zsmalloc: clean up many BUG_ON
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
32e7ba1e 19 * page->private: points to the first component (0-order) page
2db51dae
NG
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
25 * of a zspage
26 *
27 * For _first_ page only:
28 *
32e7ba1e 29 * page->private: refers to the component page after the first page
7b60a685
MK
30 * If the page is first_page for huge object, it stores handle.
31 * Look at size_class->huge.
2db51dae
NG
32 * page->freelist: points to the first free object in zspage.
33 * Free objects are linked together using in-place
34 * metadata.
35 * page->objects: maximum number of objects we can store in this
36 * zspage (class->zspage_order * PAGE_SIZE / class->size)
37 * page->lru: links together first pages of various zspages.
38 * Basically forming list of zspages in a fullness group.
39 * page->mapping: class index and fullness group of the zspage
8f958c98 40 * page->inuse: the number of objects that are used in this zspage
2db51dae
NG
41 *
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
45 *
46 */
47
61989a80
NG
48#include <linux/module.h>
49#include <linux/kernel.h>
312fcae2 50#include <linux/sched.h>
61989a80
NG
51#include <linux/bitops.h>
52#include <linux/errno.h>
53#include <linux/highmem.h>
61989a80
NG
54#include <linux/string.h>
55#include <linux/slab.h>
56#include <asm/tlbflush.h>
57#include <asm/pgtable.h>
58#include <linux/cpumask.h>
59#include <linux/cpu.h>
0cbb613f 60#include <linux/vmalloc.h>
759b26b2 61#include <linux/preempt.h>
0959c63f
SJ
62#include <linux/spinlock.h>
63#include <linux/types.h>
0f050d99 64#include <linux/debugfs.h>
bcf1647d 65#include <linux/zsmalloc.h>
c795779d 66#include <linux/zpool.h>
0959c63f
SJ
67
68/*
69 * This must be power of 2 and greater than of equal to sizeof(link_free).
70 * These two conditions ensure that any 'struct link_free' itself doesn't
71 * span more than 1 page which avoids complex case of mapping 2 pages simply
72 * to restore link_free pointer values.
73 */
74#define ZS_ALIGN 8
75
76/*
77 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
78 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
79 */
80#define ZS_MAX_ZSPAGE_ORDER 2
81#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
82
2e40e163
MK
83#define ZS_HANDLE_SIZE (sizeof(unsigned long))
84
0959c63f
SJ
85/*
86 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 87 * as single (unsigned long) handle value.
0959c63f
SJ
88 *
89 * Note that object index <obj_idx> is relative to system
90 * page <PFN> it is stored in, so for each sub-page belonging
91 * to a zspage, obj_idx starts with 0.
92 *
93 * This is made more complicated by various memory models and PAE.
94 */
95
96#ifndef MAX_PHYSMEM_BITS
97#ifdef CONFIG_HIGHMEM64G
98#define MAX_PHYSMEM_BITS 36
99#else /* !CONFIG_HIGHMEM64G */
100/*
101 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
102 * be PAGE_SHIFT
103 */
104#define MAX_PHYSMEM_BITS BITS_PER_LONG
105#endif
106#endif
107#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
108
109/*
110 * Memory for allocating for handle keeps object position by
111 * encoding <page, obj_idx> and the encoded value has a room
112 * in least bit(ie, look at obj_to_location).
113 * We use the bit to synchronize between object access by
114 * user and migration.
115 */
116#define HANDLE_PIN_BIT 0
117
118/*
119 * Head in allocated object should have OBJ_ALLOCATED_TAG
120 * to identify the object was allocated or not.
121 * It's okay to add the status bit in the least bit because
122 * header keeps handle which is 4byte-aligned address so we
123 * have room for two bit at least.
124 */
125#define OBJ_ALLOCATED_TAG 1
126#define OBJ_TAG_BITS 1
127#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
128#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
129
130#define MAX(a, b) ((a) >= (b) ? (a) : (b))
131/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
132#define ZS_MIN_ALLOC_SIZE \
133 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 134/* each chunk includes extra space to keep handle */
7b60a685 135#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
136
137/*
7eb52512 138 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
139 * trader-off here:
140 * - Large number of size classes is potentially wasteful as free page are
141 * spread across these classes
142 * - Small number of size classes causes large internal fragmentation
143 * - Probably its better to use specific size classes (empirically
144 * determined). NOTE: all those class sizes must be set as multiple of
145 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
146 *
147 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
148 * (reason above)
149 */
d662b8eb 150#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
0959c63f
SJ
151
152/*
153 * We do not maintain any list for completely empty or full pages
154 */
155enum fullness_group {
156 ZS_ALMOST_FULL,
157 ZS_ALMOST_EMPTY,
158 _ZS_NR_FULLNESS_GROUPS,
159
160 ZS_EMPTY,
161 ZS_FULL
162};
163
0f050d99
GM
164enum zs_stat_type {
165 OBJ_ALLOCATED,
166 OBJ_USED,
248ca1b0
MK
167 CLASS_ALMOST_FULL,
168 CLASS_ALMOST_EMPTY,
0f050d99
GM
169};
170
6fe5186f
SS
171#ifdef CONFIG_ZSMALLOC_STAT
172#define NR_ZS_STAT_TYPE (CLASS_ALMOST_EMPTY + 1)
173#else
174#define NR_ZS_STAT_TYPE (OBJ_USED + 1)
175#endif
176
0f050d99
GM
177struct zs_size_stat {
178 unsigned long objs[NR_ZS_STAT_TYPE];
179};
180
57244594
SS
181#ifdef CONFIG_ZSMALLOC_STAT
182static struct dentry *zs_stat_root;
0f050d99
GM
183#endif
184
40f9fb8c
MG
185/*
186 * number of size_classes
187 */
188static int zs_size_classes;
189
0959c63f
SJ
190/*
191 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
192 * n <= N / f, where
193 * n = number of allocated objects
194 * N = total number of objects zspage can store
6dd9737e 195 * f = fullness_threshold_frac
0959c63f
SJ
196 *
197 * Similarly, we assign zspage to:
198 * ZS_ALMOST_FULL when n > N / f
199 * ZS_EMPTY when n == 0
200 * ZS_FULL when n == N
201 *
202 * (see: fix_fullness_group())
203 */
204static const int fullness_threshold_frac = 4;
205
206struct size_class {
57244594
SS
207 spinlock_t lock;
208 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
0959c63f
SJ
209 /*
210 * Size of objects stored in this class. Must be multiple
211 * of ZS_ALIGN.
212 */
213 int size;
214 unsigned int index;
215
0f050d99 216 struct zs_size_stat stats;
0959c63f 217
7dfa4612
WY
218 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
219 int pages_per_zspage;
57244594
SS
220 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
221 bool huge;
0959c63f
SJ
222};
223
224/*
225 * Placed within free objects to form a singly linked list.
226 * For every zspage, first_page->freelist gives head of this list.
227 *
228 * This must be power of 2 and less than or equal to ZS_ALIGN
229 */
230struct link_free {
2e40e163
MK
231 union {
232 /*
233 * Position of next free chunk (encodes <PFN, obj_idx>)
234 * It's valid for non-allocated object
235 */
236 void *next;
237 /*
238 * Handle of allocated object.
239 */
240 unsigned long handle;
241 };
0959c63f
SJ
242};
243
244struct zs_pool {
6f3526d6 245 const char *name;
0f050d99 246
40f9fb8c 247 struct size_class **size_class;
2e40e163 248 struct kmem_cache *handle_cachep;
0959c63f
SJ
249
250 gfp_t flags; /* allocation flags used when growing pool */
13de8933 251 atomic_long_t pages_allocated;
0f050d99 252
7d3f3938 253 struct zs_pool_stats stats;
ab9d306d
SS
254
255 /* Compact classes */
256 struct shrinker shrinker;
257 /*
258 * To signify that register_shrinker() was successful
259 * and unregister_shrinker() will not Oops.
