tifm_7xx1: fix adapter resume function
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ipv4 / fib_trie.c
CommitLineData
19baf839
RO
1/*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
6 *
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
9 *
e905a9ed 10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
19baf839 11 * Agricultural Sciences.
e905a9ed 12 *
19baf839
RO
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
14 *
15 * This work is based on the LPC-trie which is originally descibed in:
e905a9ed 16 *
19baf839
RO
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
20 *
21 *
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
24 *
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
26 *
27 *
28 * Code from fib_hash has been reused which includes the following header:
29 *
30 *
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
34 *
35 * IPv4 FIB: lookup engine and maintenance routines.
36 *
37 *
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
39 *
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
fd966255
RO
44 *
45 * Substantial contributions to this work comes from:
46 *
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
19baf839
RO
51 */
52
05eee48c 53#define VERSION "0.408"
19baf839 54
19baf839
RO
55#include <asm/uaccess.h>
56#include <asm/system.h>
57#include <asm/bitops.h>
58#include <linux/types.h>
59#include <linux/kernel.h>
19baf839
RO
60#include <linux/mm.h>
61#include <linux/string.h>
62#include <linux/socket.h>
63#include <linux/sockios.h>
64#include <linux/errno.h>
65#include <linux/in.h>
66#include <linux/inet.h>
cd8787ab 67#include <linux/inetdevice.h>
19baf839
RO
68#include <linux/netdevice.h>
69#include <linux/if_arp.h>
70#include <linux/proc_fs.h>
2373ce1c 71#include <linux/rcupdate.h>
19baf839
RO
72#include <linux/skbuff.h>
73#include <linux/netlink.h>
74#include <linux/init.h>
75#include <linux/list.h>
76#include <net/ip.h>
77#include <net/protocol.h>
78#include <net/route.h>
79#include <net/tcp.h>
80#include <net/sock.h>
81#include <net/ip_fib.h>
82#include "fib_lookup.h"
83
84#undef CONFIG_IP_FIB_TRIE_STATS
06ef921d 85#define MAX_STAT_DEPTH 32
19baf839 86
19baf839
RO
87#define KEYLENGTH (8*sizeof(t_key))
88#define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
89#define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
90
19baf839
RO
91typedef unsigned int t_key;
92
93#define T_TNODE 0
94#define T_LEAF 1
95#define NODE_TYPE_MASK 0x1UL
91b9a277 96#define NODE_PARENT(node) \
2373ce1c
RO
97 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
98
99#define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
100
101#define NODE_SET_PARENT(node, ptr) \
102 rcu_assign_pointer((node)->parent, \
103 ((unsigned long)(ptr)) | NODE_TYPE(node))
91b9a277
OJ
104
105#define IS_TNODE(n) (!(n->parent & T_LEAF))
106#define IS_LEAF(n) (n->parent & T_LEAF)
19baf839
RO
107
108struct node {
91b9a277
OJ
109 t_key key;
110 unsigned long parent;
19baf839
RO
111};
112
113struct leaf {
91b9a277
OJ
114 t_key key;
115 unsigned long parent;
19baf839 116 struct hlist_head list;
2373ce1c 117 struct rcu_head rcu;
19baf839
RO
118};
119
120struct leaf_info {
121 struct hlist_node hlist;
2373ce1c 122 struct rcu_head rcu;
19baf839
RO
123 int plen;
124 struct list_head falh;
125};
126
127struct tnode {
91b9a277
OJ
128 t_key key;
129 unsigned long parent;
130 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
131 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short full_children; /* KEYLENGTH bits needed */
133 unsigned short empty_children; /* KEYLENGTH bits needed */
2373ce1c 134 struct rcu_head rcu;
91b9a277 135 struct node *child[0];
19baf839
RO
136};
137
138#ifdef CONFIG_IP_FIB_TRIE_STATS
139struct trie_use_stats {
140 unsigned int gets;
141 unsigned int backtrack;
142 unsigned int semantic_match_passed;
143 unsigned int semantic_match_miss;
144 unsigned int null_node_hit;
2f36895a 145 unsigned int resize_node_skipped;
19baf839
RO
146};
147#endif
148
149struct trie_stat {
150 unsigned int totdepth;
151 unsigned int maxdepth;
152 unsigned int tnodes;
153 unsigned int leaves;
154 unsigned int nullpointers;
06ef921d 155 unsigned int nodesizes[MAX_STAT_DEPTH];
c877efb2 156};
19baf839
RO
157
158struct trie {
91b9a277 159 struct node *trie;
19baf839
RO
160#ifdef CONFIG_IP_FIB_TRIE_STATS
161 struct trie_use_stats stats;
162#endif
91b9a277 163 int size;
19baf839
RO
164 unsigned int revision;
165};
166
19baf839
RO
167static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
168static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
19baf839 169static struct node *resize(struct trie *t, struct tnode *tn);
2f80b3c8
RO
170static struct tnode *inflate(struct trie *t, struct tnode *tn);
171static struct tnode *halve(struct trie *t, struct tnode *tn);
19baf839 172static void tnode_free(struct tnode *tn);
19baf839 173
e18b890b 174static struct kmem_cache *fn_alias_kmem __read_mostly;
19baf839
RO
175static struct trie *trie_local = NULL, *trie_main = NULL;
176
2373ce1c
RO
177
178/* rcu_read_lock needs to be hold by caller from readside */
179
c877efb2 180static inline struct node *tnode_get_child(struct tnode *tn, int i)
19baf839 181{
91b9a277 182 BUG_ON(i >= 1 << tn->bits);
19baf839 183
2373ce1c 184 return rcu_dereference(tn->child[i]);
19baf839
RO
185}
186
bb435b8d 187static inline int tnode_child_length(const struct tnode *tn)
19baf839 188{
91b9a277 189 return 1 << tn->bits;
19baf839
RO
190}
191
19baf839
RO
192static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
193{
91b9a277 194 if (offset < KEYLENGTH)
19baf839 195 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
91b9a277 196 else
19baf839
RO
197 return 0;
198}
199
200static inline int tkey_equals(t_key a, t_key b)
201{
c877efb2 202 return a == b;
19baf839
RO
203}
204
205static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
206{
c877efb2
SH
207 if (bits == 0 || offset >= KEYLENGTH)
208 return 1;
91b9a277
OJ
209 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
210 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
c877efb2 211}
19baf839
RO
212
213static inline int tkey_mismatch(t_key a, int offset, t_key b)
214{
215 t_key diff = a ^ b;
216 int i = offset;
217
c877efb2
SH
218 if (!diff)
219 return 0;
220 while ((diff << i) >> (KEYLENGTH-1) == 0)
19baf839
RO
221 i++;
222 return i;
223}
224
19baf839 225/*
e905a9ed
YH
226 To understand this stuff, an understanding of keys and all their bits is
227 necessary. Every node in the trie has a key associated with it, but not
19baf839
RO
228 all of the bits in that key are significant.
229
230 Consider a node 'n' and its parent 'tp'.
231
e905a9ed
YH
232 If n is a leaf, every bit in its key is significant. Its presence is
233 necessitated by path compression, since during a tree traversal (when
234 searching for a leaf - unless we are doing an insertion) we will completely
235 ignore all skipped bits we encounter. Thus we need to verify, at the end of
236 a potentially successful search, that we have indeed been walking the
19baf839
RO
237 correct key path.
238
e905a9ed
YH
239 Note that we can never "miss" the correct key in the tree if present by
240 following the wrong path. Path compression ensures that segments of the key
241 that are the same for all keys with a given prefix are skipped, but the
242 skipped part *is* identical for each node in the subtrie below the skipped
243 bit! trie_insert() in this implementation takes care of that - note the
19baf839
RO
244 call to tkey_sub_equals() in trie_insert().
245
e905a9ed 246 if n is an internal node - a 'tnode' here, the various parts of its key
19baf839
RO
247 have many different meanings.
248
e905a9ed 249 Example:
19baf839
RO
250 _________________________________________________________________
251 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
252 -----------------------------------------------------------------
e905a9ed 253 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
19baf839
RO
254
255 _________________________________________________________________
256 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
257 -----------------------------------------------------------------
258 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
259
260 tp->pos = 7
261 tp->bits = 3
262 n->pos = 15
91b9a277 263 n->bits = 4
19baf839 264
e905a9ed
YH
265 First, let's just ignore the bits that come before the parent tp, that is
266 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
19baf839
RO
267 not use them for anything.
268
269 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
e905a9ed 270 index into the parent's child array. That is, they will be used to find
19baf839
RO
271 'n' among tp's children.
272
273 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
274 for the node n.
275
e905a9ed 276 All the bits we have seen so far are significant to the node n. The rest
19baf839
RO
277 of the bits are really not needed or indeed known in n->key.
278
e905a9ed 279 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
19baf839 280 n's child array, and will of course be different for each child.
e905a9ed 281
c877efb2 282
19baf839
RO
283 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
284 at this point.
285
286*/
287
0c7770c7 288static inline void check_tnode(const struct tnode *tn)
19baf839 289{
0c7770c7 290 WARN_ON(tn && tn->pos+tn->bits > 32);
19baf839
RO
291}
292
293static int halve_threshold = 25;
294static int inflate_threshold = 50;
965ffea4
RO
295static int halve_threshold_root = 8;
296static int inflate_threshold_root = 15;
19baf839 297
2373ce1c
RO
298
299static void __alias_free_mem(struct rcu_head *head)
19baf839 300{
2373ce1c
RO
301 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
302 kmem_cache_free(fn_alias_kmem, fa);
19baf839
RO
303}
304
2373ce1c 305static inline void alias_free_mem_rcu(struct fib_alias *fa)
19baf839 306{
2373ce1c
RO
307 call_rcu(&fa->rcu, __alias_free_mem);
308}
91b9a277 309
2373ce1c
RO
310static void __leaf_free_rcu(struct rcu_head *head)
311{
312 kfree(container_of(head, struct leaf, rcu));
313}
91b9a277 314
2373ce1c 315static void __leaf_info_free_rcu(struct rcu_head *head)
19baf839 316{
2373ce1c 317 kfree(container_of(head, struct leaf_info, rcu));
19baf839
RO
318}
319
2373ce1c 320static inline void free_leaf_info(struct leaf_info *leaf)
19baf839 321{
2373ce1c 322 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
19baf839
RO
323}
324
f0e36f8c
PM
325static struct tnode *tnode_alloc(unsigned int size)
326{
2373ce1c
RO
327 struct page *pages;
328
329 if (size <= PAGE_SIZE)
330 return kcalloc(size, 1, GFP_KERNEL);
331
332 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 if (!pages)
334 return NULL;
335
336 return page_address(pages);
f0e36f8c
PM
337}
338
2373ce1c 339static void __tnode_free_rcu(struct rcu_head *head)
f0e36f8c 340{
2373ce1c 341 struct tnode *tn = container_of(head, struct tnode, rcu);
f0e36f8c 342 unsigned int size = sizeof(struct tnode) +
2373ce1c 343 (1 << tn->bits) * sizeof(struct node *);
f0e36f8c
PM
344
345 if (size <= PAGE_SIZE)
346 kfree(tn);
347 else
348 free_pages((unsigned long)tn, get_order(size));
349}
350
2373ce1c
RO
351static inline void tnode_free(struct tnode *tn)
352{
132adf54 353 if (IS_LEAF(tn)) {
550e29bc
RO
354 struct leaf *l = (struct leaf *) tn;
355 call_rcu_bh(&l->rcu, __leaf_free_rcu);
132adf54 356 } else
550e29bc 357 call_rcu(&tn->rcu, __tnode_free_rcu);
2373ce1c
RO
358}
359
360static struct leaf *leaf_new(void)
361{
362 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
363 if (l) {
364 l->parent = T_LEAF;
365 INIT_HLIST_HEAD(&l->list);
366 }
367 return l;
368}
369
370static struct leaf_info *leaf_info_new(int plen)
371{
372 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
373 if (li) {
374 li->plen = plen;
375 INIT_LIST_HEAD(&li->falh);
376 }
377 return li;
378}
379
19baf839
RO
380static struct tnode* tnode_new(t_key key, int pos, int bits)
381{
382 int nchildren = 1<<bits;
383 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
f0e36f8c 384 struct tnode *tn = tnode_alloc(sz);
19baf839 385
91b9a277 386 if (tn) {
19baf839 387 memset(tn, 0, sz);
2373ce1c 388 tn->parent = T_TNODE;
19baf839
RO
389 tn->pos = pos;
390 tn->bits = bits;
391 tn->key = key;
392 tn->full_children = 0;
393 tn->empty_children = 1<<bits;
394 }
c877efb2 395
0c7770c7
SH
396 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
397 (unsigned int) (sizeof(struct node) * 1<<bits));
19baf839
RO
398 return tn;
399}
400
19baf839
RO
401/*
402 * Check whether a tnode 'n' is "full", i.e. it is an internal node
403 * and no bits are skipped. See discussion in dyntree paper p. 6
404 */
405
bb435b8d 406static inline int tnode_full(const struct tnode *tn, const struct node *n)
19baf839 407{
c877efb2 408 if (n == NULL || IS_LEAF(n))
19baf839
RO
409 return 0;
410
411 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
412}
413
c877efb2 414static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
19baf839
RO
415{
416 tnode_put_child_reorg(tn, i, n, -1);
417}
418
c877efb2 419 /*
19baf839
RO
420 * Add a child at position i overwriting the old value.
