zpool: change pr_info to pr_debug
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
7b60a685
MK
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
2db51dae
NG
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
35 * metadata.
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
c60369f0 61#include <linux/hardirq.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169 NR_ZS_STAT_TYPE,
170};
171
172#ifdef CONFIG_ZSMALLOC_STAT
173
174static struct dentry *zs_stat_root;
175
176struct zs_size_stat {
177 unsigned long objs[NR_ZS_STAT_TYPE];
178};
179
180#endif
181
40f9fb8c
MG
182/*
183 * number of size_classes
184 */
185static int zs_size_classes;
186
0959c63f
SJ
187/*
188 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
189 * n <= N / f, where
190 * n = number of allocated objects
191 * N = total number of objects zspage can store
6dd9737e 192 * f = fullness_threshold_frac
0959c63f
SJ
193 *
194 * Similarly, we assign zspage to:
195 * ZS_ALMOST_FULL when n > N / f
196 * ZS_EMPTY when n == 0
197 * ZS_FULL when n == N
198 *
199 * (see: fix_fullness_group())
200 */
201static const int fullness_threshold_frac = 4;
202
203struct size_class {
204 /*
205 * Size of objects stored in this class. Must be multiple
206 * of ZS_ALIGN.
207 */
208 int size;
209 unsigned int index;
210
211 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
212 int pages_per_zspage;
7b60a685
MK
213 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
214 bool huge;
0959c63f 215
0f050d99
GM
216#ifdef CONFIG_ZSMALLOC_STAT
217 struct zs_size_stat stats;
218#endif
219
0959c63f
SJ
220 spinlock_t lock;
221
0959c63f
SJ
222 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
223};
224
225/*
226 * Placed within free objects to form a singly linked list.
227 * For every zspage, first_page->freelist gives head of this list.
228 *
229 * This must be power of 2 and less than or equal to ZS_ALIGN
230 */
231struct link_free {
2e40e163
MK
232 union {
233 /*
234 * Position of next free chunk (encodes <PFN, obj_idx>)
235 * It's valid for non-allocated object
236 */
237 void *next;
238 /*
239 * Handle of allocated object.
240 */
241 unsigned long handle;
242 };
0959c63f
SJ
243};
244
245struct zs_pool {
0f050d99
GM
246 char *name;
247
40f9fb8c 248 struct size_class **size_class;
2e40e163 249 struct kmem_cache *handle_cachep;
0959c63f
SJ
250
251 gfp_t flags; /* allocation flags used when growing pool */
13de8933 252 atomic_long_t pages_allocated;
0f050d99
GM
253
254#ifdef CONFIG_ZSMALLOC_STAT
255 struct dentry *stat_dentry;
256#endif
0959c63f 257};
61989a80
NG
258
259/*
260 * A zspage's class index and fullness group
261 * are encoded in its (first)page->mapping
262 */
263#define CLASS_IDX_BITS 28
264#define FULLNESS_BITS 4
265#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
266#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
267
f553646a 268struct mapping_area {
1b945aee 269#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
270 struct vm_struct *vm; /* vm area for mapping object that span pages */
271#else
272 char *vm_buf; /* copy buffer for objects that span pages */
273#endif
274 char *vm_addr; /* address of kmap_atomic()'ed pages */
275 enum zs_mapmode vm_mm; /* mapping mode */
7b60a685 276 bool huge;
f553646a
SJ
277};
278
2e40e163
MK
279static int create_handle_cache(struct zs_pool *pool)
280{
281 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
282 0, 0, NULL);
283 return pool->handle_cachep ? 0 : 1;
284}
285
286static void destroy_handle_cache(struct zs_pool *pool)
287{
02f7b414
SS
288 if (pool->handle_cachep)
289 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
290}
291
292static unsigned long alloc_handle(struct zs_pool *pool)
293{
294 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
295 pool->flags & ~__GFP_HIGHMEM);
296}
297
298static void free_handle(struct zs_pool *pool, unsigned long handle)
299{
300 kmem_cache_free(pool->handle_cachep, (void *)handle);
301}
302
303static void record_obj(unsigned long handle, unsigned long obj)
304{
305 *(unsigned long *)handle = obj;
306}
307
c795779d
DS
308/* zpool driver */
309
310#ifdef CONFIG_ZPOOL
311
3eba0c6a 312static void *zs_zpool_create(char *name, gfp_t gfp, struct zpool_ops *zpool_ops)
c795779d 313{
3eba0c6a 314 return zs_create_pool(name, gfp);
c795779d
DS
315}
316
317static void zs_zpool_destroy(void *pool)
318{
319 zs_destroy_pool(pool);
320}
321
322static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
323 unsigned long *handle)
324{
325 *handle = zs_malloc(pool, size);
326 return *handle ? 0 : -1;
327}
328static void zs_zpool_free(void *pool, unsigned long handle)
329{
330 zs_free(pool, handle);
331}
332
333static int zs_zpool_shrink(void *pool, unsigned int pages,
334 unsigned int *reclaimed)
335{
336 return -EINVAL;
337}
338
339static void *zs_zpool_map(void *pool, unsigned long handle,
340 enum zpool_mapmode mm)
341{
342 enum zs_mapmode zs_mm;
343
344 switch (mm) {
345 case ZPOOL_MM_RO:
346 zs_mm = ZS_MM_RO;
347 break;
348 case ZPOOL_MM_WO:
349 zs_mm = ZS_MM_WO;
350 break;
351 case ZPOOL_MM_RW: /* fallthru */
352 default:
353 zs_mm = ZS_MM_RW;
354 break;
355 }
356
357 return zs_map_object(pool, handle, zs_mm);
358}
359static void zs_zpool_unmap(void *pool, unsigned long handle)
360{
361 zs_unmap_object(pool, handle);
362}
363
364static u64 zs_zpool_total_size(void *pool)
365{
722cdc17 366 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
367}
368
369static struct zpool_driver zs_zpool_driver = {
370 .type = "zsmalloc",
371 .owner = THIS_MODULE,
372 .create = zs_zpool_create,
373 .destroy = zs_zpool_destroy,
374 .malloc = zs_zpool_malloc,
375 .free = zs_zpool_free,
376 .shrink = zs_zpool_shrink,
377 .map = zs_zpool_map,
378 .unmap = zs_zpool_unmap,
379 .total_size = zs_zpool_total_size,
380};
381
137f8cff 382MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
383#endif /* CONFIG_ZPOOL */
384
248ca1b0
MK
385static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
386{
387 return pages_per_zspage * PAGE_SIZE / size;
388}
389
61989a80
NG
390/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
391static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
392
393static int is_first_page(struct page *page)
394{
a27545bf 395 return PagePrivate(page);
61989a80
NG
396}
397
398static int is_last_page(struct page *page)
399{
a27545bf 400 return PagePrivate2(page);
61989a80
NG
401}
402
403static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
404 enum fullness_group *fullness)
405{
406 unsigned long m;
407 BUG_ON(!is_first_page(page));
408
409 m = (unsigned long)page->mapping;
410 *fullness = m & FULLNESS_MASK;
411 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
412}
413
414static void set_zspage_mapping(struct page *page, unsigned int class_idx,
415 enum fullness_group fullness)
416{
417 unsigned long m;
418 BUG_ON(!is_first_page(page));
419
420 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
421 (fullness & FULLNESS_MASK);
422 page->mapping = (struct address_space *)m;
423}
424
c3e3e88a
NC
425/*
426 * zsmalloc divides the pool into various size classes where each
427 * class maintains a list of zspages where each zspage is divided
428 * into equal sized chunks. Each allocation falls into one of these
429 * classes depending on its size. This function returns index of the
430 * size class which has chunk size big enough to hold the give size.
