[TCP]: Correct reordering detection change (no FRTO case)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
89int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 90
ab32ea5d
BH
91int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
92int sysctl_tcp_abc __read_mostly;
1da177e4 93
1da177e4
LT
94#define FLAG_DATA 0x01 /* Incoming frame contained data. */
95#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
96#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
97#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
98#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
99#define FLAG_DATA_SACKED 0x20 /* New SACK. */
100#define FLAG_ECE 0x40 /* ECE in this ACK */
101#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
102#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 103#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
1da177e4
LT
104
105#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
108#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109
110#define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
111#define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
112#define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
113
4dc2665e
IJ
114#define IsSackFrto() (sysctl_tcp_frto == 0x2)
115
1da177e4
LT
116#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117
e905a9ed 118/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 119 * real world.
e905a9ed 120 */
40efc6fa
SH
121static void tcp_measure_rcv_mss(struct sock *sk,
122 const struct sk_buff *skb)
1da177e4 123{
463c84b9 124 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 126 unsigned int len;
1da177e4 127
e905a9ed 128 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
129
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
132 */
ff9b5e0f 133 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
139 *
140 * "len" is invariant segment length, including TCP header.
141 */
142 len += skb->data - skb->h.raw;
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
148 */
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
154 */
463c84b9
ACM
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
1da177e4 157 if (len == lss) {
463c84b9 158 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
159 return;
160 }
161 }
1ef9696c
AK
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
165 }
166}
167
463c84b9 168static void tcp_incr_quickack(struct sock *sk)
1da177e4 169{
463c84b9
ACM
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
172
173 if (quickacks==0)
174 quickacks=2;
463c84b9
ACM
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
177}
178
463c84b9 179void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 180{
463c84b9
ACM
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
185}
186
187/* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
189 */
190
463c84b9 191static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 192{
463c84b9
ACM
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
195}
196
197/* Buffer size and advertised window tuning.
198 *
199 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
200 */
201
202static void tcp_fixup_sndbuf(struct sock *sk)
203{
204 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
205 sizeof(struct sk_buff);
206
207 if (sk->sk_sndbuf < 3 * sndmem)
208 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
209}
210
211/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
212 *
213 * All tcp_full_space() is split to two parts: "network" buffer, allocated
214 * forward and advertised in receiver window (tp->rcv_wnd) and
215 * "application buffer", required to isolate scheduling/application
216 * latencies from network.
217 * window_clamp is maximal advertised window. It can be less than
218 * tcp_full_space(), in this case tcp_full_space() - window_clamp
219 * is reserved for "application" buffer. The less window_clamp is
220 * the smoother our behaviour from viewpoint of network, but the lower
221 * throughput and the higher sensitivity of the connection to losses. 8)
222 *
223 * rcv_ssthresh is more strict window_clamp used at "slow start"
224 * phase to predict further behaviour of this connection.
225 * It is used for two goals:
226 * - to enforce header prediction at sender, even when application
227 * requires some significant "application buffer". It is check #1.
228 * - to prevent pruning of receive queue because of misprediction
229 * of receiver window. Check #2.
230 *
231 * The scheme does not work when sender sends good segments opening
caa20d9a 232 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
233 * in common situations. Otherwise, we have to rely on queue collapsing.
234 */
235
236/* Slow part of check#2. */
463c84b9
ACM
237static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
238 const struct sk_buff *skb)
1da177e4
LT
239{
240 /* Optimize this! */
241 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 242 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
243
244 while (tp->rcv_ssthresh <= window) {
245 if (truesize <= skb->len)
463c84b9 246 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
247
248 truesize >>= 1;
249 window >>= 1;
250 }
251 return 0;
252}
253
40efc6fa
SH
254static void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
255 struct sk_buff *skb)
1da177e4
LT
256{
257 /* Check #1 */
258 if (tp->rcv_ssthresh < tp->window_clamp &&
259 (int)tp->rcv_ssthresh < tcp_space(sk) &&
260 !tcp_memory_pressure) {
261 int incr;
262
263 /* Check #2. Increase window, if skb with such overhead
264 * will fit to rcvbuf in future.
265 */
266 if (tcp_win_from_space(skb->truesize) <= skb->len)
267 incr = 2*tp->advmss;
268 else
269 incr = __tcp_grow_window(sk, tp, skb);
270
271 if (incr) {
272 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 273 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
274 }
275 }
276}
277
278/* 3. Tuning rcvbuf, when connection enters established state. */
279
280static void tcp_fixup_rcvbuf(struct sock *sk)
281{
282 struct tcp_sock *tp = tcp_sk(sk);
283 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
284
285 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 286 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
287 * (was 3; 4 is minimum to allow fast retransmit to work.)
288 */
289 while (tcp_win_from_space(rcvmem) < tp->advmss)
290 rcvmem += 128;
291 if (sk->sk_rcvbuf < 4 * rcvmem)
292 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
293}
294
caa20d9a 295/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
296 * established state.
297 */
298static void tcp_init_buffer_space(struct sock *sk)
299{
300 struct tcp_sock *tp = tcp_sk(sk);
301 int maxwin;
302
303 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
304 tcp_fixup_rcvbuf(sk);
305 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
306 tcp_fixup_sndbuf(sk);
307
308 tp->rcvq_space.space = tp->rcv_wnd;
309
310 maxwin = tcp_full_space(sk);
311
312 if (tp->window_clamp >= maxwin) {
313 tp->window_clamp = maxwin;
314
315 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
316 tp->window_clamp = max(maxwin -
317 (maxwin >> sysctl_tcp_app_win),
318 4 * tp->advmss);
319 }
320
321 /* Force reservation of one segment. */
322 if (sysctl_tcp_app_win &&
323 tp->window_clamp > 2 * tp->advmss &&
324 tp->window_clamp + tp->advmss > maxwin)
325 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
326
327 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
328 tp->snd_cwnd_stamp = tcp_time_stamp;
329}
330
1da177e4
LT
331/* 5. Recalculate window clamp after socket hit its memory bounds. */
332static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
333{
6687e988 334 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 335
6687e988 336 icsk->icsk_ack.quick = 0;
1da177e4 337
326f36e9
JH
338 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
339 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
340 !tcp_memory_pressure &&
341 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
342 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
343 sysctl_tcp_rmem[2]);
1da177e4 344 }
326f36e9 345 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 346 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
347}
348
40efc6fa
SH
349
350/* Initialize RCV_MSS value.
351 * RCV_MSS is an our guess about MSS used by the peer.
352 * We haven't any direct information about the MSS.
353 * It's better to underestimate the RCV_MSS rather than overestimate.
354 * Overestimations make us ACKing less frequently than needed.
355 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
356 */
357void tcp_initialize_rcv_mss(struct sock *sk)
358{
359 struct tcp_sock *tp = tcp_sk(sk);
360 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
361
362 hint = min(hint, tp->rcv_wnd/2);
363 hint = min(hint, TCP_MIN_RCVMSS);
364 hint = max(hint, TCP_MIN_MSS);
365
366 inet_csk(sk)->icsk_ack.rcv_mss = hint;
367}
368
1da177e4
LT
369/* Receiver "autotuning" code.
370 *
371 * The algorithm for RTT estimation w/o timestamps is based on
372 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
373 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
374 *
375 * More detail on this code can be found at
376 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
377 * though this reference is out of date. A new paper
378 * is pending.
379 */
380static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
381{
382 u32 new_sample = tp->rcv_rtt_est.rtt;
383 long m = sample;
384
385 if (m == 0)
386 m = 1;
387
388 if (new_sample != 0) {
389 /* If we sample in larger samples in the non-timestamp
390 * case, we could grossly overestimate the RTT especially
391 * with chatty applications or bulk transfer apps which
392 * are stalled on filesystem I/O.
393 *
394 * Also, since we are only going for a minimum in the
31f34269 395 * non-timestamp case, we do not smooth things out
caa20d9a 396 * else with timestamps disabled convergence takes too
1da177e4
LT
397 * long.
398 */
399 if (!win_dep) {
400 m -= (new_sample >> 3);
401 new_sample += m;
402 } else if (m < new_sample)
403 new_sample = m << 3;
404 } else {
caa20d9a 405 /* No previous measure. */
1da177e4
LT
406 new_sample = m << 3;
407 }
408
409 if (tp->rcv_rtt_est.rtt != new_sample)
410 tp->rcv_rtt_est.rtt = new_sample;
411}
412
413static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
414{
415 if (tp->rcv_rtt_est.time == 0)
416 goto new_measure;
417 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
418 return;
419 tcp_rcv_rtt_update(tp,
420 jiffies - tp->rcv_rtt_est.time,
421 1);
422
423new_measure:
424 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
425 tp->rcv_rtt_est.time = tcp_time_stamp;
426}
427
463c84b9 428static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 429{
463c84b9 430 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
431 if (tp->rx_opt.rcv_tsecr &&
432 (TCP_SKB_CB(skb)->end_seq -
463c84b9 433 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
434 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
435}
436
437/*
438 * This function should be called every time data is copied to user space.
439 * It calculates the appropriate TCP receive buffer space.
440 */
441void tcp_rcv_space_adjust(struct sock *sk)
442{
443 struct tcp_sock *tp = tcp_sk(sk);
444 int time;
445 int space;
e905a9ed 446
1da177e4
LT
447 if (tp->rcvq_space.time == 0)
448 goto new_measure;
e905a9ed 449
1da177e4
LT
450 time = tcp_time_stamp - tp->rcvq_space.time;
451 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
452 tp->rcv_rtt_est.rtt == 0)
453 return;
e905a9ed 454
1da177e4
LT
455 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
456
457 space = max(tp->rcvq_space.space, space);
458
459 if (tp->rcvq_space.space != space) {
460 int rcvmem;
461
462 tp->rcvq_space.space = space;
463
6fcf9412
JH
464 if (sysctl_tcp_moderate_rcvbuf &&
465 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
466 int new_clamp = space;
467
468 /* Receive space grows, normalize in order to
469 * take into account packet headers and sk_buff
470 * structure overhead.
471 */
472 space /= tp->advmss;
473 if (!space)
474 space = 1;
475 rcvmem = (tp->advmss + MAX_TCP_HEADER +
476 16 + sizeof(struct sk_buff));
477 while (tcp_win_from_space(rcvmem) < tp->advmss)
478 rcvmem += 128;
479 space *= rcvmem;
480 space = min(space, sysctl_tcp_rmem[2]);
481 if (space > sk->sk_rcvbuf) {
482 sk->sk_rcvbuf = space;
483
484 /* Make the window clamp follow along. */
485 tp->window_clamp = new_clamp;
486 }
487 }
488 }
e905a9ed 489
1da177e4
LT
490new_measure:
491 tp->rcvq_space.seq = tp->copied_seq;
492 tp->rcvq_space.time = tcp_time_stamp;
493}
494
495/* There is something which you must keep in mind when you analyze the
496 * behavior of the tp->ato delayed ack timeout interval. When a
497 * connection starts up, we want to ack as quickly as possible. The
498 * problem is that "good" TCP's do slow start at the beginning of data
499 * transmission. The means that until we send the first few ACK's the
500 * sender will sit on his end and only queue most of his data, because
501 * he can only send snd_cwnd unacked packets at any given time. For
502 * each ACK we send, he increments snd_cwnd and transmits more of his
503 * queue. -DaveM
504 */
505static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
506{
463c84b9 507 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
508 u32 now;
509
463c84b9 510 inet_csk_schedule_ack(sk);
1da177e4 511
463c84b9 512 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
513
514 tcp_rcv_rtt_measure(tp);
e905a9ed 515
1da177e4
LT
516 now = tcp_time_stamp;
517
463c84b9 518 if (!icsk->icsk_ack.ato) {
1da177e4
LT
519 /* The _first_ data packet received, initialize
520 * delayed ACK engine.
521 */
463c84b9
ACM
522 tcp_incr_quickack(sk);
523 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 524 } else {
463c84b9 525 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
526
527 if (m <= TCP_ATO_MIN/2) {
528 /* The fastest case is the first. */
463c84b9
ACM
529 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
530 } else if (m < icsk->icsk_ack.ato) {
531 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
532 if (icsk->icsk_ack.ato > icsk->icsk_rto)
533 icsk->icsk_ack.ato = icsk->icsk_rto;
534 } else if (m > icsk->icsk_rto) {
caa20d9a 535 /* Too long gap. Apparently sender failed to
1da177e4
LT
536 * restart window, so that we send ACKs quickly.
537 */
463c84b9 538 tcp_incr_quickack(sk);
1da177e4
LT
539 sk_stream_mem_reclaim(sk);
540 }
541 }
463c84b9 542 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
543
544 TCP_ECN_check_ce(tp, skb);
545
546 if (skb->len >= 128)
547 tcp_grow_window(sk, tp, skb);
548}
549
1da177e4
LT
550/* Called to compute a smoothed rtt estimate. The data fed to this
551 * routine either comes from timestamps, or from segments that were
552 * known _not_ to have been retransmitted [see Karn/Partridge
553 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
554 * piece by Van Jacobson.
555 * NOTE: the next three routines used to be one big routine.
556 * To save cycles in the RFC 1323 implementation it was better to break
557 * it up into three procedures. -- erics
558 */
2d2abbab 559static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 560{
6687e988 561 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
562 long m = mrtt; /* RTT */
563
1da177e4
LT
564 /* The following amusing code comes from Jacobson's
565 * article in SIGCOMM '88. Note that rtt and mdev
566 * are scaled versions of rtt and mean deviation.
e905a9ed 567 * This is designed to be as fast as possible
1da177e4
LT
568 * m stands for "measurement".
569 *
570 * On a 1990 paper the rto value is changed to:
571 * RTO = rtt + 4 * mdev
572 *
573 * Funny. This algorithm seems to be very broken.
574 * These formulae increase RTO, when it should be decreased, increase
31f34269 575 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
576 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
577 * does not matter how to _calculate_ it. Seems, it was trap
578 * that VJ failed to avoid. 8)
579 */
580 if(m == 0)
581 m = 1;
582 if (tp->srtt != 0) {
583 m -= (tp->srtt >> 3); /* m is now error in rtt est */
584 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
585 if (m < 0) {
586 m = -m; /* m is now abs(error) */
587 m -= (tp->mdev >> 2); /* similar update on mdev */
588 /* This is similar to one of Eifel findings.
589 * Eifel blocks mdev updates when rtt decreases.
590 * This solution is a bit different: we use finer gain
591 * for mdev in this case (alpha*beta).
592 * Like Eifel it also prevents growth of rto,
593 * but also it limits too fast rto decreases,
594 * happening in pure Eifel.
595 */
596 if (m > 0)
597 m >>= 3;
598 } else {
599 m -= (tp->mdev >> 2); /* similar update on mdev */
600 }
601 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
602 if (tp->mdev > tp->mdev_max) {
603 tp->mdev_max = tp->mdev;
604 if (tp->mdev_max > tp->rttvar)
605 tp->rttvar = tp->mdev_max;
606 }
607 if (after(tp->snd_una, tp->rtt_seq)) {
608 if (tp->mdev_max < tp->rttvar)
609 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
610 tp->rtt_seq = tp->snd_nxt;
611 tp->mdev_max = TCP_RTO_MIN;
612 }
613 } else {
614 /* no previous measure. */
615 tp->srtt = m<<3; /* take the measured time to be rtt */
616 tp->mdev = m<<1; /* make sure rto = 3*rtt */
617 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
618 tp->rtt_seq = tp->snd_nxt;
619 }
1da177e4
LT
620}
621
622/* Calculate rto without backoff. This is the second half of Van Jacobson's
623 * routine referred to above.
624 */
463c84b9 625static inline void tcp_set_rto(struct sock *sk)
1da177e4 626{
463c84b9 627 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
628 /* Old crap is replaced with new one. 8)
629 *
630 * More seriously:
631 * 1. If rtt variance happened to be less 50msec, it is hallucination.
632 * It cannot be less due to utterly erratic ACK generation made
633 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
634 * to do with delayed acks, because at cwnd>2 true delack timeout
635 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 636 * ACKs in some circumstances.
1da177e4 637 */
463c84b9 638 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
639
640 /* 2. Fixups made earlier cannot be right.
641 * If we do not estimate RTO correctly without them,
642 * all the algo is pure shit and should be replaced
caa20d9a 643 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
644 */
645}
646
647/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
648 * guarantees that rto is higher.
649 */
463c84b9 650static inline void tcp_bound_rto(struct sock *sk)
1da177e4 651{
463c84b9
ACM
652 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
653 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
654}
655
656/* Save metrics learned by this TCP session.
657 This function is called only, when TCP finishes successfully
658 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
659 */
660void tcp_update_metrics(struct sock *sk)
661{
662 struct tcp_sock *tp = tcp_sk(sk);
663 struct dst_entry *dst = __sk_dst_get(sk);
664
665 if (sysctl_tcp_nometrics_save)
666 return;
667
668 dst_confirm(dst);
669
670 if (dst && (dst->flags&DST_HOST)) {
6687e988 671 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
672 int m;
673
6687e988 674 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
675 /* This session failed to estimate rtt. Why?
676 * Probably, no packets returned in time.
677 * Reset our results.
678 */
679 if (!(dst_metric_locked(dst, RTAX_RTT)))
680 dst->metrics[RTAX_RTT-1] = 0;
681 return;
682 }
683
684 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
685
686 /* If newly calculated rtt larger than stored one,
687 * store new one. Otherwise, use EWMA. Remember,
688 * rtt overestimation is always better than underestimation.
689 */
690 if (!(dst_metric_locked(dst, RTAX_RTT))) {
691 if (m <= 0)
692 dst->metrics[RTAX_RTT-1] = tp->srtt;
693 else
694 dst->metrics[RTAX_RTT-1] -= (m>>3);
695 }
696
697 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
698 if (m < 0)
699 m = -m;
700
701 /* Scale deviation to rttvar fixed point */
702 m >>= 1;
703 if (m < tp->mdev)
704 m = tp->mdev;
705
706 if (m >= dst_metric(dst, RTAX_RTTVAR))
707 dst->metrics[RTAX_RTTVAR-1] = m;
708 else
709 dst->metrics[RTAX_RTTVAR-1] -=
710 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
711 }
712
713 if (tp->snd_ssthresh >= 0xFFFF) {
714 /* Slow start still did not finish. */
715 if (dst_metric(dst, RTAX_SSTHRESH) &&
716 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
717 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
718 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
719 if (!dst_metric_locked(dst, RTAX_CWND) &&
720 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
721 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
722 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 723 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
724 /* Cong. avoidance phase, cwnd is reliable. */
725 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
726 dst->metrics[RTAX_SSTHRESH-1] =
727 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
728 if (!dst_metric_locked(dst, RTAX_CWND))
729 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
730 } else {
731 /* Else slow start did not finish, cwnd is non-sense,
732 ssthresh may be also invalid.
