zsmalloc: drop unused member 'mapping_area->huge'
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
32e7ba1e 19 * page->private: points to the first component (0-order) page
2db51dae
NG
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
32e7ba1e 29 * page->private: refers to the component page after the first page
7b60a685
MK
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
2db51dae
NG
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
8f958c98 40 * page->inuse: the number of objects that are used in this zspage
2db51dae
NG
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
759b26b2 61#include <linux/preempt.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169};
170
6fe5186f
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
0f050d99
GM
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
57244594
SS
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
0f050d99
GM
183#endif
184
40f9fb8c
MG
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
0959c63f
SJ
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
6dd9737e 195 * f = fullness_threshold_frac
0959c63f
SJ
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
57244594
SS
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
0f050d99 216 struct zs_size_stat stats;
0959c63f 217
7dfa4612
WY
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
57244594
SS
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
0959c63f
SJ
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
2e40e163
MK
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
0959c63f
SJ
242};
243
244struct zs_pool {
6f3526d6 245 const char *name;
0f050d99 246
40f9fb8c 247 struct size_class **size_class;
2e40e163 248 struct kmem_cache *handle_cachep;
0959c63f
SJ
249
250 gfp_t flags; /* allocation flags used when growing pool */
13de8933 251 atomic_long_t pages_allocated;
0f050d99 252
7d3f3938 253 struct zs_pool_stats stats;
ab9d306d
SS
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
0959c63f 265};
61989a80
NG
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
f553646a 276struct mapping_area {
1b945aee 277#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
2e40e163
MK
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
cd10add0 295 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
c102f07c
JL
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
317}
318
c795779d
DS
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
6f3526d6 323static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 324 const struct zpool_ops *zpool_ops,
479305fd 325 struct zpool *zpool)
c795779d 326{
3eba0c6a 327 return zs_create_pool(name, gfp);
c795779d
DS
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
722cdc17 379 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
137f8cff 395MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
396#endif /* CONFIG_ZPOOL */
397
248ca1b0
MK
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
61989a80
NG
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
a27545bf 408 return PagePrivate(page);
61989a80
NG
409}
410
411static int is_last_page(struct page *page)
412{
a27545bf 413 return PagePrivate2(page);
61989a80
NG
414}
415
416static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
417 enum fullness_group *fullness)
418{
419 unsigned long m;
420 BUG_ON(!is_first_page(page));
421
422 m = (unsigned long)page->mapping;
423 *fullness = m & FULLNESS_MASK;
424 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
425}
426
427static void set_zspage_mapping(struct page *page, unsigned int class_idx,
428 enum fullness_group fullness)
429{
430 unsigned long m;
431 BUG_ON(!is_first_page(page));
432
433 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
434 (fullness & FULLNESS_MASK);
435 page->mapping = (struct address_space *)m;
436}
437
c3e3e88a
NC
438/*
439 * zsmalloc divides the pool into various size classes where each
440 * class maintains a list of zspages where each zspage is divided
441 * into equal sized chunks. Each allocation falls into one of these
442 * classes depending on its size. This function returns index of the
443 * size class which has chunk size big enough to hold the give size.
444 */
61989a80
NG
445static int get_size_class_index(int size)
446{
447 int idx = 0;
448
449 if (likely(size > ZS_MIN_ALLOC_SIZE))
450 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
451 ZS_SIZE_CLASS_DELTA);
452
7b60a685 453 return min(zs_size_classes - 1, idx);
61989a80
NG
454}
455
248ca1b0
MK
456static inline void zs_stat_inc(struct size_class *class,
457 enum zs_stat_type type, unsigned long cnt)
458{
6fe5186f
SS
459 if (type < NR_ZS_STAT_TYPE)
460 class->stats.objs[type] += cnt;
248ca1b0
MK
461}
462
463static inline void zs_stat_dec(struct size_class *class,
464 enum zs_stat_type type, unsigned long cnt)
465{
6fe5186f
SS
466 if (type < NR_ZS_STAT_TYPE)
467 class->stats.objs[type] -= cnt;
248ca1b0
MK
468}
469
470static inline unsigned long zs_stat_get(struct size_class *class,
471 enum zs_stat_type type)
472{
6fe5186f
SS
473 if (type < NR_ZS_STAT_TYPE)
474 return class->stats.objs[type];
475 return 0;
248ca1b0
MK
476}
477
57244594
SS
478#ifdef CONFIG_ZSMALLOC_STAT
479
248ca1b0
MK
480static int __init zs_stat_init(void)
481{
482 if (!debugfs_initialized())
483 return -ENODEV;
484
485 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
486 if (!zs_stat_root)
487 return -ENOMEM;
488
489 return 0;
490}
491
492static void __exit zs_stat_exit(void)
493{
494 debugfs_remove_recursive(zs_stat_root);
495}
496
497static int zs_stats_size_show(struct seq_file *s, void *v)
498{
499 int i;
500 struct zs_pool *pool = s->private;
501 struct size_class *class;
502 int objs_per_zspage;
503 unsigned long class_almost_full, class_almost_empty;
504 unsigned long obj_allocated, obj_used, pages_used;
505 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
506 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
507
508 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
509 "class", "size", "almost_full", "almost_empty",
510 "obj_allocated", "obj_used", "pages_used",
511 "pages_per_zspage");
512
513 for (i = 0; i < zs_size_classes; i++) {
514 class = pool->size_class[i];
515
516 if (class->index != i)
517 continue;
518
519 spin_lock(&class->lock);
520 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
521 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
522 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
523 obj_used = zs_stat_get(class, OBJ_USED);
524 spin_unlock(&class->lock);
525
526 objs_per_zspage = get_maxobj_per_zspage(class->size,
527 class->pages_per_zspage);
528 pages_used = obj_allocated / objs_per_zspage *
529 class->pages_per_zspage;
530
531 seq_printf(s, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
532 i, class->size, class_almost_full, class_almost_empty,
533 obj_allocated, obj_used, pages_used,
534 class->pages_per_zspage);
535
536 total_class_almost_full += class_almost_full;
537 total_class_almost_empty += class_almost_empty;
538 total_objs += obj_allocated;
539 total_used_objs += obj_used;
540 total_pages += pages_used;
541 }
542
543 seq_puts(s, "\n");
544 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
545 "Total", "", total_class_almost_full,
546 total_class_almost_empty, total_objs,
547 total_used_objs, total_pages);
548
549 return 0;
550}
551
552static int zs_stats_size_open(struct inode *inode, struct file *file)
553{
554 return single_open(file, zs_stats_size_show, inode->i_private);
555}
556
557static const struct file_operations zs_stat_size_ops = {
558 .open = zs_stats_size_open,
559 .read = seq_read,
560 .llseek = seq_lseek,
561 .release = single_release,
562};
563
6f3526d6 564static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
248ca1b0
MK
565{
566 struct dentry *entry;
567
568 if (!zs_stat_root)
569 return -ENODEV;
570
571 entry = debugfs_create_dir(name, zs_stat_root);
572 if (!entry) {
573 pr_warn("debugfs dir <%s> creation failed\n", name);
574 return -ENOMEM;
575 }
576 pool->stat_dentry = entry;
577
578 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
579 pool->stat_dentry, pool, &zs_stat_size_ops);
580 if (!entry) {
581 pr_warn("%s: debugfs file entry <%s> creation failed\n",
582 name, "classes");
583 return -ENOMEM;
584 }
585
586 return 0;
587}
588
589static void zs_pool_stat_destroy(struct zs_pool *pool)
590{
591 debugfs_remove_recursive(pool->stat_dentry);
592}
593
594#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
595static int __init zs_stat_init(void)
596{
597 return 0;
598}
599
600static void __exit zs_stat_exit(void)
601{
602}
603
6f3526d6 604static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
248ca1b0
MK
605{
606 return 0;
607}
608
609static inline void zs_pool_stat_destroy(struct zs_pool *pool)
610{
611}
248ca1b0
MK
612#endif
613
614
c3e3e88a
NC
615/*
616 * For each size class, zspages are divided into different groups
617 * depending on how "full" they are. This was done so that we could
618 * easily find empty or nearly empty zspages when we try to shrink
619 * the pool (not yet implemented). This function returns fullness
620 * status of the given page.
