MAINTAINERS: adi-buildroot-devel is moderated
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
117aad1e 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
688eb988
MH
86 /* anon vs. file LRUs scanning "ratio" */
87 int swappiness;
88
f16015fb
JW
89 /*
90 * The memory cgroup that hit its limit and as a result is the
91 * primary target of this reclaim invocation.
92 */
93 struct mem_cgroup *target_mem_cgroup;
66e1707b 94
327c0e96
KH
95 /*
96 * Nodemask of nodes allowed by the caller. If NULL, all nodes
97 * are scanned.
98 */
99 nodemask_t *nodemask;
1da177e4
LT
100};
101
1da177e4
LT
102#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
103
104#ifdef ARCH_HAS_PREFETCH
105#define prefetch_prev_lru_page(_page, _base, _field) \
106 do { \
107 if ((_page)->lru.prev != _base) { \
108 struct page *prev; \
109 \
110 prev = lru_to_page(&(_page->lru)); \
111 prefetch(&prev->_field); \
112 } \
113 } while (0)
114#else
115#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
116#endif
117
118#ifdef ARCH_HAS_PREFETCHW
119#define prefetchw_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
123 \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetchw(&prev->_field); \
126 } \
127 } while (0)
128#else
129#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
130#endif
131
132/*
133 * From 0 .. 100. Higher means more swappy.
134 */
135int vm_swappiness = 60;
b21e0b90 136unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
137
138static LIST_HEAD(shrinker_list);
139static DECLARE_RWSEM(shrinker_rwsem);
140
c255a458 141#ifdef CONFIG_MEMCG
89b5fae5
JW
142static bool global_reclaim(struct scan_control *sc)
143{
f16015fb 144 return !sc->target_mem_cgroup;
89b5fae5 145}
91a45470 146#else
89b5fae5
JW
147static bool global_reclaim(struct scan_control *sc)
148{
149 return true;
150}
91a45470
KH
151#endif
152
a1c3bfb2 153static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
154{
155 int nr;
156
157 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
158 zone_page_state(zone, NR_INACTIVE_FILE);
159
160 if (get_nr_swap_pages() > 0)
161 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
162 zone_page_state(zone, NR_INACTIVE_ANON);
163
164 return nr;
165}
166
167bool zone_reclaimable(struct zone *zone)
168{
169 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
170}
171
4d7dcca2 172static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 173{
c3c787e8 174 if (!mem_cgroup_disabled())
4d7dcca2 175 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 176
074291fe 177 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
178}
179
1da177e4 180/*
1d3d4437 181 * Add a shrinker callback to be called from the vm.
1da177e4 182 */
1d3d4437 183int register_shrinker(struct shrinker *shrinker)
1da177e4 184{
1d3d4437
GC
185 size_t size = sizeof(*shrinker->nr_deferred);
186
187 /*
188 * If we only have one possible node in the system anyway, save
189 * ourselves the trouble and disable NUMA aware behavior. This way we
190 * will save memory and some small loop time later.
191 */
192 if (nr_node_ids == 1)
193 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
194
195 if (shrinker->flags & SHRINKER_NUMA_AWARE)
196 size *= nr_node_ids;
197
198 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
199 if (!shrinker->nr_deferred)
200 return -ENOMEM;
201
8e1f936b
RR
202 down_write(&shrinker_rwsem);
203 list_add_tail(&shrinker->list, &shrinker_list);
204 up_write(&shrinker_rwsem);
1d3d4437 205 return 0;
1da177e4 206}
8e1f936b 207EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
208
209/*
210 * Remove one
211 */
8e1f936b 212void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
213{
214 down_write(&shrinker_rwsem);
215 list_del(&shrinker->list);
216 up_write(&shrinker_rwsem);
ae393321 217 kfree(shrinker->nr_deferred);
1da177e4 218}
8e1f936b 219EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
220
221#define SHRINK_BATCH 128
1d3d4437
GC
222
223static unsigned long
224shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
225 unsigned long nr_pages_scanned, unsigned long lru_pages)
226{
227 unsigned long freed = 0;
228 unsigned long long delta;
229 long total_scan;
d5bc5fd3 230 long freeable;
1d3d4437
GC
231 long nr;
232 long new_nr;
233 int nid = shrinkctl->nid;
234 long batch_size = shrinker->batch ? shrinker->batch
235 : SHRINK_BATCH;
236
d5bc5fd3
VD
237 freeable = shrinker->count_objects(shrinker, shrinkctl);
238 if (freeable == 0)
1d3d4437
GC
239 return 0;
240
241 /*
242 * copy the current shrinker scan count into a local variable
243 * and zero it so that other concurrent shrinker invocations
244 * don't also do this scanning work.
245 */
246 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
247
248 total_scan = nr;
249 delta = (4 * nr_pages_scanned) / shrinker->seeks;
d5bc5fd3 250 delta *= freeable;
1d3d4437
GC
251 do_div(delta, lru_pages + 1);
252 total_scan += delta;
253 if (total_scan < 0) {
254 printk(KERN_ERR
255 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 256 shrinker->scan_objects, total_scan);
d5bc5fd3 257 total_scan = freeable;
1d3d4437
GC
258 }
259
260 /*
261 * We need to avoid excessive windup on filesystem shrinkers
262 * due to large numbers of GFP_NOFS allocations causing the
263 * shrinkers to return -1 all the time. This results in a large
264 * nr being built up so when a shrink that can do some work
265 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 266 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
267 * memory.
268 *
269 * Hence only allow the shrinker to scan the entire cache when
270 * a large delta change is calculated directly.
271 */
d5bc5fd3
VD
272 if (delta < freeable / 4)
273 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
274
275 /*
276 * Avoid risking looping forever due to too large nr value:
277 * never try to free more than twice the estimate number of
278 * freeable entries.
279 */
d5bc5fd3
VD
280 if (total_scan > freeable * 2)
281 total_scan = freeable * 2;
1d3d4437
GC
282
283 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
284 nr_pages_scanned, lru_pages,
d5bc5fd3 285 freeable, delta, total_scan);
1d3d4437 286
0b1fb40a
VD
287 /*
288 * Normally, we should not scan less than batch_size objects in one
289 * pass to avoid too frequent shrinker calls, but if the slab has less
290 * than batch_size objects in total and we are really tight on memory,
291 * we will try to reclaim all available objects, otherwise we can end
292 * up failing allocations although there are plenty of reclaimable
293 * objects spread over several slabs with usage less than the
294 * batch_size.
295 *
296 * We detect the "tight on memory" situations by looking at the total
297 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 298 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
299 * scanning at high prio and therefore should try to reclaim as much as
300 * possible.
301 */
302 while (total_scan >= batch_size ||
d5bc5fd3 303 total_scan >= freeable) {
a0b02131 304 unsigned long ret;
0b1fb40a 305 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 306
0b1fb40a 307 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
308 ret = shrinker->scan_objects(shrinker, shrinkctl);
309 if (ret == SHRINK_STOP)
310 break;
311 freed += ret;
1d3d4437 312
0b1fb40a
VD
313 count_vm_events(SLABS_SCANNED, nr_to_scan);
314 total_scan -= nr_to_scan;
1d3d4437
GC
315
316 cond_resched();
317 }
318
319 /*
320 * move the unused scan count back into the shrinker in a
321 * manner that handles concurrent updates. If we exhausted the
322 * scan, there is no need to do an update.
323 */
324 if (total_scan > 0)
325 new_nr = atomic_long_add_return(total_scan,
326 &shrinker->nr_deferred[nid]);
327 else
328 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
329
df9024a8 330 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 331 return freed;
1495f230
YH
332}
333
1da177e4
LT
334/*
335 * Call the shrink functions to age shrinkable caches
336 *
337 * Here we assume it costs one seek to replace a lru page and that it also
338 * takes a seek to recreate a cache object. With this in mind we age equal
339 * percentages of the lru and ageable caches. This should balance the seeks
340 * generated by these structures.
341 *
183ff22b 342 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
343 * slab to avoid swapping.
344 *
345 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
346 *
347 * `lru_pages' represents the number of on-LRU pages in all the zones which
348 * are eligible for the caller's allocation attempt. It is used for balancing
349 * slab reclaim versus page reclaim.
b15e0905 350 *
351 * Returns the number of slab objects which we shrunk.
1da177e4 352 */
24f7c6b9 353unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 354 unsigned long nr_pages_scanned,
a09ed5e0 355 unsigned long lru_pages)
1da177e4
LT
356{
357 struct shrinker *shrinker;
24f7c6b9 358 unsigned long freed = 0;
1da177e4 359
1495f230
YH
360 if (nr_pages_scanned == 0)
361 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 362
f06590bd 363 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
364 /*
365 * If we would return 0, our callers would understand that we
366 * have nothing else to shrink and give up trying. By returning
367 * 1 we keep it going and assume we'll be able to shrink next
368 * time.
369 */
370 freed = 1;
f06590bd
MK
371 goto out;
372 }
1da177e4
LT
373
374 list_for_each_entry(shrinker, &shrinker_list, list) {
ec97097b
VD
375 if (!(shrinker->flags & SHRINKER_NUMA_AWARE)) {
376 shrinkctl->nid = 0;
1d3d4437 377 freed += shrink_slab_node(shrinkctl, shrinker,
ec97097b
VD
378 nr_pages_scanned, lru_pages);
379 continue;
380 }
381
382 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
383 if (node_online(shrinkctl->nid))
384 freed += shrink_slab_node(shrinkctl, shrinker,
385 nr_pages_scanned, lru_pages);
1da177e4 386
1da177e4 387 }
1da177e4
LT
388 }
389 up_read(&shrinker_rwsem);
f06590bd
MK
390out:
391 cond_resched();
24f7c6b9 392 return freed;
1da177e4
LT
393}
394
1da177e4
LT
395static inline int is_page_cache_freeable(struct page *page)
396{
ceddc3a5
JW
397 /*
398 * A freeable page cache page is referenced only by the caller
399 * that isolated the page, the page cache radix tree and
400 * optional buffer heads at page->private.
401 */
edcf4748 402 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
403}
404
7d3579e8
KM
405static int may_write_to_queue(struct backing_dev_info *bdi,
406 struct scan_control *sc)
1da177e4 407{
930d9152 408 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
409 return 1;
410 if (!bdi_write_congested(bdi))
411 return 1;
412 if (bdi == current->backing_dev_info)
413 return 1;
414 return 0;
415}
416
417/*
418 * We detected a synchronous write error writing a page out. Probably
419 * -ENOSPC. We need to propagate that into the address_space for a subsequent
420 * fsync(), msync() or close().
421 *
422 * The tricky part is that after writepage we cannot touch the mapping: nothing
423 * prevents it from being freed up. But we have a ref on the page and once
424 * that page is locked, the mapping is pinned.
425 *
426 * We're allowed to run sleeping lock_page() here because we know the caller has
427 * __GFP_FS.
428 */
429static void handle_write_error(struct address_space *mapping,
430 struct page *page, int error)
431{
7eaceacc 432 lock_page(page);
3e9f45bd
GC
433 if (page_mapping(page) == mapping)
434 mapping_set_error(mapping, error);
1da177e4
LT
435 unlock_page(page);
436}
437
04e62a29
CL
438/* possible outcome of pageout() */
439typedef enum {
440 /* failed to write page out, page is locked */
441 PAGE_KEEP,
442 /* move page to the active list, page is locked */
443 PAGE_ACTIVATE,
444 /* page has been sent to the disk successfully, page is unlocked */
445 PAGE_SUCCESS,
446 /* page is clean and locked */
447 PAGE_CLEAN,
448} pageout_t;
449
1da177e4 450/*
1742f19f
AM
451 * pageout is called by shrink_page_list() for each dirty page.
452 * Calls ->writepage().
1da177e4 453 */
c661b078 454static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 455 struct scan_control *sc)
1da177e4
LT
456{
457 /*
458 * If the page is dirty, only perform writeback if that write
459 * will be non-blocking. To prevent this allocation from being
460 * stalled by pagecache activity. But note that there may be
461 * stalls if we need to run get_block(). We could test
462 * PagePrivate for that.
463 *
6aceb53b 464 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
465 * this page's queue, we can perform writeback even if that
466 * will block.
467 *
468 * If the page is swapcache, write it back even if that would
469 * block, for some throttling. This happens by accident, because
470 * swap_backing_dev_info is bust: it doesn't reflect the
471 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
472 */
473 if (!is_page_cache_freeable(page))
474 return PAGE_KEEP;
475 if (!mapping) {
476 /*
477 * Some data journaling orphaned pages can have
478 * page->mapping == NULL while being dirty with clean buffers.
479 */
266cf658 480 if (page_has_private(page)) {
1da177e4
LT
481 if (try_to_free_buffers(page)) {
482 ClearPageDirty(page);
d40cee24 483 printk("%s: orphaned page\n", __func__);
1da177e4
LT
484 return PAGE_CLEAN;
485 }
486 }
487 return PAGE_KEEP;
488 }
489 if (mapping->a_ops->writepage == NULL)
490 return PAGE_ACTIVATE;
0e093d99 491 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
492 return PAGE_KEEP;
493
494 if (clear_page_dirty_for_io(page)) {
495 int res;
496 struct writeback_control wbc = {
497 .sync_mode = WB_SYNC_NONE,
498 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
499 .range_start = 0,
500 .range_end = LLONG_MAX,
1da177e4
LT
501 .for_reclaim = 1,
502 };
503
504 SetPageReclaim(page);
505 res = mapping->a_ops->writepage(page, &wbc);
506 if (res < 0)
507 handle_write_error(mapping, page, res);
994fc28c 508 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
509 ClearPageReclaim(page);
510 return PAGE_ACTIVATE;
511 }
c661b078 512
1da177e4
LT
513 if (!PageWriteback(page)) {
514 /* synchronous write or broken a_ops? */
515 ClearPageReclaim(page);
516 }
23b9da55 517 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 518 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
519 return PAGE_SUCCESS;
520 }
521
522 return PAGE_CLEAN;
523}
524
a649fd92 525/*
e286781d
NP
526 * Same as remove_mapping, but if the page is removed from the mapping, it
527 * gets returned with a refcount of 0.
a649fd92 528 */
a528910e
JW
529static int __remove_mapping(struct address_space *mapping, struct page *page,
530 bool reclaimed)
49d2e9cc 531{
28e4d965
NP
532 BUG_ON(!PageLocked(page));
533 BUG_ON(mapping != page_mapping(page));
49d2e9cc 534
19fd6231 535 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 536 /*
0fd0e6b0
NP
537 * The non racy check for a busy page.
538 *
539 * Must be careful with the order of the tests. When someone has
540 * a ref to the page, it may be possible that they dirty it then
541 * drop the reference. So if PageDirty is tested before page_count
542 * here, then the following race may occur:
543 *
544 * get_user_pages(&page);
545 * [user mapping goes away]
546 * write_to(page);
547 * !PageDirty(page) [good]
548 * SetPageDirty(page);
549 * put_page(page);
550 * !page_count(page) [good, discard it]
551 *
552 * [oops, our write_to data is lost]
553 *
554 * Reversing the order of the tests ensures such a situation cannot
555 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
556 * load is not satisfied before that of page->_count.
557 *
558 * Note that if SetPageDirty is always performed via set_page_dirty,
559 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 560 */
e286781d 561 if (!page_freeze_refs(page, 2))
49d2e9cc 562 goto cannot_free;
e286781d
NP
563 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
564 if (unlikely(PageDirty(page))) {
565 page_unfreeze_refs(page, 2);
49d2e9cc 566 goto cannot_free;
e286781d 567 }
49d2e9cc
CL
568
569 if (PageSwapCache(page)) {
570 swp_entry_t swap = { .val = page_private(page) };
571 __delete_from_swap_cache(page);
19fd6231 572 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 573 swapcache_free(swap, page);
e286781d 574 } else {
6072d13c 575 void (*freepage)(struct page *);
a528910e 576 void *shadow = NULL;
6072d13c
LT
577
578 freepage = mapping->a_ops->freepage;
a528910e
JW
579 /*
580 * Remember a shadow entry for reclaimed file cache in
581 * order to detect refaults, thus thrashing, later on.