733 */
734 if (!dst_metric_locked(dst, RTAX_CWND))
735 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
736 if (dst->metrics[RTAX_SSTHRESH-1] &&
737 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
738 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
739 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
740 }
741
742 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
743 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
744 tp->reordering != sysctl_tcp_reordering)
745 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
746 }
747 }
748}
749
750/* Numbers are taken from RFC2414. */
751__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
752{
753 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
754
755 if (!cwnd) {
c1b4a7e6 756 if (tp->mss_cache > 1460)
1da177e4
LT
757 cwnd = 2;
758 else
c1b4a7e6 759 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
760 }
761 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
762}
763
40efc6fa
SH
764/* Set slow start threshold and cwnd not falling to slow start */
765void tcp_enter_cwr(struct sock *sk)
766{
767 struct tcp_sock *tp = tcp_sk(sk);
768
769 tp->prior_ssthresh = 0;
770 tp->bytes_acked = 0;
771 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
772 tp->undo_marker = 0;
773 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
774 tp->snd_cwnd = min(tp->snd_cwnd,
775 tcp_packets_in_flight(tp) + 1U);
776 tp->snd_cwnd_cnt = 0;
777 tp->high_seq = tp->snd_nxt;
778 tp->snd_cwnd_stamp = tcp_time_stamp;
779 TCP_ECN_queue_cwr(tp);
780
781 tcp_set_ca_state(sk, TCP_CA_CWR);
782 }
783}
784
1da177e4
LT
785/* Initialize metrics on socket. */
786
787static void tcp_init_metrics(struct sock *sk)
788{
789 struct tcp_sock *tp = tcp_sk(sk);
790 struct dst_entry *dst = __sk_dst_get(sk);
791
792 if (dst == NULL)
793 goto reset;
794
795 dst_confirm(dst);
796
797 if (dst_metric_locked(dst, RTAX_CWND))
798 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
799 if (dst_metric(dst, RTAX_SSTHRESH)) {
800 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
801 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
802 tp->snd_ssthresh = tp->snd_cwnd_clamp;
803 }
804 if (dst_metric(dst, RTAX_REORDERING) &&
805 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
806 tp->rx_opt.sack_ok &= ~2;
807 tp->reordering = dst_metric(dst, RTAX_REORDERING);
808 }
809
810 if (dst_metric(dst, RTAX_RTT) == 0)
811 goto reset;
812
813 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
814 goto reset;
815
816 /* Initial rtt is determined from SYN,SYN-ACK.
817 * The segment is small and rtt may appear much
818 * less than real one. Use per-dst memory
819 * to make it more realistic.
820 *
821 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 822 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
823 * packets force peer to delay ACKs and calculation is correct too.
824 * The algorithm is adaptive and, provided we follow specs, it
825 * NEVER underestimate RTT. BUT! If peer tries to make some clever
826 * tricks sort of "quick acks" for time long enough to decrease RTT
827 * to low value, and then abruptly stops to do it and starts to delay
828 * ACKs, wait for troubles.
829 */
830 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
831 tp->srtt = dst_metric(dst, RTAX_RTT);
832 tp->rtt_seq = tp->snd_nxt;
833 }
834 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
835 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
836 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
837 }
463c84b9
ACM
838 tcp_set_rto(sk);
839 tcp_bound_rto(sk);
840 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
841 goto reset;
842 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
843 tp->snd_cwnd_stamp = tcp_time_stamp;
844 return;
845
846reset:
847 /* Play conservative. If timestamps are not
848 * supported, TCP will fail to recalculate correct
849 * rtt, if initial rto is too small. FORGET ALL AND RESET!
850 */
851 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
852 tp->srtt = 0;
853 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 854 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
855 }
856}
857
6687e988
ACM
858static void tcp_update_reordering(struct sock *sk, const int metric,
859 const int ts)
1da177e4 860{
6687e988 861 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
862 if (metric > tp->reordering) {
863 tp->reordering = min(TCP_MAX_REORDERING, metric);
864
865 /* This exciting event is worth to be remembered. 8) */
866 if (ts)
867 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
868 else if (IsReno(tp))
869 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
870 else if (IsFack(tp))
871 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
872 else
873 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
874#if FASTRETRANS_DEBUG > 1
875 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 876 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
877 tp->reordering,
878 tp->fackets_out,
879 tp->sacked_out,
880 tp->undo_marker ? tp->undo_retrans : 0);
881#endif
882 /* Disable FACK yet. */
883 tp->rx_opt.sack_ok &= ~2;
884 }
885}
886
887/* This procedure tags the retransmission queue when SACKs arrive.
888 *
889 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
890 * Packets in queue with these bits set are counted in variables
891 * sacked_out, retrans_out and lost_out, correspondingly.
892 *
893 * Valid combinations are:
894 * Tag InFlight Description
895 * 0 1 - orig segment is in flight.
896 * S 0 - nothing flies, orig reached receiver.
897 * L 0 - nothing flies, orig lost by net.
898 * R 2 - both orig and retransmit are in flight.
899 * L|R 1 - orig is lost, retransmit is in flight.
900 * S|R 1 - orig reached receiver, retrans is still in flight.
901 * (L|S|R is logically valid, it could occur when L|R is sacked,
902 * but it is equivalent to plain S and code short-curcuits it to S.
903 * L|S is logically invalid, it would mean -1 packet in flight 8))
904 *
905 * These 6 states form finite state machine, controlled by the following events:
906 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
907 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
908 * 3. Loss detection event of one of three flavors:
909 * A. Scoreboard estimator decided the packet is lost.
910 * A'. Reno "three dupacks" marks head of queue lost.
911 * A''. Its FACK modfication, head until snd.fack is lost.
912 * B. SACK arrives sacking data transmitted after never retransmitted
913 * hole was sent out.
914 * C. SACK arrives sacking SND.NXT at the moment, when the
915 * segment was retransmitted.
916 * 4. D-SACK added new rule: D-SACK changes any tag to S.
917 *
918 * It is pleasant to note, that state diagram turns out to be commutative,
919 * so that we are allowed not to be bothered by order of our actions,
920 * when multiple events arrive simultaneously. (see the function below).
921 *
922 * Reordering detection.
923 * --------------------
924 * Reordering metric is maximal distance, which a packet can be displaced
925 * in packet stream. With SACKs we can estimate it:
926 *
927 * 1. SACK fills old hole and the corresponding segment was not
928 * ever retransmitted -> reordering. Alas, we cannot use it
929 * when segment was retransmitted.
930 * 2. The last flaw is solved with D-SACK. D-SACK arrives
931 * for retransmitted and already SACKed segment -> reordering..
932 * Both of these heuristics are not used in Loss state, when we cannot
933 * account for retransmits accurately.
934 */
935static int
936tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
937{
6687e988 938 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
939 struct tcp_sock *tp = tcp_sk(sk);
940 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
269bd27e 941 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 942 struct sk_buff *cached_skb;
1da177e4
LT
943 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
944 int reord = tp->packets_out;
945 int prior_fackets;
946 u32 lost_retrans = 0;
947 int flag = 0;
6a438bbe 948 int dup_sack = 0;
fda03fbb 949 int cached_fack_count;
1da177e4 950 int i;
fda03fbb 951 int first_sack_index;
1da177e4 952
1da177e4
LT
953 if (!tp->sacked_out)
954 tp->fackets_out = 0;
955 prior_fackets = tp->fackets_out;
956
6f74651a
BE
957 /* Check for D-SACK. */
958 if (before(ntohl(sp[0].start_seq), TCP_SKB_CB(ack_skb)->ack_seq)) {
959 dup_sack = 1;
960 tp->rx_opt.sack_ok |= 4;
961 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
962 } else if (num_sacks > 1 &&
963 !after(ntohl(sp[0].end_seq), ntohl(sp[1].end_seq)) &&
964 !before(ntohl(sp[0].start_seq), ntohl(sp[1].start_seq))) {
965 dup_sack = 1;
966 tp->rx_opt.sack_ok |= 4;
967 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
968 }
969
970 /* D-SACK for already forgotten data...
971 * Do dumb counting. */
972 if (dup_sack &&
973 !after(ntohl(sp[0].end_seq), prior_snd_una) &&
974 after(ntohl(sp[0].end_seq), tp->undo_marker))
975 tp->undo_retrans--;
976
977 /* Eliminate too old ACKs, but take into
978 * account more or less fresh ones, they can
979 * contain valid SACK info.
980 */
981 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
982 return 0;
983
6a438bbe
SH
984 /* SACK fastpath:
985 * if the only SACK change is the increase of the end_seq of
986 * the first block then only apply that SACK block
987 * and use retrans queue hinting otherwise slowpath */
988 flag = 1;
6f74651a
BE
989 for (i = 0; i < num_sacks; i++) {
990 __be32 start_seq = sp[i].start_seq;
991 __be32 end_seq = sp[i].end_seq;
6a438bbe 992
6f74651a 993 if (i == 0) {
6a438bbe
SH
994 if (tp->recv_sack_cache[i].start_seq != start_seq)
995 flag = 0;
996 } else {
997 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
998 (tp->recv_sack_cache[i].end_seq != end_seq))
999 flag = 0;
1000 }
1001 tp->recv_sack_cache[i].start_seq = start_seq;
1002 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1003 }
8a3c3a97
BE
1004 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1005 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1006 tp->recv_sack_cache[i].start_seq = 0;
1007 tp->recv_sack_cache[i].end_seq = 0;
1008 }
6a438bbe 1009
fda03fbb 1010 first_sack_index = 0;
6a438bbe
SH
1011 if (flag)
1012 num_sacks = 1;
1013 else {
1014 int j;
1015 tp->fastpath_skb_hint = NULL;
1016
1017 /* order SACK blocks to allow in order walk of the retrans queue */
1018 for (i = num_sacks-1; i > 0; i--) {
1019 for (j = 0; j < i; j++){
1020 if (after(ntohl(sp[j].start_seq),
1021 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1022 struct tcp_sack_block_wire tmp;
1023
1024 tmp = sp[j];
1025 sp[j] = sp[j+1];
1026 sp[j+1] = tmp;
fda03fbb
BE
1027
1028 /* Track where the first SACK block goes to */
1029 if (j == first_sack_index)
1030 first_sack_index = j+1;
6a438bbe
SH
1031 }
1032
1033 }
1034 }
1035 }
1036
1037 /* clear flag as used for different purpose in following code */
1038 flag = 0;
1039
fda03fbb
BE
1040 /* Use SACK fastpath hint if valid */
1041 cached_skb = tp->fastpath_skb_hint;
1042 cached_fack_count = tp->fastpath_cnt_hint;
1043 if (!cached_skb) {
1044 cached_skb = sk->sk_write_queue.next;
1045 cached_fack_count = 0;
1046 }
1047
6a438bbe
SH
1048 for (i=0; i<num_sacks; i++, sp++) {
1049 struct sk_buff *skb;
1050 __u32 start_seq = ntohl(sp->start_seq);
1051 __u32 end_seq = ntohl(sp->end_seq);
1052 int fack_count;
1053
fda03fbb
BE
1054 skb = cached_skb;
1055 fack_count = cached_fack_count;
1da177e4
LT
1056
1057 /* Event "B" in the comment above. */
1058 if (after(end_seq, tp->high_seq))
1059 flag |= FLAG_DATA_LOST;
1060
6a438bbe 1061 sk_stream_for_retrans_queue_from(skb, sk) {
6475be16
DM
1062 int in_sack, pcount;
1063 u8 sacked;
1da177e4 1064
fda03fbb
BE
1065 cached_skb = skb;
1066 cached_fack_count = fack_count;
1067 if (i == first_sack_index) {
1068 tp->fastpath_skb_hint = skb;
1069 tp->fastpath_cnt_hint = fack_count;
1070 }
6a438bbe 1071
1da177e4
LT
1072 /* The retransmission queue is always in order, so
1073 * we can short-circuit the walk early.
1074 */
6475be16 1075 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1076 break;
1077
3c05d92e
HX
1078 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1079 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1080
6475be16
DM
1081 pcount = tcp_skb_pcount(skb);
1082
3c05d92e
HX
1083 if (pcount > 1 && !in_sack &&
1084 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1085 unsigned int pkt_len;
1086
3c05d92e
HX
1087 in_sack = !after(start_seq,
1088 TCP_SKB_CB(skb)->seq);
1089
1090 if (!in_sack)
6475be16
DM
1091 pkt_len = (start_seq -
1092 TCP_SKB_CB(skb)->seq);
1093 else
1094 pkt_len = (end_seq -
1095 TCP_SKB_CB(skb)->seq);
7967168c 1096 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1097 break;
1098 pcount = tcp_skb_pcount(skb);
1099 }
1100
1101 fack_count += pcount;
1da177e4 1102
6475be16
DM
1103 sacked = TCP_SKB_CB(skb)->sacked;
1104
1da177e4
LT
1105 /* Account D-SACK for retransmitted packet. */
1106 if ((dup_sack && in_sack) &&
1107 (sacked & TCPCB_RETRANS) &&
1108 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1109 tp->undo_retrans--;
1110
1111 /* The frame is ACKed. */
1112 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1113 if (sacked&TCPCB_RETRANS) {
1114 if ((dup_sack && in_sack) &&
1115 (sacked&TCPCB_SACKED_ACKED))
1116 reord = min(fack_count, reord);
1117 } else {
1118 /* If it was in a hole, we detected reordering. */
1119 if (fack_count < prior_fackets &&
1120 !(sacked&TCPCB_SACKED_ACKED))
1121 reord = min(fack_count, reord);
1122 }
1123
1124 /* Nothing to do; acked frame is about to be dropped. */
1125 continue;
1126 }
1127
1128 if ((sacked&TCPCB_SACKED_RETRANS) &&
1129 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1130 (!lost_retrans || after(end_seq, lost_retrans)))
1131 lost_retrans = end_seq;
1132
1133 if (!in_sack)
1134 continue;
1135
1136 if (!(sacked&TCPCB_SACKED_ACKED)) {
1137 if (sacked & TCPCB_SACKED_RETRANS) {
1138 /* If the segment is not tagged as lost,
1139 * we do not clear RETRANS, believing
1140 * that retransmission is still in flight.
1141 */
1142 if (sacked & TCPCB_LOST) {
1143 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1144 tp->lost_out -= tcp_skb_pcount(skb);
1145 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1146
1147 /* clear lost hint */
1148 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1149 }
1150 } else {
1151 /* New sack for not retransmitted frame,
1152 * which was in hole. It is reordering.
1153 */
1154 if (!(sacked & TCPCB_RETRANS) &&
1155 fack_count < prior_fackets)
1156 reord = min(fack_count, reord);
1157
1158 if (sacked & TCPCB_LOST) {
1159 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1160 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1161
1162 /* clear lost hint */
1163 tp->retransmit_skb_hint = NULL;
1da177e4 1164 }
4dc2665e
IJ
1165 /* SACK enhanced F-RTO detection.
1166 * Set flag if and only if non-rexmitted
1167 * segments below frto_highmark are
1168 * SACKed (RFC4138; Appendix B).
1169 * Clearing correct due to in-order walk
1170 */
1171 if (after(end_seq, tp->frto_highmark)) {
1172 flag &= ~FLAG_ONLY_ORIG_SACKED;
1173 } else {
1174 if (!(sacked & TCPCB_RETRANS))
1175 flag |= FLAG_ONLY_ORIG_SACKED;
1176 }
1da177e4
LT
1177 }
1178
1179 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1180 flag |= FLAG_DATA_SACKED;
1181 tp->sacked_out += tcp_skb_pcount(skb);
1182
1183 if (fack_count > tp->fackets_out)
1184 tp->fackets_out = fack_count;
1185 } else {
1186 if (dup_sack && (sacked&TCPCB_RETRANS))
1187 reord = min(fack_count, reord);
1188 }
1189
1190 /* D-SACK. We can detect redundant retransmission
1191 * in S|R and plain R frames and clear it.
1192 * undo_retrans is decreased above, L|R frames
1193 * are accounted above as well.
1194 */
1195 if (dup_sack &&
1196 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1197 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1198 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1199 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1200 }
1201 }
1202 }
1203
1204 /* Check for lost retransmit. This superb idea is
1205 * borrowed from "ratehalving". Event "C".
1206 * Later note: FACK people cheated me again 8),
1207 * we have to account for reordering! Ugly,
1208 * but should help.
1209 */
6687e988 1210 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1211 struct sk_buff *skb;
1212
1213 sk_stream_for_retrans_queue(skb, sk) {
1214 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1215 break;
1216 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1217 continue;
1218 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1219 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1220 (IsFack(tp) ||
1221 !before(lost_retrans,
1222 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1223 tp->mss_cache))) {
1da177e4
LT
1224 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1225 tp->retrans_out -= tcp_skb_pcount(skb);
1226
6a438bbe
SH
1227 /* clear lost hint */
1228 tp->retransmit_skb_hint = NULL;
1229
1da177e4
LT
1230 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1231 tp->lost_out += tcp_skb_pcount(skb);
1232 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1233 flag |= FLAG_DATA_SACKED;
1234 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1235 }
1236 }
1237 }
1238 }
1239
1240 tp->left_out = tp->sacked_out + tp->lost_out;
1241
288035f9 1242 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1243 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1244 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1245
1246#if FASTRETRANS_DEBUG > 0
1247 BUG_TRAP((int)tp->sacked_out >= 0);
1248 BUG_TRAP((int)tp->lost_out >= 0);
1249 BUG_TRAP((int)tp->retrans_out >= 0);
1250 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1251#endif
1252 return flag;
1253}
1254
30935cf4
IJ
1255/* F-RTO can only be used if these conditions are satisfied:
1256 * - there must be some unsent new data
1257 * - the advertised window should allow sending it
4dc2665e
IJ
1258 * - TCP has never retransmitted anything other than head (SACK enhanced
1259 * variant from Appendix B of RFC4138 is more robust here)
30935cf4 1260 */
46d0de4e 1261int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1262{
1263 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1264 struct sk_buff *skb;
1265
1266 if (!sysctl_tcp_frto || !sk->sk_send_head ||
1267 after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1268 tp->snd_una + tp->snd_wnd))
1269 return 0;
bdaae17d 1270
4dc2665e
IJ
1271 if (IsSackFrto())
1272 return 1;
1273
46d0de4e
IJ
1274 /* Avoid expensive walking of rexmit queue if possible */
1275 if (tp->retrans_out > 1)
1276 return 0;
1277
1278 skb = skb_peek(&sk->sk_write_queue)->next; /* Skips head */
1279 sk_stream_for_retrans_queue_from(skb, sk) {
1280 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1281 return 0;
1282 /* Short-circuit when first non-SACKed skb has been checked */
1283 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1284 break;
1285 }
1286 return 1;
bdaae17d
IJ
1287}
1288
30935cf4
IJ
1289/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1290 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1291 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1292 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1293 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1294 * bits are handled if the Loss state is really to be entered (in
1295 * tcp_enter_frto_loss).