431 */
61989a80
NG
432static int get_size_class_index(int size)
433{
434 int idx = 0;
435
436 if (likely(size > ZS_MIN_ALLOC_SIZE))
437 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
438 ZS_SIZE_CLASS_DELTA);
439
7b60a685 440 return min(zs_size_classes - 1, idx);
61989a80
NG
441}
442
248ca1b0
MK
443#ifdef CONFIG_ZSMALLOC_STAT
444
445static inline void zs_stat_inc(struct size_class *class,
446 enum zs_stat_type type, unsigned long cnt)
447{
448 class->stats.objs[type] += cnt;
449}
450
451static inline void zs_stat_dec(struct size_class *class,
452 enum zs_stat_type type, unsigned long cnt)
453{
454 class->stats.objs[type] -= cnt;
455}
456
457static inline unsigned long zs_stat_get(struct size_class *class,
458 enum zs_stat_type type)
459{
460 return class->stats.objs[type];
461}
462
463static int __init zs_stat_init(void)
464{
465 if (!debugfs_initialized())
466 return -ENODEV;
467
468 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
469 if (!zs_stat_root)
470 return -ENOMEM;
471
472 return 0;
473}
474
475static void __exit zs_stat_exit(void)
476{
477 debugfs_remove_recursive(zs_stat_root);
478}
479
480static int zs_stats_size_show(struct seq_file *s, void *v)
481{
482 int i;
483 struct zs_pool *pool = s->private;
484 struct size_class *class;
485 int objs_per_zspage;
486 unsigned long class_almost_full, class_almost_empty;
487 unsigned long obj_allocated, obj_used, pages_used;
488 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
489 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
490
491 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
492 "class", "size", "almost_full", "almost_empty",
493 "obj_allocated", "obj_used", "pages_used",
494 "pages_per_zspage");
495
496 for (i = 0; i < zs_size_classes; i++) {
497 class = pool->size_class[i];
498
499 if (class->index != i)
500 continue;
501
502 spin_lock(&class->lock);
503 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
504 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
505 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
506 obj_used = zs_stat_get(class, OBJ_USED);
507 spin_unlock(&class->lock);
508
509 objs_per_zspage = get_maxobj_per_zspage(class->size,
510 class->pages_per_zspage);
511 pages_used = obj_allocated / objs_per_zspage *
512 class->pages_per_zspage;
513
514 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
515 i, class->size, class_almost_full, class_almost_empty,
516 obj_allocated, obj_used, pages_used,
517 class->pages_per_zspage);
518
519 total_class_almost_full += class_almost_full;
520 total_class_almost_empty += class_almost_empty;
521 total_objs += obj_allocated;
522 total_used_objs += obj_used;
523 total_pages += pages_used;
524 }
525
526 seq_puts(s, "\n");
527 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
528 "Total", "", total_class_almost_full,
529 total_class_almost_empty, total_objs,
530 total_used_objs, total_pages);
531
532 return 0;
533}
534
535static int zs_stats_size_open(struct inode *inode, struct file *file)
536{
537 return single_open(file, zs_stats_size_show, inode->i_private);
538}
539
540static const struct file_operations zs_stat_size_ops = {
541 .open = zs_stats_size_open,
542 .read = seq_read,
543 .llseek = seq_lseek,
544 .release = single_release,
545};
546
547static int zs_pool_stat_create(char *name, struct zs_pool *pool)
548{
549 struct dentry *entry;
550
551 if (!zs_stat_root)
552 return -ENODEV;
553
554 entry = debugfs_create_dir(name, zs_stat_root);
555 if (!entry) {
556 pr_warn("debugfs dir <%s> creation failed\n", name);
557 return -ENOMEM;
558 }
559 pool->stat_dentry = entry;
560
561 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
562 pool->stat_dentry, pool, &zs_stat_size_ops);
563 if (!entry) {
564 pr_warn("%s: debugfs file entry <%s> creation failed\n",
565 name, "classes");
566 return -ENOMEM;
567 }
568
569 return 0;
570}
571
572static void zs_pool_stat_destroy(struct zs_pool *pool)
573{
574 debugfs_remove_recursive(pool->stat_dentry);
575}
576
577#else /* CONFIG_ZSMALLOC_STAT */
578
579static inline void zs_stat_inc(struct size_class *class,
580 enum zs_stat_type type, unsigned long cnt)
581{
582}
583
584static inline void zs_stat_dec(struct size_class *class,
585 enum zs_stat_type type, unsigned long cnt)
586{
587}
588
589static inline unsigned long zs_stat_get(struct size_class *class,
590 enum zs_stat_type type)
591{
592 return 0;
593}
594
595static int __init zs_stat_init(void)
596{
597 return 0;
598}
599
600static void __exit zs_stat_exit(void)
601{
602}
603
604static inline int zs_pool_stat_create(char *name, struct zs_pool *pool)
605{
606 return 0;
607}
608
609static inline void zs_pool_stat_destroy(struct zs_pool *pool)
610{
611}
612
613#endif
614
615
c3e3e88a
NC
616/*
617 * For each size class, zspages are divided into different groups
618 * depending on how "full" they are. This was done so that we could
619 * easily find empty or nearly empty zspages when we try to shrink
620 * the pool (not yet implemented). This function returns fullness
621 * status of the given page.
622 */
61989a80
NG
623static enum fullness_group get_fullness_group(struct page *page)
624{
625 int inuse, max_objects;
626 enum fullness_group fg;
627 BUG_ON(!is_first_page(page));
628
629 inuse = page->inuse;
630 max_objects = page->objects;
631
632 if (inuse == 0)
633 fg = ZS_EMPTY;
634 else if (inuse == max_objects)
635 fg = ZS_FULL;
d3d07c92 636 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
637 fg = ZS_ALMOST_EMPTY;
638 else
639 fg = ZS_ALMOST_FULL;
640
641 return fg;
642}
643
c3e3e88a
NC
644/*
645 * Each size class maintains various freelists and zspages are assigned
646 * to one of these freelists based on the number of live objects they
647 * have. This functions inserts the given zspage into the freelist
648 * identified by <class, fullness_group>.