582 *
583 * But don't store shadows in an address space that is
584 * already exiting. This is not just an optizimation,
585 * inode reclaim needs to empty out the radix tree or
586 * the nodes are lost. Don't plant shadows behind its
587 * back.
588 */
589 if (reclaimed && page_is_file_cache(page) &&
590 !mapping_exiting(mapping))
591 shadow = workingset_eviction(mapping, page);
592 __delete_from_page_cache(page, shadow);
19fd6231 593 spin_unlock_irq(&mapping->tree_lock);
e767e056 594 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
595
596 if (freepage != NULL)
597 freepage(page);
49d2e9cc
CL
598 }
599
49d2e9cc
CL
600 return 1;
601
602cannot_free:
19fd6231 603 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
604 return 0;
605}
606
e286781d
NP
607/*
608 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
609 * someone else has a ref on the page, abort and return 0. If it was
610 * successfully detached, return 1. Assumes the caller has a single ref on
611 * this page.
612 */
613int remove_mapping(struct address_space *mapping, struct page *page)
614{
a528910e 615 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
616 /*
617 * Unfreezing the refcount with 1 rather than 2 effectively
618 * drops the pagecache ref for us without requiring another
619 * atomic operation.
620 */
621 page_unfreeze_refs(page, 1);
622 return 1;
623 }
624 return 0;
625}
626
894bc310
LS
627/**
628 * putback_lru_page - put previously isolated page onto appropriate LRU list
629 * @page: page to be put back to appropriate lru list
630 *
631 * Add previously isolated @page to appropriate LRU list.
632 * Page may still be unevictable for other reasons.
633 *
634 * lru_lock must not be held, interrupts must be enabled.
635 */
894bc310
LS
636void putback_lru_page(struct page *page)
637{
0ec3b74c 638 bool is_unevictable;
bbfd28ee 639 int was_unevictable = PageUnevictable(page);
894bc310 640
309381fe 641 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
642
643redo:
644 ClearPageUnevictable(page);
645
39b5f29a 646 if (page_evictable(page)) {
894bc310
LS
647 /*
648 * For evictable pages, we can use the cache.
649 * In event of a race, worst case is we end up with an
650 * unevictable page on [in]active list.
651 * We know how to handle that.
652 */
0ec3b74c 653 is_unevictable = false;
c53954a0 654 lru_cache_add(page);
894bc310
LS
655 } else {
656 /*
657 * Put unevictable pages directly on zone's unevictable
658 * list.
659 */
0ec3b74c 660 is_unevictable = true;
894bc310 661 add_page_to_unevictable_list(page);
6a7b9548 662 /*
21ee9f39
MK
663 * When racing with an mlock or AS_UNEVICTABLE clearing
664 * (page is unlocked) make sure that if the other thread
665 * does not observe our setting of PG_lru and fails
24513264 666 * isolation/check_move_unevictable_pages,
21ee9f39 667 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
668 * the page back to the evictable list.
669 *
21ee9f39 670 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
671 */
672 smp_mb();
894bc310 673 }
894bc310
LS
674
675 /*
676 * page's status can change while we move it among lru. If an evictable
677 * page is on unevictable list, it never be freed. To avoid that,
678 * check after we added it to the list, again.
679 */
0ec3b74c 680 if (is_unevictable && page_evictable(page)) {
894bc310
LS
681 if (!isolate_lru_page(page)) {
682 put_page(page);
683 goto redo;
684 }
685 /* This means someone else dropped this page from LRU
686 * So, it will be freed or putback to LRU again. There is
687 * nothing to do here.
688 */
689 }
690
0ec3b74c 691 if (was_unevictable && !is_unevictable)
bbfd28ee 692 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 693 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
694 count_vm_event(UNEVICTABLE_PGCULLED);
695
894bc310
LS
696 put_page(page); /* drop ref from isolate */
697}
698
dfc8d636
JW
699enum page_references {
700 PAGEREF_RECLAIM,
701 PAGEREF_RECLAIM_CLEAN,
64574746 702 PAGEREF_KEEP,
dfc8d636
JW
703 PAGEREF_ACTIVATE,
704};
705
706static enum page_references page_check_references(struct page *page,
707 struct scan_control *sc)
708{
64574746 709 int referenced_ptes, referenced_page;
dfc8d636 710 unsigned long vm_flags;
dfc8d636 711
c3ac9a8a
JW
712 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
713 &vm_flags);
64574746 714 referenced_page = TestClearPageReferenced(page);
dfc8d636 715
dfc8d636
JW
716 /*
717 * Mlock lost the isolation race with us. Let try_to_unmap()
718 * move the page to the unevictable list.
719 */
720 if (vm_flags & VM_LOCKED)
721 return PAGEREF_RECLAIM;
722
64574746 723 if (referenced_ptes) {
e4898273 724 if (PageSwapBacked(page))
64574746
JW
725 return PAGEREF_ACTIVATE;
726 /*
727 * All mapped pages start out with page table
728 * references from the instantiating fault, so we need
729 * to look twice if a mapped file page is used more
730 * than once.
731 *
732 * Mark it and spare it for another trip around the
733 * inactive list. Another page table reference will
734 * lead to its activation.
735 *
736 * Note: the mark is set for activated pages as well
737 * so that recently deactivated but used pages are
738 * quickly recovered.
739 */
740 SetPageReferenced(page);
741
34dbc67a 742 if (referenced_page || referenced_ptes > 1)
64574746
JW
743 return PAGEREF_ACTIVATE;
744
c909e993
KK
745 /*
746 * Activate file-backed executable pages after first usage.
747 */
748 if (vm_flags & VM_EXEC)
749 return PAGEREF_ACTIVATE;
750
64574746
JW
751 return PAGEREF_KEEP;
752 }
dfc8d636
JW
753
754 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 755 if (referenced_page && !PageSwapBacked(page))
64574746
JW
756 return PAGEREF_RECLAIM_CLEAN;
757
758 return PAGEREF_RECLAIM;
dfc8d636
JW
759}
760
e2be15f6
MG
761/* Check if a page is dirty or under writeback */
762static void page_check_dirty_writeback(struct page *page,
763 bool *dirty, bool *writeback)
764{
b4597226
MG
765 struct address_space *mapping;
766
e2be15f6
MG
767 /*
768 * Anonymous pages are not handled by flushers and must be written
769 * from reclaim context. Do not stall reclaim based on them
770 */
771 if (!page_is_file_cache(page)) {
772 *dirty = false;
773 *writeback = false;
774 return;
775 }
776
777 /* By default assume that the page flags are accurate */
778 *dirty = PageDirty(page);
779 *writeback = PageWriteback(page);
b4597226
MG
780
781 /* Verify dirty/writeback state if the filesystem supports it */
782 if (!page_has_private(page))
783 return;
784
785 mapping = page_mapping(page);
786 if (mapping && mapping->a_ops->is_dirty_writeback)
787 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
788}
789
1da177e4 790/*
1742f19f 791 * shrink_page_list() returns the number of reclaimed pages
1da177e4 792 */
1742f19f 793static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 794 struct zone *zone,
f84f6e2b 795 struct scan_control *sc,
02c6de8d 796 enum ttu_flags ttu_flags,
8e950282 797 unsigned long *ret_nr_dirty,
d43006d5 798 unsigned long *ret_nr_unqueued_dirty,
8e950282 799 unsigned long *ret_nr_congested,
02c6de8d 800 unsigned long *ret_nr_writeback,
b1a6f21e 801 unsigned long *ret_nr_immediate,
02c6de8d 802 bool force_reclaim)
1da177e4
LT
803{
804 LIST_HEAD(ret_pages);
abe4c3b5 805 LIST_HEAD(free_pages);
1da177e4 806 int pgactivate = 0;
d43006d5 807 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
808 unsigned long nr_dirty = 0;
809 unsigned long nr_congested = 0;
05ff5137 810 unsigned long nr_reclaimed = 0;
92df3a72 811 unsigned long nr_writeback = 0;
b1a6f21e 812 unsigned long nr_immediate = 0;
1da177e4
LT
813
814 cond_resched();
815
69980e31 816 mem_cgroup_uncharge_start();
1da177e4
LT
817 while (!list_empty(page_list)) {
818 struct address_space *mapping;
819 struct page *page;
820 int may_enter_fs;
02c6de8d 821 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 822 bool dirty, writeback;
1da177e4
LT
823
824 cond_resched();
825
826 page = lru_to_page(page_list);
827 list_del(&page->lru);
828
529ae9aa 829 if (!trylock_page(page))
1da177e4
LT
830 goto keep;
831
309381fe
SL
832 VM_BUG_ON_PAGE(PageActive(page), page);
833 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
834
835 sc->nr_scanned++;
80e43426 836
39b5f29a 837 if (unlikely(!page_evictable(page)))
b291f000 838 goto cull_mlocked;
894bc310 839
a6dc60f8 840 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
841 goto keep_locked;
842
1da177e4
LT
843 /* Double the slab pressure for mapped and swapcache pages */
844 if (page_mapped(page) || PageSwapCache(page))
845 sc->nr_scanned++;
846
c661b078
AW
847 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
848 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
849
e2be15f6
MG
850 /*
851 * The number of dirty pages determines if a zone is marked
852 * reclaim_congested which affects wait_iff_congested. kswapd
853 * will stall and start writing pages if the tail of the LRU
854 * is all dirty unqueued pages.
855 */
856 page_check_dirty_writeback(page, &dirty, &writeback);
857 if (dirty || writeback)
858 nr_dirty++;
859
860 if (dirty && !writeback)
861 nr_unqueued_dirty++;
862
d04e8acd
MG
863 /*
864 * Treat this page as congested if the underlying BDI is or if
865 * pages are cycling through the LRU so quickly that the
866 * pages marked for immediate reclaim are making it to the
867 * end of the LRU a second time.
868 */
e2be15f6 869 mapping = page_mapping(page);
d04e8acd
MG
870 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
871 (writeback && PageReclaim(page)))
e2be15f6
MG
872 nr_congested++;
873
283aba9f
MG
874 /*
875 * If a page at the tail of the LRU is under writeback, there
876 * are three cases to consider.
877 *
878 * 1) If reclaim is encountering an excessive number of pages
879 * under writeback and this page is both under writeback and
880 * PageReclaim then it indicates that pages are being queued
881 * for IO but are being recycled through the LRU before the
882 * IO can complete. Waiting on the page itself risks an
883 * indefinite stall if it is impossible to writeback the
884 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
885 * note that the LRU is being scanned too quickly and the
886 * caller can stall after page list has been processed.
283aba9f
MG
887 *
888 * 2) Global reclaim encounters a page, memcg encounters a
889 * page that is not marked for immediate reclaim or
890 * the caller does not have __GFP_IO. In this case mark
891 * the page for immediate reclaim and continue scanning.
892 *
893 * __GFP_IO is checked because a loop driver thread might
894 * enter reclaim, and deadlock if it waits on a page for
895 * which it is needed to do the write (loop masks off
896 * __GFP_IO|__GFP_FS for this reason); but more thought
897 * would probably show more reasons.
898 *
899 * Don't require __GFP_FS, since we're not going into the
900 * FS, just waiting on its writeback completion. Worryingly,
901 * ext4 gfs2 and xfs allocate pages with
902 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
903 * may_enter_fs here is liable to OOM on them.
904 *
905 * 3) memcg encounters a page that is not already marked
906 * PageReclaim. memcg does not have any dirty pages
907 * throttling so we could easily OOM just because too many
908 * pages are in writeback and there is nothing else to
909 * reclaim. Wait for the writeback to complete.
910 */
c661b078 911 if (PageWriteback(page)) {
283aba9f
MG
912 /* Case 1 above */
913 if (current_is_kswapd() &&
914 PageReclaim(page) &&
915 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
916 nr_immediate++;
917 goto keep_locked;
283aba9f
MG
918
919 /* Case 2 above */
920 } else if (global_reclaim(sc) ||
c3b94f44
HD
921 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
922 /*
923 * This is slightly racy - end_page_writeback()
924 * might have just cleared PageReclaim, then
925 * setting PageReclaim here end up interpreted
926 * as PageReadahead - but that does not matter
927 * enough to care. What we do want is for this
928 * page to have PageReclaim set next time memcg
929 * reclaim reaches the tests above, so it will
930 * then wait_on_page_writeback() to avoid OOM;
931 * and it's also appropriate in global reclaim.
932 */
933 SetPageReclaim(page);
e62e384e 934 nr_writeback++;
283aba9f 935
c3b94f44 936 goto keep_locked;
283aba9f
MG
937
938 /* Case 3 above */
939 } else {
940 wait_on_page_writeback(page);
e62e384e 941 }
c661b078 942 }
1da177e4 943
02c6de8d
MK
944 if (!force_reclaim)
945 references = page_check_references(page, sc);
946
dfc8d636
JW
947 switch (references) {
948 case PAGEREF_ACTIVATE:
1da177e4 949 goto activate_locked;
64574746
JW
950 case PAGEREF_KEEP:
951 goto keep_locked;
dfc8d636
JW
952 case PAGEREF_RECLAIM:
953 case PAGEREF_RECLAIM_CLEAN:
954 ; /* try to reclaim the page below */
955 }
1da177e4 956
1da177e4
LT
957 /*
958 * Anonymous process memory has backing store?
959 * Try to allocate it some swap space here.
960 */
b291f000 961 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
962 if (!(sc->gfp_mask & __GFP_IO))
963 goto keep_locked;
5bc7b8ac 964 if (!add_to_swap(page, page_list))
1da177e4 965 goto activate_locked;
63eb6b93 966 may_enter_fs = 1;
1da177e4 967
e2be15f6
MG
968 /* Adding to swap updated mapping */
969 mapping = page_mapping(page);
970 }
1da177e4
LT
971
972 /*
973 * The page is mapped into the page tables of one or more
974 * processes. Try to unmap it here.
975 */
976 if (page_mapped(page) && mapping) {
02c6de8d 977 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
978 case SWAP_FAIL:
979 goto activate_locked;
980 case SWAP_AGAIN:
981 goto keep_locked;
b291f000
NP
982 case SWAP_MLOCK:
983 goto cull_mlocked;
1da177e4
LT
984 case SWAP_SUCCESS:
985 ; /* try to free the page below */
986 }
987 }
988
989 if (PageDirty(page)) {
ee72886d
MG
990 /*
991 * Only kswapd can writeback filesystem pages to
d43006d5
MG
992 * avoid risk of stack overflow but only writeback
993 * if many dirty pages have been encountered.
ee72886d 994 */
f84f6e2b 995 if (page_is_file_cache(page) &&
9e3b2f8c 996 (!current_is_kswapd() ||
d43006d5 997 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
998 /*
999 * Immediately reclaim when written back.
1000 * Similar in principal to deactivate_page()
1001 * except we already have the page isolated
1002 * and know it's dirty
1003 */
1004 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1005 SetPageReclaim(page);
1006
ee72886d
MG
1007 goto keep_locked;
1008 }
1009
dfc8d636 1010 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1011 goto keep_locked;
4dd4b920 1012 if (!may_enter_fs)
1da177e4 1013 goto keep_locked;
52a8363e 1014 if (!sc->may_writepage)
1da177e4
LT
1015 goto keep_locked;
1016
1017 /* Page is dirty, try to write it out here */
7d3579e8 1018 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1019 case PAGE_KEEP:
1020 goto keep_locked;
1021 case PAGE_ACTIVATE:
1022 goto activate_locked;
1023 case PAGE_SUCCESS:
7d3579e8 1024 if (PageWriteback(page))
41ac1999 1025 goto keep;
7d3579e8 1026 if (PageDirty(page))
1da177e4 1027 goto keep;
7d3579e8 1028
1da177e4
LT
1029 /*
1030 * A synchronous write - probably a ramdisk. Go
1031 * ahead and try to reclaim the page.