260 */
261 bool shrinker_enabled;
0f050d99
GM
262#ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry *stat_dentry;
264#endif
0959c63f 265};
61989a80
NG
266
267/*
268 * A zspage's class index and fullness group
269 * are encoded in its (first)page->mapping
270 */
271#define CLASS_IDX_BITS 28
272#define FULLNESS_BITS 4
273#define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
274#define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
275
f553646a 276struct mapping_area {
1b945aee 277#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
278 struct vm_struct *vm; /* vm area for mapping object that span pages */
279#else
280 char *vm_buf; /* copy buffer for objects that span pages */
281#endif
282 char *vm_addr; /* address of kmap_atomic()'ed pages */
283 enum zs_mapmode vm_mm; /* mapping mode */
284};
285
2e40e163
MK
286static int create_handle_cache(struct zs_pool *pool)
287{
288 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
289 0, 0, NULL);
290 return pool->handle_cachep ? 0 : 1;
291}
292
293static void destroy_handle_cache(struct zs_pool *pool)
294{
cd10add0 295 kmem_cache_destroy(pool->handle_cachep);
2e40e163
MK
296}
297
298static unsigned long alloc_handle(struct zs_pool *pool)
299{
300 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
301 pool->flags & ~__GFP_HIGHMEM);
302}
303
304static void free_handle(struct zs_pool *pool, unsigned long handle)
305{
306 kmem_cache_free(pool->handle_cachep, (void *)handle);
307}
308
309static void record_obj(unsigned long handle, unsigned long obj)
310{
c102f07c
JL
311 /*
312 * lsb of @obj represents handle lock while other bits
313 * represent object value the handle is pointing so
314 * updating shouldn't do store tearing.
315 */
316 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
317}
318
c795779d
DS
319/* zpool driver */
320
321#ifdef CONFIG_ZPOOL
322
6f3526d6 323static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 324 const struct zpool_ops *zpool_ops,
479305fd 325 struct zpool *zpool)
c795779d 326{
3eba0c6a 327 return zs_create_pool(name, gfp);
c795779d
DS
328}
329
330static void zs_zpool_destroy(void *pool)
331{
332 zs_destroy_pool(pool);
333}
334
335static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
336 unsigned long *handle)
337{
338 *handle = zs_malloc(pool, size);
339 return *handle ? 0 : -1;
340}
341static void zs_zpool_free(void *pool, unsigned long handle)
342{
343 zs_free(pool, handle);
344}
345
346static int zs_zpool_shrink(void *pool, unsigned int pages,
347 unsigned int *reclaimed)
348{
349 return -EINVAL;
350}
351
352static void *zs_zpool_map(void *pool, unsigned long handle,
353 enum zpool_mapmode mm)
354{
355 enum zs_mapmode zs_mm;
356
357 switch (mm) {
358 case ZPOOL_MM_RO:
359 zs_mm = ZS_MM_RO;
360 break;
361 case ZPOOL_MM_WO:
362 zs_mm = ZS_MM_WO;
363 break;
364 case ZPOOL_MM_RW: /* fallthru */
365 default:
366 zs_mm = ZS_MM_RW;
367 break;
368 }
369
370 return zs_map_object(pool, handle, zs_mm);
371}
372static void zs_zpool_unmap(void *pool, unsigned long handle)
373{
374 zs_unmap_object(pool, handle);
375}
376
377static u64 zs_zpool_total_size(void *pool)
378{
722cdc17 379 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
380}
381
382static struct zpool_driver zs_zpool_driver = {
383 .type = "zsmalloc",
384 .owner = THIS_MODULE,
385 .create = zs_zpool_create,
386 .destroy = zs_zpool_destroy,
387 .malloc = zs_zpool_malloc,
388 .free = zs_zpool_free,
389 .shrink = zs_zpool_shrink,
390 .map = zs_zpool_map,
391 .unmap = zs_zpool_unmap,
392 .total_size = zs_zpool_total_size,
393};
394
137f8cff 395MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
396#endif /* CONFIG_ZPOOL */
397
248ca1b0
MK
398static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
399{
400 return pages_per_zspage * PAGE_SIZE / size;
401}
402
61989a80
NG
403/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
404static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
405
406static int is_first_page(struct page *page)
407{
a27545bf 408 return PagePrivate(page);
61989a80
NG
409}
410
411static int is_last_page(struct page *page)
412{
a27545bf 413 return PagePrivate2(page);
61989a80
NG
414}
415
a4209467
MK
416static void get_zspage_mapping(struct page *first_page,
417 unsigned int *class_idx,
61989a80
NG
418 enum fullness_group *fullness)
419{
420 unsigned long m;
830e4bc5 421 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 422
a4209467 423 m = (unsigned long)first_page->mapping;
61989a80
NG
424 *fullness = m & FULLNESS_MASK;
425 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
426}
427
a4209467
MK
428static void set_zspage_mapping(struct page *first_page,
429 unsigned int class_idx,
61989a80
NG
430 enum fullness_group fullness)
431{
432 unsigned long m;
830e4bc5 433 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
434
435 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
436 (fullness & FULLNESS_MASK);
a4209467 437 first_page->mapping = (struct address_space *)m;
61989a80
NG
438}
439
c3e3e88a
NC
440/*
441 * zsmalloc divides the pool into various size classes where each
442 * class maintains a list of zspages where each zspage is divided
443 * into equal sized chunks. Each allocation falls into one of these
444 * classes depending on its size. This function returns index of the
445 * size class which has chunk size big enough to hold the give size.
446 */
61989a80
NG
447static int get_size_class_index(int size)
448{
449 int idx = 0;
450
451 if (likely(size > ZS_MIN_ALLOC_SIZE))
452 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
453 ZS_SIZE_CLASS_DELTA);
454
7b60a685 455 return min(zs_size_classes - 1, idx);
61989a80
NG
456}
457
248ca1b0
MK
458static inline void zs_stat_inc(struct size_class *class,
459 enum zs_stat_type type, unsigned long cnt)
460{
6fe5186f
SS
461 if (type < NR_ZS_STAT_TYPE)
462 class->stats.objs[type] += cnt;
248ca1b0
MK
463}
464
465static inline void zs_stat_dec(struct size_class *class,
466 enum zs_stat_type type, unsigned long cnt)
467{
6fe5186f
SS
468 if (type < NR_ZS_STAT_TYPE)
469 class->stats.objs[type] -= cnt;
248ca1b0
MK
470}
471
472static inline unsigned long zs_stat_get(struct size_class *class,
473 enum zs_stat_type type)
474{
6fe5186f
SS
475 if (type < NR_ZS_STAT_TYPE)
476 return class->stats.objs[type];
477 return 0;
248ca1b0
MK
478}
479
57244594
SS
480#ifdef CONFIG_ZSMALLOC_STAT
481
248ca1b0
MK
482static int __init zs_stat_init(void)
483{
484 if (!debugfs_initialized())
485 return -ENODEV;
486
487 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
488 if (!zs_stat_root)
489 return -ENOMEM;
490
491 return 0;
492}
493
494static void __exit zs_stat_exit(void)
495{
496 debugfs_remove_recursive(zs_stat_root);
497}
498
1120ed54
SS
499static unsigned long zs_can_compact(struct size_class *class);
500
248ca1b0
MK
501static int zs_stats_size_show(struct seq_file *s, void *v)
502{
503 int i;
504 struct zs_pool *pool = s->private;
505 struct size_class *class;
506 int objs_per_zspage;
507 unsigned long class_almost_full, class_almost_empty;
1120ed54 508 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
509 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
510 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 511 unsigned long total_freeable = 0;
248ca1b0 512
1120ed54 513 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
514 "class", "size", "almost_full", "almost_empty",
515 "obj_allocated", "obj_used", "pages_used",
1120ed54 516 "pages_per_zspage", "freeable");
248ca1b0
MK
517
518 for (i = 0; i < zs_size_classes; i++) {
519 class = pool->size_class[i];
520
521 if (class->index != i)
522 continue;
523
524 spin_lock(&class->lock);
525 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
526 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
527 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
528 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 529 freeable = zs_can_compact(class);
248ca1b0
MK
530 spin_unlock(&class->lock);
531
532 objs_per_zspage = get_maxobj_per_zspage(class->size,
533 class->pages_per_zspage);
534 pages_used = obj_allocated / objs_per_zspage *
535 class->pages_per_zspage;
536
1120ed54
SS
537 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
538 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
539 i, class->size, class_almost_full, class_almost_empty,
540 obj_allocated, obj_used, pages_used,
1120ed54 541 class->pages_per_zspage, freeable);
248ca1b0
MK
542
543 total_class_almost_full += class_almost_full;
544 total_class_almost_empty += class_almost_empty;
545 total_objs += obj_allocated;
546 total_used_objs += obj_used;
547 total_pages += pages_used;
1120ed54 548 total_freeable += freeable;
248ca1b0
MK
549 }
550
551 seq_puts(s, "\n");
1120ed54 552 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
553 "Total", "", total_class_almost_full,
554 total_class_almost_empty, total_objs,
1120ed54 555 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
556
557 return 0;
558}
559
560static int zs_stats_size_open(struct inode *inode, struct file *file)
561{
562 return single_open(file, zs_stats_size_show, inode->i_private);
563}
564
565static const struct file_operations zs_stat_size_ops = {
566 .open = zs_stats_size_open,
567 .read = seq_read,
568 .llseek = seq_lseek,
569 .release = single_release,
570};
571
6f3526d6 572static int zs_pool_stat_create(const char *name, struct zs_pool *pool)
248ca1b0
MK
573{
574 struct dentry *entry;
575
576 if (!zs_stat_root)
577 return -ENODEV;
578
579 entry = debugfs_create_dir(name, zs_stat_root);
580 if (!entry) {
581 pr_warn("debugfs dir <%s> creation failed\n", name);
582 return -ENOMEM;
583 }
584 pool->stat_dentry = entry;
585
586 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
587 pool->stat_dentry, pool, &zs_stat_size_ops);
588 if (!entry) {
589 pr_warn("%s: debugfs file entry <%s> creation failed\n",
590 name, "classes");
591 return -ENOMEM;
592 }
593
594 return 0;
595}
596
597static void zs_pool_stat_destroy(struct zs_pool *pool)
598{
599 debugfs_remove_recursive(pool->stat_dentry);
600}
601
602#else /* CONFIG_ZSMALLOC_STAT */
248ca1b0
MK
603static int __init zs_stat_init(void)
604{
605 return 0;
606}
607
608static void __exit zs_stat_exit(void)
609{
610}
611
6f3526d6 612static inline int zs_pool_stat_create(const char *name, struct zs_pool *pool)
248ca1b0
MK
613{
614 return 0;
615}
616
617static inline void zs_pool_stat_destroy(struct zs_pool *pool)
618{
619}
248ca1b0
MK
620#endif
621
622
c3e3e88a
NC
623/*
624 * For each size class, zspages are divided into different groups
625 * depending on how "full" they are. This was done so that we could
626 * easily find empty or nearly empty zspages when we try to shrink
627 * the pool (not yet implemented). This function returns fullness
628 * status of the given page.