7487c48c
IJ
1296 *
1297 * Do like tcp_enter_loss() would; when RTO expires the second time it
1298 * does:
1299 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1300 */
1301void tcp_enter_frto(struct sock *sk)
1302{
6687e988 1303 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1304 struct tcp_sock *tp = tcp_sk(sk);
1305 struct sk_buff *skb;
1306
7487c48c 1307 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1308 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1309 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1310 !icsk->icsk_retransmits)) {
6687e988 1311 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1312 /* Our state is too optimistic in ssthresh() call because cwnd
1313 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1314 * recovery has not yet completed. Pattern would be this: RTO,
1315 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1316 * up here twice).
1317 * RFC4138 should be more specific on what to do, even though
1318 * RTO is quite unlikely to occur after the first Cumulative ACK
1319 * due to back-off and complexity of triggering events ...
1320 */
1321 if (tp->frto_counter) {
1322 u32 stored_cwnd;
1323 stored_cwnd = tp->snd_cwnd;
1324 tp->snd_cwnd = 2;
1325 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1326 tp->snd_cwnd = stored_cwnd;
1327 } else {
1328 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1329 }
1330 /* ... in theory, cong.control module could do "any tricks" in
1331 * ssthresh(), which means that ca_state, lost bits and lost_out
1332 * counter would have to be faked before the call occurs. We
1333 * consider that too expensive, unlikely and hacky, so modules
1334 * using these in ssthresh() must deal these incompatibility
1335 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1336 */
6687e988 1337 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1338 }
1339
1da177e4
LT
1340 tp->undo_marker = tp->snd_una;
1341 tp->undo_retrans = 0;
1342
d1a54c6a
IJ
1343 skb = skb_peek(&sk->sk_write_queue);
1344 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1345 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1346 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4
LT
1347 }
1348 tcp_sync_left_out(tp);
1349
4dc2665e
IJ
1350 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1351 * The last condition is necessary at least in tp->frto_counter case.
1352 */
1353 if (IsSackFrto() && (tp->frto_counter ||
1354 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1355 after(tp->high_seq, tp->snd_una)) {
1356 tp->frto_highmark = tp->high_seq;
1357 } else {
1358 tp->frto_highmark = tp->snd_nxt;
1359 }
7b0eb22b
IJ
1360 tcp_set_ca_state(sk, TCP_CA_Disorder);
1361 tp->high_seq = tp->snd_nxt;
7487c48c 1362 tp->frto_counter = 1;
1da177e4
LT
1363}
1364
1365/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1366 * which indicates that we should follow the traditional RTO recovery,
1367 * i.e. mark everything lost and do go-back-N retransmission.
1368 */
d1a54c6a 1369static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1370{
1371 struct tcp_sock *tp = tcp_sk(sk);
1372 struct sk_buff *skb;
1373 int cnt = 0;
1374
1375 tp->sacked_out = 0;
1376 tp->lost_out = 0;
1377 tp->fackets_out = 0;
d1a54c6a 1378 tp->retrans_out = 0;
1da177e4
LT
1379
1380 sk_stream_for_retrans_queue(skb, sk) {
1381 cnt += tcp_skb_pcount(skb);
d1a54c6a
IJ
1382 /*
1383 * Count the retransmission made on RTO correctly (only when
1384 * waiting for the first ACK and did not get it)...
1385 */
1386 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1387 tp->retrans_out += tcp_skb_pcount(skb);
1388 /* ...enter this if branch just for the first segment */
1389 flag |= FLAG_DATA_ACKED;
1390 } else {
1391 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1392 }
1da177e4
LT
1393 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1394
1395 /* Do not mark those segments lost that were
1396 * forward transmitted after RTO
1397 */
1398 if (!after(TCP_SKB_CB(skb)->end_seq,
1399 tp->frto_highmark)) {
1400 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1401 tp->lost_out += tcp_skb_pcount(skb);
1402 }
1403 } else {
1404 tp->sacked_out += tcp_skb_pcount(skb);
1405 tp->fackets_out = cnt;
1406 }
1407 }
1408 tcp_sync_left_out(tp);
1409
95c4922b 1410 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1411 tp->snd_cwnd_cnt = 0;
1412 tp->snd_cwnd_stamp = tcp_time_stamp;
1413 tp->undo_marker = 0;
1414 tp->frto_counter = 0;
1415
1416 tp->reordering = min_t(unsigned int, tp->reordering,
1417 sysctl_tcp_reordering);
6687e988 1418 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1419 tp->high_seq = tp->frto_highmark;
1420 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1421
1422 clear_all_retrans_hints(tp);
1da177e4
LT
1423}
1424
1425void tcp_clear_retrans(struct tcp_sock *tp)
1426{
1427 tp->left_out = 0;
1428 tp->retrans_out = 0;
1429
1430 tp->fackets_out = 0;
1431 tp->sacked_out = 0;
1432 tp->lost_out = 0;
1433
1434 tp->undo_marker = 0;
1435 tp->undo_retrans = 0;
1436}
1437
1438/* Enter Loss state. If "how" is not zero, forget all SACK information
1439 * and reset tags completely, otherwise preserve SACKs. If receiver
1440 * dropped its ofo queue, we will know this due to reneging detection.
1441 */
1442void tcp_enter_loss(struct sock *sk, int how)
1443{
6687e988 1444 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1445 struct tcp_sock *tp = tcp_sk(sk);
1446 struct sk_buff *skb;
1447 int cnt = 0;
1448
1449 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1450 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1451 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1452 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1453 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1454 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1455 }
1456 tp->snd_cwnd = 1;
1457 tp->snd_cwnd_cnt = 0;
1458 tp->snd_cwnd_stamp = tcp_time_stamp;
1459
9772efb9 1460 tp->bytes_acked = 0;
1da177e4
LT
1461 tcp_clear_retrans(tp);
1462
1463 /* Push undo marker, if it was plain RTO and nothing
1464 * was retransmitted. */
1465 if (!how)
1466 tp->undo_marker = tp->snd_una;
1467
1468 sk_stream_for_retrans_queue(skb, sk) {
1469 cnt += tcp_skb_pcount(skb);
1470 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1471 tp->undo_marker = 0;
1472 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1473 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1474 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1475 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1476 tp->lost_out += tcp_skb_pcount(skb);
1477 } else {
1478 tp->sacked_out += tcp_skb_pcount(skb);
1479 tp->fackets_out = cnt;
1480 }
1481 }
1482 tcp_sync_left_out(tp);
1483
1484 tp->reordering = min_t(unsigned int, tp->reordering,
1485 sysctl_tcp_reordering);
6687e988 1486 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1487 tp->high_seq = tp->snd_nxt;
1488 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1489
1490 clear_all_retrans_hints(tp);
1da177e4
LT
1491}
1492
463c84b9 1493static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1494{
1495 struct sk_buff *skb;
1496
1497 /* If ACK arrived pointing to a remembered SACK,
1498 * it means that our remembered SACKs do not reflect
1499 * real state of receiver i.e.
1500 * receiver _host_ is heavily congested (or buggy).
1501 * Do processing similar to RTO timeout.
1502 */
1503 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1504 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1505 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1506 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1507
1508 tcp_enter_loss(sk, 1);
6687e988 1509 icsk->icsk_retransmits++;
1da177e4 1510 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
463c84b9 1511 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1512 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1513 return 1;
1514 }
1515 return 0;
1516}
1517
1518static inline int tcp_fackets_out(struct tcp_sock *tp)
1519{
1520 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1521}
1522
463c84b9 1523static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1524{
463c84b9 1525 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1526}
1527
1528static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1529{
1530 return tp->packets_out &&
463c84b9 1531 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1da177e4
LT
1532}
1533
1534/* Linux NewReno/SACK/FACK/ECN state machine.
1535 * --------------------------------------
1536 *
1537 * "Open" Normal state, no dubious events, fast path.
1538 * "Disorder" In all the respects it is "Open",
1539 * but requires a bit more attention. It is entered when
1540 * we see some SACKs or dupacks. It is split of "Open"
1541 * mainly to move some processing from fast path to slow one.
1542 * "CWR" CWND was reduced due to some Congestion Notification event.
1543 * It can be ECN, ICMP source quench, local device congestion.
1544 * "Recovery" CWND was reduced, we are fast-retransmitting.
1545 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1546 *
1547 * tcp_fastretrans_alert() is entered:
1548 * - each incoming ACK, if state is not "Open"
1549 * - when arrived ACK is unusual, namely:
1550 * * SACK
1551 * * Duplicate ACK.
1552 * * ECN ECE.
1553 *
1554 * Counting packets in flight is pretty simple.
1555 *
1556 * in_flight = packets_out - left_out + retrans_out
1557 *
1558 * packets_out is SND.NXT-SND.UNA counted in packets.
1559 *
1560 * retrans_out is number of retransmitted segments.
1561 *
1562 * left_out is number of segments left network, but not ACKed yet.
1563 *
1564 * left_out = sacked_out + lost_out
1565 *
1566 * sacked_out: Packets, which arrived to receiver out of order
1567 * and hence not ACKed. With SACKs this number is simply
1568 * amount of SACKed data. Even without SACKs
1569 * it is easy to give pretty reliable estimate of this number,
1570 * counting duplicate ACKs.
1571 *
1572 * lost_out: Packets lost by network. TCP has no explicit
1573 * "loss notification" feedback from network (for now).
1574 * It means that this number can be only _guessed_.
1575 * Actually, it is the heuristics to predict lossage that
1576 * distinguishes different algorithms.
1577 *
1578 * F.e. after RTO, when all the queue is considered as lost,
1579 * lost_out = packets_out and in_flight = retrans_out.
1580 *
1581 * Essentially, we have now two algorithms counting
1582 * lost packets.
1583 *
1584 * FACK: It is the simplest heuristics. As soon as we decided
1585 * that something is lost, we decide that _all_ not SACKed
1586 * packets until the most forward SACK are lost. I.e.
1587 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1588 * It is absolutely correct estimate, if network does not reorder
1589 * packets. And it loses any connection to reality when reordering
1590 * takes place. We use FACK by default until reordering
1591 * is suspected on the path to this destination.
1592 *
1593 * NewReno: when Recovery is entered, we assume that one segment
1594 * is lost (classic Reno). While we are in Recovery and
1595 * a partial ACK arrives, we assume that one more packet
1596 * is lost (NewReno). This heuristics are the same in NewReno
1597 * and SACK.
1598 *
1599 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1600 * deflation etc. CWND is real congestion window, never inflated, changes
1601 * only according to classic VJ rules.
1602 *
1603 * Really tricky (and requiring careful tuning) part of algorithm
1604 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1605 * The first determines the moment _when_ we should reduce CWND and,
1606 * hence, slow down forward transmission. In fact, it determines the moment
1607 * when we decide that hole is caused by loss, rather than by a reorder.
1608 *
1609 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1610 * holes, caused by lost packets.
1611 *
1612 * And the most logically complicated part of algorithm is undo
1613 * heuristics. We detect false retransmits due to both too early
1614 * fast retransmit (reordering) and underestimated RTO, analyzing
1615 * timestamps and D-SACKs. When we detect that some segments were
1616 * retransmitted by mistake and CWND reduction was wrong, we undo
1617 * window reduction and abort recovery phase. This logic is hidden
1618 * inside several functions named tcp_try_undo_<something>.
1619 */
1620
1621/* This function decides, when we should leave Disordered state
1622 * and enter Recovery phase, reducing congestion window.
1623 *
1624 * Main question: may we further continue forward transmission
1625 * with the same cwnd?
1626 */
1627static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1628{
1629 __u32 packets_out;
1630
52c63f1e
IJ
1631 /* Do not perform any recovery during FRTO algorithm */
1632 if (tp->frto_counter)
1633 return 0;
1634
1da177e4
LT
1635 /* Trick#1: The loss is proven. */
1636 if (tp->lost_out)
1637 return 1;
1638
1639 /* Not-A-Trick#2 : Classic rule... */
1640 if (tcp_fackets_out(tp) > tp->reordering)
1641 return 1;
1642
1643 /* Trick#3 : when we use RFC2988 timer restart, fast
1644 * retransmit can be triggered by timeout of queue head.
1645 */
1646 if (tcp_head_timedout(sk, tp))
1647 return 1;
1648
1649 /* Trick#4: It is still not OK... But will it be useful to delay
1650 * recovery more?
1651 */
1652 packets_out = tp->packets_out;
1653 if (packets_out <= tp->reordering &&
1654 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1655 !tcp_may_send_now(sk, tp)) {
1656 /* We have nothing to send. This connection is limited
1657 * either by receiver window or by application.
1658 */
1659 return 1;
1660 }
1661
1662 return 0;
1663}
1664
1665/* If we receive more dupacks than we expected counting segments
1666 * in assumption of absent reordering, interpret this as reordering.
1667 * The only another reason could be bug in receiver TCP.
1668 */
6687e988 1669static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1da177e4 1670{
6687e988 1671 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1672 u32 holes;
1673
1674 holes = max(tp->lost_out, 1U);
1675 holes = min(holes, tp->packets_out);
1676
1677 if ((tp->sacked_out + holes) > tp->packets_out) {
1678 tp->sacked_out = tp->packets_out - holes;
6687e988 1679 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1da177e4
LT
1680 }
1681}
1682
1683/* Emulate SACKs for SACKless connection: account for a new dupack. */
1684
6687e988 1685static void tcp_add_reno_sack(struct sock *sk)
1da177e4 1686{
6687e988 1687 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1688 tp->sacked_out++;
6687e988 1689 tcp_check_reno_reordering(sk, 0);
1da177e4
LT
1690 tcp_sync_left_out(tp);
1691}
1692
1693/* Account for ACK, ACKing some data in Reno Recovery phase. */
1694
1695static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1696{
1697 if (acked > 0) {
1698 /* One ACK acked hole. The rest eat duplicate ACKs. */
1699 if (acked-1 >= tp->sacked_out)
1700 tp->sacked_out = 0;
1701 else
1702 tp->sacked_out -= acked-1;
1703 }
6687e988 1704 tcp_check_reno_reordering(sk, acked);
1da177e4
LT
1705 tcp_sync_left_out(tp);
1706}
1707
1708static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1709{
1710 tp->sacked_out = 0;
1711 tp->left_out = tp->lost_out;
1712}
1713
1714/* Mark head of queue up as lost. */
1715static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1716 int packets, u32 high_seq)
1717{
1718 struct sk_buff *skb;
6a438bbe 1719 int cnt;
1da177e4 1720
6a438bbe
SH
1721 BUG_TRAP(packets <= tp->packets_out);
1722 if (tp->lost_skb_hint) {
1723 skb = tp->lost_skb_hint;
1724 cnt = tp->lost_cnt_hint;
1725 } else {
1726 skb = sk->sk_write_queue.next;
1727 cnt = 0;
1728 }
1da177e4 1729
6a438bbe
SH
1730 sk_stream_for_retrans_queue_from(skb, sk) {
1731 /* TODO: do this better */
1732 /* this is not the most efficient way to do this... */
1733 tp->lost_skb_hint = skb;
1734 tp->lost_cnt_hint = cnt;
1735 cnt += tcp_skb_pcount(skb);
1736 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1737 break;
1738 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1739 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1740 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1741
1742 /* clear xmit_retransmit_queue hints
1743 * if this is beyond hint */
1744 if(tp->retransmit_skb_hint != NULL &&
1745 before(TCP_SKB_CB(skb)->seq,
1746 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)) {
1747
1748 tp->retransmit_skb_hint = NULL;
1749 }
1da177e4
LT
1750 }
1751 }
1752 tcp_sync_left_out(tp);
1753}
1754
1755/* Account newly detected lost packet(s) */
1756
1757static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1758{
1759 if (IsFack(tp)) {
1760 int lost = tp->fackets_out - tp->reordering;
1761 if (lost <= 0)
1762 lost = 1;
1763 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1764 } else {
1765 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1766 }
1767
1768 /* New heuristics: it is possible only after we switched
1769 * to restart timer each time when something is ACKed.
1770 * Hence, we can detect timed out packets during fast
1771 * retransmit without falling to slow start.
1772 */
79320d7e 1773 if (!IsReno(tp) && tcp_head_timedout(sk, tp)) {
1da177e4
LT
1774 struct sk_buff *skb;
1775
6a438bbe
SH
1776 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
1777 : sk->sk_write_queue.next;
1778
1779 sk_stream_for_retrans_queue_from(skb, sk) {
1780 if (!tcp_skb_timedout(sk, skb))
1781 break;
1782
1783 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1784 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1785 tp->lost_out += tcp_skb_pcount(skb);
6a438bbe
SH
1786
1787 /* clear xmit_retrans hint */
1788 if (tp->retransmit_skb_hint &&
1789 before(TCP_SKB_CB(skb)->seq,
1790 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
1791
1792 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1793 }
1794 }
6a438bbe
SH
1795
1796 tp->scoreboard_skb_hint = skb;
1797
1da177e4
LT
1798 tcp_sync_left_out(tp);
1799 }
1800}
1801
1802/* CWND moderation, preventing bursts due to too big ACKs
1803 * in dubious situations.
1804 */
1805static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1806{
1807 tp->snd_cwnd = min(tp->snd_cwnd,
1808 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1809 tp->snd_cwnd_stamp = tcp_time_stamp;
1810}
1811
72dc5b92
SH
1812/* Lower bound on congestion window is slow start threshold
1813 * unless congestion avoidance choice decides to overide it.
1814 */
1815static inline u32 tcp_cwnd_min(const struct sock *sk)
1816{
1817 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1818
1819 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1820}
1821
1da177e4 1822/* Decrease cwnd each second ack. */
6687e988 1823static void tcp_cwnd_down(struct sock *sk)
1da177e4 1824{
6687e988 1825 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1826 int decr = tp->snd_cwnd_cnt + 1;
1da177e4
LT
1827
1828 tp->snd_cwnd_cnt = decr&1;
1829 decr >>= 1;
1830
72dc5b92 1831 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1da177e4
LT
1832 tp->snd_cwnd -= decr;
1833
1834 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1835 tp->snd_cwnd_stamp = tcp_time_stamp;
1836}
1837
1838/* Nothing was retransmitted or returned timestamp is less
1839 * than timestamp of the first retransmission.