1032 */
529ae9aa 1033 if (!trylock_page(page))
1da177e4
LT
1034 goto keep;
1035 if (PageDirty(page) || PageWriteback(page))
1036 goto keep_locked;
1037 mapping = page_mapping(page);
1038 case PAGE_CLEAN:
1039 ; /* try to free the page below */
1040 }
1041 }
1042
1043 /*
1044 * If the page has buffers, try to free the buffer mappings
1045 * associated with this page. If we succeed we try to free
1046 * the page as well.
1047 *
1048 * We do this even if the page is PageDirty().
1049 * try_to_release_page() does not perform I/O, but it is
1050 * possible for a page to have PageDirty set, but it is actually
1051 * clean (all its buffers are clean). This happens if the
1052 * buffers were written out directly, with submit_bh(). ext3
894bc310 1053 * will do this, as well as the blockdev mapping.
1da177e4
LT
1054 * try_to_release_page() will discover that cleanness and will
1055 * drop the buffers and mark the page clean - it can be freed.
1056 *
1057 * Rarely, pages can have buffers and no ->mapping. These are
1058 * the pages which were not successfully invalidated in
1059 * truncate_complete_page(). We try to drop those buffers here
1060 * and if that worked, and the page is no longer mapped into
1061 * process address space (page_count == 1) it can be freed.
1062 * Otherwise, leave the page on the LRU so it is swappable.
1063 */
266cf658 1064 if (page_has_private(page)) {
1da177e4
LT
1065 if (!try_to_release_page(page, sc->gfp_mask))
1066 goto activate_locked;
e286781d
NP
1067 if (!mapping && page_count(page) == 1) {
1068 unlock_page(page);
1069 if (put_page_testzero(page))
1070 goto free_it;
1071 else {
1072 /*
1073 * rare race with speculative reference.
1074 * the speculative reference will free
1075 * this page shortly, so we may
1076 * increment nr_reclaimed here (and
1077 * leave it off the LRU).
1078 */
1079 nr_reclaimed++;
1080 continue;
1081 }
1082 }
1da177e4
LT
1083 }
1084
a528910e 1085 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1086 goto keep_locked;
1da177e4 1087
a978d6f5
NP
1088 /*
1089 * At this point, we have no other references and there is
1090 * no way to pick any more up (removed from LRU, removed
1091 * from pagecache). Can use non-atomic bitops now (and
1092 * we obviously don't have to worry about waking up a process
1093 * waiting on the page lock, because there are no references.
1094 */
1095 __clear_page_locked(page);
e286781d 1096free_it:
05ff5137 1097 nr_reclaimed++;
abe4c3b5
MG
1098
1099 /*
1100 * Is there need to periodically free_page_list? It would
1101 * appear not as the counts should be low
1102 */
1103 list_add(&page->lru, &free_pages);
1da177e4
LT
1104 continue;
1105
b291f000 1106cull_mlocked:
63d6c5ad
HD
1107 if (PageSwapCache(page))
1108 try_to_free_swap(page);
b291f000
NP
1109 unlock_page(page);
1110 putback_lru_page(page);
1111 continue;
1112
1da177e4 1113activate_locked:
68a22394
RR
1114 /* Not a candidate for swapping, so reclaim swap space. */
1115 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1116 try_to_free_swap(page);
309381fe 1117 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1118 SetPageActive(page);
1119 pgactivate++;
1120keep_locked:
1121 unlock_page(page);
1122keep:
1123 list_add(&page->lru, &ret_pages);
309381fe 1124 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1125 }
abe4c3b5 1126
b745bc85 1127 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1128
1da177e4 1129 list_splice(&ret_pages, page_list);
f8891e5e 1130 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1131 mem_cgroup_uncharge_end();
8e950282
MG
1132 *ret_nr_dirty += nr_dirty;
1133 *ret_nr_congested += nr_congested;
d43006d5 1134 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1135 *ret_nr_writeback += nr_writeback;
b1a6f21e 1136 *ret_nr_immediate += nr_immediate;
05ff5137 1137 return nr_reclaimed;
1da177e4
LT
1138}
1139
02c6de8d
MK
1140unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1141 struct list_head *page_list)
1142{
1143 struct scan_control sc = {
1144 .gfp_mask = GFP_KERNEL,
1145 .priority = DEF_PRIORITY,
1146 .may_unmap = 1,
1147 };
8e950282 1148 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1149 struct page *page, *next;
1150 LIST_HEAD(clean_pages);
1151
1152 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1153 if (page_is_file_cache(page) && !PageDirty(page) &&
1154 !isolated_balloon_page(page)) {
02c6de8d
MK
1155 ClearPageActive(page);
1156 list_move(&page->lru, &clean_pages);
1157 }
1158 }
1159
1160 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1161 TTU_UNMAP|TTU_IGNORE_ACCESS,
1162 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1163 list_splice(&clean_pages, page_list);
83da7510 1164 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1165 return ret;
1166}
1167
5ad333eb
AW
1168/*
1169 * Attempt to remove the specified page from its LRU. Only take this page
1170 * if it is of the appropriate PageActive status. Pages which are being
1171 * freed elsewhere are also ignored.
1172 *
1173 * page: page to consider
1174 * mode: one of the LRU isolation modes defined above
1175 *
1176 * returns 0 on success, -ve errno on failure.
1177 */
f3fd4a61 1178int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1179{
1180 int ret = -EINVAL;
1181
1182 /* Only take pages on the LRU. */
1183 if (!PageLRU(page))
1184 return ret;
1185
e46a2879
MK
1186 /* Compaction should not handle unevictable pages but CMA can do so */
1187 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1188 return ret;
1189
5ad333eb 1190 ret = -EBUSY;
08e552c6 1191
c8244935
MG
1192 /*
1193 * To minimise LRU disruption, the caller can indicate that it only
1194 * wants to isolate pages it will be able to operate on without
1195 * blocking - clean pages for the most part.
1196 *
1197 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1198 * is used by reclaim when it is cannot write to backing storage
1199 *
1200 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1201 * that it is possible to migrate without blocking
1202 */
1203 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1204 /* All the caller can do on PageWriteback is block */
1205 if (PageWriteback(page))
1206 return ret;
1207
1208 if (PageDirty(page)) {
1209 struct address_space *mapping;
1210
1211 /* ISOLATE_CLEAN means only clean pages */
1212 if (mode & ISOLATE_CLEAN)
1213 return ret;
1214
1215 /*
1216 * Only pages without mappings or that have a
1217 * ->migratepage callback are possible to migrate
1218 * without blocking
1219 */
1220 mapping = page_mapping(page);
1221 if (mapping && !mapping->a_ops->migratepage)
1222 return ret;
1223 }
1224 }
39deaf85 1225
f80c0673
MK
1226 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1227 return ret;
1228
5ad333eb
AW
1229 if (likely(get_page_unless_zero(page))) {
1230 /*
1231 * Be careful not to clear PageLRU until after we're
1232 * sure the page is not being freed elsewhere -- the
1233 * page release code relies on it.
1234 */
1235 ClearPageLRU(page);
1236 ret = 0;
1237 }
1238
1239 return ret;
1240}
1241
1da177e4
LT
1242/*
1243 * zone->lru_lock is heavily contended. Some of the functions that
1244 * shrink the lists perform better by taking out a batch of pages
1245 * and working on them outside the LRU lock.
1246 *
1247 * For pagecache intensive workloads, this function is the hottest
1248 * spot in the kernel (apart from copy_*_user functions).
1249 *
1250 * Appropriate locks must be held before calling this function.
1251 *
1252 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1253 * @lruvec: The LRU vector to pull pages from.
1da177e4 1254 * @dst: The temp list to put pages on to.
f626012d 1255 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1256 * @sc: The scan_control struct for this reclaim session
5ad333eb 1257 * @mode: One of the LRU isolation modes
3cb99451 1258 * @lru: LRU list id for isolating
1da177e4
LT
1259 *
1260 * returns how many pages were moved onto *@dst.
1261 */
69e05944 1262static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1263 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1264 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1265 isolate_mode_t mode, enum lru_list lru)
1da177e4 1266{
75b00af7 1267 struct list_head *src = &lruvec->lists[lru];
69e05944 1268 unsigned long nr_taken = 0;
c9b02d97 1269 unsigned long scan;
1da177e4 1270
c9b02d97 1271 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1272 struct page *page;
fa9add64 1273 int nr_pages;
5ad333eb 1274
1da177e4
LT
1275 page = lru_to_page(src);
1276 prefetchw_prev_lru_page(page, src, flags);
1277
309381fe 1278 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1279
f3fd4a61 1280 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1281 case 0:
fa9add64
HD
1282 nr_pages = hpage_nr_pages(page);
1283 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1284 list_move(&page->lru, dst);
fa9add64 1285 nr_taken += nr_pages;
5ad333eb
AW
1286 break;
1287
1288 case -EBUSY:
1289 /* else it is being freed elsewhere */
1290 list_move(&page->lru, src);
1291 continue;
46453a6e 1292
5ad333eb
AW
1293 default:
1294 BUG();
1295 }
1da177e4
LT
1296 }
1297
f626012d 1298 *nr_scanned = scan;
75b00af7
HD
1299 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1300 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1301 return nr_taken;
1302}
1303
62695a84
NP
1304/**
1305 * isolate_lru_page - tries to isolate a page from its LRU list
1306 * @page: page to isolate from its LRU list
1307 *
1308 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1309 * vmstat statistic corresponding to whatever LRU list the page was on.
1310 *
1311 * Returns 0 if the page was removed from an LRU list.
1312 * Returns -EBUSY if the page was not on an LRU list.
1313 *
1314 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1315 * the active list, it will have PageActive set. If it was found on
1316 * the unevictable list, it will have the PageUnevictable bit set. That flag
1317 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1318 *
1319 * The vmstat statistic corresponding to the list on which the page was
1320 * found will be decremented.
1321 *
1322 * Restrictions:
1323 * (1) Must be called with an elevated refcount on the page. This is a
1324 * fundamentnal difference from isolate_lru_pages (which is called
1325 * without a stable reference).
1326 * (2) the lru_lock must not be held.
1327 * (3) interrupts must be enabled.
1328 */
1329int isolate_lru_page(struct page *page)
1330{
1331 int ret = -EBUSY;
1332
309381fe 1333 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1334
62695a84
NP
1335 if (PageLRU(page)) {
1336 struct zone *zone = page_zone(page);
fa9add64 1337 struct lruvec *lruvec;
62695a84
NP
1338
1339 spin_lock_irq(&zone->lru_lock);
fa9add64 1340 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1341 if (PageLRU(page)) {
894bc310 1342 int lru = page_lru(page);
0c917313 1343 get_page(page);
62695a84 1344 ClearPageLRU(page);
fa9add64
HD
1345 del_page_from_lru_list(page, lruvec, lru);
1346 ret = 0;
62695a84
NP
1347 }
1348 spin_unlock_irq(&zone->lru_lock);
1349 }
1350 return ret;
1351}
1352
35cd7815 1353/*
d37dd5dc
FW
1354 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1355 * then get resheduled. When there are massive number of tasks doing page
1356 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1357 * the LRU list will go small and be scanned faster than necessary, leading to
1358 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1359 */
1360static int too_many_isolated(struct zone *zone, int file,
1361 struct scan_control *sc)
1362{
1363 unsigned long inactive, isolated;
1364
1365 if (current_is_kswapd())
1366 return 0;
1367
89b5fae5 1368 if (!global_reclaim(sc))
35cd7815
RR
1369 return 0;
1370
1371 if (file) {
1372 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1373 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1374 } else {
1375 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1376 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1377 }
1378
3cf23841
FW
1379 /*
1380 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1381 * won't get blocked by normal direct-reclaimers, forming a circular
1382 * deadlock.
1383 */
1384 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1385 inactive >>= 3;
1386
35cd7815
RR
1387 return isolated > inactive;
1388}
1389
66635629 1390static noinline_for_stack void
75b00af7 1391putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1392{
27ac81d8
KK
1393 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1394 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1395 LIST_HEAD(pages_to_free);
66635629 1396
66635629
MG
1397 /*
1398 * Put back any unfreeable pages.
1399 */
66635629 1400 while (!list_empty(page_list)) {
3f79768f 1401 struct page *page = lru_to_page(page_list);
66635629 1402 int lru;
3f79768f 1403
309381fe 1404 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1405 list_del(&page->lru);
39b5f29a 1406 if (unlikely(!page_evictable(page))) {
66635629
MG
1407 spin_unlock_irq(&zone->lru_lock);
1408 putback_lru_page(page);
1409 spin_lock_irq(&zone->lru_lock);
1410 continue;
1411 }
fa9add64
HD
1412
1413 lruvec = mem_cgroup_page_lruvec(page, zone);
1414
7a608572 1415 SetPageLRU(page);
66635629 1416 lru = page_lru(page);
fa9add64
HD
1417 add_page_to_lru_list(page, lruvec, lru);
1418
66635629
MG
1419 if (is_active_lru(lru)) {
1420 int file = is_file_lru(lru);
9992af10
RR
1421 int numpages = hpage_nr_pages(page);
1422 reclaim_stat->recent_rotated[file] += numpages;
66635629 1423 }
2bcf8879
HD
1424 if (put_page_testzero(page)) {
1425 __ClearPageLRU(page);
1426 __ClearPageActive(page);
fa9add64 1427 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1428
1429 if (unlikely(PageCompound(page))) {
1430 spin_unlock_irq(&zone->lru_lock);
1431 (*get_compound_page_dtor(page))(page);
1432 spin_lock_irq(&zone->lru_lock);
1433 } else
1434 list_add(&page->lru, &pages_to_free);
66635629
MG
1435 }
1436 }
66635629 1437
3f79768f
HD
1438 /*
1439 * To save our caller's stack, now use input list for pages to free.
1440 */
1441 list_splice(&pages_to_free, page_list);
66635629
MG
1442}
1443
399ba0b9
N
1444/*
1445 * If a kernel thread (such as nfsd for loop-back mounts) services
1446 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1447 * In that case we should only throttle if the backing device it is
1448 * writing to is congested. In other cases it is safe to throttle.
1449 */
1450static int current_may_throttle(void)
1451{
1452 return !(current->flags & PF_LESS_THROTTLE) ||
1453 current->backing_dev_info == NULL ||
1454 bdi_write_congested(current->backing_dev_info);
1455}
1456
1da177e4 1457/*
1742f19f
AM
1458 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1459 * of reclaimed pages
1da177e4 1460 */
66635629 1461static noinline_for_stack unsigned long
1a93be0e 1462shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1463 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1464{
1465 LIST_HEAD(page_list);
e247dbce 1466 unsigned long nr_scanned;
05ff5137 1467 unsigned long nr_reclaimed = 0;
e247dbce 1468 unsigned long nr_taken;
8e950282
MG
1469 unsigned long nr_dirty = 0;
1470 unsigned long nr_congested = 0;
e2be15f6 1471 unsigned long nr_unqueued_dirty = 0;
92df3a72 1472 unsigned long nr_writeback = 0;
b1a6f21e 1473 unsigned long nr_immediate = 0;
f3fd4a61 1474 isolate_mode_t isolate_mode = 0;
3cb99451 1475 int file = is_file_lru(lru);
1a93be0e
KK
1476 struct zone *zone = lruvec_zone(lruvec);
1477 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1478
35cd7815 1479 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1480 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1481
1482 /* We are about to die and free our memory. Return now. */
1483 if (fatal_signal_pending(current))
1484 return SWAP_CLUSTER_MAX;
1485 }
1486
1da177e4 1487 lru_add_drain();
f80c0673
MK
1488
1489 if (!sc->may_unmap)
61317289 1490 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1491 if (!sc->may_writepage)
61317289 1492 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1493
1da177e4 1494 spin_lock_irq(&zone->lru_lock);
b35ea17b 1495
5dc35979
KK
1496 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1497 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1498
1499 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1500 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1501
89b5fae5 1502 if (global_reclaim(sc)) {
e247dbce
KM
1503 zone->pages_scanned += nr_scanned;
1504 if (current_is_kswapd())
75b00af7 1505 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1506 else
75b00af7 1507 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1508 }
d563c050 1509 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1510
d563c050 1511 if (nr_taken == 0)
66635629 1512 return 0;
5ad333eb 1513
02c6de8d 1514 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1515 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1516 &nr_writeback, &nr_immediate,
1517 false);
c661b078 1518
3f79768f
HD
1519 spin_lock_irq(&zone->lru_lock);
1520
95d918fc 1521 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1522
904249aa
YH
1523 if (global_reclaim(sc)) {
1524 if (current_is_kswapd())
1525 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1526 nr_reclaimed);
1527 else
1528 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1529 nr_reclaimed);
1530 }
a74609fa 1531
27ac81d8 1532 putback_inactive_pages(lruvec, &page_list);
3f79768f 1533
95d918fc 1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1535
1536 spin_unlock_irq(&zone->lru_lock);
1537
b745bc85 1538 free_hot_cold_page_list(&page_list, true);
e11da5b4 1539
92df3a72
MG
1540 /*
1541 * If reclaim is isolating dirty pages under writeback, it implies
1542 * that the long-lived page allocation rate is exceeding the page
1543 * laundering rate. Either the global limits are not being effective
1544 * at throttling processes due to the page distribution throughout
1545 * zones or there is heavy usage of a slow backing device. The
1546 * only option is to throttle from reclaim context which is not ideal
1547 * as there is no guarantee the dirtying process is throttled in the
1548 * same way balance_dirty_pages() manages.
