 ireq->rmt_addr == raddr &&
887 ireq->loc_addr == laddr &&
60236fdd 888 TCP_INET_FAMILY(req->rsk_ops->family)) {
1da177e4
LT
889 BUG_TRAP(!req->sk);
890 *prevp = prev;
891 break;
892 }
893 }
894
895 return req;
896}
897
60236fdd 898static void tcp_v4_synq_add(struct sock *sk, struct request_sock *req)
1da177e4
LT
899{
900 struct tcp_sock *tp = tcp_sk(sk);
2ad69c55 901 struct listen_sock *lopt = tp->accept_queue.listen_opt;
2e6599cb 902 u32 h = tcp_v4_synq_hash(inet_rsk(req)->rmt_addr, inet_rsk(req)->rmt_port, lopt->hash_rnd);
1da177e4 903
0e87506f 904 reqsk_queue_hash_req(&tp->accept_queue, h, req, TCP_TIMEOUT_INIT);
1da177e4
LT
905 tcp_synq_added(sk);
906}
907
908
909/*
910 * This routine does path mtu discovery as defined in RFC1191.
911 */
912static inline void do_pmtu_discovery(struct sock *sk, struct iphdr *iph,
913 u32 mtu)
914{
915 struct dst_entry *dst;
916 struct inet_sock *inet = inet_sk(sk);
917 struct tcp_sock *tp = tcp_sk(sk);
918
919 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
920 * send out by Linux are always <576bytes so they should go through
921 * unfragmented).
922 */
923 if (sk->sk_state == TCP_LISTEN)
924 return;
925
926 /* We don't check in the destentry if pmtu discovery is forbidden
927 * on this route. We just assume that no packet_to_big packets
928 * are send back when pmtu discovery is not active.
929 * There is a small race when the user changes this flag in the
930 * route, but I think that's acceptable.
931 */
932 if ((dst = __sk_dst_check(sk, 0)) == NULL)
933 return;
934
935 dst->ops->update_pmtu(dst, mtu);
936
937 /* Something is about to be wrong... Remember soft error
938 * for the case, if this connection will not able to recover.
939 */
940 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
941 sk->sk_err_soft = EMSGSIZE;
942
943 mtu = dst_mtu(dst);
944
945 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
946 tp->pmtu_cookie > mtu) {
947 tcp_sync_mss(sk, mtu);
948
949 /* Resend the TCP packet because it's
950 * clear that the old packet has been
951 * dropped. This is the new "fast" path mtu
952 * discovery.
953 */
954 tcp_simple_retransmit(sk);
955 } /* else let the usual retransmit timer handle it */
956}
957
958/*
959 * This routine is called by the ICMP module when it gets some
960 * sort of error condition. If err < 0 then the socket should
961 * be closed and the error returned to the user. If err > 0
962 * it's just the icmp type << 8 | icmp code. After adjustment
963 * header points to the first 8 bytes of the tcp header. We need
964 * to find the appropriate port.
965 *
966 * The locking strategy used here is very "optimistic". When
967 * someone else accesses the socket the ICMP is just dropped
968 * and for some paths there is no check at all.
969 * A more general error queue to queue errors for later handling
970 * is probably better.
971 *
972 */
973
974void tcp_v4_err(struct sk_buff *skb, u32 info)
975{
976 struct iphdr *iph = (struct iphdr *)skb->data;
977 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
978 struct tcp_sock *tp;
979 struct inet_sock *inet;
980 int type = skb->h.icmph->type;
981 int code = skb->h.icmph->code;
982 struct sock *sk;
983 __u32 seq;
984 int err;
985
986 if (skb->len < (iph->ihl << 2) + 8) {
987 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
988 return;
989 }
990
991 sk = tcp_v4_lookup(iph->daddr, th->dest, iph->saddr,
992 th->source, tcp_v4_iif(skb));
993 if (!sk) {
994 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS);
995 return;
996 }
997 if (sk->sk_state == TCP_TIME_WAIT) {
998 tcp_tw_put((struct tcp_tw_bucket *)sk);
999 return;
1000 }
1001
1002 bh_lock_sock(sk);
1003 /* If too many ICMPs get dropped on busy
1004 * servers this needs to be solved differently.
1005 */
1006 if (sock_owned_by_user(sk))
1007 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
1008
1009 if (sk->sk_state == TCP_CLOSE)
1010 goto out;
1011
1012 tp = tcp_sk(sk);
1013 seq = ntohl(th->seq);
1014 if (sk->sk_state != TCP_LISTEN &&
1015 !between(seq, tp->snd_una, tp->snd_nxt)) {
1016 NET_INC_STATS(LINUX_MIB_OUTOFWINDOWICMPS);
1017 goto out;
1018 }
1019
1020 switch (type) {
1021 case ICMP_SOURCE_QUENCH:
1022 /* Just silently ignore these. */
1023 goto out;
1024 case ICMP_PARAMETERPROB:
1025 err = EPROTO;
1026 break;
1027 case ICMP_DEST_UNREACH:
1028 if (code > NR_ICMP_UNREACH)
1029 goto out;
1030
1031 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
1032 if (!sock_owned_by_user(sk))
1033 do_pmtu_discovery(sk, iph, info);
1034 goto out;
1035 }
1036
1037 err = icmp_err_convert[code].errno;
1038 break;
1039 case ICMP_TIME_EXCEEDED:
1040 err = EHOSTUNREACH;
1041 break;
1042 default:
1043 goto out;
1044 }
1045
1046 switch (sk->sk_state) {
60236fdd 1047 struct request_sock *req, **prev;
1da177e4
LT
1048 case TCP_LISTEN:
1049 if (sock_owned_by_user(sk))
1050 goto out;
1051
1052 req = tcp_v4_search_req(tp, &prev, th->dest,
1053 iph->daddr, iph->saddr);
1054 if (!req)
1055 goto out;
1056
1057 /* ICMPs are not backlogged, hence we cannot get
1058 an established socket here.
1059 */
1060 BUG_TRAP(!req->sk);
1061
2e6599cb 1062 if (seq != tcp_rsk(req)->snt_isn) {
1da177e4
LT
1063 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
1064 goto out;
1065 }
1066
1067 /*
1068 * Still in SYN_RECV, just remove it silently.
1069 * There is no good way to pass the error to the newly
1070 * created socket, and POSIX does not want network
1071 * errors returned from accept().
1072 */
1073 tcp_synq_drop(sk, req, prev);
1074 goto out;
1075
1076 case TCP_SYN_SENT:
1077 case TCP_SYN_RECV: /* Cannot happen.
1078 It can f.e. if SYNs crossed.
1079 */
1080 if (!sock_owned_by_user(sk)) {
1081 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
1082 sk->sk_err = err;
1083
1084 sk->sk_error_report(sk);
1085
1086 tcp_done(sk);
1087 } else {
1088 sk->sk_err_soft = err;
1089 }
1090 goto out;
1091 }
1092
1093 /* If we've already connected we will keep trying
1094 * until we time out, or the user gives up.
1095 *
1096 * rfc1122 4.2.3.9 allows to consider as hard errors
1097 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
1098 * but it is obsoleted by pmtu discovery).
1099 *
1100 * Note, that in modern internet, where routing is unreliable
1101 * and in each dark corner broken firewalls sit, sending random
1102 * errors ordered by their masters even this two messages finally lose
1103 * their original sense (even Linux sends invalid PORT_UNREACHs)
1104 *
1105 * Now we are in compliance with RFCs.