421 * Update the value of full_children and empty_children.
422 */
423
c877efb2 424static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
19baf839 425{
2373ce1c 426 struct node *chi = tn->child[i];
19baf839
RO
427 int isfull;
428
0c7770c7
SH
429 BUG_ON(i >= 1<<tn->bits);
430
19baf839
RO
431
432 /* update emptyChildren */
433 if (n == NULL && chi != NULL)
434 tn->empty_children++;
435 else if (n != NULL && chi == NULL)
436 tn->empty_children--;
c877efb2 437
19baf839 438 /* update fullChildren */
91b9a277 439 if (wasfull == -1)
19baf839
RO
440 wasfull = tnode_full(tn, chi);
441
442 isfull = tnode_full(tn, n);
c877efb2 443 if (wasfull && !isfull)
19baf839 444 tn->full_children--;
c877efb2 445 else if (!wasfull && isfull)
19baf839 446 tn->full_children++;
91b9a277 447
c877efb2
SH
448 if (n)
449 NODE_SET_PARENT(n, tn);
19baf839 450
2373ce1c 451 rcu_assign_pointer(tn->child[i], n);
19baf839
RO
452}
453
c877efb2 454static struct node *resize(struct trie *t, struct tnode *tn)
19baf839
RO
455{
456 int i;
2f36895a 457 int err = 0;
2f80b3c8 458 struct tnode *old_tn;
e6308be8
RO
459 int inflate_threshold_use;
460 int halve_threshold_use;
05eee48c 461 int max_resize;
19baf839 462
e905a9ed 463 if (!tn)
19baf839
RO
464 return NULL;
465
0c7770c7
SH
466 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
467 tn, inflate_threshold, halve_threshold);
19baf839
RO
468
469 /* No children */
470 if (tn->empty_children == tnode_child_length(tn)) {
471 tnode_free(tn);
472 return NULL;
473 }
474 /* One child */
475 if (tn->empty_children == tnode_child_length(tn) - 1)
476 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 477 struct node *n;
19baf839 478
91b9a277 479 n = tn->child[i];
2373ce1c 480 if (!n)
91b9a277 481 continue;
91b9a277
OJ
482
483 /* compress one level */
2373ce1c 484 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
485 tnode_free(tn);
486 return n;
19baf839 487 }
c877efb2 488 /*
19baf839
RO
489 * Double as long as the resulting node has a number of
490 * nonempty nodes that are above the threshold.
491 */
492
493 /*
c877efb2
SH
494 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
495 * the Helsinki University of Technology and Matti Tikkanen of Nokia
19baf839 496 * Telecommunications, page 6:
c877efb2 497 * "A node is doubled if the ratio of non-empty children to all
19baf839
RO
498 * children in the *doubled* node is at least 'high'."
499 *
c877efb2
SH
500 * 'high' in this instance is the variable 'inflate_threshold'. It
501 * is expressed as a percentage, so we multiply it with
502 * tnode_child_length() and instead of multiplying by 2 (since the
503 * child array will be doubled by inflate()) and multiplying
504 * the left-hand side by 100 (to handle the percentage thing) we
19baf839 505 * multiply the left-hand side by 50.
c877efb2
SH
506 *
507 * The left-hand side may look a bit weird: tnode_child_length(tn)
508 * - tn->empty_children is of course the number of non-null children
509 * in the current node. tn->full_children is the number of "full"
19baf839 510 * children, that is non-null tnodes with a skip value of 0.
c877efb2 511 * All of those will be doubled in the resulting inflated tnode, so
19baf839 512 * we just count them one extra time here.
c877efb2 513 *
19baf839 514 * A clearer way to write this would be:
c877efb2 515 *
19baf839 516 * to_be_doubled = tn->full_children;
c877efb2 517 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
19baf839
RO
518 * tn->full_children;
519 *
520 * new_child_length = tnode_child_length(tn) * 2;
521 *
c877efb2 522 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
19baf839
RO
523 * new_child_length;
524 * if (new_fill_factor >= inflate_threshold)
c877efb2
SH
525 *
526 * ...and so on, tho it would mess up the while () loop.
527 *
19baf839
RO
528 * anyway,
529 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
530 * inflate_threshold
c877efb2 531 *
19baf839
RO
532 * avoid a division:
533 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
534 * inflate_threshold * new_child_length
c877efb2 535 *
19baf839 536 * expand not_to_be_doubled and to_be_doubled, and shorten:
c877efb2 537 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 538 * tn->full_children) >= inflate_threshold * new_child_length
c877efb2 539 *
19baf839 540 * expand new_child_length:
c877efb2 541 * 100 * (tnode_child_length(tn) - tn->empty_children +
91b9a277 542 * tn->full_children) >=
19baf839 543 * inflate_threshold * tnode_child_length(tn) * 2
c877efb2 544 *
19baf839 545 * shorten again:
c877efb2 546 * 50 * (tn->full_children + tnode_child_length(tn) -
91b9a277 547 * tn->empty_children) >= inflate_threshold *
19baf839 548 * tnode_child_length(tn)
c877efb2 549 *
19baf839
RO
550 */
551
552 check_tnode(tn);
c877efb2 553
e6308be8
RO
554 /* Keep root node larger */
555
132adf54 556 if (!tn->parent)
e6308be8 557 inflate_threshold_use = inflate_threshold_root;
e905a9ed 558 else
e6308be8
RO
559 inflate_threshold_use = inflate_threshold;
560
2f36895a 561 err = 0;
05eee48c
RO
562 max_resize = 10;
563 while ((tn->full_children > 0 && max_resize-- &&
19baf839 564 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
e6308be8 565 inflate_threshold_use * tnode_child_length(tn))) {
19baf839 566
2f80b3c8
RO
567 old_tn = tn;
568 tn = inflate(t, tn);
569 if (IS_ERR(tn)) {
570 tn = old_tn;
2f36895a
RO
571#ifdef CONFIG_IP_FIB_TRIE_STATS
572 t->stats.resize_node_skipped++;
573#endif
574 break;
575 }
19baf839
RO
576 }
577
05eee48c
RO
578 if (max_resize < 0) {
579 if (!tn->parent)
580 printk(KERN_WARNING "Fix inflate_threshold_root. Now=%d size=%d bits\n",
581 inflate_threshold_root, tn->bits);
582 else
583 printk(KERN_WARNING "Fix inflate_threshold. Now=%d size=%d bits\n",
584 inflate_threshold, tn->bits);
585 }
586
19baf839
RO
587 check_tnode(tn);
588
589 /*
590 * Halve as long as the number of empty children in this
591 * node is above threshold.
592 */
2f36895a 593
e6308be8
RO
594
595 /* Keep root node larger */
596
132adf54 597 if (!tn->parent)
e6308be8 598 halve_threshold_use = halve_threshold_root;
e905a9ed 599 else
e6308be8
RO
600 halve_threshold_use = halve_threshold;
601
2f36895a 602 err = 0;
05eee48c
RO
603 max_resize = 10;
604 while (tn->bits > 1 && max_resize-- &&
19baf839 605 100 * (tnode_child_length(tn) - tn->empty_children) <
e6308be8 606 halve_threshold_use * tnode_child_length(tn)) {
2f36895a 607
2f80b3c8
RO
608 old_tn = tn;
609 tn = halve(t, tn);
610 if (IS_ERR(tn)) {
611 tn = old_tn;
2f36895a
RO
612#ifdef CONFIG_IP_FIB_TRIE_STATS
613 t->stats.resize_node_skipped++;
614#endif
615 break;
616 }
617 }
19baf839 618
05eee48c
RO
619 if (max_resize < 0) {
620 if (!tn->parent)
621 printk(KERN_WARNING "Fix halve_threshold_root. Now=%d size=%d bits\n",
622 halve_threshold_root, tn->bits);
623 else
624 printk(KERN_WARNING "Fix halve_threshold. Now=%d size=%d bits\n",
625 halve_threshold, tn->bits);
626 }
c877efb2 627
19baf839 628 /* Only one child remains */
19baf839
RO
629 if (tn->empty_children == tnode_child_length(tn) - 1)
630 for (i = 0; i < tnode_child_length(tn); i++) {
91b9a277 631 struct node *n;
19baf839 632
91b9a277 633 n = tn->child[i];
2373ce1c 634 if (!n)
91b9a277 635 continue;
91b9a277
OJ
636
637 /* compress one level */
638
2373ce1c 639 NODE_SET_PARENT(n, NULL);
91b9a277
OJ
640 tnode_free(tn);
641 return n;
19baf839
RO
642 }
643
644 return (struct node *) tn;
645}
646
2f80b3c8 647static struct tnode *inflate(struct trie *t, struct tnode *tn)
19baf839
RO
648{
649 struct tnode *inode;
650 struct tnode *oldtnode = tn;
651 int olen = tnode_child_length(tn);
652 int i;
653
0c7770c7 654 pr_debug("In inflate\n");
19baf839
RO
655
656 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
657
0c7770c7 658 if (!tn)
2f80b3c8 659 return ERR_PTR(-ENOMEM);
2f36895a
RO
660
661 /*
c877efb2
SH
662 * Preallocate and store tnodes before the actual work so we
663 * don't get into an inconsistent state if memory allocation
664 * fails. In case of failure we return the oldnode and inflate
2f36895a
RO
665 * of tnode is ignored.