649 */
61989a80
NG
650static void insert_zspage(struct page *page, struct size_class *class,
651 enum fullness_group fullness)
652{
653 struct page **head;
654
655 BUG_ON(!is_first_page(page));
656
657 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
658 return;
659
660 head = &class->fullness_list[fullness];
661 if (*head)
662 list_add_tail(&page->lru, &(*head)->lru);
663
664 *head = page;
248ca1b0
MK
665 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
666 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
667}
668
c3e3e88a
NC
669/*
670 * This function removes the given zspage from the freelist identified
671 * by <class, fullness_group>.
672 */
61989a80
NG
673static void remove_zspage(struct page *page, struct size_class *class,
674 enum fullness_group fullness)
675{
676 struct page **head;
677
678 BUG_ON(!is_first_page(page));
679
680 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
681 return;
682
683 head = &class->fullness_list[fullness];
684 BUG_ON(!*head);
685 if (list_empty(&(*head)->lru))
686 *head = NULL;
687 else if (*head == page)
688 *head = (struct page *)list_entry((*head)->lru.next,
689 struct page, lru);
690
691 list_del_init(&page->lru);
248ca1b0
MK
692 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
693 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
694}
695
c3e3e88a
NC
696/*
697 * Each size class maintains zspages in different fullness groups depending
698 * on the number of live objects they contain. When allocating or freeing
699 * objects, the fullness status of the page can change, say, from ALMOST_FULL
700 * to ALMOST_EMPTY when freeing an object. This function checks if such
701 * a status change has occurred for the given page and accordingly moves the
702 * page from the freelist of the old fullness group to that of the new
703 * fullness group.
704 */
c7806261 705static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
706 struct page *page)
707{
708 int class_idx;
61989a80
NG
709 enum fullness_group currfg, newfg;
710
711 BUG_ON(!is_first_page(page));
712
713 get_zspage_mapping(page, &class_idx, &currfg);
714 newfg = get_fullness_group(page);
715 if (newfg == currfg)
716 goto out;
717
61989a80
NG
718 remove_zspage(page, class, currfg);
719 insert_zspage(page, class, newfg);
720 set_zspage_mapping(page, class_idx, newfg);
721
722out:
723 return newfg;
724}
725
726/*
727 * We have to decide on how many pages to link together
728 * to form a zspage for each size class. This is important
729 * to reduce wastage due to unusable space left at end of
730 * each zspage which is given as:
888fa374
YX
731 * wastage = Zp % class_size
732 * usage = Zp - wastage
61989a80
NG
733 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
734 *
735 * For example, for size class of 3/8 * PAGE_SIZE, we should
736 * link together 3 PAGE_SIZE sized pages to form a zspage
737 * since then we can perfectly fit in 8 such objects.
738 */
2e3b6154 739static int get_pages_per_zspage(int class_size)
61989a80
NG
740{
741 int i, max_usedpc = 0;
742 /* zspage order which gives maximum used size per KB */
743 int max_usedpc_order = 1;
744
84d4faab 745 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
746 int zspage_size;
747 int waste, usedpc;
748
749 zspage_size = i * PAGE_SIZE;
750 waste = zspage_size % class_size;
751 usedpc = (zspage_size - waste) * 100 / zspage_size;
752
753 if (usedpc > max_usedpc) {
754 max_usedpc = usedpc;
755 max_usedpc_order = i;
756 }
757 }
758
759 return max_usedpc_order;
760}
761
762/*
763 * A single 'zspage' is composed of many system pages which are
764 * linked together using fields in struct page. This function finds
765 * the first/head page, given any component page of a zspage.
766 */
767static struct page *get_first_page(struct page *page)
768{
769 if (is_first_page(page))
770 return page;
771 else
772 return page->first_page;
773}
774
775static struct page *get_next_page(struct page *page)
776{
777 struct page *next;
778
779 if (is_last_page(page))
780 next = NULL;
781 else if (is_first_page(page))
e842b976 782 next = (struct page *)page_private(page);
61989a80
NG
783 else
784 next = list_entry(page->lru.next, struct page, lru);
785
786 return next;
787}
788
67296874
OH
789/*
790 * Encode <page, obj_idx> as a single handle value.
312fcae2 791 * We use the least bit of handle for tagging.
67296874 792 */
312fcae2 793static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 794{
312fcae2 795 unsigned long obj;
61989a80
NG
796
797 if (!page) {
798 BUG_ON(obj_idx);
799 return NULL;
800 }
801
312fcae2
MK
802 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
803 obj |= ((obj_idx) & OBJ_INDEX_MASK);
804 obj <<= OBJ_TAG_BITS;
61989a80 805
312fcae2 806 return (void *)obj;
61989a80
NG
807}
808
67296874
OH
809/*
810 * Decode <page, obj_idx> pair from the given object handle. We adjust the
811 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 812 * location_to_obj().
67296874 813 */
312fcae2 814static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
815 unsigned long *obj_idx)
816{
312fcae2
MK
817 obj >>= OBJ_TAG_BITS;
818 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
819 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
820}
821
2e40e163
MK
822static unsigned long handle_to_obj(unsigned long handle)
823{
824 return *(unsigned long *)handle;
825}
826
7b60a685
MK
827static unsigned long obj_to_head(struct size_class *class, struct page *page,
828 void *obj)
312fcae2 829{
7b60a685
MK
830 if (class->huge) {
831 VM_BUG_ON(!is_first_page(page));
832 return *(unsigned long *)page_private(page);
833 } else
834 return *(unsigned long *)obj;
312fcae2
MK
835}
836
61989a80
NG
837static unsigned long obj_idx_to_offset(struct page *page,
838 unsigned long obj_idx, int class_size)
839{
840 unsigned long off = 0;
841
842 if (!is_first_page(page))
843 off = page->index;
844
845 return off + obj_idx * class_size;
846}
847
312fcae2
MK
848static inline int trypin_tag(unsigned long handle)
849{
850 unsigned long *ptr = (unsigned long *)handle;
851
852 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
853}
854
855static void pin_tag(unsigned long handle)
856{
857 while (!trypin_tag(handle));
858}
859
860static void unpin_tag(unsigned long handle)
861{
862 unsigned long *ptr = (unsigned long *)handle;
863
864 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
865}
866
f4477e90
NG
867static void reset_page(struct page *page)
868{
869 clear_bit(PG_private, &page->flags);
870 clear_bit(PG_private_2, &page->flags);
871 set_page_private(page, 0);
872 page->mapping = NULL;
873 page->freelist = NULL;
22b751c3 874 page_mapcount_reset(page);
f4477e90
NG
875}
876
61989a80
NG
877static void free_zspage(struct page *first_page)
878{
f4477e90 879 struct page *nextp, *tmp, *head_extra;
61989a80
NG
880
881 BUG_ON(!is_first_page(first_page));
882 BUG_ON(first_page->inuse);
883
f4477e90 884 head_extra = (struct page *)page_private(first_page);
61989a80 885
f4477e90 886 reset_page(first_page);
61989a80
NG
887 __free_page(first_page);
888
889 /* zspage with only 1 system page */
f4477e90 890 if (!head_extra)
61989a80
NG
891 return;
892
f4477e90 893 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 894 list_del(&nextp->lru);
f4477e90 895 reset_page(nextp);
61989a80
NG
896 __free_page(nextp);
897 }
f4477e90
NG
898 reset_page(head_extra);
899 __free_page(head_extra);
61989a80
NG
900}
901
902/* Initialize a newly allocated zspage */
903static void init_zspage(struct page *first_page, struct size_class *class)
904{
905 unsigned long off = 0;
906 struct page *page = first_page;
907
908 BUG_ON(!is_first_page(first_page));
909 while (page) {
910 struct page *next_page;
911 struct link_free *link;
5538c562 912 unsigned int i = 1;
af4ee5e9 913 void *vaddr;
61989a80
NG
914
915 /*
916 * page->index stores offset of first object starting
917 * in the page. For the first page, this is always 0,
918 * so we use first_page->index (aka ->freelist) to store
919 * head of corresponding zspage's freelist.
