mm/zsmalloc: avoid calculate max objects of zspage twice
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / zsmalloc.c
CommitLineData
61989a80
NG
1/*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
31fc00bb 5 * Copyright (C) 2012, 2013 Minchan Kim
61989a80
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
2db51dae 14/*
2db51dae
NG
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
3783689a 19 * page->private: points to zspage
48b4800a
MK
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
2db51dae
NG
23 *
24 * Usage of struct page flags:
25 * PG_private: identifies the first component page
26 * PG_private2: identifies the last component page
48b4800a 27 * PG_owner_priv_1: indentifies the huge component page
2db51dae
NG
28 *
29 */
30
4abaac9b
DS
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
61989a80
NG
33#include <linux/module.h>
34#include <linux/kernel.h>
312fcae2 35#include <linux/sched.h>
61989a80
NG
36#include <linux/bitops.h>
37#include <linux/errno.h>
38#include <linux/highmem.h>
61989a80
NG
39#include <linux/string.h>
40#include <linux/slab.h>
41#include <asm/tlbflush.h>
42#include <asm/pgtable.h>
43#include <linux/cpumask.h>
44#include <linux/cpu.h>
0cbb613f 45#include <linux/vmalloc.h>
759b26b2 46#include <linux/preempt.h>
0959c63f
SJ
47#include <linux/spinlock.h>
48#include <linux/types.h>
0f050d99 49#include <linux/debugfs.h>
bcf1647d 50#include <linux/zsmalloc.h>
c795779d 51#include <linux/zpool.h>
48b4800a 52#include <linux/mount.h>
dd4123f3 53#include <linux/migrate.h>
48b4800a
MK
54#include <linux/pagemap.h>
55
56#define ZSPAGE_MAGIC 0x58
0959c63f
SJ
57
58/*
59 * This must be power of 2 and greater than of equal to sizeof(link_free).
60 * These two conditions ensure that any 'struct link_free' itself doesn't
61 * span more than 1 page which avoids complex case of mapping 2 pages simply
62 * to restore link_free pointer values.
63 */
64#define ZS_ALIGN 8
65
66/*
67 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
68 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
69 */
70#define ZS_MAX_ZSPAGE_ORDER 2
71#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
72
2e40e163
MK
73#define ZS_HANDLE_SIZE (sizeof(unsigned long))
74
0959c63f
SJ
75/*
76 * Object location (<PFN>, <obj_idx>) is encoded as
c3e3e88a 77 * as single (unsigned long) handle value.
0959c63f 78 *
bfd093f5 79 * Note that object index <obj_idx> starts from 0.
0959c63f
SJ
80 *
81 * This is made more complicated by various memory models and PAE.
82 */
83
84#ifndef MAX_PHYSMEM_BITS
85#ifdef CONFIG_HIGHMEM64G
86#define MAX_PHYSMEM_BITS 36
87#else /* !CONFIG_HIGHMEM64G */
88/*
89 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
90 * be PAGE_SHIFT
91 */
92#define MAX_PHYSMEM_BITS BITS_PER_LONG
93#endif
94#endif
95#define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
312fcae2
MK
96
97/*
98 * Memory for allocating for handle keeps object position by
99 * encoding <page, obj_idx> and the encoded value has a room
100 * in least bit(ie, look at obj_to_location).
101 * We use the bit to synchronize between object access by
102 * user and migration.
103 */
104#define HANDLE_PIN_BIT 0
105
106/*
107 * Head in allocated object should have OBJ_ALLOCATED_TAG
108 * to identify the object was allocated or not.
109 * It's okay to add the status bit in the least bit because
110 * header keeps handle which is 4byte-aligned address so we
111 * have room for two bit at least.
112 */
113#define OBJ_ALLOCATED_TAG 1
114#define OBJ_TAG_BITS 1
115#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
0959c63f
SJ
116#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
117
118#define MAX(a, b) ((a) >= (b) ? (a) : (b))
119/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
120#define ZS_MIN_ALLOC_SIZE \
121 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
2e40e163 122/* each chunk includes extra space to keep handle */
7b60a685 123#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
0959c63f
SJ
124
125/*
7eb52512 126 * On systems with 4K page size, this gives 255 size classes! There is a
0959c63f
SJ
127 * trader-off here:
128 * - Large number of size classes is potentially wasteful as free page are
129 * spread across these classes
130 * - Small number of size classes causes large internal fragmentation
131 * - Probably its better to use specific size classes (empirically
132 * determined). NOTE: all those class sizes must be set as multiple of
133 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
134 *
135 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
136 * (reason above)
137 */
3783689a 138#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
0959c63f
SJ
139
140/*
141 * We do not maintain any list for completely empty or full pages
142 */
143enum fullness_group {
0959c63f 144 ZS_EMPTY,
48b4800a
MK
145 ZS_ALMOST_EMPTY,
146 ZS_ALMOST_FULL,
147 ZS_FULL,
148 NR_ZS_FULLNESS,
0959c63f
SJ
149};
150
0f050d99 151enum zs_stat_type {
48b4800a
MK
152 CLASS_EMPTY,
153 CLASS_ALMOST_EMPTY,
154 CLASS_ALMOST_FULL,
155 CLASS_FULL,
0f050d99
GM
156 OBJ_ALLOCATED,
157 OBJ_USED,
48b4800a 158 NR_ZS_STAT_TYPE,
0f050d99
GM
159};
160
0f050d99
GM
161struct zs_size_stat {
162 unsigned long objs[NR_ZS_STAT_TYPE];
163};
164
57244594
SS
165#ifdef CONFIG_ZSMALLOC_STAT
166static struct dentry *zs_stat_root;
0f050d99
GM
167#endif
168
48b4800a
MK
169#ifdef CONFIG_COMPACTION
170static struct vfsmount *zsmalloc_mnt;
171#endif
172
40f9fb8c
MG
173/*
174 * number of size_classes
175 */
176static int zs_size_classes;
177
0959c63f
SJ
178/*
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n <= N / f, where
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
6dd9737e 183 * f = fullness_threshold_frac
0959c63f
SJ
184 *
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
189 *
190 * (see: fix_fullness_group())
191 */
192static const int fullness_threshold_frac = 4;
193
194struct size_class {
57244594 195 spinlock_t lock;
48b4800a 196 struct list_head fullness_list[NR_ZS_FULLNESS];
0959c63f
SJ
197 /*
198 * Size of objects stored in this class. Must be multiple
199 * of ZS_ALIGN.
200 */
201 int size;
1fc6e27d 202 int objs_per_zspage;
7dfa4612
WY
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage;
48b4800a
MK
205
206 unsigned int index;
207 struct zs_size_stat stats;
0959c63f
SJ
208};
209
48b4800a
MK
210/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211static void SetPageHugeObject(struct page *page)
212{
213 SetPageOwnerPriv1(page);
214}
215
216static void ClearPageHugeObject(struct page *page)
217{
218 ClearPageOwnerPriv1(page);
219}
220
221static int PageHugeObject(struct page *page)
222{
223 return PageOwnerPriv1(page);
224}
225
0959c63f
SJ
226/*
227 * Placed within free objects to form a singly linked list.
3783689a 228 * For every zspage, zspage->freeobj gives head of this list.
0959c63f
SJ
229 *
230 * This must be power of 2 and less than or equal to ZS_ALIGN
231 */
232struct link_free {
2e40e163
MK
233 union {
234 /*
bfd093f5 235 * Free object index;
2e40e163
MK
236 * It's valid for non-allocated object
237 */
bfd093f5 238 unsigned long next;
2e40e163
MK
239 /*
240 * Handle of allocated object.
241 */
242 unsigned long handle;
243 };
0959c63f
SJ
244};
245
246struct zs_pool {
6f3526d6 247 const char *name;
0f050d99 248
40f9fb8c 249 struct size_class **size_class;
2e40e163 250 struct kmem_cache *handle_cachep;
3783689a 251 struct kmem_cache *zspage_cachep;
0959c63f 252
13de8933 253 atomic_long_t pages_allocated;
0f050d99 254
7d3f3938 255 struct zs_pool_stats stats;
ab9d306d
SS
256
257 /* Compact classes */
258 struct shrinker shrinker;
259 /*
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
262 */
263 bool shrinker_enabled;
0f050d99
GM
264#ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266#endif
48b4800a
MK
267#ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270#endif
0959c63f 271};
61989a80
NG
272
273/*
274 * A zspage's class index and fullness group
275 * are encoded in its (first)page->mapping
276 */
3783689a
MK
277#define FULLNESS_BITS 2
278#define CLASS_BITS 8
48b4800a
MK
279#define ISOLATED_BITS 3
280#define MAGIC_VAL_BITS 8
4f42047b 281
3783689a
MK
282struct zspage {
283 struct {
284 unsigned int fullness:FULLNESS_BITS;
285 unsigned int class:CLASS_BITS;
48b4800a
MK
286 unsigned int isolated:ISOLATED_BITS;
287 unsigned int magic:MAGIC_VAL_BITS;
3783689a
MK
288 };
289 unsigned int inuse;
bfd093f5 290 unsigned int freeobj;
3783689a
MK
291 struct page *first_page;
292 struct list_head list; /* fullness list */
48b4800a
MK
293#ifdef CONFIG_COMPACTION
294 rwlock_t lock;
295#endif
3783689a 296};
61989a80 297
f553646a 298struct mapping_area {
1b945aee 299#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
300 struct vm_struct *vm; /* vm area for mapping object that span pages */
301#else
302 char *vm_buf; /* copy buffer for objects that span pages */
303#endif
304 char *vm_addr; /* address of kmap_atomic()'ed pages */
305 enum zs_mapmode vm_mm; /* mapping mode */
306};
307
48b4800a
MK
308#ifdef CONFIG_COMPACTION
309static int zs_register_migration(struct zs_pool *pool);
310static void zs_unregister_migration(struct zs_pool *pool);
311static void migrate_lock_init(struct zspage *zspage);
312static void migrate_read_lock(struct zspage *zspage);
313static void migrate_read_unlock(struct zspage *zspage);
314static void kick_deferred_free(struct zs_pool *pool);
315static void init_deferred_free(struct zs_pool *pool);
316static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
317#else
318static int zsmalloc_mount(void) { return 0; }
319static void zsmalloc_unmount(void) {}
320static int zs_register_migration(struct zs_pool *pool) { return 0; }
321static void zs_unregister_migration(struct zs_pool *pool) {}
322static void migrate_lock_init(struct zspage *zspage) {}
323static void migrate_read_lock(struct zspage *zspage) {}
324static void migrate_read_unlock(struct zspage *zspage) {}
325static void kick_deferred_free(struct zs_pool *pool) {}
326static void init_deferred_free(struct zs_pool *pool) {}
327static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
328#endif
329
3783689a 330static int create_cache(struct zs_pool *pool)
2e40e163
MK
331{
332 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
333 0, 0, NULL);
3783689a
MK
334 if (!pool->handle_cachep)
335 return 1;
336
337 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
338 0, 0, NULL);
339 if (!pool->zspage_cachep) {
340 kmem_cache_destroy(pool->handle_cachep);
341 pool->handle_cachep = NULL;
342 return 1;
343 }
344
345 return 0;
2e40e163
MK
346}
347
3783689a 348static void destroy_cache(struct zs_pool *pool)
2e40e163 349{
cd10add0 350 kmem_cache_destroy(pool->handle_cachep);
3783689a 351 kmem_cache_destroy(pool->zspage_cachep);
2e40e163
MK
352}
353
3783689a 354static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
2e40e163
MK
355{
356 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
48b4800a 357 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
2e40e163
MK
358}
359
3783689a 360static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
2e40e163
MK
361{
362 kmem_cache_free(pool->handle_cachep, (void *)handle);
363}
364
3783689a
MK
365static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
366{
48b4800a
MK
367 return kmem_cache_alloc(pool->zspage_cachep,
368 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
3783689a
MK
369};
370
371static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
372{
373 kmem_cache_free(pool->zspage_cachep, zspage);
374}
375
2e40e163
MK
376static void record_obj(unsigned long handle, unsigned long obj)
377{
c102f07c
JL
378 /*
379 * lsb of @obj represents handle lock while other bits
380 * represent object value the handle is pointing so
381 * updating shouldn't do store tearing.
