vmscan: do not evict inactive pages when skipping an active list scan
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
1da177e4 51struct scan_control {
1da177e4
LT
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned;
54
a79311c1
RR
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed;
57
22fba335
KM
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim;
60
7b51755c
KM
61 unsigned long hibernation_mode;
62
1da177e4 63 /* This context's GFP mask */
6daa0e28 64 gfp_t gfp_mask;
1da177e4
LT
65
66 int may_writepage;
67
a6dc60f8
JW
68 /* Can mapped pages be reclaimed? */
69 int may_unmap;
f1fd1067 70
2e2e4259
KM
71 /* Can pages be swapped as part of reclaim? */
72 int may_swap;
73
d6277db4 74 int swappiness;
408d8544
NP
75
76 int all_unreclaimable;
5ad333eb
AW
77
78 int order;
66e1707b
BS
79
80 /* Which cgroup do we reclaim from */
81 struct mem_cgroup *mem_cgroup;
82
327c0e96
KH
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
66e1707b
BS
89 /* Pluggable isolate pages callback */
90 unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
91 unsigned long *scanned, int order, int mode,
92 struct zone *z, struct mem_cgroup *mem_cont,
4f98a2fe 93 int active, int file);
1da177e4
LT
94};
95
1da177e4
LT
96#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
97
98#ifdef ARCH_HAS_PREFETCH
99#define prefetch_prev_lru_page(_page, _base, _field) \
100 do { \
101 if ((_page)->lru.prev != _base) { \
102 struct page *prev; \
103 \
104 prev = lru_to_page(&(_page->lru)); \
105 prefetch(&prev->_field); \
106 } \
107 } while (0)
108#else
109#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110#endif
111
112#ifdef ARCH_HAS_PREFETCHW
113#define prefetchw_prev_lru_page(_page, _base, _field) \
114 do { \
115 if ((_page)->lru.prev != _base) { \
116 struct page *prev; \
117 \
118 prev = lru_to_page(&(_page->lru)); \
119 prefetchw(&prev->_field); \
120 } \
121 } while (0)
122#else
123#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
124#endif
125
126/*
127 * From 0 .. 100. Higher means more swappy.
128 */
129int vm_swappiness = 60;
bd1e22b8 130long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
131
132static LIST_HEAD(shrinker_list);
133static DECLARE_RWSEM(shrinker_rwsem);
134
00f0b825 135#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 136#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 137#else
e72e2bd6 138#define scanning_global_lru(sc) (1)
91a45470
KH
139#endif
140
6e901571
KM
141static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
142 struct scan_control *sc)
143{
e72e2bd6 144 if (!scanning_global_lru(sc))
3e2f41f1
KM
145 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
146
6e901571
KM
147 return &zone->reclaim_stat;
148}
149
0b217676
VL
150static unsigned long zone_nr_lru_pages(struct zone *zone,
151 struct scan_control *sc, enum lru_list lru)
c9f299d9 152{
e72e2bd6 153 if (!scanning_global_lru(sc))
a3d8e054
KM
154 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
155
c9f299d9
KM
156 return zone_page_state(zone, NR_LRU_BASE + lru);
157}
158
159
1da177e4
LT
160/*
161 * Add a shrinker callback to be called from the vm
162 */
8e1f936b 163void register_shrinker(struct shrinker *shrinker)
1da177e4 164{
8e1f936b
RR
165 shrinker->nr = 0;
166 down_write(&shrinker_rwsem);
167 list_add_tail(&shrinker->list, &shrinker_list);
168 up_write(&shrinker_rwsem);
1da177e4 169}
8e1f936b 170EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
171
172/*
173 * Remove one
174 */
8e1f936b 175void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
176{
177 down_write(&shrinker_rwsem);
178 list_del(&shrinker->list);
179 up_write(&shrinker_rwsem);
1da177e4 180}
8e1f936b 181EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
182
183#define SHRINK_BATCH 128
184/*
185 * Call the shrink functions to age shrinkable caches
186 *
187 * Here we assume it costs one seek to replace a lru page and that it also
188 * takes a seek to recreate a cache object. With this in mind we age equal
189 * percentages of the lru and ageable caches. This should balance the seeks
190 * generated by these structures.
191 *
183ff22b 192 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
193 * slab to avoid swapping.
194 *
195 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
196 *
197 * `lru_pages' represents the number of on-LRU pages in all the zones which
198 * are eligible for the caller's allocation attempt. It is used for balancing
199 * slab reclaim versus page reclaim.
b15e0905
AM
200 *
201 * Returns the number of slab objects which we shrunk.
1da177e4 202 */
69e05944
AM
203unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
204 unsigned long lru_pages)
1da177e4
LT
205{
206 struct shrinker *shrinker;
69e05944 207 unsigned long ret = 0;
1da177e4
LT
208
209 if (scanned == 0)
210 scanned = SWAP_CLUSTER_MAX;
211
212 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 213 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
214
215 list_for_each_entry(shrinker, &shrinker_list, list) {
216 unsigned long long delta;
217 unsigned long total_scan;
8e1f936b 218 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
1da177e4
LT
219
220 delta = (4 * scanned) / shrinker->seeks;
ea164d73 221 delta *= max_pass;
1da177e4
LT
222 do_div(delta, lru_pages + 1);
223 shrinker->nr += delta;
ea164d73 224 if (shrinker->nr < 0) {
88c3bd70
DR
225 printk(KERN_ERR "shrink_slab: %pF negative objects to "
226 "delete nr=%ld\n",
227 shrinker->shrink, shrinker->nr);
ea164d73
AA
228 shrinker->nr = max_pass;
229 }
230
231 /*
232 * Avoid risking looping forever due to too large nr value:
233 * never try to free more than twice the estimate number of
234 * freeable entries.
