mm, page_alloc: remove MIGRATE_RESERVE
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / vmstat.c
CommitLineData
f6ac2354
CL
1/*
2 * linux/mm/vmstat.c
3 *
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
2244b95a
CL
6 *
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
7cc36bbd 10 * Copyright (C) 2008-2014 Christoph Lameter
f6ac2354 11 */
8f32f7e5 12#include <linux/fs.h>
f6ac2354 13#include <linux/mm.h>
4e950f6f 14#include <linux/err.h>
2244b95a 15#include <linux/module.h>
5a0e3ad6 16#include <linux/slab.h>
df9ecaba 17#include <linux/cpu.h>
7cc36bbd 18#include <linux/cpumask.h>
c748e134 19#include <linux/vmstat.h>
3c486871
AM
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/debugfs.h>
e8edc6e0 23#include <linux/sched.h>
f1a5ab12 24#include <linux/math64.h>
79da826a 25#include <linux/writeback.h>
36deb0be 26#include <linux/compaction.h>
6e543d57 27#include <linux/mm_inline.h>
48c96a36
JK
28#include <linux/page_ext.h>
29#include <linux/page_owner.h>
6e543d57
LD
30
31#include "internal.h"
f6ac2354 32
f8891e5e
CL
33#ifdef CONFIG_VM_EVENT_COUNTERS
34DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
35EXPORT_PER_CPU_SYMBOL(vm_event_states);
36
31f961a8 37static void sum_vm_events(unsigned long *ret)
f8891e5e 38{
9eccf2a8 39 int cpu;
f8891e5e
CL
40 int i;
41
42 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
43
31f961a8 44 for_each_online_cpu(cpu) {
f8891e5e
CL
45 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
46
f8891e5e
CL
47 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
48 ret[i] += this->event[i];
49 }
50}
51
52/*
53 * Accumulate the vm event counters across all CPUs.
54 * The result is unavoidably approximate - it can change
55 * during and after execution of this function.
56*/
57void all_vm_events(unsigned long *ret)
58{
b5be1132 59 get_online_cpus();
31f961a8 60 sum_vm_events(ret);
b5be1132 61 put_online_cpus();
f8891e5e 62}
32dd66fc 63EXPORT_SYMBOL_GPL(all_vm_events);
f8891e5e 64
f8891e5e
CL
65/*
66 * Fold the foreign cpu events into our own.
67 *
68 * This is adding to the events on one processor
69 * but keeps the global counts constant.
70 */
71void vm_events_fold_cpu(int cpu)
72{
73 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
74 int i;
75
76 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
77 count_vm_events(i, fold_state->event[i]);
78 fold_state->event[i] = 0;
79 }
80}
f8891e5e
CL
81
82#endif /* CONFIG_VM_EVENT_COUNTERS */
83
2244b95a
CL
84/*
85 * Manage combined zone based / global counters
86 *
87 * vm_stat contains the global counters
88 */
a1cb2c60 89atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
2244b95a
CL
90EXPORT_SYMBOL(vm_stat);
91
92#ifdef CONFIG_SMP
93
b44129b3 94int calculate_pressure_threshold(struct zone *zone)
88f5acf8
MG
95{
96 int threshold;
97 int watermark_distance;
98
99 /*
100 * As vmstats are not up to date, there is drift between the estimated
101 * and real values. For high thresholds and a high number of CPUs, it
102 * is possible for the min watermark to be breached while the estimated
103 * value looks fine. The pressure threshold is a reduced value such
104 * that even the maximum amount of drift will not accidentally breach
105 * the min watermark
106 */
107 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
108 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
109
110 /*
111 * Maximum threshold is 125
112 */
113 threshold = min(125, threshold);
114
115 return threshold;
116}
117
b44129b3 118int calculate_normal_threshold(struct zone *zone)
df9ecaba
CL
119{
120 int threshold;
121 int mem; /* memory in 128 MB units */
122
123 /*
124 * The threshold scales with the number of processors and the amount
125 * of memory per zone. More memory means that we can defer updates for
126 * longer, more processors could lead to more contention.
127 * fls() is used to have a cheap way of logarithmic scaling.
128 *
129 * Some sample thresholds:
130 *
131 * Threshold Processors (fls) Zonesize fls(mem+1)
132 * ------------------------------------------------------------------
133 * 8 1 1 0.9-1 GB 4
134 * 16 2 2 0.9-1 GB 4
135 * 20 2 2 1-2 GB 5
136 * 24 2 2 2-4 GB 6
137 * 28 2 2 4-8 GB 7
138 * 32 2 2 8-16 GB 8
139 * 4 2 2 <128M 1
140 * 30 4 3 2-4 GB 5
141 * 48 4 3 8-16 GB 8
142 * 32 8 4 1-2 GB 4
143 * 32 8 4 0.9-1GB 4
144 * 10 16 5 <128M 1
145 * 40 16 5 900M 4
146 * 70 64 7 2-4 GB 5
147 * 84 64 7 4-8 GB 6
148 * 108 512 9 4-8 GB 6
149 * 125 1024 10 8-16 GB 8
150 * 125 1024 10 16-32 GB 9
151 */
152
b40da049 153 mem = zone->managed_pages >> (27 - PAGE_SHIFT);
df9ecaba
CL
154
155 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
156
157 /*
158 * Maximum threshold is 125
159 */
160 threshold = min(125, threshold);
161
162 return threshold;
163}
2244b95a
CL
164
165/*
df9ecaba 166 * Refresh the thresholds for each zone.
2244b95a 167 */
a6cccdc3 168void refresh_zone_stat_thresholds(void)
2244b95a 169{
df9ecaba
CL
170 struct zone *zone;
171 int cpu;
172 int threshold;
173
ee99c71c 174 for_each_populated_zone(zone) {
aa454840
CL
175 unsigned long max_drift, tolerate_drift;
176
b44129b3 177 threshold = calculate_normal_threshold(zone);
df9ecaba
CL
178
179 for_each_online_cpu(cpu)
99dcc3e5
CL
180 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
181 = threshold;
aa454840
CL
182
183 /*
184 * Only set percpu_drift_mark if there is a danger that
185 * NR_FREE_PAGES reports the low watermark is ok when in fact
186 * the min watermark could be breached by an allocation
187 */
188 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
189 max_drift = num_online_cpus() * threshold;
190 if (max_drift > tolerate_drift)
191 zone->percpu_drift_mark = high_wmark_pages(zone) +
192 max_drift;
df9ecaba 193 }
2244b95a
CL
194}
195
b44129b3
MG
196void set_pgdat_percpu_threshold(pg_data_t *pgdat,
197 int (*calculate_pressure)(struct zone *))
88f5acf8
MG
198{
199 struct zone *zone;
200 int cpu;
201 int threshold;
202 int i;
203
88f5acf8
MG
204 for (i = 0; i < pgdat->nr_zones; i++) {
205 zone = &pgdat->node_zones[i];
206 if (!zone->percpu_drift_mark)
207 continue;
208
b44129b3 209 threshold = (*calculate_pressure)(zone);
bb0b6dff 210 for_each_online_cpu(cpu)
88f5acf8
MG
211 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
212 = threshold;
213 }
88f5acf8
MG
214}
215
2244b95a 216/*
bea04b07
JZ
217 * For use when we know that interrupts are disabled,
218 * or when we know that preemption is disabled and that
219 * particular counter cannot be updated from interrupt context.