1840 */
1841static inline int tcp_packet_delayed(struct tcp_sock *tp)
1842{
1843 return !tp->retrans_stamp ||
1844 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1845 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1846}
1847
1848/* Undo procedures. */
1849
1850#if FASTRETRANS_DEBUG > 1
1851static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1852{
1853 struct inet_sock *inet = inet_sk(sk);
1854 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1855 msg,
1856 NIPQUAD(inet->daddr), ntohs(inet->dport),
1857 tp->snd_cwnd, tp->left_out,
1858 tp->snd_ssthresh, tp->prior_ssthresh,
1859 tp->packets_out);
1860}
1861#else
1862#define DBGUNDO(x...) do { } while (0)
1863#endif
1864
6687e988 1865static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1866{
6687e988
ACM
1867 struct tcp_sock *tp = tcp_sk(sk);
1868
1da177e4 1869 if (tp->prior_ssthresh) {
6687e988
ACM
1870 const struct inet_connection_sock *icsk = inet_csk(sk);
1871
1872 if (icsk->icsk_ca_ops->undo_cwnd)
1873 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
1874 else
1875 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1876
1877 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1878 tp->snd_ssthresh = tp->prior_ssthresh;
1879 TCP_ECN_withdraw_cwr(tp);
1880 }
1881 } else {
1882 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1883 }
1884 tcp_moderate_cwnd(tp);
1885 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
1886
1887 /* There is something screwy going on with the retrans hints after
1888 an undo */
1889 clear_all_retrans_hints(tp);
1da177e4
LT
1890}
1891
1892static inline int tcp_may_undo(struct tcp_sock *tp)
1893{
1894 return tp->undo_marker &&
1895 (!tp->undo_retrans || tcp_packet_delayed(tp));
1896}
1897
1898/* People celebrate: "We love our President!" */
1899static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1900{
1901 if (tcp_may_undo(tp)) {
1902 /* Happy end! We did not retransmit anything
1903 * or our original transmission succeeded.
1904 */
6687e988
ACM
1905 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1906 tcp_undo_cwr(sk, 1);
1907 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
1908 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1909 else
1910 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1911 tp->undo_marker = 0;
1912 }
1913 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1914 /* Hold old state until something *above* high_seq
1915 * is ACKed. For Reno it is MUST to prevent false
1916 * fast retransmits (RFC2582). SACK TCP is safe. */
1917 tcp_moderate_cwnd(tp);
1918 return 1;
1919 }
6687e988 1920 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1921 return 0;
1922}
1923
1924/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1925static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1926{
1927 if (tp->undo_marker && !tp->undo_retrans) {
1928 DBGUNDO(sk, tp, "D-SACK");
6687e988 1929 tcp_undo_cwr(sk, 1);
1da177e4
LT
1930 tp->undo_marker = 0;
1931 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1932 }
1933}
1934
1935/* Undo during fast recovery after partial ACK. */
1936
1937static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1938 int acked)
1939{
1940 /* Partial ACK arrived. Force Hoe's retransmit. */
1941 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1942
1943 if (tcp_may_undo(tp)) {
1944 /* Plain luck! Hole if filled with delayed
1945 * packet, rather than with a retransmit.
1946 */
1947 if (tp->retrans_out == 0)
1948 tp->retrans_stamp = 0;
1949
6687e988 1950 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4
LT
1951
1952 DBGUNDO(sk, tp, "Hoe");
6687e988 1953 tcp_undo_cwr(sk, 0);
1da177e4
LT
1954 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1955
1956 /* So... Do not make Hoe's retransmit yet.
1957 * If the first packet was delayed, the rest
1958 * ones are most probably delayed as well.
1959 */
1960 failed = 0;
1961 }
1962 return failed;
1963}
1964
1965/* Undo during loss recovery after partial ACK. */
1966static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1967{
1968 if (tcp_may_undo(tp)) {
1969 struct sk_buff *skb;
1970 sk_stream_for_retrans_queue(skb, sk) {
1971 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1972 }
6a438bbe
SH
1973
1974 clear_all_retrans_hints(tp);
1975
1da177e4
LT
1976 DBGUNDO(sk, tp, "partial loss");
1977 tp->lost_out = 0;
1978 tp->left_out = tp->sacked_out;
6687e988 1979 tcp_undo_cwr(sk, 1);
1da177e4 1980 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 1981 inet_csk(sk)->icsk_retransmits = 0;
1da177e4
LT
1982 tp->undo_marker = 0;
1983 if (!IsReno(tp))
6687e988 1984 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
1985 return 1;
1986 }
1987 return 0;
1988}
1989
6687e988 1990static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 1991{
6687e988 1992 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 1993 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 1994 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 1995 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
1996}
1997
1998static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1999{
2000 tp->left_out = tp->sacked_out;
2001
2002 if (tp->retrans_out == 0)
2003 tp->retrans_stamp = 0;
2004
2005 if (flag&FLAG_ECE)
6687e988 2006 tcp_enter_cwr(sk);
1da177e4 2007
6687e988 2008 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2009 int state = TCP_CA_Open;
2010
2011 if (tp->left_out || tp->retrans_out || tp->undo_marker)
2012 state = TCP_CA_Disorder;
2013
6687e988
ACM
2014 if (inet_csk(sk)->icsk_ca_state != state) {
2015 tcp_set_ca_state(sk, state);
1da177e4
LT
2016 tp->high_seq = tp->snd_nxt;
2017 }
2018 tcp_moderate_cwnd(tp);
2019 } else {
6687e988 2020 tcp_cwnd_down(sk);
1da177e4
LT
2021 }
2022}
2023
5d424d5a
JH
2024static void tcp_mtup_probe_failed(struct sock *sk)
2025{
2026 struct inet_connection_sock *icsk = inet_csk(sk);
2027
2028 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2029 icsk->icsk_mtup.probe_size = 0;
2030}
2031
2032static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2033{
2034 struct tcp_sock *tp = tcp_sk(sk);
2035 struct inet_connection_sock *icsk = inet_csk(sk);
2036
2037 /* FIXME: breaks with very large cwnd */
2038 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2039 tp->snd_cwnd = tp->snd_cwnd *
2040 tcp_mss_to_mtu(sk, tp->mss_cache) /
2041 icsk->icsk_mtup.probe_size;
2042 tp->snd_cwnd_cnt = 0;
2043 tp->snd_cwnd_stamp = tcp_time_stamp;
2044 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2045
2046 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2047 icsk->icsk_mtup.probe_size = 0;
2048 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2049}
2050
2051
1da177e4
LT
2052/* Process an event, which can update packets-in-flight not trivially.
2053 * Main goal of this function is to calculate new estimate for left_out,
2054 * taking into account both packets sitting in receiver's buffer and
2055 * packets lost by network.
2056 *
2057 * Besides that it does CWND reduction, when packet loss is detected
2058 * and changes state of machine.
2059 *
2060 * It does _not_ decide what to send, it is made in function
2061 * tcp_xmit_retransmit_queue().
2062 */
2063static void
2064tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
2065 int prior_packets, int flag)
2066{
6687e988 2067 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2068 struct tcp_sock *tp = tcp_sk(sk);
2069 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
2070
2071 /* Some technical things:
2072 * 1. Reno does not count dupacks (sacked_out) automatically. */
2073 if (!tp->packets_out)
2074 tp->sacked_out = 0;
e905a9ed 2075 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
2076 if (tp->sacked_out == 0)
2077 tp->fackets_out = 0;
2078
e905a9ed 2079 /* Now state machine starts.
1da177e4
LT
2080 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2081 if (flag&FLAG_ECE)
2082 tp->prior_ssthresh = 0;
2083
2084 /* B. In all the states check for reneging SACKs. */
463c84b9 2085 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2086 return;
2087
2088 /* C. Process data loss notification, provided it is valid. */
2089 if ((flag&FLAG_DATA_LOST) &&
2090 before(tp->snd_una, tp->high_seq) &&
6687e988 2091 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4
LT
2092 tp->fackets_out > tp->reordering) {
2093 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
2094 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2095 }
2096
2097 /* D. Synchronize left_out to current state. */
2098 tcp_sync_left_out(tp);
2099
2100 /* E. Check state exit conditions. State can be terminated
2101 * when high_seq is ACKed. */
6687e988 2102 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2103 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2104 tp->retrans_stamp = 0;
2105 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2106 switch (icsk->icsk_ca_state) {
1da177e4 2107 case TCP_CA_Loss:
6687e988 2108 icsk->icsk_retransmits = 0;
1da177e4
LT
2109 if (tcp_try_undo_recovery(sk, tp))
2110 return;
2111 break;
2112
2113 case TCP_CA_CWR:
2114 /* CWR is to be held something *above* high_seq
2115 * is ACKed for CWR bit to reach receiver. */
2116 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2117 tcp_complete_cwr(sk);
2118 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2119 }
2120 break;
2121
2122 case TCP_CA_Disorder:
2123 tcp_try_undo_dsack(sk, tp);
2124 if (!tp->undo_marker ||
2125 /* For SACK case do not Open to allow to undo
2126 * catching for all duplicate ACKs. */
2127 IsReno(tp) || tp->snd_una != tp->high_seq) {
2128 tp->undo_marker = 0;
6687e988 2129 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2130 }
2131 break;
2132
2133 case TCP_CA_Recovery:
2134 if (IsReno(tp))
2135 tcp_reset_reno_sack(tp);
2136 if (tcp_try_undo_recovery(sk, tp))
2137 return;
6687e988 2138 tcp_complete_cwr(sk);
1da177e4
LT
2139 break;
2140 }
2141 }
2142
2143 /* F. Process state. */
6687e988 2144 switch (icsk->icsk_ca_state) {
1da177e4
LT
2145 case TCP_CA_Recovery:
2146 if (prior_snd_una == tp->snd_una) {
2147 if (IsReno(tp) && is_dupack)
6687e988 2148 tcp_add_reno_sack(sk);
1da177e4
LT
2149 } else {
2150 int acked = prior_packets - tp->packets_out;
2151 if (IsReno(tp))
2152 tcp_remove_reno_sacks(sk, tp, acked);
2153 is_dupack = tcp_try_undo_partial(sk, tp, acked);
2154 }
2155 break;
2156 case TCP_CA_Loss:
2157 if (flag&FLAG_DATA_ACKED)
6687e988 2158 icsk->icsk_retransmits = 0;
1da177e4
LT
2159 if (!tcp_try_undo_loss(sk, tp)) {
2160 tcp_moderate_cwnd(tp);
2161 tcp_xmit_retransmit_queue(sk);
2162 return;
2163 }
6687e988 2164 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2165 return;
2166 /* Loss is undone; fall through to processing in Open state. */
2167 default:
2168 if (IsReno(tp)) {
2169 if (tp->snd_una != prior_snd_una)
2170 tcp_reset_reno_sack(tp);
2171 if (is_dupack)
6687e988 2172 tcp_add_reno_sack(sk);
1da177e4
LT
2173 }
2174
6687e988 2175 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1da177e4
LT
2176 tcp_try_undo_dsack(sk, tp);
2177
2178 if (!tcp_time_to_recover(sk, tp)) {
2179 tcp_try_to_open(sk, tp, flag);
2180 return;
2181 }
2182
5d424d5a
JH
2183 /* MTU probe failure: don't reduce cwnd */
2184 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2185 icsk->icsk_mtup.probe_size &&
0e7b1368 2186 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2187 tcp_mtup_probe_failed(sk);
2188 /* Restores the reduction we did in tcp_mtup_probe() */
2189 tp->snd_cwnd++;
2190 tcp_simple_retransmit(sk);
2191 return;
2192 }
2193
1da177e4
LT
2194 /* Otherwise enter Recovery state */
2195
2196 if (IsReno(tp))
2197 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2198 else
2199 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2200
2201 tp->high_seq = tp->snd_nxt;
2202 tp->prior_ssthresh = 0;
2203 tp->undo_marker = tp->snd_una;
2204 tp->undo_retrans = tp->retrans_out;
2205
6687e988 2206 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2207 if (!(flag&FLAG_ECE))
6687e988
ACM
2208 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2209 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2210 TCP_ECN_queue_cwr(tp);
2211 }
2212
9772efb9 2213 tp->bytes_acked = 0;
1da177e4 2214 tp->snd_cwnd_cnt = 0;
6687e988 2215 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2216 }
2217
2218 if (is_dupack || tcp_head_timedout(sk, tp))
2219 tcp_update_scoreboard(sk, tp);
6687e988 2220 tcp_cwnd_down(sk);
1da177e4
LT
2221 tcp_xmit_retransmit_queue(sk);
2222}
2223
2224/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2225 * with this code. (Supersedes RFC1323)
1da177e4 2226 */
2d2abbab 2227static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2228{
1da177e4
LT
2229 /* RTTM Rule: A TSecr value received in a segment is used to
2230 * update the averaged RTT measurement only if the segment
2231 * acknowledges some new data, i.e., only if it advances the
2232 * left edge of the send window.
2233 *
2234 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2235 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2236 *
2237 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2238 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2239 * samples are accepted even from very old segments: f.e., when rtt=1
2240 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2241 * answer arrives rto becomes 120 seconds! If at least one of segments
2242 * in window is lost... Voila. --ANK (010210)
2243 */
463c84b9
ACM
2244 struct tcp_sock *tp = tcp_sk(sk);
2245 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2246 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2247 tcp_set_rto(sk);
2248 inet_csk(sk)->icsk_backoff = 0;
2249 tcp_bound_rto(sk);
1da177e4
LT
2250}
2251
2d2abbab 2252static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2253{
2254 /* We don't have a timestamp. Can only use
2255 * packets that are not retransmitted to determine
2256 * rtt estimates. Also, we must not reset the
2257 * backoff for rto until we get a non-retransmitted
2258 * packet. This allows us to deal with a situation
2259 * where the network delay has increased suddenly.
2260 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2261 */
2262
2263 if (flag & FLAG_RETRANS_DATA_ACKED)
2264 return;
2265
2d2abbab 2266 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2267 tcp_set_rto(sk);
2268 inet_csk(sk)->icsk_backoff = 0;
2269 tcp_bound_rto(sk);
1da177e4
LT
2270}
2271
463c84b9 2272static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2273 const s32 seq_rtt)
1da177e4 2274{
463c84b9 2275 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2276 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2277 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2278 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2279 else if (seq_rtt >= 0)
2d2abbab 2280 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2281}
2282
40efc6fa
SH
2283static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
2284 u32 in_flight, int good)
1da177e4 2285{
6687e988
ACM
2286 const struct inet_connection_sock *icsk = inet_csk(sk);
2287 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
2288 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2289}
2290
1da177e4
LT
2291/* Restart timer after forward progress on connection.
2292 * RFC2988 recommends to restart timer to now+rto.
2293 */
2294
40efc6fa 2295static void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1da177e4
LT
2296{
2297 if (!tp->packets_out) {
463c84b9 2298 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2299 } else {
3f421baa 2300 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2301 }
2302}
2303
1da177e4
LT
2304static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2305 __u32 now, __s32 *seq_rtt)
2306{
2307 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2308 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2309 __u32 seq = tp->snd_una;
2310 __u32 packets_acked;
2311 int acked = 0;
2312
2313 /* If we get here, the whole TSO packet has not been
2314 * acked.
2315 */
2316 BUG_ON(!after(scb->end_seq, seq));
2317
2318 packets_acked = tcp_skb_pcount(skb);
2319 if (tcp_trim_head(sk, skb, seq - scb->seq))
2320 return 0;
2321 packets_acked -= tcp_skb_pcount(skb);
2322
2323 if (packets_acked) {
2324 __u8 sacked = scb->sacked;
2325
2326 acked |= FLAG_DATA_ACKED;
2327 if (sacked) {
2328 if (sacked & TCPCB_RETRANS) {
2329 if (sacked & TCPCB_SACKED_RETRANS)
2330 tp->retrans_out -= packets_acked;
2331 acked |= FLAG_RETRANS_DATA_ACKED;
2332 *seq_rtt = -1;
2333 } else if (*seq_rtt < 0)
2334 *seq_rtt = now - scb->when;
2335 if (sacked & TCPCB_SACKED_ACKED)
2336 tp->sacked_out -= packets_acked;
2337 if (sacked & TCPCB_LOST)
2338 tp->lost_out -= packets_acked;
2339 if (sacked & TCPCB_URG) {
2340 if (tp->urg_mode &&
2341 !before(seq, tp->snd_up))
2342 tp->urg_mode = 0;
2343 }
2344 } else if (*seq_rtt < 0)
2345 *seq_rtt = now - scb->when;
2346
2347 if (tp->fackets_out) {
2348 __u32 dval = min(tp->fackets_out, packets_acked);
2349 tp->fackets_out -= dval;
2350 }
2351 tp->packets_out -= packets_acked;
2352
2353 BUG_ON(tcp_skb_pcount(skb) == 0);
2354 BUG_ON(!before(scb->seq, scb->end_seq));
2355 }
2356
2357 return acked;
2358}
2359
8ea333eb 2360static u32 tcp_usrtt(struct timeval *tv)
2d2abbab 2361{
8ea333eb 2362 struct timeval now;
2d2abbab
SH
2363
2364 do_gettimeofday(&now);
8ea333eb 2365 return (now.tv_sec - tv->tv_sec) * 1000000 + (now.tv_usec - tv->tv_usec);
2d2abbab 2366}
1da177e4
LT
2367
2368/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2369static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2370{
2371 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2372 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2373 struct sk_buff *skb;
2374 __u32 now = tcp_time_stamp;
2375 int acked = 0;
2376 __s32 seq_rtt = -1;
317a76f9 2377 u32 pkts_acked = 0;
2d2abbab
SH
2378 void (*rtt_sample)(struct sock *sk, u32 usrtt)
2379 = icsk->icsk_ca_ops->rtt_sample;
80246ab3 2380 struct timeval tv = { .tv_sec = 0, .tv_usec = 0 };
1da177e4
LT
2381
2382 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2383 skb != sk->sk_send_head) {
e905a9ed 2384 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2385 __u8 sacked = scb->sacked;
2386
2387 /* If our packet is before the ack sequence we can
2388 * discard it as it's confirmed to have arrived at
2389 * the other end.