235 */
236 if (shrinker->nr > max_pass * 2)
237 shrinker->nr = max_pass * 2;
1da177e4
LT
238
239 total_scan = shrinker->nr;
240 shrinker->nr = 0;
241
242 while (total_scan >= SHRINK_BATCH) {
243 long this_scan = SHRINK_BATCH;
244 int shrink_ret;
b15e0905 245 int nr_before;
1da177e4 246
8e1f936b
RR
247 nr_before = (*shrinker->shrink)(0, gfp_mask);
248 shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
1da177e4
LT
249 if (shrink_ret == -1)
250 break;
b15e0905
AM
251 if (shrink_ret < nr_before)
252 ret += nr_before - shrink_ret;
f8891e5e 253 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
254 total_scan -= this_scan;
255
256 cond_resched();
257 }
258
259 shrinker->nr += total_scan;
260 }
261 up_read(&shrinker_rwsem);
b15e0905 262 return ret;
1da177e4
LT
263}
264
265/* Called without lock on whether page is mapped, so answer is unstable */
266static inline int page_mapping_inuse(struct page *page)
267{
268 struct address_space *mapping;
269
270 /* Page is in somebody's page tables. */
271 if (page_mapped(page))
272 return 1;
273
274 /* Be more reluctant to reclaim swapcache than pagecache */
275 if (PageSwapCache(page))
276 return 1;
277
278 mapping = page_mapping(page);
279 if (!mapping)
280 return 0;
281
282 /* File is mmap'd by somebody? */
283 return mapping_mapped(mapping);
284}
285
286static inline int is_page_cache_freeable(struct page *page)
287{
ceddc3a5
JW
288 /*
289 * A freeable page cache page is referenced only by the caller
290 * that isolated the page, the page cache radix tree and
291 * optional buffer heads at page->private.
292 */
edcf4748 293 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
294}
295
296static int may_write_to_queue(struct backing_dev_info *bdi)
297{
930d9152 298 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
299 return 1;
300 if (!bdi_write_congested(bdi))
301 return 1;
302 if (bdi == current->backing_dev_info)
303 return 1;
304 return 0;
305}
306
307/*
308 * We detected a synchronous write error writing a page out. Probably
309 * -ENOSPC. We need to propagate that into the address_space for a subsequent
310 * fsync(), msync() or close().
311 *
312 * The tricky part is that after writepage we cannot touch the mapping: nothing
313 * prevents it from being freed up. But we have a ref on the page and once
314 * that page is locked, the mapping is pinned.
315 *
316 * We're allowed to run sleeping lock_page() here because we know the caller has
317 * __GFP_FS.
318 */
319static void handle_write_error(struct address_space *mapping,
320 struct page *page, int error)
321{
322 lock_page(page);
3e9f45bd
GC
323 if (page_mapping(page) == mapping)
324 mapping_set_error(mapping, error);
1da177e4
LT
325 unlock_page(page);
326}
327
c661b078
AW
328/* Request for sync pageout. */
329enum pageout_io {
330 PAGEOUT_IO_ASYNC,
331 PAGEOUT_IO_SYNC,
332};
333
04e62a29
CL
334/* possible outcome of pageout() */
335typedef enum {
336 /* failed to write page out, page is locked */
337 PAGE_KEEP,
338 /* move page to the active list, page is locked */
339 PAGE_ACTIVATE,
340 /* page has been sent to the disk successfully, page is unlocked */
341 PAGE_SUCCESS,
342 /* page is clean and locked */
343 PAGE_CLEAN,
344} pageout_t;
345
1da177e4 346/*
1742f19f
AM
347 * pageout is called by shrink_page_list() for each dirty page.
348 * Calls ->writepage().
1da177e4 349 */
c661b078
AW
350static pageout_t pageout(struct page *page, struct address_space *mapping,
351 enum pageout_io sync_writeback)
1da177e4
LT
352{
353 /*
354 * If the page is dirty, only perform writeback if that write
355 * will be non-blocking. To prevent this allocation from being
356 * stalled by pagecache activity. But note that there may be
357 * stalls if we need to run get_block(). We could test
358 * PagePrivate for that.
359 *
6aceb53b 360 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
361 * this page's queue, we can perform writeback even if that
362 * will block.
363 *
364 * If the page is swapcache, write it back even if that would
365 * block, for some throttling. This happens by accident, because
366 * swap_backing_dev_info is bust: it doesn't reflect the
367 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
368 */
369 if (!is_page_cache_freeable(page))
370 return PAGE_KEEP;
371 if (!mapping) {
372 /*
373 * Some data journaling orphaned pages can have
374 * page->mapping == NULL while being dirty with clean buffers.
375 */
266cf658 376 if (page_has_private(page)) {
1da177e4
LT
377 if (try_to_free_buffers(page)) {
378 ClearPageDirty(page);
d40cee24 379 printk("%s: orphaned page\n", __func__);
1da177e4
LT
380 return PAGE_CLEAN;
381 }
382 }
383 return PAGE_KEEP;
384 }
385 if (mapping->a_ops->writepage == NULL)
386 return PAGE_ACTIVATE;
387 if (!may_write_to_queue(mapping->backing_dev_info))
388 return PAGE_KEEP;
389
390 if (clear_page_dirty_for_io(page)) {
391 int res;
392 struct writeback_control wbc = {
393 .sync_mode = WB_SYNC_NONE,
394 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
395 .range_start = 0,
396 .range_end = LLONG_MAX,
1da177e4
LT
397 .nonblocking = 1,
398 .for_reclaim = 1,
399 };
400
401 SetPageReclaim(page);
402 res = mapping->a_ops->writepage(page, &wbc);
403 if (res < 0)
404 handle_write_error(mapping, page, res);
994fc28c 405 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
406 ClearPageReclaim(page);
407 return PAGE_ACTIVATE;
408 }
c661b078
AW
409
410 /*
411 * Wait on writeback if requested to. This happens when
412 * direct reclaiming a large contiguous area and the
413 * first attempt to free a range of pages fails.