2244b95a
CL
220 */
221void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
222 int delta)
223{
12938a92
CL
224 struct per_cpu_pageset __percpu *pcp = zone->pageset;
225 s8 __percpu *p = pcp->vm_stat_diff + item;
2244b95a 226 long x;
12938a92
CL
227 long t;
228
229 x = delta + __this_cpu_read(*p);
2244b95a 230
12938a92 231 t = __this_cpu_read(pcp->stat_threshold);
2244b95a 232
12938a92 233 if (unlikely(x > t || x < -t)) {
2244b95a
CL
234 zone_page_state_add(x, zone, item);
235 x = 0;
236 }
12938a92 237 __this_cpu_write(*p, x);
2244b95a
CL
238}
239EXPORT_SYMBOL(__mod_zone_page_state);
240
2244b95a
CL
241/*
242 * Optimized increment and decrement functions.
243 *
244 * These are only for a single page and therefore can take a struct page *
245 * argument instead of struct zone *. This allows the inclusion of the code
246 * generated for page_zone(page) into the optimized functions.
247 *
248 * No overflow check is necessary and therefore the differential can be
249 * incremented or decremented in place which may allow the compilers to
250 * generate better code.
2244b95a
CL
251 * The increment or decrement is known and therefore one boundary check can
252 * be omitted.
253 *
df9ecaba
CL
254 * NOTE: These functions are very performance sensitive. Change only
255 * with care.
256 *
2244b95a
CL
257 * Some processors have inc/dec instructions that are atomic vs an interrupt.
258 * However, the code must first determine the differential location in a zone
259 * based on the processor number and then inc/dec the counter. There is no
260 * guarantee without disabling preemption that the processor will not change
261 * in between and therefore the atomicity vs. interrupt cannot be exploited
262 * in a useful way here.
263 */
c8785385 264void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 265{
12938a92
CL
266 struct per_cpu_pageset __percpu *pcp = zone->pageset;
267 s8 __percpu *p = pcp->vm_stat_diff + item;
268 s8 v, t;
2244b95a 269
908ee0f1 270 v = __this_cpu_inc_return(*p);
12938a92
CL
271 t = __this_cpu_read(pcp->stat_threshold);
272 if (unlikely(v > t)) {
273 s8 overstep = t >> 1;
df9ecaba 274
12938a92
CL
275 zone_page_state_add(v + overstep, zone, item);
276 __this_cpu_write(*p, -overstep);
2244b95a
CL
277 }
278}
ca889e6c
CL
279
280void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
281{
282 __inc_zone_state(page_zone(page), item);
283}
2244b95a
CL
284EXPORT_SYMBOL(__inc_zone_page_state);
285
c8785385 286void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
2244b95a 287{
12938a92
CL
288 struct per_cpu_pageset __percpu *pcp = zone->pageset;
289 s8 __percpu *p = pcp->vm_stat_diff + item;
290 s8 v, t;
2244b95a 291
908ee0f1 292 v = __this_cpu_dec_return(*p);
12938a92
CL
293 t = __this_cpu_read(pcp->stat_threshold);
294 if (unlikely(v < - t)) {
295 s8 overstep = t >> 1;
2244b95a 296
12938a92
CL
297 zone_page_state_add(v - overstep, zone, item);
298 __this_cpu_write(*p, overstep);
2244b95a
CL
299 }
300}
c8785385
CL
301
302void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
303{
304 __dec_zone_state(page_zone(page), item);
305}
2244b95a
CL
306EXPORT_SYMBOL(__dec_zone_page_state);
307
4156153c 308#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
7c839120
CL
309/*
310 * If we have cmpxchg_local support then we do not need to incur the overhead
311 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
312 *
313 * mod_state() modifies the zone counter state through atomic per cpu
314 * operations.
315 *
316 * Overstep mode specifies how overstep should handled:
317 * 0 No overstepping
318 * 1 Overstepping half of threshold
319 * -1 Overstepping minus half of threshold
320*/
321static inline void mod_state(struct zone *zone,
322 enum zone_stat_item item, int delta, int overstep_mode)
323{
324 struct per_cpu_pageset __percpu *pcp = zone->pageset;
325 s8 __percpu *p = pcp->vm_stat_diff + item;
326 long o, n, t, z;
327
328 do {
329 z = 0; /* overflow to zone counters */
330
331 /*
332 * The fetching of the stat_threshold is racy. We may apply
333 * a counter threshold to the wrong the cpu if we get
d3bc2367
CL
334 * rescheduled while executing here. However, the next
335 * counter update will apply the threshold again and
336 * therefore bring the counter under the threshold again.
337 *
338 * Most of the time the thresholds are the same anyways
339 * for all cpus in a zone.
7c839120
CL
340 */
341 t = this_cpu_read(pcp->stat_threshold);
342
343 o = this_cpu_read(*p);
344 n = delta + o;
345
346 if (n > t || n < -t) {
347 int os = overstep_mode * (t >> 1) ;
348
349 /* Overflow must be added to zone counters */
350 z = n + os;
351 n = -os;
352 }
353 } while (this_cpu_cmpxchg(*p, o, n) != o);
354
355 if (z)
356 zone_page_state_add(z, zone, item);
357}
358
359void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
360 int delta)
361{
362 mod_state(zone, item, delta, 0);
363}
364EXPORT_SYMBOL(mod_zone_page_state);
365
366void inc_zone_state(struct zone *zone, enum zone_stat_item item)
367{
368 mod_state(zone, item, 1, 1);
369}
370
371void inc_zone_page_state(struct page *page, enum zone_stat_item item)
372{
373 mod_state(page_zone(page), item, 1, 1);
374}
375EXPORT_SYMBOL(inc_zone_page_state);
376
377void dec_zone_page_state(struct page *page, enum zone_stat_item item)
378{
379 mod_state(page_zone(page), item, -1, -1);
380}
381EXPORT_SYMBOL(dec_zone_page_state);
382#else
383/*
384 * Use interrupt disable to serialize counter updates
385 */
386void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
387 int delta)
388{
389 unsigned long flags;
390
391 local_irq_save(flags);
392 __mod_zone_page_state(zone, item, delta);
393 local_irq_restore(flags);
394}
395EXPORT_SYMBOL(mod_zone_page_state);
396
ca889e6c
CL
397void inc_zone_state(struct zone *zone, enum zone_stat_item item)
398{
399 unsigned long flags;
400
401 local_irq_save(flags);
402 __inc_zone_state(zone, item);
403 local_irq_restore(flags);
404}
405
2244b95a
CL
406void inc_zone_page_state(struct page *page, enum zone_stat_item item)
407{
408 unsigned long flags;
409 struct zone *zone;
2244b95a
CL
410
411 zone = page_zone(page);
412 local_irq_save(flags);
ca889e6c 413 __inc_zone_state(zone, item);
2244b95a
CL
414 local_irq_restore(flags);
415}
416EXPORT_SYMBOL(inc_zone_page_state);
417
418void dec_zone_page_state(struct page *page, enum zone_stat_item item)
419{
420 unsigned long flags;
2244b95a 421
2244b95a 422 local_irq_save(flags);
a302eb4e 423 __dec_zone_page_state(page, item);
2244b95a
CL
424 local_irq_restore(flags);
425}
426EXPORT_SYMBOL(dec_zone_page_state);
7c839120 427#endif
2244b95a 428
7cc36bbd
CL
429
430/*
431 * Fold a differential into the global counters.
432 * Returns the number of counters updated.
