[PATCH] severing uaccess.h -> sched.h
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / core / sock.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
8 *
9 *
10 * Version: $Id: sock.c,v 1.117 2002/02/01 22:01:03 davem Exp $
11 *
02c30a84 12 * Authors: Ross Biro
1da177e4
LT
13 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Alan Cox, <A.Cox@swansea.ac.uk>
16 *
17 * Fixes:
18 * Alan Cox : Numerous verify_area() problems
19 * Alan Cox : Connecting on a connecting socket
20 * now returns an error for tcp.
21 * Alan Cox : sock->protocol is set correctly.
22 * and is not sometimes left as 0.
23 * Alan Cox : connect handles icmp errors on a
24 * connect properly. Unfortunately there
25 * is a restart syscall nasty there. I
26 * can't match BSD without hacking the C
27 * library. Ideas urgently sought!
28 * Alan Cox : Disallow bind() to addresses that are
29 * not ours - especially broadcast ones!!
30 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
31 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
32 * instead they leave that for the DESTROY timer.
33 * Alan Cox : Clean up error flag in accept
34 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
35 * was buggy. Put a remove_sock() in the handler
36 * for memory when we hit 0. Also altered the timer
37 * code. The ACK stuff can wait and needs major
38 * TCP layer surgery.
39 * Alan Cox : Fixed TCP ack bug, removed remove sock
40 * and fixed timer/inet_bh race.
41 * Alan Cox : Added zapped flag for TCP
42 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
43 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
44 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
45 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
46 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
47 * Rick Sladkey : Relaxed UDP rules for matching packets.
48 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
49 * Pauline Middelink : identd support
50 * Alan Cox : Fixed connect() taking signals I think.
51 * Alan Cox : SO_LINGER supported
52 * Alan Cox : Error reporting fixes
53 * Anonymous : inet_create tidied up (sk->reuse setting)
54 * Alan Cox : inet sockets don't set sk->type!
55 * Alan Cox : Split socket option code
56 * Alan Cox : Callbacks
57 * Alan Cox : Nagle flag for Charles & Johannes stuff
58 * Alex : Removed restriction on inet fioctl
59 * Alan Cox : Splitting INET from NET core
60 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
61 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
62 * Alan Cox : Split IP from generic code
63 * Alan Cox : New kfree_skbmem()
64 * Alan Cox : Make SO_DEBUG superuser only.
65 * Alan Cox : Allow anyone to clear SO_DEBUG
66 * (compatibility fix)
67 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
68 * Alan Cox : Allocator for a socket is settable.
69 * Alan Cox : SO_ERROR includes soft errors.
70 * Alan Cox : Allow NULL arguments on some SO_ opts
71 * Alan Cox : Generic socket allocation to make hooks
72 * easier (suggested by Craig Metz).
73 * Michael Pall : SO_ERROR returns positive errno again
74 * Steve Whitehouse: Added default destructor to free
75 * protocol private data.
76 * Steve Whitehouse: Added various other default routines
77 * common to several socket families.
78 * Chris Evans : Call suser() check last on F_SETOWN
79 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
80 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
81 * Andi Kleen : Fix write_space callback
82 * Chris Evans : Security fixes - signedness again
83 * Arnaldo C. Melo : cleanups, use skb_queue_purge
84 *
85 * To Fix:
86 *
87 *
88 * This program is free software; you can redistribute it and/or
89 * modify it under the terms of the GNU General Public License
90 * as published by the Free Software Foundation; either version
91 * 2 of the License, or (at your option) any later version.
92 */
93
4fc268d2 94#include <linux/capability.h>
1da177e4
LT
95#include <linux/errno.h>
96#include <linux/types.h>
97#include <linux/socket.h>
98#include <linux/in.h>
99#include <linux/kernel.h>
1da177e4
LT
100#include <linux/module.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/sched.h>
104#include <linux/timer.h>
105#include <linux/string.h>
106#include <linux/sockios.h>
107#include <linux/net.h>
108#include <linux/mm.h>
109#include <linux/slab.h>
110#include <linux/interrupt.h>
111#include <linux/poll.h>
112#include <linux/tcp.h>
113#include <linux/init.h>
114
115#include <asm/uaccess.h>
116#include <asm/system.h>
117
118#include <linux/netdevice.h>
119#include <net/protocol.h>
120#include <linux/skbuff.h>
2e6599cb 121#include <net/request_sock.h>
1da177e4
LT
122#include <net/sock.h>
123#include <net/xfrm.h>
124#include <linux/ipsec.h>
125
126#include <linux/filter.h>
127
128#ifdef CONFIG_INET
129#include <net/tcp.h>
130#endif
131
da21f24d
IM
132/*
133 * Each address family might have different locking rules, so we have
134 * one slock key per address family:
135 */
a5b5bb9a
IM
136static struct lock_class_key af_family_keys[AF_MAX];
137static struct lock_class_key af_family_slock_keys[AF_MAX];
138
139#ifdef CONFIG_DEBUG_LOCK_ALLOC
140/*
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
143 * locks is fast):
144 */
145static const char *af_family_key_strings[AF_MAX+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-21" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-29" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-AF_MAX"
157};
158static const char *af_family_slock_key_strings[AF_MAX+1] = {
159 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
160 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
161 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
162 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
163 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
164 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
165 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
166 "slock-21" , "slock-AF_SNA" , "slock-AF_IRDA" ,
167 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
168 "slock-27" , "slock-28" , "slock-29" ,
169 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_MAX"
170};
171#endif
da21f24d
IM
172
173/*
174 * sk_callback_lock locking rules are per-address-family,
175 * so split the lock classes by using a per-AF key:
176 */
177static struct lock_class_key af_callback_keys[AF_MAX];
178
1da177e4
LT
179/* Take into consideration the size of the struct sk_buff overhead in the
180 * determination of these values, since that is non-constant across
181 * platforms. This makes socket queueing behavior and performance
182 * not depend upon such differences.
183 */
184#define _SK_MEM_PACKETS 256
185#define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
186#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
187#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
188
189/* Run time adjustable parameters. */
ab32ea5d
BH
190__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
191__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
192__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
193__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
1da177e4
LT
194
195/* Maximal space eaten by iovec or ancilliary data plus some space */
ab32ea5d 196int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
1da177e4
LT
197
198static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
199{
200 struct timeval tv;
201
202 if (optlen < sizeof(tv))
203 return -EINVAL;
204 if (copy_from_user(&tv, optval, sizeof(tv)))
205 return -EFAULT;
206
207 *timeo_p = MAX_SCHEDULE_TIMEOUT;
208 if (tv.tv_sec == 0 && tv.tv_usec == 0)
209 return 0;
210 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
211 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
212 return 0;
213}
214
215static void sock_warn_obsolete_bsdism(const char *name)
216{
217 static int warned;
218 static char warncomm[TASK_COMM_LEN];
219 if (strcmp(warncomm, current->comm) && warned < 5) {
220 strcpy(warncomm, current->comm);
221 printk(KERN_WARNING "process `%s' is using obsolete "
222 "%s SO_BSDCOMPAT\n", warncomm, name);
223 warned++;
224 }
225}
226
227static void sock_disable_timestamp(struct sock *sk)
228{
229 if (sock_flag(sk, SOCK_TIMESTAMP)) {
230 sock_reset_flag(sk, SOCK_TIMESTAMP);
231 net_disable_timestamp();
232 }
233}
234
235
f0088a50
DV
236int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
237{
238 int err = 0;
239 int skb_len;
240
241 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
242 number of warnings when compiling with -W --ANK
243 */
244 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
245 (unsigned)sk->sk_rcvbuf) {
246 err = -ENOMEM;
247 goto out;
248 }
249
fda9ef5d 250 err = sk_filter(sk, skb);
f0088a50
DV
251 if (err)
252 goto out;
253
254 skb->dev = NULL;
255 skb_set_owner_r(skb, sk);
256
257 /* Cache the SKB length before we tack it onto the receive
258 * queue. Once it is added it no longer belongs to us and
259 * may be freed by other threads of control pulling packets
260 * from the queue.