1549 *
8e950282
MG
1550 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1551 * of pages under pages flagged for immediate reclaim and stall if any
1552 * are encountered in the nr_immediate check below.
92df3a72 1553 */
918fc718 1554 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1555 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1556
d43006d5 1557 /*
b1a6f21e
MG
1558 * memcg will stall in page writeback so only consider forcibly
1559 * stalling for global reclaim
d43006d5 1560 */
b1a6f21e 1561 if (global_reclaim(sc)) {
8e950282
MG
1562 /*
1563 * Tag a zone as congested if all the dirty pages scanned were
1564 * backed by a congested BDI and wait_iff_congested will stall.
1565 */
1566 if (nr_dirty && nr_dirty == nr_congested)
1567 zone_set_flag(zone, ZONE_CONGESTED);
1568
b1a6f21e
MG
1569 /*
1570 * If dirty pages are scanned that are not queued for IO, it
1571 * implies that flushers are not keeping up. In this case, flag
1572 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1573 * pages from reclaim context. It will forcibly stall in the
1574 * next check.
1575 */
1576 if (nr_unqueued_dirty == nr_taken)
1577 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1578
1579 /*
1580 * In addition, if kswapd scans pages marked marked for
1581 * immediate reclaim and under writeback (nr_immediate), it
1582 * implies that pages are cycling through the LRU faster than
1583 * they are written so also forcibly stall.
1584 */
399ba0b9
N
1585 if ((nr_unqueued_dirty == nr_taken || nr_immediate) &&
1586 current_may_throttle())
b1a6f21e 1587 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1588 }
d43006d5 1589
8e950282
MG
1590 /*
1591 * Stall direct reclaim for IO completions if underlying BDIs or zone
1592 * is congested. Allow kswapd to continue until it starts encountering
1593 * unqueued dirty pages or cycling through the LRU too quickly.
1594 */
399ba0b9
N
1595 if (!sc->hibernation_mode && !current_is_kswapd() &&
1596 current_may_throttle())
8e950282
MG
1597 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1598
e11da5b4
MG
1599 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1600 zone_idx(zone),
1601 nr_scanned, nr_reclaimed,
9e3b2f8c 1602 sc->priority,
23b9da55 1603 trace_shrink_flags(file));
05ff5137 1604 return nr_reclaimed;
1da177e4
LT
1605}
1606
1607/*
1608 * This moves pages from the active list to the inactive list.
1609 *
1610 * We move them the other way if the page is referenced by one or more
1611 * processes, from rmap.
1612 *
1613 * If the pages are mostly unmapped, the processing is fast and it is
1614 * appropriate to hold zone->lru_lock across the whole operation. But if
1615 * the pages are mapped, the processing is slow (page_referenced()) so we
1616 * should drop zone->lru_lock around each page. It's impossible to balance
1617 * this, so instead we remove the pages from the LRU while processing them.
1618 * It is safe to rely on PG_active against the non-LRU pages in here because
1619 * nobody will play with that bit on a non-LRU page.
1620 *
1621 * The downside is that we have to touch page->_count against each page.
1622 * But we had to alter page->flags anyway.
1623 */
1cfb419b 1624
fa9add64 1625static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1626 struct list_head *list,
2bcf8879 1627 struct list_head *pages_to_free,
3eb4140f
WF
1628 enum lru_list lru)
1629{
fa9add64 1630 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1631 unsigned long pgmoved = 0;
3eb4140f 1632 struct page *page;
fa9add64 1633 int nr_pages;
3eb4140f 1634
3eb4140f
WF
1635 while (!list_empty(list)) {
1636 page = lru_to_page(list);
fa9add64 1637 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1638
309381fe 1639 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1640 SetPageLRU(page);
1641
fa9add64
HD
1642 nr_pages = hpage_nr_pages(page);
1643 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1644 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1645 pgmoved += nr_pages;
3eb4140f 1646
2bcf8879
HD
1647 if (put_page_testzero(page)) {
1648 __ClearPageLRU(page);
1649 __ClearPageActive(page);
fa9add64 1650 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1651
1652 if (unlikely(PageCompound(page))) {
1653 spin_unlock_irq(&zone->lru_lock);
1654 (*get_compound_page_dtor(page))(page);
1655 spin_lock_irq(&zone->lru_lock);
1656 } else
1657 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1658 }
1659 }
1660 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1661 if (!is_active_lru(lru))
1662 __count_vm_events(PGDEACTIVATE, pgmoved);
1663}
1cfb419b 1664
f626012d 1665static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1666 struct lruvec *lruvec,
f16015fb 1667 struct scan_control *sc,
9e3b2f8c 1668 enum lru_list lru)
1da177e4 1669{
44c241f1 1670 unsigned long nr_taken;
f626012d 1671 unsigned long nr_scanned;
6fe6b7e3 1672 unsigned long vm_flags;
1da177e4 1673 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1674 LIST_HEAD(l_active);
b69408e8 1675 LIST_HEAD(l_inactive);
1da177e4 1676 struct page *page;
1a93be0e 1677 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1678 unsigned long nr_rotated = 0;
f3fd4a61 1679 isolate_mode_t isolate_mode = 0;
3cb99451 1680 int file = is_file_lru(lru);
1a93be0e 1681 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1682
1683 lru_add_drain();
f80c0673
MK
1684
1685 if (!sc->may_unmap)
61317289 1686 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1687 if (!sc->may_writepage)
61317289 1688 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1689
1da177e4 1690 spin_lock_irq(&zone->lru_lock);
925b7673 1691
5dc35979
KK
1692 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1693 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1694 if (global_reclaim(sc))
f626012d 1695 zone->pages_scanned += nr_scanned;
89b5fae5 1696
b7c46d15 1697 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1698
f626012d 1699 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1700 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1701 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1702 spin_unlock_irq(&zone->lru_lock);
1703
1da177e4
LT
1704 while (!list_empty(&l_hold)) {
1705 cond_resched();
1706 page = lru_to_page(&l_hold);
1707 list_del(&page->lru);
7e9cd484 1708
39b5f29a 1709 if (unlikely(!page_evictable(page))) {
894bc310
LS
1710 putback_lru_page(page);
1711 continue;
1712 }
1713
cc715d99
MG
1714 if (unlikely(buffer_heads_over_limit)) {
1715 if (page_has_private(page) && trylock_page(page)) {
1716 if (page_has_private(page))
1717 try_to_release_page(page, 0);
1718 unlock_page(page);
1719 }
1720 }
1721
c3ac9a8a
JW
1722 if (page_referenced(page, 0, sc->target_mem_cgroup,
1723 &vm_flags)) {
9992af10 1724 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1725 /*
1726 * Identify referenced, file-backed active pages and
1727 * give them one more trip around the active list. So
1728 * that executable code get better chances to stay in
1729 * memory under moderate memory pressure. Anon pages
1730 * are not likely to be evicted by use-once streaming
1731 * IO, plus JVM can create lots of anon VM_EXEC pages,
1732 * so we ignore them here.
1733 */
41e20983 1734 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1735 list_add(&page->lru, &l_active);
1736 continue;
1737 }
1738 }
7e9cd484 1739
5205e56e 1740 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1741 list_add(&page->lru, &l_inactive);
1742 }
1743
b555749a 1744 /*
8cab4754 1745 * Move pages back to the lru list.
b555749a 1746 */
2a1dc509 1747 spin_lock_irq(&zone->lru_lock);
556adecb 1748 /*
8cab4754
WF
1749 * Count referenced pages from currently used mappings as rotated,
1750 * even though only some of them are actually re-activated. This
1751 * helps balance scan pressure between file and anonymous pages in
1752 * get_scan_ratio.
7e9cd484 1753 */
b7c46d15 1754 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1755
fa9add64
HD
1756 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1757 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1758 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1759 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1760
b745bc85 1761 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1762}
1763
74e3f3c3 1764#ifdef CONFIG_SWAP
14797e23 1765static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1766{
1767 unsigned long active, inactive;
1768
1769 active = zone_page_state(zone, NR_ACTIVE_ANON);
1770 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1771
1772 if (inactive * zone->inactive_ratio < active)
1773 return 1;
1774
1775 return 0;
1776}
1777
14797e23
KM
1778/**
1779 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1780 * @lruvec: LRU vector to check
14797e23
KM
1781 *
1782 * Returns true if the zone does not have enough inactive anon pages,
1783 * meaning some active anon pages need to be deactivated.
1784 */
c56d5c7d 1785static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1786{
74e3f3c3
MK
1787 /*
1788 * If we don't have swap space, anonymous page deactivation
1789 * is pointless.
1790 */
1791 if (!total_swap_pages)
1792 return 0;
1793
c3c787e8 1794 if (!mem_cgroup_disabled())
c56d5c7d 1795 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1796
c56d5c7d 1797 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1798}
74e3f3c3 1799#else
c56d5c7d 1800static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1801{
1802 return 0;
1803}
1804#endif
14797e23 1805
56e49d21
RR
1806/**
1807 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1808 * @lruvec: LRU vector to check
56e49d21
RR
1809 *
1810 * When the system is doing streaming IO, memory pressure here
1811 * ensures that active file pages get deactivated, until more
1812 * than half of the file pages are on the inactive list.
1813 *
1814 * Once we get to that situation, protect the system's working
1815 * set from being evicted by disabling active file page aging.
1816 *
1817 * This uses a different ratio than the anonymous pages, because
1818 * the page cache uses a use-once replacement algorithm.
1819 */
c56d5c7d 1820static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1821{
e3790144
JW
1822 unsigned long inactive;
1823 unsigned long active;
1824
1825 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1826 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1827
e3790144 1828 return active > inactive;
56e49d21
RR
1829}
1830
75b00af7 1831static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1832{
75b00af7 1833 if (is_file_lru(lru))
c56d5c7d 1834 return inactive_file_is_low(lruvec);
b39415b2 1835 else
c56d5c7d 1836 return inactive_anon_is_low(lruvec);
b39415b2
RR
1837}
1838
4f98a2fe 1839static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1840 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1841{
b39415b2 1842 if (is_active_lru(lru)) {
75b00af7 1843 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1844 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1845 return 0;
1846 }
1847
1a93be0e 1848 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1849}
1850
9a265114
JW
1851enum scan_balance {
1852 SCAN_EQUAL,
1853 SCAN_FRACT,
1854 SCAN_ANON,
1855 SCAN_FILE,
1856};
1857
4f98a2fe
RR
1858/*
1859 * Determine how aggressively the anon and file LRU lists should be
1860 * scanned. The relative value of each set of LRU lists is determined
1861 * by looking at the fraction of the pages scanned we did rotate back
1862 * onto the active list instead of evict.
1863 *
be7bd59d
WL
1864 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1865 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1866 */
90126375 1867static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1868 unsigned long *nr)
4f98a2fe 1869{
9a265114
JW
1870 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1871 u64 fraction[2];
1872 u64 denominator = 0; /* gcc */
1873 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1874 unsigned long anon_prio, file_prio;
9a265114 1875 enum scan_balance scan_balance;
0bf1457f 1876 unsigned long anon, file;
9a265114 1877 bool force_scan = false;
4f98a2fe 1878 unsigned long ap, fp;
4111304d 1879 enum lru_list lru;
6f04f48d
SS
1880 bool some_scanned;
1881 int pass;
246e87a9 1882
f11c0ca5
JW
1883 /*
1884 * If the zone or memcg is small, nr[l] can be 0. This
1885 * results in no scanning on this priority and a potential
1886 * priority drop. Global direct reclaim can go to the next
1887 * zone and tends to have no problems. Global kswapd is for
1888 * zone balancing and it needs to scan a minimum amount. When
1889 * reclaiming for a memcg, a priority drop can cause high
1890 * latencies, so it's better to scan a minimum amount there as
1891 * well.
1892 */
6e543d57 1893 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1894 force_scan = true;
89b5fae5 1895 if (!global_reclaim(sc))
a4d3e9e7 1896 force_scan = true;
76a33fc3
SL
1897
1898 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1899 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1900 scan_balance = SCAN_FILE;
76a33fc3
SL
1901 goto out;
1902 }
4f98a2fe 1903
10316b31
JW
1904 /*
1905 * Global reclaim will swap to prevent OOM even with no
1906 * swappiness, but memcg users want to use this knob to
1907 * disable swapping for individual groups completely when
1908 * using the memory controller's swap limit feature would be
1909 * too expensive.
1910 */
688eb988 1911 if (!global_reclaim(sc) && !sc->swappiness) {
9a265114 1912 scan_balance = SCAN_FILE;
10316b31
JW
1913 goto out;
1914 }
1915
1916 /*
1917 * Do not apply any pressure balancing cleverness when the
1918 * system is close to OOM, scan both anon and file equally
1919 * (unless the swappiness setting disagrees with swapping).
1920 */
688eb988 1921 if (!sc->priority && sc->swappiness) {
9a265114 1922 scan_balance = SCAN_EQUAL;
10316b31
JW
1923 goto out;
1924 }
1925
4d7dcca2
HD
1926 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1927 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1928 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1929 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1930
62376251
JW
1931 /*
1932 * Prevent the reclaimer from falling into the cache trap: as
1933 * cache pages start out inactive, every cache fault will tip
1934 * the scan balance towards the file LRU. And as the file LRU
1935 * shrinks, so does the window for rotation from references.
1936 * This means we have a runaway feedback loop where a tiny
1937 * thrashing file LRU becomes infinitely more attractive than
1938 * anon pages. Try to detect this based on file LRU size.
1939 */
1940 if (global_reclaim(sc)) {
1941 unsigned long free = zone_page_state(zone, NR_FREE_PAGES);
1942
1943 if (unlikely(file + free <= high_wmark_pages(zone))) {
1944 scan_balance = SCAN_ANON;
1945 goto out;
1946 }
1947 }
1948
7c5bd705
JW
1949 /*
1950 * There is enough inactive page cache, do not reclaim
1951 * anything from the anonymous working set right now.
1952 */
1953 if (!inactive_file_is_low(lruvec)) {
9a265114 1954 scan_balance = SCAN_FILE;
7c5bd705
JW
1955 goto out;
1956 }
1957
9a265114
JW
1958 scan_balance = SCAN_FRACT;
1959
58c37f6e
KM
1960 /*
1961 * With swappiness at 100, anonymous and file have the same priority.
1962 * This scanning priority is essentially the inverse of IO cost.
1963 */
688eb988 1964 anon_prio = sc->swappiness;
75b00af7 1965 file_prio = 200 - anon_prio;
58c37f6e 1966
4f98a2fe
RR
1967 /*
1968 * OK, so we have swap space and a fair amount of page cache
1969 * pages. We use the recently rotated / recently scanned
1970 * ratios to determine how valuable each cache is.
1971 *
1972 * Because workloads change over time (and to avoid overflow)
1973 * we keep these statistics as a floating average, which ends
1974 * up weighing recent references more than old ones.