1106 * --ANK (980905)
1107 */
1108
1109 inet = inet_sk(sk);
1110 if (!sock_owned_by_user(sk) && inet->recverr) {
1111 sk->sk_err = err;
1112 sk->sk_error_report(sk);
1113 } else { /* Only an error on timeout */
1114 sk->sk_err_soft = err;
1115 }
1116
1117out:
1118 bh_unlock_sock(sk);
1119 sock_put(sk);
1120}
1121
1122/* This routine computes an IPv4 TCP checksum. */
1123void tcp_v4_send_check(struct sock *sk, struct tcphdr *th, int len,
1124 struct sk_buff *skb)
1125{
1126 struct inet_sock *inet = inet_sk(sk);
1127
1128 if (skb->ip_summed == CHECKSUM_HW) {
1129 th->check = ~tcp_v4_check(th, len, inet->saddr, inet->daddr, 0);
1130 skb->csum = offsetof(struct tcphdr, check);
1131 } else {
1132 th->check = tcp_v4_check(th, len, inet->saddr, inet->daddr,
1133 csum_partial((char *)th,
1134 th->doff << 2,
1135 skb->csum));
1136 }
1137}
1138
1139/*
1140 * This routine will send an RST to the other tcp.
1141 *
1142 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
1143 * for reset.
1144 * Answer: if a packet caused RST, it is not for a socket
1145 * existing in our system, if it is matched to a socket,
1146 * it is just duplicate segment or bug in other side's TCP.
1147 * So that we build reply only basing on parameters
1148 * arrived with segment.
1149 * Exception: precedence violation. We do not implement it in any case.
1150 */
1151
1152static void tcp_v4_send_reset(struct sk_buff *skb)
1153{
1154 struct tcphdr *th = skb->h.th;
1155 struct tcphdr rth;
1156 struct ip_reply_arg arg;
1157
1158 /* Never send a reset in response to a reset. */
1159 if (th->rst)
1160 return;
1161
1162 if (((struct rtable *)skb->dst)->rt_type != RTN_LOCAL)
1163 return;
1164
1165 /* Swap the send and the receive. */
1166 memset(&rth, 0, sizeof(struct tcphdr));
1167 rth.dest = th->source;
1168 rth.source = th->dest;
1169 rth.doff = sizeof(struct tcphdr) / 4;
1170 rth.rst = 1;
1171
1172 if (th->ack) {
1173 rth.seq = th->ack_seq;
1174 } else {
1175 rth.ack = 1;
1176 rth.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
1177 skb->len - (th->doff << 2));
1178 }
1179
1180 memset(&arg, 0, sizeof arg);
1181 arg.iov[0].iov_base = (unsigned char *)&rth;
1182 arg.iov[0].iov_len = sizeof rth;
1183 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
1184 skb->nh.iph->saddr, /*XXX*/
1185 sizeof(struct tcphdr), IPPROTO_TCP, 0);
1186 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1187
1188 ip_send_reply(tcp_socket->sk, skb, &arg, sizeof rth);
1189
1190 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
1191 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
1192}
1193
1194/* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
1195 outside socket context is ugly, certainly. What can I do?
1196 */
1197
1198static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
1199 u32 win, u32 ts)
1200{
1201 struct tcphdr *th = skb->h.th;
1202 struct {
1203 struct tcphdr th;
1204 u32 tsopt[3];
1205 } rep;
1206 struct ip_reply_arg arg;
1207
1208 memset(&rep.th, 0, sizeof(struct tcphdr));
1209 memset(&arg, 0, sizeof arg);
1210
1211 arg.iov[0].iov_base = (unsigned char *)&rep;
1212 arg.iov[0].iov_len = sizeof(rep.th);
1213 if (ts) {
1214 rep.tsopt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1215 (TCPOPT_TIMESTAMP << 8) |
1216 TCPOLEN_TIMESTAMP);
1217 rep.tsopt[1] = htonl(tcp_time_stamp);
1218 rep.tsopt[2] = htonl(ts);
1219 arg.iov[0].iov_len = sizeof(rep);
1220 }
1221
1222 /* Swap the send and the receive. */
1223 rep.th.dest = th->source;
1224 rep.th.source = th->dest;
1225 rep.th.doff = arg.iov[0].iov_len / 4;
1226 rep.th.seq = htonl(seq);
1227 rep.th.ack_seq = htonl(ack);
1228 rep.th.ack = 1;
1229 rep.th.window = htons(win);
1230
1231 arg.csum = csum_tcpudp_nofold(skb->nh.iph->daddr,
1232 skb->nh.iph->saddr, /*XXX*/
1233 arg.iov[0].iov_len, IPPROTO_TCP, 0);
1234 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
1235
1236 ip_send_reply(tcp_socket->sk, skb, &arg, arg.iov[0].iov_len);
1237
1238 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
1239}
1240
1241static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
1242{
1243 struct tcp_tw_bucket *tw = (struct tcp_tw_bucket *)sk;
1244
1245 tcp_v4_send_ack(skb, tw->tw_snd_nxt, tw->tw_rcv_nxt,
1246 tw->tw_rcv_wnd >> tw->tw_rcv_wscale, tw->tw_ts_recent);
1247
1248 tcp_tw_put(tw);
1249}
1250
60236fdd 1251static void tcp_v4_reqsk_send_ack(struct sk_buff *skb, struct request_sock *req)
1da177e4 1252{
2e6599cb 1253 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1, tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
1da177e4
LT
1254 req->ts_recent);
1255}
1256
1257static struct dst_entry* tcp_v4_route_req(struct sock *sk,
60236fdd 1258 struct request_sock *req)
1da177e4
LT
1259{
1260 struct rtable *rt;
2e6599cb
ACM
1261 const struct inet_request_sock *ireq = inet_rsk(req);
1262 struct ip_options *opt = inet_rsk(req)->opt;
1da177e4
LT
1263 struct flowi fl = { .oif = sk->sk_bound_dev_if,
1264 .nl_u = { .ip4_u =
1265 { .daddr = ((opt && opt->srr) ?
1266 opt->faddr :
2e6599cb
ACM
1267 ireq->rmt_addr),
1268 .saddr = ireq->loc_addr,
1da177e4
LT
1269 .tos = RT_CONN_FLAGS(sk) } },
1270 .proto = IPPROTO_TCP,
1271 .uli_u = { .ports =
1272 { .sport = inet_sk(sk)->sport,
2e6599cb 1273 .dport = ireq->rmt_port } } };
1da177e4
LT
1274
1275 if (ip_route_output_flow(&rt, &fl, sk, 0)) {
1276 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
1277 return NULL;
1278 }
1279 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway) {
1280 ip_rt_put(rt);
1281 IP_INC_STATS_BH(IPSTATS_MIB_OUTNOROUTES);
1282 return NULL;
1283 }
1284 return &rt->u.dst;
1285}
1286
1287/*
1288 * Send a SYN-ACK after having received an ACK.
60236fdd 1289 * This still operates on a request_sock only, not on a big
1da177e4
LT
1290 * socket.
1291 */
60236fdd 1292static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
1da177e4
LT
1293 struct dst_entry *dst)
1294{
2e6599cb 1295 const struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
1296 int err = -1;
1297 struct sk_buff * skb;
1298
1299 /* First, grab a route. */
1300 if (!dst && (dst = tcp_v4_route_req(sk, req)) == NULL)
1301 goto out;
1302
1303 skb = tcp_make_synack(sk, dst, req);
1304
1305 if (skb) {
1306 struct tcphdr *th = skb->h.th;
1307
1308 th->check = tcp_v4_check(th, skb->len,
2e6599cb
ACM
1309 ireq->loc_addr,
1310 ireq->rmt_addr,
1da177e4
LT
1311 csum_partial((char *)th, skb->len,
1312 skb->csum));
1313
2e6599cb
ACM
1314 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
1315 ireq->rmt_addr,
1316 ireq->opt);
1da177e4
LT
1317 if (err == NET_XMIT_CN)
1318 err = 0;
1319 }
1320
1321out:
1322 dst_release(dst);
1323 return err;
1324}
1325
1326/*
60236fdd 1327 * IPv4 request_sock destructor.