261 */
262 skb_len = skb->len;
263
264 skb_queue_tail(&sk->sk_receive_queue, skb);
265
266 if (!sock_flag(sk, SOCK_DEAD))
267 sk->sk_data_ready(sk, skb_len);
268out:
269 return err;
270}
271EXPORT_SYMBOL(sock_queue_rcv_skb);
272
58a5a7b9 273int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
f0088a50
DV
274{
275 int rc = NET_RX_SUCCESS;
276
fda9ef5d 277 if (sk_filter(sk, skb))
f0088a50
DV
278 goto discard_and_relse;
279
280 skb->dev = NULL;
281
58a5a7b9
ACM
282 if (nested)
283 bh_lock_sock_nested(sk);
284 else
285 bh_lock_sock(sk);
a5b5bb9a
IM
286 if (!sock_owned_by_user(sk)) {
287 /*
288 * trylock + unlock semantics:
289 */
290 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
291
f0088a50 292 rc = sk->sk_backlog_rcv(sk, skb);
a5b5bb9a
IM
293
294 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
295 } else
f0088a50
DV
296 sk_add_backlog(sk, skb);
297 bh_unlock_sock(sk);
298out:
299 sock_put(sk);
300 return rc;
301discard_and_relse:
302 kfree_skb(skb);
303 goto out;
304}
305EXPORT_SYMBOL(sk_receive_skb);
306
307struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
308{
309 struct dst_entry *dst = sk->sk_dst_cache;
310
311 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
312 sk->sk_dst_cache = NULL;
313 dst_release(dst);
314 return NULL;
315 }
316
317 return dst;
318}
319EXPORT_SYMBOL(__sk_dst_check);
320
321struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
322{
323 struct dst_entry *dst = sk_dst_get(sk);
324
325 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
326 sk_dst_reset(sk);
327 dst_release(dst);
328 return NULL;
329 }
330
331 return dst;
332}
333EXPORT_SYMBOL(sk_dst_check);
334
1da177e4
LT
335/*
336 * This is meant for all protocols to use and covers goings on
337 * at the socket level. Everything here is generic.
338 */
339
340int sock_setsockopt(struct socket *sock, int level, int optname,
341 char __user *optval, int optlen)
342{
343 struct sock *sk=sock->sk;
344 struct sk_filter *filter;
345 int val;
346 int valbool;
347 struct linger ling;
348 int ret = 0;
349
350 /*
351 * Options without arguments
352 */
353
354#ifdef SO_DONTLINGER /* Compatibility item... */
a77be819
KM
355 if (optname == SO_DONTLINGER) {
356 lock_sock(sk);
357 sock_reset_flag(sk, SOCK_LINGER);
358 release_sock(sk);
359 return 0;
1da177e4 360 }
a77be819
KM
361#endif
362
1da177e4
LT
363 if(optlen<sizeof(int))
364 return(-EINVAL);
365
366 if (get_user(val, (int __user *)optval))
367 return -EFAULT;
368
369 valbool = val?1:0;
370
371 lock_sock(sk);
372
373 switch(optname)
374 {
375 case SO_DEBUG:
376 if(val && !capable(CAP_NET_ADMIN))
377 {
378 ret = -EACCES;
379 }
380 else if (valbool)
381 sock_set_flag(sk, SOCK_DBG);
382 else
383 sock_reset_flag(sk, SOCK_DBG);
384 break;
385 case SO_REUSEADDR:
386 sk->sk_reuse = valbool;
387 break;
388 case SO_TYPE:
389 case SO_ERROR:
390 ret = -ENOPROTOOPT;
391 break;
392 case SO_DONTROUTE:
393 if (valbool)
394 sock_set_flag(sk, SOCK_LOCALROUTE);
395 else
396 sock_reset_flag(sk, SOCK_LOCALROUTE);
397 break;
398 case SO_BROADCAST:
399 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
400 break;
401 case SO_SNDBUF:
402 /* Don't error on this BSD doesn't and if you think
403 about it this is right. Otherwise apps have to
404 play 'guess the biggest size' games. RCVBUF/SNDBUF
405 are treated in BSD as hints */
406
407 if (val > sysctl_wmem_max)
408 val = sysctl_wmem_max;
b0573dea 409set_sndbuf:
1da177e4
LT
410 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
411 if ((val * 2) < SOCK_MIN_SNDBUF)
412 sk->sk_sndbuf = SOCK_MIN_SNDBUF;
413 else
414 sk->sk_sndbuf = val * 2;
415
416 /*
417 * Wake up sending tasks if we
418 * upped the value.
419 */
420 sk->sk_write_space(sk);
421 break;
422
b0573dea
PM
423 case SO_SNDBUFFORCE:
424 if (!capable(CAP_NET_ADMIN)) {
425 ret = -EPERM;
426 break;
427 }
428 goto set_sndbuf;
429
1da177e4
LT
430 case SO_RCVBUF:
431 /* Don't error on this BSD doesn't and if you think
432 about it this is right. Otherwise apps have to
433 play 'guess the biggest size' games. RCVBUF/SNDBUF
434 are treated in BSD as hints */
435
436 if (val > sysctl_rmem_max)
437 val = sysctl_rmem_max;
b0573dea 438set_rcvbuf:
1da177e4 439 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
c08e4961
AM
440 /*
441 * We double it on the way in to account for
442 * "struct sk_buff" etc. overhead. Applications
443 * assume that the SO_RCVBUF setting they make will
444 * allow that much actual data to be received on that
445 * socket.
446 *
447 * Applications are unaware that "struct sk_buff" and
448 * other overheads allocate from the receive buffer
449 * during socket buffer allocation.
450 *
451 * And after considering the possible alternatives,
452 * returning the value we actually used in getsockopt
453 * is the most desirable behavior.
454 */
1da177e4
LT
455 if ((val * 2) < SOCK_MIN_RCVBUF)
456 sk->sk_rcvbuf = SOCK_MIN_RCVBUF;
457 else
458 sk->sk_rcvbuf = val * 2;
459 break;
460
b0573dea
PM
461 case SO_RCVBUFFORCE:
462 if (!capable(CAP_NET_ADMIN)) {
463 ret = -EPERM;
464 break;
465 }
466 goto set_rcvbuf;
467
1da177e4
LT
468 case SO_KEEPALIVE:
469#ifdef CONFIG_INET
470 if (sk->sk_protocol == IPPROTO_TCP)
471 tcp_set_keepalive(sk, valbool);
472#endif
473 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
474 break;
475
476 case SO_OOBINLINE:
477 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
478 break;
479
480 case SO_NO_CHECK:
481 sk->sk_no_check = valbool;
482 break;
483
484 case SO_PRIORITY:
485 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
486 sk->sk_priority = val;
487 else
488 ret = -EPERM;
489 break;
490
491 case SO_LINGER:
492 if(optlen<sizeof(ling)) {
493 ret = -EINVAL; /* 1003.1g */
494 break;
495 }
496 if (copy_from_user(&ling,optval,sizeof(ling))) {
497 ret = -EFAULT;
498 break;
499 }
500 if (!ling.l_onoff)
501 sock_reset_flag(sk, SOCK_LINGER);
502 else {
503#if (BITS_PER_LONG == 32)
9261c9b0 504 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
1da177e4
LT
505 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
506 else
507#endif
9261c9b0 508 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
1da177e4
LT
509 sock_set_flag(sk, SOCK_LINGER);
510 }
511 break;
512
513 case SO_BSDCOMPAT:
514 sock_warn_obsolete_bsdism("setsockopt");
515 break;
516
517 case SO_PASSCRED:
518 if (valbool)
519 set_bit(SOCK_PASSCRED, &sock->flags);
520 else
521 clear_bit(SOCK_PASSCRED, &sock->flags);
522 break;
523
524 case SO_TIMESTAMP:
525 if (valbool) {
526 sock_set_flag(sk, SOCK_RCVTSTAMP);
527 sock_enable_timestamp(sk);
528 } else
529 sock_reset_flag(sk, SOCK_RCVTSTAMP);
530 break;
531
532 case SO_RCVLOWAT:
533 if (val < 0)
534 val = INT_MAX;
535 sk->sk_rcvlowat = val ? : 1;
536 break;
537
538 case SO_RCVTIMEO:
539 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
540 break;
541
542 case SO_SNDTIMEO:
543 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
544 break;
545
546#ifdef CONFIG_NETDEVICES
547 case SO_BINDTODEVICE:
548 {
549 char devname[IFNAMSIZ];
550
551 /* Sorry... */
552 if (!capable(CAP_NET_RAW)) {
553 ret = -EPERM;
554 break;
555 }
556
557 /* Bind this socket to a particular device like "eth0",
558 * as specified in the passed interface name. If the
559 * name is "" or the option length is zero the socket
560 * is not bound.