621 */
61989a80
NG
622static enum fullness_group get_fullness_group(struct page *page)
623{
624 int inuse, max_objects;
625 enum fullness_group fg;
626 BUG_ON(!is_first_page(page));
627
628 inuse = page->inuse;
629 max_objects = page->objects;
630
631 if (inuse == 0)
632 fg = ZS_EMPTY;
633 else if (inuse == max_objects)
634 fg = ZS_FULL;
d3d07c92 635 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
636 fg = ZS_ALMOST_EMPTY;
637 else
638 fg = ZS_ALMOST_FULL;
639
640 return fg;
641}
642
c3e3e88a
NC
643/*
644 * Each size class maintains various freelists and zspages are assigned
645 * to one of these freelists based on the number of live objects they
646 * have. This functions inserts the given zspage into the freelist
647 * identified by <class, fullness_group>.
648 */
61989a80
NG
649static void insert_zspage(struct page *page, struct size_class *class,
650 enum fullness_group fullness)
651{
652 struct page **head;
653
654 BUG_ON(!is_first_page(page));
655
656 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
657 return;
658
248ca1b0
MK
659 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
660 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
661
662 head = &class->fullness_list[fullness];
663 if (!*head) {
664 *head = page;
665 return;
666 }
667
668 /*
669 * We want to see more ZS_FULL pages and less almost
670 * empty/full. Put pages with higher ->inuse first.
671 */
672 list_add_tail(&page->lru, &(*head)->lru);
673 if (page->inuse >= (*head)->inuse)
674 *head = page;
61989a80
NG
675}
676
c3e3e88a
NC
677/*
678 * This function removes the given zspage from the freelist identified
679 * by <class, fullness_group>.
680 */
61989a80
NG
681static void remove_zspage(struct page *page, struct size_class *class,
682 enum fullness_group fullness)
683{
684 struct page **head;
685
686 BUG_ON(!is_first_page(page));
687
688 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
689 return;
690
691 head = &class->fullness_list[fullness];
692 BUG_ON(!*head);
693 if (list_empty(&(*head)->lru))
694 *head = NULL;
695 else if (*head == page)
696 *head = (struct page *)list_entry((*head)->lru.next,
697 struct page, lru);
698
699 list_del_init(&page->lru);
248ca1b0
MK
700 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
701 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
702}
703
c3e3e88a
NC
704/*
705 * Each size class maintains zspages in different fullness groups depending
706 * on the number of live objects they contain. When allocating or freeing
707 * objects, the fullness status of the page can change, say, from ALMOST_FULL
708 * to ALMOST_EMPTY when freeing an object. This function checks if such
709 * a status change has occurred for the given page and accordingly moves the
710 * page from the freelist of the old fullness group to that of the new
711 * fullness group.
712 */
c7806261 713static enum fullness_group fix_fullness_group(struct size_class *class,
61989a80
NG
714 struct page *page)
715{
716 int class_idx;
61989a80
NG
717 enum fullness_group currfg, newfg;
718
719 BUG_ON(!is_first_page(page));
720
721 get_zspage_mapping(page, &class_idx, &currfg);
722 newfg = get_fullness_group(page);
723 if (newfg == currfg)
724 goto out;
725
61989a80
NG
726 remove_zspage(page, class, currfg);
727 insert_zspage(page, class, newfg);
728 set_zspage_mapping(page, class_idx, newfg);
729
730out:
731 return newfg;
732}
733
734/*
735 * We have to decide on how many pages to link together
736 * to form a zspage for each size class. This is important
737 * to reduce wastage due to unusable space left at end of
738 * each zspage which is given as:
888fa374
YX
739 * wastage = Zp % class_size
740 * usage = Zp - wastage
61989a80
NG
741 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
742 *
743 * For example, for size class of 3/8 * PAGE_SIZE, we should
744 * link together 3 PAGE_SIZE sized pages to form a zspage
745 * since then we can perfectly fit in 8 such objects.
746 */
2e3b6154 747static int get_pages_per_zspage(int class_size)
61989a80
NG
748{
749 int i, max_usedpc = 0;
750 /* zspage order which gives maximum used size per KB */
751 int max_usedpc_order = 1;
752
84d4faab 753 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
754 int zspage_size;
755 int waste, usedpc;
756
757 zspage_size = i * PAGE_SIZE;
758 waste = zspage_size % class_size;
759 usedpc = (zspage_size - waste) * 100 / zspage_size;
760
761 if (usedpc > max_usedpc) {
762 max_usedpc = usedpc;
763 max_usedpc_order = i;
764 }
765 }
766
767 return max_usedpc_order;
768}
769
770/*
771 * A single 'zspage' is composed of many system pages which are
772 * linked together using fields in struct page. This function finds
773 * the first/head page, given any component page of a zspage.
774 */
775static struct page *get_first_page(struct page *page)
776{
777 if (is_first_page(page))
778 return page;
779 else
32e7ba1e 780 return (struct page *)page_private(page);
61989a80
NG
781}
782
783static struct page *get_next_page(struct page *page)
784{
785 struct page *next;
786
787 if (is_last_page(page))
788 next = NULL;
789 else if (is_first_page(page))
e842b976 790 next = (struct page *)page_private(page);
61989a80
NG
791 else
792 next = list_entry(page->lru.next, struct page, lru);
793
794 return next;
795}
796
67296874
OH
797/*
798 * Encode <page, obj_idx> as a single handle value.