433 */
434static int fold_diff(int *diff)
4edb0748
CL
435{
436 int i;
7cc36bbd 437 int changes = 0;
4edb0748
CL
438
439 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
7cc36bbd 440 if (diff[i]) {
4edb0748 441 atomic_long_add(diff[i], &vm_stat[i]);
7cc36bbd
CL
442 changes++;
443 }
444 return changes;
4edb0748
CL
445}
446
2244b95a 447/*
2bb921e5 448 * Update the zone counters for the current cpu.
a7f75e25 449 *
4037d452
CL
450 * Note that refresh_cpu_vm_stats strives to only access
451 * node local memory. The per cpu pagesets on remote zones are placed
452 * in the memory local to the processor using that pageset. So the
453 * loop over all zones will access a series of cachelines local to
454 * the processor.
455 *
456 * The call to zone_page_state_add updates the cachelines with the
457 * statistics in the remote zone struct as well as the global cachelines
458 * with the global counters. These could cause remote node cache line
459 * bouncing and will have to be only done when necessary.
7cc36bbd
CL
460 *
461 * The function returns the number of global counters updated.
2244b95a 462 */
7cc36bbd 463static int refresh_cpu_vm_stats(void)
2244b95a
CL
464{
465 struct zone *zone;
466 int i;
a7f75e25 467 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
7cc36bbd 468 int changes = 0;
2244b95a 469
ee99c71c 470 for_each_populated_zone(zone) {
fbc2edb0 471 struct per_cpu_pageset __percpu *p = zone->pageset;
2244b95a 472
fbc2edb0
CL
473 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
474 int v;
2244b95a 475
fbc2edb0
CL
476 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
477 if (v) {
a7f75e25 478
a7f75e25
CL
479 atomic_long_add(v, &zone->vm_stat[i]);
480 global_diff[i] += v;
4037d452
CL
481#ifdef CONFIG_NUMA
482 /* 3 seconds idle till flush */
fbc2edb0 483 __this_cpu_write(p->expire, 3);
4037d452 484#endif
2244b95a 485 }
fbc2edb0 486 }
468fd62e 487 cond_resched();
4037d452
CL
488#ifdef CONFIG_NUMA
489 /*
490 * Deal with draining the remote pageset of this
491 * processor
492 *
493 * Check if there are pages remaining in this pageset
494 * if not then there is nothing to expire.
495 */
fbc2edb0
CL
496 if (!__this_cpu_read(p->expire) ||
497 !__this_cpu_read(p->pcp.count))
4037d452
CL
498 continue;
499
500 /*
501 * We never drain zones local to this processor.
502 */
503 if (zone_to_nid(zone) == numa_node_id()) {
fbc2edb0 504 __this_cpu_write(p->expire, 0);
4037d452
CL
505 continue;
506 }
507
fbc2edb0 508 if (__this_cpu_dec_return(p->expire))
4037d452
CL
509 continue;
510
7cc36bbd 511 if (__this_cpu_read(p->pcp.count)) {
7c8e0181 512 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
7cc36bbd
CL
513 changes++;
514 }
4037d452 515#endif
2244b95a 516 }
7cc36bbd
CL
517 changes += fold_diff(global_diff);
518 return changes;
2244b95a
CL
519}
520
2bb921e5
CL
521/*
522 * Fold the data for an offline cpu into the global array.
523 * There cannot be any access by the offline cpu and therefore
524 * synchronization is simplified.
525 */
526void cpu_vm_stats_fold(int cpu)
527{
528 struct zone *zone;
529 int i;
530 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
531
532 for_each_populated_zone(zone) {
533 struct per_cpu_pageset *p;
534
535 p = per_cpu_ptr(zone->pageset, cpu);
536
537 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
538 if (p->vm_stat_diff[i]) {
539 int v;
540
541 v = p->vm_stat_diff[i];
542 p->vm_stat_diff[i] = 0;
543 atomic_long_add(v, &zone->vm_stat[i]);
544 global_diff[i] += v;
545 }
546 }
547
4edb0748 548 fold_diff(global_diff);
2bb921e5
CL
549}
550
40f4b1ea
CS
551/*
552 * this is only called if !populated_zone(zone), which implies no other users of
553 * pset->vm_stat_diff[] exsist.
554 */
5a883813
MK
555void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
556{
557 int i;
558
559 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
560 if (pset->vm_stat_diff[i]) {
561 int v = pset->vm_stat_diff[i];
562 pset->vm_stat_diff[i] = 0;
563 atomic_long_add(v, &zone->vm_stat[i]);
564 atomic_long_add(v, &vm_stat[i]);
565 }
566}
2244b95a
CL
567#endif
568
ca889e6c
CL
569#ifdef CONFIG_NUMA
570/*
571 * zonelist = the list of zones passed to the allocator
572 * z = the zone from which the allocation occurred.
573 *
574 * Must be called with interrupts disabled.
78afd561
AK
575 *
576 * When __GFP_OTHER_NODE is set assume the node of the preferred
577 * zone is the local node. This is useful for daemons who allocate
578 * memory on behalf of other processes.
ca889e6c 579 */
78afd561 580void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
ca889e6c 581{
18ea7e71 582 if (z->zone_pgdat == preferred_zone->zone_pgdat) {
ca889e6c
CL
583 __inc_zone_state(z, NUMA_HIT);
584 } else {
585 __inc_zone_state(z, NUMA_MISS);
18ea7e71 586 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
ca889e6c 587 }
78afd561
AK
588 if (z->node == ((flags & __GFP_OTHER_NODE) ?
589 preferred_zone->node : numa_node_id()))
ca889e6c
CL
590 __inc_zone_state(z, NUMA_LOCAL);
591 else
592 __inc_zone_state(z, NUMA_OTHER);
593}
c2d42c16
AM
594
595/*
596 * Determine the per node value of a stat item.
597 */
598unsigned long node_page_state(int node, enum zone_stat_item item)
599{
600 struct zone *zones = NODE_DATA(node)->node_zones;
601
602 return
603#ifdef CONFIG_ZONE_DMA
604 zone_page_state(&zones[ZONE_DMA], item) +
605#endif
606#ifdef CONFIG_ZONE_DMA32
607 zone_page_state(&zones[ZONE_DMA32], item) +
608#endif
609#ifdef CONFIG_HIGHMEM
610 zone_page_state(&zones[ZONE_HIGHMEM], item) +
611#endif
612 zone_page_state(&zones[ZONE_NORMAL], item) +
613 zone_page_state(&zones[ZONE_MOVABLE], item);
614}
615
ca889e6c
CL
616#endif
617
d7a5752c 618#ifdef CONFIG_COMPACTION
36deb0be 619
d7a5752c
MG
620struct contig_page_info {
621 unsigned long free_pages;
622 unsigned long free_blocks_total;
623 unsigned long free_blocks_suitable;
624};
625
626/*
627 * Calculate the number of free pages in a zone, how many contiguous
628 * pages are free and how many are large enough to satisfy an allocation of
629 * the target size. Note that this function makes no attempt to estimate
630 * how many suitable free blocks there *might* be if MOVABLE pages were
631 * migrated. Calculating that is possible, but expensive and can be
632 * figured out from userspace
633 */
634static void fill_contig_page_info(struct zone *zone,
635 unsigned int suitable_order,
636 struct contig_page_info *info)
637{
638 unsigned int order;
639
640 info->free_pages = 0;
641 info->free_blocks_total = 0;
642 info->free_blocks_suitable = 0;
643
644 for (order = 0; order < MAX_ORDER; order++) {
645 unsigned long blocks;
646
647 /* Count number of free blocks */
648 blocks = zone->free_area[order].nr_free;
649 info->free_blocks_total += blocks;
650
651 /* Count free base pages */
652 info->free_pages += blocks << order;
653
654 /* Count the suitable free blocks */
655 if (order >= suitable_order)
656 info->free_blocks_suitable += blocks <<
657 (order - suitable_order);
658 }
659}
f1a5ab12
MG
660
661/*
662 * A fragmentation index only makes sense if an allocation of a requested
663 * size would fail. If that is true, the fragmentation index indicates
664 * whether external fragmentation or a lack of memory was the problem.