1975 *
1976 * anon in [0], file in [1]
1977 */
90126375 1978 spin_lock_irq(&zone->lru_lock);
6e901571 1979 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1980 reclaim_stat->recent_scanned[0] /= 2;
1981 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1982 }
1983
6e901571 1984 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1985 reclaim_stat->recent_scanned[1] /= 2;
1986 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1987 }
1988
4f98a2fe 1989 /*
00d8089c
RR
1990 * The amount of pressure on anon vs file pages is inversely
1991 * proportional to the fraction of recently scanned pages on
1992 * each list that were recently referenced and in active use.
4f98a2fe 1993 */
fe35004f 1994 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1995 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1996
fe35004f 1997 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1998 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1999 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2000
76a33fc3
SL
2001 fraction[0] = ap;
2002 fraction[1] = fp;
2003 denominator = ap + fp + 1;
2004out:
6f04f48d
SS
2005 some_scanned = false;
2006 /* Only use force_scan on second pass. */
2007 for (pass = 0; !some_scanned && pass < 2; pass++) {
2008 for_each_evictable_lru(lru) {
2009 int file = is_file_lru(lru);
2010 unsigned long size;
2011 unsigned long scan;
6e08a369 2012
6f04f48d
SS
2013 size = get_lru_size(lruvec, lru);
2014 scan = size >> sc->priority;
9a265114 2015
6f04f48d
SS
2016 if (!scan && pass && force_scan)
2017 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2018
6f04f48d
SS
2019 switch (scan_balance) {
2020 case SCAN_EQUAL:
2021 /* Scan lists relative to size */
2022 break;
2023 case SCAN_FRACT:
2024 /*
2025 * Scan types proportional to swappiness and
2026 * their relative recent reclaim efficiency.
2027 */
2028 scan = div64_u64(scan * fraction[file],
2029 denominator);
2030 break;
2031 case SCAN_FILE:
2032 case SCAN_ANON:
2033 /* Scan one type exclusively */
2034 if ((scan_balance == SCAN_FILE) != file)
2035 scan = 0;
2036 break;
2037 default:
2038 /* Look ma, no brain */
2039 BUG();
2040 }
2041 nr[lru] = scan;
9a265114 2042 /*
6f04f48d
SS
2043 * Skip the second pass and don't force_scan,
2044 * if we found something to scan.
9a265114 2045 */
6f04f48d 2046 some_scanned |= !!scan;
9a265114 2047 }
76a33fc3 2048 }
6e08a369 2049}
4f98a2fe 2050
9b4f98cd
JW
2051/*
2052 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2053 */
2054static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2055{
2056 unsigned long nr[NR_LRU_LISTS];
e82e0561 2057 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2058 unsigned long nr_to_scan;
2059 enum lru_list lru;
2060 unsigned long nr_reclaimed = 0;
2061 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2062 struct blk_plug plug;
1a501907 2063 bool scan_adjusted;
9b4f98cd
JW
2064
2065 get_scan_count(lruvec, sc, nr);
2066
e82e0561
MG
2067 /* Record the original scan target for proportional adjustments later */
2068 memcpy(targets, nr, sizeof(nr));
2069
1a501907
MG
2070 /*
2071 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2072 * event that can occur when there is little memory pressure e.g.
2073 * multiple streaming readers/writers. Hence, we do not abort scanning
2074 * when the requested number of pages are reclaimed when scanning at
2075 * DEF_PRIORITY on the assumption that the fact we are direct
2076 * reclaiming implies that kswapd is not keeping up and it is best to
2077 * do a batch of work at once. For memcg reclaim one check is made to
2078 * abort proportional reclaim if either the file or anon lru has already
2079 * dropped to zero at the first pass.
2080 */
2081 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2082 sc->priority == DEF_PRIORITY);
2083
9b4f98cd
JW
2084 blk_start_plug(&plug);
2085 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2086 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2087 unsigned long nr_anon, nr_file, percentage;
2088 unsigned long nr_scanned;
2089
9b4f98cd
JW
2090 for_each_evictable_lru(lru) {
2091 if (nr[lru]) {
2092 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2093 nr[lru] -= nr_to_scan;
2094
2095 nr_reclaimed += shrink_list(lru, nr_to_scan,
2096 lruvec, sc);
2097 }
2098 }
e82e0561
MG
2099
2100 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2101 continue;
2102
e82e0561
MG
2103 /*
2104 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2105 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2106 * proportionally what was requested by get_scan_count(). We
2107 * stop reclaiming one LRU and reduce the amount scanning
2108 * proportional to the original scan target.
2109 */
2110 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2111 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2112
1a501907
MG
2113 /*
2114 * It's just vindictive to attack the larger once the smaller
2115 * has gone to zero. And given the way we stop scanning the
2116 * smaller below, this makes sure that we only make one nudge
2117 * towards proportionality once we've got nr_to_reclaim.
2118 */
2119 if (!nr_file || !nr_anon)
2120 break;
2121
e82e0561
MG
2122 if (nr_file > nr_anon) {
2123 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2124 targets[LRU_ACTIVE_ANON] + 1;
2125 lru = LRU_BASE;
2126 percentage = nr_anon * 100 / scan_target;
2127 } else {
2128 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2129 targets[LRU_ACTIVE_FILE] + 1;
2130 lru = LRU_FILE;
2131 percentage = nr_file * 100 / scan_target;
2132 }
2133
2134 /* Stop scanning the smaller of the LRU */
2135 nr[lru] = 0;
2136 nr[lru + LRU_ACTIVE] = 0;
2137
2138 /*
2139 * Recalculate the other LRU scan count based on its original
2140 * scan target and the percentage scanning already complete
2141 */
2142 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2143 nr_scanned = targets[lru] - nr[lru];
2144 nr[lru] = targets[lru] * (100 - percentage) / 100;
2145 nr[lru] -= min(nr[lru], nr_scanned);
2146
2147 lru += LRU_ACTIVE;
2148 nr_scanned = targets[lru] - nr[lru];
2149 nr[lru] = targets[lru] * (100 - percentage) / 100;
2150 nr[lru] -= min(nr[lru], nr_scanned);
2151
2152 scan_adjusted = true;
9b4f98cd
JW
2153 }
2154 blk_finish_plug(&plug);
2155 sc->nr_reclaimed += nr_reclaimed;
2156
2157 /*
2158 * Even if we did not try to evict anon pages at all, we want to
2159 * rebalance the anon lru active/inactive ratio.
2160 */
2161 if (inactive_anon_is_low(lruvec))
2162 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2163 sc, LRU_ACTIVE_ANON);
2164
2165 throttle_vm_writeout(sc->gfp_mask);
2166}
2167
23b9da55 2168/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2169static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2170{
d84da3f9 2171 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2172 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2173 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2174 return true;
2175
2176 return false;
2177}
2178
3e7d3449 2179/*
23b9da55
MG
2180 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2181 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2182 * true if more pages should be reclaimed such that when the page allocator
2183 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2184 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2185 */
9b4f98cd 2186static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2187 unsigned long nr_reclaimed,
2188 unsigned long nr_scanned,
2189 struct scan_control *sc)
2190{
2191 unsigned long pages_for_compaction;
2192 unsigned long inactive_lru_pages;
2193
2194 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2195 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2196 return false;
2197
2876592f
MG
2198 /* Consider stopping depending on scan and reclaim activity */
2199 if (sc->gfp_mask & __GFP_REPEAT) {
2200 /*
2201 * For __GFP_REPEAT allocations, stop reclaiming if the
2202 * full LRU list has been scanned and we are still failing
2203 * to reclaim pages. This full LRU scan is potentially
2204 * expensive but a __GFP_REPEAT caller really wants to succeed
2205 */
2206 if (!nr_reclaimed && !nr_scanned)
2207 return false;
2208 } else {
2209 /*
2210 * For non-__GFP_REPEAT allocations which can presumably
2211 * fail without consequence, stop if we failed to reclaim
2212 * any pages from the last SWAP_CLUSTER_MAX number of
2213 * pages that were scanned. This will return to the
2214 * caller faster at the risk reclaim/compaction and
2215 * the resulting allocation attempt fails
2216 */
2217 if (!nr_reclaimed)
2218 return false;
2219 }
3e7d3449
MG
2220
2221 /*
2222 * If we have not reclaimed enough pages for compaction and the
2223 * inactive lists are large enough, continue reclaiming
2224 */
2225 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2226 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2227 if (get_nr_swap_pages() > 0)
9b4f98cd 2228 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2229 if (sc->nr_reclaimed < pages_for_compaction &&
2230 inactive_lru_pages > pages_for_compaction)
2231 return true;
2232
2233 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2234 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2235 case COMPACT_PARTIAL:
2236 case COMPACT_CONTINUE:
2237 return false;
2238 default:
2239 return true;
2240 }
2241}
2242
0608f43d 2243static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2244{
f0fdc5e8 2245 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2246
9b4f98cd
JW
2247 do {
2248 struct mem_cgroup *root = sc->target_mem_cgroup;
2249 struct mem_cgroup_reclaim_cookie reclaim = {
2250 .zone = zone,
2251 .priority = sc->priority,
2252 };
694fbc0f 2253 struct mem_cgroup *memcg;
3e7d3449 2254
9b4f98cd
JW
2255 nr_reclaimed = sc->nr_reclaimed;
2256 nr_scanned = sc->nr_scanned;
1da177e4 2257
694fbc0f
AM
2258 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2259 do {
9b4f98cd 2260 struct lruvec *lruvec;
5660048c 2261
9b4f98cd 2262 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2263
688eb988 2264 sc->swappiness = mem_cgroup_swappiness(memcg);
9b4f98cd 2265 shrink_lruvec(lruvec, sc);
f16015fb 2266
9b4f98cd 2267 /*
a394cb8e
MH
2268 * Direct reclaim and kswapd have to scan all memory
2269 * cgroups to fulfill the overall scan target for the
9b4f98cd 2270 * zone.
a394cb8e
MH
2271 *
2272 * Limit reclaim, on the other hand, only cares about
2273 * nr_to_reclaim pages to be reclaimed and it will
2274 * retry with decreasing priority if one round over the
2275 * whole hierarchy is not sufficient.
9b4f98cd 2276 */
a394cb8e
MH
2277 if (!global_reclaim(sc) &&
2278 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2279 mem_cgroup_iter_break(root, memcg);
2280 break;
2281 }
694fbc0f
AM
2282 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2283 } while (memcg);
70ddf637
AV
2284
2285 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2286 sc->nr_scanned - nr_scanned,
2287 sc->nr_reclaimed - nr_reclaimed);
2288
9b4f98cd
JW
2289 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2290 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2291}
2292
fe4b1b24
MG
2293/* Returns true if compaction should go ahead for a high-order request */
2294static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2295{
2296 unsigned long balance_gap, watermark;
2297 bool watermark_ok;
2298
2299 /* Do not consider compaction for orders reclaim is meant to satisfy */
2300 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2301 return false;
2302
2303 /*
2304 * Compaction takes time to run and there are potentially other
2305 * callers using the pages just freed. Continue reclaiming until
2306 * there is a buffer of free pages available to give compaction
2307 * a reasonable chance of completing and allocating the page
2308 */
4be89a34
JZ
2309 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2310 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
fe4b1b24
MG
2311 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2312 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2313
2314 /*
2315 * If compaction is deferred, reclaim up to a point where
2316 * compaction will have a chance of success when re-enabled
2317 */
aff62249 2318 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2319 return watermark_ok;
2320
2321 /* If compaction is not ready to start, keep reclaiming */
2322 if (!compaction_suitable(zone, sc->order))
2323 return false;
2324
2325 return watermark_ok;
2326}
2327
1da177e4
LT
2328/*
2329 * This is the direct reclaim path, for page-allocating processes. We only
2330 * try to reclaim pages from zones which will satisfy the caller's allocation
2331 * request.
2332 *
41858966
MG
2333 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2334 * Because:
1da177e4
LT
2335 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2336 * allocation or
41858966
MG
2337 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2338 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2339 * zone defense algorithm.
1da177e4 2340 *
1da177e4
LT
2341 * If a zone is deemed to be full of pinned pages then just give it a light
2342 * scan then give up on it.
e0c23279
MG
2343 *
2344 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2345 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2346 * the caller that it should consider retrying the allocation instead of
2347 * further reclaim.
1da177e4 2348 */
3115cd91 2349static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2350{
dd1a239f 2351 struct zoneref *z;
54a6eb5c 2352 struct zone *zone;
0608f43d
AM
2353 unsigned long nr_soft_reclaimed;
2354 unsigned long nr_soft_scanned;
65ec02cb 2355 unsigned long lru_pages = 0;
0cee34fd 2356 bool aborted_reclaim = false;
65ec02cb 2357 struct reclaim_state *reclaim_state = current->reclaim_state;
619d0d76 2358 gfp_t orig_mask;
3115cd91
VD
2359 struct shrink_control shrink = {
2360 .gfp_mask = sc->gfp_mask,
2361 };
9bbc04ee 2362 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
1cfb419b 2363
cc715d99
MG
2364 /*
2365 * If the number of buffer_heads in the machine exceeds the maximum
2366 * allowed level, force direct reclaim to scan the highmem zone as
2367 * highmem pages could be pinning lowmem pages storing buffer_heads
2368 */
619d0d76 2369 orig_mask = sc->gfp_mask;
cc715d99
MG
2370 if (buffer_heads_over_limit)
2371 sc->gfp_mask |= __GFP_HIGHMEM;
2372
3115cd91 2373 nodes_clear(shrink.nodes_to_scan);
65ec02cb 2374
d4debc66
MG
2375 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2376 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2377 if (!populated_zone(zone))
1da177e4 2378 continue;
1cfb419b
KH
2379 /*
2380 * Take care memory controller reclaiming has small influence
2381 * to global LRU.
2382 */
89b5fae5 2383 if (global_reclaim(sc)) {
1cfb419b
KH
2384 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2385 continue;
65ec02cb
VD
2386
2387 lru_pages += zone_reclaimable_pages(zone);
3115cd91 2388 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
65ec02cb 2389
6e543d57
LD
2390 if (sc->priority != DEF_PRIORITY &&
2391 !zone_reclaimable(zone))
1cfb419b 2392 continue; /* Let kswapd poll it */
d84da3f9 2393 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2394 /*
e0c23279
MG
2395 * If we already have plenty of memory free for
2396 * compaction in this zone, don't free any more.
2397 * Even though compaction is invoked for any
2398 * non-zero order, only frequent costly order
2399 * reclamation is disruptive enough to become a
c7cfa37b
CA
2400 * noticeable problem, like transparent huge
2401 * page allocations.
e0887c19 2402 */
9bbc04ee
WY
2403 if ((zonelist_zone_idx(z) <= requested_highidx)
2404 && compaction_ready(zone, sc)) {
0cee34fd 2405 aborted_reclaim = true;
e0887c19 2406 continue;
e0c23279 2407 }
e0887c19 2408 }
0608f43d
AM
2409 /*
2410 * This steals pages from memory cgroups over softlimit
2411 * and returns the number of reclaimed pages and
2412 * scanned pages. This works for global memory pressure
2413 * and balancing, not for a memcg's limit.
2414 */
2415 nr_soft_scanned = 0;
2416 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2417 sc->order, sc->gfp_mask,
2418 &nr_soft_scanned);
2419 sc->nr_reclaimed += nr_soft_reclaimed;
2420 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2421 /* need some check for avoid more shrink_zone() */
1cfb419b 2422 }
408d8544 2423
9e3b2f8c 2424 shrink_zone(zone, sc);
1da177e4 2425 }
e0c23279 2426
65ec02cb
VD
2427 /*
2428 * Don't shrink slabs when reclaiming memory from over limit cgroups
2429 * but do shrink slab at least once when aborting reclaim for
2430 * compaction to avoid unevenly scanning file/anon LRU pages over slab
2431 * pages.
2432 */
2433 if (global_reclaim(sc)) {
3115cd91 2434 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
65ec02cb
VD
2435 if (reclaim_state) {
2436 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2437 reclaim_state->reclaimed_slab = 0;
2438 }
2439 }
2440
619d0d76
WY
2441 /*
2442 * Restore to original mask to avoid the impact on the caller if we
2443 * promoted it to __GFP_HIGHMEM.