666 */
91b9a277
OJ
667
668 for (i = 0; i < olen; i++) {
2f36895a
RO
669 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
670
671 if (inode &&
672 IS_TNODE(inode) &&
673 inode->pos == oldtnode->pos + oldtnode->bits &&
674 inode->bits > 1) {
675 struct tnode *left, *right;
2f36895a 676 t_key m = TKEY_GET_MASK(inode->pos, 1);
c877efb2 677
2f36895a
RO
678 left = tnode_new(inode->key&(~m), inode->pos + 1,
679 inode->bits - 1);
2f80b3c8
RO
680 if (!left)
681 goto nomem;
91b9a277 682
2f36895a
RO
683 right = tnode_new(inode->key|m, inode->pos + 1,
684 inode->bits - 1);
685
e905a9ed 686 if (!right) {
2f80b3c8
RO
687 tnode_free(left);
688 goto nomem;
e905a9ed 689 }
2f36895a
RO
690
691 put_child(t, tn, 2*i, (struct node *) left);
692 put_child(t, tn, 2*i+1, (struct node *) right);
693 }
694 }
695
91b9a277 696 for (i = 0; i < olen; i++) {
19baf839 697 struct node *node = tnode_get_child(oldtnode, i);
91b9a277
OJ
698 struct tnode *left, *right;
699 int size, j;
c877efb2 700
19baf839
RO
701 /* An empty child */
702 if (node == NULL)
703 continue;
704
705 /* A leaf or an internal node with skipped bits */
706
c877efb2 707 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
19baf839 708 tn->pos + tn->bits - 1) {
c877efb2 709 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
19baf839
RO
710 1) == 0)
711 put_child(t, tn, 2*i, node);
712 else
713 put_child(t, tn, 2*i+1, node);
714 continue;
715 }
716
717 /* An internal node with two children */
718 inode = (struct tnode *) node;
719
720 if (inode->bits == 1) {
721 put_child(t, tn, 2*i, inode->child[0]);
722 put_child(t, tn, 2*i+1, inode->child[1]);
723
724 tnode_free(inode);
91b9a277 725 continue;
19baf839
RO
726 }
727
91b9a277
OJ
728 /* An internal node with more than two children */
729
730 /* We will replace this node 'inode' with two new
731 * ones, 'left' and 'right', each with half of the
732 * original children. The two new nodes will have
733 * a position one bit further down the key and this
734 * means that the "significant" part of their keys
735 * (see the discussion near the top of this file)
736 * will differ by one bit, which will be "0" in
737 * left's key and "1" in right's key. Since we are
738 * moving the key position by one step, the bit that
739 * we are moving away from - the bit at position
740 * (inode->pos) - is the one that will differ between
741 * left and right. So... we synthesize that bit in the
742 * two new keys.
743 * The mask 'm' below will be a single "one" bit at
744 * the position (inode->pos)
745 */
19baf839 746
91b9a277
OJ
747 /* Use the old key, but set the new significant
748 * bit to zero.
749 */
2f36895a 750
91b9a277
OJ
751 left = (struct tnode *) tnode_get_child(tn, 2*i);
752 put_child(t, tn, 2*i, NULL);
2f36895a 753
91b9a277 754 BUG_ON(!left);
2f36895a 755
91b9a277
OJ
756 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
757 put_child(t, tn, 2*i+1, NULL);
19baf839 758
91b9a277 759 BUG_ON(!right);
19baf839 760
91b9a277
OJ
761 size = tnode_child_length(left);
762 for (j = 0; j < size; j++) {
763 put_child(t, left, j, inode->child[j]);
764 put_child(t, right, j, inode->child[j + size]);
19baf839 765 }
91b9a277
OJ
766 put_child(t, tn, 2*i, resize(t, left));
767 put_child(t, tn, 2*i+1, resize(t, right));
768
769 tnode_free(inode);
19baf839
RO
770 }
771 tnode_free(oldtnode);
772 return tn;
2f80b3c8
RO
773nomem:
774 {
775 int size = tnode_child_length(tn);
776 int j;
777
0c7770c7 778 for (j = 0; j < size; j++)
2f80b3c8
RO
779 if (tn->child[j])
780 tnode_free((struct tnode *)tn->child[j]);
781
782 tnode_free(tn);
0c7770c7 783
2f80b3c8
RO
784 return ERR_PTR(-ENOMEM);
785 }
19baf839
RO
786}
787
2f80b3c8 788static struct tnode *halve(struct trie *t, struct tnode *tn)
19baf839
RO
789{
790 struct tnode *oldtnode = tn;
791 struct node *left, *right;
792 int i;
793 int olen = tnode_child_length(tn);
794
0c7770c7 795 pr_debug("In halve\n");
c877efb2
SH
796
797 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
19baf839 798
2f80b3c8
RO
799 if (!tn)
800 return ERR_PTR(-ENOMEM);
2f36895a
RO
801
802 /*
c877efb2
SH
803 * Preallocate and store tnodes before the actual work so we
804 * don't get into an inconsistent state if memory allocation
805 * fails. In case of failure we return the oldnode and halve
2f36895a
RO
806 * of tnode is ignored.
807 */
808
91b9a277 809 for (i = 0; i < olen; i += 2) {
2f36895a
RO
810 left = tnode_get_child(oldtnode, i);
811 right = tnode_get_child(oldtnode, i+1);
c877efb2 812
2f36895a 813 /* Two nonempty children */
0c7770c7 814 if (left && right) {
2f80b3c8 815 struct tnode *newn;
0c7770c7 816
2f80b3c8 817 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
0c7770c7
SH
818
819 if (!newn)
2f80b3c8 820 goto nomem;
0c7770c7 821
2f80b3c8 822 put_child(t, tn, i/2, (struct node *)newn);
2f36895a 823 }
2f36895a 824
2f36895a 825 }
19baf839 826
91b9a277
OJ
827 for (i = 0; i < olen; i += 2) {
828 struct tnode *newBinNode;
829
19baf839
RO
830 left = tnode_get_child(oldtnode, i);
831 right = tnode_get_child(oldtnode, i+1);
c877efb2 832
19baf839
RO
833 /* At least one of the children is empty */
834 if (left == NULL) {
835 if (right == NULL) /* Both are empty */
836 continue;
837 put_child(t, tn, i/2, right);
91b9a277 838 continue;
0c7770c7 839 }
91b9a277
OJ
840
841 if (right == NULL) {
19baf839 842 put_child(t, tn, i/2, left);
91b9a277
OJ
843 continue;
844 }
c877efb2 845
19baf839 846 /* Two nonempty children */
91b9a277
OJ
847 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
848 put_child(t, tn, i/2, NULL);
91b9a277
OJ
849 put_child(t, newBinNode, 0, left);
850 put_child(t, newBinNode, 1, right);
851 put_child(t, tn, i/2, resize(t, newBinNode));
19baf839
RO
852 }
853 tnode_free(oldtnode);
854 return tn;
2f80b3c8
RO
855nomem:
856 {
857 int size = tnode_child_length(tn);
858 int j;
859
0c7770c7 860 for (j = 0; j < size; j++)
2f80b3c8
RO
861 if (tn->child[j])
862 tnode_free((struct tnode *)tn->child[j]);
863
864 tnode_free(tn);
0c7770c7 865
2f80b3c8
RO
866 return ERR_PTR(-ENOMEM);
867 }
19baf839
RO
868}
869
91b9a277 870static void trie_init(struct trie *t)
19baf839 871{
91b9a277
OJ
872 if (!t)
873 return;
874
875 t->size = 0;
2373ce1c 876 rcu_assign_pointer(t->trie, NULL);
91b9a277 877 t->revision = 0;
19baf839 878#ifdef CONFIG_IP_FIB_TRIE_STATS
91b9a277 879 memset(&t->stats, 0, sizeof(struct trie_use_stats));
19baf839 880#endif
19baf839
RO
881}
882
772cb712 883/* readside must use rcu_read_lock currently dump routines
2373ce1c
RO
884 via get_fa_head and dump */
885
772cb712 886static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
19baf839 887{
772cb712 888 struct hlist_head *head = &l->list;
19baf839
RO
889 struct hlist_node *node;
890 struct leaf_info *li;
891
2373ce1c 892 hlist_for_each_entry_rcu(li, node, head, hlist)
c877efb2 893 if (li->plen == plen)
19baf839 894 return li;
91b9a277 895
19baf839
RO
896 return NULL;
897}
898
899static inline struct list_head * get_fa_head(struct leaf *l, int plen)
900{
772cb712 901 struct leaf_info *li = find_leaf_info(l, plen);
c877efb2 902
91b9a277
OJ
903 if (!li)
904 return NULL;
c877efb2 905
91b9a277 906 return &li->falh;
19baf839
RO
907}
908
909static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
910{
e905a9ed
YH
911 struct leaf_info *li = NULL, *last = NULL;
912 struct hlist_node *node;
913
914 if (hlist_empty(head)) {
915 hlist_add_head_rcu(&new->hlist, head);
916 } else {
917 hlist_for_each_entry(li, node, head, hlist) {
918 if (new->plen > li->plen)
919 break;
920
921 last = li;
922 }
923 if (last)
924 hlist_add_after_rcu(&last->hlist, &new->hlist);
925 else
926 hlist_add_before_rcu(&new->hlist, &li->hlist);
927 }
19baf839
RO
928}
929
2373ce1c
RO
930/* rcu_read_lock needs to be hold by caller from readside */
931
19baf839
RO
932static struct leaf *
933fib_find_node(struct trie *t, u32 key)
934{
935 int pos;
936 struct tnode *tn;
937 struct node *n;
938
939 pos = 0;
2373ce1c 940 n = rcu_dereference(t->trie);
19baf839
RO
941
942 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
943 tn = (struct tnode *) n;
91b9a277 944
19baf839 945 check_tnode(tn);
91b9a277 946
c877efb2 947 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
91b9a277 948 pos = tn->pos + tn->bits;
19baf839 949 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
91b9a277 950 } else
19baf839
RO
951 break;
952 }
953 /* Case we have found a leaf. Compare prefixes */
954
91b9a277
OJ
955 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
956 return (struct leaf *)n;
957
19baf839
RO
958 return NULL;
959}
960
961static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
962{
19baf839
RO
963 int wasfull;
964 t_key cindex, key;
965 struct tnode *tp = NULL;
966
19baf839 967 key = tn->key;
19baf839
RO
968
969 while (tn != NULL && NODE_PARENT(tn) != NULL) {
19baf839
RO
970
971 tp = NODE_PARENT(tn);
972 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
973 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
974 tn = (struct tnode *) resize (t, (struct tnode *)tn);
975 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
91b9a277 976
c877efb2 977 if (!NODE_PARENT(tn))
19baf839
RO
978 break;
979
980 tn = NODE_PARENT(tn);
981 }
982 /* Handle last (top) tnode */
c877efb2 983 if (IS_TNODE(tn))
19baf839
RO
984 tn = (struct tnode*) resize(t, (struct tnode *)tn);
985
986 return (struct node*) tn;
987}
988
2373ce1c
RO
989/* only used from updater-side */
990
f835e471
RO
991static struct list_head *
992fib_insert_node(struct trie *t, int *err, u32 key, int plen)
19baf839
RO
993{
994 int pos, newpos;
995 struct tnode *tp = NULL, *tn = NULL;
996 struct node *n;
997 struct leaf *l;
998 int missbit;
c877efb2 999 struct list_head *fa_head = NULL;
19baf839
RO
1000 struct leaf_info *li;
1001 t_key cindex;
1002
1003 pos = 0;
c877efb2 1004 n = t->trie;
19baf839 1005
c877efb2
SH
1006 /* If we point to NULL, stop. Either the tree is empty and we should
1007 * just put a new leaf in if, or we have reached an empty child slot,
19baf839 1008 * and we should just put our new leaf in that.
c877efb2
SH
1009 * If we point to a T_TNODE, check if it matches our key. Note that
1010 * a T_TNODE might be skipping any number of bits - its 'pos' need
19baf839
RO
1011 * not be the parent's 'pos'+'bits'!