665 * The value can be used to determine if page reclaim or compaction
666 * should be used
667 */
56de7263 668static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
f1a5ab12
MG
669{
670 unsigned long requested = 1UL << order;
671
672 if (!info->free_blocks_total)
673 return 0;
674
675 /* Fragmentation index only makes sense when a request would fail */
676 if (info->free_blocks_suitable)
677 return -1000;
678
679 /*
680 * Index is between 0 and 1 so return within 3 decimal places
681 *
682 * 0 => allocation would fail due to lack of memory
683 * 1 => allocation would fail due to fragmentation
684 */
685 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
686}
56de7263
MG
687
688/* Same as __fragmentation index but allocs contig_page_info on stack */
689int fragmentation_index(struct zone *zone, unsigned int order)
690{
691 struct contig_page_info info;
692
693 fill_contig_page_info(zone, order, &info);
694 return __fragmentation_index(order, &info);
695}
d7a5752c
MG
696#endif
697
0d6617c7 698#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
fa25c503
KM
699#ifdef CONFIG_ZONE_DMA
700#define TEXT_FOR_DMA(xx) xx "_dma",
701#else
702#define TEXT_FOR_DMA(xx)
703#endif
704
705#ifdef CONFIG_ZONE_DMA32
706#define TEXT_FOR_DMA32(xx) xx "_dma32",
707#else
708#define TEXT_FOR_DMA32(xx)
709#endif
710
711#ifdef CONFIG_HIGHMEM
712#define TEXT_FOR_HIGHMEM(xx) xx "_high",
713#else
714#define TEXT_FOR_HIGHMEM(xx)
715#endif
716
717#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
718 TEXT_FOR_HIGHMEM(xx) xx "_movable",
719
720const char * const vmstat_text[] = {
09316c09 721 /* enum zone_stat_item countes */
fa25c503 722 "nr_free_pages",
81c0a2bb 723 "nr_alloc_batch",
fa25c503
KM
724 "nr_inactive_anon",
725 "nr_active_anon",
726 "nr_inactive_file",
727 "nr_active_file",
728 "nr_unevictable",
729 "nr_mlock",
730 "nr_anon_pages",
731 "nr_mapped",
732 "nr_file_pages",
733 "nr_dirty",
734 "nr_writeback",
735 "nr_slab_reclaimable",
736 "nr_slab_unreclaimable",
737 "nr_page_table_pages",
738 "nr_kernel_stack",
739 "nr_unstable",
740 "nr_bounce",
741 "nr_vmscan_write",
49ea7eb6 742 "nr_vmscan_immediate_reclaim",
fa25c503
KM
743 "nr_writeback_temp",
744 "nr_isolated_anon",
745 "nr_isolated_file",
746 "nr_shmem",
747 "nr_dirtied",
748 "nr_written",
0d5d823a 749 "nr_pages_scanned",
fa25c503
KM
750
751#ifdef CONFIG_NUMA
752 "numa_hit",
753 "numa_miss",
754 "numa_foreign",
755 "numa_interleave",
756 "numa_local",
757 "numa_other",
758#endif
a528910e
JW
759 "workingset_refault",
760 "workingset_activate",
449dd698 761 "workingset_nodereclaim",
fa25c503 762 "nr_anon_transparent_hugepages",
d1ce749a 763 "nr_free_cma",
09316c09
KK
764
765 /* enum writeback_stat_item counters */
fa25c503
KM
766 "nr_dirty_threshold",
767 "nr_dirty_background_threshold",
768
769#ifdef CONFIG_VM_EVENT_COUNTERS
09316c09 770 /* enum vm_event_item counters */
fa25c503
KM
771 "pgpgin",
772 "pgpgout",
773 "pswpin",
774 "pswpout",
775
776 TEXTS_FOR_ZONES("pgalloc")
777
778 "pgfree",
779 "pgactivate",
780 "pgdeactivate",
781
782 "pgfault",
783 "pgmajfault",
784
785 TEXTS_FOR_ZONES("pgrefill")
904249aa
YH
786 TEXTS_FOR_ZONES("pgsteal_kswapd")
787 TEXTS_FOR_ZONES("pgsteal_direct")
fa25c503
KM
788 TEXTS_FOR_ZONES("pgscan_kswapd")
789 TEXTS_FOR_ZONES("pgscan_direct")
68243e76 790 "pgscan_direct_throttle",
fa25c503
KM
791
792#ifdef CONFIG_NUMA
793 "zone_reclaim_failed",
794#endif
795 "pginodesteal",
796 "slabs_scanned",
fa25c503
KM
797 "kswapd_inodesteal",
798 "kswapd_low_wmark_hit_quickly",
799 "kswapd_high_wmark_hit_quickly",
fa25c503
KM
800 "pageoutrun",
801 "allocstall",
802
803 "pgrotated",
804
5509a5d2
DH
805 "drop_pagecache",
806 "drop_slab",
807
03c5a6e1
MG
808#ifdef CONFIG_NUMA_BALANCING
809 "numa_pte_updates",
72403b4a 810 "numa_huge_pte_updates",
03c5a6e1
MG
811 "numa_hint_faults",
812 "numa_hint_faults_local",
813 "numa_pages_migrated",
814#endif
5647bc29
MG
815#ifdef CONFIG_MIGRATION
816 "pgmigrate_success",
817 "pgmigrate_fail",
818#endif
fa25c503 819#ifdef CONFIG_COMPACTION
397487db
MG
820 "compact_migrate_scanned",
821 "compact_free_scanned",
822 "compact_isolated",
fa25c503
KM
823 "compact_stall",
824 "compact_fail",
825 "compact_success",
826#endif
827
828#ifdef CONFIG_HUGETLB_PAGE
829 "htlb_buddy_alloc_success",
830 "htlb_buddy_alloc_fail",
831#endif
832 "unevictable_pgs_culled",
833 "unevictable_pgs_scanned",
834 "unevictable_pgs_rescued",
835 "unevictable_pgs_mlocked",
836 "unevictable_pgs_munlocked",
837 "unevictable_pgs_cleared",
838 "unevictable_pgs_stranded",
fa25c503
KM
839
840#ifdef CONFIG_TRANSPARENT_HUGEPAGE
841 "thp_fault_alloc",
842 "thp_fault_fallback",
843 "thp_collapse_alloc",
844 "thp_collapse_alloc_failed",
845 "thp_split",
d8a8e1f0
KS
846 "thp_zero_page_alloc",
847 "thp_zero_page_alloc_failed",
fa25c503 848#endif
09316c09
KK
849#ifdef CONFIG_MEMORY_BALLOON
850 "balloon_inflate",
851 "balloon_deflate",
852#ifdef CONFIG_BALLOON_COMPACTION
853 "balloon_migrate",
854#endif
855#endif /* CONFIG_MEMORY_BALLOON */
ec659934 856#ifdef CONFIG_DEBUG_TLBFLUSH
6df46865 857#ifdef CONFIG_SMP
9824cf97
DH
858 "nr_tlb_remote_flush",
859 "nr_tlb_remote_flush_received",
ec659934 860#endif /* CONFIG_SMP */
9824cf97
DH
861 "nr_tlb_local_flush_all",
862 "nr_tlb_local_flush_one",
ec659934 863#endif /* CONFIG_DEBUG_TLBFLUSH */
fa25c503 864
4f115147
DB
865#ifdef CONFIG_DEBUG_VM_VMACACHE
866 "vmacache_find_calls",
867 "vmacache_find_hits",
f5f302e2 868 "vmacache_full_flushes",
4f115147 869#endif
fa25c503
KM
870#endif /* CONFIG_VM_EVENTS_COUNTERS */
871};
0d6617c7 872#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
fa25c503
KM
873
874
3c486871
AM
875#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
876 defined(CONFIG_PROC_FS)
877static void *frag_start(struct seq_file *m, loff_t *pos)
878{
879 pg_data_t *pgdat;
880 loff_t node = *pos;
881
882 for (pgdat = first_online_pgdat();
883 pgdat && node;
884 pgdat = next_online_pgdat(pgdat))
885 --node;
886
887 return pgdat;
888}
889
890static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
891{
892 pg_data_t *pgdat = (pg_data_t *)arg;
893
894 (*pos)++;
895 return next_online_pgdat(pgdat);
896}
897
898static void frag_stop(struct seq_file *m, void *arg)
899{
900}
901
902/* Walk all the zones in a node and print using a callback */
903static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
904 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
905{
906 struct zone *zone;
907 struct zone *node_zones = pgdat->node_zones;
908 unsigned long flags;
909
910 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
911 if (!populated_zone(zone))
912 continue;