629 */
a4209467 630static enum fullness_group get_fullness_group(struct page *first_page)
61989a80
NG
631{
632 int inuse, max_objects;
633 enum fullness_group fg;
830e4bc5
MK
634
635 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80 636
a4209467
MK
637 inuse = first_page->inuse;
638 max_objects = first_page->objects;
61989a80
NG
639
640 if (inuse == 0)
641 fg = ZS_EMPTY;
642 else if (inuse == max_objects)
643 fg = ZS_FULL;
d3d07c92 644 else if (inuse <= 3 * max_objects / fullness_threshold_frac)
61989a80
NG
645 fg = ZS_ALMOST_EMPTY;
646 else
647 fg = ZS_ALMOST_FULL;
648
649 return fg;
650}
651
c3e3e88a
NC
652/*
653 * Each size class maintains various freelists and zspages are assigned
654 * to one of these freelists based on the number of live objects they
655 * have. This functions inserts the given zspage into the freelist
656 * identified by <class, fullness_group>.
657 */
a4209467 658static void insert_zspage(struct page *first_page, struct size_class *class,
61989a80
NG
659 enum fullness_group fullness)
660{
661 struct page **head;
662
830e4bc5 663 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
664
665 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
666 return;
667
248ca1b0
MK
668 zs_stat_inc(class, fullness == ZS_ALMOST_EMPTY ?
669 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
58f17117
SS
670
671 head = &class->fullness_list[fullness];
672 if (!*head) {
a4209467 673 *head = first_page;
58f17117
SS
674 return;
675 }
676
677 /*
678 * We want to see more ZS_FULL pages and less almost
679 * empty/full. Put pages with higher ->inuse first.
680 */
a4209467
MK
681 list_add_tail(&first_page->lru, &(*head)->lru);
682 if (first_page->inuse >= (*head)->inuse)
683 *head = first_page;
61989a80
NG
684}
685
c3e3e88a
NC
686/*
687 * This function removes the given zspage from the freelist identified
688 * by <class, fullness_group>.
689 */
a4209467 690static void remove_zspage(struct page *first_page, struct size_class *class,
61989a80
NG
691 enum fullness_group fullness)
692{
693 struct page **head;
694
830e4bc5 695 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
61989a80
NG
696
697 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
698 return;
699
700 head = &class->fullness_list[fullness];
830e4bc5 701 VM_BUG_ON_PAGE(!*head, first_page);
61989a80
NG
702 if (list_empty(&(*head)->lru))
703 *head = NULL;
a4209467 704 else if (*head == first_page)
61989a80
NG
705 *head = (struct page *)list_entry((*head)->lru.next,
706 struct page, lru);
707
a4209467 708 list_del_init(&first_page->lru);
248ca1b0
MK
709 zs_stat_dec(class, fullness == ZS_ALMOST_EMPTY ?
710 CLASS_ALMOST_EMPTY : CLASS_ALMOST_FULL, 1);
61989a80
NG
711}
712
c3e3e88a
NC
713/*
714 * Each size class maintains zspages in different fullness groups depending
715 * on the number of live objects they contain. When allocating or freeing
716 * objects, the fullness status of the page can change, say, from ALMOST_FULL
717 * to ALMOST_EMPTY when freeing an object. This function checks if such
718 * a status change has occurred for the given page and accordingly moves the
719 * page from the freelist of the old fullness group to that of the new
720 * fullness group.
721 */
c7806261 722static enum fullness_group fix_fullness_group(struct size_class *class,
a4209467 723 struct page *first_page)
61989a80
NG
724{
725 int class_idx;
61989a80
NG
726 enum fullness_group currfg, newfg;
727
a4209467
MK
728 get_zspage_mapping(first_page, &class_idx, &currfg);
729 newfg = get_fullness_group(first_page);
61989a80
NG
730 if (newfg == currfg)
731 goto out;
732
a4209467
MK
733 remove_zspage(first_page, class, currfg);
734 insert_zspage(first_page, class, newfg);
735 set_zspage_mapping(first_page, class_idx, newfg);
61989a80
NG
736
737out:
738 return newfg;
739}
740
741/*
742 * We have to decide on how many pages to link together
743 * to form a zspage for each size class. This is important
744 * to reduce wastage due to unusable space left at end of
745 * each zspage which is given as:
888fa374
YX
746 * wastage = Zp % class_size
747 * usage = Zp - wastage
61989a80
NG
748 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
749 *
750 * For example, for size class of 3/8 * PAGE_SIZE, we should
751 * link together 3 PAGE_SIZE sized pages to form a zspage
752 * since then we can perfectly fit in 8 such objects.
753 */
2e3b6154 754static int get_pages_per_zspage(int class_size)
61989a80
NG
755{
756 int i, max_usedpc = 0;
757 /* zspage order which gives maximum used size per KB */
758 int max_usedpc_order = 1;
759
84d4faab 760 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
761 int zspage_size;
762 int waste, usedpc;
763
764 zspage_size = i * PAGE_SIZE;
765 waste = zspage_size % class_size;
766 usedpc = (zspage_size - waste) * 100 / zspage_size;
767
768 if (usedpc > max_usedpc) {
769 max_usedpc = usedpc;
770 max_usedpc_order = i;
771 }
772 }
773
774 return max_usedpc_order;
775}
776
777/*
778 * A single 'zspage' is composed of many system pages which are
779 * linked together using fields in struct page. This function finds
780 * the first/head page, given any component page of a zspage.
781 */
782static struct page *get_first_page(struct page *page)
783{
784 if (is_first_page(page))
785 return page;
786 else
32e7ba1e 787 return (struct page *)page_private(page);
61989a80
NG
788}
789
790static struct page *get_next_page(struct page *page)
791{
792 struct page *next;
793
794 if (is_last_page(page))
795 next = NULL;
796 else if (is_first_page(page))
e842b976 797 next = (struct page *)page_private(page);
61989a80
NG
798 else
799 next = list_entry(page->lru.next, struct page, lru);
800
801 return next;
802}
803
67296874
OH
804/*
805 * Encode <page, obj_idx> as a single handle value.
312fcae2 806 * We use the least bit of handle for tagging.
67296874 807 */
312fcae2 808static void *location_to_obj(struct page *page, unsigned long obj_idx)
61989a80 809{
312fcae2 810 unsigned long obj;
61989a80
NG
811
812 if (!page) {
830e4bc5 813 VM_BUG_ON(obj_idx);
61989a80
NG
814 return NULL;
815 }
816
312fcae2
MK
817 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
818 obj |= ((obj_idx) & OBJ_INDEX_MASK);
819 obj <<= OBJ_TAG_BITS;
61989a80 820
312fcae2 821 return (void *)obj;
61989a80
NG
822}
823
67296874
OH
824/*
825 * Decode <page, obj_idx> pair from the given object handle. We adjust the
826 * decoded obj_idx back to its original value since it was adjusted in
312fcae2 827 * location_to_obj().