1012 *
c877efb2 1013 * If it does match the current key, get pos/bits from it, extract
19baf839
RO
1014 * the index from our key, push the T_TNODE and walk the tree.
1015 *
1016 * If it doesn't, we have to replace it with a new T_TNODE.
1017 *
c877efb2
SH
1018 * If we point to a T_LEAF, it might or might not have the same key
1019 * as we do. If it does, just change the value, update the T_LEAF's
1020 * value, and return it.
19baf839
RO
1021 * If it doesn't, we need to replace it with a T_TNODE.
1022 */
1023
1024 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1025 tn = (struct tnode *) n;
91b9a277 1026
c877efb2 1027 check_tnode(tn);
91b9a277 1028
c877efb2 1029 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
19baf839 1030 tp = tn;
91b9a277 1031 pos = tn->pos + tn->bits;
19baf839
RO
1032 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1033
0c7770c7 1034 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1035 } else
19baf839
RO
1036 break;
1037 }
1038
1039 /*
1040 * n ----> NULL, LEAF or TNODE
1041 *
c877efb2 1042 * tp is n's (parent) ----> NULL or TNODE
19baf839
RO
1043 */
1044
91b9a277 1045 BUG_ON(tp && IS_LEAF(tp));
19baf839
RO
1046
1047 /* Case 1: n is a leaf. Compare prefixes */
1048
c877efb2 1049 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
91b9a277
OJ
1050 struct leaf *l = (struct leaf *) n;
1051
19baf839 1052 li = leaf_info_new(plen);
91b9a277 1053
c877efb2 1054 if (!li) {
f835e471
RO
1055 *err = -ENOMEM;
1056 goto err;
1057 }
19baf839
RO
1058
1059 fa_head = &li->falh;
1060 insert_leaf_info(&l->list, li);
1061 goto done;
1062 }
1063 t->size++;
1064 l = leaf_new();
1065
c877efb2 1066 if (!l) {
f835e471
RO
1067 *err = -ENOMEM;
1068 goto err;
1069 }
19baf839
RO
1070
1071 l->key = key;
1072 li = leaf_info_new(plen);
1073
c877efb2 1074 if (!li) {
f835e471
RO
1075 tnode_free((struct tnode *) l);
1076 *err = -ENOMEM;
1077 goto err;
1078 }
19baf839
RO
1079
1080 fa_head = &li->falh;
1081 insert_leaf_info(&l->list, li);
1082
19baf839 1083 if (t->trie && n == NULL) {
91b9a277 1084 /* Case 2: n is NULL, and will just insert a new leaf */
19baf839
RO
1085
1086 NODE_SET_PARENT(l, tp);
19baf839 1087
91b9a277
OJ
1088 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1089 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1090 } else {
1091 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
c877efb2
SH
1092 /*
1093 * Add a new tnode here
19baf839
RO
1094 * first tnode need some special handling
1095 */
1096
1097 if (tp)
91b9a277 1098 pos = tp->pos+tp->bits;
19baf839 1099 else
91b9a277
OJ
1100 pos = 0;
1101
c877efb2 1102 if (n) {
19baf839
RO
1103 newpos = tkey_mismatch(key, pos, n->key);
1104 tn = tnode_new(n->key, newpos, 1);
91b9a277 1105 } else {
19baf839 1106 newpos = 0;
c877efb2 1107 tn = tnode_new(key, newpos, 1); /* First tnode */
19baf839 1108 }
19baf839 1109
c877efb2 1110 if (!tn) {
f835e471
RO
1111 free_leaf_info(li);
1112 tnode_free((struct tnode *) l);
1113 *err = -ENOMEM;
1114 goto err;
91b9a277
OJ
1115 }
1116
19baf839
RO
1117 NODE_SET_PARENT(tn, tp);
1118
91b9a277 1119 missbit = tkey_extract_bits(key, newpos, 1);
19baf839
RO
1120 put_child(t, tn, missbit, (struct node *)l);
1121 put_child(t, tn, 1-missbit, n);
1122
c877efb2 1123 if (tp) {
19baf839
RO
1124 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1125 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
91b9a277 1126 } else {
2373ce1c 1127 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
19baf839
RO
1128 tp = tn;
1129 }
1130 }
91b9a277
OJ
1131
1132 if (tp && tp->pos + tp->bits > 32)
78c6671a 1133 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
19baf839 1134 tp, tp->pos, tp->bits, key, plen);
91b9a277 1135
19baf839 1136 /* Rebalance the trie */
2373ce1c
RO
1137
1138 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
f835e471
RO
1139done:
1140 t->revision++;
91b9a277 1141err:
19baf839
RO
1142 return fa_head;
1143}
1144
d562f1f8
RO
1145/*
1146 * Caller must hold RTNL.
1147 */
4e902c57 1148static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1149{
1150 struct trie *t = (struct trie *) tb->tb_data;
1151 struct fib_alias *fa, *new_fa;
c877efb2 1152 struct list_head *fa_head = NULL;
19baf839 1153 struct fib_info *fi;
4e902c57
TG
1154 int plen = cfg->fc_dst_len;
1155 u8 tos = cfg->fc_tos;
19baf839
RO
1156 u32 key, mask;
1157 int err;
1158 struct leaf *l;
1159
1160 if (plen > 32)
1161 return -EINVAL;
1162
4e902c57 1163 key = ntohl(cfg->fc_dst);
19baf839 1164
2dfe55b4 1165 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
19baf839 1166
91b9a277 1167 mask = ntohl(inet_make_mask(plen));
19baf839 1168
c877efb2 1169 if (key & ~mask)
19baf839
RO
1170 return -EINVAL;
1171
1172 key = key & mask;
1173
4e902c57
TG
1174 fi = fib_create_info(cfg);
1175 if (IS_ERR(fi)) {
1176 err = PTR_ERR(fi);
19baf839 1177 goto err;
4e902c57 1178 }
19baf839
RO
1179
1180 l = fib_find_node(t, key);
c877efb2 1181 fa = NULL;
19baf839 1182
c877efb2 1183 if (l) {
19baf839
RO
1184 fa_head = get_fa_head(l, plen);
1185 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1186 }
1187
1188 /* Now fa, if non-NULL, points to the first fib alias
1189 * with the same keys [prefix,tos,priority], if such key already
1190 * exists or to the node before which we will insert new one.
1191 *
1192 * If fa is NULL, we will need to allocate a new one and
1193 * insert to the head of f.
1194 *
1195 * If f is NULL, no fib node matched the destination key
1196 * and we need to allocate a new one of those as well.
1197 */
1198
91b9a277 1199 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
19baf839
RO
1200 struct fib_alias *fa_orig;
1201
1202 err = -EEXIST;
4e902c57 1203 if (cfg->fc_nlflags & NLM_F_EXCL)
19baf839
RO
1204 goto out;
1205
4e902c57 1206 if (cfg->fc_nlflags & NLM_F_REPLACE) {
19baf839
RO
1207 struct fib_info *fi_drop;
1208 u8 state;
1209
2373ce1c 1210 err = -ENOBUFS;
e94b1766 1211 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
2373ce1c
RO
1212 if (new_fa == NULL)
1213 goto out;
19baf839
RO
1214
1215 fi_drop = fa->fa_info;
2373ce1c
RO
1216 new_fa->fa_tos = fa->fa_tos;
1217 new_fa->fa_info = fi;
4e902c57
TG
1218 new_fa->fa_type = cfg->fc_type;
1219 new_fa->fa_scope = cfg->fc_scope;
19baf839 1220 state = fa->fa_state;
2373ce1c 1221 new_fa->fa_state &= ~FA_S_ACCESSED;
19baf839 1222
2373ce1c
RO
1223 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1224 alias_free_mem_rcu(fa);
19baf839
RO
1225
1226 fib_release_info(fi_drop);
1227 if (state & FA_S_ACCESSED)
91b9a277 1228 rt_cache_flush(-1);
19baf839 1229
91b9a277 1230 goto succeeded;
19baf839
RO
1231 }
1232 /* Error if we find a perfect match which
1233 * uses the same scope, type, and nexthop
1234 * information.
1235 */
1236 fa_orig = fa;
1237 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1238 if (fa->fa_tos != tos)
1239 break;
1240 if (fa->fa_info->fib_priority != fi->fib_priority)
1241 break;
4e902c57
TG
1242 if (fa->fa_type == cfg->fc_type &&
1243 fa->fa_scope == cfg->fc_scope &&
19baf839
RO
1244 fa->fa_info == fi) {
1245 goto out;
1246 }
1247 }
4e902c57 1248 if (!(cfg->fc_nlflags & NLM_F_APPEND))
19baf839
RO
1249 fa = fa_orig;
1250 }
1251 err = -ENOENT;
4e902c57 1252 if (!(cfg->fc_nlflags & NLM_F_CREATE))
19baf839
RO
1253 goto out;
1254
1255 err = -ENOBUFS;
e94b1766 1256 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
19baf839
RO
1257 if (new_fa == NULL)
1258 goto out;
1259
1260 new_fa->fa_info = fi;
1261 new_fa->fa_tos = tos;
4e902c57
TG
1262 new_fa->fa_type = cfg->fc_type;
1263 new_fa->fa_scope = cfg->fc_scope;
19baf839 1264 new_fa->fa_state = 0;
19baf839
RO
1265 /*
1266 * Insert new entry to the list.