312fcae2 799 * We use the least bit of handle for tagging.
67296874 800 */
312fcae2 801static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 802{
312fcae2 803 unsigned long obj;
61989a80
NG
804
805 if (!page) {
806 BUG_ON(obj_idx);
807 return NULL;
808 }
809
312fcae2
MK
810 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
811 obj |= ((obj_idx) & OBJ_INDEX_MASK);
812 obj <<= OBJ_TAG_BITS;
61989a80 813
312fcae2 814 return (void *)obj;
61989a80
NG
815}
816
67296874
OH
817/*
818 * Decode <page, obj_idx> pair from the given object handle. We adjust the
819 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 820 * location_to_obj().
67296874 821 */
312fcae2 822static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
823 unsigned long *obj_idx)
824{
312fcae2
MK
825 obj >>= OBJ_TAG_BITS;
826 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
827 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
828}
829
2e40e163
MK
830static unsigned long handle_to_obj(unsigned long handle)
831{
832 return *(unsigned long *)handle;
833}
834
7b60a685
MK
835static unsigned long obj_to_head(struct size_class *class, struct page *page,
836 void *obj)
312fcae2 837{
7b60a685
MK
838 if (class->huge) {
839 VM_BUG_ON(!is_first_page(page));
12a7bfad 840 return page_private(page);
7b60a685
MK
841 } else
842 return *(unsigned long *)obj;
312fcae2
MK
843}
844
61989a80
NG
845static unsigned long obj_idx_to_offset(struct page *page,
846 unsigned long obj_idx, int class_size)
847{
848 unsigned long off = 0;
849
850 if (!is_first_page(page))
851 off = page->index;
852
853 return off + obj_idx * class_size;
854}
855
312fcae2
MK
856static inline int trypin_tag(unsigned long handle)
857{
858 unsigned long *ptr = (unsigned long *)handle;
859
860 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
861}
862
863static void pin_tag(unsigned long handle)
864{
865 while (!trypin_tag(handle));
866}
867
868static void unpin_tag(unsigned long handle)
869{
870 unsigned long *ptr = (unsigned long *)handle;
871
872 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
873}
874
f4477e90
NG
875static void reset_page(struct page *page)
876{
877 clear_bit(PG_private, &page->flags);
878 clear_bit(PG_private_2, &page->flags);
879 set_page_private(page, 0);
880 page->mapping = NULL;
881 page->freelist = NULL;
22b751c3 882 page_mapcount_reset(page);
f4477e90
NG
883}
884
61989a80
NG
885static void free_zspage(struct page *first_page)
886{
f4477e90 887 struct page *nextp, *tmp, *head_extra;
61989a80
NG
888
889 BUG_ON(!is_first_page(first_page));
890 BUG_ON(first_page->inuse);
891
f4477e90 892 head_extra = (struct page *)page_private(first_page);
61989a80 893
f4477e90 894 reset_page(first_page);
61989a80
NG
895 __free_page(first_page);
896
897 /* zspage with only 1 system page */
f4477e90 898 if (!head_extra)
61989a80
NG
899 return;
900
f4477e90 901 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 902 list_del(&nextp->lru);
f4477e90 903 reset_page(nextp);
61989a80
NG
904 __free_page(nextp);
905 }
f4477e90
NG
906 reset_page(head_extra);
907 __free_page(head_extra);
61989a80
NG
908}
909
910/* Initialize a newly allocated zspage */
911static void init_zspage(struct page *first_page, struct size_class *class)
912{
913 unsigned long off = 0;
914 struct page *page = first_page;
915
916 BUG_ON(!is_first_page(first_page));
917 while (page) {
918 struct page *next_page;
919 struct link_free *link;
5538c562 920 unsigned int i = 1;
af4ee5e9 921 void *vaddr;
61989a80
NG
922
923 /*
924 * page->index stores offset of first object starting
925 * in the page. For the first page, this is always 0,
926 * so we use first_page->index (aka ->freelist) to store
927 * head of corresponding zspage's freelist.
928 */
929 if (page != first_page)
930 page->index = off;
931
af4ee5e9
MK
932 vaddr = kmap_atomic(page);
933 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
934
935 while ((off += class->size) < PAGE_SIZE) {
312fcae2 936 link->next = location_to_obj(page, i++);
5538c562 937 link += class->size / sizeof(*link);
61989a80
NG
938 }
939
940 /*
941 * We now come to the last (full or partial) object on this
942 * page, which must point to the first object on the next
943 * page (if present)
944 */
945 next_page = get_next_page(page);
312fcae2 946 link->next = location_to_obj(next_page, 0);
af4ee5e9 947 kunmap_atomic(vaddr);
61989a80 948 page = next_page;
5538c562 949 off %= PAGE_SIZE;
61989a80
NG
950 }
951}
952
953/*
954 * Allocate a zspage for the given size class
955 */
956static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
957{
958 int i, error;
b4b700c5 959 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
960
961 /*
962 * Allocate individual pages and link them together as:
963 * 1. first page->private = first sub-page
964 * 2. all sub-pages are linked together using page->lru
32e7ba1e 965 * 3. each sub-page is linked to the first page using page->private
61989a80
NG
966 *
967 * For each size class, First/Head pages are linked together using
968 * page->lru. Also, we set PG_private to identify the first page
969 * (i.e. no other sub-page has this flag set) and PG_private_2 to
970 * identify the last page.