382 */
383 WRITE_ONCE(*(unsigned long *)handle, obj);
2e40e163
MK
384}
385
c795779d
DS
386/* zpool driver */
387
388#ifdef CONFIG_ZPOOL
389
6f3526d6 390static void *zs_zpool_create(const char *name, gfp_t gfp,
78672779 391 const struct zpool_ops *zpool_ops,
479305fd 392 struct zpool *zpool)
c795779d 393{
d0d8da2d
SS
394 /*
395 * Ignore global gfp flags: zs_malloc() may be invoked from
396 * different contexts and its caller must provide a valid
397 * gfp mask.
398 */
399 return zs_create_pool(name);
c795779d
DS
400}
401
402static void zs_zpool_destroy(void *pool)
403{
404 zs_destroy_pool(pool);
405}
406
407static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
408 unsigned long *handle)
409{
d0d8da2d 410 *handle = zs_malloc(pool, size, gfp);
c795779d
DS
411 return *handle ? 0 : -1;
412}
413static void zs_zpool_free(void *pool, unsigned long handle)
414{
415 zs_free(pool, handle);
416}
417
418static int zs_zpool_shrink(void *pool, unsigned int pages,
419 unsigned int *reclaimed)
420{
421 return -EINVAL;
422}
423
424static void *zs_zpool_map(void *pool, unsigned long handle,
425 enum zpool_mapmode mm)
426{
427 enum zs_mapmode zs_mm;
428
429 switch (mm) {
430 case ZPOOL_MM_RO:
431 zs_mm = ZS_MM_RO;
432 break;
433 case ZPOOL_MM_WO:
434 zs_mm = ZS_MM_WO;
435 break;
436 case ZPOOL_MM_RW: /* fallthru */
437 default:
438 zs_mm = ZS_MM_RW;
439 break;
440 }
441
442 return zs_map_object(pool, handle, zs_mm);
443}
444static void zs_zpool_unmap(void *pool, unsigned long handle)
445{
446 zs_unmap_object(pool, handle);
447}
448
449static u64 zs_zpool_total_size(void *pool)
450{
722cdc17 451 return zs_get_total_pages(pool) << PAGE_SHIFT;
c795779d
DS
452}
453
454static struct zpool_driver zs_zpool_driver = {
455 .type = "zsmalloc",
456 .owner = THIS_MODULE,
457 .create = zs_zpool_create,
458 .destroy = zs_zpool_destroy,
459 .malloc = zs_zpool_malloc,
460 .free = zs_zpool_free,
461 .shrink = zs_zpool_shrink,
462 .map = zs_zpool_map,
463 .unmap = zs_zpool_unmap,
464 .total_size = zs_zpool_total_size,
465};
466
137f8cff 467MODULE_ALIAS("zpool-zsmalloc");
c795779d
DS
468#endif /* CONFIG_ZPOOL */
469
61989a80
NG
470/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
471static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
472
48b4800a
MK
473static bool is_zspage_isolated(struct zspage *zspage)
474{
475 return zspage->isolated;
476}
477
61989a80
NG
478static int is_first_page(struct page *page)
479{
a27545bf 480 return PagePrivate(page);
61989a80
NG
481}
482
48b4800a 483/* Protected by class->lock */
3783689a 484static inline int get_zspage_inuse(struct zspage *zspage)
4f42047b 485{
3783689a 486 return zspage->inuse;
4f42047b
MK
487}
488
3783689a 489static inline void set_zspage_inuse(struct zspage *zspage, int val)
4f42047b 490{
3783689a 491 zspage->inuse = val;
4f42047b
MK
492}
493
3783689a 494static inline void mod_zspage_inuse(struct zspage *zspage, int val)
4f42047b 495{
3783689a 496 zspage->inuse += val;
4f42047b
MK
497}
498
48b4800a 499static inline struct page *get_first_page(struct zspage *zspage)
4f42047b 500{
48b4800a 501 struct page *first_page = zspage->first_page;
3783689a 502
48b4800a
MK
503 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
504 return first_page;
4f42047b
MK
505}
506
48b4800a 507static inline int get_first_obj_offset(struct page *page)
4f42047b 508{
48b4800a
MK
509 return page->units;
510}
3783689a 511
48b4800a
MK
512static inline void set_first_obj_offset(struct page *page, int offset)
513{
514 page->units = offset;
4f42047b
MK
515}
516
bfd093f5 517static inline unsigned int get_freeobj(struct zspage *zspage)
4f42047b 518{
bfd093f5 519 return zspage->freeobj;
4f42047b
MK
520}
521
bfd093f5 522static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
4f42047b 523{
bfd093f5 524 zspage->freeobj = obj;
4f42047b
MK
525}
526
3783689a 527static void get_zspage_mapping(struct zspage *zspage,
a4209467 528 unsigned int *class_idx,
61989a80
NG
529 enum fullness_group *fullness)
530{
48b4800a
MK
531 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
532
3783689a
MK
533 *fullness = zspage->fullness;
534 *class_idx = zspage->class;
61989a80
NG
535}
536
3783689a 537static void set_zspage_mapping(struct zspage *zspage,
a4209467 538 unsigned int class_idx,
61989a80
NG
539 enum fullness_group fullness)
540{
3783689a
MK
541 zspage->class = class_idx;
542 zspage->fullness = fullness;
61989a80
NG
543}
544
c3e3e88a
NC
545/*
546 * zsmalloc divides the pool into various size classes where each
547 * class maintains a list of zspages where each zspage is divided
548 * into equal sized chunks. Each allocation falls into one of these
549 * classes depending on its size. This function returns index of the
550 * size class which has chunk size big enough to hold the give size.
551 */
61989a80
NG
552static int get_size_class_index(int size)
553{
554 int idx = 0;
555
556 if (likely(size > ZS_MIN_ALLOC_SIZE))
557 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
558 ZS_SIZE_CLASS_DELTA);
559
7b60a685 560 return min(zs_size_classes - 1, idx);
61989a80
NG
561}
562
248ca1b0
MK
563static inline void zs_stat_inc(struct size_class *class,
564 enum zs_stat_type type, unsigned long cnt)
565{
48b4800a 566 class->stats.objs[type] += cnt;
248ca1b0
MK
567}
568
569static inline void zs_stat_dec(struct size_class *class,
570 enum zs_stat_type type, unsigned long cnt)
571{
48b4800a 572 class->stats.objs[type] -= cnt;
248ca1b0
MK
573}
574
575static inline unsigned long zs_stat_get(struct size_class *class,
576 enum zs_stat_type type)
577{
48b4800a 578 return class->stats.objs[type];
248ca1b0
MK
579}
580
57244594
SS
581#ifdef CONFIG_ZSMALLOC_STAT
582
4abaac9b 583static void __init zs_stat_init(void)
248ca1b0 584{
4abaac9b
DS
585 if (!debugfs_initialized()) {
586 pr_warn("debugfs not available, stat dir not created\n");
587 return;
588 }
248ca1b0
MK
589
590 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
591 if (!zs_stat_root)
4abaac9b 592 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
248ca1b0
MK
593}
594
595static void __exit zs_stat_exit(void)
596{
597 debugfs_remove_recursive(zs_stat_root);
598}
599
1120ed54
SS
600static unsigned long zs_can_compact(struct size_class *class);
601
248ca1b0
MK
602static int zs_stats_size_show(struct seq_file *s, void *v)
603{
604 int i;
605 struct zs_pool *pool = s->private;
606 struct size_class *class;
607 int objs_per_zspage;
608 unsigned long class_almost_full, class_almost_empty;
1120ed54 609 unsigned long obj_allocated, obj_used, pages_used, freeable;
248ca1b0
MK
610 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
611 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
1120ed54 612 unsigned long total_freeable = 0;
248ca1b0 613
1120ed54 614 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
248ca1b0
MK
615 "class", "size", "almost_full", "almost_empty",
616 "obj_allocated", "obj_used", "pages_used",
1120ed54 617 "pages_per_zspage", "freeable");
248ca1b0
MK
618
619 for (i = 0; i < zs_size_classes; i++) {
620 class = pool->size_class[i];
621
622 if (class->index != i)
623 continue;
624
625 spin_lock(&class->lock);
626 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
627 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
628 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
629 obj_used = zs_stat_get(class, OBJ_USED);
1120ed54 630 freeable = zs_can_compact(class);
248ca1b0
MK
631 spin_unlock(&class->lock);
632
b4fd07a0 633 objs_per_zspage = class->objs_per_zspage;
248ca1b0
MK
634 pages_used = obj_allocated / objs_per_zspage *
635 class->pages_per_zspage;
636
1120ed54
SS
637 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
638 " %10lu %10lu %16d %8lu\n",
248ca1b0
MK
639 i, class->size, class_almost_full, class_almost_empty,
640 obj_allocated, obj_used, pages_used,
1120ed54 641 class->pages_per_zspage, freeable);
248ca1b0
MK
642
643 total_class_almost_full += class_almost_full;
644 total_class_almost_empty += class_almost_empty;
645 total_objs += obj_allocated;
646 total_used_objs += obj_used;
647 total_pages += pages_used;
1120ed54 648 total_freeable += freeable;
248ca1b0
MK
649 }
650
651 seq_puts(s, "\n");
1120ed54 652 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
248ca1b0
MK
653 "Total", "", total_class_almost_full,
654 total_class_almost_empty, total_objs,
1120ed54 655 total_used_objs, total_pages, "", total_freeable);
248ca1b0
MK
656
657 return 0;
658}
659
660static int zs_stats_size_open(struct inode *inode, struct file *file)
661{
662 return single_open(file, zs_stats_size_show, inode->i_private);
663}
664
665static const struct file_operations zs_stat_size_ops = {
666 .open = zs_stats_size_open,
667 .read = seq_read,
668 .llseek = seq_lseek,
669 .release = single_release,
670};
671
d34f6157 672static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0
MK
673{
674 struct dentry *entry;
675
4abaac9b
DS
676 if (!zs_stat_root) {
677 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
d34f6157 678 return;
4abaac9b 679 }
248ca1b0
MK
680
681 entry = debugfs_create_dir(name, zs_stat_root);
682 if (!entry) {
683 pr_warn("debugfs dir <%s> creation failed\n", name);
d34f6157 684 return;
248ca1b0
MK
685 }
686 pool->stat_dentry = entry;
687
688 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
689 pool->stat_dentry, pool, &zs_stat_size_ops);
690 if (!entry) {
691 pr_warn("%s: debugfs file entry <%s> creation failed\n",
692 name, "classes");
4abaac9b
DS
693 debugfs_remove_recursive(pool->stat_dentry);
694 pool->stat_dentry = NULL;
248ca1b0 695 }
248ca1b0
MK
696}
697
698static void zs_pool_stat_destroy(struct zs_pool *pool)
699{
700 debugfs_remove_recursive(pool->stat_dentry);
701}
702
703#else /* CONFIG_ZSMALLOC_STAT */
4abaac9b 704static void __init zs_stat_init(void)
248ca1b0 705{
248ca1b0
MK
706}
707
708static void __exit zs_stat_exit(void)
709{
710}
711
d34f6157 712static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
248ca1b0 713{
248ca1b0
MK
714}
715
716static inline void zs_pool_stat_destroy(struct zs_pool *pool)
717{
718}
248ca1b0
MK
719#endif
720
48b4800a 721
c3e3e88a
NC
722/*
723 * For each size class, zspages are divided into different groups
724 * depending on how "full" they are. This was done so that we could
725 * easily find empty or nearly empty zspages when we try to shrink
726 * the pool (not yet implemented). This function returns fullness
727 * status of the given page.