414 */
415 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
416 wait_on_page_writeback(page);
417
1da177e4
LT
418 if (!PageWriteback(page)) {
419 /* synchronous write or broken a_ops? */
420 ClearPageReclaim(page);
421 }
e129b5c2 422 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
423 return PAGE_SUCCESS;
424 }
425
426 return PAGE_CLEAN;
427}
428
a649fd92 429/*
e286781d
NP
430 * Same as remove_mapping, but if the page is removed from the mapping, it
431 * gets returned with a refcount of 0.
a649fd92 432 */
e286781d 433static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 434{
28e4d965
NP
435 BUG_ON(!PageLocked(page));
436 BUG_ON(mapping != page_mapping(page));
49d2e9cc 437
19fd6231 438 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 439 /*
0fd0e6b0
NP
440 * The non racy check for a busy page.
441 *
442 * Must be careful with the order of the tests. When someone has
443 * a ref to the page, it may be possible that they dirty it then
444 * drop the reference. So if PageDirty is tested before page_count
445 * here, then the following race may occur:
446 *
447 * get_user_pages(&page);
448 * [user mapping goes away]
449 * write_to(page);
450 * !PageDirty(page) [good]
451 * SetPageDirty(page);
452 * put_page(page);
453 * !page_count(page) [good, discard it]
454 *
455 * [oops, our write_to data is lost]
456 *
457 * Reversing the order of the tests ensures such a situation cannot
458 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
459 * load is not satisfied before that of page->_count.
460 *
461 * Note that if SetPageDirty is always performed via set_page_dirty,
462 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 463 */
e286781d 464 if (!page_freeze_refs(page, 2))
49d2e9cc 465 goto cannot_free;
e286781d
NP
466 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
467 if (unlikely(PageDirty(page))) {
468 page_unfreeze_refs(page, 2);
49d2e9cc 469 goto cannot_free;
e286781d 470 }
49d2e9cc
CL
471
472 if (PageSwapCache(page)) {
473 swp_entry_t swap = { .val = page_private(page) };
474 __delete_from_swap_cache(page);
19fd6231 475 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 476 swapcache_free(swap, page);
e286781d
NP
477 } else {
478 __remove_from_page_cache(page);
19fd6231 479 spin_unlock_irq(&mapping->tree_lock);
e767e056 480 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
481 }
482
49d2e9cc
CL
483 return 1;
484
485cannot_free:
19fd6231 486 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
487 return 0;
488}
489
e286781d
NP
490/*
491 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
492 * someone else has a ref on the page, abort and return 0. If it was
493 * successfully detached, return 1. Assumes the caller has a single ref on
494 * this page.
495 */
496int remove_mapping(struct address_space *mapping, struct page *page)
497{
498 if (__remove_mapping(mapping, page)) {
499 /*
500 * Unfreezing the refcount with 1 rather than 2 effectively
501 * drops the pagecache ref for us without requiring another
502 * atomic operation.
503 */
504 page_unfreeze_refs(page, 1);
505 return 1;
506 }
507 return 0;
508}
509
894bc310
LS
510/**
511 * putback_lru_page - put previously isolated page onto appropriate LRU list
512 * @page: page to be put back to appropriate lru list
513 *
514 * Add previously isolated @page to appropriate LRU list.
515 * Page may still be unevictable for other reasons.
516 *
517 * lru_lock must not be held, interrupts must be enabled.
518 */
894bc310
LS
519void putback_lru_page(struct page *page)
520{
521 int lru;
522 int active = !!TestClearPageActive(page);
bbfd28ee 523 int was_unevictable = PageUnevictable(page);
894bc310
LS
524
525 VM_BUG_ON(PageLRU(page));
526
527redo:
528 ClearPageUnevictable(page);
529
530 if (page_evictable(page, NULL)) {
531 /*
532 * For evictable pages, we can use the cache.
533 * In event of a race, worst case is we end up with an
534 * unevictable page on [in]active list.
535 * We know how to handle that.
536 */
401a8e1c 537 lru = active + page_lru_base_type(page);
894bc310
LS
538 lru_cache_add_lru(page, lru);
539 } else {
540 /*
541 * Put unevictable pages directly on zone's unevictable
542 * list.
543 */
544 lru = LRU_UNEVICTABLE;
545 add_page_to_unevictable_list(page);
6a7b9548
JW
546 /*
547 * When racing with an mlock clearing (page is
548 * unlocked), make sure that if the other thread does
549 * not observe our setting of PG_lru and fails
550 * isolation, we see PG_mlocked cleared below and move
551 * the page back to the evictable list.
552 *
553 * The other side is TestClearPageMlocked().
554 */
555 smp_mb();
894bc310 556 }
894bc310
LS
557
558 /*
559 * page's status can change while we move it among lru. If an evictable
560 * page is on unevictable list, it never be freed. To avoid that,
561 * check after we added it to the list, again.
562 */
563 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
564 if (!isolate_lru_page(page)) {
565 put_page(page);
566 goto redo;
567 }
568 /* This means someone else dropped this page from LRU
569 * So, it will be freed or putback to LRU again. There is
570 * nothing to do here.