971 */
972 error = -ENOMEM;
2e3b6154 973 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 974 struct page *page;
61989a80
NG
975
976 page = alloc_page(flags);
977 if (!page)
978 goto cleanup;
979
980 INIT_LIST_HEAD(&page->lru);
981 if (i == 0) { /* first page */
a27545bf 982 SetPagePrivate(page);
61989a80
NG
983 set_page_private(page, 0);
984 first_page = page;
985 first_page->inuse = 0;
986 }
987 if (i == 1)
e842b976 988 set_page_private(first_page, (unsigned long)page);
61989a80 989 if (i >= 1)
32e7ba1e 990 set_page_private(page, (unsigned long)first_page);
61989a80
NG
991 if (i >= 2)
992 list_add(&page->lru, &prev_page->lru);
2e3b6154 993 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 994 SetPagePrivate2(page);
61989a80
NG
995 prev_page = page;
996 }
997
998 init_zspage(first_page, class);
999
312fcae2 1000 first_page->freelist = location_to_obj(first_page, 0);
61989a80 1001 /* Maximum number of objects we can store in this zspage */
2e3b6154 1002 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
1003
1004 error = 0; /* Success */
1005
1006cleanup:
1007 if (unlikely(error) && first_page) {
1008 free_zspage(first_page);
1009 first_page = NULL;
1010 }
1011
1012 return first_page;
1013}
1014
1015static struct page *find_get_zspage(struct size_class *class)
1016{
1017 int i;
1018 struct page *page;
1019
1020 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1021 page = class->fullness_list[i];
1022 if (page)
1023 break;
1024 }
1025
1026 return page;
1027}
1028
1b945aee 1029#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1030static inline int __zs_cpu_up(struct mapping_area *area)
1031{
1032 /*
1033 * Make sure we don't leak memory if a cpu UP notification
1034 * and zs_init() race and both call zs_cpu_up() on the same cpu
1035 */
1036 if (area->vm)
1037 return 0;
1038 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1039 if (!area->vm)
1040 return -ENOMEM;
1041 return 0;
1042}
1043
1044static inline void __zs_cpu_down(struct mapping_area *area)
1045{
1046 if (area->vm)
1047 free_vm_area(area->vm);
1048 area->vm = NULL;
1049}
1050
1051static inline void *__zs_map_object(struct mapping_area *area,
1052 struct page *pages[2], int off, int size)
1053{
f6f8ed47 1054 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1055 area->vm_addr = area->vm->addr;
1056 return area->vm_addr + off;
1057}
1058
1059static inline void __zs_unmap_object(struct mapping_area *area,
1060 struct page *pages[2], int off, int size)
1061{
1062 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1063
d95abbbb 1064 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1065}
1066
1b945aee 1067#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1068
1069static inline int __zs_cpu_up(struct mapping_area *area)
1070{
1071 /*
1072 * Make sure we don't leak memory if a cpu UP notification
1073 * and zs_init() race and both call zs_cpu_up() on the same cpu
1074 */
1075 if (area->vm_buf)
1076 return 0;
40f9fb8c 1077 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1078 if (!area->vm_buf)
1079 return -ENOMEM;
1080 return 0;
1081}
1082
1083static inline void __zs_cpu_down(struct mapping_area *area)
1084{
40f9fb8c 1085 kfree(area->vm_buf);
f553646a
SJ
1086 area->vm_buf = NULL;
1087}
1088
1089static void *__zs_map_object(struct mapping_area *area,
1090 struct page *pages[2], int off, int size)
5f601902 1091{
5f601902
SJ
1092 int sizes[2];
1093 void *addr;
f553646a 1094 char *buf = area->vm_buf;
5f601902 1095
f553646a
SJ
1096 /* disable page faults to match kmap_atomic() return conditions */
1097 pagefault_disable();
1098
1099 /* no read fastpath */
1100 if (area->vm_mm == ZS_MM_WO)
1101 goto out;
5f601902
SJ
1102
1103 sizes[0] = PAGE_SIZE - off;
1104 sizes[1] = size - sizes[0];
1105
5f601902
SJ
1106 /* copy object to per-cpu buffer */
1107 addr = kmap_atomic(pages[0]);
1108 memcpy(buf, addr + off, sizes[0]);
1109 kunmap_atomic(addr);
1110 addr = kmap_atomic(pages[1]);
1111 memcpy(buf + sizes[0], addr, sizes[1]);
1112 kunmap_atomic(addr);
f553646a
SJ
1113out:
1114 return area->vm_buf;
5f601902
SJ
1115}
1116
f553646a
SJ
1117static void __zs_unmap_object(struct mapping_area *area,
1118 struct page *pages[2], int off, int size)
5f601902 1119{
5f601902
SJ
1120 int sizes[2];
1121 void *addr;
2e40e163 1122 char *buf;
5f601902 1123
f553646a
SJ
1124 /* no write fastpath */
1125 if (area->vm_mm == ZS_MM_RO)
1126 goto out;
5f601902 1127
7b60a685 1128 buf = area->vm_buf;
a82cbf07
YX
1129 buf = buf + ZS_HANDLE_SIZE;
1130 size -= ZS_HANDLE_SIZE;
1131 off += ZS_HANDLE_SIZE;
2e40e163 1132
5f601902
SJ
1133 sizes[0] = PAGE_SIZE - off;
1134 sizes[1] = size - sizes[0];
1135
1136 /* copy per-cpu buffer to object */
1137 addr = kmap_atomic(pages[0]);
1138 memcpy(addr + off, buf, sizes[0]);
1139 kunmap_atomic(addr);
1140 addr = kmap_atomic(pages[1]);
1141 memcpy(addr, buf + sizes[0], sizes[1]);
1142 kunmap_atomic(addr);
f553646a
SJ
1143
1144out:
1145 /* enable page faults to match kunmap_atomic() return conditions */
1146 pagefault_enable();
5f601902 1147}
61989a80 1148
1b945aee 1149#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1150
61989a80
NG
1151static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1152 void *pcpu)
1153{
f553646a 1154 int ret, cpu = (long)pcpu;
61989a80
NG
1155 struct mapping_area *area;
1156
1157 switch (action) {
1158 case CPU_UP_PREPARE:
1159 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1160 ret = __zs_cpu_up(area);
1161 if (ret)
1162 return notifier_from_errno(ret);
61989a80
NG
1163 break;
1164 case CPU_DEAD:
1165 case CPU_UP_CANCELED:
1166 area = &per_cpu(zs_map_area, cpu);
f553646a 1167 __zs_cpu_down(area);
61989a80
NG
1168 break;
1169 }
1170
1171 return NOTIFY_OK;
1172}
1173
1174static struct notifier_block zs_cpu_nb = {
1175 .notifier_call = zs_cpu_notifier
1176};
1177
b1b00a5b 1178static int zs_register_cpu_notifier(void)
61989a80 1179{
b1b00a5b 1180 int cpu, uninitialized_var(ret);
61989a80 1181
f0e71fcd
SB
1182 cpu_notifier_register_begin();
1183
1184 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1185 for_each_online_cpu(cpu) {
1186 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1187 if (notifier_to_errno(ret))
1188 break;
61989a80 1189 }
f0e71fcd
SB
1190
1191 cpu_notifier_register_done();
b1b00a5b
SS
1192 return notifier_to_errno(ret);
1193}
f0e71fcd 1194
66cdef66 1195static void zs_unregister_cpu_notifier(void)
40f9fb8c 1196{
66cdef66 1197 int cpu;
40f9fb8c 1198
66cdef66 1199 cpu_notifier_register_begin();
40f9fb8c 1200
66cdef66
GM
1201 for_each_online_cpu(cpu)
1202 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1203 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1204
66cdef66 1205 cpu_notifier_register_done();
b1b00a5b
SS
1206}
1207
66cdef66 1208static void init_zs_size_classes(void)
b1b00a5b 1209{
66cdef66 1210 int nr;
c795779d 1211
66cdef66
GM
1212 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1213 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1214 nr += 1;
40f9fb8c 1215
66cdef66 1216 zs_size_classes = nr;
61989a80
NG
1217}
1218
9eec4cd5
JK
1219static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1220{
1221 if (prev->pages_per_zspage != pages_per_zspage)
1222 return false;
1223
1224 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1225 != get_maxobj_per_zspage(size, pages_per_zspage))
1226 return false;
1227
1228 return true;
1229}
1230
312fcae2
MK
1231static bool zspage_full(struct page *page)
1232{
1233 BUG_ON(!is_first_page(page));
1234
1235 return page->inuse == page->objects;
1236}
1237
66cdef66
GM
1238unsigned long zs_get_total_pages(struct zs_pool *pool)
1239{
1240 return atomic_long_read(&pool->pages_allocated);
1241}
1242EXPORT_SYMBOL_GPL(zs_get_total_pages);
1243
4bbc0bc0 1244/**
66cdef66
GM
1245 * zs_map_object - get address of allocated object from handle.