561 */
562
563 if (!valbool) {
564 sk->sk_bound_dev_if = 0;
565 } else {
f67ed26f
DM
566 if (optlen > IFNAMSIZ - 1)
567 optlen = IFNAMSIZ - 1;
568 memset(devname, 0, sizeof(devname));
1da177e4
LT
569 if (copy_from_user(devname, optval, optlen)) {
570 ret = -EFAULT;
571 break;
572 }
573
574 /* Remove any cached route for this socket. */
575 sk_dst_reset(sk);
576
577 if (devname[0] == '\0') {
578 sk->sk_bound_dev_if = 0;
579 } else {
580 struct net_device *dev = dev_get_by_name(devname);
581 if (!dev) {
582 ret = -ENODEV;
583 break;
584 }
585 sk->sk_bound_dev_if = dev->ifindex;
586 dev_put(dev);
587 }
588 }
589 break;
590 }
591#endif
592
593
594 case SO_ATTACH_FILTER:
595 ret = -EINVAL;
596 if (optlen == sizeof(struct sock_fprog)) {
597 struct sock_fprog fprog;
598
599 ret = -EFAULT;
600 if (copy_from_user(&fprog, optval, sizeof(fprog)))
601 break;
602
603 ret = sk_attach_filter(&fprog, sk);
604 }
605 break;
606
607 case SO_DETACH_FILTER:
fda9ef5d
DM
608 rcu_read_lock_bh();
609 filter = rcu_dereference(sk->sk_filter);
1da177e4 610 if (filter) {
fda9ef5d 611 rcu_assign_pointer(sk->sk_filter, NULL);
1da177e4 612 sk_filter_release(sk, filter);
fda9ef5d 613 rcu_read_unlock_bh();
1da177e4
LT
614 break;
615 }
fda9ef5d 616 rcu_read_unlock_bh();
1da177e4
LT
617 ret = -ENONET;
618 break;
619
877ce7c1
CZ
620 case SO_PASSSEC:
621 if (valbool)
622 set_bit(SOCK_PASSSEC, &sock->flags);
623 else
624 clear_bit(SOCK_PASSSEC, &sock->flags);
625 break;
626
1da177e4
LT
627 /* We implement the SO_SNDLOWAT etc to
628 not be settable (1003.1g 5.3) */
629 default:
630 ret = -ENOPROTOOPT;
631 break;
632 }
633 release_sock(sk);
634 return ret;
635}
636
637
638int sock_getsockopt(struct socket *sock, int level, int optname,
639 char __user *optval, int __user *optlen)
640{
641 struct sock *sk = sock->sk;
642
643 union
644 {
645 int val;
646 struct linger ling;
647 struct timeval tm;
648 } v;
649
650 unsigned int lv = sizeof(int);
651 int len;
652
653 if(get_user(len,optlen))
654 return -EFAULT;
655 if(len < 0)
656 return -EINVAL;
657
658 switch(optname)
659 {
660 case SO_DEBUG:
661 v.val = sock_flag(sk, SOCK_DBG);
662 break;
663
664 case SO_DONTROUTE:
665 v.val = sock_flag(sk, SOCK_LOCALROUTE);
666 break;
667
668 case SO_BROADCAST:
669 v.val = !!sock_flag(sk, SOCK_BROADCAST);
670 break;
671
672 case SO_SNDBUF:
673 v.val = sk->sk_sndbuf;
674 break;
675
676 case SO_RCVBUF:
677 v.val = sk->sk_rcvbuf;
678 break;
679
680 case SO_REUSEADDR:
681 v.val = sk->sk_reuse;
682 break;
683
684 case SO_KEEPALIVE:
685 v.val = !!sock_flag(sk, SOCK_KEEPOPEN);
686 break;
687
688 case SO_TYPE:
689 v.val = sk->sk_type;
690 break;
691
692 case SO_ERROR:
693 v.val = -sock_error(sk);
694 if(v.val==0)
695 v.val = xchg(&sk->sk_err_soft, 0);
696 break;
697
698 case SO_OOBINLINE:
699 v.val = !!sock_flag(sk, SOCK_URGINLINE);
700 break;
701
702 case SO_NO_CHECK:
703 v.val = sk->sk_no_check;
704 break;
705
706 case SO_PRIORITY:
707 v.val = sk->sk_priority;
708 break;
709
710 case SO_LINGER:
711 lv = sizeof(v.ling);
712 v.ling.l_onoff = !!sock_flag(sk, SOCK_LINGER);
713 v.ling.l_linger = sk->sk_lingertime / HZ;
714 break;
715
716 case SO_BSDCOMPAT:
717 sock_warn_obsolete_bsdism("getsockopt");
718 break;
719
720 case SO_TIMESTAMP:
721 v.val = sock_flag(sk, SOCK_RCVTSTAMP);
722 break;
723
724 case SO_RCVTIMEO:
725 lv=sizeof(struct timeval);
726 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
727 v.tm.tv_sec = 0;
728 v.tm.tv_usec = 0;
729 } else {
730 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
731 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
732 }
733 break;
734
735 case SO_SNDTIMEO:
736 lv=sizeof(struct timeval);
737 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
738 v.tm.tv_sec = 0;
739 v.tm.tv_usec = 0;
740 } else {
741 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
742 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
743 }
744 break;
745
746 case SO_RCVLOWAT:
747 v.val = sk->sk_rcvlowat;
748 break;
749
750 case SO_SNDLOWAT:
751 v.val=1;
752 break;
753
754 case SO_PASSCRED:
755 v.val = test_bit(SOCK_PASSCRED, &sock->flags) ? 1 : 0;
756 break;
757
758 case SO_PEERCRED:
759 if (len > sizeof(sk->sk_peercred))
760 len = sizeof(sk->sk_peercred);
761 if (copy_to_user(optval, &sk->sk_peercred, len))
762 return -EFAULT;
763 goto lenout;
764
765 case SO_PEERNAME:
766 {
767 char address[128];
768
769 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
770 return -ENOTCONN;
771 if (lv < len)
772 return -EINVAL;
773 if (copy_to_user(optval, address, len))
774 return -EFAULT;
775 goto lenout;
776 }
777
778 /* Dubious BSD thing... Probably nobody even uses it, but
779 * the UNIX standard wants it for whatever reason... -DaveM
780 */
781 case SO_ACCEPTCONN:
782 v.val = sk->sk_state == TCP_LISTEN;
783 break;
784
877ce7c1
CZ
785 case SO_PASSSEC:
786 v.val = test_bit(SOCK_PASSSEC, &sock->flags) ? 1 : 0;
787 break;
788
1da177e4 789 case SO_PEERSEC:
2c7946a7 790 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1da177e4
LT
791
792 default:
793 return(-ENOPROTOOPT);
794 }
795 if (len > lv)
796 len = lv;
797 if (copy_to_user(optval, &v, len))
798 return -EFAULT;
799lenout:
800 if (put_user(len, optlen))
801 return -EFAULT;
802 return 0;
803}
804
a5b5bb9a
IM
805/*
806 * Initialize an sk_lock.
807 *
808 * (We also register the sk_lock with the lock validator.)