571 */
572 }
573
bbfd28ee
LS
574 if (was_unevictable && lru != LRU_UNEVICTABLE)
575 count_vm_event(UNEVICTABLE_PGRESCUED);
576 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
577 count_vm_event(UNEVICTABLE_PGCULLED);
578
894bc310
LS
579 put_page(page); /* drop ref from isolate */
580}
581
1da177e4 582/*
1742f19f 583 * shrink_page_list() returns the number of reclaimed pages
1da177e4 584 */
1742f19f 585static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
586 struct scan_control *sc,
587 enum pageout_io sync_writeback)
1da177e4
LT
588{
589 LIST_HEAD(ret_pages);
590 struct pagevec freed_pvec;
591 int pgactivate = 0;
05ff5137 592 unsigned long nr_reclaimed = 0;
6fe6b7e3 593 unsigned long vm_flags;
1da177e4
LT
594
595 cond_resched();
596
597 pagevec_init(&freed_pvec, 1);
598 while (!list_empty(page_list)) {
599 struct address_space *mapping;
600 struct page *page;
601 int may_enter_fs;
602 int referenced;
603
604 cond_resched();
605
606 page = lru_to_page(page_list);
607 list_del(&page->lru);
608
529ae9aa 609 if (!trylock_page(page))
1da177e4
LT
610 goto keep;
611
725d704e 612 VM_BUG_ON(PageActive(page));
1da177e4
LT
613
614 sc->nr_scanned++;
80e43426 615
b291f000
NP
616 if (unlikely(!page_evictable(page, NULL)))
617 goto cull_mlocked;
894bc310 618
a6dc60f8 619 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
620 goto keep_locked;
621
1da177e4
LT
622 /* Double the slab pressure for mapped and swapcache pages */
623 if (page_mapped(page) || PageSwapCache(page))
624 sc->nr_scanned++;
625
c661b078
AW
626 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
627 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
628
629 if (PageWriteback(page)) {
630 /*
631 * Synchronous reclaim is performed in two passes,
632 * first an asynchronous pass over the list to
633 * start parallel writeback, and a second synchronous
634 * pass to wait for the IO to complete. Wait here
635 * for any page for which writeback has already
636 * started.
637 */
638 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
639 wait_on_page_writeback(page);
4dd4b920 640 else
c661b078
AW
641 goto keep_locked;
642 }
1da177e4 643
6fe6b7e3
WF
644 referenced = page_referenced(page, 1,
645 sc->mem_cgroup, &vm_flags);
03ef83af
MK
646 /*
647 * In active use or really unfreeable? Activate it.
648 * If page which have PG_mlocked lost isoltation race,
649 * try_to_unmap moves it to unevictable list
650 */
5ad333eb 651 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
03ef83af
MK
652 referenced && page_mapping_inuse(page)
653 && !(vm_flags & VM_LOCKED))
1da177e4
LT
654 goto activate_locked;
655
1da177e4
LT
656 /*
657 * Anonymous process memory has backing store?
658 * Try to allocate it some swap space here.
659 */
b291f000 660 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
661 if (!(sc->gfp_mask & __GFP_IO))
662 goto keep_locked;
ac47b003 663 if (!add_to_swap(page))
1da177e4 664 goto activate_locked;
63eb6b93 665 may_enter_fs = 1;
b291f000 666 }
1da177e4
LT
667
668 mapping = page_mapping(page);
1da177e4
LT
669
670 /*
671 * The page is mapped into the page tables of one or more
672 * processes. Try to unmap it here.
673 */
674 if (page_mapped(page) && mapping) {
14fa31b8 675 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
676 case SWAP_FAIL:
677 goto activate_locked;
678 case SWAP_AGAIN:
679 goto keep_locked;
b291f000
NP
680 case SWAP_MLOCK:
681 goto cull_mlocked;
1da177e4
LT
682 case SWAP_SUCCESS:
683 ; /* try to free the page below */
684 }
685 }
686
687 if (PageDirty(page)) {
5ad333eb 688 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
1da177e4 689 goto keep_locked;
4dd4b920 690 if (!may_enter_fs)
1da177e4 691 goto keep_locked;
52a8363e 692 if (!sc->may_writepage)
1da177e4
LT
693 goto keep_locked;
694
695 /* Page is dirty, try to write it out here */
c661b078 696 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
697 case PAGE_KEEP:
698 goto keep_locked;
699 case PAGE_ACTIVATE:
700 goto activate_locked;
701 case PAGE_SUCCESS:
4dd4b920 702 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
703 goto keep;
704 /*
705 * A synchronous write - probably a ramdisk. Go
706 * ahead and try to reclaim the page.
707 */
529ae9aa 708 if (!trylock_page(page))
1da177e4
LT
709 goto keep;
710 if (PageDirty(page) || PageWriteback(page))
711 goto keep_locked;
712 mapping = page_mapping(page);
713 case PAGE_CLEAN:
714 ; /* try to free the page below */
715 }
716 }
717
718 /*
719 * If the page has buffers, try to free the buffer mappings
720 * associated with this page. If we succeed we try to free
721 * the page as well.
722 *
723 * We do this even if the page is PageDirty().
724 * try_to_release_page() does not perform I/O, but it is
725 * possible for a page to have PageDirty set, but it is actually
726 * clean (all its buffers are clean). This happens if the
727 * buffers were written out directly, with submit_bh(). ext3
894bc310 728 * will do this, as well as the blockdev mapping.
1da177e4
LT
729 * try_to_release_page() will discover that cleanness and will
730 * drop the buffers and mark the page clean - it can be freed.
731 *
732 * Rarely, pages can have buffers and no ->mapping. These are
733 * the pages which were not successfully invalidated in
734 * truncate_complete_page(). We try to drop those buffers here
735 * and if that worked, and the page is no longer mapped into
736 * process address space (page_count == 1) it can be freed.
737 * Otherwise, leave the page on the LRU so it is swappable.