1246 * @pool: pool from which the object was allocated
1247 * @handle: handle returned from zs_malloc
4bbc0bc0 1248 *
66cdef66
GM
1249 * Before using an object allocated from zs_malloc, it must be mapped using
1250 * this function. When done with the object, it must be unmapped using
1251 * zs_unmap_object.
4bbc0bc0 1252 *
66cdef66
GM
1253 * Only one object can be mapped per cpu at a time. There is no protection
1254 * against nested mappings.
1255 *
1256 * This function returns with preemption and page faults disabled.
4bbc0bc0 1257 */
66cdef66
GM
1258void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1259 enum zs_mapmode mm)
61989a80 1260{
66cdef66 1261 struct page *page;
2e40e163 1262 unsigned long obj, obj_idx, off;
61989a80 1263
66cdef66
GM
1264 unsigned int class_idx;
1265 enum fullness_group fg;
1266 struct size_class *class;
1267 struct mapping_area *area;
1268 struct page *pages[2];
2e40e163 1269 void *ret;
61989a80 1270
66cdef66 1271 BUG_ON(!handle);
40f9fb8c 1272
9eec4cd5 1273 /*
66cdef66
GM
1274 * Because we use per-cpu mapping areas shared among the
1275 * pools/users, we can't allow mapping in interrupt context
1276 * because it can corrupt another users mappings.
9eec4cd5 1277 */
66cdef66 1278 BUG_ON(in_interrupt());
61989a80 1279
312fcae2
MK
1280 /* From now on, migration cannot move the object */
1281 pin_tag(handle);
1282
2e40e163
MK
1283 obj = handle_to_obj(handle);
1284 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1285 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1286 class = pool->size_class[class_idx];
1287 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1288
66cdef66
GM
1289 area = &get_cpu_var(zs_map_area);
1290 area->vm_mm = mm;
1291 if (off + class->size <= PAGE_SIZE) {
1292 /* this object is contained entirely within a page */
1293 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1294 ret = area->vm_addr + off;
1295 goto out;
61989a80
NG
1296 }
1297
66cdef66
GM
1298 /* this object spans two pages */
1299 pages[0] = page;
1300 pages[1] = get_next_page(page);
1301 BUG_ON(!pages[1]);
9eec4cd5 1302
2e40e163
MK
1303 ret = __zs_map_object(area, pages, off, class->size);
1304out:
7b60a685
MK
1305 if (!class->huge)
1306 ret += ZS_HANDLE_SIZE;
1307
1308 return ret;
61989a80 1309}
66cdef66 1310EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1311
66cdef66 1312void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1313{
66cdef66 1314 struct page *page;
2e40e163 1315 unsigned long obj, obj_idx, off;
61989a80 1316
66cdef66
GM
1317 unsigned int class_idx;
1318 enum fullness_group fg;
1319 struct size_class *class;
1320 struct mapping_area *area;
9eec4cd5 1321
66cdef66 1322 BUG_ON(!handle);
9eec4cd5 1323
2e40e163
MK
1324 obj = handle_to_obj(handle);
1325 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1326 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1327 class = pool->size_class[class_idx];
1328 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1329
66cdef66
GM
1330 area = this_cpu_ptr(&zs_map_area);
1331 if (off + class->size <= PAGE_SIZE)
1332 kunmap_atomic(area->vm_addr);
1333 else {
1334 struct page *pages[2];
40f9fb8c 1335
66cdef66
GM
1336 pages[0] = page;
1337 pages[1] = get_next_page(page);
1338 BUG_ON(!pages[1]);
1339
1340 __zs_unmap_object(area, pages, off, class->size);
1341 }
1342 put_cpu_var(zs_map_area);
312fcae2 1343 unpin_tag(handle);
61989a80 1344}
66cdef66 1345EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1346
c7806261
MK
1347static unsigned long obj_malloc(struct page *first_page,
1348 struct size_class *class, unsigned long handle)
1349{
1350 unsigned long obj;
1351 struct link_free *link;
1352
1353 struct page *m_page;
1354 unsigned long m_objidx, m_offset;
1355 void *vaddr;
1356
312fcae2 1357 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1358 obj = (unsigned long)first_page->freelist;
1359 obj_to_location(obj, &m_page, &m_objidx);
1360 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1361
1362 vaddr = kmap_atomic(m_page);
1363 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1364 first_page->freelist = link->next;
7b60a685
MK
1365 if (!class->huge)
1366 /* record handle in the header of allocated chunk */
1367 link->handle = handle;
1368 else
1369 /* record handle in first_page->private */
1370 set_page_private(first_page, handle);
c7806261
MK
1371 kunmap_atomic(vaddr);
1372 first_page->inuse++;
1373 zs_stat_inc(class, OBJ_USED, 1);
1374
1375 return obj;
1376}
1377
1378
61989a80
NG
1379/**
1380 * zs_malloc - Allocate block of given size from pool.
1381 * @pool: pool to allocate from
1382 * @size: size of block to allocate
61989a80 1383 *
00a61d86 1384 * On success, handle to the allocated object is returned,
c2344348 1385 * otherwise 0.