2390 */
2391 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2392 if (tcp_skb_pcount(skb) > 1 &&
2393 after(tp->snd_una, scb->seq))
1da177e4
LT
2394 acked |= tcp_tso_acked(sk, skb,
2395 now, &seq_rtt);
2396 break;
2397 }
2398
2399 /* Initial outgoing SYN's get put onto the write_queue
2400 * just like anything else we transmit. It is not
2401 * true data, and if we misinform our callers that
2402 * this ACK acks real data, we will erroneously exit
2403 * connection startup slow start one packet too
2404 * quickly. This is severely frowned upon behavior.
2405 */
2406 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2407 acked |= FLAG_DATA_ACKED;
317a76f9 2408 ++pkts_acked;
1da177e4
LT
2409 } else {
2410 acked |= FLAG_SYN_ACKED;
2411 tp->retrans_stamp = 0;
2412 }
2413
5d424d5a
JH
2414 /* MTU probing checks */
2415 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2416 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2417 tcp_mtup_probe_success(sk, skb);
2418 }
2419 }
2420
1da177e4
LT
2421 if (sacked) {
2422 if (sacked & TCPCB_RETRANS) {
2423 if(sacked & TCPCB_SACKED_RETRANS)
2424 tp->retrans_out -= tcp_skb_pcount(skb);
2425 acked |= FLAG_RETRANS_DATA_ACKED;
2426 seq_rtt = -1;
2d2abbab 2427 } else if (seq_rtt < 0) {
1da177e4 2428 seq_rtt = now - scb->when;
8ea333eb 2429 skb_get_timestamp(skb, &tv);
a61bbcf2 2430 }
1da177e4
LT
2431 if (sacked & TCPCB_SACKED_ACKED)
2432 tp->sacked_out -= tcp_skb_pcount(skb);
2433 if (sacked & TCPCB_LOST)
2434 tp->lost_out -= tcp_skb_pcount(skb);
2435 if (sacked & TCPCB_URG) {
2436 if (tp->urg_mode &&
2437 !before(scb->end_seq, tp->snd_up))
2438 tp->urg_mode = 0;
2439 }
2d2abbab 2440 } else if (seq_rtt < 0) {
1da177e4 2441 seq_rtt = now - scb->when;
8ea333eb 2442 skb_get_timestamp(skb, &tv);
2d2abbab 2443 }
1da177e4
LT
2444 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2445 tcp_packets_out_dec(tp, skb);
8728b834 2446 __skb_unlink(skb, &sk->sk_write_queue);
1da177e4 2447 sk_stream_free_skb(sk, skb);
6a438bbe 2448 clear_all_retrans_hints(tp);
1da177e4
LT
2449 }
2450
2451 if (acked&FLAG_ACKED) {
2d2abbab 2452 tcp_ack_update_rtt(sk, acked, seq_rtt);
1da177e4 2453 tcp_ack_packets_out(sk, tp);
8ea333eb
JH
2454 if (rtt_sample && !(acked & FLAG_RETRANS_DATA_ACKED))
2455 (*rtt_sample)(sk, tcp_usrtt(&tv));
317a76f9 2456
6687e988
ACM
2457 if (icsk->icsk_ca_ops->pkts_acked)
2458 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
1da177e4
LT
2459 }
2460
2461#if FASTRETRANS_DEBUG > 0
2462 BUG_TRAP((int)tp->sacked_out >= 0);
2463 BUG_TRAP((int)tp->lost_out >= 0);
2464 BUG_TRAP((int)tp->retrans_out >= 0);
2465 if (!tp->packets_out && tp->rx_opt.sack_ok) {
6687e988 2466 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2467 if (tp->lost_out) {
2468 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2469 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2470 tp->lost_out = 0;
2471 }
2472 if (tp->sacked_out) {
2473 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2474 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2475 tp->sacked_out = 0;
2476 }
2477 if (tp->retrans_out) {
2478 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2479 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2480 tp->retrans_out = 0;
2481 }
2482 }
2483#endif
2484 *seq_rtt_p = seq_rtt;
2485 return acked;
2486}
2487
2488static void tcp_ack_probe(struct sock *sk)
2489{
463c84b9
ACM
2490 const struct tcp_sock *tp = tcp_sk(sk);
2491 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2492
2493 /* Was it a usable window open? */
2494
2495 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2496 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2497 icsk->icsk_backoff = 0;
2498 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2499 /* Socket must be waked up by subsequent tcp_data_snd_check().
2500 * This function is not for random using!
2501 */
2502 } else {
463c84b9 2503 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2504 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2505 TCP_RTO_MAX);
1da177e4
LT
2506 }
2507}
2508
6687e988 2509static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2510{
2511 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2512 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2513}
2514
6687e988 2515static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2516{
6687e988 2517 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2518 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2519 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2520}
2521
2522/* Check that window update is acceptable.
2523 * The function assumes that snd_una<=ack<=snd_next.
2524 */
463c84b9
ACM
2525static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2526 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2527{
2528 return (after(ack, tp->snd_una) ||
2529 after(ack_seq, tp->snd_wl1) ||
2530 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2531}
2532
2533/* Update our send window.
2534 *
2535 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2536 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2537 */
2538static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2539 struct sk_buff *skb, u32 ack, u32 ack_seq)
2540{
2541 int flag = 0;
2542 u32 nwin = ntohs(skb->h.th->window);
2543
2544 if (likely(!skb->h.th->syn))
2545 nwin <<= tp->rx_opt.snd_wscale;
2546
2547 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2548 flag |= FLAG_WIN_UPDATE;
2549 tcp_update_wl(tp, ack, ack_seq);
2550
2551 if (tp->snd_wnd != nwin) {
2552 tp->snd_wnd = nwin;
2553
2554 /* Note, it is the only place, where
2555 * fast path is recovered for sending TCP.
2556 */
2ad41065 2557 tp->pred_flags = 0;
1da177e4
LT
2558 tcp_fast_path_check(sk, tp);
2559
2560 if (nwin > tp->max_window) {
2561 tp->max_window = nwin;
d83d8461 2562 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2563 }
2564 }
2565 }
2566
2567 tp->snd_una = ack;
2568
2569 return flag;
2570}
2571
9ead9a1d
IJ
2572/* A very conservative spurious RTO response algorithm: reduce cwnd and
2573 * continue in congestion avoidance.
2574 */
2575static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2576{
2577 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2578 tp->snd_cwnd_cnt = 0;
9ead9a1d
IJ
2579 tcp_moderate_cwnd(tp);
2580}
2581
30935cf4
IJ
2582/* F-RTO spurious RTO detection algorithm (RFC4138)
2583 *
6408d206
IJ
2584 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2585 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2586 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2587 * On First ACK, send two new segments out.
2588 * On Second ACK, RTO was likely spurious. Do spurious response (response
2589 * algorithm is not part of the F-RTO detection algorithm
2590 * given in RFC4138 but can be selected separately).
2591 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2592 * and TCP falls back to conventional RTO recovery.
2593 *
2594 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2595 * original window even after we transmit two new data segments.
2596 *
4dc2665e
IJ
2597 * SACK version:
2598 * on first step, wait until first cumulative ACK arrives, then move to
2599 * the second step. In second step, the next ACK decides.
2600 *
30935cf4
IJ
2601 * F-RTO is implemented (mainly) in four functions:
2602 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2603 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2604 * called when tcp_use_frto() showed green light
2605 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2606 * - tcp_enter_frto_loss() is called if there is not enough evidence
2607 * to prove that the RTO is indeed spurious. It transfers the control
2608 * from F-RTO to the conventional RTO recovery
2609 */
7c9a4a5b 2610static int tcp_process_frto(struct sock *sk, u32 prior_snd_una, int flag)
1da177e4
LT
2611{
2612 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2613
1da177e4 2614 tcp_sync_left_out(tp);
e905a9ed 2615
7487c48c
IJ
2616 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2617 if (flag&FLAG_DATA_ACKED)
2618 inet_csk(sk)->icsk_retransmits = 0;
2619
95c4922b 2620 if (!before(tp->snd_una, tp->frto_highmark)) {
d1a54c6a 2621 tcp_enter_frto_loss(sk, tp->frto_counter + 1, flag);
7c9a4a5b 2622 return 1;
95c4922b
IJ
2623 }
2624
4dc2665e
IJ
2625 if (!IsSackFrto() || IsReno(tp)) {
2626 /* RFC4138 shortcoming in step 2; should also have case c):
2627 * ACK isn't duplicate nor advances window, e.g., opposite dir
2628 * data, winupdate
2629 */
2630 if ((tp->snd_una == prior_snd_una) && (flag&FLAG_NOT_DUP) &&
2631 !(flag&FLAG_FORWARD_PROGRESS))
2632 return 1;
2633
2634 if (!(flag&FLAG_DATA_ACKED)) {
2635 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2636 flag);
2637 return 1;
2638 }
2639 } else {
2640 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2641 /* Prevent sending of new data. */
2642 tp->snd_cwnd = min(tp->snd_cwnd,
2643 tcp_packets_in_flight(tp));
2644 return 1;
2645 }
6408d206 2646
4dc2665e
IJ
2647 if ((tp->frto_counter == 2) &&
2648 (!(flag&FLAG_FORWARD_PROGRESS) ||
2649 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2650 /* RFC4138 shortcoming (see comment above) */
2651 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2652 return 1;
2653
2654 tcp_enter_frto_loss(sk, 3, flag);
2655 return 1;
2656 }
1da177e4
LT
2657 }
2658
2659 if (tp->frto_counter == 1) {
1da177e4 2660 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2661 tp->frto_counter = 2;
7c9a4a5b 2662 return 1;
30935cf4 2663 } else /* frto_counter == 2 */ {
9ead9a1d 2664 tcp_conservative_spur_to_response(tp);
94d0ea77 2665 tp->frto_counter = 0;
1da177e4 2666 }
7c9a4a5b 2667 return 0;
1da177e4
LT
2668}
2669
1da177e4
LT
2670/* This routine deals with incoming acks, but not outgoing ones. */
2671static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2672{
6687e988 2673 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2674 struct tcp_sock *tp = tcp_sk(sk);
2675 u32 prior_snd_una = tp->snd_una;
2676 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2677 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2678 u32 prior_in_flight;
2679 s32 seq_rtt;
2680 int prior_packets;
7c9a4a5b 2681 int frto_cwnd = 0;
1da177e4
LT
2682
2683 /* If the ack is newer than sent or older than previous acks
2684 * then we can probably ignore it.
2685 */
2686 if (after(ack, tp->snd_nxt))
2687 goto uninteresting_ack;
2688
2689 if (before(ack, prior_snd_una))
2690 goto old_ack;
2691
3fdf3f0c
DO
2692 if (sysctl_tcp_abc) {
2693 if (icsk->icsk_ca_state < TCP_CA_CWR)
2694 tp->bytes_acked += ack - prior_snd_una;
2695 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2696 /* we assume just one segment left network */
2697 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2698 }
9772efb9 2699
1da177e4
LT
2700 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2701 /* Window is constant, pure forward advance.
2702 * No more checks are required.
2703 * Note, we use the fact that SND.UNA>=SND.WL2.
2704 */
2705 tcp_update_wl(tp, ack, ack_seq);
2706 tp->snd_una = ack;
1da177e4
LT
2707 flag |= FLAG_WIN_UPDATE;
2708
6687e988 2709 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2710
1da177e4
LT
2711 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2712 } else {
2713 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2714 flag |= FLAG_DATA;
2715 else
2716 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2717
2718 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2719
2720 if (TCP_SKB_CB(skb)->sacked)
2721 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2722
2723 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2724 flag |= FLAG_ECE;
2725
6687e988 2726 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2727 }
2728
2729 /* We passed data and got it acked, remove any soft error
2730 * log. Something worked...
2731 */
2732 sk->sk_err_soft = 0;
2733 tp->rcv_tstamp = tcp_time_stamp;
2734 prior_packets = tp->packets_out;
2735 if (!prior_packets)
2736 goto no_queue;
2737
2738 prior_in_flight = tcp_packets_in_flight(tp);
2739
2740 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2741 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2742
2743 if (tp->frto_counter)
7c9a4a5b 2744 frto_cwnd = tcp_process_frto(sk, prior_snd_una, flag);
1da177e4 2745
6687e988 2746 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2747 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
2748 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2749 tcp_may_raise_cwnd(sk, flag))
6687e988 2750 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
1da177e4
LT
2751 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2752 } else {
7c9a4a5b 2753 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
6687e988 2754 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
1da177e4
LT
2755 }
2756
2757 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2758 dst_confirm(sk->sk_dst_cache);
2759
2760 return 1;
2761
2762no_queue:
6687e988 2763 icsk->icsk_probes_out = 0;
1da177e4
LT
2764
2765 /* If this ack opens up a zero window, clear backoff. It was
2766 * being used to time the probes, and is probably far higher than
2767 * it needs to be for normal retransmission.
2768 */
2769 if (sk->sk_send_head)
2770 tcp_ack_probe(sk);
2771 return 1;
2772
2773old_ack:
2774 if (TCP_SKB_CB(skb)->sacked)
2775 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2776
2777uninteresting_ack:
2778 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2779 return 0;
2780}
2781
2782
2783/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2784 * But, this can also be called on packets in the established flow when
2785 * the fast version below fails.
2786 */
2787void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2788{
2789 unsigned char *ptr;
2790 struct tcphdr *th = skb->h.th;
2791 int length=(th->doff*4)-sizeof(struct tcphdr);
2792
2793 ptr = (unsigned char *)(th + 1);
2794 opt_rx->saw_tstamp = 0;
2795
2796 while(length>0) {
e905a9ed 2797 int opcode=*ptr++;
1da177e4
LT
2798 int opsize;
2799
2800 switch (opcode) {
2801 case TCPOPT_EOL:
2802 return;
2803 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2804 length--;
2805 continue;
2806 default:
2807 opsize=*ptr++;
2808 if (opsize < 2) /* "silly options" */
2809 return;
2810 if (opsize > length)
2811 return; /* don't parse partial options */
e905a9ed 2812 switch(opcode) {
1da177e4
LT
2813 case TCPOPT_MSS:
2814 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 2815 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
2816 if (in_mss) {
2817 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2818 in_mss = opt_rx->user_mss;
2819 opt_rx->mss_clamp = in_mss;
2820 }
2821 }
2822 break;
2823 case TCPOPT_WINDOW:
2824 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2825 if (sysctl_tcp_window_scaling) {
2826 __u8 snd_wscale = *(__u8 *) ptr;
2827 opt_rx->wscale_ok = 1;
2828 if (snd_wscale > 14) {
2829 if(net_ratelimit())
2830 printk(KERN_INFO "tcp_parse_options: Illegal window "
2831 "scaling value %d >14 received.\n",
2832 snd_wscale);
2833 snd_wscale = 14;
2834 }
2835 opt_rx->snd_wscale = snd_wscale;
2836 }
2837 break;
2838 case TCPOPT_TIMESTAMP:
2839 if(opsize==TCPOLEN_TIMESTAMP) {
2840 if ((estab && opt_rx->tstamp_ok) ||
2841 (!estab && sysctl_tcp_timestamps)) {
2842 opt_rx->saw_tstamp = 1;
4f3608b7
AV
2843 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
2844 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
2845 }
2846 }
2847 break;
2848 case TCPOPT_SACK_PERM:
2849 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2850 if (sysctl_tcp_sack) {
2851 opt_rx->sack_ok = 1;
2852 tcp_sack_reset(opt_rx);
2853 }
2854 }
2855 break;
2856
2857 case TCPOPT_SACK:
2858 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2859 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2860 opt_rx->sack_ok) {
2861 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2862 }
cfb6eeb4
YH
2863#ifdef CONFIG_TCP_MD5SIG
2864 case TCPOPT_MD5SIG:
2865 /*
2866 * The MD5 Hash has already been
2867 * checked (see tcp_v{4,6}_do_rcv()).
2868 */
2869 break;
2870#endif
e905a9ed
YH
2871 };
2872 ptr+=opsize-2;
2873 length-=opsize;
2874 };
1da177e4
LT
2875 }
2876}
2877
2878/* Fast parse options. This hopes to only see timestamps.
2879 * If it is wrong it falls back on tcp_parse_options().
2880 */
40efc6fa
SH
2881static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2882 struct tcp_sock *tp)
1da177e4
LT
2883{
2884 if (th->doff == sizeof(struct tcphdr)>>2) {
2885 tp->rx_opt.saw_tstamp = 0;
2886 return 0;
2887 } else if (tp->rx_opt.tstamp_ok &&
2888 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
2889 __be32 *ptr = (__be32 *)(th + 1);
2890 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
2891 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2892 tp->rx_opt.saw_tstamp = 1;
2893 ++ptr;
2894 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2895 ++ptr;
2896 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2897 return 1;
2898 }
2899 }
2900 tcp_parse_options(skb, &tp->rx_opt, 1);
2901 return 1;
2902}
2903
2904static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2905{
2906 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2907 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2908}
2909
2910static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2911{
2912 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2913 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2914 * extra check below makes sure this can only happen
2915 * for pure ACK frames. -DaveM
2916 *
2917 * Not only, also it occurs for expired timestamps.
2918 */
2919
2920 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2921 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2922 tcp_store_ts_recent(tp);
2923 }
2924}
2925
2926/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2927 *
2928 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2929 * it can pass through stack. So, the following predicate verifies that
2930 * this segment is not used for anything but congestion avoidance or
2931 * fast retransmit. Moreover, we even are able to eliminate most of such
2932 * second order effects, if we apply some small "replay" window (~RTO)
2933 * to timestamp space.
2934 *
2935 * All these measures still do not guarantee that we reject wrapped ACKs
2936 * on networks with high bandwidth, when sequence space is recycled fastly,
2937 * but it guarantees that such events will be very rare and do not affect
2938 * connection seriously. This doesn't look nice, but alas, PAWS is really
2939 * buggy extension.
2940 *
2941 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2942 * states that events when retransmit arrives after original data are rare.
2943 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2944 * the biggest problem on large power networks even with minor reordering.
2945 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2946 * up to bandwidth of 18Gigabit/sec. 8) ]
2947 */
2948
463c84b9 2949static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2950{
463c84b9 2951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2952 struct tcphdr *th = skb->h.th;
2953 u32 seq = TCP_SKB_CB(skb)->seq;
2954 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2955
2956 return (/* 1. Pure ACK with correct sequence number. */
2957 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2958
2959 /* 2. ... and duplicate ACK. */
2960 ack == tp->snd_una &&
2961
2962 /* 3. ... and does not update window. */
2963 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2964
2965 /* 4. ... and sits in replay window. */
463c84b9 2966 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
2967}
2968
463c84b9 2969static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 2970{
463c84b9 2971 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2972 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2973 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 2974 !tcp_disordered_ack(sk, skb));
1da177e4
LT
2975}
2976
2977/* Check segment sequence number for validity.