913
914 spin_lock_irqsave(&zone->lock, flags);
915 print(m, pgdat, zone);
916 spin_unlock_irqrestore(&zone->lock, flags);
917 }
918}
919#endif
920
d7a5752c 921#ifdef CONFIG_PROC_FS
3c486871
AM
922static char * const migratetype_names[MIGRATE_TYPES] = {
923 "Unmovable",
924 "Reclaimable",
925 "Movable",
3c486871
AM
926#ifdef CONFIG_CMA
927 "CMA",
928#endif
929#ifdef CONFIG_MEMORY_ISOLATION
930 "Isolate",
931#endif
932};
933
467c996c
MG
934static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
935 struct zone *zone)
936{
937 int order;
938
939 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
940 for (order = 0; order < MAX_ORDER; ++order)
941 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
942 seq_putc(m, '\n');
943}
944
945/*
946 * This walks the free areas for each zone.
947 */
948static int frag_show(struct seq_file *m, void *arg)
949{
950 pg_data_t *pgdat = (pg_data_t *)arg;
951 walk_zones_in_node(m, pgdat, frag_show_print);
952 return 0;
953}
954
955static void pagetypeinfo_showfree_print(struct seq_file *m,
956 pg_data_t *pgdat, struct zone *zone)
957{
958 int order, mtype;
959
960 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
961 seq_printf(m, "Node %4d, zone %8s, type %12s ",
962 pgdat->node_id,
963 zone->name,
964 migratetype_names[mtype]);
965 for (order = 0; order < MAX_ORDER; ++order) {
966 unsigned long freecount = 0;
967 struct free_area *area;
968 struct list_head *curr;
969
970 area = &(zone->free_area[order]);
971
972 list_for_each(curr, &area->free_list[mtype])
973 freecount++;
974 seq_printf(m, "%6lu ", freecount);
975 }
f6ac2354
CL
976 seq_putc(m, '\n');
977 }
467c996c
MG
978}
979
980/* Print out the free pages at each order for each migatetype */
981static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
982{
983 int order;
984 pg_data_t *pgdat = (pg_data_t *)arg;
985
986 /* Print header */
987 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
988 for (order = 0; order < MAX_ORDER; ++order)
989 seq_printf(m, "%6d ", order);
990 seq_putc(m, '\n');
991
992 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
993
994 return 0;
995}
996
997static void pagetypeinfo_showblockcount_print(struct seq_file *m,
998 pg_data_t *pgdat, struct zone *zone)
999{
1000 int mtype;
1001 unsigned long pfn;
1002 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1003 unsigned long end_pfn = zone_end_pfn(zone);
467c996c
MG
1004 unsigned long count[MIGRATE_TYPES] = { 0, };
1005
1006 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1007 struct page *page;
1008
1009 if (!pfn_valid(pfn))
1010 continue;
1011
1012 page = pfn_to_page(pfn);
eb33575c
MG
1013
1014 /* Watch for unexpected holes punched in the memmap */
1015 if (!memmap_valid_within(pfn, page, zone))
e80d6a24 1016 continue;
eb33575c 1017
467c996c
MG
1018 mtype = get_pageblock_migratetype(page);
1019
e80d6a24
MG
1020 if (mtype < MIGRATE_TYPES)
1021 count[mtype]++;
467c996c
MG
1022 }
1023
1024 /* Print counts */
1025 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1026 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1027 seq_printf(m, "%12lu ", count[mtype]);
1028 seq_putc(m, '\n');
1029}
1030
1031/* Print out the free pages at each order for each migratetype */
1032static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1033{
1034 int mtype;
1035 pg_data_t *pgdat = (pg_data_t *)arg;
1036
1037 seq_printf(m, "\n%-23s", "Number of blocks type ");
1038 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1039 seq_printf(m, "%12s ", migratetype_names[mtype]);
1040 seq_putc(m, '\n');
1041 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
1042
1043 return 0;
1044}
1045
48c96a36
JK
1046#ifdef CONFIG_PAGE_OWNER
1047static void pagetypeinfo_showmixedcount_print(struct seq_file *m,
1048 pg_data_t *pgdat,
1049 struct zone *zone)
1050{
1051 struct page *page;
1052 struct page_ext *page_ext;
1053 unsigned long pfn = zone->zone_start_pfn, block_end_pfn;
1054 unsigned long end_pfn = pfn + zone->spanned_pages;
1055 unsigned long count[MIGRATE_TYPES] = { 0, };
1056 int pageblock_mt, page_mt;
1057 int i;
1058
1059 /* Scan block by block. First and last block may be incomplete */
1060 pfn = zone->zone_start_pfn;
1061
1062 /*
1063 * Walk the zone in pageblock_nr_pages steps. If a page block spans
1064 * a zone boundary, it will be double counted between zones. This does
1065 * not matter as the mixed block count will still be correct
1066 */
1067 for (; pfn < end_pfn; ) {
1068 if (!pfn_valid(pfn)) {
1069 pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES);
1070 continue;
1071 }
1072
1073 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
1074 block_end_pfn = min(block_end_pfn, end_pfn);
1075
1076 page = pfn_to_page(pfn);
1077 pageblock_mt = get_pfnblock_migratetype(page, pfn);
1078
1079 for (; pfn < block_end_pfn; pfn++) {
1080 if (!pfn_valid_within(pfn))
1081 continue;
1082
1083 page = pfn_to_page(pfn);
1084 if (PageBuddy(page)) {
1085 pfn += (1UL << page_order(page)) - 1;
1086 continue;
1087 }
1088
1089 if (PageReserved(page))
1090 continue;
1091
1092 page_ext = lookup_page_ext(page);
1093
1094 if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags))
1095 continue;
1096
1097 page_mt = gfpflags_to_migratetype(page_ext->gfp_mask);
1098 if (pageblock_mt != page_mt) {
1099 if (is_migrate_cma(pageblock_mt))
1100 count[MIGRATE_MOVABLE]++;
1101 else
1102 count[pageblock_mt]++;
1103
1104 pfn = block_end_pfn;
1105 break;
1106 }
1107 pfn += (1UL << page_ext->order) - 1;
1108 }
1109 }
1110
1111 /* Print counts */
1112 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1113 for (i = 0; i < MIGRATE_TYPES; i++)
1114 seq_printf(m, "%12lu ", count[i]);
1115 seq_putc(m, '\n');
1116}
1117#endif /* CONFIG_PAGE_OWNER */
1118
1119/*
1120 * Print out the number of pageblocks for each migratetype that contain pages
1121 * of other types. This gives an indication of how well fallbacks are being
1122 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1123 * to determine what is going on
1124 */
1125static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1126{
1127#ifdef CONFIG_PAGE_OWNER
1128 int mtype;
1129
1130 if (!page_owner_inited)
1131 return;
1132
1133 drain_all_pages(NULL);
1134
1135 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1136 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1137 seq_printf(m, "%12s ", migratetype_names[mtype]);
1138 seq_putc(m, '\n');
1139
1140 walk_zones_in_node(m, pgdat, pagetypeinfo_showmixedcount_print);
1141#endif /* CONFIG_PAGE_OWNER */
1142}
1143
467c996c
MG
1144/*
1145 * This prints out statistics in relation to grouping pages by mobility.