61989a80
NG
1386 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1387 */
c2344348 1388unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1389{
2e40e163 1390 unsigned long handle, obj;
61989a80 1391 struct size_class *class;
c7806261 1392 struct page *first_page;
61989a80 1393
7b60a685 1394 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1395 return 0;
1396
1397 handle = alloc_handle(pool);
1398 if (!handle)
c2344348 1399 return 0;
61989a80 1400
2e40e163
MK
1401 /* extra space in chunk to keep the handle */
1402 size += ZS_HANDLE_SIZE;
9eec4cd5 1403 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1404
1405 spin_lock(&class->lock);
1406 first_page = find_get_zspage(class);
1407
1408 if (!first_page) {
1409 spin_unlock(&class->lock);
1410 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1411 if (unlikely(!first_page)) {
1412 free_handle(pool, handle);
c2344348 1413 return 0;
2e40e163 1414 }
61989a80
NG
1415
1416 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1417 atomic_long_add(class->pages_per_zspage,
1418 &pool->pages_allocated);
0f050d99 1419
61989a80 1420 spin_lock(&class->lock);
0f050d99
GM
1421 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1422 class->size, class->pages_per_zspage));
61989a80
NG
1423 }
1424
c7806261 1425 obj = obj_malloc(first_page, class, handle);
61989a80 1426 /* Now move the zspage to another fullness group, if required */
c7806261 1427 fix_fullness_group(class, first_page);
2e40e163 1428 record_obj(handle, obj);
61989a80
NG
1429 spin_unlock(&class->lock);
1430
2e40e163 1431 return handle;
61989a80
NG
1432}
1433EXPORT_SYMBOL_GPL(zs_malloc);
1434
c7806261
MK
1435static void obj_free(struct zs_pool *pool, struct size_class *class,
1436 unsigned long obj)
61989a80
NG
1437{
1438 struct link_free *link;
1439 struct page *first_page, *f_page;
c7806261 1440 unsigned long f_objidx, f_offset;
af4ee5e9 1441 void *vaddr;
61989a80 1442
c7806261 1443 BUG_ON(!obj);
61989a80 1444
312fcae2 1445 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1446 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1447 first_page = get_first_page(f_page);
1448
61989a80
NG
1449 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1450
c7806261 1451 vaddr = kmap_atomic(f_page);
61989a80
NG
1452
1453 /* Insert this object in containing zspage's freelist */
af4ee5e9 1454 link = (struct link_free *)(vaddr + f_offset);
61989a80 1455 link->next = first_page->freelist;
7b60a685
MK
1456 if (class->huge)
1457 set_page_private(first_page, 0);
af4ee5e9 1458 kunmap_atomic(vaddr);
c2344348 1459 first_page->freelist = (void *)obj;
61989a80 1460 first_page->inuse--;
0f050d99 1461 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1462}
1463
1464void zs_free(struct zs_pool *pool, unsigned long handle)
1465{
1466 struct page *first_page, *f_page;
1467 unsigned long obj, f_objidx;
1468 int class_idx;
1469 struct size_class *class;
1470 enum fullness_group fullness;
1471
1472 if (unlikely(!handle))
1473 return;
1474
312fcae2 1475 pin_tag(handle);
c7806261 1476 obj = handle_to_obj(handle);
c7806261
MK
1477 obj_to_location(obj, &f_page, &f_objidx);
1478 first_page = get_first_page(f_page);
1479
1480 get_zspage_mapping(first_page, &class_idx, &fullness);
1481 class = pool->size_class[class_idx];
1482
1483 spin_lock(&class->lock);
1484 obj_free(pool, class, obj);
1485 fullness = fix_fullness_group(class, first_page);
312fcae2 1486 if (fullness == ZS_EMPTY) {
0f050d99
GM
1487 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1488 class->size, class->pages_per_zspage));
312fcae2
MK
1489 atomic_long_sub(class->pages_per_zspage,
1490 &pool->pages_allocated);
1491 free_zspage(first_page);
1492 }
61989a80 1493 spin_unlock(&class->lock);
312fcae2 1494 unpin_tag(handle);
61989a80 1495
312fcae2
MK
1496 free_handle(pool, handle);
1497}
1498EXPORT_SYMBOL_GPL(zs_free);
1499
0dc63d48 1500static void zs_object_copy(unsigned long dst, unsigned long src,
312fcae2
MK
1501 struct size_class *class)
1502{
1503 struct page *s_page, *d_page;
1504 unsigned long s_objidx, d_objidx;
1505 unsigned long s_off, d_off;
1506 void *s_addr, *d_addr;
1507 int s_size, d_size, size;
1508 int written = 0;
1509
1510 s_size = d_size = class->size;
1511
1512 obj_to_location(src, &s_page, &s_objidx);
1513 obj_to_location(dst, &d_page, &d_objidx);
1514
1515 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1516 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1517
1518 if (s_off + class->size > PAGE_SIZE)
1519 s_size = PAGE_SIZE - s_off;
1520
1521 if (d_off + class->size > PAGE_SIZE)
1522 d_size = PAGE_SIZE - d_off;
1523
1524 s_addr = kmap_atomic(s_page);
1525 d_addr = kmap_atomic(d_page);
1526
1527 while (1) {
1528 size = min(s_size, d_size);
1529 memcpy(d_addr + d_off, s_addr + s_off, size);
1530 written += size;
1531
1532 if (written == class->size)
1533 break;
1534
495819ea
SS
1535 s_off += size;
1536 s_size -= size;
1537 d_off += size;
1538 d_size -= size;
1539
1540 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1541 kunmap_atomic(d_addr);
1542 kunmap_atomic(s_addr);
1543 s_page = get_next_page(s_page);
1544 BUG_ON(!s_page);
1545 s_addr = kmap_atomic(s_page);
1546 d_addr = kmap_atomic(d_page);
1547 s_size = class->size - written;
1548 s_off = 0;
312fcae2
MK
1549 }
1550
495819ea 1551 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1552 kunmap_atomic(d_addr);
1553 d_page = get_next_page(d_page);
1554 BUG_ON(!d_page);
1555 d_addr = kmap_atomic(d_page);
1556 d_size = class->size - written;
1557 d_off = 0;
312fcae2
MK
1558 }
1559 }
1560
1561 kunmap_atomic(d_addr);
1562 kunmap_atomic(s_addr);
1563}
1564
1565/*
1566 * Find alloced object in zspage from index object and
1567 * return handle.
1568 */
1569static unsigned long find_alloced_obj(struct page *page, int index,
1570 struct size_class *class)
1571{
1572 unsigned long head;
1573 int offset = 0;
1574 unsigned long handle = 0;
1575 void *addr = kmap_atomic(page);
1576
1577 if (!is_first_page(page))
1578 offset = page->index;
1579 offset += class->size * index;
1580
1581 while (offset < PAGE_SIZE) {
7b60a685 1582 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1583 if (head & OBJ_ALLOCATED_TAG) {
1584 handle = head & ~OBJ_ALLOCATED_TAG;
1585 if (trypin_tag(handle))
1586 break;
1587 handle = 0;
1588 }
1589
1590 offset += class->size;
1591 index++;
1592 }
1593
1594 kunmap_atomic(addr);
1595 return handle;
1596}
1597
1598struct zs_compact_control {
1599 /* Source page for migration which could be a subpage of zspage. */
1600 struct page *s_page;
1601 /* Destination page for migration which should be a first page
1602 * of zspage. */
1603 struct page *d_page;
1604 /* Starting object index within @s_page which used for live object
1605 * in the subpage. */
1606 int index;
312fcae2
MK
1607};
1608
1609static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 struct zs_compact_control *cc)
1611{
1612 unsigned long used_obj, free_obj;
1613 unsigned long handle;
1614 struct page *s_page = cc->s_page;
1615 struct page *d_page = cc->d_page;
1616 unsigned long index = cc->index;
312fcae2
MK
1617 int ret = 0;
1618
1619 while (1) {
1620 handle = find_alloced_obj(s_page, index, class);
1621 if (!handle) {
1622 s_page = get_next_page(s_page);
1623 if (!s_page)
1624 break;
1625 index = 0;
1626 continue;
1627 }
1628
1629 /* Stop if there is no more space */
1630 if (zspage_full(d_page)) {
1631 unpin_tag(handle);
1632 ret = -ENOMEM;
1633 break;
1634 }
1635
1636 used_obj = handle_to_obj(handle);
1637 free_obj = obj_malloc(d_page, class, handle);
0dc63d48 1638 zs_object_copy(free_obj, used_obj, class);
312fcae2 1639 index++;
c102f07c
JL
1640 /*
1641 * record_obj updates handle's value to free_obj and it will
1642 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1643 * breaks synchronization using pin_tag(e,g, zs_free) so
1644 * let's keep the lock bit.