2444 */
2445 sc->gfp_mask = orig_mask;
2446
0cee34fd 2447 return aborted_reclaim;
d1908362
MK
2448}
2449
929bea7c 2450/* All zones in zonelist are unreclaimable? */
d1908362
MK
2451static bool all_unreclaimable(struct zonelist *zonelist,
2452 struct scan_control *sc)
2453{
2454 struct zoneref *z;
2455 struct zone *zone;
d1908362
MK
2456
2457 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2458 gfp_zone(sc->gfp_mask), sc->nodemask) {
2459 if (!populated_zone(zone))
2460 continue;
2461 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2462 continue;
6e543d57 2463 if (zone_reclaimable(zone))
929bea7c 2464 return false;
d1908362
MK
2465 }
2466
929bea7c 2467 return true;
1da177e4 2468}
4f98a2fe 2469
1da177e4
LT
2470/*
2471 * This is the main entry point to direct page reclaim.
2472 *
2473 * If a full scan of the inactive list fails to free enough memory then we
2474 * are "out of memory" and something needs to be killed.
2475 *
2476 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2477 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2478 * caller can't do much about. We kick the writeback threads and take explicit
2479 * naps in the hope that some of these pages can be written. But if the
2480 * allocating task holds filesystem locks which prevent writeout this might not
2481 * work, and the allocation attempt will fail.
a41f24ea
NA
2482 *
2483 * returns: 0, if no pages reclaimed
2484 * else, the number of pages reclaimed
1da177e4 2485 */
dac1d27b 2486static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2487 struct scan_control *sc)
1da177e4 2488{
69e05944 2489 unsigned long total_scanned = 0;
22fba335 2490 unsigned long writeback_threshold;
0cee34fd 2491 bool aborted_reclaim;
1da177e4 2492
873b4771
KK
2493 delayacct_freepages_start();
2494
89b5fae5 2495 if (global_reclaim(sc))
1cfb419b 2496 count_vm_event(ALLOCSTALL);
1da177e4 2497
9e3b2f8c 2498 do {
70ddf637
AV
2499 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2500 sc->priority);
66e1707b 2501 sc->nr_scanned = 0;
3115cd91 2502 aborted_reclaim = shrink_zones(zonelist, sc);
c6a8a8c5 2503
66e1707b 2504 total_scanned += sc->nr_scanned;
bb21c7ce 2505 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2506 goto out;
1da177e4 2507
0e50ce3b
MK
2508 /*
2509 * If we're getting trouble reclaiming, start doing
2510 * writepage even in laptop mode.
2511 */
2512 if (sc->priority < DEF_PRIORITY - 2)
2513 sc->may_writepage = 1;
2514
1da177e4
LT
2515 /*
2516 * Try to write back as many pages as we just scanned. This
2517 * tends to cause slow streaming writers to write data to the
2518 * disk smoothly, at the dirtying rate, which is nice. But
2519 * that's undesirable in laptop mode, where we *want* lumpy
2520 * writeout. So in laptop mode, write out the whole world.
2521 */
22fba335
KM
2522 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2523 if (total_scanned > writeback_threshold) {
0e175a18
CW
2524 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2525 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2526 sc->may_writepage = 1;
1da177e4 2527 }
5a1c9cbc 2528 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2529
1da177e4 2530out:
873b4771
KK
2531 delayacct_freepages_end();
2532
bb21c7ce
KM
2533 if (sc->nr_reclaimed)
2534 return sc->nr_reclaimed;
2535
929bea7c
KM
2536 /*
2537 * As hibernation is going on, kswapd is freezed so that it can't mark
2538 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2539 * check.
2540 */
2541 if (oom_killer_disabled)
2542 return 0;
2543
0cee34fd
MG
2544 /* Aborted reclaim to try compaction? don't OOM, then */
2545 if (aborted_reclaim)
7335084d
MG
2546 return 1;
2547
bb21c7ce 2548 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2549 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2550 return 1;
2551
2552 return 0;
1da177e4
LT
2553}
2554
5515061d
MG
2555static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2556{
2557 struct zone *zone;
2558 unsigned long pfmemalloc_reserve = 0;
2559 unsigned long free_pages = 0;
2560 int i;
2561 bool wmark_ok;
2562
2563 for (i = 0; i <= ZONE_NORMAL; i++) {
2564 zone = &pgdat->node_zones[i];
675becce
MG
2565 if (!populated_zone(zone))
2566 continue;
2567
5515061d
MG
2568 pfmemalloc_reserve += min_wmark_pages(zone);
2569 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2570 }
2571
675becce
MG
2572 /* If there are no reserves (unexpected config) then do not throttle */
2573 if (!pfmemalloc_reserve)
2574 return true;
2575
5515061d
MG
2576 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2577
2578 /* kswapd must be awake if processes are being throttled */
2579 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2580 pgdat->classzone_idx = min(pgdat->classzone_idx,
2581 (enum zone_type)ZONE_NORMAL);
2582 wake_up_interruptible(&pgdat->kswapd_wait);
2583 }
2584
2585 return wmark_ok;
2586}
2587
2588/*
2589 * Throttle direct reclaimers if backing storage is backed by the network
2590 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2591 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2592 * when the low watermark is reached.
2593 *
2594 * Returns true if a fatal signal was delivered during throttling. If this
2595 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2596 */
50694c28 2597static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2598 nodemask_t *nodemask)
2599{
675becce 2600 struct zoneref *z;
5515061d 2601 struct zone *zone;
675becce 2602 pg_data_t *pgdat = NULL;
5515061d
MG
2603
2604 /*
2605 * Kernel threads should not be throttled as they may be indirectly
2606 * responsible for cleaning pages necessary for reclaim to make forward
2607 * progress. kjournald for example may enter direct reclaim while
2608 * committing a transaction where throttling it could forcing other
2609 * processes to block on log_wait_commit().
2610 */
2611 if (current->flags & PF_KTHREAD)
50694c28
MG
2612 goto out;
2613
2614 /*
2615 * If a fatal signal is pending, this process should not throttle.
2616 * It should return quickly so it can exit and free its memory
2617 */
2618 if (fatal_signal_pending(current))
2619 goto out;
5515061d 2620
675becce
MG
2621 /*
2622 * Check if the pfmemalloc reserves are ok by finding the first node
2623 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2624 * GFP_KERNEL will be required for allocating network buffers when
2625 * swapping over the network so ZONE_HIGHMEM is unusable.
2626 *
2627 * Throttling is based on the first usable node and throttled processes
2628 * wait on a queue until kswapd makes progress and wakes them. There
2629 * is an affinity then between processes waking up and where reclaim
2630 * progress has been made assuming the process wakes on the same node.
2631 * More importantly, processes running on remote nodes will not compete
2632 * for remote pfmemalloc reserves and processes on different nodes
2633 * should make reasonable progress.
2634 */
2635 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2636 gfp_mask, nodemask) {
2637 if (zone_idx(zone) > ZONE_NORMAL)
2638 continue;
2639
2640 /* Throttle based on the first usable node */
2641 pgdat = zone->zone_pgdat;
2642 if (pfmemalloc_watermark_ok(pgdat))
2643 goto out;
2644 break;
2645 }
2646
2647 /* If no zone was usable by the allocation flags then do not throttle */
2648 if (!pgdat)
50694c28 2649 goto out;
5515061d 2650
68243e76
MG
2651 /* Account for the throttling */
2652 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2653
5515061d
MG
2654 /*
2655 * If the caller cannot enter the filesystem, it's possible that it
2656 * is due to the caller holding an FS lock or performing a journal
2657 * transaction in the case of a filesystem like ext[3|4]. In this case,
2658 * it is not safe to block on pfmemalloc_wait as kswapd could be
2659 * blocked waiting on the same lock. Instead, throttle for up to a
2660 * second before continuing.
2661 */
2662 if (!(gfp_mask & __GFP_FS)) {
2663 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2664 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2665
2666 goto check_pending;
5515061d
MG
2667 }
2668
2669 /* Throttle until kswapd wakes the process */
2670 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2671 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2672
2673check_pending:
2674 if (fatal_signal_pending(current))
2675 return true;
2676
2677out:
2678 return false;
5515061d
MG
2679}
2680
dac1d27b 2681unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2682 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2683{
33906bc5 2684 unsigned long nr_reclaimed;
66e1707b 2685 struct scan_control sc = {
21caf2fc 2686 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2687 .may_writepage = !laptop_mode,
22fba335 2688 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2689 .may_unmap = 1,
2e2e4259 2690 .may_swap = 1,
66e1707b 2691 .order = order,
9e3b2f8c 2692 .priority = DEF_PRIORITY,
f16015fb 2693 .target_mem_cgroup = NULL,
327c0e96 2694 .nodemask = nodemask,
66e1707b
BS
2695 };
2696
5515061d 2697 /*
50694c28
MG
2698 * Do not enter reclaim if fatal signal was delivered while throttled.
2699 * 1 is returned so that the page allocator does not OOM kill at this
2700 * point.
5515061d 2701 */
50694c28 2702 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2703 return 1;
2704
33906bc5
MG
2705 trace_mm_vmscan_direct_reclaim_begin(order,
2706 sc.may_writepage,
2707 gfp_mask);
2708
3115cd91 2709 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2710
2711 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2712
2713 return nr_reclaimed;
66e1707b
BS
2714}
2715
c255a458 2716#ifdef CONFIG_MEMCG
66e1707b 2717
72835c86 2718unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2719 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2720 struct zone *zone,
2721 unsigned long *nr_scanned)
4e416953
BS
2722{
2723 struct scan_control sc = {
0ae5e89c 2724 .nr_scanned = 0,
b8f5c566 2725 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2726 .may_writepage = !laptop_mode,
2727 .may_unmap = 1,
2728 .may_swap = !noswap,
4e416953 2729 .order = 0,
9e3b2f8c 2730 .priority = 0,
688eb988 2731 .swappiness = mem_cgroup_swappiness(memcg),
72835c86 2732 .target_mem_cgroup = memcg,
4e416953 2733 };
f9be23d6 2734 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2735
4e416953
BS
2736 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2737 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2738
9e3b2f8c 2739 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2740 sc.may_writepage,
2741 sc.gfp_mask);
2742
4e416953
BS
2743 /*
2744 * NOTE: Although we can get the priority field, using it
2745 * here is not a good idea, since it limits the pages we can scan.
2746 * if we don't reclaim here, the shrink_zone from balance_pgdat
2747 * will pick up pages from other mem cgroup's as well. We hack
2748 * the priority and make it zero.
2749 */
f9be23d6 2750 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2751
2752 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2753
0ae5e89c 2754 *nr_scanned = sc.nr_scanned;
4e416953
BS
2755 return sc.nr_reclaimed;
2756}
2757
72835c86 2758unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2759 gfp_t gfp_mask,
185efc0f 2760 bool noswap)
66e1707b 2761{
4e416953 2762 struct zonelist *zonelist;
bdce6d9e 2763 unsigned long nr_reclaimed;
889976db 2764 int nid;
66e1707b 2765 struct scan_control sc = {
66e1707b 2766 .may_writepage = !laptop_mode,
a6dc60f8 2767 .may_unmap = 1,
2e2e4259 2768 .may_swap = !noswap,
22fba335 2769 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2770 .order = 0,
9e3b2f8c 2771 .priority = DEF_PRIORITY,
72835c86 2772 .target_mem_cgroup = memcg,
327c0e96 2773 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2774 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2775 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2776 };
66e1707b 2777
889976db
YH
2778 /*
2779 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2780 * take care of from where we get pages. So the node where we start the
2781 * scan does not need to be the current node.
2782 */
72835c86 2783 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2784
2785 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2786
2787 trace_mm_vmscan_memcg_reclaim_begin(0,
2788 sc.may_writepage,
2789 sc.gfp_mask);
2790
3115cd91 2791 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2792
2793 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2794
2795 return nr_reclaimed;
66e1707b
BS
2796}
2797#endif
2798
9e3b2f8c 2799static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2800{
b95a2f2d 2801 struct mem_cgroup *memcg;
f16015fb 2802
b95a2f2d
JW
2803 if (!total_swap_pages)
2804 return;
2805
2806 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2807 do {
c56d5c7d 2808 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2809
c56d5c7d 2810 if (inactive_anon_is_low(lruvec))
1a93be0e 2811 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2812 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2813
2814 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2815 } while (memcg);
f16015fb
JW
2816}
2817
60cefed4
JW
2818static bool zone_balanced(struct zone *zone, int order,
2819 unsigned long balance_gap, int classzone_idx)
2820{
2821 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2822 balance_gap, classzone_idx, 0))
2823 return false;
2824
d84da3f9
KS
2825 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2826 !compaction_suitable(zone, order))
60cefed4
JW
2827 return false;
2828
2829 return true;
2830}
2831
1741c877 2832/*
4ae0a48b
ZC
2833 * pgdat_balanced() is used when checking if a node is balanced.
2834 *
2835 * For order-0, all zones must be balanced!
2836 *
2837 * For high-order allocations only zones that meet watermarks and are in a
2838 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2839 * total of balanced pages must be at least 25% of the zones allowed by
2840 * classzone_idx for the node to be considered balanced. Forcing all zones to
2841 * be balanced for high orders can cause excessive reclaim when there are
2842 * imbalanced zones.
1741c877
MG
2843 * The choice of 25% is due to
2844 * o a 16M DMA zone that is balanced will not balance a zone on any
2845 * reasonable sized machine
2846 * o On all other machines, the top zone must be at least a reasonable
25985edc 2847 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2848 * would need to be at least 256M for it to be balance a whole node.
2849 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2850 * to balance a node on its own. These seemed like reasonable ratios.
2851 */
4ae0a48b 2852static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2853{
b40da049 2854 unsigned long managed_pages = 0;
4ae0a48b 2855 unsigned long balanced_pages = 0;
1741c877
MG
2856 int i;
2857
4ae0a48b
ZC
2858 /* Check the watermark levels */
2859 for (i = 0; i <= classzone_idx; i++) {
2860 struct zone *zone = pgdat->node_zones + i;
1741c877 2861
4ae0a48b
ZC
2862 if (!populated_zone(zone))
2863 continue;
2864
b40da049 2865 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2866
2867 /*
2868 * A special case here:
2869 *
2870 * balance_pgdat() skips over all_unreclaimable after
2871 * DEF_PRIORITY. Effectively, it considers them balanced so
2872 * they must be considered balanced here as well!
2873 */
6e543d57 2874 if (!zone_reclaimable(zone)) {
b40da049 2875 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2876 continue;
2877 }
2878
2879 if (zone_balanced(zone, order, 0, i))
b40da049 2880 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2881 else if (!order)
2882 return false;
2883 }
2884
2885 if (order)
b40da049 2886 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2887 else
2888 return true;
1741c877
MG
2889}
2890
5515061d
MG
2891/*
2892 * Prepare kswapd for sleeping. This verifies that there are no processes
2893 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2894 *
2895 * Returns true if kswapd is ready to sleep
2896 */
2897static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2898 int classzone_idx)
f50de2d3 2899{
f50de2d3
MG
2900 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2901 if (remaining)
5515061d
MG
2902 return false;
2903
2904 /*
2905 * There is a potential race between when kswapd checks its watermarks
2906 * and a process gets throttled. There is also a potential race if
2907 * processes get throttled, kswapd wakes, a large process exits therby
2908 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2909 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2910 * so wake them now if necessary. If necessary, processes will wake
2911 * kswapd and get throttled again
2912 */
2913 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2914 wake_up(&pgdat->pfmemalloc_wait);
2915 return false;
2916 }
f50de2d3 2917
4ae0a48b 2918 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2919}
2920
75485363
MG
2921/*
2922 * kswapd shrinks the zone by the number of pages required to reach
2923 * the high watermark.
b8e83b94
MG
2924 *
2925 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2926 * reclaim or if the lack of progress was due to pages under writeback.
2927 * This is used to determine if the scanning priority needs to be raised.