1da177e4 1328 */
60236fdd 1329static void tcp_v4_reqsk_destructor(struct request_sock *req)
1da177e4 1330{
2e6599cb
ACM
1331 if (inet_rsk(req)->opt)
1332 kfree(inet_rsk(req)->opt);
1da177e4
LT
1333}
1334
1335static inline void syn_flood_warning(struct sk_buff *skb)
1336{
1337 static unsigned long warntime;
1338
1339 if (time_after(jiffies, (warntime + HZ * 60))) {
1340 warntime = jiffies;
1341 printk(KERN_INFO
1342 "possible SYN flooding on port %d. Sending cookies.\n",
1343 ntohs(skb->h.th->dest));
1344 }
1345}
1346
1347/*
60236fdd 1348 * Save and compile IPv4 options into the request_sock if needed.
1da177e4
LT
1349 */
1350static inline struct ip_options *tcp_v4_save_options(struct sock *sk,
1351 struct sk_buff *skb)
1352{
1353 struct ip_options *opt = &(IPCB(skb)->opt);
1354 struct ip_options *dopt = NULL;
1355
1356 if (opt && opt->optlen) {
1357 int opt_size = optlength(opt);
1358 dopt = kmalloc(opt_size, GFP_ATOMIC);
1359 if (dopt) {
1360 if (ip_options_echo(dopt, skb)) {
1361 kfree(dopt);
1362 dopt = NULL;
1363 }
1364 }
1365 }
1366 return dopt;
1367}
1368
60236fdd 1369struct request_sock_ops tcp_request_sock_ops = {
1da177e4 1370 .family = PF_INET,
2e6599cb 1371 .obj_size = sizeof(struct tcp_request_sock),
1da177e4 1372 .rtx_syn_ack = tcp_v4_send_synack,
60236fdd
ACM
1373 .send_ack = tcp_v4_reqsk_send_ack,
1374 .destructor = tcp_v4_reqsk_destructor,
1da177e4
LT
1375 .send_reset = tcp_v4_send_reset,
1376};
1377
1378int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1379{
2e6599cb 1380 struct inet_request_sock *ireq;
1da177e4 1381 struct tcp_options_received tmp_opt;
60236fdd 1382 struct request_sock *req;
1da177e4
LT
1383 __u32 saddr = skb->nh.iph->saddr;
1384 __u32 daddr = skb->nh.iph->daddr;
1385 __u32 isn = TCP_SKB_CB(skb)->when;
1386 struct dst_entry *dst = NULL;
1387#ifdef CONFIG_SYN_COOKIES
1388 int want_cookie = 0;
1389#else
1390#define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1391#endif
1392
1393 /* Never answer to SYNs send to broadcast or multicast */
1394 if (((struct rtable *)skb->dst)->rt_flags &
1395 (RTCF_BROADCAST | RTCF_MULTICAST))
1396 goto drop;
1397
1398 /* TW buckets are converted to open requests without
1399 * limitations, they conserve resources and peer is
1400 * evidently real one.
1401 */
1402 if (tcp_synq_is_full(sk) && !isn) {
1403#ifdef CONFIG_SYN_COOKIES
1404 if (sysctl_tcp_syncookies) {
1405 want_cookie = 1;
1406 } else
1407#endif
1408 goto drop;
1409 }
1410
1411 /* Accept backlog is full. If we have already queued enough
1412 * of warm entries in syn queue, drop request. It is better than
1413 * clogging syn queue with openreqs with exponentially increasing
1414 * timeout.
1415 */
1416 if (sk_acceptq_is_full(sk) && tcp_synq_young(sk) > 1)
1417 goto drop;
1418
60236fdd 1419 req = reqsk_alloc(&tcp_request_sock_ops);
1da177e4
LT
1420 if (!req)
1421 goto drop;
1422
1423 tcp_clear_options(&tmp_opt);
1424 tmp_opt.mss_clamp = 536;
1425 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1426
1427 tcp_parse_options(skb, &tmp_opt, 0);
1428
1429 if (want_cookie) {
1430 tcp_clear_options(&tmp_opt);
1431 tmp_opt.saw_tstamp = 0;
1432 }
1433
1434 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1435 /* Some OSes (unknown ones, but I see them on web server, which
1436 * contains information interesting only for windows'
1437 * users) do not send their stamp in SYN. It is easy case.
1438 * We simply do not advertise TS support.
1439 */
1440 tmp_opt.saw_tstamp = 0;
1441 tmp_opt.tstamp_ok = 0;
1442 }
1443 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1444
1445 tcp_openreq_init(req, &tmp_opt, skb);
1446
2e6599cb
ACM
1447 ireq = inet_rsk(req);
1448 ireq->loc_addr = daddr;
1449 ireq->rmt_addr = saddr;
1450 ireq->opt = tcp_v4_save_options(sk, skb);
1da177e4
LT
1451 if (!want_cookie)
1452 TCP_ECN_create_request(req, skb->h.th);
1453
1454 if (want_cookie) {
1455#ifdef CONFIG_SYN_COOKIES
1456 syn_flood_warning(skb);
1457#endif
1458 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1459 } else if (!isn) {
1460 struct inet_peer *peer = NULL;
1461
1462 /* VJ's idea. We save last timestamp seen
1463 * from the destination in peer table, when entering
1464 * state TIME-WAIT, and check against it before
1465 * accepting new connection request.
1466 *
1467 * If "isn" is not zero, this request hit alive
1468 * timewait bucket, so that all the necessary checks
1469 * are made in the function processing timewait state.
1470 */
1471 if (tmp_opt.saw_tstamp &&
1472 sysctl_tcp_tw_recycle &&
1473 (dst = tcp_v4_route_req(sk, req)) != NULL &&
1474 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1475 peer->v4daddr == saddr) {
1476 if (xtime.tv_sec < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1477 (s32)(peer->tcp_ts - req->ts_recent) >
1478 TCP_PAWS_WINDOW) {
1479 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1480 dst_release(dst);
1481 goto drop_and_free;
1482 }
1483 }
1484 /* Kill the following clause, if you dislike this way. */
1485 else if (!sysctl_tcp_syncookies &&
1486 (sysctl_max_syn_backlog - tcp_synq_len(sk) <
1487 (sysctl_max_syn_backlog >> 2)) &&
1488 (!peer || !peer->tcp_ts_stamp) &&
1489 (!dst || !dst_metric(dst, RTAX_RTT))) {
1490 /* Without syncookies last quarter of
1491 * backlog is filled with destinations,
1492 * proven to be alive.
1493 * It means that we continue to communicate
1494 * to destinations, already remembered
1495 * to the moment of synflood.
1496 */
1497 NETDEBUG(if (net_ratelimit()) \
1498 printk(KERN_DEBUG "TCP: drop open "
1499 "request from %u.%u."
1500 "%u.%u/%u\n", \
1501 NIPQUAD(saddr),
1502 ntohs(skb->h.th->source)));
1503 dst_release(dst);
1504 goto drop_and_free;
1505 }
1506
1507 isn = tcp_v4_init_sequence(sk, skb);
1508 }
2e6599cb 1509 tcp_rsk(req)->snt_isn = isn;
1da177e4
LT
1510
1511 if (tcp_v4_send_synack(sk, req, dst))
1512 goto drop_and_free;
1513
1514 if (want_cookie) {
60236fdd 1515 reqsk_free(req);
1da177e4
LT
1516 } else {
1517 tcp_v4_synq_add(sk, req);
1518 }
1519 return 0;
1520
1521drop_and_free:
60236fdd 1522 reqsk_free(req);
1da177e4
LT
1523drop:
1524 TCP_INC_STATS_BH(TCP_MIB_ATTEMPTFAILS);
1525 return 0;
1526}
1527
1528
1529/*
1530 * The three way handshake has completed - we got a valid synack -
1531 * now create the new socket.