1267 */
1268
c877efb2 1269 if (!fa_head) {
f835e471 1270 err = 0;
b47b2ec1 1271 fa_head = fib_insert_node(t, &err, key, plen);
c877efb2 1272 if (err)
f835e471
RO
1273 goto out_free_new_fa;
1274 }
19baf839 1275
2373ce1c
RO
1276 list_add_tail_rcu(&new_fa->fa_list,
1277 (fa ? &fa->fa_list : fa_head));
19baf839
RO
1278
1279 rt_cache_flush(-1);
4e902c57
TG
1280 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1281 &cfg->fc_nlinfo);
19baf839
RO
1282succeeded:
1283 return 0;
f835e471
RO
1284
1285out_free_new_fa:
1286 kmem_cache_free(fn_alias_kmem, new_fa);
19baf839
RO
1287out:
1288 fib_release_info(fi);
91b9a277 1289err:
19baf839
RO
1290 return err;
1291}
1292
2373ce1c 1293
772cb712 1294/* should be called with rcu_read_lock */
0c7770c7
SH
1295static inline int check_leaf(struct trie *t, struct leaf *l,
1296 t_key key, int *plen, const struct flowi *flp,
06c74270 1297 struct fib_result *res)
19baf839 1298{
06c74270 1299 int err, i;
888454c5 1300 __be32 mask;
19baf839
RO
1301 struct leaf_info *li;
1302 struct hlist_head *hhead = &l->list;
1303 struct hlist_node *node;
c877efb2 1304
2373ce1c 1305 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
19baf839 1306 i = li->plen;
888454c5
AV
1307 mask = inet_make_mask(i);
1308 if (l->key != (key & ntohl(mask)))
19baf839
RO
1309 continue;
1310
888454c5 1311 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
19baf839
RO
1312 *plen = i;
1313#ifdef CONFIG_IP_FIB_TRIE_STATS
1314 t->stats.semantic_match_passed++;
1315#endif
06c74270 1316 return err;
19baf839
RO
1317 }
1318#ifdef CONFIG_IP_FIB_TRIE_STATS
1319 t->stats.semantic_match_miss++;
1320#endif
1321 }
06c74270 1322 return 1;
19baf839
RO
1323}
1324
1325static int
1326fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1327{
1328 struct trie *t = (struct trie *) tb->tb_data;
1329 int plen, ret = 0;
1330 struct node *n;
1331 struct tnode *pn;
1332 int pos, bits;
91b9a277 1333 t_key key = ntohl(flp->fl4_dst);
19baf839
RO
1334 int chopped_off;
1335 t_key cindex = 0;
1336 int current_prefix_length = KEYLENGTH;
91b9a277
OJ
1337 struct tnode *cn;
1338 t_key node_prefix, key_prefix, pref_mismatch;
1339 int mp;
1340
2373ce1c 1341 rcu_read_lock();
91b9a277 1342
2373ce1c 1343 n = rcu_dereference(t->trie);
c877efb2 1344 if (!n)
19baf839
RO
1345 goto failed;
1346
1347#ifdef CONFIG_IP_FIB_TRIE_STATS
1348 t->stats.gets++;
1349#endif
1350
1351 /* Just a leaf? */
1352 if (IS_LEAF(n)) {
06c74270 1353 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
19baf839
RO
1354 goto found;
1355 goto failed;
1356 }
1357 pn = (struct tnode *) n;
1358 chopped_off = 0;
c877efb2 1359
91b9a277 1360 while (pn) {
19baf839
RO
1361 pos = pn->pos;
1362 bits = pn->bits;
1363
c877efb2 1364 if (!chopped_off)
19baf839
RO
1365 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1366
1367 n = tnode_get_child(pn, cindex);
1368
1369 if (n == NULL) {
1370#ifdef CONFIG_IP_FIB_TRIE_STATS
1371 t->stats.null_node_hit++;
1372#endif
1373 goto backtrace;
1374 }
1375
91b9a277
OJ
1376 if (IS_LEAF(n)) {
1377 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1378 goto found;
1379 else
1380 goto backtrace;
1381 }
1382
19baf839
RO
1383#define HL_OPTIMIZE
1384#ifdef HL_OPTIMIZE
91b9a277 1385 cn = (struct tnode *)n;
19baf839 1386
91b9a277
OJ
1387 /*
1388 * It's a tnode, and we can do some extra checks here if we
1389 * like, to avoid descending into a dead-end branch.
1390 * This tnode is in the parent's child array at index
1391 * key[p_pos..p_pos+p_bits] but potentially with some bits
1392 * chopped off, so in reality the index may be just a
1393 * subprefix, padded with zero at the end.
1394 * We can also take a look at any skipped bits in this
1395 * tnode - everything up to p_pos is supposed to be ok,
1396 * and the non-chopped bits of the index (se previous
1397 * paragraph) are also guaranteed ok, but the rest is
1398 * considered unknown.
1399 *
1400 * The skipped bits are key[pos+bits..cn->pos].
1401 */
19baf839 1402
91b9a277
OJ
1403 /* If current_prefix_length < pos+bits, we are already doing
1404 * actual prefix matching, which means everything from
1405 * pos+(bits-chopped_off) onward must be zero along some
1406 * branch of this subtree - otherwise there is *no* valid
1407 * prefix present. Here we can only check the skipped
1408 * bits. Remember, since we have already indexed into the
1409 * parent's child array, we know that the bits we chopped of
1410 * *are* zero.
1411 */
19baf839 1412
91b9a277 1413 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
19baf839 1414
91b9a277
OJ
1415 if (current_prefix_length < pos+bits) {
1416 if (tkey_extract_bits(cn->key, current_prefix_length,
1417 cn->pos - current_prefix_length) != 0 ||
1418 !(cn->child[0]))
1419 goto backtrace;
1420 }
19baf839 1421
91b9a277
OJ
1422 /*
1423 * If chopped_off=0, the index is fully validated and we
1424 * only need to look at the skipped bits for this, the new,
1425 * tnode. What we actually want to do is to find out if
1426 * these skipped bits match our key perfectly, or if we will
1427 * have to count on finding a matching prefix further down,
1428 * because if we do, we would like to have some way of
1429 * verifying the existence of such a prefix at this point.
1430 */
19baf839 1431
91b9a277
OJ
1432 /* The only thing we can do at this point is to verify that
1433 * any such matching prefix can indeed be a prefix to our
1434 * key, and if the bits in the node we are inspecting that
1435 * do not match our key are not ZERO, this cannot be true.
1436 * Thus, find out where there is a mismatch (before cn->pos)
1437 * and verify that all the mismatching bits are zero in the
1438 * new tnode's key.
1439 */
19baf839 1440
91b9a277
OJ
1441 /* Note: We aren't very concerned about the piece of the key
1442 * that precede pn->pos+pn->bits, since these have already been
1443 * checked. The bits after cn->pos aren't checked since these are
1444 * by definition "unknown" at this point. Thus, what we want to
1445 * see is if we are about to enter the "prefix matching" state,
1446 * and in that case verify that the skipped bits that will prevail
1447 * throughout this subtree are zero, as they have to be if we are
1448 * to find a matching prefix.
1449 */
1450
1451 node_prefix = MASK_PFX(cn->key, cn->pos);
1452 key_prefix = MASK_PFX(key, cn->pos);
1453 pref_mismatch = key_prefix^node_prefix;
1454 mp = 0;
1455
1456 /* In short: If skipped bits in this node do not match the search
1457 * key, enter the "prefix matching" state.directly.
1458 */
1459 if (pref_mismatch) {
1460 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1461 mp++;
1462 pref_mismatch = pref_mismatch <<1;
1463 }
1464 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1465
1466 if (key_prefix != 0)
1467 goto backtrace;
1468
1469 if (current_prefix_length >= cn->pos)
1470 current_prefix_length = mp;
c877efb2 1471 }
91b9a277
OJ
1472#endif
1473 pn = (struct tnode *)n; /* Descend */
1474 chopped_off = 0;
1475 continue;
1476
19baf839
RO
1477backtrace:
1478 chopped_off++;
1479
1480 /* As zero don't change the child key (cindex) */
91b9a277 1481 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
19baf839 1482 chopped_off++;
19baf839
RO
1483
1484 /* Decrease current_... with bits chopped off */
1485 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1486 current_prefix_length = pn->pos + pn->bits - chopped_off;
91b9a277 1487
19baf839 1488 /*
c877efb2 1489 * Either we do the actual chop off according or if we have
19baf839
RO
1490 * chopped off all bits in this tnode walk up to our parent.
1491 */
1492
91b9a277 1493 if (chopped_off <= pn->bits) {
19baf839 1494 cindex &= ~(1 << (chopped_off-1));
91b9a277 1495 } else {
c877efb2 1496 if (NODE_PARENT(pn) == NULL)
19baf839 1497 goto failed;
91b9a277 1498
19baf839
RO
1499 /* Get Child's index */
1500 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1501 pn = NODE_PARENT(pn);
1502 chopped_off = 0;
1503
1504#ifdef CONFIG_IP_FIB_TRIE_STATS
1505 t->stats.backtrack++;
1506#endif
1507 goto backtrace;
c877efb2 1508 }
19baf839
RO
1509 }
1510failed:
c877efb2 1511 ret = 1;
19baf839 1512found:
2373ce1c 1513 rcu_read_unlock();
19baf839
RO
1514 return ret;
1515}
1516
2373ce1c 1517/* only called from updater side */
19baf839
RO
1518static int trie_leaf_remove(struct trie *t, t_key key)
1519{
1520 t_key cindex;
1521 struct tnode *tp = NULL;
1522 struct node *n = t->trie;
1523 struct leaf *l;
1524
0c7770c7 1525 pr_debug("entering trie_leaf_remove(%p)\n", n);
19baf839
RO
1526
1527 /* Note that in the case skipped bits, those bits are *not* checked!
c877efb2 1528 * When we finish this, we will have NULL or a T_LEAF, and the
19baf839
RO
1529 * T_LEAF may or may not match our key.
1530 */
1531
91b9a277 1532 while (n != NULL && IS_TNODE(n)) {
19baf839
RO
1533 struct tnode *tn = (struct tnode *) n;
1534 check_tnode(tn);
1535 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1536
0c7770c7 1537 BUG_ON(n && NODE_PARENT(n) != tn);
91b9a277 1538 }
19baf839
RO
1539 l = (struct leaf *) n;
1540
c877efb2 1541 if (!n || !tkey_equals(l->key, key))
19baf839 1542 return 0;
c877efb2
SH
1543
1544 /*
1545 * Key found.
1546 * Remove the leaf and rebalance the tree
19baf839
RO
1547 */
1548
1549 t->revision++;
1550 t->size--;
1551
1552 tp = NODE_PARENT(n);
1553 tnode_free((struct tnode *) n);
1554
c877efb2 1555 if (tp) {
19baf839
RO
1556 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1557 put_child(t, (struct tnode *)tp, cindex, NULL);
2373ce1c 1558 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
91b9a277 1559 } else
2373ce1c 1560 rcu_assign_pointer(t->trie, NULL);
19baf839
RO
1561
1562 return 1;
1563}
1564
d562f1f8
RO
1565/*
1566 * Caller must hold RTNL.