67296874 828 */
312fcae2 829static void obj_to_location(unsigned long obj, struct page **page,
61989a80
NG
830 unsigned long *obj_idx)
831{
312fcae2
MK
832 obj >>= OBJ_TAG_BITS;
833 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
834 *obj_idx = (obj & OBJ_INDEX_MASK);
61989a80
NG
835}
836
2e40e163
MK
837static unsigned long handle_to_obj(unsigned long handle)
838{
839 return *(unsigned long *)handle;
840}
841
7b60a685
MK
842static unsigned long obj_to_head(struct size_class *class, struct page *page,
843 void *obj)
312fcae2 844{
7b60a685 845 if (class->huge) {
830e4bc5 846 VM_BUG_ON_PAGE(!is_first_page(page), page);
12a7bfad 847 return page_private(page);
7b60a685
MK
848 } else
849 return *(unsigned long *)obj;
312fcae2
MK
850}
851
61989a80
NG
852static unsigned long obj_idx_to_offset(struct page *page,
853 unsigned long obj_idx, int class_size)
854{
855 unsigned long off = 0;
856
857 if (!is_first_page(page))
858 off = page->index;
859
860 return off + obj_idx * class_size;
861}
862
312fcae2
MK
863static inline int trypin_tag(unsigned long handle)
864{
865 unsigned long *ptr = (unsigned long *)handle;
866
867 return !test_and_set_bit_lock(HANDLE_PIN_BIT, ptr);
868}
869
870static void pin_tag(unsigned long handle)
871{
872 while (!trypin_tag(handle));
873}
874
875static void unpin_tag(unsigned long handle)
876{
877 unsigned long *ptr = (unsigned long *)handle;
878
879 clear_bit_unlock(HANDLE_PIN_BIT, ptr);
880}
881
f4477e90
NG
882static void reset_page(struct page *page)
883{
884 clear_bit(PG_private, &page->flags);
885 clear_bit(PG_private_2, &page->flags);
886 set_page_private(page, 0);
887 page->mapping = NULL;
888 page->freelist = NULL;
22b751c3 889 page_mapcount_reset(page);
f4477e90
NG
890}
891
61989a80
NG
892static void free_zspage(struct page *first_page)
893{
f4477e90 894 struct page *nextp, *tmp, *head_extra;
61989a80 895
830e4bc5
MK
896 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
897 VM_BUG_ON_PAGE(first_page->inuse, first_page);
61989a80 898
f4477e90 899 head_extra = (struct page *)page_private(first_page);
61989a80 900
f4477e90 901 reset_page(first_page);
61989a80
NG
902 __free_page(first_page);
903
904 /* zspage with only 1 system page */
f4477e90 905 if (!head_extra)
61989a80
NG
906 return;
907
f4477e90 908 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
61989a80 909 list_del(&nextp->lru);
f4477e90 910 reset_page(nextp);
61989a80
NG
911 __free_page(nextp);
912 }
f4477e90
NG
913 reset_page(head_extra);
914 __free_page(head_extra);
61989a80
NG
915}
916
917/* Initialize a newly allocated zspage */
918static void init_zspage(struct page *first_page, struct size_class *class)
919{
920 unsigned long off = 0;
921 struct page *page = first_page;
922
830e4bc5
MK
923 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
924
61989a80
NG
925 while (page) {
926 struct page *next_page;
927 struct link_free *link;
5538c562 928 unsigned int i = 1;
af4ee5e9 929 void *vaddr;
61989a80
NG
930
931 /*
932 * page->index stores offset of first object starting
933 * in the page. For the first page, this is always 0,
934 * so we use first_page->index (aka ->freelist) to store
935 * head of corresponding zspage's freelist.
936 */
937 if (page != first_page)
938 page->index = off;
939
af4ee5e9
MK
940 vaddr = kmap_atomic(page);
941 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
942
943 while ((off += class->size) < PAGE_SIZE) {
312fcae2 944 link->next = location_to_obj(page, i++);
5538c562 945 link += class->size / sizeof(*link);
61989a80
NG
946 }
947
948 /*
949 * We now come to the last (full or partial) object on this
950 * page, which must point to the first object on the next
951 * page (if present)
952 */
953 next_page = get_next_page(page);
312fcae2 954 link->next = location_to_obj(next_page, 0);
af4ee5e9 955 kunmap_atomic(vaddr);
61989a80 956 page = next_page;
5538c562 957 off %= PAGE_SIZE;
61989a80
NG
958 }
959}
960
961/*
962 * Allocate a zspage for the given size class
963 */
964static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
965{
966 int i, error;
b4b700c5 967 struct page *first_page = NULL, *uninitialized_var(prev_page);
61989a80
NG
968
969 /*
970 * Allocate individual pages and link them together as:
971 * 1. first page->private = first sub-page
972 * 2. all sub-pages are linked together using page->lru
32e7ba1e 973 * 3. each sub-page is linked to the first page using page->private
61989a80
NG
974 *
975 * For each size class, First/Head pages are linked together using
976 * page->lru. Also, we set PG_private to identify the first page
977 * (i.e. no other sub-page has this flag set) and PG_private_2 to
978 * identify the last page.
979 */
980 error = -ENOMEM;
2e3b6154 981 for (i = 0; i < class->pages_per_zspage; i++) {
b4b700c5 982 struct page *page;
61989a80
NG
983
984 page = alloc_page(flags);
985 if (!page)
986 goto cleanup;
987
988 INIT_LIST_HEAD(&page->lru);
989 if (i == 0) { /* first page */
a27545bf 990 SetPagePrivate(page);
61989a80
NG
991 set_page_private(page, 0);
992 first_page = page;
993 first_page->inuse = 0;
994 }
995 if (i == 1)
e842b976 996 set_page_private(first_page, (unsigned long)page);
61989a80 997 if (i >= 1)
32e7ba1e 998 set_page_private(page, (unsigned long)first_page);
61989a80
NG
999 if (i >= 2)
1000 list_add(&page->lru, &prev_page->lru);
2e3b6154 1001 if (i == class->pages_per_zspage - 1) /* last page */
a27545bf 1002 SetPagePrivate2(page);
61989a80
NG
1003 prev_page = page;
1004 }
1005
1006 init_zspage(first_page, class);
1007
312fcae2 1008 first_page->freelist = location_to_obj(first_page, 0);
61989a80 1009 /* Maximum number of objects we can store in this zspage */
2e3b6154 1010 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
61989a80
NG
1011
1012 error = 0; /* Success */
1013
1014cleanup:
1015 if (unlikely(error) && first_page) {
1016 free_zspage(first_page);
1017 first_page = NULL;
1018 }
1019
1020 return first_page;
1021}
1022
1023static struct page *find_get_zspage(struct size_class *class)
1024{
1025 int i;
1026 struct page *page;
1027
1028 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1029 page = class->fullness_list[i];
1030 if (page)
1031 break;
1032 }
1033
1034 return page;
1035}
1036
1b945aee 1037#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1038static inline int __zs_cpu_up(struct mapping_area *area)
1039{
1040 /*
1041 * Make sure we don't leak memory if a cpu UP notification
1042 * and zs_init() race and both call zs_cpu_up() on the same cpu
1043 */
1044 if (area->vm)
1045 return 0;
1046 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1047 if (!area->vm)
1048 return -ENOMEM;
1049 return 0;
1050}
1051
1052static inline void __zs_cpu_down(struct mapping_area *area)
1053{
1054 if (area->vm)
1055 free_vm_area(area->vm);
1056 area->vm = NULL;
1057}
1058
1059static inline void *__zs_map_object(struct mapping_area *area,