809 */
810static void inline sock_lock_init(struct sock *sk)
811{
812 spin_lock_init(&sk->sk_lock.slock);
813 sk->sk_lock.owner = NULL;
814 init_waitqueue_head(&sk->sk_lock.wq);
815 /*
816 * Make sure we are not reinitializing a held lock:
817 */
818 debug_check_no_locks_freed((void *)&sk->sk_lock, sizeof(sk->sk_lock));
819
820 /*
821 * Mark both the sk_lock and the sk_lock.slock as a
822 * per-address-family lock class:
823 */
824 lockdep_set_class_and_name(&sk->sk_lock.slock,
825 af_family_slock_keys + sk->sk_family,
826 af_family_slock_key_strings[sk->sk_family]);
827 lockdep_init_map(&sk->sk_lock.dep_map,
828 af_family_key_strings[sk->sk_family],
4dfbb9d8 829 af_family_keys + sk->sk_family, 0);
a5b5bb9a
IM
830}
831
1da177e4
LT
832/**
833 * sk_alloc - All socket objects are allocated here
4dc3b16b
PP
834 * @family: protocol family
835 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
836 * @prot: struct proto associated with this new sock instance
837 * @zero_it: if we should zero the newly allocated sock
1da177e4 838 */
dd0fc66f 839struct sock *sk_alloc(int family, gfp_t priority,
86a76caf 840 struct proto *prot, int zero_it)
1da177e4
LT
841{
842 struct sock *sk = NULL;
843 kmem_cache_t *slab = prot->slab;
844
845 if (slab != NULL)
846 sk = kmem_cache_alloc(slab, priority);
847 else
848 sk = kmalloc(prot->obj_size, priority);
849
850 if (sk) {
851 if (zero_it) {
852 memset(sk, 0, prot->obj_size);
853 sk->sk_family = family;
476e19cf
ACM
854 /*
855 * See comment in struct sock definition to understand
856 * why we need sk_prot_creator -acme
857 */
858 sk->sk_prot = sk->sk_prot_creator = prot;
1da177e4
LT
859 sock_lock_init(sk);
860 }
861
a79af59e
FF
862 if (security_sk_alloc(sk, family, priority))
863 goto out_free;
864
865 if (!try_module_get(prot->owner))
866 goto out_free;
1da177e4
LT
867 }
868 return sk;
a79af59e
FF
869
870out_free:
871 if (slab != NULL)
872 kmem_cache_free(slab, sk);
873 else
874 kfree(sk);
875 return NULL;
1da177e4
LT
876}
877
878void sk_free(struct sock *sk)
879{
880 struct sk_filter *filter;
476e19cf 881 struct module *owner = sk->sk_prot_creator->owner;
1da177e4
LT
882
883 if (sk->sk_destruct)
884 sk->sk_destruct(sk);
885
fda9ef5d 886 filter = rcu_dereference(sk->sk_filter);
1da177e4
LT
887 if (filter) {
888 sk_filter_release(sk, filter);
fda9ef5d 889 rcu_assign_pointer(sk->sk_filter, NULL);
1da177e4
LT
890 }
891
892 sock_disable_timestamp(sk);
893
894 if (atomic_read(&sk->sk_omem_alloc))
895 printk(KERN_DEBUG "%s: optmem leakage (%d bytes) detected.\n",
896 __FUNCTION__, atomic_read(&sk->sk_omem_alloc));
897
898 security_sk_free(sk);
476e19cf
ACM
899 if (sk->sk_prot_creator->slab != NULL)
900 kmem_cache_free(sk->sk_prot_creator->slab, sk);
1da177e4
LT
901 else
902 kfree(sk);
903 module_put(owner);
904}
905
dd0fc66f 906struct sock *sk_clone(const struct sock *sk, const gfp_t priority)
87d11ceb
ACM
907{
908 struct sock *newsk = sk_alloc(sk->sk_family, priority, sk->sk_prot, 0);
909
910 if (newsk != NULL) {
911 struct sk_filter *filter;
912
892c141e 913 sock_copy(newsk, sk);
87d11ceb
ACM
914
915 /* SANITY */
916 sk_node_init(&newsk->sk_node);
917 sock_lock_init(newsk);
918 bh_lock_sock(newsk);
919
920 atomic_set(&newsk->sk_rmem_alloc, 0);
921 atomic_set(&newsk->sk_wmem_alloc, 0);
922 atomic_set(&newsk->sk_omem_alloc, 0);
923 skb_queue_head_init(&newsk->sk_receive_queue);
924 skb_queue_head_init(&newsk->sk_write_queue);
97fc2f08
CL
925#ifdef CONFIG_NET_DMA
926 skb_queue_head_init(&newsk->sk_async_wait_queue);
927#endif
87d11ceb
ACM
928
929 rwlock_init(&newsk->sk_dst_lock);
930 rwlock_init(&newsk->sk_callback_lock);
da21f24d
IM
931 lockdep_set_class(&newsk->sk_callback_lock,
932 af_callback_keys + newsk->sk_family);
87d11ceb
ACM
933
934 newsk->sk_dst_cache = NULL;
935 newsk->sk_wmem_queued = 0;
936 newsk->sk_forward_alloc = 0;
937 newsk->sk_send_head = NULL;
938 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
939 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
940
941 sock_reset_flag(newsk, SOCK_DONE);
942 skb_queue_head_init(&newsk->sk_error_queue);
943
944 filter = newsk->sk_filter;
945 if (filter != NULL)
946 sk_filter_charge(newsk, filter);
947
948 if (unlikely(xfrm_sk_clone_policy(newsk))) {
949 /* It is still raw copy of parent, so invalidate
950 * destructor and make plain sk_free() */
951 newsk->sk_destruct = NULL;
952 sk_free(newsk);
953 newsk = NULL;
954 goto out;
955 }
956
957 newsk->sk_err = 0;
958 newsk->sk_priority = 0;
959 atomic_set(&newsk->sk_refcnt, 2);
960
961 /*
962 * Increment the counter in the same struct proto as the master
963 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
964 * is the same as sk->sk_prot->socks, as this field was copied
965 * with memcpy).
966 *
967 * This _changes_ the previous behaviour, where
968 * tcp_create_openreq_child always was incrementing the
969 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
970 * to be taken into account in all callers. -acme
971 */
972 sk_refcnt_debug_inc(newsk);
973 newsk->sk_socket = NULL;
974 newsk->sk_sleep = NULL;
975
976 if (newsk->sk_prot->sockets_allocated)
977 atomic_inc(newsk->sk_prot->sockets_allocated);
978 }
979out:
980 return newsk;
981}
982
983EXPORT_SYMBOL_GPL(sk_clone);
984
1da177e4
LT
985void __init sk_init(void)
986{
987 if (num_physpages <= 4096) {
988 sysctl_wmem_max = 32767;
989 sysctl_rmem_max = 32767;
990 sysctl_wmem_default = 32767;
991 sysctl_rmem_default = 32767;
992 } else if (num_physpages >= 131072) {
993 sysctl_wmem_max = 131071;
994 sysctl_rmem_max = 131071;
995 }
996}
997
998/*
999 * Simple resource managers for sockets.
1000 */
1001
1002
1003/*
1004 * Write buffer destructor automatically called from kfree_skb.
1005 */
1006void sock_wfree(struct sk_buff *skb)
1007{
1008 struct sock *sk = skb->sk;
1009
1010 /* In case it might be waiting for more memory. */
1011 atomic_sub(skb->truesize, &sk->sk_wmem_alloc);
1012 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE))
1013 sk->sk_write_space(sk);
1014 sock_put(sk);
1015}
1016
1017/*
1018 * Read buffer destructor automatically called from kfree_skb.