738 */
266cf658 739 if (page_has_private(page)) {
1da177e4
LT
740 if (!try_to_release_page(page, sc->gfp_mask))
741 goto activate_locked;
e286781d
NP
742 if (!mapping && page_count(page) == 1) {
743 unlock_page(page);
744 if (put_page_testzero(page))
745 goto free_it;
746 else {
747 /*
748 * rare race with speculative reference.
749 * the speculative reference will free
750 * this page shortly, so we may
751 * increment nr_reclaimed here (and
752 * leave it off the LRU).
753 */
754 nr_reclaimed++;
755 continue;
756 }
757 }
1da177e4
LT
758 }
759
e286781d 760 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 761 goto keep_locked;
1da177e4 762
a978d6f5
NP
763 /*
764 * At this point, we have no other references and there is
765 * no way to pick any more up (removed from LRU, removed
766 * from pagecache). Can use non-atomic bitops now (and
767 * we obviously don't have to worry about waking up a process
768 * waiting on the page lock, because there are no references.
769 */
770 __clear_page_locked(page);
e286781d 771free_it:
05ff5137 772 nr_reclaimed++;
e286781d
NP
773 if (!pagevec_add(&freed_pvec, page)) {
774 __pagevec_free(&freed_pvec);
775 pagevec_reinit(&freed_pvec);
776 }
1da177e4
LT
777 continue;
778
b291f000 779cull_mlocked:
63d6c5ad
HD
780 if (PageSwapCache(page))
781 try_to_free_swap(page);
b291f000
NP
782 unlock_page(page);
783 putback_lru_page(page);
784 continue;
785
1da177e4 786activate_locked:
68a22394
RR
787 /* Not a candidate for swapping, so reclaim swap space. */
788 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 789 try_to_free_swap(page);
894bc310 790 VM_BUG_ON(PageActive(page));
1da177e4
LT
791 SetPageActive(page);
792 pgactivate++;
793keep_locked:
794 unlock_page(page);
795keep:
796 list_add(&page->lru, &ret_pages);
b291f000 797 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4
LT
798 }
799 list_splice(&ret_pages, page_list);
800 if (pagevec_count(&freed_pvec))
e286781d 801 __pagevec_free(&freed_pvec);
f8891e5e 802 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 803 return nr_reclaimed;
1da177e4
LT
804}
805
5ad333eb
AW
806/* LRU Isolation modes. */
807#define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
808#define ISOLATE_ACTIVE 1 /* Isolate active pages. */
809#define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
810
811/*
812 * Attempt to remove the specified page from its LRU. Only take this page
813 * if it is of the appropriate PageActive status. Pages which are being
814 * freed elsewhere are also ignored.
815 *
816 * page: page to consider
817 * mode: one of the LRU isolation modes defined above
818 *
819 * returns 0 on success, -ve errno on failure.
820 */
4f98a2fe 821int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
822{
823 int ret = -EINVAL;
824
825 /* Only take pages on the LRU. */
826 if (!PageLRU(page))
827 return ret;
828
829 /*
830 * When checking the active state, we need to be sure we are
831 * dealing with comparible boolean values. Take the logical not
832 * of each.
833 */
834 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
835 return ret;
836
6c0b1351 837 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
838 return ret;
839
894bc310
LS
840 /*
841 * When this function is being called for lumpy reclaim, we
842 * initially look into all LRU pages, active, inactive and
843 * unevictable; only give shrink_page_list evictable pages.
844 */
845 if (PageUnevictable(page))
846 return ret;
847
5ad333eb 848 ret = -EBUSY;
08e552c6 849
5ad333eb
AW
850 if (likely(get_page_unless_zero(page))) {
851 /*
852 * Be careful not to clear PageLRU until after we're
853 * sure the page is not being freed elsewhere -- the
854 * page release code relies on it.
855 */
856 ClearPageLRU(page);
857 ret = 0;
858 }
859
860 return ret;
861}
862
1da177e4
LT
863/*
864 * zone->lru_lock is heavily contended. Some of the functions that
865 * shrink the lists perform better by taking out a batch of pages
866 * and working on them outside the LRU lock.
867 *
868 * For pagecache intensive workloads, this function is the hottest
869 * spot in the kernel (apart from copy_*_user functions).
870 *
871 * Appropriate locks must be held before calling this function.
872 *
873 * @nr_to_scan: The number of pages to look through on the list.
874 * @src: The LRU list to pull pages off.
875 * @dst: The temp list to put pages on to.
876 * @scanned: The number of pages that were scanned.
5ad333eb
AW
877 * @order: The caller's attempted allocation order
878 * @mode: One of the LRU isolation modes
4f98a2fe 879 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
880 *
881 * returns how many pages were moved onto *@dst.
882 */
69e05944
AM
883static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
884 struct list_head *src, struct list_head *dst,
4f98a2fe 885 unsigned long *scanned, int order, int mode, int file)
1da177e4 886{
69e05944 887 unsigned long nr_taken = 0;
c9b02d97 888 unsigned long scan;
1da177e4 889
c9b02d97 890 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
891 struct page *page;
892 unsigned long pfn;
893 unsigned long end_pfn;
894 unsigned long page_pfn;
895 int zone_id;
896
1da177e4
LT
897 page = lru_to_page(src);
898 prefetchw_prev_lru_page(page, src, flags);
899
725d704e 900 VM_BUG_ON(!PageLRU(page));
8d438f96 901
4f98a2fe 902 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
903 case 0:
904 list_move(&page->lru, dst);
2ffebca6 905 mem_cgroup_del_lru(page);
7c8ee9a8 906 nr_taken++;
5ad333eb
AW
907 break;
908
909 case -EBUSY:
910 /* else it is being freed elsewhere */
911 list_move(&page->lru, src);
2ffebca6 912 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 913 continue;
46453a6e 914
5ad333eb
AW
915 default:
916 BUG();
917 }
918
919 if (!order)
920 continue;
921
922 /*
923 * Attempt to take all pages in the order aligned region
924 * surrounding the tag page. Only take those pages of
925 * the same active state as that tag page. We may safely
926 * round the target page pfn down to the requested order
927 * as the mem_map is guarenteed valid out to MAX_ORDER,
928 * where that page is in a different zone we will detect
929 * it from its zone id and abort this block scan.