1060 struct page *pages[2], int off, int size)
1061{
f6f8ed47 1062 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1063 area->vm_addr = area->vm->addr;
1064 return area->vm_addr + off;
1065}
1066
1067static inline void __zs_unmap_object(struct mapping_area *area,
1068 struct page *pages[2], int off, int size)
1069{
1070 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1071
d95abbbb 1072 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1073}
1074
1b945aee 1075#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1076
1077static inline int __zs_cpu_up(struct mapping_area *area)
1078{
1079 /*
1080 * Make sure we don't leak memory if a cpu UP notification
1081 * and zs_init() race and both call zs_cpu_up() on the same cpu
1082 */
1083 if (area->vm_buf)
1084 return 0;
40f9fb8c 1085 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1086 if (!area->vm_buf)
1087 return -ENOMEM;
1088 return 0;
1089}
1090
1091static inline void __zs_cpu_down(struct mapping_area *area)
1092{
40f9fb8c 1093 kfree(area->vm_buf);
f553646a
SJ
1094 area->vm_buf = NULL;
1095}
1096
1097static void *__zs_map_object(struct mapping_area *area,
1098 struct page *pages[2], int off, int size)
5f601902 1099{
5f601902
SJ
1100 int sizes[2];
1101 void *addr;
f553646a 1102 char *buf = area->vm_buf;
5f601902 1103
f553646a
SJ
1104 /* disable page faults to match kmap_atomic() return conditions */
1105 pagefault_disable();
1106
1107 /* no read fastpath */
1108 if (area->vm_mm == ZS_MM_WO)
1109 goto out;
5f601902
SJ
1110
1111 sizes[0] = PAGE_SIZE - off;
1112 sizes[1] = size - sizes[0];
1113
5f601902
SJ
1114 /* copy object to per-cpu buffer */
1115 addr = kmap_atomic(pages[0]);
1116 memcpy(buf, addr + off, sizes[0]);
1117 kunmap_atomic(addr);
1118 addr = kmap_atomic(pages[1]);
1119 memcpy(buf + sizes[0], addr, sizes[1]);
1120 kunmap_atomic(addr);
f553646a
SJ
1121out:
1122 return area->vm_buf;
5f601902
SJ
1123}
1124
f553646a
SJ
1125static void __zs_unmap_object(struct mapping_area *area,
1126 struct page *pages[2], int off, int size)
5f601902 1127{
5f601902
SJ
1128 int sizes[2];
1129 void *addr;
2e40e163 1130 char *buf;
5f601902 1131
f553646a
SJ
1132 /* no write fastpath */
1133 if (area->vm_mm == ZS_MM_RO)
1134 goto out;
5f601902 1135
7b60a685 1136 buf = area->vm_buf;
a82cbf07
YX
1137 buf = buf + ZS_HANDLE_SIZE;
1138 size -= ZS_HANDLE_SIZE;
1139 off += ZS_HANDLE_SIZE;
2e40e163 1140
5f601902
SJ
1141 sizes[0] = PAGE_SIZE - off;
1142 sizes[1] = size - sizes[0];
1143
1144 /* copy per-cpu buffer to object */
1145 addr = kmap_atomic(pages[0]);
1146 memcpy(addr + off, buf, sizes[0]);
1147 kunmap_atomic(addr);
1148 addr = kmap_atomic(pages[1]);
1149 memcpy(addr, buf + sizes[0], sizes[1]);
1150 kunmap_atomic(addr);
f553646a
SJ
1151
1152out:
1153 /* enable page faults to match kunmap_atomic() return conditions */
1154 pagefault_enable();
5f601902 1155}
61989a80 1156
1b945aee 1157#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1158
61989a80
NG
1159static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1160 void *pcpu)
1161{
f553646a 1162 int ret, cpu = (long)pcpu;
61989a80
NG
1163 struct mapping_area *area;
1164
1165 switch (action) {
1166 case CPU_UP_PREPARE:
1167 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1168 ret = __zs_cpu_up(area);
1169 if (ret)
1170 return notifier_from_errno(ret);
61989a80
NG
1171 break;
1172 case CPU_DEAD:
1173 case CPU_UP_CANCELED:
1174 area = &per_cpu(zs_map_area, cpu);
f553646a 1175 __zs_cpu_down(area);
61989a80
NG
1176 break;
1177 }
1178
1179 return NOTIFY_OK;
1180}
1181
1182static struct notifier_block zs_cpu_nb = {
1183 .notifier_call = zs_cpu_notifier
1184};
1185
b1b00a5b 1186static int zs_register_cpu_notifier(void)
61989a80 1187{
b1b00a5b 1188 int cpu, uninitialized_var(ret);
61989a80 1189
f0e71fcd
SB
1190 cpu_notifier_register_begin();
1191
1192 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1193 for_each_online_cpu(cpu) {
1194 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1195 if (notifier_to_errno(ret))
1196 break;
61989a80 1197 }
f0e71fcd
SB
1198
1199 cpu_notifier_register_done();
b1b00a5b
SS
1200 return notifier_to_errno(ret);
1201}
f0e71fcd 1202
66cdef66 1203static void zs_unregister_cpu_notifier(void)
40f9fb8c 1204{
66cdef66 1205 int cpu;
40f9fb8c 1206
66cdef66 1207 cpu_notifier_register_begin();
40f9fb8c 1208
66cdef66
GM
1209 for_each_online_cpu(cpu)
1210 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1211 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1212
66cdef66 1213 cpu_notifier_register_done();
b1b00a5b
SS
1214}
1215
66cdef66 1216static void init_zs_size_classes(void)
b1b00a5b 1217{
66cdef66 1218 int nr;
c795779d 1219
66cdef66
GM
1220 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1221 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1222 nr += 1;
40f9fb8c 1223
66cdef66 1224 zs_size_classes = nr;
61989a80
NG
1225}
1226
9eec4cd5
JK
1227static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
1228{
1229 if (prev->pages_per_zspage != pages_per_zspage)
1230 return false;
1231
1232 if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
1233 != get_maxobj_per_zspage(size, pages_per_zspage))
1234 return false;
1235
1236 return true;
1237}
1238
a4209467 1239static bool zspage_full(struct page *first_page)
312fcae2 1240{
830e4bc5 1241 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
312fcae2 1242
a4209467 1243 return first_page->inuse == first_page->objects;
312fcae2
MK
1244}
1245
66cdef66
GM
1246unsigned long zs_get_total_pages(struct zs_pool *pool)
1247{
1248 return atomic_long_read(&pool->pages_allocated);
1249}
1250EXPORT_SYMBOL_GPL(zs_get_total_pages);
1251
4bbc0bc0 1252/**
66cdef66
GM
1253 * zs_map_object - get address of allocated object from handle.
1254 * @pool: pool from which the object was allocated
1255 * @handle: handle returned from zs_malloc
4bbc0bc0 1256 *
66cdef66
GM
1257 * Before using an object allocated from zs_malloc, it must be mapped using
1258 * this function. When done with the object, it must be unmapped using
1259 * zs_unmap_object.
4bbc0bc0 1260 *
66cdef66
GM
1261 * Only one object can be mapped per cpu at a time. There is no protection
1262 * against nested mappings.
1263 *
1264 * This function returns with preemption and page faults disabled.
4bbc0bc0 1265 */
66cdef66
GM
1266void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1267 enum zs_mapmode mm)
61989a80 1268{
66cdef66 1269 struct page *page;
2e40e163 1270 unsigned long obj, obj_idx, off;
61989a80 1271
66cdef66
GM
1272 unsigned int class_idx;
1273 enum fullness_group fg;
1274 struct size_class *class;
1275 struct mapping_area *area;
1276 struct page *pages[2];
2e40e163 1277 void *ret;
61989a80 1278
9eec4cd5 1279 /*
66cdef66
GM
1280 * Because we use per-cpu mapping areas shared among the
1281 * pools/users, we can't allow mapping in interrupt context
1282 * because it can corrupt another users mappings.