1019 */
1020void sock_rfree(struct sk_buff *skb)
1021{
1022 struct sock *sk = skb->sk;
1023
1024 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1025}
1026
1027
1028int sock_i_uid(struct sock *sk)
1029{
1030 int uid;
1031
1032 read_lock(&sk->sk_callback_lock);
1033 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1034 read_unlock(&sk->sk_callback_lock);
1035 return uid;
1036}
1037
1038unsigned long sock_i_ino(struct sock *sk)
1039{
1040 unsigned long ino;
1041
1042 read_lock(&sk->sk_callback_lock);
1043 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1044 read_unlock(&sk->sk_callback_lock);
1045 return ino;
1046}
1047
1048/*
1049 * Allocate a skb from the socket's send buffer.
1050 */
86a76caf 1051struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
dd0fc66f 1052 gfp_t priority)
1da177e4
LT
1053{
1054 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1055 struct sk_buff * skb = alloc_skb(size, priority);
1056 if (skb) {
1057 skb_set_owner_w(skb, sk);
1058 return skb;
1059 }
1060 }
1061 return NULL;
1062}
1063
1064/*
1065 * Allocate a skb from the socket's receive buffer.
1066 */
86a76caf 1067struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
dd0fc66f 1068 gfp_t priority)
1da177e4
LT
1069{
1070 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1071 struct sk_buff *skb = alloc_skb(size, priority);
1072 if (skb) {
1073 skb_set_owner_r(skb, sk);
1074 return skb;
1075 }
1076 }
1077 return NULL;
1078}
1079
1080/*
1081 * Allocate a memory block from the socket's option memory buffer.
1082 */
dd0fc66f 1083void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1da177e4
LT
1084{
1085 if ((unsigned)size <= sysctl_optmem_max &&
1086 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1087 void *mem;
1088 /* First do the add, to avoid the race if kmalloc
1089 * might sleep.
1090 */
1091 atomic_add(size, &sk->sk_omem_alloc);
1092 mem = kmalloc(size, priority);
1093 if (mem)
1094 return mem;
1095 atomic_sub(size, &sk->sk_omem_alloc);
1096 }
1097 return NULL;
1098}
1099
1100/*
1101 * Free an option memory block.
1102 */
1103void sock_kfree_s(struct sock *sk, void *mem, int size)
1104{
1105 kfree(mem);
1106 atomic_sub(size, &sk->sk_omem_alloc);
1107}
1108
1109/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1110 I think, these locks should be removed for datagram sockets.
1111 */
1112static long sock_wait_for_wmem(struct sock * sk, long timeo)
1113{
1114 DEFINE_WAIT(wait);
1115
1116 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1117 for (;;) {
1118 if (!timeo)
1119 break;
1120 if (signal_pending(current))
1121 break;
1122 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1123 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1124 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1125 break;
1126 if (sk->sk_shutdown & SEND_SHUTDOWN)
1127 break;
1128 if (sk->sk_err)
1129 break;
1130 timeo = schedule_timeout(timeo);
1131 }
1132 finish_wait(sk->sk_sleep, &wait);
1133 return timeo;
1134}
1135
1136
1137/*
1138 * Generic send/receive buffer handlers
1139 */
1140
1141static struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1142 unsigned long header_len,
1143 unsigned long data_len,
1144 int noblock, int *errcode)
1145{
1146 struct sk_buff *skb;
7d877f3b 1147 gfp_t gfp_mask;
1da177e4
LT
1148 long timeo;
1149 int err;
1150
1151 gfp_mask = sk->sk_allocation;
1152 if (gfp_mask & __GFP_WAIT)
1153 gfp_mask |= __GFP_REPEAT;
1154
1155 timeo = sock_sndtimeo(sk, noblock);
1156 while (1) {
1157 err = sock_error(sk);
1158 if (err != 0)
1159 goto failure;
1160
1161 err = -EPIPE;
1162 if (sk->sk_shutdown & SEND_SHUTDOWN)
1163 goto failure;
1164
1165 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
db38c179 1166 skb = alloc_skb(header_len, gfp_mask);
1da177e4
LT
1167 if (skb) {
1168 int npages;
1169 int i;
1170
1171 /* No pages, we're done... */
1172 if (!data_len)
1173 break;
1174
1175 npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1176 skb->truesize += data_len;
1177 skb_shinfo(skb)->nr_frags = npages;
1178 for (i = 0; i < npages; i++) {
1179 struct page *page;
1180 skb_frag_t *frag;
1181
1182 page = alloc_pages(sk->sk_allocation, 0);
1183 if (!page) {
1184 err = -ENOBUFS;
1185 skb_shinfo(skb)->nr_frags = i;
1186 kfree_skb(skb);
1187 goto failure;
1188 }
1189
1190 frag = &skb_shinfo(skb)->frags[i];
1191 frag->page = page;
1192 frag->page_offset = 0;
1193 frag->size = (data_len >= PAGE_SIZE ?
1194 PAGE_SIZE :
1195 data_len);
1196 data_len -= PAGE_SIZE;
1197 }
1198
1199 /* Full success... */
1200 break;
1201 }
1202 err = -ENOBUFS;
1203 goto failure;
1204 }
1205 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1206 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1207 err = -EAGAIN;
1208 if (!timeo)
1209 goto failure;
1210 if (signal_pending(current))
1211 goto interrupted;
1212 timeo = sock_wait_for_wmem(sk, timeo);
1213 }
1214
1215 skb_set_owner_w(skb, sk);
1216 return skb;
1217
1218interrupted:
1219 err = sock_intr_errno(timeo);
1220failure:
1221 *errcode = err;
1222 return NULL;
1223}
1224
1225struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1226 int noblock, int *errcode)
1227{
1228 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1229}
1230
1231static void __lock_sock(struct sock *sk)
1232{
1233 DEFINE_WAIT(wait);
1234
1235 for(;;) {
1236 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1237 TASK_UNINTERRUPTIBLE);
1238 spin_unlock_bh(&sk->sk_lock.slock);
1239 schedule();
1240 spin_lock_bh(&sk->sk_lock.slock);
1241 if(!sock_owned_by_user(sk))
1242 break;
1243 }
1244 finish_wait(&sk->sk_lock.wq, &wait);
1245}
1246
1247static void __release_sock(struct sock *sk)
1248{
1249 struct sk_buff *skb = sk->sk_backlog.head;
1250
1251 do {
1252 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1253 bh_unlock_sock(sk);
1254
1255 do {
1256 struct sk_buff *next = skb->next;
1257
1258 skb->next = NULL;
1259 sk->sk_backlog_rcv(sk, skb);
1260
1261 /*
1262 * We are in process context here with softirqs
1263 * disabled, use cond_resched_softirq() to preempt.
1264 * This is safe to do because we've taken the backlog
1265 * queue private:
1266 */
1267 cond_resched_softirq();
1268
1269 skb = next;
1270 } while (skb != NULL);
1271
1272 bh_lock_sock(sk);
1273 } while((skb = sk->sk_backlog.head) != NULL);
1274}
1275
1276/**
1277 * sk_wait_data - wait for data to arrive at sk_receive_queue
4dc3b16b
PP
1278 * @sk: sock to wait on
1279 * @timeo: for how long
1da177e4
LT
1280 *
1281 * Now socket state including sk->sk_err is changed only under lock,
1282 * hence we may omit checks after joining wait queue.
1283 * We check receive queue before schedule() only as optimization;
1284 * it is very likely that release_sock() added new data.
1285 */
1286int sk_wait_data(struct sock *sk, long *timeo)
1287{
1288 int rc;
1289 DEFINE_WAIT(wait);
1290
1291 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE);
1292 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1293 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1294 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1295 finish_wait(sk->sk_sleep, &wait);
1296 return rc;
1297}
1298
1299EXPORT_SYMBOL(sk_wait_data);
1300
1301/*
1302 * Set of default routines for initialising struct proto_ops when
1303 * the protocol does not support a particular function. In certain
1304 * cases where it makes no sense for a protocol to have a "do nothing"
1305 * function, some default processing is provided.