1567 */
4e902c57 1568static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
19baf839
RO
1569{
1570 struct trie *t = (struct trie *) tb->tb_data;
1571 u32 key, mask;
4e902c57
TG
1572 int plen = cfg->fc_dst_len;
1573 u8 tos = cfg->fc_tos;
19baf839
RO
1574 struct fib_alias *fa, *fa_to_delete;
1575 struct list_head *fa_head;
1576 struct leaf *l;
91b9a277
OJ
1577 struct leaf_info *li;
1578
c877efb2 1579 if (plen > 32)
19baf839
RO
1580 return -EINVAL;
1581
4e902c57 1582 key = ntohl(cfg->fc_dst);
91b9a277 1583 mask = ntohl(inet_make_mask(plen));
19baf839 1584
c877efb2 1585 if (key & ~mask)
19baf839
RO
1586 return -EINVAL;
1587
1588 key = key & mask;
1589 l = fib_find_node(t, key);
1590
c877efb2 1591 if (!l)
19baf839
RO
1592 return -ESRCH;
1593
1594 fa_head = get_fa_head(l, plen);
1595 fa = fib_find_alias(fa_head, tos, 0);
1596
1597 if (!fa)
1598 return -ESRCH;
1599
0c7770c7 1600 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
19baf839
RO
1601
1602 fa_to_delete = NULL;
1603 fa_head = fa->fa_list.prev;
2373ce1c 1604
19baf839
RO
1605 list_for_each_entry(fa, fa_head, fa_list) {
1606 struct fib_info *fi = fa->fa_info;
1607
1608 if (fa->fa_tos != tos)
1609 break;
1610
4e902c57
TG
1611 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1612 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1613 fa->fa_scope == cfg->fc_scope) &&
1614 (!cfg->fc_protocol ||
1615 fi->fib_protocol == cfg->fc_protocol) &&
1616 fib_nh_match(cfg, fi) == 0) {
19baf839
RO
1617 fa_to_delete = fa;
1618 break;
1619 }
1620 }
1621
91b9a277
OJ
1622 if (!fa_to_delete)
1623 return -ESRCH;
19baf839 1624
91b9a277 1625 fa = fa_to_delete;
4e902c57
TG
1626 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1627 &cfg->fc_nlinfo);
91b9a277
OJ
1628
1629 l = fib_find_node(t, key);
772cb712 1630 li = find_leaf_info(l, plen);
19baf839 1631
2373ce1c 1632 list_del_rcu(&fa->fa_list);
19baf839 1633
91b9a277 1634 if (list_empty(fa_head)) {
2373ce1c 1635 hlist_del_rcu(&li->hlist);
91b9a277 1636 free_leaf_info(li);
2373ce1c 1637 }
19baf839 1638
91b9a277
OJ
1639 if (hlist_empty(&l->list))
1640 trie_leaf_remove(t, key);
19baf839 1641
91b9a277
OJ
1642 if (fa->fa_state & FA_S_ACCESSED)
1643 rt_cache_flush(-1);
19baf839 1644
2373ce1c
RO
1645 fib_release_info(fa->fa_info);
1646 alias_free_mem_rcu(fa);
91b9a277 1647 return 0;
19baf839
RO
1648}
1649
1650static int trie_flush_list(struct trie *t, struct list_head *head)
1651{
1652 struct fib_alias *fa, *fa_node;
1653 int found = 0;
1654
1655 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1656 struct fib_info *fi = fa->fa_info;
19baf839 1657
2373ce1c
RO
1658 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1659 list_del_rcu(&fa->fa_list);
1660 fib_release_info(fa->fa_info);
1661 alias_free_mem_rcu(fa);
19baf839
RO
1662 found++;
1663 }
1664 }
1665 return found;
1666}
1667
1668static int trie_flush_leaf(struct trie *t, struct leaf *l)
1669{
1670 int found = 0;
1671 struct hlist_head *lih = &l->list;
1672 struct hlist_node *node, *tmp;
1673 struct leaf_info *li = NULL;
1674
1675 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
19baf839
RO
1676 found += trie_flush_list(t, &li->falh);
1677
1678 if (list_empty(&li->falh)) {
2373ce1c 1679 hlist_del_rcu(&li->hlist);
19baf839
RO
1680 free_leaf_info(li);
1681 }
1682 }
1683 return found;
1684}
1685
2373ce1c
RO
1686/* rcu_read_lock needs to be hold by caller from readside */
1687
19baf839
RO
1688static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1689{
1690 struct node *c = (struct node *) thisleaf;
1691 struct tnode *p;
1692 int idx;
2373ce1c 1693 struct node *trie = rcu_dereference(t->trie);
19baf839 1694
c877efb2 1695 if (c == NULL) {
2373ce1c 1696 if (trie == NULL)
19baf839
RO
1697 return NULL;
1698
2373ce1c
RO
1699 if (IS_LEAF(trie)) /* trie w. just a leaf */
1700 return (struct leaf *) trie;
19baf839 1701
2373ce1c 1702 p = (struct tnode*) trie; /* Start */
91b9a277 1703 } else
19baf839 1704 p = (struct tnode *) NODE_PARENT(c);
c877efb2 1705
19baf839
RO
1706 while (p) {
1707 int pos, last;
1708
1709 /* Find the next child of the parent */
c877efb2
SH
1710 if (c)
1711 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1712 else
19baf839
RO
1713 pos = 0;
1714
1715 last = 1 << p->bits;
91b9a277 1716 for (idx = pos; idx < last ; idx++) {
2373ce1c
RO
1717 c = rcu_dereference(p->child[idx]);
1718
1719 if (!c)
91b9a277
OJ
1720 continue;
1721
1722 /* Decend if tnode */
2373ce1c
RO
1723 while (IS_TNODE(c)) {
1724 p = (struct tnode *) c;
e905a9ed 1725 idx = 0;
91b9a277
OJ
1726
1727 /* Rightmost non-NULL branch */
1728 if (p && IS_TNODE(p))
2373ce1c
RO
1729 while (!(c = rcu_dereference(p->child[idx]))
1730 && idx < (1<<p->bits)) idx++;
91b9a277
OJ
1731
1732 /* Done with this tnode? */
2373ce1c 1733 if (idx >= (1 << p->bits) || !c)
91b9a277 1734 goto up;
19baf839 1735 }
2373ce1c 1736 return (struct leaf *) c;
19baf839
RO
1737 }
1738up:
1739 /* No more children go up one step */
91b9a277 1740 c = (struct node *) p;
19baf839
RO
1741 p = (struct tnode *) NODE_PARENT(p);
1742 }
1743 return NULL; /* Ready. Root of trie */
1744}
1745
d562f1f8
RO
1746/*
1747 * Caller must hold RTNL.
1748 */
19baf839
RO
1749static int fn_trie_flush(struct fib_table *tb)
1750{
1751 struct trie *t = (struct trie *) tb->tb_data;
1752 struct leaf *ll = NULL, *l = NULL;
1753 int found = 0, h;
1754
1755 t->revision++;
1756
91b9a277 1757 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1758 found += trie_flush_leaf(t, l);
1759
1760 if (ll && hlist_empty(&ll->list))
1761 trie_leaf_remove(t, ll->key);
1762 ll = l;
1763 }
1764
1765 if (ll && hlist_empty(&ll->list))
1766 trie_leaf_remove(t, ll->key);
1767
0c7770c7 1768 pr_debug("trie_flush found=%d\n", found);
19baf839
RO
1769 return found;
1770}
1771
91b9a277 1772static int trie_last_dflt = -1;
19baf839
RO
1773
1774static void
1775fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1776{
1777 struct trie *t = (struct trie *) tb->tb_data;
1778 int order, last_idx;
1779 struct fib_info *fi = NULL;
1780 struct fib_info *last_resort;
1781 struct fib_alias *fa = NULL;
1782 struct list_head *fa_head;
1783 struct leaf *l;
1784
1785 last_idx = -1;
1786 last_resort = NULL;
1787 order = -1;
1788
2373ce1c 1789 rcu_read_lock();
c877efb2 1790
19baf839 1791 l = fib_find_node(t, 0);
c877efb2 1792 if (!l)
19baf839
RO
1793 goto out;
1794
1795 fa_head = get_fa_head(l, 0);
c877efb2 1796 if (!fa_head)
19baf839
RO
1797 goto out;
1798
c877efb2 1799 if (list_empty(fa_head))
19baf839
RO
1800 goto out;
1801
2373ce1c 1802 list_for_each_entry_rcu(fa, fa_head, fa_list) {
19baf839 1803 struct fib_info *next_fi = fa->fa_info;
91b9a277 1804
19baf839
RO
1805 if (fa->fa_scope != res->scope ||
1806 fa->fa_type != RTN_UNICAST)
1807 continue;
91b9a277 1808
19baf839
RO
1809 if (next_fi->fib_priority > res->fi->fib_priority)
1810 break;
1811 if (!next_fi->fib_nh[0].nh_gw ||
1812 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1813 continue;
1814 fa->fa_state |= FA_S_ACCESSED;
91b9a277 1815
19baf839
RO
1816 if (fi == NULL) {
1817 if (next_fi != res->fi)
1818 break;
1819 } else if (!fib_detect_death(fi, order, &last_resort,
1820 &last_idx, &trie_last_dflt)) {
1821 if (res->fi)
1822 fib_info_put(res->fi);
1823 res->fi = fi;
1824 atomic_inc(&fi->fib_clntref);
1825 trie_last_dflt = order;
1826 goto out;
1827 }
1828 fi = next_fi;
1829 order++;
1830 }
1831 if (order <= 0 || fi == NULL) {
1832 trie_last_dflt = -1;
1833 goto out;
1834 }
1835
1836 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1837 if (res->fi)
1838 fib_info_put(res->fi);
1839 res->fi = fi;
1840 atomic_inc(&fi->fib_clntref);
1841 trie_last_dflt = order;
1842 goto out;
1843 }
1844 if (last_idx >= 0) {
1845 if (res->fi)
1846 fib_info_put(res->fi);
1847 res->fi = last_resort;
1848 if (last_resort)
1849 atomic_inc(&last_resort->fib_clntref);
1850 }
1851 trie_last_dflt = last_idx;
1852 out:;
2373ce1c 1853 rcu_read_unlock();
19baf839
RO
1854}
1855
c877efb2 1856static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
19baf839
RO
1857 struct sk_buff *skb, struct netlink_callback *cb)
1858{
1859 int i, s_i;
1860 struct fib_alias *fa;
1861
32ab5f80 1862 __be32 xkey = htonl(key);
19baf839 1863
1af5a8c4 1864 s_i = cb->args[4];
19baf839
RO
1865 i = 0;
1866
2373ce1c
RO
1867 /* rcu_read_lock is hold by caller */
1868
1869 list_for_each_entry_rcu(fa, fah, fa_list) {
19baf839
RO
1870 if (i < s_i) {
1871 i++;
1872 continue;
1873 }
78c6671a 1874 BUG_ON(!fa->fa_info);
19baf839
RO
1875
1876 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1877 cb->nlh->nlmsg_seq,
1878 RTM_NEWROUTE,
1879 tb->tb_id,
1880 fa->fa_type,
1881 fa->fa_scope,
be403ea1 1882 xkey,
19baf839
RO
1883 plen,
1884 fa->fa_tos,
90f66914 1885 fa->fa_info, 0) < 0) {
1af5a8c4 1886 cb->args[4] = i;
19baf839 1887 return -1;
91b9a277 1888 }
19baf839
RO
1889 i++;
1890 }
1af5a8c4 1891 cb->args[4] = i;
19baf839
RO
1892 return skb->len;
1893}
1894
c877efb2 1895static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
19baf839
RO
1896 struct netlink_callback *cb)
1897{
1898 int h, s_h;
1899 struct list_head *fa_head;
1900 struct leaf *l = NULL;
19baf839 1901
1af5a8c4 1902 s_h = cb->args[3];
19baf839 1903
91b9a277 1904 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
19baf839
RO
1905 if (h < s_h)