930 */
931 zone_id = page_zone_id(page);
932 page_pfn = page_to_pfn(page);
933 pfn = page_pfn & ~((1 << order) - 1);
934 end_pfn = pfn + (1 << order);
935 for (; pfn < end_pfn; pfn++) {
936 struct page *cursor_page;
937
938 /* The target page is in the block, ignore it. */
939 if (unlikely(pfn == page_pfn))
940 continue;
941
942 /* Avoid holes within the zone. */
943 if (unlikely(!pfn_valid_within(pfn)))
944 break;
945
946 cursor_page = pfn_to_page(pfn);
4f98a2fe 947
5ad333eb
AW
948 /* Check that we have not crossed a zone boundary. */
949 if (unlikely(page_zone_id(cursor_page) != zone_id))
950 continue;
de2e7567
MK
951
952 /*
953 * If we don't have enough swap space, reclaiming of
954 * anon page which don't already have a swap slot is
955 * pointless.
956 */
957 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
958 !PageSwapCache(cursor_page))
959 continue;
960
ee993b13 961 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 962 list_move(&cursor_page->lru, dst);
cb4cbcf6 963 mem_cgroup_del_lru(cursor_page);
5ad333eb
AW
964 nr_taken++;
965 scan++;
5ad333eb
AW
966 }
967 }
1da177e4
LT
968 }
969
970 *scanned = scan;
971 return nr_taken;
972}
973
66e1707b
BS
974static unsigned long isolate_pages_global(unsigned long nr,
975 struct list_head *dst,
976 unsigned long *scanned, int order,
977 int mode, struct zone *z,
978 struct mem_cgroup *mem_cont,
4f98a2fe 979 int active, int file)
66e1707b 980{
4f98a2fe 981 int lru = LRU_BASE;
66e1707b 982 if (active)
4f98a2fe
RR
983 lru += LRU_ACTIVE;
984 if (file)
985 lru += LRU_FILE;
986 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 987 mode, file);
66e1707b
BS
988}
989
5ad333eb
AW
990/*
991 * clear_active_flags() is a helper for shrink_active_list(), clearing
992 * any active bits from the pages in the list.
993 */
4f98a2fe
RR
994static unsigned long clear_active_flags(struct list_head *page_list,
995 unsigned int *count)
5ad333eb
AW
996{
997 int nr_active = 0;
4f98a2fe 998 int lru;
5ad333eb
AW
999 struct page *page;
1000
4f98a2fe 1001 list_for_each_entry(page, page_list, lru) {
401a8e1c 1002 lru = page_lru_base_type(page);
5ad333eb 1003 if (PageActive(page)) {
4f98a2fe 1004 lru += LRU_ACTIVE;
5ad333eb
AW
1005 ClearPageActive(page);
1006 nr_active++;
1007 }
4f98a2fe
RR
1008 count[lru]++;
1009 }
5ad333eb
AW
1010
1011 return nr_active;
1012}
1013
62695a84
NP
1014/**
1015 * isolate_lru_page - tries to isolate a page from its LRU list
1016 * @page: page to isolate from its LRU list
1017 *
1018 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1019 * vmstat statistic corresponding to whatever LRU list the page was on.
1020 *
1021 * Returns 0 if the page was removed from an LRU list.
1022 * Returns -EBUSY if the page was not on an LRU list.
1023 *
1024 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1025 * the active list, it will have PageActive set. If it was found on
1026 * the unevictable list, it will have the PageUnevictable bit set. That flag
1027 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1028 *
1029 * The vmstat statistic corresponding to the list on which the page was
1030 * found will be decremented.
1031 *
1032 * Restrictions:
1033 * (1) Must be called with an elevated refcount on the page. This is a
1034 * fundamentnal difference from isolate_lru_pages (which is called
1035 * without a stable reference).
1036 * (2) the lru_lock must not be held.
1037 * (3) interrupts must be enabled.
1038 */
1039int isolate_lru_page(struct page *page)
1040{
1041 int ret = -EBUSY;
1042
1043 if (PageLRU(page)) {
1044 struct zone *zone = page_zone(page);
1045
1046 spin_lock_irq(&zone->lru_lock);
1047 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1048 int lru = page_lru(page);
62695a84
NP
1049 ret = 0;
1050 ClearPageLRU(page);
4f98a2fe 1051
4f98a2fe 1052 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1053 }
1054 spin_unlock_irq(&zone->lru_lock);
1055 }
1056 return ret;
1057}
1058
35cd7815
RR
1059/*
1060 * Are there way too many processes in the direct reclaim path already?