728 */
1fc6e27d 729static enum fullness_group get_fullness_group(struct size_class *class,
3783689a 730 struct zspage *zspage)
61989a80 731{
1fc6e27d 732 int inuse, objs_per_zspage;
61989a80 733 enum fullness_group fg;
830e4bc5 734
3783689a 735 inuse = get_zspage_inuse(zspage);
1fc6e27d 736 objs_per_zspage = class->objs_per_zspage;
61989a80
NG
737
738 if (inuse == 0)
739 fg = ZS_EMPTY;
1fc6e27d 740 else if (inuse == objs_per_zspage)
61989a80 741 fg = ZS_FULL;
1fc6e27d 742 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
61989a80
NG
743 fg = ZS_ALMOST_EMPTY;
744 else
745 fg = ZS_ALMOST_FULL;
746
747 return fg;
748}
749
c3e3e88a
NC
750/*
751 * Each size class maintains various freelists and zspages are assigned
752 * to one of these freelists based on the number of live objects they
753 * have. This functions inserts the given zspage into the freelist
754 * identified by <class, fullness_group>.
755 */
251cbb95 756static void insert_zspage(struct size_class *class,
3783689a
MK
757 struct zspage *zspage,
758 enum fullness_group fullness)
61989a80 759{
3783689a 760 struct zspage *head;
61989a80 761
48b4800a 762 zs_stat_inc(class, fullness, 1);
3783689a
MK
763 head = list_first_entry_or_null(&class->fullness_list[fullness],
764 struct zspage, list);
58f17117 765 /*
3783689a
MK
766 * We want to see more ZS_FULL pages and less almost empty/full.
767 * Put pages with higher ->inuse first.
58f17117 768 */
3783689a
MK
769 if (head) {
770 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
771 list_add(&zspage->list, &head->list);
772 return;
773 }
774 }
775 list_add(&zspage->list, &class->fullness_list[fullness]);
61989a80
NG
776}
777
c3e3e88a
NC
778/*
779 * This function removes the given zspage from the freelist identified
780 * by <class, fullness_group>.
781 */
251cbb95 782static void remove_zspage(struct size_class *class,
3783689a
MK
783 struct zspage *zspage,
784 enum fullness_group fullness)
61989a80 785{
3783689a 786 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
48b4800a 787 VM_BUG_ON(is_zspage_isolated(zspage));
61989a80 788
3783689a 789 list_del_init(&zspage->list);
48b4800a 790 zs_stat_dec(class, fullness, 1);
61989a80
NG
791}
792
c3e3e88a
NC
793/*
794 * Each size class maintains zspages in different fullness groups depending
795 * on the number of live objects they contain. When allocating or freeing
796 * objects, the fullness status of the page can change, say, from ALMOST_FULL
797 * to ALMOST_EMPTY when freeing an object. This function checks if such
798 * a status change has occurred for the given page and accordingly moves the
799 * page from the freelist of the old fullness group to that of the new
800 * fullness group.
801 */
c7806261 802static enum fullness_group fix_fullness_group(struct size_class *class,
3783689a 803 struct zspage *zspage)
61989a80
NG
804{
805 int class_idx;
61989a80
NG
806 enum fullness_group currfg, newfg;
807
3783689a
MK
808 get_zspage_mapping(zspage, &class_idx, &currfg);
809 newfg = get_fullness_group(class, zspage);
61989a80
NG
810 if (newfg == currfg)
811 goto out;
812
48b4800a
MK
813 if (!is_zspage_isolated(zspage)) {
814 remove_zspage(class, zspage, currfg);
815 insert_zspage(class, zspage, newfg);
816 }
817
3783689a 818 set_zspage_mapping(zspage, class_idx, newfg);
61989a80
NG
819
820out:
821 return newfg;
822}
823
824/*
825 * We have to decide on how many pages to link together
826 * to form a zspage for each size class. This is important
827 * to reduce wastage due to unusable space left at end of
828 * each zspage which is given as:
888fa374
YX
829 * wastage = Zp % class_size
830 * usage = Zp - wastage
61989a80
NG
831 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
832 *
833 * For example, for size class of 3/8 * PAGE_SIZE, we should
834 * link together 3 PAGE_SIZE sized pages to form a zspage
835 * since then we can perfectly fit in 8 such objects.
836 */
2e3b6154 837static int get_pages_per_zspage(int class_size)
61989a80
NG
838{
839 int i, max_usedpc = 0;
840 /* zspage order which gives maximum used size per KB */
841 int max_usedpc_order = 1;
842
84d4faab 843 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
61989a80
NG
844 int zspage_size;
845 int waste, usedpc;
846
847 zspage_size = i * PAGE_SIZE;
848 waste = zspage_size % class_size;
849 usedpc = (zspage_size - waste) * 100 / zspage_size;
850
851 if (usedpc > max_usedpc) {
852 max_usedpc = usedpc;
853 max_usedpc_order = i;
854 }
855 }
856
857 return max_usedpc_order;
858}
859
3783689a 860static struct zspage *get_zspage(struct page *page)
61989a80 861{
48b4800a
MK
862 struct zspage *zspage = (struct zspage *)page->private;
863
864 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
865 return zspage;
61989a80
NG
866}
867
868static struct page *get_next_page(struct page *page)
869{
48b4800a
MK
870 if (unlikely(PageHugeObject(page)))
871 return NULL;
872
873 return page->freelist;
61989a80
NG
874}
875
bfd093f5
MK
876/**
877 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
878 * @page: page object resides in zspage
879 * @obj_idx: object index
67296874 880 */
bfd093f5
MK
881static void obj_to_location(unsigned long obj, struct page **page,
882 unsigned int *obj_idx)
61989a80 883{
bfd093f5
MK
884 obj >>= OBJ_TAG_BITS;
885 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
886 *obj_idx = (obj & OBJ_INDEX_MASK);
887}
61989a80 888
bfd093f5
MK
889/**
890 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
891 * @page: page object resides in zspage
892 * @obj_idx: object index
893 */
894static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
895{
896 unsigned long obj;
61989a80 897
312fcae2 898 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
bfd093f5 899 obj |= obj_idx & OBJ_INDEX_MASK;
312fcae2 900 obj <<= OBJ_TAG_BITS;
61989a80 901
bfd093f5 902 return obj;
61989a80
NG
903}
904
2e40e163
MK
905static unsigned long handle_to_obj(unsigned long handle)
906{
907 return *(unsigned long *)handle;
908}
909
48b4800a 910static unsigned long obj_to_head(struct page *page, void *obj)
312fcae2 911{
48b4800a 912 if (unlikely(PageHugeObject(page))) {
830e4bc5 913 VM_BUG_ON_PAGE(!is_first_page(page), page);
3783689a 914 return page->index;
7b60a685
MK
915 } else
916 return *(unsigned long *)obj;
312fcae2
MK
917}
918
48b4800a
MK
919static inline int testpin_tag(unsigned long handle)
920{
921 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
922}
923
312fcae2
MK
924static inline int trypin_tag(unsigned long handle)
925{
1b8320b6 926 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
927}
928
929static void pin_tag(unsigned long handle)
930{
1b8320b6 931 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
932}
933
934static void unpin_tag(unsigned long handle)
935{
1b8320b6 936 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
312fcae2
MK
937}
938
f4477e90
NG
939static void reset_page(struct page *page)
940{
48b4800a 941 __ClearPageMovable(page);
f4477e90
NG
942 clear_bit(PG_private, &page->flags);
943 clear_bit(PG_private_2, &page->flags);
944 set_page_private(page, 0);
48b4800a
MK
945 page_mapcount_reset(page);
946 ClearPageHugeObject(page);
947 page->freelist = NULL;
948}
949
950/*
951 * To prevent zspage destroy during migration, zspage freeing should
952 * hold locks of all pages in the zspage.
953 */
954void lock_zspage(struct zspage *zspage)
955{
956 struct page *page = get_first_page(zspage);
957
958 do {
959 lock_page(page);
960 } while ((page = get_next_page(page)) != NULL);
961}
962
963int trylock_zspage(struct zspage *zspage)
964{
965 struct page *cursor, *fail;
966
967 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
968 get_next_page(cursor)) {
969 if (!trylock_page(cursor)) {
970 fail = cursor;
971 goto unlock;
972 }
973 }
974
975 return 1;
976unlock:
977 for (cursor = get_first_page(zspage); cursor != fail; cursor =
978 get_next_page(cursor))
979 unlock_page(cursor);
980
981 return 0;
f4477e90
NG
982}
983
48b4800a
MK
984static void __free_zspage(struct zs_pool *pool, struct size_class *class,
985 struct zspage *zspage)
61989a80 986{
3783689a 987 struct page *page, *next;
48b4800a
MK
988 enum fullness_group fg;
989 unsigned int class_idx;
990
991 get_zspage_mapping(zspage, &class_idx, &fg);
992
993 assert_spin_locked(&class->lock);
61989a80 994
3783689a 995 VM_BUG_ON(get_zspage_inuse(zspage));
48b4800a 996 VM_BUG_ON(fg != ZS_EMPTY);
61989a80 997
48b4800a 998 next = page = get_first_page(zspage);
3783689a 999 do {
48b4800a
MK
1000 VM_BUG_ON_PAGE(!PageLocked(page), page);
1001 next = get_next_page(page);
3783689a 1002 reset_page(page);
48b4800a 1003 unlock_page(page);
91537fee 1004 dec_zone_page_state(page, NR_ZSPAGES);
3783689a
MK
1005 put_page(page);
1006 page = next;
1007 } while (page != NULL);
61989a80 1008
3783689a 1009 cache_free_zspage(pool, zspage);
48b4800a 1010
b4fd07a0 1011 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1012 atomic_long_sub(class->pages_per_zspage,
1013 &pool->pages_allocated);
1014}
1015
1016static void free_zspage(struct zs_pool *pool, struct size_class *class,
1017 struct zspage *zspage)
1018{
1019 VM_BUG_ON(get_zspage_inuse(zspage));
1020 VM_BUG_ON(list_empty(&zspage->list));
1021
1022 if (!trylock_zspage(zspage)) {
1023 kick_deferred_free(pool);
1024 return;
1025 }
1026
1027 remove_zspage(class, zspage, ZS_EMPTY);
1028 __free_zspage(pool, class, zspage);
61989a80
NG
1029}
1030
1031/* Initialize a newly allocated zspage */
3783689a 1032static void init_zspage(struct size_class *class, struct zspage *zspage)
61989a80 1033{
bfd093f5 1034 unsigned int freeobj = 1;
61989a80 1035 unsigned long off = 0;
48b4800a 1036 struct page *page = get_first_page(zspage);
830e4bc5 1037
61989a80
NG
1038 while (page) {
1039 struct page *next_page;
1040 struct link_free *link;
af4ee5e9 1041 void *vaddr;
61989a80 1042
3783689a 1043 set_first_obj_offset(page, off);
61989a80 1044
af4ee5e9
MK
1045 vaddr = kmap_atomic(page);
1046 link = (struct link_free *)vaddr + off / sizeof(*link);
5538c562
DS
1047
1048 while ((off += class->size) < PAGE_SIZE) {
3b1d9ca6 1049 link->next = freeobj++ << OBJ_TAG_BITS;
5538c562 1050 link += class->size / sizeof(*link);
61989a80
NG
1051 }
1052
1053 /*
1054 * We now come to the last (full or partial) object on this
1055 * page, which must point to the first object on the next
1056 * page (if present)
1057 */
1058 next_page = get_next_page(page);
bfd093f5 1059 if (next_page) {
3b1d9ca6 1060 link->next = freeobj++ << OBJ_TAG_BITS;
bfd093f5
MK
1061 } else {
1062 /*
3b1d9ca6 1063 * Reset OBJ_TAG_BITS bit to last link to tell
bfd093f5
MK
1064 * whether it's allocated object or not.