920 */
921 if (page != first_page)
922 page->index = off;
923
af4ee5e9
MK
924 vaddr = kmap_atomic(page);
925 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
926
927 while ((off += class->size) < PAGE_SIZE) {
312fcae2 928 link->next = location_to_obj(page, i++);
5538c562 929 link += class->size / sizeof(*link);
61989a80
NG
930 }
931
932 /*
933 * We now come to the last (full or partial) object on this
934 * page, which must point to the first object on the next
935 * page (if present)
936 */
937 next_page = get_next_page(page);
312fcae2 938 link->next = location_to_obj(next_page, 0);
af4ee5e9 939 kunmap_atomic(vaddr);
61989a80 940 page = next_page;
5538c562 941 off %= PAGE_SIZE;
61989a80
NG
942 }
943}
944
945/*
946 * Allocate a zspage for the given size class
947 */
948static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
949{
950 int i, error;
b4b700c5 951 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
952
953 /*
954 * Allocate individual pages and link them together as:
955 * 1. first page->private = first sub-page
956 * 2. all sub-pages are linked together using page->lru
957 * 3. each sub-page is linked to the first page using page->first_page
958 *
959 * For each size class, First/Head pages are linked together using
960 * page->lru. Also, we set PG_private to identify the first page
961 * (i.e. no other sub-page has this flag set) and PG_private_2 to
962 * identify the last page.
963 */
964 error = -ENOMEM;
2e3b6154 965 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 966 struct page *page;
61989a80
NG
967
968 page = alloc_page(flags);
969 if (!page)
970 goto cleanup;
971
972 INIT_LIST_HEAD(&page->lru);
973 if (i == 0) { /* first page */
a27545bf 974 SetPagePrivate(page);
61989a80
NG
975 set_page_private(page, 0);
976 first_page = page;
977 first_page->inuse = 0;
978 }
979 if (i == 1)
e842b976 980 set_page_private(first_page, (unsigned long)page);
61989a80
NG
981 if (i >= 1)
982 page->first_page = first_page;
983 if (i >= 2)
984 list_add(&page->lru, &prev_page->lru);
2e3b6154 985 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 986 SetPagePrivate2(page);
61989a80
NG
987 prev_page = page;
988 }
989
990 init_zspage(first_page, class);
991
312fcae2 992 first_page->freelist = location_to_obj(first_page, 0);
61989a80 993 /* Maximum number of objects we can store in this zspage */
2e3b6154 994 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
995
996 error = 0; /* Success */
997
998cleanup:
999 if (unlikely(error) && first_page) {
1000 free_zspage(first_page);
1001 first_page = NULL;
1002 }
1003
1004 return first_page;
1005}
1006
1007static struct page *find_get_zspage(struct size_class *class)
1008{
1009 int i;
1010 struct page *page;
1011
1012 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1013 page = class->fullness_list[i];
1014 if (page)
1015 break;
1016 }
1017
1018 return page;
1019}
1020
1b945aee 1021#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1022static inline int __zs_cpu_up(struct mapping_area *area)
1023{
1024 /*
1025 * Make sure we don't leak memory if a cpu UP notification
1026 * and zs_init() race and both call zs_cpu_up() on the same cpu
1027 */
1028 if (area->vm)
1029 return 0;
1030 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1031 if (!area->vm)
1032 return -ENOMEM;
1033 return 0;
1034}
1035
1036static inline void __zs_cpu_down(struct mapping_area *area)
1037{
1038 if (area->vm)
1039 free_vm_area(area->vm);
1040 area->vm = NULL;
1041}
1042
1043static inline void *__zs_map_object(struct mapping_area *area,
1044 struct page *pages[2], int off, int size)
1045{
f6f8ed47 1046 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1047 area->vm_addr = area->vm->addr;
1048 return area->vm_addr + off;
1049}
1050
1051static inline void __zs_unmap_object(struct mapping_area *area,
1052 struct page *pages[2], int off, int size)
1053{
1054 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1055
d95abbbb 1056 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1057}
1058
1b945aee 1059#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1060
1061static inline int __zs_cpu_up(struct mapping_area *area)
1062{
1063 /*
1064 * Make sure we don't leak memory if a cpu UP notification
1065 * and zs_init() race and both call zs_cpu_up() on the same cpu
1066 */
1067 if (area->vm_buf)
1068 return 0;
40f9fb8c 1069 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1070 if (!area->vm_buf)
1071 return -ENOMEM;
1072 return 0;
1073}
1074
1075static inline void __zs_cpu_down(struct mapping_area *area)
1076{
40f9fb8c 1077 kfree(area->vm_buf);
f553646a
SJ
1078 area->vm_buf = NULL;
1079}
1080
1081static void *__zs_map_object(struct mapping_area *area,
1082 struct page *pages[2], int off, int size)
5f601902 1083{
5f601902
SJ
1084 int sizes[2];
1085 void *addr;
f553646a 1086 char *buf = area->vm_buf;
5f601902 1087
f553646a
SJ
1088 /* disable page faults to match kmap_atomic() return conditions */
1089 pagefault_disable();
1090
1091 /* no read fastpath */
1092 if (area->vm_mm == ZS_MM_WO)
1093 goto out;
5f601902
SJ
1094
1095 sizes[0] = PAGE_SIZE - off;
1096 sizes[1] = size - sizes[0];
1097
5f601902
SJ
1098 /* copy object to per-cpu buffer */
1099 addr = kmap_atomic(pages[0]);