1061 */
1062static int too_many_isolated(struct zone *zone, int file,
1063 struct scan_control *sc)
1064{
1065 unsigned long inactive, isolated;
1066
1067 if (current_is_kswapd())
1068 return 0;
1069
1070 if (!scanning_global_lru(sc))
1071 return 0;
1072
1073 if (file) {
1074 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1075 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1076 } else {
1077 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1078 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1079 }
1080
1081 return isolated > inactive;
1082}
1083
1da177e4 1084/*
1742f19f
AM
1085 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1086 * of reclaimed pages
1da177e4 1087 */
1742f19f 1088static unsigned long shrink_inactive_list(unsigned long max_scan,
33c120ed
RR
1089 struct zone *zone, struct scan_control *sc,
1090 int priority, int file)
1da177e4
LT
1091{
1092 LIST_HEAD(page_list);
1093 struct pagevec pvec;
69e05944 1094 unsigned long nr_scanned = 0;
05ff5137 1095 unsigned long nr_reclaimed = 0;
6e901571 1096 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
78dc583d
KM
1097 int lumpy_reclaim = 0;
1098
35cd7815 1099 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1100 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1101
1102 /* We are about to die and free our memory. Return now. */
1103 if (fatal_signal_pending(current))
1104 return SWAP_CLUSTER_MAX;
1105 }
1106
78dc583d
KM
1107 /*
1108 * If we need a large contiguous chunk of memory, or have
1109 * trouble getting a small set of contiguous pages, we
1110 * will reclaim both active and inactive pages.
1111 *
1112 * We use the same threshold as pageout congestion_wait below.
1113 */
1114 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1115 lumpy_reclaim = 1;
1116 else if (sc->order && priority < DEF_PRIORITY - 2)
1117 lumpy_reclaim = 1;
1da177e4
LT
1118
1119 pagevec_init(&pvec, 1);
1120
1121 lru_add_drain();
1122 spin_lock_irq(&zone->lru_lock);
69e05944 1123 do {
1da177e4 1124 struct page *page;
69e05944
AM
1125 unsigned long nr_taken;
1126 unsigned long nr_scan;
1127 unsigned long nr_freed;
5ad333eb 1128 unsigned long nr_active;
4f98a2fe 1129 unsigned int count[NR_LRU_LISTS] = { 0, };
78dc583d 1130 int mode = lumpy_reclaim ? ISOLATE_BOTH : ISOLATE_INACTIVE;
a731286d
KM
1131 unsigned long nr_anon;
1132 unsigned long nr_file;
1da177e4 1133
ece74b2e 1134 nr_taken = sc->isolate_pages(SWAP_CLUSTER_MAX,
4f98a2fe
RR
1135 &page_list, &nr_scan, sc->order, mode,
1136 zone, sc->mem_cgroup, 0, file);
b35ea17b
KM
1137
1138 if (scanning_global_lru(sc)) {
1139 zone->pages_scanned += nr_scan;
1140 if (current_is_kswapd())
1141 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1142 nr_scan);
1143 else
1144 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1145 nr_scan);
1146 }
1147
1148 if (nr_taken == 0)
1149 goto done;
1150
4f98a2fe 1151 nr_active = clear_active_flags(&page_list, count);
e9187bdc 1152 __count_vm_events(PGDEACTIVATE, nr_active);
5ad333eb 1153
4f98a2fe
RR
1154 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1155 -count[LRU_ACTIVE_FILE]);
1156 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1157 -count[LRU_INACTIVE_FILE]);
1158 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1159 -count[LRU_ACTIVE_ANON]);
1160 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1161 -count[LRU_INACTIVE_ANON]);
1162
a731286d
KM
1163 nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1164 nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1165 __mod_zone_page_state(zone, NR_ISOLATED_ANON, nr_anon);
1166 __mod_zone_page_state(zone, NR_ISOLATED_FILE, nr_file);
3e2f41f1
KM
1167
1168 reclaim_stat->recent_scanned[0] += count[LRU_INACTIVE_ANON];
1169 reclaim_stat->recent_scanned[0] += count[LRU_ACTIVE_ANON];
1170 reclaim_stat->recent_scanned[1] += count[LRU_INACTIVE_FILE];
1171 reclaim_stat->recent_scanned[1] += count[LRU_ACTIVE_FILE];
1172
1da177e4
LT
1173 spin_unlock_irq(&zone->lru_lock);
1174
69e05944 1175 nr_scanned += nr_scan;
c661b078
AW
1176 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
1177
1178 /*
1179 * If we are direct reclaiming for contiguous pages and we do
1180 * not reclaim everything in the list, try again and wait
1181 * for IO to complete. This will stall high-order allocations
1182 * but that should be acceptable to the caller
1183 */
1184 if (nr_freed < nr_taken && !current_is_kswapd() &&
78dc583d 1185 lumpy_reclaim) {
8aa7e847 1186 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078
AW
1187
1188 /*
1189 * The attempt at page out may have made some
1190 * of the pages active, mark them inactive again.
1191 */
4f98a2fe 1192 nr_active = clear_active_flags(&page_list, count);
c661b078
AW
1193 count_vm_events(PGDEACTIVATE, nr_active);
1194
1195 nr_freed += shrink_page_list(&page_list, sc,
1196 PAGEOUT_IO_SYNC);
1197 }
1198
05ff5137 1199 nr_reclaimed += nr_freed;
b35ea17b 1200
a74609fa 1201 local_irq_disable();
b35ea17b 1202 if (current_is_kswapd())
f8891e5e 1203 __count_vm_events(KSWAPD_STEAL, nr_freed);
918d3f90 1204 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
a74609fa
NP
1205
1206 spin_lock(&zone->lru_lock);
1da177e4
LT
1207 /*
1208 * Put back any unfreeable pages.