9eec4cd5 1283 */
830e4bc5 1284 WARN_ON_ONCE(in_interrupt());
61989a80 1285
312fcae2
MK
1286 /* From now on, migration cannot move the object */
1287 pin_tag(handle);
1288
2e40e163
MK
1289 obj = handle_to_obj(handle);
1290 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1291 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1292 class = pool->size_class[class_idx];
1293 off = obj_idx_to_offset(page, obj_idx, class->size);
df8b5bb9 1294
66cdef66
GM
1295 area = &get_cpu_var(zs_map_area);
1296 area->vm_mm = mm;
1297 if (off + class->size <= PAGE_SIZE) {
1298 /* this object is contained entirely within a page */
1299 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1300 ret = area->vm_addr + off;
1301 goto out;
61989a80
NG
1302 }
1303
66cdef66
GM
1304 /* this object spans two pages */
1305 pages[0] = page;
1306 pages[1] = get_next_page(page);
1307 BUG_ON(!pages[1]);
9eec4cd5 1308
2e40e163
MK
1309 ret = __zs_map_object(area, pages, off, class->size);
1310out:
7b60a685
MK
1311 if (!class->huge)
1312 ret += ZS_HANDLE_SIZE;
1313
1314 return ret;
61989a80 1315}
66cdef66 1316EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1317
66cdef66 1318void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1319{
66cdef66 1320 struct page *page;
2e40e163 1321 unsigned long obj, obj_idx, off;
61989a80 1322
66cdef66
GM
1323 unsigned int class_idx;
1324 enum fullness_group fg;
1325 struct size_class *class;
1326 struct mapping_area *area;
9eec4cd5 1327
2e40e163
MK
1328 obj = handle_to_obj(handle);
1329 obj_to_location(obj, &page, &obj_idx);
66cdef66
GM
1330 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1331 class = pool->size_class[class_idx];
1332 off = obj_idx_to_offset(page, obj_idx, class->size);
61989a80 1333
66cdef66
GM
1334 area = this_cpu_ptr(&zs_map_area);
1335 if (off + class->size <= PAGE_SIZE)
1336 kunmap_atomic(area->vm_addr);
1337 else {
1338 struct page *pages[2];
40f9fb8c 1339
66cdef66
GM
1340 pages[0] = page;
1341 pages[1] = get_next_page(page);
1342 BUG_ON(!pages[1]);
1343
1344 __zs_unmap_object(area, pages, off, class->size);
1345 }
1346 put_cpu_var(zs_map_area);
312fcae2 1347 unpin_tag(handle);
61989a80 1348}
66cdef66 1349EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1350
c7806261
MK
1351static unsigned long obj_malloc(struct page *first_page,
1352 struct size_class *class, unsigned long handle)
1353{
1354 unsigned long obj;
1355 struct link_free *link;
1356
1357 struct page *m_page;
1358 unsigned long m_objidx, m_offset;
1359 void *vaddr;
1360
312fcae2 1361 handle |= OBJ_ALLOCATED_TAG;
c7806261
MK
1362 obj = (unsigned long)first_page->freelist;
1363 obj_to_location(obj, &m_page, &m_objidx);
1364 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1365
1366 vaddr = kmap_atomic(m_page);
1367 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1368 first_page->freelist = link->next;
7b60a685
MK
1369 if (!class->huge)
1370 /* record handle in the header of allocated chunk */
1371 link->handle = handle;
1372 else
1373 /* record handle in first_page->private */
1374 set_page_private(first_page, handle);
c7806261
MK
1375 kunmap_atomic(vaddr);
1376 first_page->inuse++;
1377 zs_stat_inc(class, OBJ_USED, 1);
1378
1379 return obj;
1380}
1381
1382
61989a80
NG
1383/**
1384 * zs_malloc - Allocate block of given size from pool.
1385 * @pool: pool to allocate from
1386 * @size: size of block to allocate
61989a80 1387 *
00a61d86 1388 * On success, handle to the allocated object is returned,
c2344348 1389 * otherwise 0.
61989a80
NG
1390 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1391 */
c2344348 1392unsigned long zs_malloc(struct zs_pool *pool, size_t size)
61989a80 1393{
2e40e163 1394 unsigned long handle, obj;
61989a80 1395 struct size_class *class;
c7806261 1396 struct page *first_page;
61989a80 1397
7b60a685 1398 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1399 return 0;
1400
1401 handle = alloc_handle(pool);
1402 if (!handle)
c2344348 1403 return 0;
61989a80 1404
2e40e163
MK
1405 /* extra space in chunk to keep the handle */
1406 size += ZS_HANDLE_SIZE;
9eec4cd5 1407 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1408
1409 spin_lock(&class->lock);
1410 first_page = find_get_zspage(class);
1411
1412 if (!first_page) {
1413 spin_unlock(&class->lock);
1414 first_page = alloc_zspage(class, pool->flags);
2e40e163
MK
1415 if (unlikely(!first_page)) {
1416 free_handle(pool, handle);
c2344348 1417 return 0;
2e40e163 1418 }
61989a80
NG
1419
1420 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
13de8933
MK
1421 atomic_long_add(class->pages_per_zspage,
1422 &pool->pages_allocated);
0f050d99 1423
61989a80 1424 spin_lock(&class->lock);
0f050d99
GM
1425 zs_stat_inc(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1426 class->size, class->pages_per_zspage));
61989a80
NG
1427 }
1428
c7806261 1429 obj = obj_malloc(first_page, class, handle);
61989a80 1430 /* Now move the zspage to another fullness group, if required */
c7806261 1431 fix_fullness_group(class, first_page);
2e40e163 1432 record_obj(handle, obj);
61989a80
NG
1433 spin_unlock(&class->lock);
1434
2e40e163 1435 return handle;
61989a80
NG
1436}
1437EXPORT_SYMBOL_GPL(zs_malloc);
1438
c7806261
MK
1439static void obj_free(struct zs_pool *pool, struct size_class *class,
1440 unsigned long obj)
61989a80
NG
1441{
1442 struct link_free *link;
1443 struct page *first_page, *f_page;
c7806261 1444 unsigned long f_objidx, f_offset;
af4ee5e9 1445 void *vaddr;
61989a80 1446
312fcae2 1447 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1448 obj_to_location(obj, &f_page, &f_objidx);
61989a80
NG
1449 first_page = get_first_page(f_page);
1450
61989a80
NG
1451 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1452
c7806261 1453 vaddr = kmap_atomic(f_page);
61989a80
NG
1454
1455 /* Insert this object in containing zspage's freelist */
af4ee5e9 1456 link = (struct link_free *)(vaddr + f_offset);
61989a80 1457 link->next = first_page->freelist;
7b60a685
MK
1458 if (class->huge)
1459 set_page_private(first_page, 0);
af4ee5e9 1460 kunmap_atomic(vaddr);
c2344348 1461 first_page->freelist = (void *)obj;
61989a80 1462 first_page->inuse--;
0f050d99 1463 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1464}
1465
1466void zs_free(struct zs_pool *pool, unsigned long handle)
1467{
1468 struct page *first_page, *f_page;
1469 unsigned long obj, f_objidx;
1470 int class_idx;
1471 struct size_class *class;
1472 enum fullness_group fullness;
1473
1474 if (unlikely(!handle))
1475 return;
1476
312fcae2 1477 pin_tag(handle);
c7806261 1478 obj = handle_to_obj(handle);
c7806261
MK
1479 obj_to_location(obj, &f_page, &f_objidx);
1480 first_page = get_first_page(f_page);
1481
1482 get_zspage_mapping(first_page, &class_idx, &fullness);
1483 class = pool->size_class[class_idx];
1484
1485 spin_lock(&class->lock);
1486 obj_free(pool, class, obj);
1487 fullness = fix_fullness_group(class, first_page);
312fcae2 1488 if (fullness == ZS_EMPTY) {
0f050d99
GM
1489 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1490 class->size, class->pages_per_zspage));
312fcae2
MK
1491 atomic_long_sub(class->pages_per_zspage,
1492 &pool->pages_allocated);
1493 free_zspage(first_page);
1494 }
61989a80 1495 spin_unlock(&class->lock);
312fcae2 1496 unpin_tag(handle);
61989a80 1497
312fcae2
MK
1498 free_handle(pool, handle);
1499}
1500EXPORT_SYMBOL_GPL(zs_free);
1501
0dc63d48 1502static void zs_object_copy(unsigned long dst, unsigned long src,
312fcae2
MK
1503 struct size_class *class)
1504{
1505 struct page *s_page, *d_page;
1506 unsigned long s_objidx, d_objidx;
1507 unsigned long s_off, d_off;
1508 void *s_addr, *d_addr;
1509 int s_size, d_size, size;
1510 int written = 0;
1511
1512 s_size = d_size = class->size;
1513
1514 obj_to_location(src, &s_page, &s_objidx);
1515 obj_to_location(dst, &d_page, &d_objidx);
1516
1517 s_off = obj_idx_to_offset(s_page, s_objidx, class->size);
1518 d_off = obj_idx_to_offset(d_page, d_objidx, class->size);
1519
1520 if (s_off + class->size > PAGE_SIZE)
1521 s_size = PAGE_SIZE - s_off;
1522
1523 if (d_off + class->size > PAGE_SIZE)
1524 d_size = PAGE_SIZE - d_off;
1525
1526 s_addr = kmap_atomic(s_page);
1527 d_addr = kmap_atomic(d_page);
1528
1529 while (1) {
1530 size = min(s_size, d_size);
1531 memcpy(d_addr + d_off, s_addr + s_off, size);
1532 written += size;
1533
1534 if (written == class->size)
1535 break;
1536
495819ea
SS
1537 s_off += size;
1538 s_size -= size;
1539 d_off += size;
1540 d_size -= size;
1541
1542 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1543 kunmap_atomic(d_addr);
1544 kunmap_atomic(s_addr);
1545 s_page = get_next_page(s_page);
312fcae2
MK
1546 s_addr = kmap_atomic(s_page);
1547 d_addr = kmap_atomic(d_page);
1548 s_size = class->size - written;
1549 s_off = 0;
312fcae2
MK
1550 }
1551
495819ea 1552 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1553 kunmap_atomic(d_addr);
1554 d_page = get_next_page(d_page);
312fcae2
MK
1555 d_addr = kmap_atomic(d_page);
1556 d_size = class->size - written;
1557 d_off = 0;
312fcae2
MK
1558 }
1559 }
1560
1561 kunmap_atomic(d_addr);
1562 kunmap_atomic(s_addr);
1563}
1564
1565/*
1566 * Find alloced object in zspage from index object and
1567 * return handle.