2978 *
2979 * Segment controls are considered valid, if the segment
2980 * fits to the window after truncation to the window. Acceptability
2981 * of data (and SYN, FIN, of course) is checked separately.
2982 * See tcp_data_queue(), for example.
2983 *
2984 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2985 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2986 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2987 * (borrowed from freebsd)
2988 */
2989
2990static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2991{
2992 return !before(end_seq, tp->rcv_wup) &&
2993 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2994}
2995
2996/* When we get a reset we do this. */
2997static void tcp_reset(struct sock *sk)
2998{
2999 /* We want the right error as BSD sees it (and indeed as we do). */
3000 switch (sk->sk_state) {
3001 case TCP_SYN_SENT:
3002 sk->sk_err = ECONNREFUSED;
3003 break;
3004 case TCP_CLOSE_WAIT:
3005 sk->sk_err = EPIPE;
3006 break;
3007 case TCP_CLOSE:
3008 return;
3009 default:
3010 sk->sk_err = ECONNRESET;
3011 }
3012
3013 if (!sock_flag(sk, SOCK_DEAD))
3014 sk->sk_error_report(sk);
3015
3016 tcp_done(sk);
3017}
3018
3019/*
3020 * Process the FIN bit. This now behaves as it is supposed to work
3021 * and the FIN takes effect when it is validly part of sequence
3022 * space. Not before when we get holes.
3023 *
3024 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3025 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3026 * TIME-WAIT)
3027 *
3028 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3029 * close and we go into CLOSING (and later onto TIME-WAIT)
3030 *
3031 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3032 */
3033static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3034{
3035 struct tcp_sock *tp = tcp_sk(sk);
3036
463c84b9 3037 inet_csk_schedule_ack(sk);
1da177e4
LT
3038
3039 sk->sk_shutdown |= RCV_SHUTDOWN;
3040 sock_set_flag(sk, SOCK_DONE);
3041
3042 switch (sk->sk_state) {
3043 case TCP_SYN_RECV:
3044 case TCP_ESTABLISHED:
3045 /* Move to CLOSE_WAIT */
3046 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3047 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3048 break;
3049
3050 case TCP_CLOSE_WAIT:
3051 case TCP_CLOSING:
3052 /* Received a retransmission of the FIN, do
3053 * nothing.
3054 */
3055 break;
3056 case TCP_LAST_ACK:
3057 /* RFC793: Remain in the LAST-ACK state. */
3058 break;
3059
3060 case TCP_FIN_WAIT1:
3061 /* This case occurs when a simultaneous close
3062 * happens, we must ack the received FIN and
3063 * enter the CLOSING state.
3064 */
3065 tcp_send_ack(sk);
3066 tcp_set_state(sk, TCP_CLOSING);
3067 break;
3068 case TCP_FIN_WAIT2:
3069 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3070 tcp_send_ack(sk);
3071 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3072 break;
3073 default:
3074 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3075 * cases we should never reach this piece of code.
3076 */
3077 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3078 __FUNCTION__, sk->sk_state);
3079 break;
3080 };
3081
3082 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3083 * Probably, we should reset in this case. For now drop them.
3084 */
3085 __skb_queue_purge(&tp->out_of_order_queue);
3086 if (tp->rx_opt.sack_ok)
3087 tcp_sack_reset(&tp->rx_opt);
3088 sk_stream_mem_reclaim(sk);
3089
3090 if (!sock_flag(sk, SOCK_DEAD)) {
3091 sk->sk_state_change(sk);
3092
3093 /* Do not send POLL_HUP for half duplex close. */
3094 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3095 sk->sk_state == TCP_CLOSE)
3096 sk_wake_async(sk, 1, POLL_HUP);
3097 else
3098 sk_wake_async(sk, 1, POLL_IN);
3099 }
3100}
3101
40efc6fa 3102static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3103{
3104 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3105 if (before(seq, sp->start_seq))
3106 sp->start_seq = seq;
3107 if (after(end_seq, sp->end_seq))
3108 sp->end_seq = end_seq;
3109 return 1;
3110 }
3111 return 0;
3112}
3113
40efc6fa 3114static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3115{
3116 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3117 if (before(seq, tp->rcv_nxt))
3118 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3119 else
3120 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3121
3122 tp->rx_opt.dsack = 1;
3123 tp->duplicate_sack[0].start_seq = seq;
3124 tp->duplicate_sack[0].end_seq = end_seq;
3125 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3126 }
3127}
3128
40efc6fa 3129static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3130{
3131 if (!tp->rx_opt.dsack)
3132 tcp_dsack_set(tp, seq, end_seq);
3133 else
3134 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3135}
3136
3137static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3138{
3139 struct tcp_sock *tp = tcp_sk(sk);
3140
3141 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3142 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3143 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3144 tcp_enter_quickack_mode(sk);
1da177e4
LT
3145
3146 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
3147 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3148
3149 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3150 end_seq = tp->rcv_nxt;
3151 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3152 }
3153 }
3154
3155 tcp_send_ack(sk);
3156}
3157
3158/* These routines update the SACK block as out-of-order packets arrive or
3159 * in-order packets close up the sequence space.
3160 */
3161static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3162{
3163 int this_sack;
3164 struct tcp_sack_block *sp = &tp->selective_acks[0];
3165 struct tcp_sack_block *swalk = sp+1;
3166
3167 /* See if the recent change to the first SACK eats into
3168 * or hits the sequence space of other SACK blocks, if so coalesce.
3169 */
3170 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3171 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3172 int i;
3173
3174 /* Zap SWALK, by moving every further SACK up by one slot.
3175 * Decrease num_sacks.
3176 */
3177 tp->rx_opt.num_sacks--;
3178 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3179 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
3180 sp[i] = sp[i+1];
3181 continue;
3182 }
3183 this_sack++, swalk++;
3184 }
3185}
3186
40efc6fa 3187static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3188{
3189 __u32 tmp;
3190
3191 tmp = sack1->start_seq;
3192 sack1->start_seq = sack2->start_seq;
3193 sack2->start_seq = tmp;
3194
3195 tmp = sack1->end_seq;
3196 sack1->end_seq = sack2->end_seq;
3197 sack2->end_seq = tmp;
3198}
3199
3200static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3201{
3202 struct tcp_sock *tp = tcp_sk(sk);
3203 struct tcp_sack_block *sp = &tp->selective_acks[0];
3204 int cur_sacks = tp->rx_opt.num_sacks;
3205 int this_sack;
3206
3207 if (!cur_sacks)
3208 goto new_sack;
3209
3210 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3211 if (tcp_sack_extend(sp, seq, end_seq)) {
3212 /* Rotate this_sack to the first one. */
3213 for (; this_sack>0; this_sack--, sp--)
3214 tcp_sack_swap(sp, sp-1);
3215 if (cur_sacks > 1)
3216 tcp_sack_maybe_coalesce(tp);
3217 return;
3218 }
3219 }
3220
3221 /* Could not find an adjacent existing SACK, build a new one,
3222 * put it at the front, and shift everyone else down. We
3223 * always know there is at least one SACK present already here.
3224 *
3225 * If the sack array is full, forget about the last one.
3226 */
3227 if (this_sack >= 4) {
3228 this_sack--;
3229 tp->rx_opt.num_sacks--;
3230 sp--;
3231 }
3232 for(; this_sack > 0; this_sack--, sp--)
3233 *sp = *(sp-1);
3234
3235new_sack:
3236 /* Build the new head SACK, and we're done. */
3237 sp->start_seq = seq;
3238 sp->end_seq = end_seq;
3239 tp->rx_opt.num_sacks++;
3240 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3241}
3242
3243/* RCV.NXT advances, some SACKs should be eaten. */
3244
3245static void tcp_sack_remove(struct tcp_sock *tp)
3246{
3247 struct tcp_sack_block *sp = &tp->selective_acks[0];
3248 int num_sacks = tp->rx_opt.num_sacks;
3249 int this_sack;
3250
3251 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3252 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3253 tp->rx_opt.num_sacks = 0;
3254 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3255 return;
3256 }
3257
3258 for(this_sack = 0; this_sack < num_sacks; ) {
3259 /* Check if the start of the sack is covered by RCV.NXT. */
3260 if (!before(tp->rcv_nxt, sp->start_seq)) {
3261 int i;
3262
3263 /* RCV.NXT must cover all the block! */
3264 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3265
3266 /* Zap this SACK, by moving forward any other SACKS. */
3267 for (i=this_sack+1; i < num_sacks; i++)
3268 tp->selective_acks[i-1] = tp->selective_acks[i];
3269 num_sacks--;
3270 continue;
3271 }
3272 this_sack++;
3273 sp++;
3274 }
3275 if (num_sacks != tp->rx_opt.num_sacks) {
3276 tp->rx_opt.num_sacks = num_sacks;
3277 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3278 }
3279}
3280
3281/* This one checks to see if we can put data from the
3282 * out_of_order queue into the receive_queue.
3283 */
3284static void tcp_ofo_queue(struct sock *sk)
3285{
3286 struct tcp_sock *tp = tcp_sk(sk);
3287 __u32 dsack_high = tp->rcv_nxt;
3288 struct sk_buff *skb;
3289
3290 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3291 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3292 break;
3293
3294 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3295 __u32 dsack = dsack_high;
3296 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3297 dsack_high = TCP_SKB_CB(skb)->end_seq;
3298 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3299 }
3300
3301 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3302 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3303 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3304 __kfree_skb(skb);
3305 continue;
3306 }
3307 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3308 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3309 TCP_SKB_CB(skb)->end_seq);
3310
8728b834 3311 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3312 __skb_queue_tail(&sk->sk_receive_queue, skb);
3313 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3314 if(skb->h.th->fin)
3315 tcp_fin(skb, sk, skb->h.th);
3316 }
3317}
3318
3319static int tcp_prune_queue(struct sock *sk);
3320
3321static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3322{
3323 struct tcphdr *th = skb->h.th;
3324 struct tcp_sock *tp = tcp_sk(sk);
3325 int eaten = -1;
3326
3327 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3328 goto drop;
3329
1da177e4
LT
3330 __skb_pull(skb, th->doff*4);
3331
3332 TCP_ECN_accept_cwr(tp, skb);
3333
3334 if (tp->rx_opt.dsack) {
3335 tp->rx_opt.dsack = 0;
3336 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3337 4 - tp->rx_opt.tstamp_ok);
3338 }
3339
3340 /* Queue data for delivery to the user.
3341 * Packets in sequence go to the receive queue.
3342 * Out of sequence packets to the out_of_order_queue.
3343 */
3344 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3345 if (tcp_receive_window(tp) == 0)
3346 goto out_of_window;
3347
3348 /* Ok. In sequence. In window. */
3349 if (tp->ucopy.task == current &&
3350 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3351 sock_owned_by_user(sk) && !tp->urg_data) {
3352 int chunk = min_t(unsigned int, skb->len,
3353 tp->ucopy.len);
3354
3355 __set_current_state(TASK_RUNNING);
3356
3357 local_bh_enable();
3358 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3359 tp->ucopy.len -= chunk;
3360 tp->copied_seq += chunk;
3361 eaten = (chunk == skb->len && !th->fin);
3362 tcp_rcv_space_adjust(sk);
3363 }
3364 local_bh_disable();
3365 }
3366
3367 if (eaten <= 0) {
3368queue_and_out:
3369 if (eaten < 0 &&
3370 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3371 !sk_stream_rmem_schedule(sk, skb))) {
3372 if (tcp_prune_queue(sk) < 0 ||
3373 !sk_stream_rmem_schedule(sk, skb))
3374 goto drop;
3375 }
3376 sk_stream_set_owner_r(skb, sk);
3377 __skb_queue_tail(&sk->sk_receive_queue, skb);
3378 }
3379 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3380 if(skb->len)
3381 tcp_event_data_recv(sk, tp, skb);
3382 if(th->fin)
3383 tcp_fin(skb, sk, th);
3384
b03efcfb 3385 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3386 tcp_ofo_queue(sk);
3387
3388 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3389 * gap in queue is filled.
3390 */
b03efcfb 3391 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3392 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3393 }
3394
3395 if (tp->rx_opt.num_sacks)
3396 tcp_sack_remove(tp);
3397
3398 tcp_fast_path_check(sk, tp);
3399
3400 if (eaten > 0)
3401 __kfree_skb(skb);
3402 else if (!sock_flag(sk, SOCK_DEAD))
3403 sk->sk_data_ready(sk, 0);
3404 return;
3405 }
3406
3407 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3408 /* A retransmit, 2nd most common case. Force an immediate ack. */
3409 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3410 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3411
3412out_of_window:
463c84b9
ACM
3413 tcp_enter_quickack_mode(sk);
3414 inet_csk_schedule_ack(sk);
1da177e4
LT
3415drop:
3416 __kfree_skb(skb);
3417 return;
3418 }
3419
3420 /* Out of window. F.e. zero window probe. */
3421 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3422 goto out_of_window;
3423
463c84b9 3424 tcp_enter_quickack_mode(sk);
1da177e4
LT
3425
3426 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3427 /* Partial packet, seq < rcv_next < end_seq */
3428 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3429 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3430 TCP_SKB_CB(skb)->end_seq);
3431
3432 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3433
1da177e4
LT
3434 /* If window is closed, drop tail of packet. But after
3435 * remembering D-SACK for its head made in previous line.
3436 */
3437 if (!tcp_receive_window(tp))
3438 goto out_of_window;
3439 goto queue_and_out;
3440 }
3441
3442 TCP_ECN_check_ce(tp, skb);
3443
3444 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3445 !sk_stream_rmem_schedule(sk, skb)) {
3446 if (tcp_prune_queue(sk) < 0 ||
3447 !sk_stream_rmem_schedule(sk, skb))
3448 goto drop;
3449 }
3450
3451 /* Disable header prediction. */
3452 tp->pred_flags = 0;
463c84b9 3453 inet_csk_schedule_ack(sk);
1da177e4
LT
3454
3455 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3456 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3457
3458 sk_stream_set_owner_r(skb, sk);
3459
3460 if (!skb_peek(&tp->out_of_order_queue)) {
3461 /* Initial out of order segment, build 1 SACK. */
3462 if (tp->rx_opt.sack_ok) {
3463 tp->rx_opt.num_sacks = 1;
3464 tp->rx_opt.dsack = 0;
3465 tp->rx_opt.eff_sacks = 1;
3466 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3467 tp->selective_acks[0].end_seq =
3468 TCP_SKB_CB(skb)->end_seq;
3469 }
3470 __skb_queue_head(&tp->out_of_order_queue,skb);
3471 } else {
3472 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3473 u32 seq = TCP_SKB_CB(skb)->seq;
3474 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3475
3476 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3477 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3478
3479 if (!tp->rx_opt.num_sacks ||
3480 tp->selective_acks[0].end_seq != seq)
3481 goto add_sack;
3482
3483 /* Common case: data arrive in order after hole. */
3484 tp->selective_acks[0].end_seq = end_seq;
3485 return;
3486 }
3487
3488 /* Find place to insert this segment. */
3489 do {
3490 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3491 break;
3492 } while ((skb1 = skb1->prev) !=
3493 (struct sk_buff*)&tp->out_of_order_queue);
3494
3495 /* Do skb overlap to previous one? */
3496 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3497 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3498 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3499 /* All the bits are present. Drop. */
3500 __kfree_skb(skb);
3501 tcp_dsack_set(tp, seq, end_seq);
3502 goto add_sack;
3503 }
3504 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3505 /* Partial overlap. */
3506 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3507 } else {
3508 skb1 = skb1->prev;
3509 }
3510 }
3511 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3512
1da177e4
LT
3513 /* And clean segments covered by new one as whole. */
3514 while ((skb1 = skb->next) !=
3515 (struct sk_buff*)&tp->out_of_order_queue &&
3516 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3517 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3518 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3519 break;
3520 }
8728b834 3521 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3522 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3523 __kfree_skb(skb1);
3524 }
3525
3526add_sack:
3527 if (tp->rx_opt.sack_ok)
3528 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3529 }
3530}
3531
3532/* Collapse contiguous sequence of skbs head..tail with
3533 * sequence numbers start..end.
3534 * Segments with FIN/SYN are not collapsed (only because this
3535 * simplifies code)
3536 */
3537static void
8728b834
DM
3538tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3539 struct sk_buff *head, struct sk_buff *tail,
3540 u32 start, u32 end)
1da177e4
LT
3541{
3542 struct sk_buff *skb;
3543
caa20d9a 3544 /* First, check that queue is collapsible and find
1da177e4
LT
3545 * the point where collapsing can be useful. */
3546 for (skb = head; skb != tail; ) {
3547 /* No new bits? It is possible on ofo queue. */
3548 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3549 struct sk_buff *next = skb->next;
8728b834 3550 __skb_unlink(skb, list);
1da177e4
LT
3551 __kfree_skb(skb);
3552 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3553 skb = next;
3554 continue;
3555 }
3556
3557 /* The first skb to collapse is:
3558 * - not SYN/FIN and
3559 * - bloated or contains data before "start" or
3560 * overlaps to the next one.
3561 */
3562 if (!skb->h.th->syn && !skb->h.th->fin &&
3563 (tcp_win_from_space(skb->truesize) > skb->len ||
3564 before(TCP_SKB_CB(skb)->seq, start) ||
3565 (skb->next != tail &&
3566 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3567 break;
3568
3569 /* Decided to skip this, advance start seq. */
3570 start = TCP_SKB_CB(skb)->end_seq;
3571 skb = skb->next;
3572 }
3573 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3574 return;
3575
3576 while (before(start, end)) {
3577 struct sk_buff *nskb;
3578 int header = skb_headroom(skb);
3579 int copy = SKB_MAX_ORDER(header, 0);
3580
3581 /* Too big header? This can happen with IPv6. */
3582 if (copy < 0)
3583 return;
3584 if (end-start < copy)
3585 copy = end-start;
3586 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3587 if (!nskb)
3588 return;
3589 skb_reserve(nskb, header);
3590 memcpy(nskb->head, skb->head, header);
3591 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3592 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3593 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3594 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3595 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3596 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3597 sk_stream_set_owner_r(nskb, sk);
3598
3599 /* Copy data, releasing collapsed skbs. */
3600 while (copy > 0) {
3601 int offset = start - TCP_SKB_CB(skb)->seq;
3602 int size = TCP_SKB_CB(skb)->end_seq - start;
3603
09a62660 3604 BUG_ON(offset < 0);
1da177e4
LT
3605 if (size > 0) {
3606 size = min(copy, size);
3607 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3608 BUG();
3609 TCP_SKB_CB(nskb)->end_seq += size;
3610 copy -= size;
3611 start += size;
3612 }
3613 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3614 struct sk_buff *next = skb->next;
8728b834 3615 __skb_unlink(skb, list);
1da177e4
LT
3616 __kfree_skb(skb);
3617 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3618 skb = next;
3619 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3620 return;
3621 }
3622 }
3623 }
3624}
3625
3626/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3627 * and tcp_collapse() them until all the queue is collapsed.