1146 * It is expensive to collect so do not constantly read the file.
1147 */
1148static int pagetypeinfo_show(struct seq_file *m, void *arg)
1149{
1150 pg_data_t *pgdat = (pg_data_t *)arg;
1151
41b25a37 1152 /* check memoryless node */
a47b53c5 1153 if (!node_state(pgdat->node_id, N_MEMORY))
41b25a37
KM
1154 return 0;
1155
467c996c
MG
1156 seq_printf(m, "Page block order: %d\n", pageblock_order);
1157 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1158 seq_putc(m, '\n');
1159 pagetypeinfo_showfree(m, pgdat);
1160 pagetypeinfo_showblockcount(m, pgdat);
48c96a36 1161 pagetypeinfo_showmixedcount(m, pgdat);
467c996c 1162
f6ac2354
CL
1163 return 0;
1164}
1165
8f32f7e5 1166static const struct seq_operations fragmentation_op = {
f6ac2354
CL
1167 .start = frag_start,
1168 .next = frag_next,
1169 .stop = frag_stop,
1170 .show = frag_show,
1171};
1172
8f32f7e5
AD
1173static int fragmentation_open(struct inode *inode, struct file *file)
1174{
1175 return seq_open(file, &fragmentation_op);
1176}
1177
1178static const struct file_operations fragmentation_file_operations = {
1179 .open = fragmentation_open,
1180 .read = seq_read,
1181 .llseek = seq_lseek,
1182 .release = seq_release,
1183};
1184
74e2e8e8 1185static const struct seq_operations pagetypeinfo_op = {
467c996c
MG
1186 .start = frag_start,
1187 .next = frag_next,
1188 .stop = frag_stop,
1189 .show = pagetypeinfo_show,
1190};
1191
74e2e8e8
AD
1192static int pagetypeinfo_open(struct inode *inode, struct file *file)
1193{
1194 return seq_open(file, &pagetypeinfo_op);
1195}
1196
1197static const struct file_operations pagetypeinfo_file_ops = {
1198 .open = pagetypeinfo_open,
1199 .read = seq_read,
1200 .llseek = seq_lseek,
1201 .release = seq_release,
1202};
1203
467c996c
MG
1204static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1205 struct zone *zone)
f6ac2354 1206{
467c996c
MG
1207 int i;
1208 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1209 seq_printf(m,
1210 "\n pages free %lu"
1211 "\n min %lu"
1212 "\n low %lu"
1213 "\n high %lu"
08d9ae7c 1214 "\n scanned %lu"
467c996c 1215 "\n spanned %lu"
9feedc9d
JL
1216 "\n present %lu"
1217 "\n managed %lu",
88f5acf8 1218 zone_page_state(zone, NR_FREE_PAGES),
41858966
MG
1219 min_wmark_pages(zone),
1220 low_wmark_pages(zone),
1221 high_wmark_pages(zone),
0d5d823a 1222 zone_page_state(zone, NR_PAGES_SCANNED),
467c996c 1223 zone->spanned_pages,
9feedc9d
JL
1224 zone->present_pages,
1225 zone->managed_pages);
467c996c
MG
1226
1227 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1228 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
1229 zone_page_state(zone, i));
1230
1231 seq_printf(m,
3484b2de 1232 "\n protection: (%ld",
467c996c
MG
1233 zone->lowmem_reserve[0]);
1234 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
3484b2de 1235 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
467c996c
MG
1236 seq_printf(m,
1237 ")"
1238 "\n pagesets");
1239 for_each_online_cpu(i) {
1240 struct per_cpu_pageset *pageset;
467c996c 1241
99dcc3e5 1242 pageset = per_cpu_ptr(zone->pageset, i);
3dfa5721
CL
1243 seq_printf(m,
1244 "\n cpu: %i"
1245 "\n count: %i"
1246 "\n high: %i"
1247 "\n batch: %i",
1248 i,
1249 pageset->pcp.count,
1250 pageset->pcp.high,
1251 pageset->pcp.batch);
df9ecaba 1252#ifdef CONFIG_SMP
467c996c
MG
1253 seq_printf(m, "\n vm stats threshold: %d",
1254 pageset->stat_threshold);
df9ecaba 1255#endif
f6ac2354 1256 }
467c996c
MG
1257 seq_printf(m,
1258 "\n all_unreclaimable: %u"
556adecb
RR
1259 "\n start_pfn: %lu"
1260 "\n inactive_ratio: %u",
6e543d57 1261 !zone_reclaimable(zone),
556adecb
RR
1262 zone->zone_start_pfn,
1263 zone->inactive_ratio);
467c996c
MG
1264 seq_putc(m, '\n');
1265}
1266
1267/*
1268 * Output information about zones in @pgdat.