1100 memcpy(buf, addr + off, sizes[0]);
1101 kunmap_atomic(addr);
1102 addr = kmap_atomic(pages[1]);
1103 memcpy(buf + sizes[0], addr, sizes[1]);
1104 kunmap_atomic(addr);
f553646a
SJ
1105out:
1106 return area->vm_buf;
5f601902
SJ
1107}
1108
f553646a
SJ
1109static void __zs_unmap_object(struct mapping_area *area,
1110 struct page *pages[2], int off, int size)
5f601902 1111{
5f601902
SJ
1112 int sizes[2];
1113 void *addr;
2e40e163 1114 char *buf;
5f601902 1115
f553646a
SJ
1116 /* no write fastpath */
1117 if (area->vm_mm == ZS_MM_RO)
1118 goto out;
5f601902 1119
7b60a685
MK
1120 buf = area->vm_buf;
1121 if (!area->huge) {
1122 buf = buf + ZS_HANDLE_SIZE;
1123 size -= ZS_HANDLE_SIZE;
1124 off += ZS_HANDLE_SIZE;
1125 }
2e40e163 1126
5f601902
SJ
1127 sizes[0] = PAGE_SIZE - off;
1128 sizes[1] = size - sizes[0];
1129
1130 /* copy per-cpu buffer to object */
1131 addr = kmap_atomic(pages[0]);
1132 memcpy(addr + off, buf, sizes[0]);
1133 kunmap_atomic(addr);
1134 addr = kmap_atomic(pages[1]);
1135 memcpy(addr, buf + sizes[0], sizes[1]);
1136 kunmap_atomic(addr);
f553646a
SJ
1137
1138out:
1139 /* enable page faults to match kunmap_atomic() return conditions */
1140 pagefault_enable();
5f601902 1141}
61989a80 1142
1b945aee 1143#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1144
61989a80
NG
1145static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1146 void *pcpu)
1147{
f553646a 1148 int ret, cpu = (long)pcpu;
61989a80
NG
1149 struct mapping_area *area;
1150
1151 switch (action) {
1152 case CPU_UP_PREPARE:
1153 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1154 ret = __zs_cpu_up(area);
1155 if (ret)
1156 return notifier_from_errno(ret);
61989a80
NG
1157 break;
1158 case CPU_DEAD:
1159 case CPU_UP_CANCELED:
1160 area = &per_cpu(zs_map_area, cpu);
f553646a 1161 __zs_cpu_down(area);
61989a80
NG
1162 break;
1163 }
1164
1165 return NOTIFY_OK;
1166}
1167
1168static struct notifier_block zs_cpu_nb = {
1169 .notifier_call = zs_cpu_notifier
1170};
1171
b1b00a5b 1172static int zs_register_cpu_notifier(void)
61989a80 1173{
b1b00a5b 1174 int cpu, uninitialized_var(ret);
61989a80 1175
f0e71fcd
SB
1176 cpu_notifier_register_begin();
1177
1178 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1179 for_each_online_cpu(cpu) {
1180 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1181 if (notifier_to_errno(ret))
1182 break;
61989a80 1183 }
f0e71fcd
SB
1184
1185 cpu_notifier_register_done();
b1b00a5b
SS
1186 return notifier_to_errno(ret);
1187}
f0e71fcd 1188
66cdef66 1189static void zs_unregister_cpu_notifier(void)
40f9fb8c 1190{
66cdef66 1191 int cpu;
40f9fb8c 1192
66cdef66 1193 cpu_notifier_register_begin();
40f9fb8c 1194
66cdef66
GM
1195 for_each_online_cpu(cpu)
1196 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1197 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1198
66cdef66 1199 cpu_notifier_register_done();
b1b00a5b
SS
1200}
1201
66cdef66 1202static void init_zs_size_classes(void)
b1b00a5b 1203{
66cdef66 1204 int nr;
c795779d 1205
66cdef66
GM
1206 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1207 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1208 nr += 1;
40f9fb8c 1209
66cdef66 1210 zs_size_classes = nr;
61989a80
NG
1211}
1212
9eec4cd5
JK
1213static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1214{
1215 if (prev->pages_per_zspage != pages_per_zspage)
1216 return false;
1217
1218 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1219 != get_maxobj_per_zspage(size, pages_per_zspage))
1220 return false;
1221
1222 return true;
1223}
1224
312fcae2
MK
1225static bool zspage_full(struct page *page)
1226{
1227 BUG_ON(!is_first_page(page));
1228
1229 return page->inuse == page->objects;
1230}
1231
66cdef66
GM
1232unsigned long zs_get_total_pages(struct zs_pool *pool)
1233{
1234 return atomic_long_read(&pool->pages_allocated);
1235}
1236EXPORT_SYMBOL_GPL(zs_get_total_pages);
1237
4bbc0bc0 1238/**
66cdef66
GM
1239 * zs_map_object - get address of allocated object from handle.
1240 * @pool: pool from which the object was allocated
1241 * @handle: handle returned from zs_malloc
4bbc0bc0 1242 *
66cdef66
GM
1243 * Before using an object allocated from zs_malloc, it must be mapped using
1244 * this function. When done with the object, it must be unmapped using
1245 * zs_unmap_object.
4bbc0bc0 1246 *
66cdef66
GM
1247 * Only one object can be mapped per cpu at a time. There is no protection
1248 * against nested mappings.
1249 *
1250 * This function returns with preemption and page faults disabled.
4bbc0bc0 1251 */
66cdef66
GM
1252void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1253 enum zs_mapmode mm)
61989a80 1254{
66cdef66 1255 struct page *page;
2e40e163 1256 unsigned long obj, obj_idx, off;
61989a80 1257
66cdef66
GM
1258 unsigned int class_idx;
1259 enum fullness_group fg;
1260 struct size_class *class;
1261 struct mapping_area *area;
1262 struct page *pages[2];
2e40e163 1263 void *ret;
61989a80 1264
66cdef66 1265 BUG_ON(!handle);
40f9fb8c 1266
9eec4cd5 1267 /*
66cdef66
GM
1268 * Because we use per-cpu mapping areas shared among the
1269 * pools/users, we can't allow mapping in interrupt context
1270 * because it can corrupt another users mappings.