1645 */
1646 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1647 record_obj(handle, free_obj);
1648 unpin_tag(handle);
1649 obj_free(pool, class, used_obj);
312fcae2
MK
1650 }
1651
1652 /* Remember last position in this iteration */
1653 cc->s_page = s_page;
1654 cc->index = index;
312fcae2
MK
1655
1656 return ret;
1657}
1658
0dc63d48 1659static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1660{
1661 int i;
1662 struct page *page;
1663
1664 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1665 page = class->fullness_list[i];
1666 if (page) {
1667 remove_zspage(page, class, i);
1668 break;
1669 }
1670 }
1671
1672 return page;
1673}
1674
860c707d
SS
1675/*
1676 * putback_zspage - add @first_page into right class's fullness list
1677 * @pool: target pool
1678 * @class: destination class
1679 * @first_page: target page
1680 *
1681 * Return @fist_page's fullness_group
1682 */
1683static enum fullness_group putback_zspage(struct zs_pool *pool,
1684 struct size_class *class,
1685 struct page *first_page)
312fcae2 1686{
312fcae2
MK
1687 enum fullness_group fullness;
1688
1689 BUG_ON(!is_first_page(first_page));
1690
839373e6 1691 fullness = get_fullness_group(first_page);
312fcae2 1692 insert_zspage(first_page, class, fullness);
839373e6
MK
1693 set_zspage_mapping(first_page, class->index, fullness);
1694
13de8933 1695 if (fullness == ZS_EMPTY) {
312fcae2
MK
1696 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1697 class->size, class->pages_per_zspage));
13de8933
MK
1698 atomic_long_sub(class->pages_per_zspage,
1699 &pool->pages_allocated);
312fcae2 1700
61989a80 1701 free_zspage(first_page);
13de8933 1702 }
860c707d
SS
1703
1704 return fullness;
61989a80 1705}
312fcae2
MK
1706
1707static struct page *isolate_source_page(struct size_class *class)
1708{
ad9d5e17
MK
1709 int i;
1710 struct page *page = NULL;
1711
1712 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1713 page = class->fullness_list[i];
1714 if (!page)
1715 continue;
312fcae2 1716
ad9d5e17
MK
1717 remove_zspage(page, class, i);
1718 break;
1719 }
312fcae2
MK
1720
1721 return page;
1722}
1723
04f05909
SS
1724/*
1725 *
1726 * Based on the number of unused allocated objects calculate
1727 * and return the number of pages that we can free.
04f05909
SS
1728 */
1729static unsigned long zs_can_compact(struct size_class *class)
1730{
1731 unsigned long obj_wasted;
1732
04f05909
SS
1733 obj_wasted = zs_stat_get(class, OBJ_ALLOCATED) -
1734 zs_stat_get(class, OBJ_USED);
1735
1736 obj_wasted /= get_maxobj_per_zspage(class->size,
1737 class->pages_per_zspage);
1738
6cbf16b3 1739 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1740}
1741
7d3f3938 1742static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1743{
312fcae2
MK
1744 struct zs_compact_control cc;
1745 struct page *src_page;
1746 struct page *dst_page = NULL;
312fcae2 1747
312fcae2
MK
1748 spin_lock(&class->lock);
1749 while ((src_page = isolate_source_page(class))) {
1750
1751 BUG_ON(!is_first_page(src_page));
1752
04f05909
SS
1753 if (!zs_can_compact(class))
1754 break;
1755
312fcae2
MK
1756 cc.index = 0;
1757 cc.s_page = src_page;
1758
0dc63d48 1759 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1760 cc.d_page = dst_page;
1761 /*
0dc63d48
SS
1762 * If there is no more space in dst_page, resched
1763 * and see if anyone had allocated another zspage.
312fcae2
MK
1764 */
1765 if (!migrate_zspage(pool, class, &cc))
1766 break;
1767
1768 putback_zspage(pool, class, dst_page);
312fcae2
MK
1769 }
1770
1771 /* Stop if we couldn't find slot */
1772 if (dst_page == NULL)
1773 break;
1774
1775 putback_zspage(pool, class, dst_page);
860c707d 1776 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1777 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1778 spin_unlock(&class->lock);
312fcae2
MK
1779 cond_resched();
1780 spin_lock(&class->lock);
1781 }
1782
1783 if (src_page)
1784 putback_zspage(pool, class, src_page);
1785
7d3f3938 1786 spin_unlock(&class->lock);
312fcae2
MK
1787}
1788
1789unsigned long zs_compact(struct zs_pool *pool)
1790{
1791 int i;
312fcae2
MK
1792 struct size_class *class;
1793
1794 for (i = zs_size_classes - 1; i >= 0; i--) {
1795 class = pool->size_class[i];
1796 if (!class)
1797 continue;
1798 if (class->index != i)
1799 continue;
7d3f3938 1800 __zs_compact(pool, class);
312fcae2
MK
1801 }
1802
860c707d 1803 return pool->stats.pages_compacted;
312fcae2
MK
1804}
1805EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1806
7d3f3938
SS
1807void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1808{
1809 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1810}
1811EXPORT_SYMBOL_GPL(zs_pool_stats);
1812
ab9d306d
SS
1813static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1814 struct shrink_control *sc)
1815{
1816 unsigned long pages_freed;
1817 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1818 shrinker);
1819
1820 pages_freed = pool->stats.pages_compacted;
1821 /*
1822 * Compact classes and calculate compaction delta.
1823 * Can run concurrently with a manually triggered
1824 * (by user) compaction.