75485363 2928 */
b8e83b94 2929static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2930 int classzone_idx,
75485363 2931 struct scan_control *sc,
2ab44f43
MG
2932 unsigned long lru_pages,
2933 unsigned long *nr_attempted)
75485363 2934{
7c954f6d
MG
2935 int testorder = sc->order;
2936 unsigned long balance_gap;
75485363
MG
2937 struct reclaim_state *reclaim_state = current->reclaim_state;
2938 struct shrink_control shrink = {
2939 .gfp_mask = sc->gfp_mask,
2940 };
7c954f6d 2941 bool lowmem_pressure;
75485363
MG
2942
2943 /* Reclaim above the high watermark. */
2944 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2945
2946 /*
2947 * Kswapd reclaims only single pages with compaction enabled. Trying
2948 * too hard to reclaim until contiguous free pages have become
2949 * available can hurt performance by evicting too much useful data
2950 * from memory. Do not reclaim more than needed for compaction.
2951 */
2952 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2953 compaction_suitable(zone, sc->order) !=
2954 COMPACT_SKIPPED)
2955 testorder = 0;
2956
2957 /*
2958 * We put equal pressure on every zone, unless one zone has way too
2959 * many pages free already. The "too many pages" is defined as the
2960 * high wmark plus a "gap" where the gap is either the low
2961 * watermark or 1% of the zone, whichever is smaller.
2962 */
4be89a34
JZ
2963 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2964 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
2965
2966 /*
2967 * If there is no low memory pressure or the zone is balanced then no
2968 * reclaim is necessary
2969 */
2970 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2971 if (!lowmem_pressure && zone_balanced(zone, testorder,
2972 balance_gap, classzone_idx))
2973 return true;
2974
75485363 2975 shrink_zone(zone, sc);
0ce3d744
DC
2976 nodes_clear(shrink.nodes_to_scan);
2977 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2978
2979 reclaim_state->reclaimed_slab = 0;
6e543d57 2980 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2981 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2982
2ab44f43
MG
2983 /* Account for the number of pages attempted to reclaim */
2984 *nr_attempted += sc->nr_to_reclaim;
2985
283aba9f
MG
2986 zone_clear_flag(zone, ZONE_WRITEBACK);
2987
7c954f6d
MG
2988 /*
2989 * If a zone reaches its high watermark, consider it to be no longer
2990 * congested. It's possible there are dirty pages backed by congested
2991 * BDIs but as pressure is relieved, speculatively avoid congestion
2992 * waits.
2993 */
6e543d57 2994 if (zone_reclaimable(zone) &&
7c954f6d
MG
2995 zone_balanced(zone, testorder, 0, classzone_idx)) {
2996 zone_clear_flag(zone, ZONE_CONGESTED);
2997 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2998 }
2999
b8e83b94 3000 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3001}
3002
1da177e4
LT
3003/*
3004 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3005 * they are all at high_wmark_pages(zone).
1da177e4 3006 *
0abdee2b 3007 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3008 *
3009 * There is special handling here for zones which are full of pinned pages.
3010 * This can happen if the pages are all mlocked, or if they are all used by
3011 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3012 * What we do is to detect the case where all pages in the zone have been
3013 * scanned twice and there has been zero successful reclaim. Mark the zone as
3014 * dead and from now on, only perform a short scan. Basically we're polling
3015 * the zone for when the problem goes away.
3016 *
3017 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3018 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3019 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3020 * lower zones regardless of the number of free pages in the lower zones. This
3021 * interoperates with the page allocator fallback scheme to ensure that aging
3022 * of pages is balanced across the zones.
1da177e4 3023 */
99504748 3024static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3025 int *classzone_idx)
1da177e4 3026{
1da177e4 3027 int i;
99504748 3028 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3029 unsigned long nr_soft_reclaimed;
3030 unsigned long nr_soft_scanned;
179e9639
AM
3031 struct scan_control sc = {
3032 .gfp_mask = GFP_KERNEL,
b8e83b94 3033 .priority = DEF_PRIORITY,
a6dc60f8 3034 .may_unmap = 1,
2e2e4259 3035 .may_swap = 1,
b8e83b94 3036 .may_writepage = !laptop_mode,
5ad333eb 3037 .order = order,
f16015fb 3038 .target_mem_cgroup = NULL,
179e9639 3039 };
f8891e5e 3040 count_vm_event(PAGEOUTRUN);
1da177e4 3041
9e3b2f8c 3042 do {
1da177e4 3043 unsigned long lru_pages = 0;
2ab44f43 3044 unsigned long nr_attempted = 0;
b8e83b94 3045 bool raise_priority = true;
2ab44f43 3046 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3047
3048 sc.nr_reclaimed = 0;
1da177e4 3049
d6277db4
RW
3050 /*
3051 * Scan in the highmem->dma direction for the highest
3052 * zone which needs scanning
3053 */
3054 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3055 struct zone *zone = pgdat->node_zones + i;
1da177e4 3056
d6277db4
RW
3057 if (!populated_zone(zone))
3058 continue;
1da177e4 3059
6e543d57
LD
3060 if (sc.priority != DEF_PRIORITY &&
3061 !zone_reclaimable(zone))
d6277db4 3062 continue;
1da177e4 3063
556adecb
RR
3064 /*
3065 * Do some background aging of the anon list, to give
3066 * pages a chance to be referenced before reclaiming.
3067 */
9e3b2f8c 3068 age_active_anon(zone, &sc);
556adecb 3069
cc715d99
MG
3070 /*
3071 * If the number of buffer_heads in the machine
3072 * exceeds the maximum allowed level and this node
3073 * has a highmem zone, force kswapd to reclaim from
3074 * it to relieve lowmem pressure.
3075 */
3076 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3077 end_zone = i;
3078 break;
3079 }
3080
60cefed4 3081 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3082 end_zone = i;
e1dbeda6 3083 break;
439423f6 3084 } else {
d43006d5
MG
3085 /*
3086 * If balanced, clear the dirty and congested
3087 * flags
3088 */
439423f6 3089 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3090 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3091 }
1da177e4 3092 }
dafcb73e 3093
b8e83b94 3094 if (i < 0)
e1dbeda6
AM
3095 goto out;
3096
1da177e4
LT
3097 for (i = 0; i <= end_zone; i++) {
3098 struct zone *zone = pgdat->node_zones + i;
3099
2ab44f43
MG
3100 if (!populated_zone(zone))
3101 continue;
3102
adea02a1 3103 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3104
3105 /*
3106 * If any zone is currently balanced then kswapd will
3107 * not call compaction as it is expected that the
3108 * necessary pages are already available.
3109 */
3110 if (pgdat_needs_compaction &&
3111 zone_watermark_ok(zone, order,
3112 low_wmark_pages(zone),
3113 *classzone_idx, 0))
3114 pgdat_needs_compaction = false;
1da177e4
LT
3115 }
3116
b7ea3c41
MG
3117 /*
3118 * If we're getting trouble reclaiming, start doing writepage
3119 * even in laptop mode.
3120 */
3121 if (sc.priority < DEF_PRIORITY - 2)
3122 sc.may_writepage = 1;
3123
1da177e4
LT
3124 /*
3125 * Now scan the zone in the dma->highmem direction, stopping
3126 * at the last zone which needs scanning.
3127 *
3128 * We do this because the page allocator works in the opposite
3129 * direction. This prevents the page allocator from allocating
3130 * pages behind kswapd's direction of progress, which would
3131 * cause too much scanning of the lower zones.
3132 */
3133 for (i = 0; i <= end_zone; i++) {
3134 struct zone *zone = pgdat->node_zones + i;
3135
f3fe6512 3136 if (!populated_zone(zone))
1da177e4
LT
3137 continue;
3138
6e543d57
LD
3139 if (sc.priority != DEF_PRIORITY &&
3140 !zone_reclaimable(zone))
1da177e4
LT
3141 continue;
3142
1da177e4 3143 sc.nr_scanned = 0;
4e416953 3144
0608f43d
AM
3145 nr_soft_scanned = 0;
3146 /*
3147 * Call soft limit reclaim before calling shrink_zone.
3148 */
3149 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3150 order, sc.gfp_mask,
3151 &nr_soft_scanned);
3152 sc.nr_reclaimed += nr_soft_reclaimed;
3153
32a4330d 3154 /*
7c954f6d
MG
3155 * There should be no need to raise the scanning
3156 * priority if enough pages are already being scanned
3157 * that that high watermark would be met at 100%
3158 * efficiency.
fe2c2a10 3159 */
7c954f6d
MG
3160 if (kswapd_shrink_zone(zone, end_zone, &sc,
3161 lru_pages, &nr_attempted))
3162 raise_priority = false;
1da177e4 3163 }
5515061d
MG
3164
3165 /*
3166 * If the low watermark is met there is no need for processes
3167 * to be throttled on pfmemalloc_wait as they should not be
3168 * able to safely make forward progress. Wake them
3169 */
3170 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3171 pfmemalloc_watermark_ok(pgdat))
3172 wake_up(&pgdat->pfmemalloc_wait);
3173
1da177e4 3174 /*
b8e83b94
MG
3175 * Fragmentation may mean that the system cannot be rebalanced
3176 * for high-order allocations in all zones. If twice the
3177 * allocation size has been reclaimed and the zones are still
3178 * not balanced then recheck the watermarks at order-0 to
3179 * prevent kswapd reclaiming excessively. Assume that a
3180 * process requested a high-order can direct reclaim/compact.
1da177e4 3181 */
b8e83b94
MG
3182 if (order && sc.nr_reclaimed >= 2UL << order)
3183 order = sc.order = 0;
8357376d 3184
b8e83b94
MG
3185 /* Check if kswapd should be suspending */
3186 if (try_to_freeze() || kthread_should_stop())
3187 break;
8357376d 3188
2ab44f43
MG
3189 /*
3190 * Compact if necessary and kswapd is reclaiming at least the
3191 * high watermark number of pages as requsted
3192 */
3193 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3194 compact_pgdat(pgdat, order);
3195
73ce02e9 3196 /*
b8e83b94
MG
3197 * Raise priority if scanning rate is too low or there was no
3198 * progress in reclaiming pages
73ce02e9 3199 */
b8e83b94
MG
3200 if (raise_priority || !sc.nr_reclaimed)
3201 sc.priority--;
9aa41348 3202 } while (sc.priority >= 1 &&
b8e83b94 3203 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3204
b8e83b94 3205out:
0abdee2b 3206 /*
5515061d 3207 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3208 * makes a decision on the order we were last reclaiming at. However,
3209 * if another caller entered the allocator slow path while kswapd
3210 * was awake, order will remain at the higher level
3211 */
dc83edd9 3212 *classzone_idx = end_zone;
0abdee2b 3213 return order;
1da177e4
LT
3214}
3215
dc83edd9 3216static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3217{
3218 long remaining = 0;
3219 DEFINE_WAIT(wait);
3220
3221 if (freezing(current) || kthread_should_stop())
3222 return;
3223
3224 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3225
3226 /* Try to sleep for a short interval */
5515061d 3227 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3228 remaining = schedule_timeout(HZ/10);
3229 finish_wait(&pgdat->kswapd_wait, &wait);
3230 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3231 }
3232
3233 /*
3234 * After a short sleep, check if it was a premature sleep. If not, then
3235 * go fully to sleep until explicitly woken up.
3236 */
5515061d 3237 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3238 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3239
3240 /*
3241 * vmstat counters are not perfectly accurate and the estimated
3242 * value for counters such as NR_FREE_PAGES can deviate from the
3243 * true value by nr_online_cpus * threshold. To avoid the zone
3244 * watermarks being breached while under pressure, we reduce the
3245 * per-cpu vmstat threshold while kswapd is awake and restore
3246 * them before going back to sleep.
3247 */
3248 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3249
62997027
MG
3250 /*
3251 * Compaction records what page blocks it recently failed to
3252 * isolate pages from and skips them in the future scanning.
3253 * When kswapd is going to sleep, it is reasonable to assume
3254 * that pages and compaction may succeed so reset the cache.
3255 */
3256 reset_isolation_suitable(pgdat);
3257
1c7e7f6c
AK
3258 if (!kthread_should_stop())
3259 schedule();
3260
f0bc0a60
KM
3261 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3262 } else {
3263 if (remaining)
3264 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3265 else
3266 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3267 }
3268 finish_wait(&pgdat->kswapd_wait, &wait);
3269}
3270
1da177e4
LT
3271/*
3272 * The background pageout daemon, started as a kernel thread
4f98a2fe 3273 * from the init process.
1da177e4
LT
3274 *
3275 * This basically trickles out pages so that we have _some_
3276 * free memory available even if there is no other activity
3277 * that frees anything up. This is needed for things like routing
3278 * etc, where we otherwise might have all activity going on in
3279 * asynchronous contexts that cannot page things out.
3280 *
3281 * If there are applications that are active memory-allocators
3282 * (most normal use), this basically shouldn't matter.
3283 */
3284static int kswapd(void *p)
3285{
215ddd66 3286 unsigned long order, new_order;
d2ebd0f6 3287 unsigned balanced_order;
215ddd66 3288 int classzone_idx, new_classzone_idx;
d2ebd0f6 3289 int balanced_classzone_idx;
1da177e4
LT
3290 pg_data_t *pgdat = (pg_data_t*)p;
3291 struct task_struct *tsk = current;
f0bc0a60 3292
1da177e4
LT
3293 struct reclaim_state reclaim_state = {
3294 .reclaimed_slab = 0,
3295 };
a70f7302 3296 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3297
cf40bd16
NP
3298 lockdep_set_current_reclaim_state(GFP_KERNEL);
3299
174596a0 3300 if (!cpumask_empty(cpumask))
c5f59f08 3301 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3302 current->reclaim_state = &reclaim_state;
3303
3304 /*
3305 * Tell the memory management that we're a "memory allocator",
3306 * and that if we need more memory we should get access to it
3307 * regardless (see "__alloc_pages()"). "kswapd" should
3308 * never get caught in the normal page freeing logic.
3309 *
3310 * (Kswapd normally doesn't need memory anyway, but sometimes
3311 * you need a small amount of memory in order to be able to
3312 * page out something else, and this flag essentially protects
3313 * us from recursively trying to free more memory as we're
3314 * trying to free the first piece of memory in the first place).
3315 */
930d9152 3316 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3317 set_freezable();
1da177e4 3318
215ddd66 3319 order = new_order = 0;
d2ebd0f6 3320 balanced_order = 0;
215ddd66 3321 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3322 balanced_classzone_idx = classzone_idx;
1da177e4 3323 for ( ; ; ) {
6f6313d4 3324 bool ret;
3e1d1d28 3325
215ddd66
MG
3326 /*
3327 * If the last balance_pgdat was unsuccessful it's unlikely a
3328 * new request of a similar or harder type will succeed soon
3329 * so consider going to sleep on the basis we reclaimed at
3330 */
d2ebd0f6
AS
3331 if (balanced_classzone_idx >= new_classzone_idx &&
3332 balanced_order == new_order) {
215ddd66
MG
3333 new_order = pgdat->kswapd_max_order;
3334 new_classzone_idx = pgdat->classzone_idx;
3335 pgdat->kswapd_max_order = 0;
3336 pgdat->classzone_idx = pgdat->nr_zones - 1;
3337 }
3338
99504748 3339 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3340 /*
3341 * Don't sleep if someone wants a larger 'order'
99504748 3342 * allocation or has tigher zone constraints
1da177e4
LT
3343 */
3344 order = new_order;
99504748 3345 classzone_idx = new_classzone_idx;
1da177e4 3346 } else {
d2ebd0f6
AS
3347 kswapd_try_to_sleep(pgdat, balanced_order,
3348 balanced_classzone_idx);
1da177e4 3349 order = pgdat->kswapd_max_order;
99504748 3350 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3351 new_order = order;
3352 new_classzone_idx = classzone_idx;
4d40502e 3353 pgdat->kswapd_max_order = 0;
215ddd66 3354 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3355 }
1da177e4 3356
8fe23e05
DR
3357 ret = try_to_freeze();
3358 if (kthread_should_stop())
3359 break;
3360
3361 /*
3362 * We can speed up thawing tasks if we don't call balance_pgdat
3363 * after returning from the refrigerator
3364 */
33906bc5
MG
3365 if (!ret) {
3366 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3367 balanced_classzone_idx = classzone_idx;
3368 balanced_order = balance_pgdat(pgdat, order,
3369 &balanced_classzone_idx);
33906bc5 3370 }
1da177e4 3371 }
b0a8cc58 3372
71abdc15 3373 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3374 current->reclaim_state = NULL;
71abdc15
JW
3375 lockdep_clear_current_reclaim_state();
3376
1da177e4
LT
3377 return 0;
3378}
3379
3380/*
3381 * A zone is low on free memory, so wake its kswapd task to service it.