1532 */
1533struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
60236fdd 1534 struct request_sock *req,
1da177e4
LT
1535 struct dst_entry *dst)
1536{
2e6599cb 1537 struct inet_request_sock *ireq;
1da177e4
LT
1538 struct inet_sock *newinet;
1539 struct tcp_sock *newtp;
1540 struct sock *newsk;
1541
1542 if (sk_acceptq_is_full(sk))
1543 goto exit_overflow;
1544
1545 if (!dst && (dst = tcp_v4_route_req(sk, req)) == NULL)
1546 goto exit;
1547
1548 newsk = tcp_create_openreq_child(sk, req, skb);
1549 if (!newsk)
1550 goto exit;
1551
1552 newsk->sk_dst_cache = dst;
1553 tcp_v4_setup_caps(newsk, dst);
1554
1555 newtp = tcp_sk(newsk);
1556 newinet = inet_sk(newsk);
2e6599cb
ACM
1557 ireq = inet_rsk(req);
1558 newinet->daddr = ireq->rmt_addr;
1559 newinet->rcv_saddr = ireq->loc_addr;
1560 newinet->saddr = ireq->loc_addr;
1561 newinet->opt = ireq->opt;
1562 ireq->opt = NULL;
1da177e4
LT
1563 newinet->mc_index = tcp_v4_iif(skb);
1564 newinet->mc_ttl = skb->nh.iph->ttl;
1565 newtp->ext_header_len = 0;
1566 if (newinet->opt)
1567 newtp->ext_header_len = newinet->opt->optlen;
1568 newinet->id = newtp->write_seq ^ jiffies;
1569
1570 tcp_sync_mss(newsk, dst_mtu(dst));
1571 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1572 tcp_initialize_rcv_mss(newsk);
1573
1574 __tcp_v4_hash(newsk, 0);
1575 __tcp_inherit_port(sk, newsk);
1576
1577 return newsk;
1578
1579exit_overflow:
1580 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1581exit:
1582 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1583 dst_release(dst);
1584 return NULL;
1585}
1586
1587static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1588{
1589 struct tcphdr *th = skb->h.th;
1590 struct iphdr *iph = skb->nh.iph;
1591 struct tcp_sock *tp = tcp_sk(sk);
1592 struct sock *nsk;
60236fdd 1593 struct request_sock **prev;
1da177e4 1594 /* Find possible connection requests. */
60236fdd 1595 struct request_sock *req = tcp_v4_search_req(tp, &prev, th->source,
1da177e4
LT
1596 iph->saddr, iph->daddr);
1597 if (req)
1598 return tcp_check_req(sk, skb, req, prev);
1599
1600 nsk = __tcp_v4_lookup_established(skb->nh.iph->saddr,
1601 th->source,
1602 skb->nh.iph->daddr,
1603 ntohs(th->dest),
1604 tcp_v4_iif(skb));
1605
1606 if (nsk) {
1607 if (nsk->sk_state != TCP_TIME_WAIT) {
1608 bh_lock_sock(nsk);
1609 return nsk;
1610 }
1611 tcp_tw_put((struct tcp_tw_bucket *)nsk);
1612 return NULL;
1613 }
1614
1615#ifdef CONFIG_SYN_COOKIES
1616 if (!th->rst && !th->syn && th->ack)
1617 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1618#endif
1619 return sk;
1620}
1621
1622static int tcp_v4_checksum_init(struct sk_buff *skb)
1623{
1624 if (skb->ip_summed == CHECKSUM_HW) {
1625 skb->ip_summed = CHECKSUM_UNNECESSARY;
1626 if (!tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1627 skb->nh.iph->daddr, skb->csum))
1628 return 0;
1629
1630 NETDEBUG(if (net_ratelimit())
1631 printk(KERN_DEBUG "hw tcp v4 csum failed\n"));
1632 skb->ip_summed = CHECKSUM_NONE;
1633 }
1634 if (skb->len <= 76) {
1635 if (tcp_v4_check(skb->h.th, skb->len, skb->nh.iph->saddr,
1636 skb->nh.iph->daddr,
1637 skb_checksum(skb, 0, skb->len, 0)))
1638 return -1;
1639 skb->ip_summed = CHECKSUM_UNNECESSARY;
1640 } else {
1641 skb->csum = ~tcp_v4_check(skb->h.th, skb->len,
1642 skb->nh.iph->saddr,
1643 skb->nh.iph->daddr, 0);
1644 }
1645 return 0;
1646}
1647
1648
1649/* The socket must have it's spinlock held when we get
1650 * here.
1651 *
1652 * We have a potential double-lock case here, so even when
1653 * doing backlog processing we use the BH locking scheme.
1654 * This is because we cannot sleep with the original spinlock
1655 * held.
1656 */
1657int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1658{
1659 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1660 TCP_CHECK_TIMER(sk);
1661 if (tcp_rcv_established(sk, skb, skb->h.th, skb->len))
1662 goto reset;
1663 TCP_CHECK_TIMER(sk);
1664 return 0;
1665 }
1666
1667 if (skb->len < (skb->h.th->doff << 2) || tcp_checksum_complete(skb))
1668 goto csum_err;
1669
1670 if (sk->sk_state == TCP_LISTEN) {
1671 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1672 if (!nsk)
1673 goto discard;
1674
1675 if (nsk != sk) {
1676 if (tcp_child_process(sk, nsk, skb))
1677 goto reset;
1678 return 0;
1679 }
1680 }
1681
1682 TCP_CHECK_TIMER(sk);
1683 if (tcp_rcv_state_process(sk, skb, skb->h.th, skb->len))
1684 goto reset;
1685 TCP_CHECK_TIMER(sk);
1686 return 0;
1687
1688reset:
1689 tcp_v4_send_reset(skb);
1690discard:
1691 kfree_skb(skb);
1692 /* Be careful here. If this function gets more complicated and
1693 * gcc suffers from register pressure on the x86, sk (in %ebx)
1694 * might be destroyed here. This current version compiles correctly,
1695 * but you have been warned.
1696 */
1697 return 0;
1698
1699csum_err:
1700 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1701 goto discard;
1702}
1703
1704/*
1705 * From tcp_input.c
1706 */
1707
1708int tcp_v4_rcv(struct sk_buff *skb)
1709{
1710 struct tcphdr *th;
1711 struct sock *sk;
1712 int ret;
1713
1714 if (skb->pkt_type != PACKET_HOST)
1715 goto discard_it;
1716
1717 /* Count it even if it's bad */
1718 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1719
1720 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1721 goto discard_it;
1722
1723 th = skb->h.th;
1724
1725 if (th->doff < sizeof(struct tcphdr) / 4)
1726 goto bad_packet;
1727 if (!pskb_may_pull(skb, th->doff * 4))
1728 goto discard_it;
1729
1730 /* An explanation is required here, I think.
1731 * Packet length and doff are validated by header prediction,
1732 * provided case of th->doff==0 is elimineted.