1906 continue;
1907 if (h > s_h)
1af5a8c4
PM
1908 memset(&cb->args[4], 0,
1909 sizeof(cb->args) - 4*sizeof(cb->args[0]));
19baf839
RO
1910
1911 fa_head = get_fa_head(l, plen);
91b9a277 1912
c877efb2 1913 if (!fa_head)
19baf839
RO
1914 continue;
1915
c877efb2 1916 if (list_empty(fa_head))
19baf839
RO
1917 continue;
1918
1919 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1af5a8c4 1920 cb->args[3] = h;
19baf839
RO
1921 return -1;
1922 }
1923 }
1af5a8c4 1924 cb->args[3] = h;
19baf839
RO
1925 return skb->len;
1926}
1927
1928static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1929{
1930 int m, s_m;
1931 struct trie *t = (struct trie *) tb->tb_data;
1932
1af5a8c4 1933 s_m = cb->args[2];
19baf839 1934
2373ce1c 1935 rcu_read_lock();
91b9a277 1936 for (m = 0; m <= 32; m++) {
19baf839
RO
1937 if (m < s_m)
1938 continue;
1939 if (m > s_m)
1af5a8c4
PM
1940 memset(&cb->args[3], 0,
1941 sizeof(cb->args) - 3*sizeof(cb->args[0]));
19baf839
RO
1942
1943 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1af5a8c4 1944 cb->args[2] = m;
19baf839
RO
1945 goto out;
1946 }
1947 }
2373ce1c 1948 rcu_read_unlock();
1af5a8c4 1949 cb->args[2] = m;
19baf839 1950 return skb->len;
91b9a277 1951out:
2373ce1c 1952 rcu_read_unlock();
19baf839
RO
1953 return -1;
1954}
1955
1956/* Fix more generic FIB names for init later */
1957
1958#ifdef CONFIG_IP_MULTIPLE_TABLES
2dfe55b4 1959struct fib_table * fib_hash_init(u32 id)
19baf839 1960#else
2dfe55b4 1961struct fib_table * __init fib_hash_init(u32 id)
19baf839
RO
1962#endif
1963{
1964 struct fib_table *tb;
1965 struct trie *t;
1966
1967 if (fn_alias_kmem == NULL)
1968 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1969 sizeof(struct fib_alias),
1970 0, SLAB_HWCACHE_ALIGN,
1971 NULL, NULL);
1972
1973 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1974 GFP_KERNEL);
1975 if (tb == NULL)
1976 return NULL;
1977
1978 tb->tb_id = id;
1979 tb->tb_lookup = fn_trie_lookup;
1980 tb->tb_insert = fn_trie_insert;
1981 tb->tb_delete = fn_trie_delete;
1982 tb->tb_flush = fn_trie_flush;
1983 tb->tb_select_default = fn_trie_select_default;
1984 tb->tb_dump = fn_trie_dump;
1985 memset(tb->tb_data, 0, sizeof(struct trie));
1986
1987 t = (struct trie *) tb->tb_data;
1988
1989 trie_init(t);
1990
c877efb2 1991 if (id == RT_TABLE_LOCAL)
91b9a277 1992 trie_local = t;
c877efb2 1993 else if (id == RT_TABLE_MAIN)
91b9a277 1994 trie_main = t;
19baf839
RO
1995
1996 if (id == RT_TABLE_LOCAL)
78c6671a 1997 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
19baf839
RO
1998
1999 return tb;
2000}
2001
cb7b593c
SH
2002#ifdef CONFIG_PROC_FS
2003/* Depth first Trie walk iterator */
2004struct fib_trie_iter {
2005 struct tnode *tnode;
2006 struct trie *trie;
2007 unsigned index;
2008 unsigned depth;
2009};
19baf839 2010
cb7b593c 2011static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
19baf839 2012{
cb7b593c
SH
2013 struct tnode *tn = iter->tnode;
2014 unsigned cindex = iter->index;
2015 struct tnode *p;
19baf839 2016
6640e697
EB
2017 /* A single entry routing table */
2018 if (!tn)
2019 return NULL;
2020
cb7b593c
SH
2021 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2022 iter->tnode, iter->index, iter->depth);
2023rescan:
2024 while (cindex < (1<<tn->bits)) {
2025 struct node *n = tnode_get_child(tn, cindex);
19baf839 2026
cb7b593c
SH
2027 if (n) {
2028 if (IS_LEAF(n)) {
2029 iter->tnode = tn;
2030 iter->index = cindex + 1;
2031 } else {
2032 /* push down one level */
2033 iter->tnode = (struct tnode *) n;
2034 iter->index = 0;
2035 ++iter->depth;
2036 }
2037 return n;
2038 }
19baf839 2039
cb7b593c
SH
2040 ++cindex;
2041 }
91b9a277 2042
cb7b593c
SH
2043 /* Current node exhausted, pop back up */
2044 p = NODE_PARENT(tn);
2045 if (p) {
2046 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2047 tn = p;
2048 --iter->depth;
2049 goto rescan;
19baf839 2050 }
cb7b593c
SH
2051
2052 /* got root? */
2053 return NULL;
19baf839
RO
2054}
2055
cb7b593c
SH
2056static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2057 struct trie *t)
19baf839 2058{
5ddf0eb2
RO
2059 struct node *n ;
2060
132adf54 2061 if (!t)
5ddf0eb2
RO
2062 return NULL;
2063
2064 n = rcu_dereference(t->trie);
2065
132adf54 2066 if (!iter)
5ddf0eb2 2067 return NULL;
19baf839 2068
6640e697
EB
2069 if (n) {
2070 if (IS_TNODE(n)) {
2071 iter->tnode = (struct tnode *) n;
2072 iter->trie = t;
2073 iter->index = 0;
2074 iter->depth = 1;
2075 } else {
2076 iter->tnode = NULL;
2077 iter->trie = t;
2078 iter->index = 0;
2079 iter->depth = 0;
2080 }
cb7b593c 2081 return n;
91b9a277 2082 }
cb7b593c
SH
2083 return NULL;
2084}
91b9a277 2085
cb7b593c
SH
2086static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2087{
2088 struct node *n;
2089 struct fib_trie_iter iter;
91b9a277 2090
cb7b593c 2091 memset(s, 0, sizeof(*s));
91b9a277 2092
cb7b593c
SH
2093 rcu_read_lock();
2094 for (n = fib_trie_get_first(&iter, t); n;
2095 n = fib_trie_get_next(&iter)) {
2096 if (IS_LEAF(n)) {
2097 s->leaves++;
2098 s->totdepth += iter.depth;
2099 if (iter.depth > s->maxdepth)
2100 s->maxdepth = iter.depth;
2101 } else {
2102 const struct tnode *tn = (const struct tnode *) n;
2103 int i;
2104
2105 s->tnodes++;
132adf54 2106 if (tn->bits < MAX_STAT_DEPTH)
06ef921d
RO
2107 s->nodesizes[tn->bits]++;
2108
cb7b593c
SH
2109 for (i = 0; i < (1<<tn->bits); i++)
2110 if (!tn->child[i])
2111 s->nullpointers++;
19baf839 2112 }
19baf839 2113 }
2373ce1c 2114 rcu_read_unlock();
19baf839
RO
2115}
2116
cb7b593c
SH
2117/*
2118 * This outputs /proc/net/fib_triestats
2119 */
2120static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
19baf839 2121{
cb7b593c 2122 unsigned i, max, pointers, bytes, avdepth;
c877efb2 2123
cb7b593c
SH
2124 if (stat->leaves)
2125 avdepth = stat->totdepth*100 / stat->leaves;
2126 else
2127 avdepth = 0;
91b9a277 2128
cb7b593c
SH
2129 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2130 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
91b9a277 2131
cb7b593c 2132 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
91b9a277 2133
cb7b593c
SH
2134 bytes = sizeof(struct leaf) * stat->leaves;
2135 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2136 bytes += sizeof(struct tnode) * stat->tnodes;
19baf839 2137
06ef921d
RO
2138 max = MAX_STAT_DEPTH;
2139 while (max > 0 && stat->nodesizes[max-1] == 0)
cb7b593c 2140 max--;
19baf839 2141
cb7b593c
SH
2142 pointers = 0;
2143 for (i = 1; i <= max; i++)
2144 if (stat->nodesizes[i] != 0) {
2145 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2146 pointers += (1<<i) * stat->nodesizes[i];
2147 }
2148 seq_putc(seq, '\n');
2149 seq_printf(seq, "\tPointers: %d\n", pointers);
2373ce1c 2150
cb7b593c
SH
2151 bytes += sizeof(struct node *) * pointers;
2152 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2153 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2373ce1c 2154
cb7b593c
SH
2155#ifdef CONFIG_IP_FIB_TRIE_STATS
2156 seq_printf(seq, "Counters:\n---------\n");
2157 seq_printf(seq,"gets = %d\n", t->stats.gets);
2158 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2159 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2160 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2161 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2162 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2163#ifdef CLEAR_STATS
2164 memset(&(t->stats), 0, sizeof(t->stats));
2165#endif
2166#endif /* CONFIG_IP_FIB_TRIE_STATS */
2167}
19baf839 2168
cb7b593c
SH
2169static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2170{
2171 struct trie_stat *stat;
91b9a277 2172
cb7b593c
SH
2173 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2174 if (!stat)
2175 return -ENOMEM;
91b9a277 2176
cb7b593c
SH
2177 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2178 sizeof(struct leaf), sizeof(struct tnode));
91b9a277 2179
cb7b593c
SH
2180 if (trie_local) {
2181 seq_printf(seq, "Local:\n");
2182 trie_collect_stats(trie_local, stat);
2183 trie_show_stats(seq, stat);
2184 }
91b9a277 2185
cb7b593c
SH
2186 if (trie_main) {
2187 seq_printf(seq, "Main:\n");
2188 trie_collect_stats(trie_main, stat);
2189 trie_show_stats(seq, stat);
19baf839 2190 }
cb7b593c 2191 kfree(stat);
19baf839 2192
cb7b593c 2193 return 0;
19baf839
RO
2194}
2195
cb7b593c 2196static int fib_triestat_seq_open(struct inode *inode, struct file *file)
19baf839 2197{
cb7b593c 2198 return single_open(file, fib_triestat_seq_show, NULL);
19baf839
RO
2199}
2200
9a32144e 2201static const struct file_operations fib_triestat_fops = {
cb7b593c
SH
2202 .owner = THIS_MODULE,
2203 .open = fib_triestat_seq_open,
2204 .read = seq_read,
2205 .llseek = seq_lseek,
2206 .release = single_release,
2207};
2208
2209static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2210 loff_t pos)
19baf839 2211{
cb7b593c
SH
2212 loff_t idx = 0;
2213 struct node *n;
2214
2215 for (n = fib_trie_get_first(iter, trie_local);
2216 n; ++idx, n = fib_trie_get_next(iter)) {
2217 if (pos == idx)
2218 return n;
2219 }
2220
2221 for (n = fib_trie_get_first(iter, trie_main);
2222 n; ++idx, n = fib_trie_get_next(iter)) {
2223 if (pos == idx)
2224 return n;
2225 }
19baf839
RO
2226 return NULL;
2227}
2228
cb7b593c 2229static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
19baf839 2230{
cb7b593c
SH
2231 rcu_read_lock();