1306 */
1307
1308int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1309{
1310 return -EOPNOTSUPP;
1311}
1312
1313int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1314 int len, int flags)
1315{
1316 return -EOPNOTSUPP;
1317}
1318
1319int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1320{
1321 return -EOPNOTSUPP;
1322}
1323
1324int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1325{
1326 return -EOPNOTSUPP;
1327}
1328
1329int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1330 int *len, int peer)
1331{
1332 return -EOPNOTSUPP;
1333}
1334
1335unsigned int sock_no_poll(struct file * file, struct socket *sock, poll_table *pt)
1336{
1337 return 0;
1338}
1339
1340int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1341{
1342 return -EOPNOTSUPP;
1343}
1344
1345int sock_no_listen(struct socket *sock, int backlog)
1346{
1347 return -EOPNOTSUPP;
1348}
1349
1350int sock_no_shutdown(struct socket *sock, int how)
1351{
1352 return -EOPNOTSUPP;
1353}
1354
1355int sock_no_setsockopt(struct socket *sock, int level, int optname,
1356 char __user *optval, int optlen)
1357{
1358 return -EOPNOTSUPP;
1359}
1360
1361int sock_no_getsockopt(struct socket *sock, int level, int optname,
1362 char __user *optval, int __user *optlen)
1363{
1364 return -EOPNOTSUPP;
1365}
1366
1367int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1368 size_t len)
1369{
1370 return -EOPNOTSUPP;
1371}
1372
1373int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1374 size_t len, int flags)
1375{
1376 return -EOPNOTSUPP;
1377}
1378
1379int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1380{
1381 /* Mirror missing mmap method error code */
1382 return -ENODEV;
1383}
1384
1385ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1386{
1387 ssize_t res;
1388 struct msghdr msg = {.msg_flags = flags};
1389 struct kvec iov;
1390 char *kaddr = kmap(page);
1391 iov.iov_base = kaddr + offset;
1392 iov.iov_len = size;
1393 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1394 kunmap(page);
1395 return res;
1396}
1397
1398/*
1399 * Default Socket Callbacks
1400 */
1401
1402static void sock_def_wakeup(struct sock *sk)
1403{
1404 read_lock(&sk->sk_callback_lock);
1405 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1406 wake_up_interruptible_all(sk->sk_sleep);
1407 read_unlock(&sk->sk_callback_lock);
1408}
1409
1410static void sock_def_error_report(struct sock *sk)
1411{
1412 read_lock(&sk->sk_callback_lock);
1413 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1414 wake_up_interruptible(sk->sk_sleep);
1415 sk_wake_async(sk,0,POLL_ERR);
1416 read_unlock(&sk->sk_callback_lock);
1417}
1418
1419static void sock_def_readable(struct sock *sk, int len)
1420{
1421 read_lock(&sk->sk_callback_lock);
1422 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1423 wake_up_interruptible(sk->sk_sleep);
1424 sk_wake_async(sk,1,POLL_IN);
1425 read_unlock(&sk->sk_callback_lock);
1426}
1427
1428static void sock_def_write_space(struct sock *sk)
1429{
1430 read_lock(&sk->sk_callback_lock);
1431
1432 /* Do not wake up a writer until he can make "significant"
1433 * progress. --DaveM
1434 */
1435 if((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
1436 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1437 wake_up_interruptible(sk->sk_sleep);
1438
1439 /* Should agree with poll, otherwise some programs break */
1440 if (sock_writeable(sk))
1441 sk_wake_async(sk, 2, POLL_OUT);
1442 }
1443
1444 read_unlock(&sk->sk_callback_lock);
1445}
1446
1447static void sock_def_destruct(struct sock *sk)
1448{
a51482bd 1449 kfree(sk->sk_protinfo);
1da177e4
LT
1450}
1451
1452void sk_send_sigurg(struct sock *sk)
1453{
1454 if (sk->sk_socket && sk->sk_socket->file)
1455 if (send_sigurg(&sk->sk_socket->file->f_owner))
1456 sk_wake_async(sk, 3, POLL_PRI);
1457}
1458
1459void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1460 unsigned long expires)
1461{
1462 if (!mod_timer(timer, expires))
1463 sock_hold(sk);
1464}
1465
1466EXPORT_SYMBOL(sk_reset_timer);
1467
1468void sk_stop_timer(struct sock *sk, struct timer_list* timer)
1469{
1470 if (timer_pending(timer) && del_timer(timer))
1471 __sock_put(sk);
1472}
1473
1474EXPORT_SYMBOL(sk_stop_timer);
1475
1476void sock_init_data(struct socket *sock, struct sock *sk)
1477{
1478 skb_queue_head_init(&sk->sk_receive_queue);
1479 skb_queue_head_init(&sk->sk_write_queue);
1480 skb_queue_head_init(&sk->sk_error_queue);
97fc2f08
CL
1481#ifdef CONFIG_NET_DMA
1482 skb_queue_head_init(&sk->sk_async_wait_queue);
1483#endif
1da177e4
LT
1484
1485 sk->sk_send_head = NULL;
1486
1487 init_timer(&sk->sk_timer);
1488
1489 sk->sk_allocation = GFP_KERNEL;
1490 sk->sk_rcvbuf = sysctl_rmem_default;
1491 sk->sk_sndbuf = sysctl_wmem_default;
1492 sk->sk_state = TCP_CLOSE;
1493 sk->sk_socket = sock;
1494
1495 sock_set_flag(sk, SOCK_ZAPPED);
1496
1497 if(sock)
1498 {
1499 sk->sk_type = sock->type;
1500 sk->sk_sleep = &sock->wait;
1501 sock->sk = sk;
1502 } else
1503 sk->sk_sleep = NULL;
1504
1505 rwlock_init(&sk->sk_dst_lock);
1506 rwlock_init(&sk->sk_callback_lock);
da21f24d
IM
1507 lockdep_set_class(&sk->sk_callback_lock,
1508 af_callback_keys + sk->sk_family);
1da177e4
LT
1509
1510 sk->sk_state_change = sock_def_wakeup;
1511 sk->sk_data_ready = sock_def_readable;
1512 sk->sk_write_space = sock_def_write_space;
1513 sk->sk_error_report = sock_def_error_report;
1514 sk->sk_destruct = sock_def_destruct;
1515
1516 sk->sk_sndmsg_page = NULL;
1517 sk->sk_sndmsg_off = 0;
1518
1519 sk->sk_peercred.pid = 0;
1520 sk->sk_peercred.uid = -1;
1521 sk->sk_peercred.gid = -1;
1522 sk->sk_write_pending = 0;
1523 sk->sk_rcvlowat = 1;
1524 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
1525 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1526
1527 sk->sk_stamp.tv_sec = -1L;
1528 sk->sk_stamp.tv_usec = -1L;
1529
1530 atomic_set(&sk->sk_refcnt, 1);
1531}
1532
fcc70d5f 1533void fastcall lock_sock_nested(struct sock *sk, int subclass)
1da177e4
LT
1534{
1535 might_sleep();
a5b5bb9a 1536 spin_lock_bh(&sk->sk_lock.slock);
1da177e4
LT
1537 if (sk->sk_lock.owner)
1538 __lock_sock(sk);
1539 sk->sk_lock.owner = (void *)1;
a5b5bb9a
IM
1540 spin_unlock(&sk->sk_lock.slock);
1541 /*
1542 * The sk_lock has mutex_lock() semantics here:
1543 */
fcc70d5f 1544 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
a5b5bb9a 1545 local_bh_enable();
1da177e4
LT
1546}
1547
fcc70d5f 1548EXPORT_SYMBOL(lock_sock_nested);
1da177e4
LT
1549
1550void fastcall release_sock(struct sock *sk)
1551{
a5b5bb9a
IM
1552 /*
1553 * The sk_lock has mutex_unlock() semantics:
1554 */
1555 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
1556
1557 spin_lock_bh(&sk->sk_lock.slock);
1da177e4
LT
1558 if (sk->sk_backlog.tail)
1559 __release_sock(sk);
1560 sk->sk_lock.owner = NULL;
a5b5bb9a
IM
1561 if (waitqueue_active(&sk->sk_lock.wq))
1562 wake_up(&sk->sk_lock.wq);
1563 spin_unlock_bh(&sk->sk_lock.slock);
1da177e4
LT
1564}
1565EXPORT_SYMBOL(release_sock);
1566
1567int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
1568{
1569 if (!sock_flag(sk, SOCK_TIMESTAMP))
1570 sock_enable_timestamp(sk);
1571 if (sk->sk_stamp.tv_sec == -1)
1572 return -ENOENT;
1573 if (sk->sk_stamp.tv_sec == 0)
1574 do_gettimeofday(&sk->sk_stamp);
1575 return copy_to_user(userstamp, &sk->sk_stamp, sizeof(struct timeval)) ?