1269 */
1270static int zoneinfo_show(struct seq_file *m, void *arg)
1271{
1272 pg_data_t *pgdat = (pg_data_t *)arg;
1273 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
f6ac2354
CL
1274 return 0;
1275}
1276
5c9fe628 1277static const struct seq_operations zoneinfo_op = {
f6ac2354
CL
1278 .start = frag_start, /* iterate over all zones. The same as in
1279 * fragmentation. */
1280 .next = frag_next,
1281 .stop = frag_stop,
1282 .show = zoneinfo_show,
1283};
1284
5c9fe628
AD
1285static int zoneinfo_open(struct inode *inode, struct file *file)
1286{
1287 return seq_open(file, &zoneinfo_op);
1288}
1289
1290static const struct file_operations proc_zoneinfo_file_operations = {
1291 .open = zoneinfo_open,
1292 .read = seq_read,
1293 .llseek = seq_lseek,
1294 .release = seq_release,
1295};
1296
79da826a
MR
1297enum writeback_stat_item {
1298 NR_DIRTY_THRESHOLD,
1299 NR_DIRTY_BG_THRESHOLD,
1300 NR_VM_WRITEBACK_STAT_ITEMS,
1301};
1302
f6ac2354
CL
1303static void *vmstat_start(struct seq_file *m, loff_t *pos)
1304{
2244b95a 1305 unsigned long *v;
79da826a 1306 int i, stat_items_size;
f6ac2354
CL
1307
1308 if (*pos >= ARRAY_SIZE(vmstat_text))
1309 return NULL;
79da826a
MR
1310 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
1311 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
f6ac2354 1312
f8891e5e 1313#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a 1314 stat_items_size += sizeof(struct vm_event_state);
f8891e5e 1315#endif
79da826a
MR
1316
1317 v = kmalloc(stat_items_size, GFP_KERNEL);
2244b95a
CL
1318 m->private = v;
1319 if (!v)
f6ac2354 1320 return ERR_PTR(-ENOMEM);
2244b95a
CL
1321 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1322 v[i] = global_page_state(i);
79da826a
MR
1323 v += NR_VM_ZONE_STAT_ITEMS;
1324
1325 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1326 v + NR_DIRTY_THRESHOLD);
1327 v += NR_VM_WRITEBACK_STAT_ITEMS;
1328
f8891e5e 1329#ifdef CONFIG_VM_EVENT_COUNTERS
79da826a
MR
1330 all_vm_events(v);
1331 v[PGPGIN] /= 2; /* sectors -> kbytes */
1332 v[PGPGOUT] /= 2;
f8891e5e 1333#endif
ff8b16d7 1334 return (unsigned long *)m->private + *pos;
f6ac2354
CL
1335}
1336
1337static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1338{
1339 (*pos)++;
1340 if (*pos >= ARRAY_SIZE(vmstat_text))
1341 return NULL;
1342 return (unsigned long *)m->private + *pos;
1343}
1344
1345static int vmstat_show(struct seq_file *m, void *arg)
1346{
1347 unsigned long *l = arg;
1348 unsigned long off = l - (unsigned long *)m->private;
1349
1350 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
1351 return 0;
1352}
1353
1354static void vmstat_stop(struct seq_file *m, void *arg)
1355{
1356 kfree(m->private);
1357 m->private = NULL;
1358}
1359
b6aa44ab 1360static const struct seq_operations vmstat_op = {
f6ac2354
CL
1361 .start = vmstat_start,
1362 .next = vmstat_next,
1363 .stop = vmstat_stop,
1364 .show = vmstat_show,
1365};
1366
b6aa44ab
AD
1367static int vmstat_open(struct inode *inode, struct file *file)
1368{
1369 return seq_open(file, &vmstat_op);
1370}
1371
1372static const struct file_operations proc_vmstat_file_operations = {
1373 .open = vmstat_open,
1374 .read = seq_read,
1375 .llseek = seq_lseek,
1376 .release = seq_release,
1377};
f6ac2354
CL
1378#endif /* CONFIG_PROC_FS */
1379
df9ecaba 1380#ifdef CONFIG_SMP
d1187ed2 1381static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
77461ab3 1382int sysctl_stat_interval __read_mostly = HZ;
7cc36bbd 1383static cpumask_var_t cpu_stat_off;
d1187ed2
CL
1384
1385static void vmstat_update(struct work_struct *w)
1386{
176bed1d 1387 if (refresh_cpu_vm_stats()) {
7cc36bbd
CL
1388 /*
1389 * Counters were updated so we expect more updates
1390 * to occur in the future. Keep on running the
1391 * update worker thread.
1392 */
176bed1d
LT
1393 schedule_delayed_work_on(smp_processor_id(),
1394 this_cpu_ptr(&vmstat_work),
7cc36bbd 1395 round_jiffies_relative(sysctl_stat_interval));
176bed1d 1396 } else {
7cc36bbd
CL
1397 /*
1398 * We did not update any counters so the app may be in
1399 * a mode where it does not cause counter updates.
1400 * We may be uselessly running vmstat_update.
1401 * Defer the checking for differentials to the
1402 * shepherd thread on a different processor.
1403 */
1404 int r;
1405 /*
1406 * Shepherd work thread does not race since it never
1407 * changes the bit if its zero but the cpu
1408 * online / off line code may race if
1409 * worker threads are still allowed during
1410 * shutdown / startup.
1411 */
1412 r = cpumask_test_and_set_cpu(smp_processor_id(),
1413 cpu_stat_off);
1414 VM_BUG_ON(r);
1415 }
1416}
1417
1418/*
1419 * Check if the diffs for a certain cpu indicate that
1420 * an update is needed.
1421 */
1422static bool need_update(int cpu)
1423{
1424 struct zone *zone;
1425
1426 for_each_populated_zone(zone) {
1427 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1428
1429 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1430 /*
1431 * The fast way of checking if there are any vmstat diffs.
1432 * This works because the diffs are byte sized items.
1433 */
1434 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS))
1435 return true;
1436
1437 }
1438 return false;
1439}
1440
1441
1442/*
1443 * Shepherd worker thread that checks the
1444 * differentials of processors that have their worker
1445 * threads for vm statistics updates disabled because of
1446 * inactivity.
1447 */
1448static void vmstat_shepherd(struct work_struct *w);
1449
1450static DECLARE_DELAYED_WORK(shepherd, vmstat_shepherd);
1451
1452static void vmstat_shepherd(struct work_struct *w)
1453{
1454 int cpu;
1455
1456 get_online_cpus();
1457 /* Check processors whose vmstat worker threads have been disabled */
1458 for_each_cpu(cpu, cpu_stat_off)
1459 if (need_update(cpu) &&
1460 cpumask_test_and_clear_cpu(cpu, cpu_stat_off))
1461
57c2e36b
CL
1462 schedule_delayed_work_on(cpu,
1463 &per_cpu(vmstat_work, cpu), 0);
7cc36bbd
CL
1464
1465 put_online_cpus();
1466
1467 schedule_delayed_work(&shepherd,
98f4ebb2 1468 round_jiffies_relative(sysctl_stat_interval));
7cc36bbd 1469
d1187ed2
CL
1470}
1471
7cc36bbd 1472static void __init start_shepherd_timer(void)
d1187ed2 1473{
7cc36bbd
CL
1474 int cpu;
1475
1476 for_each_possible_cpu(cpu)
ba4877b9 1477 INIT_DELAYED_WORK(per_cpu_ptr(&vmstat_work, cpu),
7cc36bbd
CL
1478 vmstat_update);
1479
1480 if (!alloc_cpumask_var(&cpu_stat_off, GFP_KERNEL))
1481 BUG();
1482 cpumask_copy(cpu_stat_off, cpu_online_mask);
d1187ed2 1483
7cc36bbd
CL
1484 schedule_delayed_work(&shepherd,
1485 round_jiffies_relative(sysctl_stat_interval));
d1187ed2
CL
1486}
1487
807a1bd2
TK
1488static void vmstat_cpu_dead(int node)
1489{
1490 int cpu;
1491
1492 get_online_cpus();
1493 for_each_online_cpu(cpu)
1494 if (cpu_to_node(cpu) == node)
1495 goto end;
1496
1497 node_clear_state(node, N_CPU);
1498end:
1499 put_online_cpus();
1500}
1501
df9ecaba
CL
1502/*
1503 * Use the cpu notifier to insure that the thresholds are recalculated
1504 * when necessary.