1065 */
3b1d9ca6 1066 link->next = -1 << OBJ_TAG_BITS;
bfd093f5 1067 }
af4ee5e9 1068 kunmap_atomic(vaddr);
61989a80 1069 page = next_page;
5538c562 1070 off %= PAGE_SIZE;
61989a80 1071 }
bdb0af7c 1072
bfd093f5 1073 set_freeobj(zspage, 0);
61989a80
NG
1074}
1075
48b4800a
MK
1076static void create_page_chain(struct size_class *class, struct zspage *zspage,
1077 struct page *pages[])
61989a80 1078{
bdb0af7c
MK
1079 int i;
1080 struct page *page;
1081 struct page *prev_page = NULL;
48b4800a 1082 int nr_pages = class->pages_per_zspage;
61989a80
NG
1083
1084 /*
1085 * Allocate individual pages and link them together as:
48b4800a 1086 * 1. all pages are linked together using page->freelist
3783689a 1087 * 2. each sub-page point to zspage using page->private
61989a80 1088 *
3783689a
MK
1089 * we set PG_private to identify the first page (i.e. no other sub-page
1090 * has this flag set) and PG_private_2 to identify the last page.
61989a80 1091 */
bdb0af7c
MK
1092 for (i = 0; i < nr_pages; i++) {
1093 page = pages[i];
3783689a 1094 set_page_private(page, (unsigned long)zspage);
48b4800a 1095 page->freelist = NULL;
bdb0af7c 1096 if (i == 0) {
3783689a 1097 zspage->first_page = page;
a27545bf 1098 SetPagePrivate(page);
48b4800a
MK
1099 if (unlikely(class->objs_per_zspage == 1 &&
1100 class->pages_per_zspage == 1))
1101 SetPageHugeObject(page);
3783689a 1102 } else {
48b4800a 1103 prev_page->freelist = page;
61989a80 1104 }
48b4800a 1105 if (i == nr_pages - 1)
a27545bf 1106 SetPagePrivate2(page);
61989a80
NG
1107 prev_page = page;
1108 }
bdb0af7c 1109}
61989a80 1110
bdb0af7c
MK
1111/*
1112 * Allocate a zspage for the given size class
1113 */
3783689a
MK
1114static struct zspage *alloc_zspage(struct zs_pool *pool,
1115 struct size_class *class,
1116 gfp_t gfp)
bdb0af7c
MK
1117{
1118 int i;
bdb0af7c 1119 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
3783689a
MK
1120 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1121
1122 if (!zspage)
1123 return NULL;
1124
1125 memset(zspage, 0, sizeof(struct zspage));
48b4800a
MK
1126 zspage->magic = ZSPAGE_MAGIC;
1127 migrate_lock_init(zspage);
61989a80 1128
bdb0af7c
MK
1129 for (i = 0; i < class->pages_per_zspage; i++) {
1130 struct page *page;
61989a80 1131
3783689a 1132 page = alloc_page(gfp);
bdb0af7c 1133 if (!page) {
91537fee
MK
1134 while (--i >= 0) {
1135 dec_zone_page_state(pages[i], NR_ZSPAGES);
bdb0af7c 1136 __free_page(pages[i]);
91537fee 1137 }
3783689a 1138 cache_free_zspage(pool, zspage);
bdb0af7c
MK
1139 return NULL;
1140 }
91537fee
MK
1141
1142 inc_zone_page_state(page, NR_ZSPAGES);
bdb0af7c 1143 pages[i] = page;
61989a80
NG
1144 }
1145
48b4800a 1146 create_page_chain(class, zspage, pages);
3783689a 1147 init_zspage(class, zspage);
bdb0af7c 1148
3783689a 1149 return zspage;
61989a80
NG
1150}
1151
3783689a 1152static struct zspage *find_get_zspage(struct size_class *class)
61989a80
NG
1153{
1154 int i;
3783689a 1155 struct zspage *zspage;
61989a80 1156
48b4800a 1157 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
3783689a
MK
1158 zspage = list_first_entry_or_null(&class->fullness_list[i],
1159 struct zspage, list);
1160 if (zspage)
61989a80
NG
1161 break;
1162 }
1163
3783689a 1164 return zspage;
61989a80
NG
1165}
1166
1b945aee 1167#ifdef CONFIG_PGTABLE_MAPPING
f553646a
SJ
1168static inline int __zs_cpu_up(struct mapping_area *area)
1169{
1170 /*
1171 * Make sure we don't leak memory if a cpu UP notification
1172 * and zs_init() race and both call zs_cpu_up() on the same cpu
1173 */
1174 if (area->vm)
1175 return 0;
1176 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1177 if (!area->vm)
1178 return -ENOMEM;
1179 return 0;
1180}
1181
1182static inline void __zs_cpu_down(struct mapping_area *area)
1183{
1184 if (area->vm)
1185 free_vm_area(area->vm);
1186 area->vm = NULL;
1187}
1188
1189static inline void *__zs_map_object(struct mapping_area *area,
1190 struct page *pages[2], int off, int size)
1191{
f6f8ed47 1192 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
f553646a
SJ
1193 area->vm_addr = area->vm->addr;
1194 return area->vm_addr + off;
1195}
1196
1197static inline void __zs_unmap_object(struct mapping_area *area,
1198 struct page *pages[2], int off, int size)
1199{
1200 unsigned long addr = (unsigned long)area->vm_addr;
f553646a 1201
d95abbbb 1202 unmap_kernel_range(addr, PAGE_SIZE * 2);
f553646a
SJ
1203}
1204
1b945aee 1205#else /* CONFIG_PGTABLE_MAPPING */
f553646a
SJ
1206
1207static inline int __zs_cpu_up(struct mapping_area *area)
1208{
1209 /*
1210 * Make sure we don't leak memory if a cpu UP notification
1211 * and zs_init() race and both call zs_cpu_up() on the same cpu
1212 */
1213 if (area->vm_buf)
1214 return 0;
40f9fb8c 1215 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
f553646a
SJ
1216 if (!area->vm_buf)
1217 return -ENOMEM;
1218 return 0;
1219}
1220
1221static inline void __zs_cpu_down(struct mapping_area *area)
1222{
40f9fb8c 1223 kfree(area->vm_buf);
f553646a
SJ
1224 area->vm_buf = NULL;
1225}
1226
1227static void *__zs_map_object(struct mapping_area *area,
1228 struct page *pages[2], int off, int size)
5f601902 1229{
5f601902
SJ
1230 int sizes[2];
1231 void *addr;
f553646a 1232 char *buf = area->vm_buf;
5f601902 1233
f553646a
SJ
1234 /* disable page faults to match kmap_atomic() return conditions */
1235 pagefault_disable();
1236
1237 /* no read fastpath */
1238 if (area->vm_mm == ZS_MM_WO)
1239 goto out;
5f601902
SJ
1240
1241 sizes[0] = PAGE_SIZE - off;
1242 sizes[1] = size - sizes[0];
1243
5f601902
SJ
1244 /* copy object to per-cpu buffer */
1245 addr = kmap_atomic(pages[0]);
1246 memcpy(buf, addr + off, sizes[0]);
1247 kunmap_atomic(addr);
1248 addr = kmap_atomic(pages[1]);
1249 memcpy(buf + sizes[0], addr, sizes[1]);
1250 kunmap_atomic(addr);
f553646a
SJ
1251out:
1252 return area->vm_buf;
5f601902
SJ
1253}
1254
f553646a
SJ
1255static void __zs_unmap_object(struct mapping_area *area,
1256 struct page *pages[2], int off, int size)
5f601902 1257{
5f601902
SJ
1258 int sizes[2];
1259 void *addr;
2e40e163 1260 char *buf;
5f601902 1261
f553646a
SJ
1262 /* no write fastpath */
1263 if (area->vm_mm == ZS_MM_RO)
1264 goto out;
5f601902 1265
7b60a685 1266 buf = area->vm_buf;
a82cbf07
YX
1267 buf = buf + ZS_HANDLE_SIZE;
1268 size -= ZS_HANDLE_SIZE;
1269 off += ZS_HANDLE_SIZE;
2e40e163 1270
5f601902
SJ
1271 sizes[0] = PAGE_SIZE - off;
1272 sizes[1] = size - sizes[0];
1273
1274 /* copy per-cpu buffer to object */
1275 addr = kmap_atomic(pages[0]);
1276 memcpy(addr + off, buf, sizes[0]);
1277 kunmap_atomic(addr);
1278 addr = kmap_atomic(pages[1]);
1279 memcpy(addr, buf + sizes[0], sizes[1]);
1280 kunmap_atomic(addr);
f553646a
SJ
1281
1282out:
1283 /* enable page faults to match kunmap_atomic() return conditions */
1284 pagefault_enable();
5f601902 1285}
61989a80 1286
1b945aee 1287#endif /* CONFIG_PGTABLE_MAPPING */
f553646a 1288
61989a80
NG
1289static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
1290 void *pcpu)
1291{
f553646a 1292 int ret, cpu = (long)pcpu;
61989a80
NG
1293 struct mapping_area *area;
1294
1295 switch (action) {
1296 case CPU_UP_PREPARE:
1297 area = &per_cpu(zs_map_area, cpu);
f553646a
SJ
1298 ret = __zs_cpu_up(area);
1299 if (ret)
1300 return notifier_from_errno(ret);
61989a80
NG
1301 break;
1302 case CPU_DEAD:
1303 case CPU_UP_CANCELED:
1304 area = &per_cpu(zs_map_area, cpu);
f553646a 1305 __zs_cpu_down(area);
61989a80
NG
1306 break;
1307 }
1308
1309 return NOTIFY_OK;
1310}
1311
1312static struct notifier_block zs_cpu_nb = {
1313 .notifier_call = zs_cpu_notifier
1314};
1315
b1b00a5b 1316static int zs_register_cpu_notifier(void)
61989a80 1317{
b1b00a5b 1318 int cpu, uninitialized_var(ret);
61989a80 1319
f0e71fcd
SB
1320 cpu_notifier_register_begin();
1321
1322 __register_cpu_notifier(&zs_cpu_nb);
61989a80
NG
1323 for_each_online_cpu(cpu) {
1324 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
b1b00a5b
SS
1325 if (notifier_to_errno(ret))
1326 break;
61989a80 1327 }
f0e71fcd
SB
1328
1329 cpu_notifier_register_done();
b1b00a5b
SS
1330 return notifier_to_errno(ret);
1331}
f0e71fcd 1332
66cdef66 1333static void zs_unregister_cpu_notifier(void)
40f9fb8c 1334{
66cdef66 1335 int cpu;
40f9fb8c 1336
66cdef66 1337 cpu_notifier_register_begin();
40f9fb8c 1338
66cdef66
GM
1339 for_each_online_cpu(cpu)
1340 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
1341 __unregister_cpu_notifier(&zs_cpu_nb);
40f9fb8c 1342
66cdef66 1343 cpu_notifier_register_done();
b1b00a5b
SS
1344}
1345
66cdef66 1346static void init_zs_size_classes(void)
b1b00a5b 1347{
66cdef66 1348 int nr;
c795779d 1349
66cdef66
GM
1350 nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
1351 if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
1352 nr += 1;
40f9fb8c 1353
66cdef66 1354 zs_size_classes = nr;
61989a80
NG
1355}
1356
64d90465
GM
1357static bool can_merge(struct size_class *prev, int pages_per_zspage,
1358 int objs_per_zspage)
9eec4cd5 1359{
64d90465
GM
1360 if (prev->pages_per_zspage == pages_per_zspage &&
1361 prev->objs_per_zspage == objs_per_zspage)
1362 return true;
9eec4cd5 1363
64d90465 1364 return false;
9eec4cd5
JK
1365}
1366
3783689a 1367static bool zspage_full(struct size_class *class, struct zspage *zspage)
312fcae2 1368{
3783689a 1369 return get_zspage_inuse(zspage) == class->objs_per_zspage;
312fcae2
MK
1370}
1371
66cdef66
GM
1372unsigned long zs_get_total_pages(struct zs_pool *pool)
1373{
1374 return atomic_long_read(&pool->pages_allocated);
1375}
1376EXPORT_SYMBOL_GPL(zs_get_total_pages);
1377
4bbc0bc0 1378/**
66cdef66
GM
1379 * zs_map_object - get address of allocated object from handle.