1733 * So, we defer the checks. */
1734 if ((skb->ip_summed != CHECKSUM_UNNECESSARY &&
1735 tcp_v4_checksum_init(skb) < 0))
1736 goto bad_packet;
1737
1738 th = skb->h.th;
1739 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1740 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1741 skb->len - th->doff * 4);
1742 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1743 TCP_SKB_CB(skb)->when = 0;
1744 TCP_SKB_CB(skb)->flags = skb->nh.iph->tos;
1745 TCP_SKB_CB(skb)->sacked = 0;
1746
1747 sk = __tcp_v4_lookup(skb->nh.iph->saddr, th->source,
1748 skb->nh.iph->daddr, ntohs(th->dest),
1749 tcp_v4_iif(skb));
1750
1751 if (!sk)
1752 goto no_tcp_socket;
1753
1754process:
1755 if (sk->sk_state == TCP_TIME_WAIT)
1756 goto do_time_wait;
1757
1758 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1759 goto discard_and_relse;
1760
1761 if (sk_filter(sk, skb, 0))
1762 goto discard_and_relse;
1763
1764 skb->dev = NULL;
1765
1766 bh_lock_sock(sk);
1767 ret = 0;
1768 if (!sock_owned_by_user(sk)) {
1769 if (!tcp_prequeue(sk, skb))
1770 ret = tcp_v4_do_rcv(sk, skb);
1771 } else
1772 sk_add_backlog(sk, skb);
1773 bh_unlock_sock(sk);
1774
1775 sock_put(sk);
1776
1777 return ret;
1778
1779no_tcp_socket:
1780 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1781 goto discard_it;
1782
1783 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1784bad_packet:
1785 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1786 } else {
1787 tcp_v4_send_reset(skb);
1788 }
1789
1790discard_it:
1791 /* Discard frame. */
1792 kfree_skb(skb);
1793 return 0;
1794
1795discard_and_relse:
1796 sock_put(sk);
1797 goto discard_it;
1798
1799do_time_wait:
1800 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1801 tcp_tw_put((struct tcp_tw_bucket *) sk);
1802 goto discard_it;
1803 }
1804
1805 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1806 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1807 tcp_tw_put((struct tcp_tw_bucket *) sk);
1808 goto discard_it;
1809 }
1810 switch (tcp_timewait_state_process((struct tcp_tw_bucket *)sk,
1811 skb, th, skb->len)) {
1812 case TCP_TW_SYN: {
1813 struct sock *sk2 = tcp_v4_lookup_listener(skb->nh.iph->daddr,
1814 ntohs(th->dest),
1815 tcp_v4_iif(skb));
1816 if (sk2) {
1817 tcp_tw_deschedule((struct tcp_tw_bucket *)sk);
1818 tcp_tw_put((struct tcp_tw_bucket *)sk);
1819 sk = sk2;
1820 goto process;
1821 }
1822 /* Fall through to ACK */
1823 }
1824 case TCP_TW_ACK:
1825 tcp_v4_timewait_ack(sk, skb);
1826 break;
1827 case TCP_TW_RST:
1828 goto no_tcp_socket;
1829 case TCP_TW_SUCCESS:;
1830 }
1831 goto discard_it;
1832}
1833
1834/* With per-bucket locks this operation is not-atomic, so that
1835 * this version is not worse.
1836 */
1837static void __tcp_v4_rehash(struct sock *sk)
1838{
1839 sk->sk_prot->unhash(sk);
1840 sk->sk_prot->hash(sk);
1841}
1842
1843static int tcp_v4_reselect_saddr(struct sock *sk)
1844{
1845 struct inet_sock *inet = inet_sk(sk);
1846 int err;
1847 struct rtable *rt;
1848 __u32 old_saddr = inet->saddr;
1849 __u32 new_saddr;
1850 __u32 daddr = inet->daddr;
1851
1852 if (inet->opt && inet->opt->srr)
1853 daddr = inet->opt->faddr;
1854
1855 /* Query new route. */
1856 err = ip_route_connect(&rt, daddr, 0,
1857 RT_CONN_FLAGS(sk),
1858 sk->sk_bound_dev_if,
1859 IPPROTO_TCP,
1860 inet->sport, inet->dport, sk);
1861 if (err)
1862 return err;
1863
1864 __sk_dst_set(sk, &rt->u.dst);
1865 tcp_v4_setup_caps(sk, &rt->u.dst);
1866
1867 new_saddr = rt->rt_src;
1868
1869 if (new_saddr == old_saddr)
1870 return 0;
1871
1872 if (sysctl_ip_dynaddr > 1) {
1873 printk(KERN_INFO "tcp_v4_rebuild_header(): shifting inet->"
1874 "saddr from %d.%d.%d.%d to %d.%d.%d.%d\n",
1875 NIPQUAD(old_saddr),
1876 NIPQUAD(new_saddr));
1877 }
1878
1879 inet->saddr = new_saddr;
1880 inet->rcv_saddr = new_saddr;
1881
1882 /* XXX The only one ugly spot where we need to
1883 * XXX really change the sockets identity after
1884 * XXX it has entered the hashes. -DaveM
1885 *
1886 * Besides that, it does not check for connection
1887 * uniqueness. Wait for troubles.
1888 */
1889 __tcp_v4_rehash(sk);
1890 return 0;
1891}
1892
1893int tcp_v4_rebuild_header(struct sock *sk)
1894{
1895 struct inet_sock *inet = inet_sk(sk);
1896 struct rtable *rt = (struct rtable *)__sk_dst_check(sk, 0);
1897 u32 daddr;
1898 int err;
1899
1900 /* Route is OK, nothing to do. */
1901 if (rt)
1902 return 0;
1903
1904 /* Reroute. */
1905 daddr = inet->daddr;
1906 if (inet->opt && inet->opt->srr)
1907 daddr = inet->opt->faddr;
1908
1909 {
1910 struct flowi fl = { .oif = sk->sk_bound_dev_if,
1911 .nl_u = { .ip4_u =
1912 { .daddr = daddr,
1913 .saddr = inet->saddr,
1914 .tos = RT_CONN_FLAGS(sk) } },
1915 .proto = IPPROTO_TCP,
1916 .uli_u = { .ports =
1917 { .sport = inet->sport,
1918 .dport = inet->dport } } };
1919
1920 err = ip_route_output_flow(&rt, &fl, sk, 0);
1921 }
1922 if (!err) {
1923 __sk_dst_set(sk, &rt->u.dst);
1924 tcp_v4_setup_caps(sk, &rt->u.dst);
1925 return 0;
1926 }
1927
1928 /* Routing failed... */
1929 sk->sk_route_caps = 0;
1930
1931 if (!sysctl_ip_dynaddr ||
1932 sk->sk_state != TCP_SYN_SENT ||
1933 (sk->sk_userlocks & SOCK_BINDADDR_LOCK) ||
1934 (err = tcp_v4_reselect_saddr(sk)) != 0)
1935 sk->sk_err_soft = -err;
1936
1937 return err;
1938}
1939
1940static void v4_addr2sockaddr(struct sock *sk, struct sockaddr * uaddr)
1941{
1942 struct sockaddr_in *sin = (struct sockaddr_in *) uaddr;
1943 struct inet_sock *inet = inet_sk(sk);
1944
1945 sin->sin_family = AF_INET;
1946 sin->sin_addr.s_addr = inet->daddr;
1947 sin->sin_port = inet->dport;
1948}
1949
1950/* VJ's idea. Save last timestamp seen from this destination
1951 * and hold it at least for normal timewait interval to use for duplicate
1952 * segment detection in subsequent connections, before they enter synchronized
1953 * state.
1954 */
1955
1956int tcp_v4_remember_stamp(struct sock *sk)
1957{
1958 struct inet_sock *inet = inet_sk(sk);
1959 struct tcp_sock *tp = tcp_sk(sk);
1960 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1961 struct inet_peer *peer = NULL;
1962 int release_it = 0;
1963
1964 if (!rt || rt->rt_dst != inet->daddr) {
1965 peer = inet_getpeer(inet->daddr, 1);
1966 release_it = 1;
1967 } else {
1968 if (!rt->peer)
1969 rt_bind_peer(rt, 1);
1970 peer = rt->peer;
1971 }
1972
1973 if (peer) {
1974 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1975 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1976 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1977 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1978 peer->tcp_ts = tp->rx_opt.ts_recent;
1979 }
1980 if (release_it)
1981 inet_putpeer(peer);
1982 return 1;
1983 }
1984
1985 return 0;
1986}
1987
1988int tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw)
1989{
1990 struct inet_peer *peer = NULL;
1991
1992 peer = inet_getpeer(tw->tw_daddr, 1);
1993
1994 if (peer) {
1995 if ((s32)(peer->tcp_ts - tw->tw_ts_recent) <= 0 ||
1996 (peer->tcp_ts_stamp + TCP_PAWS_MSL < xtime.tv_sec &&
1997 peer->tcp_ts_stamp <= tw->tw_ts_recent_stamp)) {
1998 peer->tcp_ts_stamp = tw->tw_ts_recent_stamp;
1999 peer->tcp_ts = tw->tw_ts_recent;
2000 }
2001 inet_putpeer(peer);
2002 return 1;
2003 }
2004
2005 return 0;
2006}
2007
2008struct tcp_func ipv4_specific = {
2009 .queue_xmit = ip_queue_xmit,
2010 .send_check = tcp_v4_send_check,
2011 .rebuild_header = tcp_v4_rebuild_header,
2012 .conn_request = tcp_v4_conn_request,
2013 .syn_recv_sock = tcp_v4_syn_recv_sock,
2014 .remember_stamp = tcp_v4_remember_stamp,
2015 .net_header_len = sizeof(struct iphdr),
2016 .setsockopt = ip_setsockopt,
2017 .getsockopt = ip_getsockopt,
2018 .addr2sockaddr = v4_addr2sockaddr,
2019 .sockaddr_len = sizeof(struct sockaddr_in),
2020};
2021
2022/* NOTE: A lot of things set to zero explicitly by call to
2023 * sk_alloc() so need not be done here.