9eec4cd5 1271 */
66cdef66 1272 BUG_ON(in_interrupt());
61989a80 1273
312fcae2
MK
1274 /* From now on, migration cannot move the object */
1275 pin_tag(handle);
1276
2e40e163
MK
1277 obj = handle_to_obj(handle);
1278 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1279 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1280 class = pool->size_class[class_idx];
1281 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1282
66cdef66
GM
1283 area = &get_cpu_var(zs_map_area);
1284 area->vm_mm = mm;
1285 if (off + class->size <= PAGE_SIZE) {
1286 /* this object is contained entirely within a page */
1287 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1288 ret = area->vm_addr + off;
1289 goto out;
61989a80
NG
1290 }
1291
66cdef66
GM
1292 /* this object spans two pages */
1293 pages[0] = page;
1294 pages[1] = get_next_page(page);
1295 BUG_ON(!pages[1]);
9eec4cd5 1296
2e40e163
MK
1297 ret = __zs_map_object(area, pages, off, class->size);
1298out:
7b60a685
MK
1299 if (!class->huge)
1300 ret += ZS_HANDLE_SIZE;
1301
1302 return ret;
61989a80 1303}
66cdef66 1304EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1305
66cdef66 1306void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1307{
66cdef66 1308 struct page *page;
2e40e163 1309 unsigned long obj, obj_idx, off;
61989a80 1310
66cdef66
GM
1311 unsigned int class_idx;
1312 enum fullness_group fg;
1313 struct size_class *class;
1314 struct mapping_area *area;
9eec4cd5 1315
66cdef66 1316 BUG_ON(!handle);
9eec4cd5 1317
2e40e163
MK
1318 obj = handle_to_obj(handle);
1319 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1320 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1321 class = pool->size_class[class_idx];
1322 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1323
66cdef66
GM
1324 area = this_cpu_ptr(&zs_map_area);
1325 if (off + class->size <= PAGE_SIZE)
1326 kunmap_atomic(area->vm_addr);
1327 else {
1328 struct page *pages[2];
40f9fb8c 1329
66cdef66
GM
1330 pages[0] = page;
1331 pages[1] = get_next_page(page);
1332 BUG_ON(!pages[1]);
1333
1334 __zs_unmap_object(area, pages, off, class->size);
1335 }
1336 put_cpu_var(zs_map_area);
312fcae2 1337 unpin_tag(handle);
61989a80 1338}
66cdef66 1339EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1340
c7806261
MK
1341static unsigned long obj_malloc(struct page *first_page,
1342 struct size_class *class, unsigned long handle)
1343{
1344 unsigned long obj;
1345 struct link_free *link;
1346
1347 struct page *m_page;
1348 unsigned long m_objidx, m_offset;
1349 void *vaddr;
1350
312fcae2 1351 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1352 obj = (unsigned long)first_page->freelist;
1353 obj_to_location(obj, &m_page, &m_objidx);
1354 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1355
1356 vaddr = kmap_atomic(m_page);
1357 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1358 first_page->freelist = link->next;
7b60a685
MK
1359 if (!class->huge)
1360 /* record handle in the header of allocated chunk */
1361 link->handle = handle;
1362 else
1363 /* record handle in first_page->private */
1364 set_page_private(first_page, handle);
c7806261
MK
1365 kunmap_atomic(vaddr);
1366 first_page->inuse++;
1367 zs_stat_inc(class, OBJ_USED, 1);
1368
1369 return obj;
1370}
1371
1372
61989a80
NG
1373/**
1374 * zs_malloc - Allocate block of given size from pool.
1375 * @pool: pool to allocate from
1376 * @size: size of block to allocate
61989a80 1377 *
00a61d86 1378 * On success, handle to the allocated object is returned,
c2344348 1379 * otherwise 0.
61989a80
NG
1380 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1381 */
c2344348 1382unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1383{
2e40e163 1384 unsigned long handle, obj;
61989a80 1385 struct size_class *class;
c7806261 1386 struct page *first_page;
61989a80 1387
7b60a685 1388 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1389 return 0;
1390
1391 handle = alloc_handle(pool);
1392 if (!handle)
c2344348 1393 return 0;
61989a80 1394
2e40e163
MK
1395 /* extra space in chunk to keep the handle */
1396 size += ZS_HANDLE_SIZE;
9eec4cd5 1397 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1398
1399 spin_lock(&class->lock);
1400 first_page = find_get_zspage(class);
1401
1402 if (!first_page) {
1403 spin_unlock(&class->lock);
1404 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1405 if (unlikely(!first_page)) {
1406 free_handle(pool, handle);
c2344348 1407 return 0;
2e40e163 1408 }
61989a80
NG
1409
1410 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1411 atomic_long_add(class->pages_per_zspage,
1412 &pool->pages_allocated);
0f050d99 1413
61989a80 1414 spin_lock(&class->lock);
0f050d99
GM
1415 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1416 class->size, class->pages_per_zspage));
61989a80
NG
1417 }
1418
c7806261 1419 obj = obj_malloc(first_page, class, handle);
61989a80 1420 /* Now move the zspage to another fullness group, if required */
c7806261 1421 fix_fullness_group(class, first_page);
2e40e163 1422 record_obj(handle, obj);
61989a80
NG
1423 spin_unlock(&class->lock);
1424
2e40e163 1425 return handle;
61989a80
NG
1426}
1427EXPORT_SYMBOL_GPL(zs_malloc);
1428
c7806261
MK
1429static void obj_free(struct zs_pool *pool, struct size_class *class,
1430 unsigned long obj)
61989a80
NG
1431{
1432 struct link_free *link;
1433 struct page *first_page, *f_page;
c7806261 1434 unsigned long f_objidx, f_offset;
af4ee5e9 1435 void *vaddr;
61989a80 1436 int class_idx;
61989a80
NG
1437 enum fullness_group fullness;
1438
c7806261 1439 BUG_ON(!obj);
61989a80 1440
312fcae2 1441 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1442 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1443 first_page = get_first_page(f_page);
1444
1445 get_zspage_mapping(first_page, &class_idx, &fullness);
61989a80
NG
1446 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1447
c7806261 1448 vaddr = kmap_atomic(f_page);
61989a80
NG
1449
1450 /* Insert this object in containing zspage's freelist */
af4ee5e9 1451 link = (struct link_free *)(vaddr + f_offset);
61989a80 1452 link->next = first_page->freelist;
7b60a685
MK
1453 if (class->huge)
1454 set_page_private(first_page, 0);
af4ee5e9 1455 kunmap_atomic(vaddr);
c2344348 1456 first_page->freelist = (void *)obj;
61989a80 1457 first_page->inuse--;
0f050d99 1458 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1459}
1460
1461void zs_free(struct zs_pool *pool, unsigned long handle)
1462{
1463 struct page *first_page, *f_page;
1464 unsigned long obj, f_objidx;
1465 int class_idx;
1466 struct size_class *class;
1467 enum fullness_group fullness;
1468
1469 if (unlikely(!handle))
1470 return;
1471
312fcae2 1472 pin_tag(handle);
c7806261 1473 obj = handle_to_obj(handle);
c7806261
MK
1474 obj_to_location(obj, &f_page, &f_objidx);
1475 first_page = get_first_page(f_page);
1476
1477 get_zspage_mapping(first_page, &class_idx, &fullness);
1478 class = pool->size_class[class_idx];
1479
1480 spin_lock(&class->lock);
1481 obj_free(pool, class, obj);
1482 fullness = fix_fullness_group(class, first_page);
312fcae2 1483 if (fullness == ZS_EMPTY) {
0f050d99
GM
1484 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1485 class->size, class->pages_per_zspage));
312fcae2
MK
1486 atomic_long_sub(class->pages_per_zspage,
1487 &pool->pages_allocated);
1488 free_zspage(first_page);
1489 }
61989a80 1490 spin_unlock(&class->lock);
312fcae2 1491 unpin_tag(handle);
61989a80 1492
312fcae2
MK
1493 free_handle(pool, handle);
1494}
1495EXPORT_SYMBOL_GPL(zs_free);
1496
1497static void zs_object_copy(unsigned long src, unsigned long dst,
1498 struct size_class *class)
1499{
1500 struct page *s_page, *d_page;
1501 unsigned long s_objidx, d_objidx;
1502 unsigned long s_off, d_off;
1503 void *s_addr, *d_addr;
1504 int s_size, d_size, size;
1505 int written = 0;
1506
1507 s_size = d_size = class->size;
1508
1509 obj_to_location(src, &s_page, &s_objidx);
1510 obj_to_location(dst, &d_page, &d_objidx);
1511
1512 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1513 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1514
1515 if (s_off + class->size > PAGE_SIZE)
1516 s_size = PAGE_SIZE - s_off;
1517
1518 if (d_off + class->size > PAGE_SIZE)
1519 d_size = PAGE_SIZE - d_off;
1520
1521 s_addr = kmap_atomic(s_page);
1522 d_addr = kmap_atomic(d_page);
1523
1524 while (1) {
1525 size = min(s_size, d_size);
1526 memcpy(d_addr + d_off, s_addr + s_off, size);
1527 written += size;
1528
1529 if (written == class->size)
1530 break;
1531
495819ea
SS
1532 s_off += size;
1533 s_size -= size;
1534 d_off += size;
1535 d_size -= size;
1536
1537 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1538 kunmap_atomic(d_addr);
1539 kunmap_atomic(s_addr);
1540 s_page = get_next_page(s_page);
1541 BUG_ON(!s_page);
1542 s_addr = kmap_atomic(s_page);
1543 d_addr = kmap_atomic(d_page);
1544 s_size = class->size - written;
1545 s_off = 0;
312fcae2
MK
1546 }
1547
495819ea 1548 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1549 kunmap_atomic(d_addr);
1550 d_page = get_next_page(d_page);
1551 BUG_ON(!d_page);
1552 d_addr = kmap_atomic(d_page);
1553 d_size = class->size - written;
1554 d_off = 0;
312fcae2
MK
1555 }
1556 }
1557
1558 kunmap_atomic(d_addr);
1559 kunmap_atomic(s_addr);
1560}
1561
1562/*
1563 * Find alloced object in zspage from index object and
1564 * return handle.