1505 */
0db0628d 1506static int vmstat_cpuup_callback(struct notifier_block *nfb,
df9ecaba
CL
1507 unsigned long action,
1508 void *hcpu)
1509{
d1187ed2
CL
1510 long cpu = (long)hcpu;
1511
df9ecaba 1512 switch (action) {
d1187ed2
CL
1513 case CPU_ONLINE:
1514 case CPU_ONLINE_FROZEN:
5ee28a44 1515 refresh_zone_stat_thresholds();
ad596925 1516 node_set_state(cpu_to_node(cpu), N_CPU);
7cc36bbd 1517 cpumask_set_cpu(cpu, cpu_stat_off);
d1187ed2
CL
1518 break;
1519 case CPU_DOWN_PREPARE:
1520 case CPU_DOWN_PREPARE_FROZEN:
afe2c511 1521 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
7cc36bbd 1522 cpumask_clear_cpu(cpu, cpu_stat_off);
d1187ed2
CL
1523 break;
1524 case CPU_DOWN_FAILED:
1525 case CPU_DOWN_FAILED_FROZEN:
7cc36bbd 1526 cpumask_set_cpu(cpu, cpu_stat_off);
d1187ed2 1527 break;
ce421c79 1528 case CPU_DEAD:
8bb78442 1529 case CPU_DEAD_FROZEN:
ce421c79 1530 refresh_zone_stat_thresholds();
807a1bd2 1531 vmstat_cpu_dead(cpu_to_node(cpu));
ce421c79
AW
1532 break;
1533 default:
1534 break;
df9ecaba
CL
1535 }
1536 return NOTIFY_OK;
1537}
1538
0db0628d 1539static struct notifier_block vmstat_notifier =
df9ecaba 1540 { &vmstat_cpuup_callback, NULL, 0 };
8f32f7e5 1541#endif
df9ecaba 1542
e2fc88d0 1543static int __init setup_vmstat(void)
df9ecaba 1544{
8f32f7e5 1545#ifdef CONFIG_SMP
0be94bad
SB
1546 cpu_notifier_register_begin();
1547 __register_cpu_notifier(&vmstat_notifier);
d1187ed2 1548
7cc36bbd 1549 start_shepherd_timer();
0be94bad 1550 cpu_notifier_register_done();
8f32f7e5
AD
1551#endif
1552#ifdef CONFIG_PROC_FS
1553 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
74e2e8e8 1554 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
b6aa44ab 1555 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
5c9fe628 1556 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
8f32f7e5 1557#endif
df9ecaba
CL
1558 return 0;
1559}
1560module_init(setup_vmstat)
d7a5752c
MG
1561
1562#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
d7a5752c
MG
1563
1564/*
1565 * Return an index indicating how much of the available free memory is
1566 * unusable for an allocation of the requested size.
1567 */
1568static int unusable_free_index(unsigned int order,
1569 struct contig_page_info *info)
1570{
1571 /* No free memory is interpreted as all free memory is unusable */
1572 if (info->free_pages == 0)
1573 return 1000;
1574
1575 /*
1576 * Index should be a value between 0 and 1. Return a value to 3
1577 * decimal places.
1578 *
1579 * 0 => no fragmentation
1580 * 1 => high fragmentation
1581 */
1582 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
1583
1584}
1585
1586static void unusable_show_print(struct seq_file *m,
1587 pg_data_t *pgdat, struct zone *zone)
1588{
1589 unsigned int order;
1590 int index;
1591 struct contig_page_info info;
1592
1593 seq_printf(m, "Node %d, zone %8s ",
1594 pgdat->node_id,
1595 zone->name);
1596 for (order = 0; order < MAX_ORDER; ++order) {
1597 fill_contig_page_info(zone, order, &info);
1598 index = unusable_free_index(order, &info);
1599 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1600 }
1601
1602 seq_putc(m, '\n');
1603}
1604
1605/*
1606 * Display unusable free space index
1607 *
1608 * The unusable free space index measures how much of the available free
1609 * memory cannot be used to satisfy an allocation of a given size and is a
1610 * value between 0 and 1. The higher the value, the more of free memory is
1611 * unusable and by implication, the worse the external fragmentation is. This
1612 * can be expressed as a percentage by multiplying by 100.
1613 */
1614static int unusable_show(struct seq_file *m, void *arg)
1615{
1616 pg_data_t *pgdat = (pg_data_t *)arg;
1617
1618 /* check memoryless node */
a47b53c5 1619 if (!node_state(pgdat->node_id, N_MEMORY))
d7a5752c
MG
1620 return 0;
1621
1622 walk_zones_in_node(m, pgdat, unusable_show_print);
1623
1624 return 0;
1625}
1626
1627static const struct seq_operations unusable_op = {
1628 .start = frag_start,
1629 .next = frag_next,
1630 .stop = frag_stop,
1631 .show = unusable_show,
1632};
1633
1634static int unusable_open(struct inode *inode, struct file *file)
1635{
1636 return seq_open(file, &unusable_op);
1637}
1638
1639static const struct file_operations unusable_file_ops = {
1640 .open = unusable_open,
1641 .read = seq_read,
1642 .llseek = seq_lseek,
1643 .release = seq_release,
1644};
1645
f1a5ab12
MG
1646static void extfrag_show_print(struct seq_file *m,
1647 pg_data_t *pgdat, struct zone *zone)
1648{
1649 unsigned int order;
1650 int index;
1651
1652 /* Alloc on stack as interrupts are disabled for zone walk */
1653 struct contig_page_info info;
1654
1655 seq_printf(m, "Node %d, zone %8s ",
1656 pgdat->node_id,
1657 zone->name);
1658 for (order = 0; order < MAX_ORDER; ++order) {
1659 fill_contig_page_info(zone, order, &info);
56de7263 1660 index = __fragmentation_index(order, &info);
f1a5ab12
MG
1661 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
1662 }
1663
1664 seq_putc(m, '\n');
1665}
1666
1667/*
1668 * Display fragmentation index for orders that allocations would fail for
1669 */
1670static int extfrag_show(struct seq_file *m, void *arg)
1671{
1672 pg_data_t *pgdat = (pg_data_t *)arg;
1673
1674 walk_zones_in_node(m, pgdat, extfrag_show_print);
1675
1676 return 0;
1677}
1678
1679static const struct seq_operations extfrag_op = {
1680 .start = frag_start,
1681 .next = frag_next,
1682 .stop = frag_stop,
1683 .show = extfrag_show,
1684};
1685
1686static int extfrag_open(struct inode *inode, struct file *file)
1687{
1688 return seq_open(file, &extfrag_op);
1689}
1690
1691static const struct file_operations extfrag_file_ops = {
1692 .open = extfrag_open,
1693 .read = seq_read,
1694 .llseek = seq_lseek,
1695 .release = seq_release,
1696};
1697
d7a5752c
MG
1698static int __init extfrag_debug_init(void)
1699{
bde8bd8a
S
1700 struct dentry *extfrag_debug_root;
1701
d7a5752c
MG
1702 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
1703 if (!extfrag_debug_root)
1704 return -ENOMEM;
1705
1706 if (!debugfs_create_file("unusable_index", 0444,
1707 extfrag_debug_root, NULL, &unusable_file_ops))
bde8bd8a 1708 goto fail;
d7a5752c 1709
f1a5ab12
MG
1710 if (!debugfs_create_file("extfrag_index", 0444,
1711 extfrag_debug_root, NULL, &extfrag_file_ops))
bde8bd8a 1712 goto fail;
f1a5ab12 1713
d7a5752c 1714 return 0;
bde8bd8a
S
1715fail:
1716 debugfs_remove_recursive(extfrag_debug_root);
1717 return -ENOMEM;
d7a5752c
MG
1718}
1719
1720module_init(extfrag_debug_init);
1721#endif