2024 */
2025static int tcp_v4_init_sock(struct sock *sk)
2026{
2027 struct tcp_sock *tp = tcp_sk(sk);
2028
2029 skb_queue_head_init(&tp->out_of_order_queue);
2030 tcp_init_xmit_timers(sk);
2031 tcp_prequeue_init(tp);
2032
2033 tp->rto = TCP_TIMEOUT_INIT;
2034 tp->mdev = TCP_TIMEOUT_INIT;
2035
2036 /* So many TCP implementations out there (incorrectly) count the
2037 * initial SYN frame in their delayed-ACK and congestion control
2038 * algorithms that we must have the following bandaid to talk
2039 * efficiently to them. -DaveM
2040 */
2041 tp->snd_cwnd = 2;
2042
2043 /* See draft-stevens-tcpca-spec-01 for discussion of the
2044 * initialization of these values.
2045 */
2046 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
2047 tp->snd_cwnd_clamp = ~0;
2048 tp->mss_cache_std = tp->mss_cache = 536;
2049
2050 tp->reordering = sysctl_tcp_reordering;
317a76f9 2051 tp->ca_ops = &tcp_reno;
1da177e4
LT
2052
2053 sk->sk_state = TCP_CLOSE;
2054
2055 sk->sk_write_space = sk_stream_write_space;
2056 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
2057
2058 tp->af_specific = &ipv4_specific;
2059
2060 sk->sk_sndbuf = sysctl_tcp_wmem[1];
2061 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
2062
2063 atomic_inc(&tcp_sockets_allocated);
2064
2065 return 0;
2066}
2067
2068int tcp_v4_destroy_sock(struct sock *sk)
2069{
2070 struct tcp_sock *tp = tcp_sk(sk);
2071
2072 tcp_clear_xmit_timers(sk);
2073
317a76f9
SH
2074 tcp_cleanup_congestion_control(tp);
2075
1da177e4
LT
2076 /* Cleanup up the write buffer. */
2077 sk_stream_writequeue_purge(sk);
2078
2079 /* Cleans up our, hopefully empty, out_of_order_queue. */
2080 __skb_queue_purge(&tp->out_of_order_queue);
2081
2082 /* Clean prequeue, it must be empty really */
2083 __skb_queue_purge(&tp->ucopy.prequeue);
2084
2085 /* Clean up a referenced TCP bind bucket. */
2086 if (tp->bind_hash)
2087 tcp_put_port(sk);
2088
2089 /*
2090 * If sendmsg cached page exists, toss it.
2091 */
2092 if (sk->sk_sndmsg_page) {
2093 __free_page(sk->sk_sndmsg_page);
2094 sk->sk_sndmsg_page = NULL;
2095 }
2096
2097 atomic_dec(&tcp_sockets_allocated);
2098
2099 return 0;
2100}
2101
2102EXPORT_SYMBOL(tcp_v4_destroy_sock);
2103
2104#ifdef CONFIG_PROC_FS
2105/* Proc filesystem TCP sock list dumping. */
2106
2107static inline struct tcp_tw_bucket *tw_head(struct hlist_head *head)
2108{
2109 return hlist_empty(head) ? NULL :
2110 list_entry(head->first, struct tcp_tw_bucket, tw_node);
2111}
2112
2113static inline struct tcp_tw_bucket *tw_next(struct tcp_tw_bucket *tw)
2114{
2115 return tw->tw_node.next ?
2116 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
2117}
2118
2119static void *listening_get_next(struct seq_file *seq, void *cur)
2120{
2121 struct tcp_sock *tp;
2122 struct hlist_node *node;
2123 struct sock *sk = cur;
2124 struct tcp_iter_state* st = seq->private;
2125
2126 if (!sk) {
2127 st->bucket = 0;
2128 sk = sk_head(&tcp_listening_hash[0]);
2129 goto get_sk;
2130 }
2131
2132 ++st->num;
2133
2134 if (st->state == TCP_SEQ_STATE_OPENREQ) {
60236fdd 2135 struct request_sock *req = cur;
1da177e4
LT
2136
2137 tp = tcp_sk(st->syn_wait_sk);
2138 req = req->dl_next;
2139 while (1) {
2140 while (req) {
60236fdd 2141 if (req->rsk_ops->family == st->family) {
1da177e4
LT
2142 cur = req;
2143 goto out;
2144 }
2145 req = req->dl_next;
2146 }
2147 if (++st->sbucket >= TCP_SYNQ_HSIZE)
2148 break;
2149get_req:
0e87506f 2150 req = tp->accept_queue.listen_opt->syn_table[st->sbucket];
1da177e4
LT
2151 }
2152 sk = sk_next(st->syn_wait_sk);
2153 st->state = TCP_SEQ_STATE_LISTENING;
0e87506f 2154 read_unlock_bh(&tp->accept_queue.syn_wait_lock);
1da177e4
LT
2155 } else {
2156 tp = tcp_sk(sk);
0e87506f
ACM
2157 read_lock_bh(&tp->accept_queue.syn_wait_lock);
2158 if (reqsk_queue_len(&tp->accept_queue))
1da177e4 2159 goto start_req;
0e87506f 2160 read_unlock_bh(&tp->accept_queue.syn_wait_lock);
1da177e4
LT
2161 sk = sk_next(sk);
2162 }
2163get_sk:
2164 sk_for_each_from(sk, node) {
2165 if (sk->sk_family == st->family) {
2166 cur = sk;
2167 goto out;
2168 }
2169 tp = tcp_sk(sk);
0e87506f
ACM
2170 read_lock_bh(&tp->accept_queue.syn_wait_lock);
2171 if (reqsk_queue_len(&tp->accept_queue)) {
1da177e4
LT
2172start_req:
2173 st->uid = sock_i_uid(sk);
2174 st->syn_wait_sk = sk;
2175 st->state = TCP_SEQ_STATE_OPENREQ;
2176 st->sbucket = 0;
2177 goto get_req;
2178 }
0e87506f 2179 read_unlock_bh(&tp->accept_queue.syn_wait_lock);
1da177e4
LT
2180 }
2181 if (++st->bucket < TCP_LHTABLE_SIZE) {
2182 sk = sk_head(&tcp_listening_hash[st->bucket]);
2183 goto get_sk;
2184 }
2185 cur = NULL;
2186out:
2187 return cur;
2188}
2189
2190static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2191{
2192 void *rc = listening_get_next(seq, NULL);
2193
2194 while (rc && *pos) {
2195 rc = listening_get_next(seq, rc);
2196 --*pos;
2197 }
2198 return rc;
2199}
2200
2201static void *established_get_first(struct seq_file *seq)
2202{
2203 struct tcp_iter_state* st = seq->private;
2204 void *rc = NULL;
2205
2206 for (st->bucket = 0; st->bucket < tcp_ehash_size; ++st->bucket) {
2207 struct sock *sk;
2208 struct hlist_node *node;
2209 struct tcp_tw_bucket *tw;
2210
2211 /* We can reschedule _before_ having picked the target: */
2212 cond_resched_softirq();
2213
2214 read_lock(&tcp_ehash[st->bucket].lock);
2215 sk_for_each(sk, node, &tcp_ehash[st->bucket].chain) {
2216 if (sk->sk_family != st->family) {
2217 continue;
2218 }
2219 rc = sk;
2220 goto out;
2221 }
2222 st->state = TCP_SEQ_STATE_TIME_WAIT;
2223 tw_for_each(tw, node,
2224 &tcp_ehash[st->bucket + tcp_ehash_size].chain) {
2225 if (tw->tw_family != st->family) {
2226 continue;
2227 }
2228 rc = tw;
2229 goto out;
2230 }
2231 read_unlock(&tcp_ehash[st->bucket].lock);
2232 st->state = TCP_SEQ_STATE_ESTABLISHED;
2233 }
2234out:
2235 return rc;
2236}
2237