1380 * @pool: pool from which the object was allocated
1381 * @handle: handle returned from zs_malloc
4bbc0bc0 1382 *
66cdef66
GM
1383 * Before using an object allocated from zs_malloc, it must be mapped using
1384 * this function. When done with the object, it must be unmapped using
1385 * zs_unmap_object.
4bbc0bc0 1386 *
66cdef66
GM
1387 * Only one object can be mapped per cpu at a time. There is no protection
1388 * against nested mappings.
1389 *
1390 * This function returns with preemption and page faults disabled.
4bbc0bc0 1391 */
66cdef66
GM
1392void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1393 enum zs_mapmode mm)
61989a80 1394{
3783689a 1395 struct zspage *zspage;
66cdef66 1396 struct page *page;
bfd093f5
MK
1397 unsigned long obj, off;
1398 unsigned int obj_idx;
61989a80 1399
66cdef66
GM
1400 unsigned int class_idx;
1401 enum fullness_group fg;
1402 struct size_class *class;
1403 struct mapping_area *area;
1404 struct page *pages[2];
2e40e163 1405 void *ret;
61989a80 1406
9eec4cd5 1407 /*
66cdef66
GM
1408 * Because we use per-cpu mapping areas shared among the
1409 * pools/users, we can't allow mapping in interrupt context
1410 * because it can corrupt another users mappings.
9eec4cd5 1411 */
830e4bc5 1412 WARN_ON_ONCE(in_interrupt());
61989a80 1413
312fcae2
MK
1414 /* From now on, migration cannot move the object */
1415 pin_tag(handle);
1416
2e40e163
MK
1417 obj = handle_to_obj(handle);
1418 obj_to_location(obj, &page, &obj_idx);
3783689a 1419 zspage = get_zspage(page);
48b4800a
MK
1420
1421 /* migration cannot move any subpage in this zspage */
1422 migrate_read_lock(zspage);
1423
3783689a 1424 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1425 class = pool->size_class[class_idx];
bfd093f5 1426 off = (class->size * obj_idx) & ~PAGE_MASK;
df8b5bb9 1427
66cdef66
GM
1428 area = &get_cpu_var(zs_map_area);
1429 area->vm_mm = mm;
1430 if (off + class->size <= PAGE_SIZE) {
1431 /* this object is contained entirely within a page */
1432 area->vm_addr = kmap_atomic(page);
2e40e163
MK
1433 ret = area->vm_addr + off;
1434 goto out;
61989a80
NG
1435 }
1436
66cdef66
GM
1437 /* this object spans two pages */
1438 pages[0] = page;
1439 pages[1] = get_next_page(page);
1440 BUG_ON(!pages[1]);
9eec4cd5 1441
2e40e163
MK
1442 ret = __zs_map_object(area, pages, off, class->size);
1443out:
48b4800a 1444 if (likely(!PageHugeObject(page)))
7b60a685
MK
1445 ret += ZS_HANDLE_SIZE;
1446
1447 return ret;
61989a80 1448}
66cdef66 1449EXPORT_SYMBOL_GPL(zs_map_object);
61989a80 1450
66cdef66 1451void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
61989a80 1452{
3783689a 1453 struct zspage *zspage;
66cdef66 1454 struct page *page;
bfd093f5
MK
1455 unsigned long obj, off;
1456 unsigned int obj_idx;
61989a80 1457
66cdef66
GM
1458 unsigned int class_idx;
1459 enum fullness_group fg;
1460 struct size_class *class;
1461 struct mapping_area *area;
9eec4cd5 1462
2e40e163
MK
1463 obj = handle_to_obj(handle);
1464 obj_to_location(obj, &page, &obj_idx);
3783689a
MK
1465 zspage = get_zspage(page);
1466 get_zspage_mapping(zspage, &class_idx, &fg);
66cdef66 1467 class = pool->size_class[class_idx];
bfd093f5 1468 off = (class->size * obj_idx) & ~PAGE_MASK;
61989a80 1469
66cdef66
GM
1470 area = this_cpu_ptr(&zs_map_area);
1471 if (off + class->size <= PAGE_SIZE)
1472 kunmap_atomic(area->vm_addr);
1473 else {
1474 struct page *pages[2];
40f9fb8c 1475
66cdef66
GM
1476 pages[0] = page;
1477 pages[1] = get_next_page(page);
1478 BUG_ON(!pages[1]);
1479
1480 __zs_unmap_object(area, pages, off, class->size);
1481 }
1482 put_cpu_var(zs_map_area);
48b4800a
MK
1483
1484 migrate_read_unlock(zspage);
312fcae2 1485 unpin_tag(handle);
61989a80 1486}
66cdef66 1487EXPORT_SYMBOL_GPL(zs_unmap_object);
61989a80 1488
251cbb95 1489static unsigned long obj_malloc(struct size_class *class,
3783689a 1490 struct zspage *zspage, unsigned long handle)
c7806261 1491{
bfd093f5 1492 int i, nr_page, offset;
c7806261
MK
1493 unsigned long obj;
1494 struct link_free *link;
1495
1496 struct page *m_page;
bfd093f5 1497 unsigned long m_offset;
c7806261
MK
1498 void *vaddr;
1499
312fcae2 1500 handle |= OBJ_ALLOCATED_TAG;
3783689a 1501 obj = get_freeobj(zspage);
bfd093f5
MK
1502
1503 offset = obj * class->size;
1504 nr_page = offset >> PAGE_SHIFT;
1505 m_offset = offset & ~PAGE_MASK;
1506 m_page = get_first_page(zspage);
1507
1508 for (i = 0; i < nr_page; i++)
1509 m_page = get_next_page(m_page);
c7806261
MK
1510
1511 vaddr = kmap_atomic(m_page);
1512 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
3b1d9ca6 1513 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
48b4800a 1514 if (likely(!PageHugeObject(m_page)))
7b60a685
MK
1515 /* record handle in the header of allocated chunk */
1516 link->handle = handle;
1517 else
3783689a
MK
1518 /* record handle to page->index */
1519 zspage->first_page->index = handle;
1520
c7806261 1521 kunmap_atomic(vaddr);
3783689a 1522 mod_zspage_inuse(zspage, 1);
c7806261
MK
1523 zs_stat_inc(class, OBJ_USED, 1);
1524
bfd093f5
MK
1525 obj = location_to_obj(m_page, obj);
1526
c7806261
MK
1527 return obj;
1528}
1529
1530
61989a80
NG
1531/**
1532 * zs_malloc - Allocate block of given size from pool.
1533 * @pool: pool to allocate from
1534 * @size: size of block to allocate
61989a80 1535 *
00a61d86 1536 * On success, handle to the allocated object is returned,
c2344348 1537 * otherwise 0.