1576 -EFAULT : 0;
1577}
1578EXPORT_SYMBOL(sock_get_timestamp);
1579
1580void sock_enable_timestamp(struct sock *sk)
1581{
1582 if (!sock_flag(sk, SOCK_TIMESTAMP)) {
1583 sock_set_flag(sk, SOCK_TIMESTAMP);
1584 net_enable_timestamp();
1585 }
1586}
1587EXPORT_SYMBOL(sock_enable_timestamp);
1588
1589/*
1590 * Get a socket option on an socket.
1591 *
1592 * FIX: POSIX 1003.1g is very ambiguous here. It states that
1593 * asynchronous errors should be reported by getsockopt. We assume
1594 * this means if you specify SO_ERROR (otherwise whats the point of it).
1595 */
1596int sock_common_getsockopt(struct socket *sock, int level, int optname,
1597 char __user *optval, int __user *optlen)
1598{
1599 struct sock *sk = sock->sk;
1600
1601 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1602}
1603
1604EXPORT_SYMBOL(sock_common_getsockopt);
1605
3fdadf7d 1606#ifdef CONFIG_COMPAT
543d9cfe
ACM
1607int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
1608 char __user *optval, int __user *optlen)
3fdadf7d
DM
1609{
1610 struct sock *sk = sock->sk;
1611
543d9cfe
ACM
1612 if (sk->sk_prot->compat_setsockopt != NULL)
1613 return sk->sk_prot->compat_getsockopt(sk, level, optname,
1614 optval, optlen);
3fdadf7d
DM
1615 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
1616}
1617EXPORT_SYMBOL(compat_sock_common_getsockopt);
1618#endif
1619
1da177e4
LT
1620int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1621 struct msghdr *msg, size_t size, int flags)
1622{
1623 struct sock *sk = sock->sk;
1624 int addr_len = 0;
1625 int err;
1626
1627 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
1628 flags & ~MSG_DONTWAIT, &addr_len);
1629 if (err >= 0)
1630 msg->msg_namelen = addr_len;
1631 return err;
1632}
1633
1634EXPORT_SYMBOL(sock_common_recvmsg);
1635
1636/*
1637 * Set socket options on an inet socket.
1638 */
1639int sock_common_setsockopt(struct socket *sock, int level, int optname,
1640 char __user *optval, int optlen)
1641{
1642 struct sock *sk = sock->sk;
1643
1644 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1645}
1646
1647EXPORT_SYMBOL(sock_common_setsockopt);
1648
3fdadf7d 1649#ifdef CONFIG_COMPAT
543d9cfe
ACM
1650int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
1651 char __user *optval, int optlen)
3fdadf7d
DM
1652{
1653 struct sock *sk = sock->sk;
1654
543d9cfe
ACM
1655 if (sk->sk_prot->compat_setsockopt != NULL)
1656 return sk->sk_prot->compat_setsockopt(sk, level, optname,
1657 optval, optlen);
3fdadf7d
DM
1658 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
1659}
1660EXPORT_SYMBOL(compat_sock_common_setsockopt);
1661#endif
1662
1da177e4
LT
1663void sk_common_release(struct sock *sk)
1664{
1665 if (sk->sk_prot->destroy)
1666 sk->sk_prot->destroy(sk);
1667
1668 /*
1669 * Observation: when sock_common_release is called, processes have
1670 * no access to socket. But net still has.
1671 * Step one, detach it from networking:
1672 *
1673 * A. Remove from hash tables.
1674 */
1675
1676 sk->sk_prot->unhash(sk);
1677
1678 /*
1679 * In this point socket cannot receive new packets, but it is possible
1680 * that some packets are in flight because some CPU runs receiver and
1681 * did hash table lookup before we unhashed socket. They will achieve
1682 * receive queue and will be purged by socket destructor.
1683 *
1684 * Also we still have packets pending on receive queue and probably,
1685 * our own packets waiting in device queues. sock_destroy will drain
1686 * receive queue, but transmitted packets will delay socket destruction
1687 * until the last reference will be released.
1688 */
1689
1690 sock_orphan(sk);
1691
1692 xfrm_sk_free_policy(sk);
1693
e6848976 1694 sk_refcnt_debug_release(sk);
1da177e4
LT
1695 sock_put(sk);
1696}
1697
1698EXPORT_SYMBOL(sk_common_release);
1699
1700static DEFINE_RWLOCK(proto_list_lock);
1701static LIST_HEAD(proto_list);
1702
1703int proto_register(struct proto *prot, int alloc_slab)
1704{
8feaf0c0
ACM
1705 char *request_sock_slab_name = NULL;
1706 char *timewait_sock_slab_name;
1da177e4
LT
1707 int rc = -ENOBUFS;
1708
1da177e4
LT
1709 if (alloc_slab) {
1710 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
1711 SLAB_HWCACHE_ALIGN, NULL, NULL);
1712
1713 if (prot->slab == NULL) {
1714 printk(KERN_CRIT "%s: Can't create sock SLAB cache!\n",
1715 prot->name);
2a278051 1716 goto out;
1da177e4 1717 }
2e6599cb
ACM
1718
1719 if (prot->rsk_prot != NULL) {
1720 static const char mask[] = "request_sock_%s";
1721
1722 request_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1723 if (request_sock_slab_name == NULL)
1724 goto out_free_sock_slab;
1725
1726 sprintf(request_sock_slab_name, mask, prot->name);
1727 prot->rsk_prot->slab = kmem_cache_create(request_sock_slab_name,
1728 prot->rsk_prot->obj_size, 0,
1729 SLAB_HWCACHE_ALIGN, NULL, NULL);
1730
1731 if (prot->rsk_prot->slab == NULL) {
1732 printk(KERN_CRIT "%s: Can't create request sock SLAB cache!\n",
1733 prot->name);
1734 goto out_free_request_sock_slab_name;
1735 }
1736 }
8feaf0c0 1737
6d6ee43e 1738 if (prot->twsk_prot != NULL) {
8feaf0c0
ACM
1739 static const char mask[] = "tw_sock_%s";
1740
1741 timewait_sock_slab_name = kmalloc(strlen(prot->name) + sizeof(mask) - 1, GFP_KERNEL);
1742
1743 if (timewait_sock_slab_name == NULL)
1744 goto out_free_request_sock_slab;
1745
1746 sprintf(timewait_sock_slab_name, mask, prot->name);
6d6ee43e
ACM
1747 prot->twsk_prot->twsk_slab =
1748 kmem_cache_create(timewait_sock_slab_name,
1749 prot->twsk_prot->twsk_obj_size,
1750 0, SLAB_HWCACHE_ALIGN,
1751 NULL, NULL);
1752 if (prot->twsk_prot->twsk_slab == NULL)
8feaf0c0
ACM
1753 goto out_free_timewait_sock_slab_name;
1754 }
1da177e4
LT
1755 }
1756
2a278051 1757 write_lock(&proto_list_lock);
1da177e4 1758 list_add(&prot->node, &proto_list);
1da177e4 1759 write_unlock(&proto_list_lock);
2a278051
ACM
1760 rc = 0;
1761out:
1da177e4 1762 return rc;
8feaf0c0
ACM
1763out_free_timewait_sock_slab_name:
1764 kfree(timewait_sock_slab_name);
1765out_free_request_sock_slab:
1766 if (prot->rsk_prot && prot->rsk_prot->slab) {
1767 kmem_cache_destroy(prot->rsk_prot->slab);
1768 prot->rsk_prot->slab = NULL;
1769 }
2e6599cb
ACM
1770out_free_request_sock_slab_name:
1771 kfree(request_sock_slab_name);