2238static void *established_get_next(struct seq_file *seq, void *cur)
2239{
2240 struct sock *sk = cur;
2241 struct tcp_tw_bucket *tw;
2242 struct hlist_node *node;
2243 struct tcp_iter_state* st = seq->private;
2244
2245 ++st->num;
2246
2247 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2248 tw = cur;
2249 tw = tw_next(tw);
2250get_tw:
2251 while (tw && tw->tw_family != st->family) {
2252 tw = tw_next(tw);
2253 }
2254 if (tw) {
2255 cur = tw;
2256 goto out;
2257 }
2258 read_unlock(&tcp_ehash[st->bucket].lock);
2259 st->state = TCP_SEQ_STATE_ESTABLISHED;
2260
2261 /* We can reschedule between buckets: */
2262 cond_resched_softirq();
2263
2264 if (++st->bucket < tcp_ehash_size) {
2265 read_lock(&tcp_ehash[st->bucket].lock);
2266 sk = sk_head(&tcp_ehash[st->bucket].chain);
2267 } else {
2268 cur = NULL;
2269 goto out;
2270 }
2271 } else
2272 sk = sk_next(sk);
2273
2274 sk_for_each_from(sk, node) {
2275 if (sk->sk_family == st->family)
2276 goto found;
2277 }
2278
2279 st->state = TCP_SEQ_STATE_TIME_WAIT;
2280 tw = tw_head(&tcp_ehash[st->bucket + tcp_ehash_size].chain);
2281 goto get_tw;
2282found:
2283 cur = sk;
2284out:
2285 return cur;
2286}
2287
2288static void *established_get_idx(struct seq_file *seq, loff_t pos)
2289{
2290 void *rc = established_get_first(seq);
2291
2292 while (rc && pos) {
2293 rc = established_get_next(seq, rc);
2294 --pos;
2295 }
2296 return rc;
2297}
2298
2299static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2300{
2301 void *rc;
2302 struct tcp_iter_state* st = seq->private;
2303
2304 tcp_listen_lock();
2305 st->state = TCP_SEQ_STATE_LISTENING;
2306 rc = listening_get_idx(seq, &pos);
2307
2308 if (!rc) {
2309 tcp_listen_unlock();
2310 local_bh_disable();
2311 st->state = TCP_SEQ_STATE_ESTABLISHED;
2312 rc = established_get_idx(seq, pos);
2313 }
2314
2315 return rc;
2316}
2317
2318static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2319{
2320 struct tcp_iter_state* st = seq->private;
2321 st->state = TCP_SEQ_STATE_LISTENING;
2322 st->num = 0;
2323 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2324}
2325
2326static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2327{
2328 void *rc = NULL;
2329 struct tcp_iter_state* st;
2330
2331 if (v == SEQ_START_TOKEN) {
2332 rc = tcp_get_idx(seq, 0);
2333 goto out;
2334 }
2335 st = seq->private;
2336
2337 switch (st->state) {
2338 case TCP_SEQ_STATE_OPENREQ:
2339 case TCP_SEQ_STATE_LISTENING:
2340 rc = listening_get_next(seq, v);
2341 if (!rc) {
2342 tcp_listen_unlock();
2343 local_bh_disable();
2344 st->state = TCP_SEQ_STATE_ESTABLISHED;
2345 rc = established_get_first(seq);
2346 }
2347 break;
2348 case TCP_SEQ_STATE_ESTABLISHED:
2349 case TCP_SEQ_STATE_TIME_WAIT:
2350 rc = established_get_next(seq, v);
2351 break;
2352 }
2353out:
2354 ++*pos;
2355 return rc;
2356}
2357
2358static void tcp_seq_stop(struct seq_file *seq, void *v)
2359{
2360 struct tcp_iter_state* st = seq->private;
2361
2362 switch (st->state) {
2363 case TCP_SEQ_STATE_OPENREQ:
2364 if (v) {
2365 struct tcp_sock *tp = tcp_sk(st->syn_wait_sk);
0e87506f 2366 read_unlock_bh(&tp->accept_queue.syn_wait_lock);
1da177e4
LT
2367 }
2368 case TCP_SEQ_STATE_LISTENING:
2369 if (v != SEQ_START_TOKEN)
2370 tcp_listen_unlock();
2371 break;
2372 case TCP_SEQ_STATE_TIME_WAIT:
2373 case TCP_SEQ_STATE_ESTABLISHED:
2374 if (v)
2375 read_unlock(&tcp_ehash[st->bucket].lock);
2376 local_bh_enable();
2377 break;
2378 }
2379}
2380
2381static int tcp_seq_open(struct inode *inode, struct file *file)
2382{
2383 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2384 struct seq_file *seq;
2385 struct tcp_iter_state *s;
2386 int rc;
2387
2388 if (unlikely(afinfo == NULL))
2389 return -EINVAL;
2390
2391 s = kmalloc(sizeof(*s), GFP_KERNEL);
2392 if (!s)
2393 return -ENOMEM;
2394 memset(s, 0, sizeof(*s));
2395 s->family = afinfo->family;
2396 s->seq_ops.start = tcp_seq_start;
2397 s->seq_ops.next = tcp_seq_next;
2398 s->seq_ops.show = afinfo->seq_show;
2399 s->seq_ops.stop = tcp_seq_stop;
2400
2401 rc = seq_open(file, &s->seq_ops);
2402 if (rc)
2403 goto out_kfree;
2404 seq = file->private_data;
2405 seq->private = s;
2406out:
2407 return rc;
2408out_kfree:
2409 kfree(s);
2410 goto out;
2411}
2412
2413int tcp_proc_register(struct tcp_seq_afinfo *afinfo)
2414{
2415 int rc = 0;
2416 struct proc_dir_entry *p;
2417
2418 if (!afinfo)
2419 return -EINVAL;
2420 afinfo->seq_fops->owner = afinfo->owner;
2421 afinfo->seq_fops->open = tcp_seq_open;
2422 afinfo->seq_fops->read = seq_read;
2423 afinfo->seq_fops->llseek = seq_lseek;
2424 afinfo->seq_fops->release = seq_release_private;
2425
2426 p = proc_net_fops_create(afinfo->name, S_IRUGO, afinfo->seq_fops);
2427 if (p)
2428 p->data = afinfo;
2429 else
2430 rc = -ENOMEM;
2431 return rc;
2432}
2433
2434void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo)
2435{
2436 if (!afinfo)
2437 return;
2438 proc_net_remove(afinfo->name);
2439 memset(afinfo->seq_fops, 0, sizeof(*afinfo->seq_fops));
2440}
2441
60236fdd 2442static void get_openreq4(struct sock *sk, struct request_sock *req,
1da177e4
LT
2443 char *tmpbuf, int i, int uid)
2444{
2e6599cb 2445 const struct inet_request_sock *ireq = inet_rsk(req);
1da177e4
LT
2446 int ttd = req->expires - jiffies;
2447
2448 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2449 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
2450 i,
2e6599cb 2451 ireq->loc_addr,
1da177e4 2452 ntohs(inet_sk(sk)->sport),
2e6599cb
ACM
2453 ireq->rmt_addr,
2454 ntohs(ireq->rmt_port),
1da177e4
LT
2455 TCP_SYN_RECV,
2456 0, 0, /* could print option size, but that is af dependent. */
2457 1, /* timers active (only the expire timer) */
2458 jiffies_to_clock_t(ttd),
2459 req->retrans,
2460 uid,
2461 0, /* non standard timer */
2462 0, /* open_requests have no inode */
2463 atomic_read(&sk->sk_refcnt),