61989a80
NG
1538 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1539 */
d0d8da2d 1540unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
61989a80 1541{
2e40e163 1542 unsigned long handle, obj;
61989a80 1543 struct size_class *class;
48b4800a 1544 enum fullness_group newfg;
3783689a 1545 struct zspage *zspage;
61989a80 1546
7b60a685 1547 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
2e40e163
MK
1548 return 0;
1549
3783689a 1550 handle = cache_alloc_handle(pool, gfp);
2e40e163 1551 if (!handle)
c2344348 1552 return 0;
61989a80 1553
2e40e163
MK
1554 /* extra space in chunk to keep the handle */
1555 size += ZS_HANDLE_SIZE;
9eec4cd5 1556 class = pool->size_class[get_size_class_index(size)];
61989a80
NG
1557
1558 spin_lock(&class->lock);
3783689a 1559 zspage = find_get_zspage(class);
48b4800a
MK
1560 if (likely(zspage)) {
1561 obj = obj_malloc(class, zspage, handle);
1562 /* Now move the zspage to another fullness group, if required */
1563 fix_fullness_group(class, zspage);
1564 record_obj(handle, obj);
61989a80 1565 spin_unlock(&class->lock);
61989a80 1566
48b4800a
MK
1567 return handle;
1568 }
0f050d99 1569
48b4800a
MK
1570 spin_unlock(&class->lock);
1571
1572 zspage = alloc_zspage(pool, class, gfp);
1573 if (!zspage) {
1574 cache_free_handle(pool, handle);
1575 return 0;
61989a80
NG
1576 }
1577
48b4800a 1578 spin_lock(&class->lock);
3783689a 1579 obj = obj_malloc(class, zspage, handle);
48b4800a
MK
1580 newfg = get_fullness_group(class, zspage);
1581 insert_zspage(class, zspage, newfg);
1582 set_zspage_mapping(zspage, class->index, newfg);
2e40e163 1583 record_obj(handle, obj);
48b4800a
MK
1584 atomic_long_add(class->pages_per_zspage,
1585 &pool->pages_allocated);
b4fd07a0 1586 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
48b4800a
MK
1587
1588 /* We completely set up zspage so mark them as movable */
1589 SetZsPageMovable(pool, zspage);
61989a80
NG
1590 spin_unlock(&class->lock);
1591
2e40e163 1592 return handle;
61989a80
NG
1593}
1594EXPORT_SYMBOL_GPL(zs_malloc);
1595
1ee47165 1596static void obj_free(struct size_class *class, unsigned long obj)
61989a80
NG
1597{
1598 struct link_free *link;
3783689a
MK
1599 struct zspage *zspage;
1600 struct page *f_page;
bfd093f5
MK
1601 unsigned long f_offset;
1602 unsigned int f_objidx;
af4ee5e9 1603 void *vaddr;
61989a80 1604
312fcae2 1605 obj &= ~OBJ_ALLOCATED_TAG;
2e40e163 1606 obj_to_location(obj, &f_page, &f_objidx);
bfd093f5 1607 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
3783689a 1608 zspage = get_zspage(f_page);
61989a80 1609
c7806261 1610 vaddr = kmap_atomic(f_page);
61989a80
NG
1611
1612 /* Insert this object in containing zspage's freelist */
af4ee5e9 1613 link = (struct link_free *)(vaddr + f_offset);
3b1d9ca6 1614 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
af4ee5e9 1615 kunmap_atomic(vaddr);
bfd093f5 1616 set_freeobj(zspage, f_objidx);
3783689a 1617 mod_zspage_inuse(zspage, -1);
0f050d99 1618 zs_stat_dec(class, OBJ_USED, 1);
c7806261
MK
1619}
1620
1621void zs_free(struct zs_pool *pool, unsigned long handle)
1622{
3783689a
MK
1623 struct zspage *zspage;
1624 struct page *f_page;
bfd093f5
MK
1625 unsigned long obj;
1626 unsigned int f_objidx;
c7806261
MK
1627 int class_idx;
1628 struct size_class *class;
1629 enum fullness_group fullness;
48b4800a 1630 bool isolated;
c7806261
MK
1631
1632 if (unlikely(!handle))
1633 return;
1634
312fcae2 1635 pin_tag(handle);
c7806261 1636 obj = handle_to_obj(handle);
c7806261 1637 obj_to_location(obj, &f_page, &f_objidx);
3783689a 1638 zspage = get_zspage(f_page);
c7806261 1639
48b4800a
MK
1640 migrate_read_lock(zspage);
1641
3783689a 1642 get_zspage_mapping(zspage, &class_idx, &fullness);
c7806261
MK
1643 class = pool->size_class[class_idx];
1644
1645 spin_lock(&class->lock);
1ee47165 1646 obj_free(class, obj);
3783689a 1647 fullness = fix_fullness_group(class, zspage);
48b4800a
MK
1648 if (fullness != ZS_EMPTY) {
1649 migrate_read_unlock(zspage);
1650 goto out;
312fcae2 1651 }
48b4800a
MK
1652
1653 isolated = is_zspage_isolated(zspage);
1654 migrate_read_unlock(zspage);
1655 /* If zspage is isolated, zs_page_putback will free the zspage */
1656 if (likely(!isolated))
1657 free_zspage(pool, class, zspage);
1658out:
1659
61989a80 1660 spin_unlock(&class->lock);
312fcae2 1661 unpin_tag(handle);
3783689a 1662 cache_free_handle(pool, handle);
312fcae2
MK
1663}
1664EXPORT_SYMBOL_GPL(zs_free);
1665
251cbb95
MK
1666static void zs_object_copy(struct size_class *class, unsigned long dst,
1667 unsigned long src)
312fcae2
MK
1668{
1669 struct page *s_page, *d_page;
bfd093f5 1670 unsigned int s_objidx, d_objidx;
312fcae2
MK
1671 unsigned long s_off, d_off;
1672 void *s_addr, *d_addr;
1673 int s_size, d_size, size;
1674 int written = 0;
1675
1676 s_size = d_size = class->size;
1677
1678 obj_to_location(src, &s_page, &s_objidx);
1679 obj_to_location(dst, &d_page, &d_objidx);
1680
bfd093f5
MK
1681 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1682 d_off = (class->size * d_objidx) & ~PAGE_MASK;
312fcae2
MK
1683
1684 if (s_off + class->size > PAGE_SIZE)
1685 s_size = PAGE_SIZE - s_off;
1686
1687 if (d_off + class->size > PAGE_SIZE)
1688 d_size = PAGE_SIZE - d_off;
1689
1690 s_addr = kmap_atomic(s_page);
1691 d_addr = kmap_atomic(d_page);
1692
1693 while (1) {
1694 size = min(s_size, d_size);
1695 memcpy(d_addr + d_off, s_addr + s_off, size);
1696 written += size;
1697
1698 if (written == class->size)
1699 break;
1700
495819ea
SS
1701 s_off += size;
1702 s_size -= size;
1703 d_off += size;
1704 d_size -= size;
1705
1706 if (s_off >= PAGE_SIZE) {
312fcae2
MK
1707 kunmap_atomic(d_addr);
1708 kunmap_atomic(s_addr);
1709 s_page = get_next_page(s_page);
312fcae2
MK
1710 s_addr = kmap_atomic(s_page);
1711 d_addr = kmap_atomic(d_page);
1712 s_size = class->size - written;
1713 s_off = 0;
312fcae2
MK
1714 }
1715
495819ea 1716 if (d_off >= PAGE_SIZE) {
312fcae2
MK
1717 kunmap_atomic(d_addr);
1718 d_page = get_next_page(d_page);
312fcae2
MK
1719 d_addr = kmap_atomic(d_page);
1720 d_size = class->size - written;
1721 d_off = 0;
312fcae2
MK
1722 }
1723 }
1724
1725 kunmap_atomic(d_addr);
1726 kunmap_atomic(s_addr);
1727}
1728
1729/*
1730 * Find alloced object in zspage from index object and
1731 * return handle.
1732 */
251cbb95 1733static unsigned long find_alloced_obj(struct size_class *class,
cf675acb 1734 struct page *page, int *obj_idx)
312fcae2
MK
1735{
1736 unsigned long head;
1737 int offset = 0;
cf675acb 1738 int index = *obj_idx;
312fcae2
MK
1739 unsigned long handle = 0;
1740 void *addr = kmap_atomic(page);
1741
3783689a 1742 offset = get_first_obj_offset(page);
312fcae2
MK
1743 offset += class->size * index;
1744
1745 while (offset < PAGE_SIZE) {
48b4800a 1746 head = obj_to_head(page, addr + offset);
312fcae2
MK
1747 if (head & OBJ_ALLOCATED_TAG) {
1748 handle = head & ~OBJ_ALLOCATED_TAG;
1749 if (trypin_tag(handle))
1750 break;
1751 handle = 0;
1752 }
1753
1754 offset += class->size;
1755 index++;
1756 }
1757
1758 kunmap_atomic(addr);
cf675acb
GM
1759
1760 *obj_idx = index;
1761
312fcae2
MK
1762 return handle;
1763}
1764
1765struct zs_compact_control {
3783689a 1766 /* Source spage for migration which could be a subpage of zspage */
312fcae2
MK
1767 struct page *s_page;
1768 /* Destination page for migration which should be a first page
1769 * of zspage. */
1770 struct page *d_page;
1771 /* Starting object index within @s_page which used for live object
1772 * in the subpage. */
41b88e14 1773 int obj_idx;
312fcae2
MK
1774};
1775
1776static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1777 struct zs_compact_control *cc)
1778{
1779 unsigned long used_obj, free_obj;
1780 unsigned long handle;
1781 struct page *s_page = cc->s_page;
1782 struct page *d_page = cc->d_page;
41b88e14 1783 int obj_idx = cc->obj_idx;
312fcae2
MK
1784 int ret = 0;
1785
1786 while (1) {
cf675acb 1787 handle = find_alloced_obj(class, s_page, &obj_idx);
312fcae2
MK
1788 if (!handle) {
1789 s_page = get_next_page(s_page);
1790 if (!s_page)
1791 break;
41b88e14 1792 obj_idx = 0;
312fcae2
MK
1793 continue;
1794 }
1795
1796 /* Stop if there is no more space */
3783689a 1797 if (zspage_full(class, get_zspage(d_page))) {
312fcae2
MK
1798 unpin_tag(handle);
1799 ret = -ENOMEM;
1800 break;
1801 }
1802
1803 used_obj = handle_to_obj(handle);
3783689a 1804 free_obj = obj_malloc(class, get_zspage(d_page), handle);
251cbb95 1805 zs_object_copy(class, free_obj, used_obj);
41b88e14 1806 obj_idx++;
c102f07c
JL
1807 /*
1808 * record_obj updates handle's value to free_obj and it will
1809 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1810 * breaks synchronization using pin_tag(e,g, zs_free) so
1811 * let's keep the lock bit.
1812 */
1813 free_obj |= BIT(HANDLE_PIN_BIT);
312fcae2
MK
1814 record_obj(handle, free_obj);
1815 unpin_tag(handle);
1ee47165 1816 obj_free(class, used_obj);
312fcae2
MK
1817 }
1818
1819 /* Remember last position in this iteration */
1820 cc->s_page = s_page;
41b88e14 1821 cc->obj_idx = obj_idx;
312fcae2
MK
1822
1823 return ret;
1824}
1825
3783689a 1826static struct zspage *isolate_zspage(struct size_class *class, bool source)
312fcae2
MK
1827{
1828 int i;
3783689a
MK
1829 struct zspage *zspage;
1830 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
312fcae2 1831
3783689a
MK
1832 if (!source) {
1833 fg[0] = ZS_ALMOST_FULL;
1834 fg[1] = ZS_ALMOST_EMPTY;
1835 }
1836
1837 for (i = 0; i < 2; i++) {
1838 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1839 struct zspage, list);
1840 if (zspage) {
48b4800a 1841 VM_BUG_ON(is_zspage_isolated(zspage));
3783689a
MK
1842 remove_zspage(class, zspage, fg[i]);
1843 return zspage;
312fcae2
MK
1844 }
1845 }
1846
3783689a 1847 return zspage;
312fcae2
MK
1848}
1849
860c707d 1850/*
3783689a 1851 * putback_zspage - add @zspage into right class's fullness list
860c707d 1852 * @class: destination class
3783689a 1853 * @zspage: target page
860c707d 1854 *
3783689a 1855 * Return @zspage's fullness_group
860c707d 1856 */
4aa409ca 1857static enum fullness_group putback_zspage(struct size_class *class,
3783689a 1858 struct zspage *zspage)
312fcae2 1859{
312fcae2
MK
1860 enum fullness_group fullness;
1861
48b4800a
MK
1862 VM_BUG_ON(is_zspage_isolated(zspage));
1863
3783689a
MK
1864 fullness = get_fullness_group(class, zspage);
1865 insert_zspage(class, zspage, fullness);
1866 set_zspage_mapping(zspage, class->index, fullness);
839373e6 1867
860c707d 1868 return fullness;
61989a80 1869}
312fcae2 1870
48b4800a
MK
1871#ifdef CONFIG_COMPACTION
1872static struct dentry *zs_mount(struct file_system_type *fs_type,
1873 int flags, const char *dev_name, void *data)
1874{
1875 static const struct dentry_operations ops = {
1876 .d_dname = simple_dname,
1877 };
1878
1879 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1880}
1881
1882static struct file_system_type zsmalloc_fs = {
1883 .name = "zsmalloc",
1884 .mount = zs_mount,
1885 .kill_sb = kill_anon_super,
1886};
1887
1888static int zsmalloc_mount(void)
1889{
1890 int ret = 0;
1891
1892 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1893 if (IS_ERR(zsmalloc_mnt))
1894 ret = PTR_ERR(zsmalloc_mnt);
1895
1896 return ret;
1897}
1898
1899static void zsmalloc_unmount(void)
1900{
1901 kern_unmount(zsmalloc_mnt);
1902}
1903
1904static void migrate_lock_init(struct zspage *zspage)
1905{
1906 rwlock_init(&zspage->lock);
1907}
1908
1909static void migrate_read_lock(struct zspage *zspage)
1910{
1911 read_lock(&zspage->lock);
1912}
1913
1914static void migrate_read_unlock(struct zspage *zspage)
1915{
1916 read_unlock(&zspage->lock);
1917}
1918
1919static void migrate_write_lock(struct zspage *zspage)
1920{
1921 write_lock(&zspage->lock);
1922}
1923
1924static void migrate_write_unlock(struct zspage *zspage)
1925{
1926 write_unlock(&zspage->lock);
1927}
1928
1929/* Number of isolated subpage for *page migration* in this zspage */
1930static void inc_zspage_isolation(struct zspage *zspage)
1931{
1932 zspage->isolated++;
1933}
1934
1935static void dec_zspage_isolation(struct zspage *zspage)
1936{
1937 zspage->isolated--;
1938}
1939
1940static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1941 struct page *newpage, struct page *oldpage)
1942{
1943 struct page *page;
1944 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1945 int idx = 0;
1946
1947 page = get_first_page(zspage);
1948 do {
1949 if (page == oldpage)
1950 pages[idx] = newpage;
1951 else
1952 pages[idx] = page;
1953 idx++;
1954 } while ((page = get_next_page(page)) != NULL);
1955
1956 create_page_chain(class, zspage, pages);
1957 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1958 if (unlikely(PageHugeObject(oldpage)))
1959 newpage->index = oldpage->index;
1960 __SetPageMovable(newpage, page_mapping(oldpage));
1961}
1962
1963bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1964{
1965 struct zs_pool *pool;
1966 struct size_class *class;
1967 int class_idx;
1968 enum fullness_group fullness;
1969 struct zspage *zspage;
1970 struct address_space *mapping;
1971
1972 /*
1973 * Page is locked so zspage couldn't be destroyed. For detail, look at
1974 * lock_zspage in free_zspage.