1772out_free_sock_slab:
1773 kmem_cache_destroy(prot->slab);
1774 prot->slab = NULL;
1775 goto out;
1da177e4
LT
1776}
1777
1778EXPORT_SYMBOL(proto_register);
1779
1780void proto_unregister(struct proto *prot)
1781{
1782 write_lock(&proto_list_lock);
0a3f4358
PM
1783 list_del(&prot->node);
1784 write_unlock(&proto_list_lock);
1da177e4
LT
1785
1786 if (prot->slab != NULL) {
1787 kmem_cache_destroy(prot->slab);
1788 prot->slab = NULL;
1789 }
1790
2e6599cb
ACM
1791 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
1792 const char *name = kmem_cache_name(prot->rsk_prot->slab);
1793
1794 kmem_cache_destroy(prot->rsk_prot->slab);
1795 kfree(name);
1796 prot->rsk_prot->slab = NULL;
1797 }
1798
6d6ee43e
ACM
1799 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
1800 const char *name = kmem_cache_name(prot->twsk_prot->twsk_slab);
8feaf0c0 1801
6d6ee43e 1802 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
8feaf0c0 1803 kfree(name);
6d6ee43e 1804 prot->twsk_prot->twsk_slab = NULL;
8feaf0c0 1805 }
1da177e4
LT
1806}
1807
1808EXPORT_SYMBOL(proto_unregister);
1809
1810#ifdef CONFIG_PROC_FS
1811static inline struct proto *__proto_head(void)
1812{
1813 return list_entry(proto_list.next, struct proto, node);
1814}
1815
1816static inline struct proto *proto_head(void)
1817{
1818 return list_empty(&proto_list) ? NULL : __proto_head();
1819}
1820
1821static inline struct proto *proto_next(struct proto *proto)
1822{
1823 return proto->node.next == &proto_list ? NULL :
1824 list_entry(proto->node.next, struct proto, node);
1825}
1826
1827static inline struct proto *proto_get_idx(loff_t pos)
1828{
1829 struct proto *proto;
1830 loff_t i = 0;
1831
1832 list_for_each_entry(proto, &proto_list, node)
1833 if (i++ == pos)
1834 goto out;
1835
1836 proto = NULL;
1837out:
1838 return proto;
1839}
1840
1841static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
1842{
1843 read_lock(&proto_list_lock);
1844 return *pos ? proto_get_idx(*pos - 1) : SEQ_START_TOKEN;
1845}
1846
1847static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1848{
1849 ++*pos;
1850 return v == SEQ_START_TOKEN ? proto_head() : proto_next(v);
1851}
1852
1853static void proto_seq_stop(struct seq_file *seq, void *v)
1854{
1855 read_unlock(&proto_list_lock);
1856}
1857
1858static char proto_method_implemented(const void *method)
1859{
1860 return method == NULL ? 'n' : 'y';
1861}
1862
1863static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
1864{
1865 seq_printf(seq, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
1866 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
1867 proto->name,
1868 proto->obj_size,
1869 proto->sockets_allocated != NULL ? atomic_read(proto->sockets_allocated) : -1,
1870 proto->memory_allocated != NULL ? atomic_read(proto->memory_allocated) : -1,
1871 proto->memory_pressure != NULL ? *proto->memory_pressure ? "yes" : "no" : "NI",
1872 proto->max_header,
1873 proto->slab == NULL ? "no" : "yes",
1874 module_name(proto->owner),
1875 proto_method_implemented(proto->close),
1876 proto_method_implemented(proto->connect),
1877 proto_method_implemented(proto->disconnect),
1878 proto_method_implemented(proto->accept),
1879 proto_method_implemented(proto->ioctl),
1880 proto_method_implemented(proto->init),
1881 proto_method_implemented(proto->destroy),
1882 proto_method_implemented(proto->shutdown),
1883 proto_method_implemented(proto->setsockopt),
1884 proto_method_implemented(proto->getsockopt),
1885 proto_method_implemented(proto->sendmsg),
1886 proto_method_implemented(proto->recvmsg),
1887 proto_method_implemented(proto->sendpage),
1888 proto_method_implemented(proto->bind),
1889 proto_method_implemented(proto->backlog_rcv),
1890 proto_method_implemented(proto->hash),
1891 proto_method_implemented(proto->unhash),
1892 proto_method_implemented(proto->get_port),
1893 proto_method_implemented(proto->enter_memory_pressure));
1894}
1895
1896static int proto_seq_show(struct seq_file *seq, void *v)
1897{
1898 if (v == SEQ_START_TOKEN)
1899 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
1900 "protocol",
1901 "size",
1902 "sockets",
1903 "memory",
1904 "press",
1905 "maxhdr",
1906 "slab",
1907 "module",
1908 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
1909 else
1910 proto_seq_printf(seq, v);
1911 return 0;
1912}
1913
1914static struct seq_operations proto_seq_ops = {
1915 .start = proto_seq_start,
1916 .next = proto_seq_next,
1917 .stop = proto_seq_stop,
1918 .show = proto_seq_show,
1919};
1920
1921static int proto_seq_open(struct inode *inode, struct file *file)
1922{
1923 return seq_open(file, &proto_seq_ops);
1924}
1925
1926static struct file_operations proto_seq_fops = {
1927 .owner = THIS_MODULE,
1928 .open = proto_seq_open,
1929 .read = seq_read,
1930 .llseek = seq_lseek,
1931 .release = seq_release,
1932};
1933
1934static int __init proto_init(void)
1935{
1936 /* register /proc/net/protocols */
1937 return proc_net_fops_create("protocols", S_IRUGO, &proto_seq_fops) == NULL ? -ENOBUFS : 0;
1938}
1939
1940subsys_initcall(proto_init);
1941
1942#endif /* PROC_FS */
1943
1944EXPORT_SYMBOL(sk_alloc);
1945EXPORT_SYMBOL(sk_free);
1946EXPORT_SYMBOL(sk_send_sigurg);
1947EXPORT_SYMBOL(sock_alloc_send_skb);
1948EXPORT_SYMBOL(sock_init_data);
1949EXPORT_SYMBOL(sock_kfree_s);
1950EXPORT_SYMBOL(sock_kmalloc);
1951EXPORT_SYMBOL(sock_no_accept);
1952EXPORT_SYMBOL(sock_no_bind);
1953EXPORT_SYMBOL(sock_no_connect);
1954EXPORT_SYMBOL(sock_no_getname);
1955EXPORT_SYMBOL(sock_no_getsockopt);
1956EXPORT_SYMBOL(sock_no_ioctl);
1957EXPORT_SYMBOL(sock_no_listen);
1958EXPORT_SYMBOL(sock_no_mmap);
1959EXPORT_SYMBOL(sock_no_poll);
1960EXPORT_SYMBOL(sock_no_recvmsg);
1961EXPORT_SYMBOL(sock_no_sendmsg);
1962EXPORT_SYMBOL(sock_no_sendpage);
1963EXPORT_SYMBOL(sock_no_setsockopt);
1964EXPORT_SYMBOL(sock_no_shutdown);
1965EXPORT_SYMBOL(sock_no_socketpair);
1966EXPORT_SYMBOL(sock_rfree);
1967EXPORT_SYMBOL(sock_setsockopt);
1968EXPORT_SYMBOL(sock_wfree);
1969EXPORT_SYMBOL(sock_wmalloc);
1970EXPORT_SYMBOL(sock_i_uid);
1971EXPORT_SYMBOL(sock_i_ino);
1da177e4 1972EXPORT_SYMBOL(sysctl_optmem_max);
6baf1f41 1973#ifdef CONFIG_SYSCTL
1da177e4
LT
1974EXPORT_SYMBOL(sysctl_rmem_max);
1975EXPORT_SYMBOL(sysctl_wmem_max);
1976#endif