1568 */
1569static unsigned long find_alloced_obj(struct page *page, int index,
1570 struct size_class *class)
1571{
1572 unsigned long head;
1573 int offset = 0;
1574 unsigned long handle = 0;
1575 void *addr = kmap_atomic(page);
1576
1577 if (!is_first_page(page))
1578 offset = page->index;
1579 offset += class->size * index;
1580
1581 while (offset < PAGE_SIZE) {
7b60a685 1582 head = obj_to_head(class, page, addr + offset);
312fcae2
MK
1583 if (head & OBJ_ALLOCATED_TAG) {
1584 handle = head & ~OBJ_ALLOCATED_TAG;
1585 if (trypin_tag(handle))
1586 break;
1587 handle = 0;
1588 }
1589
1590 offset += class->size;
1591 index++;
1592 }
1593
1594 kunmap_atomic(addr);
1595 return handle;
1596}
1597
1598struct zs_compact_control {
1599 /* Source page for migration which could be a subpage of zspage. */
1600 struct page *s_page;
1601 /* Destination page for migration which should be a first page
1602 * of zspage. */
1603 struct page *d_page;
1604 /* Starting object index within @s_page which used for live object
1605 * in the subpage. */
1606 int index;
312fcae2
MK
1607};
1608
1609static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1610 struct zs_compact_control *cc)
1611{
1612 unsigned long used_obj, free_obj;
1613 unsigned long handle;
1614 struct page *s_page = cc->s_page;
1615 struct page *d_page = cc->d_page;
1616 unsigned long index = cc->index;
312fcae2
MK
1617 int ret = 0;
1618
1619 while (1) {
1620 handle = find_alloced_obj(s_page, index, class);
1621 if (!handle) {
1622 s_page = get_next_page(s_page);
1623 if (!s_page)
1624 break;
1625 index = 0;
1626 continue;
1627 }
1628
1629 /* Stop if there is no more space */
1630 if (zspage_full(d_page)) {
1631 unpin_tag(handle);
1632 ret = -ENOMEM;
1633 break;
1634 }
1635
1636 used_obj = handle_to_obj(handle);
1637 free_obj = obj_malloc(d_page, class, handle);
0dc63d48 1638 zs_object_copy(free_obj, used_obj, class);
312fcae2 1639 index++;
c102f07c
JL
1640 /*
1641 * record_obj updates handle's value to free_obj and it will
1642 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1643 * breaks synchronization using pin_tag(e,g, zs_free) so
1644 * let's keep the lock bit.
1645 */
1646 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1647 record_obj(handle, free_obj);
1648 unpin_tag(handle);
1649 obj_free(pool, class, used_obj);
312fcae2
MK
1650 }
1651
1652 /* Remember last position in this iteration */
1653 cc->s_page = s_page;
1654 cc->index = index;
312fcae2
MK
1655
1656 return ret;
1657}
1658
0dc63d48 1659static struct page *isolate_target_page(struct size_class *class)
312fcae2
MK
1660{
1661 int i;
1662 struct page *page;
1663
1664 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
1665 page = class->fullness_list[i];
1666 if (page) {
1667 remove_zspage(page, class, i);
1668 break;
1669 }
1670 }
1671
1672 return page;
1673}
1674
860c707d
SS
1675/*
1676 * putback_zspage - add @first_page into right class's fullness list
1677 * @pool: target pool
1678 * @class: destination class
1679 * @first_page: target page
1680 *
1681 * Return @fist_page's fullness_group
1682 */
1683static enum fullness_group putback_zspage(struct zs_pool *pool,
1684 struct size_class *class,
1685 struct page *first_page)
312fcae2 1686{
312fcae2
MK
1687 enum fullness_group fullness;
1688
839373e6 1689 fullness = get_fullness_group(first_page);
312fcae2 1690 insert_zspage(first_page, class, fullness);
839373e6
MK
1691 set_zspage_mapping(first_page, class->index, fullness);
1692
13de8933 1693 if (fullness == ZS_EMPTY) {
312fcae2
MK
1694 zs_stat_dec(class, OBJ_ALLOCATED, get_maxobj_per_zspage(
1695 class->size, class->pages_per_zspage));
13de8933
MK
1696 atomic_long_sub(class->pages_per_zspage,
1697 &pool->pages_allocated);
312fcae2 1698
61989a80 1699 free_zspage(first_page);
13de8933 1700 }
860c707d
SS
1701
1702 return fullness;
61989a80 1703}
312fcae2
MK
1704
1705static struct page *isolate_source_page(struct size_class *class)
1706{
ad9d5e17
MK
1707 int i;
1708 struct page *page = NULL;
1709
1710 for (i = ZS_ALMOST_EMPTY; i >= ZS_ALMOST_FULL; i--) {
1711 page = class->fullness_list[i];
1712 if (!page)
1713 continue;
312fcae2 1714
ad9d5e17
MK
1715 remove_zspage(page, class, i);
1716 break;
1717 }
312fcae2
MK
1718
1719 return page;
1720}
1721
04f05909
SS
1722/*
1723 *
1724 * Based on the number of unused allocated objects calculate
1725 * and return the number of pages that we can free.
04f05909
SS
1726 */
1727static unsigned long zs_can_compact(struct size_class *class)
1728{
1729 unsigned long obj_wasted;
44f43e99
SS
1730 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
1731 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 1732
44f43e99
SS
1733 if (obj_allocated <= obj_used)
1734 return 0;
04f05909 1735
44f43e99 1736 obj_wasted = obj_allocated - obj_used;
04f05909
SS
1737 obj_wasted /= get_maxobj_per_zspage(class->size,
1738 class->pages_per_zspage);
1739
6cbf16b3 1740 return obj_wasted * class->pages_per_zspage;
04f05909
SS
1741}
1742
7d3f3938 1743static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 1744{
312fcae2
MK
1745 struct zs_compact_control cc;
1746 struct page *src_page;
1747 struct page *dst_page = NULL;
312fcae2 1748
312fcae2
MK
1749 spin_lock(&class->lock);
1750 while ((src_page = isolate_source_page(class))) {
1751
04f05909
SS
1752 if (!zs_can_compact(class))
1753 break;
1754
312fcae2
MK
1755 cc.index = 0;
1756 cc.s_page = src_page;
1757
0dc63d48 1758 while ((dst_page = isolate_target_page(class))) {
312fcae2
MK
1759 cc.d_page = dst_page;
1760 /*
0dc63d48
SS
1761 * If there is no more space in dst_page, resched
1762 * and see if anyone had allocated another zspage.
312fcae2
MK
1763 */
1764 if (!migrate_zspage(pool, class, &cc))
1765 break;
1766
1767 putback_zspage(pool, class, dst_page);
312fcae2
MK
1768 }
1769
1770 /* Stop if we couldn't find slot */
1771 if (dst_page == NULL)
1772 break;
1773
1774 putback_zspage(pool, class, dst_page);
860c707d 1775 if (putback_zspage(pool, class, src_page) == ZS_EMPTY)
6cbf16b3 1776 pool->stats.pages_compacted += class->pages_per_zspage;
312fcae2 1777 spin_unlock(&class->lock);
312fcae2
MK
1778 cond_resched();
1779 spin_lock(&class->lock);
1780 }
1781
1782 if (src_page)
1783 putback_zspage(pool, class, src_page);
1784
7d3f3938 1785 spin_unlock(&class->lock);
312fcae2
MK
1786}
1787
1788unsigned long zs_compact(struct zs_pool *pool)
1789{
1790 int i;
312fcae2
MK
1791 struct size_class *class;
1792
1793 for (i = zs_size_classes - 1; i >= 0; i--) {
1794 class = pool->size_class[i];
1795 if (!class)
1796 continue;
1797 if (class->index != i)
1798 continue;
7d3f3938 1799 __zs_compact(pool, class);
312fcae2
MK
1800 }
1801
860c707d 1802 return pool->stats.pages_compacted;
312fcae2
MK
1803}
1804EXPORT_SYMBOL_GPL(zs_compact);
61989a80 1805
7d3f3938
SS
1806void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
1807{
1808 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
1809}
1810EXPORT_SYMBOL_GPL(zs_pool_stats);
1811
ab9d306d
SS
1812static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
1813 struct shrink_control *sc)
1814{
1815 unsigned long pages_freed;
1816 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1817 shrinker);
1818
1819 pages_freed = pool->stats.pages_compacted;
1820 /*
1821 * Compact classes and calculate compaction delta.