1975 */
1976 VM_BUG_ON_PAGE(!PageMovable(page), page);
1977 VM_BUG_ON_PAGE(PageIsolated(page), page);
1978
1979 zspage = get_zspage(page);
1980
1981 /*
1982 * Without class lock, fullness could be stale while class_idx is okay
1983 * because class_idx is constant unless page is freed so we should get
1984 * fullness again under class lock.
1985 */
1986 get_zspage_mapping(zspage, &class_idx, &fullness);
1987 mapping = page_mapping(page);
1988 pool = mapping->private_data;
1989 class = pool->size_class[class_idx];
1990
1991 spin_lock(&class->lock);
1992 if (get_zspage_inuse(zspage) == 0) {
1993 spin_unlock(&class->lock);
1994 return false;
1995 }
1996
1997 /* zspage is isolated for object migration */
1998 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1999 spin_unlock(&class->lock);
2000 return false;
2001 }
2002
2003 /*
2004 * If this is first time isolation for the zspage, isolate zspage from
2005 * size_class to prevent further object allocation from the zspage.
2006 */
2007 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
2008 get_zspage_mapping(zspage, &class_idx, &fullness);
2009 remove_zspage(class, zspage, fullness);
2010 }
2011
2012 inc_zspage_isolation(zspage);
2013 spin_unlock(&class->lock);
2014
2015 return true;
2016}
2017
2018int zs_page_migrate(struct address_space *mapping, struct page *newpage,
2019 struct page *page, enum migrate_mode mode)
2020{
2021 struct zs_pool *pool;
2022 struct size_class *class;
2023 int class_idx;
2024 enum fullness_group fullness;
2025 struct zspage *zspage;
2026 struct page *dummy;
2027 void *s_addr, *d_addr, *addr;
2028 int offset, pos;
2029 unsigned long handle, head;
2030 unsigned long old_obj, new_obj;
2031 unsigned int obj_idx;
2032 int ret = -EAGAIN;
2033
2034 VM_BUG_ON_PAGE(!PageMovable(page), page);
2035 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2036
2037 zspage = get_zspage(page);
2038
2039 /* Concurrent compactor cannot migrate any subpage in zspage */
2040 migrate_write_lock(zspage);
2041 get_zspage_mapping(zspage, &class_idx, &fullness);
2042 pool = mapping->private_data;
2043 class = pool->size_class[class_idx];
2044 offset = get_first_obj_offset(page);
2045
2046 spin_lock(&class->lock);
2047 if (!get_zspage_inuse(zspage)) {
2048 ret = -EBUSY;
2049 goto unlock_class;
2050 }
2051
2052 pos = offset;
2053 s_addr = kmap_atomic(page);
2054 while (pos < PAGE_SIZE) {
2055 head = obj_to_head(page, s_addr + pos);
2056 if (head & OBJ_ALLOCATED_TAG) {
2057 handle = head & ~OBJ_ALLOCATED_TAG;
2058 if (!trypin_tag(handle))
2059 goto unpin_objects;
2060 }
2061 pos += class->size;
2062 }
2063
2064 /*
2065 * Here, any user cannot access all objects in the zspage so let's move.
2066 */
2067 d_addr = kmap_atomic(newpage);
2068 memcpy(d_addr, s_addr, PAGE_SIZE);
2069 kunmap_atomic(d_addr);
2070
2071 for (addr = s_addr + offset; addr < s_addr + pos;
2072 addr += class->size) {
2073 head = obj_to_head(page, addr);
2074 if (head & OBJ_ALLOCATED_TAG) {
2075 handle = head & ~OBJ_ALLOCATED_TAG;
2076 if (!testpin_tag(handle))
2077 BUG();
2078
2079 old_obj = handle_to_obj(handle);
2080 obj_to_location(old_obj, &dummy, &obj_idx);
2081 new_obj = (unsigned long)location_to_obj(newpage,
2082 obj_idx);
2083 new_obj |= BIT(HANDLE_PIN_BIT);
2084 record_obj(handle, new_obj);
2085 }
2086 }
2087
2088 replace_sub_page(class, zspage, newpage, page);
2089 get_page(newpage);
2090
2091 dec_zspage_isolation(zspage);
2092
2093 /*
2094 * Page migration is done so let's putback isolated zspage to
2095 * the list if @page is final isolated subpage in the zspage.
2096 */
2097 if (!is_zspage_isolated(zspage))
2098 putback_zspage(class, zspage);
2099
2100 reset_page(page);
2101 put_page(page);
2102 page = newpage;
2103
dd4123f3 2104 ret = MIGRATEPAGE_SUCCESS;
48b4800a
MK
2105unpin_objects:
2106 for (addr = s_addr + offset; addr < s_addr + pos;
2107 addr += class->size) {
2108 head = obj_to_head(page, addr);
2109 if (head & OBJ_ALLOCATED_TAG) {
2110 handle = head & ~OBJ_ALLOCATED_TAG;
2111 if (!testpin_tag(handle))
2112 BUG();
2113 unpin_tag(handle);
2114 }
2115 }
2116 kunmap_atomic(s_addr);
2117unlock_class:
2118 spin_unlock(&class->lock);
2119 migrate_write_unlock(zspage);
2120
2121 return ret;
2122}
2123
2124void zs_page_putback(struct page *page)
2125{
2126 struct zs_pool *pool;
2127 struct size_class *class;
2128 int class_idx;
2129 enum fullness_group fg;
2130 struct address_space *mapping;
2131 struct zspage *zspage;
2132
2133 VM_BUG_ON_PAGE(!PageMovable(page), page);
2134 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2135
2136 zspage = get_zspage(page);
2137 get_zspage_mapping(zspage, &class_idx, &fg);
2138 mapping = page_mapping(page);
2139 pool = mapping->private_data;
2140 class = pool->size_class[class_idx];
2141
2142 spin_lock(&class->lock);
2143 dec_zspage_isolation(zspage);
2144 if (!is_zspage_isolated(zspage)) {
2145 fg = putback_zspage(class, zspage);
2146 /*
2147 * Due to page_lock, we cannot free zspage immediately
2148 * so let's defer.
2149 */
2150 if (fg == ZS_EMPTY)
2151 schedule_work(&pool->free_work);
2152 }
2153 spin_unlock(&class->lock);
2154}
2155
2156const struct address_space_operations zsmalloc_aops = {
2157 .isolate_page = zs_page_isolate,
2158 .migratepage = zs_page_migrate,
2159 .putback_page = zs_page_putback,
2160};
2161
2162static int zs_register_migration(struct zs_pool *pool)
2163{
2164 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2165 if (IS_ERR(pool->inode)) {
2166 pool->inode = NULL;
2167 return 1;
2168 }
2169
2170 pool->inode->i_mapping->private_data = pool;
2171 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2172 return 0;
2173}
2174
2175static void zs_unregister_migration(struct zs_pool *pool)
2176{
2177 flush_work(&pool->free_work);
2178 if (pool->inode)
2179 iput(pool->inode);
2180}
2181
2182/*
2183 * Caller should hold page_lock of all pages in the zspage
2184 * In here, we cannot use zspage meta data.
2185 */
2186static void async_free_zspage(struct work_struct *work)
2187{
2188 int i;
2189 struct size_class *class;
2190 unsigned int class_idx;
2191 enum fullness_group fullness;
2192 struct zspage *zspage, *tmp;
2193 LIST_HEAD(free_pages);
2194 struct zs_pool *pool = container_of(work, struct zs_pool,
2195 free_work);
2196
2197 for (i = 0; i < zs_size_classes; i++) {
2198 class = pool->size_class[i];
2199 if (class->index != i)
2200 continue;
2201
2202 spin_lock(&class->lock);
2203 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2204 spin_unlock(&class->lock);
2205 }
2206
2207
2208 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2209 list_del(&zspage->list);
2210 lock_zspage(zspage);
2211
2212 get_zspage_mapping(zspage, &class_idx, &fullness);
2213 VM_BUG_ON(fullness != ZS_EMPTY);
2214 class = pool->size_class[class_idx];
2215 spin_lock(&class->lock);
2216 __free_zspage(pool, pool->size_class[class_idx], zspage);
2217 spin_unlock(&class->lock);
2218 }
2219};
2220
2221static void kick_deferred_free(struct zs_pool *pool)
2222{
2223 schedule_work(&pool->free_work);
2224}
2225
2226static void init_deferred_free(struct zs_pool *pool)
2227{
2228 INIT_WORK(&pool->free_work, async_free_zspage);
2229}
2230
2231static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2232{
2233 struct page *page = get_first_page(zspage);
2234
2235 do {
2236 WARN_ON(!trylock_page(page));
2237 __SetPageMovable(page, pool->inode->i_mapping);
2238 unlock_page(page);
2239 } while ((page = get_next_page(page)) != NULL);
2240}
2241#endif
2242
04f05909
SS
2243/*
2244 *
2245 * Based on the number of unused allocated objects calculate
2246 * and return the number of pages that we can free.