1565 */
1566static unsigned long find_alloced_obj(struct page *page, int index,
1567 struct size_class *class)
1568{
1569 unsigned long head;
1570 int offset = 0;
1571 unsigned long handle = 0;
1572 void *addr = kmap_atomic(page);
1573
1574 if (!is_first_page(page))
1575 offset = page->index;
1576 offset += class->size * index;
1577
1578 while (offset < PAGE_SIZE) {
7b60a685 1579 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1580 if (head & OBJ_ALLOCATED_TAG) {
1581 handle = head & ~OBJ_ALLOCATED_TAG;
1582 if (trypin_tag(handle))
1583 break;
1584 handle = 0;
1585 }
1586
1587 offset += class->size;
1588 index++;
1589 }
1590
1591 kunmap_atomic(addr);
1592 return handle;
1593}
1594
1595struct zs_compact_control {
1596 /* Source page for migration which could be a subpage of zspage. */
1597 struct page *s_page;
1598 /* Destination page for migration which should be a first page
1599 * of zspage. */
1600 struct page *d_page;
1601 /* Starting object index within @s_page which used for live object
1602 * in the subpage. */
1603 int index;
1604 /* how many of objects are migrated */
1605 int nr_migrated;
1606};
1607
1608static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1609 struct zs_compact_control *cc)
1610{
1611 unsigned long used_obj, free_obj;
1612 unsigned long handle;
1613 struct page *s_page = cc->s_page;
1614 struct page *d_page = cc->d_page;
1615 unsigned long index = cc->index;
1616 int nr_migrated = 0;
1617 int ret = 0;
1618
1619 while (1) {
1620 handle = find_alloced_obj(s_page, index, class);
1621 if (!handle) {
1622 s_page = get_next_page(s_page);
1623 if (!s_page)
1624 break;
1625 index = 0;
1626 continue;
1627 }
1628
1629 /* Stop if there is no more space */
1630 if (zspage_full(d_page)) {
1631 unpin_tag(handle);
1632 ret = -ENOMEM;
1633 break;
1634 }
1635
1636 used_obj = handle_to_obj(handle);
1637 free_obj = obj_malloc(d_page, class, handle);
1638 zs_object_copy(used_obj, free_obj, class);
1639 index++;
1640 record_obj(handle, free_obj);
1641 unpin_tag(handle);
1642 obj_free(pool, class, used_obj);
1643 nr_migrated++;
1644 }
1645
1646 /* Remember last position in this iteration */
1647 cc->s_page = s_page;
1648 cc->index = index;
1649 cc->nr_migrated = nr_migrated;
1650
1651 return ret;
1652}
1653
1654static struct page *alloc_target_page(struct size_class *class)
1655{
1656 int i;
1657 struct page *page;
1658
1659 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1660 page = class->fullness_list[i];
1661 if (page) {
1662 remove_zspage(page, class, i);
1663 break;
1664 }
1665 }
1666
1667 return page;
1668}
1669
1670static void putback_zspage(struct zs_pool *pool, struct size_class *class,
1671 struct page *first_page)
1672{
312fcae2
MK
1673 enum fullness_group fullness;
1674
1675 BUG_ON(!is_first_page(first_page));
1676
839373e6 1677 fullness = get_fullness_group(first_page);
312fcae2 1678 insert_zspage(first_page, class, fullness);
839373e6
MK
1679 set_zspage_mapping(first_page, class->index, fullness);
1680
13de8933 1681 if (fullness == ZS_EMPTY) {
312fcae2
MK
1682 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1683 class->size, class->pages_per_zspage));
13de8933
MK
1684 atomic_long_sub(class->pages_per_zspage,
1685 &pool->pages_allocated);
312fcae2 1686
61989a80 1687 free_zspage(first_page);
13de8933 1688 }
61989a80 1689}
312fcae2
MK
1690
1691static struct page *isolate_source_page(struct size_class *class)
1692{
1693 struct page *page;
1694
1695 page = class->fullness_list[ZS_ALMOST_EMPTY];
1696 if (page)
1697 remove_zspage(page, class, ZS_ALMOST_EMPTY);
1698
1699 return page;
1700}
1701
1702static unsigned long __zs_compact(struct zs_pool *pool,
1703 struct size_class *class)
1704{
1705 int nr_to_migrate;
1706 struct zs_compact_control cc;
1707 struct page *src_page;
1708 struct page *dst_page = NULL;
1709 unsigned long nr_total_migrated = 0;
1710
312fcae2
MK
1711 spin_lock(&class->lock);
1712 while ((src_page = isolate_source_page(class))) {
1713
1714 BUG_ON(!is_first_page(src_page));
1715
1716 /* The goal is to migrate all live objects in source page */
1717 nr_to_migrate = src_page->inuse;
1718 cc.index = 0;
1719 cc.s_page = src_page;
1720
1721 while ((dst_page = alloc_target_page(class))) {
1722 cc.d_page = dst_page;
1723 /*
1724 * If there is no more space in dst_page, try to
1725 * allocate another zspage.