3628 */
3629static void tcp_collapse_ofo_queue(struct sock *sk)
3630{
3631 struct tcp_sock *tp = tcp_sk(sk);
3632 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3633 struct sk_buff *head;
3634 u32 start, end;
3635
3636 if (skb == NULL)
3637 return;
3638
3639 start = TCP_SKB_CB(skb)->seq;
3640 end = TCP_SKB_CB(skb)->end_seq;
3641 head = skb;
3642
3643 for (;;) {
3644 skb = skb->next;
3645
3646 /* Segment is terminated when we see gap or when
3647 * we are at the end of all the queue. */
3648 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3649 after(TCP_SKB_CB(skb)->seq, end) ||
3650 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3651 tcp_collapse(sk, &tp->out_of_order_queue,
3652 head, skb, start, end);
1da177e4
LT
3653 head = skb;
3654 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3655 break;
3656 /* Start new segment */
3657 start = TCP_SKB_CB(skb)->seq;
3658 end = TCP_SKB_CB(skb)->end_seq;
3659 } else {
3660 if (before(TCP_SKB_CB(skb)->seq, start))
3661 start = TCP_SKB_CB(skb)->seq;
3662 if (after(TCP_SKB_CB(skb)->end_seq, end))
3663 end = TCP_SKB_CB(skb)->end_seq;
3664 }
3665 }
3666}
3667
3668/* Reduce allocated memory if we can, trying to get
3669 * the socket within its memory limits again.
3670 *
3671 * Return less than zero if we should start dropping frames
3672 * until the socket owning process reads some of the data
3673 * to stabilize the situation.
3674 */
3675static int tcp_prune_queue(struct sock *sk)
3676{
e905a9ed 3677 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3678
3679 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3680
3681 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3682
3683 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3684 tcp_clamp_window(sk, tp);
3685 else if (tcp_memory_pressure)
3686 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3687
3688 tcp_collapse_ofo_queue(sk);
8728b834
DM
3689 tcp_collapse(sk, &sk->sk_receive_queue,
3690 sk->sk_receive_queue.next,
1da177e4
LT
3691 (struct sk_buff*)&sk->sk_receive_queue,
3692 tp->copied_seq, tp->rcv_nxt);
3693 sk_stream_mem_reclaim(sk);
3694
3695 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3696 return 0;
3697
3698 /* Collapsing did not help, destructive actions follow.
3699 * This must not ever occur. */
3700
3701 /* First, purge the out_of_order queue. */
b03efcfb
DM
3702 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3703 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3704 __skb_queue_purge(&tp->out_of_order_queue);
3705
3706 /* Reset SACK state. A conforming SACK implementation will
3707 * do the same at a timeout based retransmit. When a connection
3708 * is in a sad state like this, we care only about integrity
3709 * of the connection not performance.
3710 */
3711 if (tp->rx_opt.sack_ok)
3712 tcp_sack_reset(&tp->rx_opt);
3713 sk_stream_mem_reclaim(sk);
3714 }
3715
3716 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3717 return 0;
3718
3719 /* If we are really being abused, tell the caller to silently
3720 * drop receive data on the floor. It will get retransmitted
3721 * and hopefully then we'll have sufficient space.
3722 */
3723 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3724
3725 /* Massive buffer overcommit. */
3726 tp->pred_flags = 0;
3727 return -1;
3728}
3729
3730
3731/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3732 * As additional protections, we do not touch cwnd in retransmission phases,
3733 * and if application hit its sndbuf limit recently.
3734 */
3735void tcp_cwnd_application_limited(struct sock *sk)
3736{
3737 struct tcp_sock *tp = tcp_sk(sk);
3738
6687e988 3739 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3740 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3741 /* Limited by application or receiver window. */
d254bcdb
IJ
3742 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3743 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3744 if (win_used < tp->snd_cwnd) {
6687e988 3745 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3746 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3747 }
3748 tp->snd_cwnd_used = 0;
3749 }
3750 tp->snd_cwnd_stamp = tcp_time_stamp;
3751}
3752
40efc6fa 3753static int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
0d9901df
DM
3754{
3755 /* If the user specified a specific send buffer setting, do
3756 * not modify it.
3757 */
3758 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3759 return 0;
3760
3761 /* If we are under global TCP memory pressure, do not expand. */
3762 if (tcp_memory_pressure)
3763 return 0;
3764
3765 /* If we are under soft global TCP memory pressure, do not expand. */
3766 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3767 return 0;
3768
3769 /* If we filled the congestion window, do not expand. */
3770 if (tp->packets_out >= tp->snd_cwnd)
3771 return 0;
3772
3773 return 1;
3774}
1da177e4
LT
3775
3776/* When incoming ACK allowed to free some skb from write_queue,
3777 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3778 * on the exit from tcp input handler.
3779 *
3780 * PROBLEM: sndbuf expansion does not work well with largesend.
3781 */
3782static void tcp_new_space(struct sock *sk)
3783{
3784 struct tcp_sock *tp = tcp_sk(sk);
3785
0d9901df 3786 if (tcp_should_expand_sndbuf(sk, tp)) {
e905a9ed 3787 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3788 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3789 demanded = max_t(unsigned int, tp->snd_cwnd,
3790 tp->reordering + 1);
3791 sndmem *= 2*demanded;
3792 if (sndmem > sk->sk_sndbuf)
3793 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3794 tp->snd_cwnd_stamp = tcp_time_stamp;
3795 }
3796
3797 sk->sk_write_space(sk);
3798}
3799
40efc6fa 3800static void tcp_check_space(struct sock *sk)
1da177e4
LT
3801{
3802 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3803 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3804 if (sk->sk_socket &&
3805 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3806 tcp_new_space(sk);
3807 }
3808}
3809
40efc6fa 3810static inline void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
1da177e4 3811{
55c97f3e 3812 tcp_push_pending_frames(sk, tp);
1da177e4
LT
3813 tcp_check_space(sk);
3814}
3815
3816/*
3817 * Check if sending an ack is needed.
3818 */
3819static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3820{
3821 struct tcp_sock *tp = tcp_sk(sk);
3822
3823 /* More than one full frame received... */
463c84b9 3824 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
3825 /* ... and right edge of window advances far enough.
3826 * (tcp_recvmsg() will send ACK otherwise). Or...
3827 */
3828 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3829 /* We ACK each frame or... */
463c84b9 3830 tcp_in_quickack_mode(sk) ||
1da177e4
LT
3831 /* We have out of order data. */
3832 (ofo_possible &&
3833 skb_peek(&tp->out_of_order_queue))) {
3834 /* Then ack it now */
3835 tcp_send_ack(sk);
3836 } else {
3837 /* Else, send delayed ack. */
3838 tcp_send_delayed_ack(sk);
3839 }
3840}
3841
40efc6fa 3842static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 3843{
463c84b9 3844 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
3845 /* We sent a data segment already. */
3846 return;
3847 }
3848 __tcp_ack_snd_check(sk, 1);
3849}
3850
3851/*
3852 * This routine is only called when we have urgent data
caa20d9a 3853 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
3854 * moved inline now as tcp_urg is only called from one
3855 * place. We handle URGent data wrong. We have to - as
3856 * BSD still doesn't use the correction from RFC961.
3857 * For 1003.1g we should support a new option TCP_STDURG to permit
3858 * either form (or just set the sysctl tcp_stdurg).
3859 */
e905a9ed 3860
1da177e4
LT
3861static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3862{
3863 struct tcp_sock *tp = tcp_sk(sk);
3864 u32 ptr = ntohs(th->urg_ptr);
3865
3866 if (ptr && !sysctl_tcp_stdurg)
3867 ptr--;
3868 ptr += ntohl(th->seq);
3869
3870 /* Ignore urgent data that we've already seen and read. */
3871 if (after(tp->copied_seq, ptr))
3872 return;
3873
3874 /* Do not replay urg ptr.
3875 *
3876 * NOTE: interesting situation not covered by specs.
3877 * Misbehaving sender may send urg ptr, pointing to segment,
3878 * which we already have in ofo queue. We are not able to fetch
3879 * such data and will stay in TCP_URG_NOTYET until will be eaten
3880 * by recvmsg(). Seems, we are not obliged to handle such wicked
3881 * situations. But it is worth to think about possibility of some
3882 * DoSes using some hypothetical application level deadlock.
3883 */
3884 if (before(ptr, tp->rcv_nxt))
3885 return;
3886
3887 /* Do we already have a newer (or duplicate) urgent pointer? */
3888 if (tp->urg_data && !after(ptr, tp->urg_seq))
3889 return;
3890
3891 /* Tell the world about our new urgent pointer. */
3892 sk_send_sigurg(sk);
3893
3894 /* We may be adding urgent data when the last byte read was
3895 * urgent. To do this requires some care. We cannot just ignore
3896 * tp->copied_seq since we would read the last urgent byte again
3897 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 3898 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
3899 *
3900 * NOTE. Double Dutch. Rendering to plain English: author of comment
3901 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3902 * and expect that both A and B disappear from stream. This is _wrong_.
3903 * Though this happens in BSD with high probability, this is occasional.
3904 * Any application relying on this is buggy. Note also, that fix "works"
3905 * only in this artificial test. Insert some normal data between A and B and we will
3906 * decline of BSD again. Verdict: it is better to remove to trap
3907 * buggy users.
3908 */
3909 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3910 !sock_flag(sk, SOCK_URGINLINE) &&
3911 tp->copied_seq != tp->rcv_nxt) {
3912 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3913 tp->copied_seq++;
3914 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 3915 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
3916 __kfree_skb(skb);
3917 }
3918 }
3919
3920 tp->urg_data = TCP_URG_NOTYET;
3921 tp->urg_seq = ptr;
3922
3923 /* Disable header prediction. */
3924 tp->pred_flags = 0;
3925}
3926
3927/* This is the 'fast' part of urgent handling. */
3928static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3929{
3930 struct tcp_sock *tp = tcp_sk(sk);
3931
3932 /* Check if we get a new urgent pointer - normally not. */
3933 if (th->urg)
3934 tcp_check_urg(sk,th);
3935
3936 /* Do we wait for any urgent data? - normally not... */
3937 if (tp->urg_data == TCP_URG_NOTYET) {
3938 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3939 th->syn;
3940
e905a9ed 3941 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
3942 if (ptr < skb->len) {
3943 u8 tmp;
3944 if (skb_copy_bits(skb, ptr, &tmp, 1))
3945 BUG();
3946 tp->urg_data = TCP_URG_VALID | tmp;
3947 if (!sock_flag(sk, SOCK_DEAD))
3948 sk->sk_data_ready(sk, 0);
3949 }
3950 }
3951}
3952
3953static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3954{
3955 struct tcp_sock *tp = tcp_sk(sk);
3956 int chunk = skb->len - hlen;
3957 int err;
3958
3959 local_bh_enable();
3960 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3961 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3962 else
3963 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3964 tp->ucopy.iov);
3965
3966 if (!err) {
3967 tp->ucopy.len -= chunk;
3968 tp->copied_seq += chunk;
3969 tcp_rcv_space_adjust(sk);
3970 }
3971
3972 local_bh_disable();
3973 return err;
3974}
3975
b51655b9 3976static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 3977{
b51655b9 3978 __sum16 result;
1da177e4
LT
3979
3980 if (sock_owned_by_user(sk)) {
3981 local_bh_enable();
3982 result = __tcp_checksum_complete(skb);
3983 local_bh_disable();
3984 } else {
3985 result = __tcp_checksum_complete(skb);
3986 }
3987 return result;
3988}
3989
40efc6fa 3990static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
3991{
3992 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3993 __tcp_checksum_complete_user(sk, skb);
3994}
3995
1a2449a8
CL
3996#ifdef CONFIG_NET_DMA
3997static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
3998{
3999 struct tcp_sock *tp = tcp_sk(sk);
4000 int chunk = skb->len - hlen;
4001 int dma_cookie;
4002 int copied_early = 0;
4003
4004 if (tp->ucopy.wakeup)
e905a9ed 4005 return 0;
1a2449a8
CL
4006
4007 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4008 tp->ucopy.dma_chan = get_softnet_dma();
4009
4010 if (tp->ucopy.dma_chan && skb->ip_summed == CHECKSUM_UNNECESSARY) {
4011
4012 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4013 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4014
4015 if (dma_cookie < 0)
4016 goto out;
4017
4018 tp->ucopy.dma_cookie = dma_cookie;
4019 copied_early = 1;
4020
4021 tp->ucopy.len -= chunk;
4022 tp->copied_seq += chunk;
4023 tcp_rcv_space_adjust(sk);
4024
4025 if ((tp->ucopy.len == 0) ||
4026 (tcp_flag_word(skb->h.th) & TCP_FLAG_PSH) ||
4027 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4028 tp->ucopy.wakeup = 1;
4029 sk->sk_data_ready(sk, 0);
4030 }
4031 } else if (chunk > 0) {
4032 tp->ucopy.wakeup = 1;
4033 sk->sk_data_ready(sk, 0);
4034 }
4035out:
4036 return copied_early;
4037}
4038#endif /* CONFIG_NET_DMA */
4039
1da177e4 4040/*
e905a9ed 4041 * TCP receive function for the ESTABLISHED state.
1da177e4 4042 *
e905a9ed 4043 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4044 * disabled when:
4045 * - A zero window was announced from us - zero window probing
e905a9ed 4046 * is only handled properly in the slow path.
1da177e4
LT
4047 * - Out of order segments arrived.
4048 * - Urgent data is expected.
4049 * - There is no buffer space left
4050 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4051 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4052 * - Data is sent in both directions. Fast path only supports pure senders
4053 * or pure receivers (this means either the sequence number or the ack
4054 * value must stay constant)
4055 * - Unexpected TCP option.
4056 *
e905a9ed 4057 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4058 * receive procedure patterned after RFC793 to handle all cases.
4059 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4060 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4061 * tcp_data_queue when everything is OK.
4062 */
4063int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4064 struct tcphdr *th, unsigned len)
4065{
4066 struct tcp_sock *tp = tcp_sk(sk);
4067
4068 /*
4069 * Header prediction.
e905a9ed 4070 * The code loosely follows the one in the famous
1da177e4 4071 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4072 *
4073 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4074 * on a device interrupt, to call tcp_recv function
4075 * on the receive process context and checksum and copy
4076 * the buffer to user space. smart...
4077 *
e905a9ed 4078 * Our current scheme is not silly either but we take the
1da177e4
LT
4079 * extra cost of the net_bh soft interrupt processing...
4080 * We do checksum and copy also but from device to kernel.
4081 */
4082
4083 tp->rx_opt.saw_tstamp = 0;
4084
4085 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4086 * if header_prediction is to be made
1da177e4
LT
4087 * 'S' will always be tp->tcp_header_len >> 2
4088 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4089 * turn it off (when there are holes in the receive
1da177e4
LT
4090 * space for instance)
4091 * PSH flag is ignored.
4092 */
4093
4094 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4095 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4096 int tcp_header_len = tp->tcp_header_len;
4097
4098 /* Timestamp header prediction: tcp_header_len
4099 * is automatically equal to th->doff*4 due to pred_flags
4100 * match.
4101 */
4102
4103 /* Check timestamp */
4104 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4105 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4106
4107 /* No? Slow path! */
4f3608b7 4108 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4109 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4110 goto slow_path;
4111
4112 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4113 ++ptr;
1da177e4
LT
4114 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4115 ++ptr;
4116 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4117
4118 /* If PAWS failed, check it more carefully in slow path */
4119 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4120 goto slow_path;
4121
4122 /* DO NOT update ts_recent here, if checksum fails
4123 * and timestamp was corrupted part, it will result
4124 * in a hung connection since we will drop all
4125 * future packets due to the PAWS test.
4126 */
4127 }
4128
4129 if (len <= tcp_header_len) {
4130 /* Bulk data transfer: sender */
4131 if (len == tcp_header_len) {
4132 /* Predicted packet is in window by definition.
4133 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4134 * Hence, check seq<=rcv_wup reduces to:
4135 */
4136 if (tcp_header_len ==
4137 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4138 tp->rcv_nxt == tp->rcv_wup)
4139 tcp_store_ts_recent(tp);
4140
1da177e4
LT
4141 /* We know that such packets are checksummed
4142 * on entry.
4143 */
4144 tcp_ack(sk, skb, 0);
e905a9ed 4145 __kfree_skb(skb);
55c97f3e 4146 tcp_data_snd_check(sk, tp);
1da177e4
LT
4147 return 0;
4148 } else { /* Header too small */
4149 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4150 goto discard;
4151 }
4152 } else {
4153 int eaten = 0;
1a2449a8 4154 int copied_early = 0;
1da177e4 4155
1a2449a8
CL
4156 if (tp->copied_seq == tp->rcv_nxt &&
4157 len - tcp_header_len <= tp->ucopy.len) {
4158#ifdef CONFIG_NET_DMA
4159 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4160 copied_early = 1;
4161 eaten = 1;
4162 }
4163#endif
4164 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4165 __set_current_state(TASK_RUNNING);
1da177e4 4166
1a2449a8
CL
4167 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4168 eaten = 1;
4169 }
4170 if (eaten) {
1da177e4
LT
4171 /* Predicted packet is in window by definition.
4172 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4173 * Hence, check seq<=rcv_wup reduces to:
4174 */
4175 if (tcp_header_len ==
4176 (sizeof(struct tcphdr) +
4177 TCPOLEN_TSTAMP_ALIGNED) &&
4178 tp->rcv_nxt == tp->rcv_wup)
4179 tcp_store_ts_recent(tp);
4180
463c84b9 4181 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4182
4183 __skb_pull(skb, tcp_header_len);
4184 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4185 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4186 }
1a2449a8
CL
4187 if (copied_early)
4188 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4189 }
4190 if (!eaten) {
4191 if (tcp_checksum_complete_user(sk, skb))
4192 goto csum_error;
4193
4194 /* Predicted packet is in window by definition.