04f05909
SS
2247 */
2248static unsigned long zs_can_compact(struct size_class *class)
2249{
2250 unsigned long obj_wasted;
44f43e99
SS
2251 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2252 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
04f05909 2253
44f43e99
SS
2254 if (obj_allocated <= obj_used)
2255 return 0;
04f05909 2256
44f43e99 2257 obj_wasted = obj_allocated - obj_used;
b4fd07a0 2258 obj_wasted /= class->objs_per_zspage;
04f05909 2259
6cbf16b3 2260 return obj_wasted * class->pages_per_zspage;
04f05909
SS
2261}
2262
7d3f3938 2263static void __zs_compact(struct zs_pool *pool, struct size_class *class)
312fcae2 2264{
312fcae2 2265 struct zs_compact_control cc;
3783689a
MK
2266 struct zspage *src_zspage;
2267 struct zspage *dst_zspage = NULL;
312fcae2 2268
312fcae2 2269 spin_lock(&class->lock);
3783689a 2270 while ((src_zspage = isolate_zspage(class, true))) {
312fcae2 2271
04f05909
SS
2272 if (!zs_can_compact(class))
2273 break;
2274
41b88e14 2275 cc.obj_idx = 0;
48b4800a 2276 cc.s_page = get_first_page(src_zspage);
312fcae2 2277
3783689a 2278 while ((dst_zspage = isolate_zspage(class, false))) {
48b4800a 2279 cc.d_page = get_first_page(dst_zspage);
312fcae2 2280 /*
0dc63d48
SS
2281 * If there is no more space in dst_page, resched
2282 * and see if anyone had allocated another zspage.
312fcae2
MK
2283 */
2284 if (!migrate_zspage(pool, class, &cc))
2285 break;
2286
4aa409ca 2287 putback_zspage(class, dst_zspage);
312fcae2
MK
2288 }
2289
2290 /* Stop if we couldn't find slot */
3783689a 2291 if (dst_zspage == NULL)
312fcae2
MK
2292 break;
2293
4aa409ca
MK
2294 putback_zspage(class, dst_zspage);
2295 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
48b4800a 2296 free_zspage(pool, class, src_zspage);
6cbf16b3 2297 pool->stats.pages_compacted += class->pages_per_zspage;
4aa409ca 2298 }
312fcae2 2299 spin_unlock(&class->lock);
312fcae2
MK
2300 cond_resched();
2301 spin_lock(&class->lock);
2302 }
2303
3783689a 2304 if (src_zspage)
4aa409ca 2305 putback_zspage(class, src_zspage);
312fcae2 2306
7d3f3938 2307 spin_unlock(&class->lock);
312fcae2
MK
2308}
2309
2310unsigned long zs_compact(struct zs_pool *pool)
2311{
2312 int i;
312fcae2
MK
2313 struct size_class *class;
2314
2315 for (i = zs_size_classes - 1; i >= 0; i--) {
2316 class = pool->size_class[i];
2317 if (!class)
2318 continue;
2319 if (class->index != i)
2320 continue;
7d3f3938 2321 __zs_compact(pool, class);
312fcae2
MK
2322 }
2323
860c707d 2324 return pool->stats.pages_compacted;
312fcae2
MK
2325}
2326EXPORT_SYMBOL_GPL(zs_compact);
61989a80 2327
7d3f3938
SS
2328void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2329{
2330 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2331}
2332EXPORT_SYMBOL_GPL(zs_pool_stats);
2333
ab9d306d
SS
2334static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2335 struct shrink_control *sc)
2336{
2337 unsigned long pages_freed;
2338 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2339 shrinker);
2340
2341 pages_freed = pool->stats.pages_compacted;
2342 /*
2343 * Compact classes and calculate compaction delta.
2344 * Can run concurrently with a manually triggered
2345 * (by user) compaction.
2346 */
2347 pages_freed = zs_compact(pool) - pages_freed;
2348
2349 return pages_freed ? pages_freed : SHRINK_STOP;
2350}
2351
2352static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2353 struct shrink_control *sc)
2354{
2355 int i;
2356 struct size_class *class;
2357 unsigned long pages_to_free = 0;
2358 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359 shrinker);
2360
ab9d306d
SS
2361 for (i = zs_size_classes - 1; i >= 0; i--) {
2362 class = pool->size_class[i];
2363 if (!class)
2364 continue;
2365 if (class->index != i)
2366 continue;
2367
ab9d306d 2368 pages_to_free += zs_can_compact(class);
ab9d306d
SS
2369 }
2370
2371 return pages_to_free;
2372}
2373
2374static void zs_unregister_shrinker(struct zs_pool *pool)
2375{
2376 if (pool->shrinker_enabled) {
2377 unregister_shrinker(&pool->shrinker);
2378 pool->shrinker_enabled = false;
2379 }
2380}
2381
2382static int zs_register_shrinker(struct zs_pool *pool)
2383{
2384 pool->shrinker.scan_objects = zs_shrinker_scan;
2385 pool->shrinker.count_objects = zs_shrinker_count;
2386 pool->shrinker.batch = 0;
2387 pool->shrinker.seeks = DEFAULT_SEEKS;
2388
2389 return register_shrinker(&pool->shrinker);
2390}
2391
00a61d86 2392/**
66cdef66
GM
2393 * zs_create_pool - Creates an allocation pool to work from.
2394 * @flags: allocation flags used to allocate pool metadata
166cfda7 2395 *
66cdef66
GM
2396 * This function must be called before anything when using
2397 * the zsmalloc allocator.
166cfda7 2398 *
66cdef66
GM
2399 * On success, a pointer to the newly created pool is returned,
2400 * otherwise NULL.
396b7fd6 2401 */
d0d8da2d 2402struct zs_pool *zs_create_pool(const char *name)
61989a80 2403{
66cdef66
GM
2404 int i;
2405 struct zs_pool *pool;
2406 struct size_class *prev_class = NULL;
61989a80 2407
66cdef66
GM
2408 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2409 if (!pool)
2410 return NULL;
61989a80 2411
48b4800a 2412 init_deferred_free(pool);
66cdef66
GM
2413 pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
2414 GFP_KERNEL);
2415 if (!pool->size_class) {
2416 kfree(pool);
2417 return NULL;
2418 }
61989a80 2419
2e40e163
MK
2420 pool->name = kstrdup(name, GFP_KERNEL);
2421 if (!pool->name)
2422 goto err;
2423
3783689a 2424 if (create_cache(pool))
2e40e163
MK
2425 goto err;
2426
c60369f0 2427 /*
66cdef66
GM
2428 * Iterate reversly, because, size of size_class that we want to use
2429 * for merging should be larger or equal to current size.
c60369f0 2430 */
66cdef66
GM
2431 for (i = zs_size_classes - 1; i >= 0; i--) {
2432 int size;
2433 int pages_per_zspage;
64d90465 2434 int objs_per_zspage;
66cdef66 2435 struct size_class *class;
3783689a 2436 int fullness = 0;
c60369f0 2437
66cdef66
GM
2438 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2439 if (size > ZS_MAX_ALLOC_SIZE)
2440 size = ZS_MAX_ALLOC_SIZE;
2441 pages_per_zspage = get_pages_per_zspage(size);
64d90465 2442 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
61989a80 2443
66cdef66
GM
2444 /*
2445 * size_class is used for normal zsmalloc operation such
2446 * as alloc/free for that size. Although it is natural that we
2447 * have one size_class for each size, there is a chance that we
2448 * can get more memory utilization if we use one size_class for
2449 * many different sizes whose size_class have same
2450 * characteristics. So, we makes size_class point to
2451 * previous size_class if possible.
2452 */
2453 if (prev_class) {
64d90465 2454 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
66cdef66
GM
2455 pool->size_class[i] = prev_class;
2456 continue;
2457 }
2458 }
2459
2460 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2461 if (!class)
2462 goto err;
2463
2464 class->size = size;
2465 class->index = i;
2466 class->pages_per_zspage = pages_per_zspage;
64d90465 2467 class->objs_per_zspage = objs_per_zspage;
66cdef66
GM
2468 spin_lock_init(&class->lock);
2469 pool->size_class[i] = class;
48b4800a
MK
2470 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2471 fullness++)
3783689a 2472 INIT_LIST_HEAD(&class->fullness_list[fullness]);
66cdef66
GM
2473
2474 prev_class = class;
61989a80
NG
2475 }
2476
d34f6157
DS
2477 /* debug only, don't abort if it fails */
2478 zs_pool_stat_create(pool, name);
0f050d99 2479
48b4800a
MK
2480 if (zs_register_migration(pool))
2481 goto err;
2482
ab9d306d
SS
2483 /*
2484 * Not critical, we still can use the pool
2485 * and user can trigger compaction manually.
2486 */
2487 if (zs_register_shrinker(pool) == 0)
2488 pool->shrinker_enabled = true;
66cdef66
GM
2489 return pool;
2490
2491err:
2492 zs_destroy_pool(pool);
2493 return NULL;
61989a80 2494}
66cdef66 2495EXPORT_SYMBOL_GPL(zs_create_pool);
61989a80 2496
66cdef66 2497void zs_destroy_pool(struct zs_pool *pool)
61989a80 2498{
66cdef66 2499 int i;
61989a80 2500
ab9d306d 2501 zs_unregister_shrinker(pool);
48b4800a 2502 zs_unregister_migration(pool);
0f050d99
GM
2503 zs_pool_stat_destroy(pool);
2504
66cdef66
GM
2505 for (i = 0; i < zs_size_classes; i++) {
2506 int fg;
2507 struct size_class *class = pool->size_class[i];
61989a80 2508
66cdef66
GM
2509 if (!class)
2510 continue;
61989a80 2511
66cdef66
GM
2512 if (class->index != i)
2513 continue;
61989a80 2514
48b4800a 2515 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
3783689a 2516 if (!list_empty(&class->fullness_list[fg])) {
66cdef66
GM
2517 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2518 class->size, fg);
2519 }
2520 }
2521 kfree(class);
2522 }
f553646a 2523
3783689a 2524 destroy_cache(pool);
66cdef66 2525 kfree(pool->size_class);
0f050d99 2526 kfree(pool->name);
66cdef66
GM
2527 kfree(pool);
2528}
2529EXPORT_SYMBOL_GPL(zs_destroy_pool);
b7418510 2530
66cdef66
GM
2531static int __init zs_init(void)
2532{
48b4800a
MK
2533 int ret;
2534
2535 ret = zsmalloc_mount();
2536 if (ret)
2537 goto out;
2538
2539 ret = zs_register_cpu_notifier();
66cdef66 2540
0f050d99
GM
2541 if (ret)
2542 goto notifier_fail;
66cdef66
GM
2543
2544 init_zs_size_classes();
2545
2546#ifdef CONFIG_ZPOOL
2547 zpool_register_driver(&zs_zpool_driver);
2548#endif
0f050d99 2549
4abaac9b
DS
2550 zs_stat_init();
2551
66cdef66 2552 return 0;
0f050d99 2553
0f050d99
GM
2554notifier_fail:
2555 zs_unregister_cpu_notifier();
48b4800a
MK
2556 zsmalloc_unmount();
2557out:
0f050d99 2558 return ret;
61989a80 2559}
61989a80 2560
66cdef66 2561static void __exit zs_exit(void)
61989a80 2562{
66cdef66
GM
2563#ifdef CONFIG_ZPOOL
2564 zpool_unregister_driver(&zs_zpool_driver);
2565#endif
48b4800a 2566 zsmalloc_unmount();
66cdef66 2567 zs_unregister_cpu_notifier();
0f050d99
GM
2568
2569 zs_stat_exit();
61989a80 2570}
069f101f
BH
2571
2572module_init(zs_init);
2573module_exit(zs_exit);
2574
2575MODULE_LICENSE("Dual BSD/GPL");
2576MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");