2464 req);
2465}
2466
2467static void get_tcp4_sock(struct sock *sp, char *tmpbuf, int i)
2468{
2469 int timer_active;
2470 unsigned long timer_expires;
2471 struct tcp_sock *tp = tcp_sk(sp);
2472 struct inet_sock *inet = inet_sk(sp);
2473 unsigned int dest = inet->daddr;
2474 unsigned int src = inet->rcv_saddr;
2475 __u16 destp = ntohs(inet->dport);
2476 __u16 srcp = ntohs(inet->sport);
2477
2478 if (tp->pending == TCP_TIME_RETRANS) {
2479 timer_active = 1;
2480 timer_expires = tp->timeout;
2481 } else if (tp->pending == TCP_TIME_PROBE0) {
2482 timer_active = 4;
2483 timer_expires = tp->timeout;
2484 } else if (timer_pending(&sp->sk_timer)) {
2485 timer_active = 2;
2486 timer_expires = sp->sk_timer.expires;
2487 } else {
2488 timer_active = 0;
2489 timer_expires = jiffies;
2490 }
2491
2492 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2493 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
2494 i, src, srcp, dest, destp, sp->sk_state,
2495 tp->write_seq - tp->snd_una, tp->rcv_nxt - tp->copied_seq,
2496 timer_active,
2497 jiffies_to_clock_t(timer_expires - jiffies),
2498 tp->retransmits,
2499 sock_i_uid(sp),
2500 tp->probes_out,
2501 sock_i_ino(sp),
2502 atomic_read(&sp->sk_refcnt), sp,
2503 tp->rto, tp->ack.ato, (tp->ack.quick << 1) | tp->ack.pingpong,
2504 tp->snd_cwnd,
2505 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh);
2506}
2507
2508static void get_timewait4_sock(struct tcp_tw_bucket *tw, char *tmpbuf, int i)
2509{
2510 unsigned int dest, src;
2511 __u16 destp, srcp;
2512 int ttd = tw->tw_ttd - jiffies;
2513
2514 if (ttd < 0)
2515 ttd = 0;
2516
2517 dest = tw->tw_daddr;
2518 src = tw->tw_rcv_saddr;
2519 destp = ntohs(tw->tw_dport);
2520 srcp = ntohs(tw->tw_sport);
2521
2522 sprintf(tmpbuf, "%4d: %08X:%04X %08X:%04X"
2523 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
2524 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2525 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2526 atomic_read(&tw->tw_refcnt), tw);
2527}
2528
2529#define TMPSZ 150
2530
2531static int tcp4_seq_show(struct seq_file *seq, void *v)
2532{
2533 struct tcp_iter_state* st;
2534 char tmpbuf[TMPSZ + 1];
2535
2536 if (v == SEQ_START_TOKEN) {
2537 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2538 " sl local_address rem_address st tx_queue "
2539 "rx_queue tr tm->when retrnsmt uid timeout "
2540 "inode");
2541 goto out;
2542 }
2543 st = seq->private;
2544
2545 switch (st->state) {
2546 case TCP_SEQ_STATE_LISTENING:
2547 case TCP_SEQ_STATE_ESTABLISHED:
2548 get_tcp4_sock(v, tmpbuf, st->num);
2549 break;
2550 case TCP_SEQ_STATE_OPENREQ:
2551 get_openreq4(st->syn_wait_sk, v, tmpbuf, st->num, st->uid);
2552 break;
2553 case TCP_SEQ_STATE_TIME_WAIT:
2554 get_timewait4_sock(v, tmpbuf, st->num);
2555 break;
2556 }
2557 seq_printf(seq, "%-*s\n", TMPSZ - 1, tmpbuf);
2558out:
2559 return 0;
2560}
2561
2562static struct file_operations tcp4_seq_fops;
2563static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2564 .owner = THIS_MODULE,
2565 .name = "tcp",
2566 .family = AF_INET,
2567 .seq_show = tcp4_seq_show,
2568 .seq_fops = &tcp4_seq_fops,
2569};
2570
2571int __init tcp4_proc_init(void)
2572{
2573 return tcp_proc_register(&tcp4_seq_afinfo);
2574}
2575
2576void tcp4_proc_exit(void)
2577{
2578 tcp_proc_unregister(&tcp4_seq_afinfo);
2579}
2580#endif /* CONFIG_PROC_FS */
2581
2582struct proto tcp_prot = {
2583 .name = "TCP",
2584 .owner = THIS_MODULE,
2585 .close = tcp_close,
2586 .connect = tcp_v4_connect,
2587 .disconnect = tcp_disconnect,
2588 .accept = tcp_accept,
2589 .ioctl = tcp_ioctl,
2590 .init = tcp_v4_init_sock,
2591 .destroy = tcp_v4_destroy_sock,
2592 .shutdown = tcp_shutdown,
2593 .setsockopt = tcp_setsockopt,
2594 .getsockopt = tcp_getsockopt,
2595 .sendmsg = tcp_sendmsg,
2596 .recvmsg = tcp_recvmsg,
2597 .backlog_rcv = tcp_v4_do_rcv,
2598 .hash = tcp_v4_hash,
2599 .unhash = tcp_unhash,
2600 .get_port = tcp_v4_get_port,
2601 .enter_memory_pressure = tcp_enter_memory_pressure,
2602 .sockets_allocated = &tcp_sockets_allocated,
2603 .memory_allocated = &tcp_memory_allocated,
2604 .memory_pressure = &tcp_memory_pressure,
2605 .sysctl_mem = sysctl_tcp_mem,
2606 .sysctl_wmem = sysctl_tcp_wmem,
2607 .sysctl_rmem = sysctl_tcp_rmem,
2608 .max_header = MAX_TCP_HEADER,
2609 .obj_size = sizeof(struct tcp_sock),
60236fdd 2610 .rsk_prot = &tcp_request_sock_ops,
1da177e4
LT
2611};
2612
2613
2614
2615void __init tcp_v4_init(struct net_proto_family *ops)
2616{
2617 int err = sock_create_kern(PF_INET, SOCK_RAW, IPPROTO_TCP, &tcp_socket);
2618 if (err < 0)
2619 panic("Failed to create the TCP control socket.\n");
2620 tcp_socket->sk->sk_allocation = GFP_ATOMIC;
2621 inet_sk(tcp_socket->sk)->uc_ttl = -1;
2622
2623 /* Unhash it so that IP input processing does not even
2624 * see it, we do not wish this socket to see incoming
2625 * packets.
2626 */
2627 tcp_socket->sk->sk_prot->unhash(tcp_socket->sk);
2628}
2629
2630EXPORT_SYMBOL(ipv4_specific);
2631EXPORT_SYMBOL(tcp_bind_hash);
2632EXPORT_SYMBOL(tcp_bucket_create);
2633EXPORT_SYMBOL(tcp_hashinfo);
2634EXPORT_SYMBOL(tcp_inherit_port);
2635EXPORT_SYMBOL(tcp_listen_wlock);
2636EXPORT_SYMBOL(tcp_port_rover);
2637EXPORT_SYMBOL(tcp_prot);
2638EXPORT_SYMBOL(tcp_put_port);
2639EXPORT_SYMBOL(tcp_unhash);
2640EXPORT_SYMBOL(tcp_v4_conn_request);
2641EXPORT_SYMBOL(tcp_v4_connect);
2642EXPORT_SYMBOL(tcp_v4_do_rcv);
2643EXPORT_SYMBOL(tcp_v4_rebuild_header);
2644EXPORT_SYMBOL(tcp_v4_remember_stamp);
2645EXPORT_SYMBOL(tcp_v4_send_check);
2646EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2647
2648#ifdef CONFIG_PROC_FS
2649EXPORT_SYMBOL(tcp_proc_register);
2650EXPORT_SYMBOL(tcp_proc_unregister);
2651#endif
2652EXPORT_SYMBOL(sysctl_local_port_range);
1da177e4
LT
2653EXPORT_SYMBOL(sysctl_tcp_low_latency);
2654EXPORT_SYMBOL(sysctl_tcp_tw_reuse);
2655