4195 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4196 * Hence, check seq<=rcv_wup reduces to:
4197 */
4198 if (tcp_header_len ==
4199 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4200 tp->rcv_nxt == tp->rcv_wup)
4201 tcp_store_ts_recent(tp);
4202
463c84b9 4203 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4204
4205 if ((int)skb->truesize > sk->sk_forward_alloc)
4206 goto step5;
4207
4208 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4209
4210 /* Bulk data transfer: receiver */
4211 __skb_pull(skb,tcp_header_len);
4212 __skb_queue_tail(&sk->sk_receive_queue, skb);
4213 sk_stream_set_owner_r(skb, sk);
4214 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4215 }
4216
4217 tcp_event_data_recv(sk, tp, skb);
4218
4219 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4220 /* Well, only one small jumplet in fast path... */
4221 tcp_ack(sk, skb, FLAG_DATA);
55c97f3e 4222 tcp_data_snd_check(sk, tp);
463c84b9 4223 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4224 goto no_ack;
4225 }
4226
31432412 4227 __tcp_ack_snd_check(sk, 0);
1da177e4 4228no_ack:
1a2449a8
CL
4229#ifdef CONFIG_NET_DMA
4230 if (copied_early)
4231 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4232 else
4233#endif
1da177e4
LT
4234 if (eaten)
4235 __kfree_skb(skb);
4236 else
4237 sk->sk_data_ready(sk, 0);
4238 return 0;
4239 }
4240 }
4241
4242slow_path:
4243 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4244 goto csum_error;
4245
4246 /*
4247 * RFC1323: H1. Apply PAWS check first.
4248 */
4249 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4250 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4251 if (!th->rst) {
4252 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4253 tcp_send_dupack(sk, skb);
4254 goto discard;
4255 }
4256 /* Resets are accepted even if PAWS failed.
4257
4258 ts_recent update must be made after we are sure
4259 that the packet is in window.
4260 */
4261 }
4262
4263 /*
4264 * Standard slow path.
4265 */
4266
4267 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4268 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4269 * (RST) segments are validated by checking their SEQ-fields."
4270 * And page 69: "If an incoming segment is not acceptable,
4271 * an acknowledgment should be sent in reply (unless the RST bit
4272 * is set, if so drop the segment and return)".
4273 */
4274 if (!th->rst)
4275 tcp_send_dupack(sk, skb);
4276 goto discard;
4277 }
4278
4279 if(th->rst) {
4280 tcp_reset(sk);
4281 goto discard;
4282 }
4283
4284 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4285
4286 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4287 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4288 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4289 tcp_reset(sk);
4290 return 1;
4291 }
4292
4293step5:
4294 if(th->ack)
4295 tcp_ack(sk, skb, FLAG_SLOWPATH);
4296
463c84b9 4297 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4298
4299 /* Process urgent data. */
4300 tcp_urg(sk, skb, th);
4301
4302 /* step 7: process the segment text */
4303 tcp_data_queue(sk, skb);
4304
55c97f3e 4305 tcp_data_snd_check(sk, tp);
1da177e4
LT
4306 tcp_ack_snd_check(sk);
4307 return 0;
4308
4309csum_error:
4310 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4311
4312discard:
4313 __kfree_skb(skb);
4314 return 0;
4315}
4316
4317static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4318 struct tcphdr *th, unsigned len)
4319{
4320 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4321 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4322 int saved_clamp = tp->rx_opt.mss_clamp;
4323
4324 tcp_parse_options(skb, &tp->rx_opt, 0);
4325
4326 if (th->ack) {
4327 /* rfc793:
4328 * "If the state is SYN-SENT then
4329 * first check the ACK bit
4330 * If the ACK bit is set
4331 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4332 * a reset (unless the RST bit is set, if so drop
4333 * the segment and return)"
4334 *
4335 * We do not send data with SYN, so that RFC-correct
4336 * test reduces to:
4337 */
4338 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4339 goto reset_and_undo;
4340
4341 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4342 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4343 tcp_time_stamp)) {
4344 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4345 goto reset_and_undo;
4346 }
4347
4348 /* Now ACK is acceptable.
4349 *
4350 * "If the RST bit is set
4351 * If the ACK was acceptable then signal the user "error:
4352 * connection reset", drop the segment, enter CLOSED state,
4353 * delete TCB, and return."
4354 */
4355
4356 if (th->rst) {
4357 tcp_reset(sk);
4358 goto discard;
4359 }
4360
4361 /* rfc793:
4362 * "fifth, if neither of the SYN or RST bits is set then
4363 * drop the segment and return."
4364 *
4365 * See note below!
4366 * --ANK(990513)
4367 */
4368 if (!th->syn)
4369 goto discard_and_undo;
4370
4371 /* rfc793:
4372 * "If the SYN bit is on ...
4373 * are acceptable then ...
4374 * (our SYN has been ACKed), change the connection
4375 * state to ESTABLISHED..."
4376 */
4377
4378 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4379
4380 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4381 tcp_ack(sk, skb, FLAG_SLOWPATH);
4382
4383 /* Ok.. it's good. Set up sequence numbers and
4384 * move to established.
4385 */
4386 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4387 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4388
4389 /* RFC1323: The window in SYN & SYN/ACK segments is
4390 * never scaled.
4391 */
4392 tp->snd_wnd = ntohs(th->window);
4393 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4394
4395 if (!tp->rx_opt.wscale_ok) {
4396 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4397 tp->window_clamp = min(tp->window_clamp, 65535U);
4398 }
4399
4400 if (tp->rx_opt.saw_tstamp) {
4401 tp->rx_opt.tstamp_ok = 1;
4402 tp->tcp_header_len =
4403 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4404 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4405 tcp_store_ts_recent(tp);
4406 } else {
4407 tp->tcp_header_len = sizeof(struct tcphdr);
4408 }
4409
4410 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
4411 tp->rx_opt.sack_ok |= 2;
4412
5d424d5a 4413 tcp_mtup_init(sk);
d83d8461 4414 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4415 tcp_initialize_rcv_mss(sk);
4416
4417 /* Remember, tcp_poll() does not lock socket!
4418 * Change state from SYN-SENT only after copied_seq
4419 * is initialized. */
4420 tp->copied_seq = tp->rcv_nxt;
e16aa207 4421 smp_mb();
1da177e4
LT
4422 tcp_set_state(sk, TCP_ESTABLISHED);
4423
6b877699
VY
4424 security_inet_conn_established(sk, skb);
4425
1da177e4 4426 /* Make sure socket is routed, for correct metrics. */
8292a17a 4427 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4428
4429 tcp_init_metrics(sk);
4430
6687e988 4431 tcp_init_congestion_control(sk);
317a76f9 4432
1da177e4
LT
4433 /* Prevent spurious tcp_cwnd_restart() on first data
4434 * packet.
4435 */
4436 tp->lsndtime = tcp_time_stamp;
4437
4438 tcp_init_buffer_space(sk);
4439
4440 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4441 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4442
4443 if (!tp->rx_opt.snd_wscale)
4444 __tcp_fast_path_on(tp, tp->snd_wnd);
4445 else
4446 tp->pred_flags = 0;
4447
4448 if (!sock_flag(sk, SOCK_DEAD)) {
4449 sk->sk_state_change(sk);
4450 sk_wake_async(sk, 0, POLL_OUT);
4451 }
4452
295f7324
ACM
4453 if (sk->sk_write_pending ||
4454 icsk->icsk_accept_queue.rskq_defer_accept ||
4455 icsk->icsk_ack.pingpong) {
1da177e4
LT
4456 /* Save one ACK. Data will be ready after
4457 * several ticks, if write_pending is set.
4458 *
4459 * It may be deleted, but with this feature tcpdumps
4460 * look so _wonderfully_ clever, that I was not able
4461 * to stand against the temptation 8) --ANK
4462 */
463c84b9 4463 inet_csk_schedule_ack(sk);
295f7324
ACM
4464 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4465 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4466 tcp_incr_quickack(sk);
4467 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4468 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4469 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4470
4471discard:
4472 __kfree_skb(skb);
4473 return 0;
4474 } else {
4475 tcp_send_ack(sk);
4476 }
4477 return -1;
4478 }
4479
4480 /* No ACK in the segment */
4481
4482 if (th->rst) {
4483 /* rfc793:
4484 * "If the RST bit is set
4485 *
4486 * Otherwise (no ACK) drop the segment and return."
4487 */
4488
4489 goto discard_and_undo;
4490 }
4491
4492 /* PAWS check. */
4493 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4494 goto discard_and_undo;
4495
4496 if (th->syn) {
4497 /* We see SYN without ACK. It is attempt of
4498 * simultaneous connect with crossed SYNs.
4499 * Particularly, it can be connect to self.
4500 */
4501 tcp_set_state(sk, TCP_SYN_RECV);
4502
4503 if (tp->rx_opt.saw_tstamp) {
4504 tp->rx_opt.tstamp_ok = 1;
4505 tcp_store_ts_recent(tp);
4506 tp->tcp_header_len =
4507 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4508 } else {
4509 tp->tcp_header_len = sizeof(struct tcphdr);
4510 }
4511
4512 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4513 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4514
4515 /* RFC1323: The window in SYN & SYN/ACK segments is
4516 * never scaled.
4517 */
4518 tp->snd_wnd = ntohs(th->window);
4519 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4520 tp->max_window = tp->snd_wnd;
4521
4522 TCP_ECN_rcv_syn(tp, th);
1da177e4 4523
5d424d5a 4524 tcp_mtup_init(sk);
d83d8461 4525 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4526 tcp_initialize_rcv_mss(sk);
4527
4528
4529 tcp_send_synack(sk);
4530#if 0
4531 /* Note, we could accept data and URG from this segment.
4532 * There are no obstacles to make this.
4533 *
4534 * However, if we ignore data in ACKless segments sometimes,
4535 * we have no reasons to accept it sometimes.
4536 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4537 * is not flawless. So, discard packet for sanity.
4538 * Uncomment this return to process the data.
4539 */
4540 return -1;
4541#else
4542 goto discard;
4543#endif
4544 }
4545 /* "fifth, if neither of the SYN or RST bits is set then
4546 * drop the segment and return."
4547 */
4548
4549discard_and_undo:
4550 tcp_clear_options(&tp->rx_opt);
4551 tp->rx_opt.mss_clamp = saved_clamp;
4552 goto discard;
4553
4554reset_and_undo:
4555 tcp_clear_options(&tp->rx_opt);
4556 tp->rx_opt.mss_clamp = saved_clamp;
4557 return 1;
4558}
4559
4560
4561/*
4562 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4563 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4564 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4565 * address independent.
4566 */
e905a9ed 4567
1da177e4
LT
4568int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4569 struct tcphdr *th, unsigned len)
4570{
4571 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4572 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4573 int queued = 0;
4574
4575 tp->rx_opt.saw_tstamp = 0;
4576
4577 switch (sk->sk_state) {
4578 case TCP_CLOSE:
4579 goto discard;
4580
4581 case TCP_LISTEN:
4582 if(th->ack)
4583 return 1;
4584
4585 if(th->rst)
4586 goto discard;
4587
4588 if(th->syn) {
8292a17a 4589 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4590 return 1;
4591
e905a9ed
YH
4592 /* Now we have several options: In theory there is
4593 * nothing else in the frame. KA9Q has an option to
1da177e4 4594 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4595 * syn up to the [to be] advertised window and
4596 * Solaris 2.1 gives you a protocol error. For now
4597 * we just ignore it, that fits the spec precisely
1da177e4
LT
4598 * and avoids incompatibilities. It would be nice in
4599 * future to drop through and process the data.
4600 *
e905a9ed 4601 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4602 * queue this data.
4603 * But, this leaves one open to an easy denial of
e905a9ed 4604 * service attack, and SYN cookies can't defend
1da177e4 4605 * against this problem. So, we drop the data
fb7e2399
MN
4606 * in the interest of security over speed unless
4607 * it's still in use.
1da177e4 4608 */
fb7e2399
MN
4609 kfree_skb(skb);
4610 return 0;
1da177e4
LT
4611 }
4612 goto discard;
4613
4614 case TCP_SYN_SENT:
1da177e4
LT
4615 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4616 if (queued >= 0)
4617 return queued;
4618
4619 /* Do step6 onward by hand. */
4620 tcp_urg(sk, skb, th);
4621 __kfree_skb(skb);
55c97f3e 4622 tcp_data_snd_check(sk, tp);
1da177e4
LT
4623 return 0;
4624 }
4625
4626 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4627 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4628 if (!th->rst) {
4629 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4630 tcp_send_dupack(sk, skb);
4631 goto discard;
4632 }
4633 /* Reset is accepted even if it did not pass PAWS. */
4634 }
4635
4636 /* step 1: check sequence number */
4637 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4638 if (!th->rst)
4639 tcp_send_dupack(sk, skb);
4640 goto discard;
4641 }
4642
4643 /* step 2: check RST bit */
4644 if(th->rst) {
4645 tcp_reset(sk);
4646 goto discard;
4647 }
4648
4649 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4650
4651 /* step 3: check security and precedence [ignored] */
4652
4653 /* step 4:
4654 *
4655 * Check for a SYN in window.
4656 */
4657 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4658 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4659 tcp_reset(sk);
4660 return 1;
4661 }
4662
4663 /* step 5: check the ACK field */
4664 if (th->ack) {
4665 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4666
4667 switch(sk->sk_state) {
4668 case TCP_SYN_RECV:
4669 if (acceptable) {
4670 tp->copied_seq = tp->rcv_nxt;
e16aa207 4671 smp_mb();
1da177e4
LT
4672 tcp_set_state(sk, TCP_ESTABLISHED);
4673 sk->sk_state_change(sk);
4674
4675 /* Note, that this wakeup is only for marginal
4676 * crossed SYN case. Passively open sockets
4677 * are not waked up, because sk->sk_sleep ==
4678 * NULL and sk->sk_socket == NULL.
4679 */
4680 if (sk->sk_socket) {
4681 sk_wake_async(sk,0,POLL_OUT);
4682 }
4683
4684 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4685 tp->snd_wnd = ntohs(th->window) <<
4686 tp->rx_opt.snd_wscale;
4687 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4688 TCP_SKB_CB(skb)->seq);
4689
4690 /* tcp_ack considers this ACK as duplicate
4691 * and does not calculate rtt.
4692 * Fix it at least with timestamps.
4693 */
4694 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4695 !tp->srtt)
2d2abbab 4696 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4697
4698 if (tp->rx_opt.tstamp_ok)
4699 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4700
4701 /* Make sure socket is routed, for
4702 * correct metrics.
4703 */
8292a17a 4704 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4705
4706 tcp_init_metrics(sk);
4707
6687e988 4708 tcp_init_congestion_control(sk);
317a76f9 4709
1da177e4
LT
4710 /* Prevent spurious tcp_cwnd_restart() on
4711 * first data packet.
4712 */
4713 tp->lsndtime = tcp_time_stamp;
4714
5d424d5a 4715 tcp_mtup_init(sk);
1da177e4
LT
4716 tcp_initialize_rcv_mss(sk);
4717 tcp_init_buffer_space(sk);
4718 tcp_fast_path_on(tp);
4719 } else {
4720 return 1;
4721 }
4722 break;
4723
4724 case TCP_FIN_WAIT1:
4725 if (tp->snd_una == tp->write_seq) {
4726 tcp_set_state(sk, TCP_FIN_WAIT2);
4727 sk->sk_shutdown |= SEND_SHUTDOWN;
4728 dst_confirm(sk->sk_dst_cache);
4729
4730 if (!sock_flag(sk, SOCK_DEAD))
4731 /* Wake up lingering close() */
4732 sk->sk_state_change(sk);
4733 else {
4734 int tmo;
4735
4736 if (tp->linger2 < 0 ||
4737 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4738 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4739 tcp_done(sk);
4740 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4741 return 1;
4742 }
4743
463c84b9 4744 tmo = tcp_fin_time(sk);
1da177e4 4745 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4746 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4747 } else if (th->fin || sock_owned_by_user(sk)) {
4748 /* Bad case. We could lose such FIN otherwise.
4749 * It is not a big problem, but it looks confusing
4750 * and not so rare event. We still can lose it now,
4751 * if it spins in bh_lock_sock(), but it is really
4752 * marginal case.
4753 */
463c84b9 4754 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4755 } else {
4756 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4757 goto discard;
4758 }
4759 }
4760 }
4761 break;
4762
4763 case TCP_CLOSING:
4764 if (tp->snd_una == tp->write_seq) {
4765 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4766 goto discard;
4767 }
4768 break;
4769
4770 case TCP_LAST_ACK:
4771 if (tp->snd_una == tp->write_seq) {
4772 tcp_update_metrics(sk);
4773 tcp_done(sk);
4774 goto discard;
4775 }
4776 break;
4777 }
4778 } else
4779 goto discard;
4780
4781 /* step 6: check the URG bit */
4782 tcp_urg(sk, skb, th);
4783
4784 /* step 7: process the segment text */
4785 switch (sk->sk_state) {
4786 case TCP_CLOSE_WAIT:
4787 case TCP_CLOSING:
4788 case TCP_LAST_ACK:
4789 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4790 break;
4791 case TCP_FIN_WAIT1:
4792 case TCP_FIN_WAIT2:
4793 /* RFC 793 says to queue data in these states,
e905a9ed 4794 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4795 * BSD 4.4 also does reset.
4796 */
4797 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4798 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4799 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4800 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4801 tcp_reset(sk);
4802 return 1;
4803 }
4804 }
4805 /* Fall through */
e905a9ed 4806 case TCP_ESTABLISHED:
1da177e4
LT
4807 tcp_data_queue(sk, skb);
4808 queued = 1;
4809 break;
4810 }
4811
4812 /* tcp_data could move socket to TIME-WAIT */
4813 if (sk->sk_state != TCP_CLOSE) {
55c97f3e 4814 tcp_data_snd_check(sk, tp);
1da177e4
LT
4815 tcp_ack_snd_check(sk);
4816 }
4817
e905a9ed 4818 if (!queued) {
1da177e4
LT
4819discard:
4820 __kfree_skb(skb);
4821 }
4822 return 0;
4823}
4824
4825EXPORT_SYMBOL(sysctl_tcp_ecn);
4826EXPORT_SYMBOL(sysctl_tcp_reordering);
4827EXPORT_SYMBOL(tcp_parse_options);
4828EXPORT_SYMBOL(tcp_rcv_established);
4829EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 4830EXPORT_SYMBOL(tcp_initialize_rcv_mss);