1825 */
1826 pages_freed = zs_compact(pool) - pages_freed;
1827
1828 return pages_freed ? pages_freed : SHRINK_STOP;
1829}
1830
1831static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1832 struct shrink_control *sc)
1833{
1834 int i;
1835 struct size_class *class;
1836 unsigned long pages_to_free = 0;
1837 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1838 shrinker);
1839
ab9d306d
SS
1840 for (i = zs_size_classes - 1; i >= 0; i--) {
1841 class = pool->size_class[i];
1842 if (!class)
1843 continue;
1844 if (class->index != i)
1845 continue;
1846
ab9d306d 1847 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1848 }
1849
1850 return pages_to_free;
1851}
1852
1853static void zs_unregister_shrinker(struct zs_pool *pool)
1854{
1855 if (pool->shrinker_enabled) {
1856 unregister_shrinker(&pool->shrinker);
1857 pool->shrinker_enabled = false;
1858 }
1859}
1860
1861static int zs_register_shrinker(struct zs_pool *pool)
1862{
1863 pool->shrinker.scan_objects = zs_shrinker_scan;
1864 pool->shrinker.count_objects = zs_shrinker_count;
1865 pool->shrinker.batch = 0;
1866 pool->shrinker.seeks = DEFAULT_SEEKS;
1867
1868 return register_shrinker(&pool->shrinker);
1869}
1870
00a61d86 1871/**
66cdef66
GM
1872 * zs_create_pool - Creates an allocation pool to work from.
1873 * @flags: allocation flags used to allocate pool metadata
166cfda7 1874 *
66cdef66
GM
1875 * This function must be called before anything when using
1876 * the zsmalloc allocator.
166cfda7 1877 *
66cdef66
GM
1878 * On success, a pointer to the newly created pool is returned,
1879 * otherwise NULL.
396b7fd6 1880 */
6f3526d6 1881struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
61989a80 1882{
66cdef66
GM
1883 int i;
1884 struct zs_pool *pool;
1885 struct size_class *prev_class = NULL;
61989a80 1886
66cdef66
GM
1887 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1888 if (!pool)
1889 return NULL;
61989a80 1890
66cdef66
GM
1891 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1892 GFP_KERNEL);
1893 if (!pool->size_class) {
1894 kfree(pool);
1895 return NULL;
1896 }
61989a80 1897
2e40e163
MK
1898 pool->name = kstrdup(name, GFP_KERNEL);
1899 if (!pool->name)
1900 goto err;
1901
1902 if (create_handle_cache(pool))
1903 goto err;
1904
c60369f0 1905 /*
66cdef66
GM
1906 * Iterate reversly, because, size of size_class that we want to use
1907 * for merging should be larger or equal to current size.
c60369f0 1908 */
66cdef66
GM
1909 for (i = zs_size_classes - 1; i >= 0; i--) {
1910 int size;
1911 int pages_per_zspage;
1912 struct size_class *class;
c60369f0 1913
66cdef66
GM
1914 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1915 if (size > ZS_MAX_ALLOC_SIZE)
1916 size = ZS_MAX_ALLOC_SIZE;
1917 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1918
66cdef66
GM
1919 /*
1920 * size_class is used for normal zsmalloc operation such
1921 * as alloc/free for that size. Although it is natural that we
1922 * have one size_class for each size, there is a chance that we
1923 * can get more memory utilization if we use one size_class for
1924 * many different sizes whose size_class have same
1925 * characteristics. So, we makes size_class point to
1926 * previous size_class if possible.
1927 */
1928 if (prev_class) {
1929 if (can_merge(prev_class, size, pages_per_zspage)) {
1930 pool->size_class[i] = prev_class;
1931 continue;
1932 }
1933 }
1934
1935 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1936 if (!class)
1937 goto err;
1938
1939 class->size = size;
1940 class->index = i;
1941 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1942 if (pages_per_zspage == 1 &&
1943 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1944 class->huge = true;
66cdef66
GM
1945 spin_lock_init(&class->lock);
1946 pool->size_class[i] = class;
1947
1948 prev_class = class;
61989a80
NG
1949 }
1950
66cdef66 1951 pool->flags = flags;
b7418510 1952
0f050d99
GM
1953 if (zs_pool_stat_create(name, pool))
1954 goto err;
1955
ab9d306d
SS
1956 /*
1957 * Not critical, we still can use the pool
1958 * and user can trigger compaction manually.
1959 */
1960 if (zs_register_shrinker(pool) == 0)
1961 pool->shrinker_enabled = true;
66cdef66
GM
1962 return pool;
1963
1964err:
1965 zs_destroy_pool(pool);
1966 return NULL;
61989a80 1967}
66cdef66 1968EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1969
66cdef66 1970void zs_destroy_pool(struct zs_pool *pool)
61989a80 1971{
66cdef66 1972 int i;
61989a80 1973
ab9d306d 1974 zs_unregister_shrinker(pool);
0f050d99
GM
1975 zs_pool_stat_destroy(pool);
1976
66cdef66
GM
1977 for (i = 0; i < zs_size_classes; i++) {
1978 int fg;
1979 struct size_class *class = pool->size_class[i];
61989a80 1980
66cdef66
GM
1981 if (!class)
1982 continue;
61989a80 1983
66cdef66
GM
1984 if (class->index != i)
1985 continue;
61989a80 1986
66cdef66
GM
1987 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1988 if (class->fullness_list[fg]) {
1989 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1990 class->size, fg);
1991 }
1992 }
1993 kfree(class);
1994 }
f553646a 1995
2e40e163 1996 destroy_handle_cache(pool);
66cdef66 1997 kfree(pool->size_class);
0f050d99 1998 kfree(pool->name);
66cdef66
GM
1999 kfree(pool);
2000}
2001EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2002
66cdef66
GM
2003static int __init zs_init(void)
2004{
2005 int ret = zs_register_cpu_notifier();
2006
0f050d99
GM
2007 if (ret)
2008 goto notifier_fail;
66cdef66
GM
2009
2010 init_zs_size_classes();
2011
2012#ifdef CONFIG_ZPOOL
2013 zpool_register_driver(&zs_zpool_driver);
2014#endif
0f050d99
GM
2015
2016 ret = zs_stat_init();
2017 if (ret) {
2018 pr_err("zs stat initialization failed\n");
2019 goto stat_fail;
2020 }
66cdef66 2021 return 0;
0f050d99
GM
2022
2023stat_fail:
2024#ifdef CONFIG_ZPOOL
2025 zpool_unregister_driver(&zs_zpool_driver);
2026#endif
2027notifier_fail:
2028 zs_unregister_cpu_notifier();
2029
2030 return ret;
61989a80 2031}
61989a80 2032
66cdef66 2033static void __exit zs_exit(void)
61989a80 2034{
66cdef66
GM
2035#ifdef CONFIG_ZPOOL
2036 zpool_unregister_driver(&zs_zpool_driver);
2037#endif
2038 zs_unregister_cpu_notifier();
0f050d99
GM
2039
2040 zs_stat_exit();
61989a80 2041}
069f101f
BH
2042
2043module_init(zs_init);
2044module_exit(zs_exit);
2045
2046MODULE_LICENSE("Dual BSD/GPL");
2047MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");