1822 * Can run concurrently with a manually triggered
1823 * (by user) compaction.
1824 */
1825 pages_freed = zs_compact(pool) - pages_freed;
1826
1827 return pages_freed ? pages_freed : SHRINK_STOP;
1828}
1829
1830static unsigned long zs_shrinker_count(struct shrinker *shrinker,
1831 struct shrink_control *sc)
1832{
1833 int i;
1834 struct size_class *class;
1835 unsigned long pages_to_free = 0;
1836 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
1837 shrinker);
1838
ab9d306d
SS
1839 for (i = zs_size_classes - 1; i >= 0; i--) {
1840 class = pool->size_class[i];
1841 if (!class)
1842 continue;
1843 if (class->index != i)
1844 continue;
1845
ab9d306d 1846 pages_to_free += zs_can_compact(class);
ab9d306d
SS
1847 }
1848
1849 return pages_to_free;
1850}
1851
1852static void zs_unregister_shrinker(struct zs_pool *pool)
1853{
1854 if (pool->shrinker_enabled) {
1855 unregister_shrinker(&pool->shrinker);
1856 pool->shrinker_enabled = false;
1857 }
1858}
1859
1860static int zs_register_shrinker(struct zs_pool *pool)
1861{
1862 pool->shrinker.scan_objects = zs_shrinker_scan;
1863 pool->shrinker.count_objects = zs_shrinker_count;
1864 pool->shrinker.batch = 0;
1865 pool->shrinker.seeks = DEFAULT_SEEKS;
1866
1867 return register_shrinker(&pool->shrinker);
1868}
1869
00a61d86 1870/**
66cdef66
GM
1871 * zs_create_pool - Creates an allocation pool to work from.
1872 * @flags: allocation flags used to allocate pool metadata
166cfda7 1873 *
66cdef66
GM
1874 * This function must be called before anything when using
1875 * the zsmalloc allocator.
166cfda7 1876 *
66cdef66
GM
1877 * On success, a pointer to the newly created pool is returned,
1878 * otherwise NULL.
396b7fd6 1879 */
6f3526d6 1880struct zs_pool *zs_create_pool(const char *name, gfp_t flags)
61989a80 1881{
66cdef66
GM
1882 int i;
1883 struct zs_pool *pool;
1884 struct size_class *prev_class = NULL;
61989a80 1885
66cdef66
GM
1886 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
1887 if (!pool)
1888 return NULL;
61989a80 1889
66cdef66
GM
1890 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
1891 GFP_KERNEL);
1892 if (!pool->size_class) {
1893 kfree(pool);
1894 return NULL;
1895 }
61989a80 1896
2e40e163
MK
1897 pool->name = kstrdup(name, GFP_KERNEL);
1898 if (!pool->name)
1899 goto err;
1900
1901 if (create_handle_cache(pool))
1902 goto err;
1903
c60369f0 1904 /*
66cdef66
GM
1905 * Iterate reversly, because, size of size_class that we want to use
1906 * for merging should be larger or equal to current size.
c60369f0 1907 */
66cdef66
GM
1908 for (i = zs_size_classes - 1; i >= 0; i--) {
1909 int size;
1910 int pages_per_zspage;
1911 struct size_class *class;
c60369f0 1912
66cdef66
GM
1913 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
1914 if (size > ZS_MAX_ALLOC_SIZE)
1915 size = ZS_MAX_ALLOC_SIZE;
1916 pages_per_zspage = get_pages_per_zspage(size);
61989a80 1917
66cdef66
GM
1918 /*
1919 * size_class is used for normal zsmalloc operation such
1920 * as alloc/free for that size. Although it is natural that we
1921 * have one size_class for each size, there is a chance that we
1922 * can get more memory utilization if we use one size_class for
1923 * many different sizes whose size_class have same
1924 * characteristics. So, we makes size_class point to
1925 * previous size_class if possible.
1926 */
1927 if (prev_class) {
1928 if (can_merge(prev_class, size, pages_per_zspage)) {
1929 pool->size_class[i] = prev_class;
1930 continue;
1931 }
1932 }
1933
1934 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
1935 if (!class)
1936 goto err;
1937
1938 class->size = size;
1939 class->index = i;
1940 class->pages_per_zspage = pages_per_zspage;
7b60a685
MK
1941 if (pages_per_zspage == 1 &&
1942 get_maxobj_per_zspage(size, pages_per_zspage) == 1)
1943 class->huge = true;
66cdef66
GM
1944 spin_lock_init(&class->lock);
1945 pool->size_class[i] = class;
1946
1947 prev_class = class;
61989a80
NG
1948 }
1949
66cdef66 1950 pool->flags = flags;
b7418510 1951
0f050d99
GM
1952 if (zs_pool_stat_create(name, pool))
1953 goto err;
1954
ab9d306d
SS
1955 /*
1956 * Not critical, we still can use the pool
1957 * and user can trigger compaction manually.
1958 */
1959 if (zs_register_shrinker(pool) == 0)
1960 pool->shrinker_enabled = true;
66cdef66
GM
1961 return pool;
1962
1963err:
1964 zs_destroy_pool(pool);
1965 return NULL;
61989a80 1966}
66cdef66 1967EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 1968
66cdef66 1969void zs_destroy_pool(struct zs_pool *pool)
61989a80 1970{
66cdef66 1971 int i;
61989a80 1972
ab9d306d 1973 zs_unregister_shrinker(pool);
0f050d99
GM
1974 zs_pool_stat_destroy(pool);
1975
66cdef66
GM
1976 for (i = 0; i < zs_size_classes; i++) {
1977 int fg;
1978 struct size_class *class = pool->size_class[i];
61989a80 1979
66cdef66
GM
1980 if (!class)
1981 continue;
61989a80 1982
66cdef66
GM
1983 if (class->index != i)
1984 continue;
61989a80 1985
66cdef66
GM
1986 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
1987 if (class->fullness_list[fg]) {
1988 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1989 class->size, fg);
1990 }
1991 }
1992 kfree(class);
1993 }
f553646a 1994
2e40e163 1995 destroy_handle_cache(pool);
66cdef66 1996 kfree(pool->size_class);
0f050d99 1997 kfree(pool->name);
66cdef66
GM
1998 kfree(pool);
1999}
2000EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2001
66cdef66
GM
2002static int __init zs_init(void)
2003{
2004 int ret = zs_register_cpu_notifier();
2005
0f050d99
GM
2006 if (ret)
2007 goto notifier_fail;
66cdef66
GM
2008
2009 init_zs_size_classes();
2010
2011#ifdef CONFIG_ZPOOL
2012 zpool_register_driver(&zs_zpool_driver);
2013#endif
0f050d99
GM
2014
2015 ret = zs_stat_init();
2016 if (ret) {
2017 pr_err("zs stat initialization failed\n");
2018 goto stat_fail;
2019 }
66cdef66 2020 return 0;
0f050d99
GM
2021
2022stat_fail:
2023#ifdef CONFIG_ZPOOL
2024 zpool_unregister_driver(&zs_zpool_driver);
2025#endif
2026notifier_fail:
2027 zs_unregister_cpu_notifier();
2028
2029 return ret;
61989a80 2030}
61989a80 2031
66cdef66 2032static void __exit zs_exit(void)
61989a80 2033{
66cdef66
GM
2034#ifdef CONFIG_ZPOOL
2035 zpool_unregister_driver(&zs_zpool_driver);
2036#endif
2037 zs_unregister_cpu_notifier();
0f050d99
GM
2038
2039 zs_stat_exit();
61989a80 2040}
069f101f
BH
2041
2042module_init(zs_init);
2043module_exit(zs_exit);
2044
2045MODULE_LICENSE("Dual BSD/GPL");
2046MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");