3382 */
99504748 3383void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3384{
3385 pg_data_t *pgdat;
3386
f3fe6512 3387 if (!populated_zone(zone))
1da177e4
LT
3388 return;
3389
88f5acf8 3390 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3391 return;
88f5acf8 3392 pgdat = zone->zone_pgdat;
99504748 3393 if (pgdat->kswapd_max_order < order) {
1da177e4 3394 pgdat->kswapd_max_order = order;
99504748
MG
3395 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3396 }
8d0986e2 3397 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3398 return;
892f795d 3399 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3400 return;
3401
3402 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3403 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3404}
3405
c6f37f12 3406#ifdef CONFIG_HIBERNATION
1da177e4 3407/*
7b51755c 3408 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3409 * freed pages.
3410 *
3411 * Rather than trying to age LRUs the aim is to preserve the overall
3412 * LRU order by reclaiming preferentially
3413 * inactive > active > active referenced > active mapped
1da177e4 3414 */
7b51755c 3415unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3416{
d6277db4 3417 struct reclaim_state reclaim_state;
d6277db4 3418 struct scan_control sc = {
7b51755c
KM
3419 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3420 .may_swap = 1,
3421 .may_unmap = 1,
d6277db4 3422 .may_writepage = 1,
7b51755c
KM
3423 .nr_to_reclaim = nr_to_reclaim,
3424 .hibernation_mode = 1,
7b51755c 3425 .order = 0,
9e3b2f8c 3426 .priority = DEF_PRIORITY,
1da177e4 3427 };
a09ed5e0 3428 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3429 struct task_struct *p = current;
3430 unsigned long nr_reclaimed;
1da177e4 3431
7b51755c
KM
3432 p->flags |= PF_MEMALLOC;
3433 lockdep_set_current_reclaim_state(sc.gfp_mask);
3434 reclaim_state.reclaimed_slab = 0;
3435 p->reclaim_state = &reclaim_state;
d6277db4 3436
3115cd91 3437 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3438
7b51755c
KM
3439 p->reclaim_state = NULL;
3440 lockdep_clear_current_reclaim_state();
3441 p->flags &= ~PF_MEMALLOC;
d6277db4 3442
7b51755c 3443 return nr_reclaimed;
1da177e4 3444}
c6f37f12 3445#endif /* CONFIG_HIBERNATION */
1da177e4 3446
1da177e4
LT
3447/* It's optimal to keep kswapds on the same CPUs as their memory, but
3448 not required for correctness. So if the last cpu in a node goes
3449 away, we get changed to run anywhere: as the first one comes back,
3450 restore their cpu bindings. */
fcb35a9b
GKH
3451static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3452 void *hcpu)
1da177e4 3453{
58c0a4a7 3454 int nid;
1da177e4 3455
8bb78442 3456 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3457 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3458 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3459 const struct cpumask *mask;
3460
3461 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3462
3e597945 3463 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3464 /* One of our CPUs online: restore mask */
c5f59f08 3465 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3466 }
3467 }
3468 return NOTIFY_OK;
3469}
1da177e4 3470
3218ae14
YG
3471/*
3472 * This kswapd start function will be called by init and node-hot-add.
3473 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3474 */
3475int kswapd_run(int nid)
3476{
3477 pg_data_t *pgdat = NODE_DATA(nid);
3478 int ret = 0;
3479
3480 if (pgdat->kswapd)
3481 return 0;
3482
3483 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3484 if (IS_ERR(pgdat->kswapd)) {
3485 /* failure at boot is fatal */
3486 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3487 pr_err("Failed to start kswapd on node %d\n", nid);
3488 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3489 pgdat->kswapd = NULL;
3218ae14
YG
3490 }
3491 return ret;
3492}
3493
8fe23e05 3494/*
d8adde17 3495 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3496 * hold mem_hotplug_begin/end().
8fe23e05
DR
3497 */
3498void kswapd_stop(int nid)
3499{
3500 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3501
d8adde17 3502 if (kswapd) {
8fe23e05 3503 kthread_stop(kswapd);
d8adde17
JL
3504 NODE_DATA(nid)->kswapd = NULL;
3505 }
8fe23e05
DR
3506}
3507
1da177e4
LT
3508static int __init kswapd_init(void)
3509{
3218ae14 3510 int nid;
69e05944 3511
1da177e4 3512 swap_setup();
48fb2e24 3513 for_each_node_state(nid, N_MEMORY)
3218ae14 3514 kswapd_run(nid);
1da177e4
LT
3515 hotcpu_notifier(cpu_callback, 0);
3516 return 0;
3517}
3518
3519module_init(kswapd_init)
9eeff239
CL
3520
3521#ifdef CONFIG_NUMA
3522/*
3523 * Zone reclaim mode
3524 *
3525 * If non-zero call zone_reclaim when the number of free pages falls below
3526 * the watermarks.
9eeff239
CL
3527 */
3528int zone_reclaim_mode __read_mostly;
3529
1b2ffb78 3530#define RECLAIM_OFF 0
7d03431c 3531#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3532#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3533#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3534
a92f7126
CL
3535/*
3536 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3537 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3538 * a zone.
3539 */
3540#define ZONE_RECLAIM_PRIORITY 4
3541
9614634f
CL
3542/*
3543 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3544 * occur.
3545 */
3546int sysctl_min_unmapped_ratio = 1;
3547
0ff38490
CL
3548/*
3549 * If the number of slab pages in a zone grows beyond this percentage then
3550 * slab reclaim needs to occur.
3551 */
3552int sysctl_min_slab_ratio = 5;
3553
90afa5de
MG
3554static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3555{
3556 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3557 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3558 zone_page_state(zone, NR_ACTIVE_FILE);
3559
3560 /*
3561 * It's possible for there to be more file mapped pages than
3562 * accounted for by the pages on the file LRU lists because
3563 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3564 */
3565 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3566}
3567
3568/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3569static long zone_pagecache_reclaimable(struct zone *zone)
3570{
3571 long nr_pagecache_reclaimable;
3572 long delta = 0;
3573
3574 /*
3575 * If RECLAIM_SWAP is set, then all file pages are considered
3576 * potentially reclaimable. Otherwise, we have to worry about
3577 * pages like swapcache and zone_unmapped_file_pages() provides
3578 * a better estimate
3579 */
3580 if (zone_reclaim_mode & RECLAIM_SWAP)
3581 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3582 else
3583 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3584
3585 /* If we can't clean pages, remove dirty pages from consideration */
3586 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3587 delta += zone_page_state(zone, NR_FILE_DIRTY);
3588
3589 /* Watch for any possible underflows due to delta */
3590 if (unlikely(delta > nr_pagecache_reclaimable))
3591 delta = nr_pagecache_reclaimable;
3592
3593 return nr_pagecache_reclaimable - delta;
3594}
3595
9eeff239
CL
3596/*
3597 * Try to free up some pages from this zone through reclaim.
3598 */
179e9639 3599static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3600{
7fb2d46d 3601 /* Minimum pages needed in order to stay on node */
69e05944 3602 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3603 struct task_struct *p = current;
3604 struct reclaim_state reclaim_state;
179e9639
AM
3605 struct scan_control sc = {
3606 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3607 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3608 .may_swap = 1,
62b726c1 3609 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3610 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3611 .order = order,
9e3b2f8c 3612 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3613 };
a09ed5e0
YH
3614 struct shrink_control shrink = {
3615 .gfp_mask = sc.gfp_mask,
3616 };
15748048 3617 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3618
9eeff239 3619 cond_resched();
d4f7796e
CL
3620 /*
3621 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3622 * and we also need to be able to write out pages for RECLAIM_WRITE
3623 * and RECLAIM_SWAP.
3624 */
3625 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3626 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3627 reclaim_state.reclaimed_slab = 0;
3628 p->reclaim_state = &reclaim_state;
c84db23c 3629
90afa5de 3630 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3631 /*
3632 * Free memory by calling shrink zone with increasing
3633 * priorities until we have enough memory freed.
3634 */
0ff38490 3635 do {
9e3b2f8c
KK
3636 shrink_zone(zone, &sc);
3637 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3638 }
c84db23c 3639
15748048
KM
3640 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3641 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3642 /*
7fb2d46d 3643 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3644 * many pages were freed in this zone. So we take the current
3645 * number of slab pages and shake the slab until it is reduced
3646 * by the same nr_pages that we used for reclaiming unmapped
3647 * pages.
2a16e3f4 3648 */
0ce3d744
DC
3649 nodes_clear(shrink.nodes_to_scan);
3650 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3651 for (;;) {
3652 unsigned long lru_pages = zone_reclaimable_pages(zone);
3653
3654 /* No reclaimable slab or very low memory pressure */
1495f230 3655 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3656 break;
3657
3658 /* Freed enough memory */
3659 nr_slab_pages1 = zone_page_state(zone,
3660 NR_SLAB_RECLAIMABLE);
3661 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3662 break;
3663 }
83e33a47
CL
3664
3665 /*
3666 * Update nr_reclaimed by the number of slab pages we
3667 * reclaimed from this zone.
3668 */
15748048
KM
3669 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3670 if (nr_slab_pages1 < nr_slab_pages0)
3671 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3672 }
3673
9eeff239 3674 p->reclaim_state = NULL;
d4f7796e 3675 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3676 lockdep_clear_current_reclaim_state();
a79311c1 3677 return sc.nr_reclaimed >= nr_pages;
9eeff239 3678}
179e9639
AM
3679
3680int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3681{
179e9639 3682 int node_id;
d773ed6b 3683 int ret;
179e9639
AM
3684
3685 /*
0ff38490
CL
3686 * Zone reclaim reclaims unmapped file backed pages and
3687 * slab pages if we are over the defined limits.
34aa1330 3688 *
9614634f
CL
3689 * A small portion of unmapped file backed pages is needed for
3690 * file I/O otherwise pages read by file I/O will be immediately
3691 * thrown out if the zone is overallocated. So we do not reclaim
3692 * if less than a specified percentage of the zone is used by
3693 * unmapped file backed pages.
179e9639 3694 */
90afa5de
MG
3695 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3696 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3697 return ZONE_RECLAIM_FULL;
179e9639 3698
6e543d57 3699 if (!zone_reclaimable(zone))
fa5e084e 3700 return ZONE_RECLAIM_FULL;
d773ed6b 3701
179e9639 3702 /*
d773ed6b 3703 * Do not scan if the allocation should not be delayed.
179e9639 3704 */
d773ed6b 3705 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3706 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3707
3708 /*
3709 * Only run zone reclaim on the local zone or on zones that do not
3710 * have associated processors. This will favor the local processor
3711 * over remote processors and spread off node memory allocations
3712 * as wide as possible.
3713 */
89fa3024 3714 node_id = zone_to_nid(zone);
37c0708d 3715 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3716 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3717
3718 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3719 return ZONE_RECLAIM_NOSCAN;
3720
d773ed6b
DR
3721 ret = __zone_reclaim(zone, gfp_mask, order);
3722 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3723
24cf7251
MG
3724 if (!ret)
3725 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3726
d773ed6b 3727 return ret;
179e9639 3728}
9eeff239 3729#endif
894bc310 3730
894bc310
LS
3731/*
3732 * page_evictable - test whether a page is evictable
3733 * @page: the page to test
894bc310
LS
3734 *
3735 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3736 * lists vs unevictable list.
894bc310
LS
3737 *
3738 * Reasons page might not be evictable:
ba9ddf49 3739 * (1) page's mapping marked unevictable
b291f000 3740 * (2) page is part of an mlocked VMA
ba9ddf49 3741 *
894bc310 3742 */
39b5f29a 3743int page_evictable(struct page *page)
894bc310 3744{
39b5f29a 3745 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3746}
89e004ea 3747
85046579 3748#ifdef CONFIG_SHMEM
89e004ea 3749/**
24513264
HD
3750 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3751 * @pages: array of pages to check
3752 * @nr_pages: number of pages to check
89e004ea 3753 *
24513264 3754 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3755 *
3756 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3757 */
24513264 3758void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3759{
925b7673 3760 struct lruvec *lruvec;
24513264
HD
3761 struct zone *zone = NULL;
3762 int pgscanned = 0;
3763 int pgrescued = 0;
3764 int i;
89e004ea 3765
24513264
HD
3766 for (i = 0; i < nr_pages; i++) {
3767 struct page *page = pages[i];
3768 struct zone *pagezone;
89e004ea 3769
24513264
HD
3770 pgscanned++;
3771 pagezone = page_zone(page);
3772 if (pagezone != zone) {
3773 if (zone)
3774 spin_unlock_irq(&zone->lru_lock);
3775 zone = pagezone;
3776 spin_lock_irq(&zone->lru_lock);
3777 }
fa9add64 3778 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3779
24513264
HD
3780 if (!PageLRU(page) || !PageUnevictable(page))
3781 continue;
89e004ea 3782
39b5f29a 3783 if (page_evictable(page)) {
24513264
HD
3784 enum lru_list lru = page_lru_base_type(page);
3785
309381fe 3786 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3787 ClearPageUnevictable(page);
fa9add64
HD
3788 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3789 add_page_to_lru_list(page, lruvec, lru);
24513264 3790 pgrescued++;
89e004ea 3791 }
24513264 3792 }
89e004ea 3793
24513264
HD
3794 if (zone) {
3795 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3796 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3797 spin_unlock_irq(&zone->lru_lock);
89e004ea 3798 }
89e004ea 3799}
85046579 3800#endif /* CONFIG_SHMEM */
af936a16 3801
264e56d8 3802static void warn_scan_unevictable_pages(void)
af936a16 3803{
264e56d8 3804 printk_once(KERN_WARNING
25bd91bd 3805 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3806 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3807 "one, please send an email to linux-mm@kvack.org.\n",
3808 current->comm);
af936a16
LS
3809}
3810
3811/*
3812 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3813 * all nodes' unevictable lists for evictable pages
3814 */
3815unsigned long scan_unevictable_pages;
3816
3817int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3818 void __user *buffer,
af936a16
LS
3819 size_t *length, loff_t *ppos)
3820{
264e56d8 3821 warn_scan_unevictable_pages();
8d65af78 3822 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3823 scan_unevictable_pages = 0;
3824 return 0;
3825}
3826
e4455abb 3827#ifdef CONFIG_NUMA
af936a16
LS
3828/*
3829 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3830 * a specified node's per zone unevictable lists for evictable pages.
3831 */
3832
10fbcf4c
KS
3833static ssize_t read_scan_unevictable_node(struct device *dev,
3834 struct device_attribute *attr,
af936a16
LS
3835 char *buf)
3836{
264e56d8 3837 warn_scan_unevictable_pages();
af936a16
LS
3838 return sprintf(buf, "0\n"); /* always zero; should fit... */
3839}
3840
10fbcf4c
KS
3841static ssize_t write_scan_unevictable_node(struct device *dev,
3842 struct device_attribute *attr,
af936a16
LS
3843 const char *buf, size_t count)
3844{
264e56d8 3845 warn_scan_unevictable_pages();
af936a16
LS
3846 return 1;
3847}
3848
3849
10fbcf4c 3850static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3851 read_scan_unevictable_node,
3852 write_scan_unevictable_node);
3853
3854int scan_unevictable_register_node(struct node *node)
3855{
10fbcf4c 3856 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3857}
3858
3859void scan_unevictable_unregister_node(struct node *node)
3860{
10fbcf4c 3861 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3862}
e4455abb 3863#endif