1726 */
1727 if (!migrate_zspage(pool, class, &cc))
1728 break;
1729
1730 putback_zspage(pool, class, dst_page);
1731 nr_total_migrated += cc.nr_migrated;
1732 nr_to_migrate -= cc.nr_migrated;
1733 }
1734
1735 /* Stop if we couldn't find slot */
1736 if (dst_page == NULL)
1737 break;
1738
1739 putback_zspage(pool, class, dst_page);
1740 putback_zspage(pool, class, src_page);
1741 spin_unlock(&class->lock);
1742 nr_total_migrated += cc.nr_migrated;
1743 cond_resched();
1744 spin_lock(&class->lock);
1745 }
1746
1747 if (src_page)
1748 putback_zspage(pool, class, src_page);
1749
1750 spin_unlock(&class->lock);
1751
1752 return nr_total_migrated;
1753}
1754
1755unsigned long zs_compact(struct zs_pool *pool)
1756{
1757 int i;
1758 unsigned long nr_migrated = 0;
1759 struct size_class *class;
1760
1761 for (i = zs_size_classes - 1; i >= 0; i--) {
1762 class = pool->size_class[i];
1763 if (!class)
1764 continue;
1765 if (class->index != i)
1766 continue;
1767 nr_migrated += __zs_compact(pool, class);
1768 }
1769
312fcae2
MK
1770 return nr_migrated;
1771}
1772EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1773
00a61d86 1774/**
66cdef66
GM
1775 * zs_create_pool - Creates an allocation pool to work from.
1776 * @flags: allocation flags used to allocate pool metadata
166cfda7 1777 *
66cdef66
GM
1778 * This function must be called before anything when using
1779 * the zsmalloc allocator.
166cfda7 1780 *
66cdef66
GM
1781 * On success, a pointer to the newly created pool is returned,
1782 * otherwise NULL.
396b7fd6 1783 */
3eba0c6a 1784struct zs_pool *zs_create_pool(char *name, gfp_t flags)
61989a80 1785{
66cdef66
GM
1786 int i;
1787 struct zs_pool *pool;
1788 struct size_class *prev_class = NULL;
61989a80 1789
66cdef66
GM
1790 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1791 if (!pool)
1792 return NULL;
61989a80 1793
66cdef66
GM
1794 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1795 GFP_KERNEL);
1796 if (!pool->size_class) {
1797 kfree(pool);
1798 return NULL;
1799 }
61989a80 1800
2e40e163
MK
1801 pool->name = kstrdup(name, GFP_KERNEL);
1802 if (!pool->name)
1803 goto err;
1804
1805 if (create_handle_cache(pool))
1806 goto err;
1807
c60369f0 1808 /*
66cdef66
GM
1809 * Iterate reversly, because, size of size_class that we want to use
1810 * for merging should be larger or equal to current size.
c60369f0 1811 */
66cdef66
GM
1812 for (i = zs_size_classes - 1; i >= 0; i--) {
1813 int size;
1814 int pages_per_zspage;
1815 struct size_class *class;
c60369f0 1816
66cdef66
GM
1817 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1818 if (size > ZS_MAX_ALLOC_SIZE)
1819 size = ZS_MAX_ALLOC_SIZE;
1820 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1821
66cdef66
GM
1822 /*
1823 * size_class is used for normal zsmalloc operation such
1824 * as alloc/free for that size. Although it is natural that we
1825 * have one size_class for each size, there is a chance that we
1826 * can get more memory utilization if we use one size_class for
1827 * many different sizes whose size_class have same
1828 * characteristics. So, we makes size_class point to
1829 * previous size_class if possible.
1830 */
1831 if (prev_class) {
1832 if (can_merge(prev_class, size, pages_per_zspage)) {
1833 pool->size_class[i] = prev_class;
1834 continue;
1835 }
1836 }
1837
1838 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1839 if (!class)
1840 goto err;
1841
1842 class->size = size;
1843 class->index = i;
1844 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1845 if (pages_per_zspage == 1 &&
1846 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1847 class->huge = true;
66cdef66
GM
1848 spin_lock_init(&class->lock);
1849 pool->size_class[i] = class;
1850
1851 prev_class = class;
61989a80
NG
1852 }
1853
66cdef66 1854 pool->flags = flags;
b7418510 1855
0f050d99
GM
1856 if (zs_pool_stat_create(name, pool))
1857 goto err;
1858
66cdef66
GM
1859 return pool;
1860
1861err:
1862 zs_destroy_pool(pool);
1863 return NULL;
61989a80 1864}
66cdef66 1865EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1866
66cdef66 1867void zs_destroy_pool(struct zs_pool *pool)
61989a80 1868{
66cdef66 1869 int i;
61989a80 1870
0f050d99
GM
1871 zs_pool_stat_destroy(pool);
1872
66cdef66
GM
1873 for (i = 0; i < zs_size_classes; i++) {
1874 int fg;
1875 struct size_class *class = pool->size_class[i];
61989a80 1876
66cdef66
GM
1877 if (!class)
1878 continue;
61989a80 1879
66cdef66
GM
1880 if (class->index != i)
1881 continue;
61989a80 1882
66cdef66
GM
1883 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1884 if (class->fullness_list[fg]) {
1885 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1886 class->size, fg);
1887 }
1888 }
1889 kfree(class);
1890 }
f553646a 1891
2e40e163 1892 destroy_handle_cache(pool);
66cdef66 1893 kfree(pool->size_class);
0f050d99 1894 kfree(pool->name);
66cdef66
GM
1895 kfree(pool);
1896}
1897EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 1898
66cdef66
GM
1899static int __init zs_init(void)
1900{
1901 int ret = zs_register_cpu_notifier();
1902
0f050d99
GM
1903 if (ret)
1904 goto notifier_fail;
66cdef66
GM
1905
1906 init_zs_size_classes();
1907
1908#ifdef CONFIG_ZPOOL
1909 zpool_register_driver(&zs_zpool_driver);
1910#endif
0f050d99
GM
1911
1912 ret = zs_stat_init();
1913 if (ret) {
1914 pr_err("zs stat initialization failed\n");
1915 goto stat_fail;
1916 }
66cdef66 1917 return 0;
0f050d99
GM
1918
1919stat_fail:
1920#ifdef CONFIG_ZPOOL
1921 zpool_unregister_driver(&zs_zpool_driver);
1922#endif
1923notifier_fail:
1924 zs_unregister_cpu_notifier();
1925
1926 return ret;
61989a80 1927}
61989a80 1928
66cdef66 1929static void __exit zs_exit(void)
61989a80 1930{
66cdef66
GM
1931#ifdef CONFIG_ZPOOL
1932 zpool_unregister_driver(&zs_zpool_driver);
1933#endif
1934 zs_unregister_cpu_notifier();
0f050d99
GM
1935
1936 zs_stat_exit();
61989a80 1937}
069f101f
BH
1938
1939module_init(zs_init);
1940module_exit(zs_exit);
1941
1942MODULE_LICENSE("Dual BSD/GPL");
1943MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");