2232 if (*pos == 0)
91b9a277 2233 return SEQ_START_TOKEN;
cb7b593c 2234 return fib_trie_get_idx(seq->private, *pos - 1);
19baf839
RO
2235}
2236
cb7b593c 2237static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
19baf839 2238{
cb7b593c
SH
2239 struct fib_trie_iter *iter = seq->private;
2240 void *l = v;
2241
19baf839 2242 ++*pos;
91b9a277 2243 if (v == SEQ_START_TOKEN)
cb7b593c 2244 return fib_trie_get_idx(iter, 0);
19baf839 2245
cb7b593c
SH
2246 v = fib_trie_get_next(iter);
2247 BUG_ON(v == l);
2248 if (v)
2249 return v;
19baf839 2250
cb7b593c
SH
2251 /* continue scan in next trie */
2252 if (iter->trie == trie_local)
2253 return fib_trie_get_first(iter, trie_main);
19baf839 2254
cb7b593c
SH
2255 return NULL;
2256}
19baf839 2257
cb7b593c 2258static void fib_trie_seq_stop(struct seq_file *seq, void *v)
19baf839 2259{
cb7b593c
SH
2260 rcu_read_unlock();
2261}
91b9a277 2262
cb7b593c
SH
2263static void seq_indent(struct seq_file *seq, int n)
2264{
2265 while (n-- > 0) seq_puts(seq, " ");
2266}
19baf839 2267
cb7b593c
SH
2268static inline const char *rtn_scope(enum rt_scope_t s)
2269{
2270 static char buf[32];
19baf839 2271
132adf54 2272 switch (s) {
cb7b593c
SH
2273 case RT_SCOPE_UNIVERSE: return "universe";
2274 case RT_SCOPE_SITE: return "site";
2275 case RT_SCOPE_LINK: return "link";
2276 case RT_SCOPE_HOST: return "host";
2277 case RT_SCOPE_NOWHERE: return "nowhere";
2278 default:
2279 snprintf(buf, sizeof(buf), "scope=%d", s);
2280 return buf;
2281 }
2282}
19baf839 2283
cb7b593c
SH
2284static const char *rtn_type_names[__RTN_MAX] = {
2285 [RTN_UNSPEC] = "UNSPEC",
2286 [RTN_UNICAST] = "UNICAST",
2287 [RTN_LOCAL] = "LOCAL",
2288 [RTN_BROADCAST] = "BROADCAST",
2289 [RTN_ANYCAST] = "ANYCAST",
2290 [RTN_MULTICAST] = "MULTICAST",
2291 [RTN_BLACKHOLE] = "BLACKHOLE",
2292 [RTN_UNREACHABLE] = "UNREACHABLE",
2293 [RTN_PROHIBIT] = "PROHIBIT",
2294 [RTN_THROW] = "THROW",
2295 [RTN_NAT] = "NAT",
2296 [RTN_XRESOLVE] = "XRESOLVE",
2297};
19baf839 2298
cb7b593c
SH
2299static inline const char *rtn_type(unsigned t)
2300{
2301 static char buf[32];
19baf839 2302
cb7b593c
SH
2303 if (t < __RTN_MAX && rtn_type_names[t])
2304 return rtn_type_names[t];
2305 snprintf(buf, sizeof(buf), "type %d", t);
2306 return buf;
19baf839
RO
2307}
2308
cb7b593c
SH
2309/* Pretty print the trie */
2310static int fib_trie_seq_show(struct seq_file *seq, void *v)
19baf839 2311{
cb7b593c
SH
2312 const struct fib_trie_iter *iter = seq->private;
2313 struct node *n = v;
c877efb2 2314
cb7b593c
SH
2315 if (v == SEQ_START_TOKEN)
2316 return 0;
19baf839 2317
095b8501
RO
2318 if (!NODE_PARENT(n)) {
2319 if (iter->trie == trie_local)
2320 seq_puts(seq, "<local>:\n");
2321 else
2322 seq_puts(seq, "<main>:\n");
2323 }
2324
cb7b593c
SH
2325 if (IS_TNODE(n)) {
2326 struct tnode *tn = (struct tnode *) n;
32ab5f80 2327 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
91b9a277 2328
1d25cd6c
RO
2329 seq_indent(seq, iter->depth-1);
2330 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
e905a9ed 2331 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
1d25cd6c 2332 tn->empty_children);
e905a9ed 2333
cb7b593c
SH
2334 } else {
2335 struct leaf *l = (struct leaf *) n;
2336 int i;
32ab5f80 2337 __be32 val = htonl(l->key);
cb7b593c
SH
2338
2339 seq_indent(seq, iter->depth);
2340 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2341 for (i = 32; i >= 0; i--) {
772cb712 2342 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c
SH
2343 if (li) {
2344 struct fib_alias *fa;
2345 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2346 seq_indent(seq, iter->depth+1);
2347 seq_printf(seq, " /%d %s %s", i,
2348 rtn_scope(fa->fa_scope),
2349 rtn_type(fa->fa_type));
2350 if (fa->fa_tos)
2351 seq_printf(seq, "tos =%d\n",
2352 fa->fa_tos);
2353 seq_putc(seq, '\n');
2354 }
2355 }
2356 }
19baf839 2357 }
cb7b593c 2358
19baf839
RO
2359 return 0;
2360}
2361
f690808e 2362static const struct seq_operations fib_trie_seq_ops = {
cb7b593c
SH
2363 .start = fib_trie_seq_start,
2364 .next = fib_trie_seq_next,
2365 .stop = fib_trie_seq_stop,
2366 .show = fib_trie_seq_show,
19baf839
RO
2367};
2368
cb7b593c 2369static int fib_trie_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2370{
2371 struct seq_file *seq;
2372 int rc = -ENOMEM;
cb7b593c 2373 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2374
cb7b593c
SH
2375 if (!s)
2376 goto out;
2377
2378 rc = seq_open(file, &fib_trie_seq_ops);
19baf839
RO
2379 if (rc)
2380 goto out_kfree;
2381
cb7b593c
SH
2382 seq = file->private_data;
2383 seq->private = s;
2384 memset(s, 0, sizeof(*s));
19baf839
RO
2385out:
2386 return rc;
2387out_kfree:
cb7b593c 2388 kfree(s);
19baf839
RO
2389 goto out;
2390}
2391
9a32144e 2392static const struct file_operations fib_trie_fops = {
cb7b593c
SH
2393 .owner = THIS_MODULE,
2394 .open = fib_trie_seq_open,
2395 .read = seq_read,
2396 .llseek = seq_lseek,
c877efb2 2397 .release = seq_release_private,
19baf839
RO
2398};
2399
32ab5f80 2400static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
19baf839 2401{
cb7b593c
SH
2402 static unsigned type2flags[RTN_MAX + 1] = {
2403 [7] = RTF_REJECT, [8] = RTF_REJECT,
2404 };
2405 unsigned flags = type2flags[type];
19baf839 2406
cb7b593c
SH
2407 if (fi && fi->fib_nh->nh_gw)
2408 flags |= RTF_GATEWAY;
32ab5f80 2409 if (mask == htonl(0xFFFFFFFF))
cb7b593c
SH
2410 flags |= RTF_HOST;
2411 flags |= RTF_UP;
2412 return flags;
19baf839
RO
2413}
2414
cb7b593c
SH
2415/*
2416 * This outputs /proc/net/route.
2417 * The format of the file is not supposed to be changed
2418 * and needs to be same as fib_hash output to avoid breaking
2419 * legacy utilities
2420 */
2421static int fib_route_seq_show(struct seq_file *seq, void *v)
19baf839 2422{
c9e53cbe 2423 const struct fib_trie_iter *iter = seq->private;
cb7b593c
SH
2424 struct leaf *l = v;
2425 int i;
2426 char bf[128];
19baf839 2427
cb7b593c
SH
2428 if (v == SEQ_START_TOKEN) {
2429 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2430 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2431 "\tWindow\tIRTT");
2432 return 0;
2433 }
19baf839 2434
c9e53cbe
PM
2435 if (iter->trie == trie_local)
2436 return 0;
cb7b593c
SH
2437 if (IS_TNODE(l))
2438 return 0;
19baf839 2439
cb7b593c 2440 for (i=32; i>=0; i--) {
772cb712 2441 struct leaf_info *li = find_leaf_info(l, i);
cb7b593c 2442 struct fib_alias *fa;
32ab5f80 2443 __be32 mask, prefix;
91b9a277 2444
cb7b593c
SH
2445 if (!li)
2446 continue;
19baf839 2447
cb7b593c
SH
2448 mask = inet_make_mask(li->plen);
2449 prefix = htonl(l->key);
19baf839 2450
cb7b593c 2451 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
1371e37d 2452 const struct fib_info *fi = fa->fa_info;
cb7b593c 2453 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
19baf839 2454
cb7b593c
SH
2455 if (fa->fa_type == RTN_BROADCAST
2456 || fa->fa_type == RTN_MULTICAST)
2457 continue;
19baf839 2458
cb7b593c
SH
2459 if (fi)
2460 snprintf(bf, sizeof(bf),
2461 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2462 fi->fib_dev ? fi->fib_dev->name : "*",
2463 prefix,
2464 fi->fib_nh->nh_gw, flags, 0, 0,
2465 fi->fib_priority,
2466 mask,
2467 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2468 fi->fib_window,
2469 fi->fib_rtt >> 3);
2470 else
2471 snprintf(bf, sizeof(bf),
2472 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2473 prefix, 0, flags, 0, 0, 0,
2474 mask, 0, 0, 0);
19baf839 2475
cb7b593c
SH
2476 seq_printf(seq, "%-127s\n", bf);
2477 }
19baf839
RO
2478 }
2479
2480 return 0;
2481}
2482
f690808e 2483static const struct seq_operations fib_route_seq_ops = {
cb7b593c
SH
2484 .start = fib_trie_seq_start,
2485 .next = fib_trie_seq_next,
2486 .stop = fib_trie_seq_stop,
2487 .show = fib_route_seq_show,
19baf839
RO
2488};
2489
cb7b593c 2490static int fib_route_seq_open(struct inode *inode, struct file *file)
19baf839
RO
2491{
2492 struct seq_file *seq;
2493 int rc = -ENOMEM;
cb7b593c 2494 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
19baf839 2495
cb7b593c
SH
2496 if (!s)
2497 goto out;
2498
2499 rc = seq_open(file, &fib_route_seq_ops);
19baf839
RO
2500 if (rc)
2501 goto out_kfree;
2502
cb7b593c
SH
2503 seq = file->private_data;
2504 seq->private = s;
2505 memset(s, 0, sizeof(*s));
19baf839
RO
2506out:
2507 return rc;
2508out_kfree:
cb7b593c 2509 kfree(s);
19baf839
RO
2510 goto out;
2511}
2512
9a32144e 2513static const struct file_operations fib_route_fops = {
cb7b593c
SH
2514 .owner = THIS_MODULE,
2515 .open = fib_route_seq_open,
2516 .read = seq_read,
2517 .llseek = seq_lseek,
2518 .release = seq_release_private,
19baf839
RO
2519};
2520
2521int __init fib_proc_init(void)
2522{
cb7b593c
SH
2523 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2524 goto out1;
2525
2526 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2527 goto out2;
2528
2529 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2530 goto out3;
2531
19baf839 2532 return 0;
cb7b593c
SH
2533
2534out3:
2535 proc_net_remove("fib_triestat");
2536out2:
2537 proc_net_remove("fib_trie");
2538out1:
2539 return -ENOMEM;
19baf839
RO
2540}
2541
2542void __init fib_proc_exit(void)
2543{
2544 proc_net_remove("fib_trie");
cb7b593c
SH
2545 proc_net_remove("fib_triestat");
2546 proc_net_remove("route");
19baf839
RO
2547}
2548
2549#endif /* CONFIG_PROC_FS */