1209 */
1210 while (!list_empty(&page_list)) {
894bc310 1211 int lru;
1da177e4 1212 page = lru_to_page(&page_list);
725d704e 1213 VM_BUG_ON(PageLRU(page));
1da177e4 1214 list_del(&page->lru);
894bc310
LS
1215 if (unlikely(!page_evictable(page, NULL))) {
1216 spin_unlock_irq(&zone->lru_lock);
1217 putback_lru_page(page);
1218 spin_lock_irq(&zone->lru_lock);
1219 continue;
1220 }
1221 SetPageLRU(page);
1222 lru = page_lru(page);
1223 add_page_to_lru_list(zone, page, lru);
74a1c48f 1224 if (is_active_lru(lru)) {
b7c46d15 1225 int file = is_file_lru(lru);
6e901571 1226 reclaim_stat->recent_rotated[file]++;
4f98a2fe 1227 }
1da177e4
LT
1228 if (!pagevec_add(&pvec, page)) {
1229 spin_unlock_irq(&zone->lru_lock);
1230 __pagevec_release(&pvec);
1231 spin_lock_irq(&zone->lru_lock);
1232 }
1233 }
a731286d
KM
1234 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1235 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1236
69e05944 1237 } while (nr_scanned < max_scan);
b35ea17b 1238
1da177e4 1239done:
b35ea17b 1240 spin_unlock_irq(&zone->lru_lock);
1da177e4 1241 pagevec_release(&pvec);
05ff5137 1242 return nr_reclaimed;
1da177e4
LT
1243}
1244
3bb1a852
MB
1245/*
1246 * We are about to scan this zone at a certain priority level. If that priority
1247 * level is smaller (ie: more urgent) than the previous priority, then note
1248 * that priority level within the zone. This is done so that when the next
1249 * process comes in to scan this zone, it will immediately start out at this
1250 * priority level rather than having to build up its own scanning priority.
1251 * Here, this priority affects only the reclaim-mapped threshold.
1252 */
1253static inline void note_zone_scanning_priority(struct zone *zone, int priority)
1254{
1255 if (priority < zone->prev_priority)
1256 zone->prev_priority = priority;
1257}
1258
1da177e4
LT
1259/*
1260 * This moves pages from the active list to the inactive list.
1261 *
1262 * We move them the other way if the page is referenced by one or more
1263 * processes, from rmap.
1264 *
1265 * If the pages are mostly unmapped, the processing is fast and it is
1266 * appropriate to hold zone->lru_lock across the whole operation. But if
1267 * the pages are mapped, the processing is slow (page_referenced()) so we
1268 * should drop zone->lru_lock around each page. It's impossible to balance
1269 * this, so instead we remove the pages from the LRU while processing them.
1270 * It is safe to rely on PG_active against the non-LRU pages in here because
1271 * nobody will play with that bit on a non-LRU page.
1272 *
1273 * The downside is that we have to touch page->_count against each page.
1274 * But we had to alter page->flags anyway.
1275 */
1cfb419b 1276
3eb4140f
WF
1277static void move_active_pages_to_lru(struct zone *zone,
1278 struct list_head *list,
1279 enum lru_list lru)
1280{
1281 unsigned long pgmoved = 0;
1282 struct pagevec pvec;
1283 struct page *page;
1284
1285 pagevec_init(&pvec, 1);
1286
1287 while (!list_empty(list)) {
1288 page = lru_to_page(list);
3eb4140f
WF
1289
1290 VM_BUG_ON(PageLRU(page));
1291 SetPageLRU(page);
1292
3eb4140f
WF
1293 list_move(&page->lru, &zone->lru[lru].list);
1294 mem_cgroup_add_lru_list(page, lru);
1295 pgmoved++;
1296
1297 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1298 spin_unlock_irq(&zone->lru_lock);
1299 if (buffer_heads_over_limit)
1300 pagevec_strip(&pvec);
1301 __pagevec_release(&pvec);
1302 spin_lock_irq(&zone->lru_lock);
1303 }
1304 }
1305 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1306 if (!is_active_lru(lru))
1307 __count_vm_events(PGDEACTIVATE, pgmoved);
1308}
1cfb419b 1309
1742f19f 1310static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1311 struct scan_control *sc, int priority, int file)
1da177e4 1312{
44c241f1 1313 unsigned long nr_taken;
69e05944 1314 unsigned long pgscanned;
6fe6b7e3 1315 unsigned long vm_flags;
1da177e4 1316 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1317 LIST_HEAD(l_active);
b69408e8 1318 LIST_HEAD(l_inactive);
1da177e4 1319 struct page *page;
6e901571 1320 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1321 unsigned long nr_rotated = 0;
1da177e4
LT
1322
1323 lru_add_drain();
1324 spin_lock_irq(&zone->lru_lock);
44c241f1 1325 nr_taken = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
66e1707b 1326 ISOLATE_ACTIVE, zone,
4f98a2fe 1327 sc->mem_cgroup, 1, file);
1cfb419b
KH
1328 /*
1329 * zone->pages_scanned is used for detect zone's oom
1330 * mem_cgroup remembers nr_scan by itself.
1331 */
e72e2bd6 1332 if (scanning_global_lru(sc)) {
1cfb419b 1333 zone->pages_scanned += pgscanned;
4f98a2fe 1334 }
b7c46d15 1335 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1336
3eb4140f 1337 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1338 if (file)
44c241f1 1339 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1340 else
44c241f1 1341 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1342 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1343 spin_unlock_irq(&zone->lru_lock);
1344
1da177e4
LT
1345 while (!list_empty(&l_hold)) {
1346 cond_resched();
1347 page = lru_to_page(&l_hold);
1348 list_del(&page->lru);
7e9cd484 1349
894bc310
LS
1350 if (unlikely(!page_evictable(page, NULL))) {
1351 putback_lru_page(page);
1352 continue;
1353 }
1354
7e9cd484
RR
1355 /* page_referenced clears PageReferenced */
1356 if (page_mapping_inuse(page) &&
8cab4754 1357 page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1358 nr_rotated++;
8cab4754
WF
1359 /*
1360 * Identify referenced, file-backed active pages and
1361 * give them one more trip around the active list. So
1362 * that executable code get better chances to stay in
1363 * memory under moderate memory pressure. Anon pages
1364 * are not likely to be evicted by use-once streaming
1365 * IO, plus JVM can create lots of anon VM_EXEC pages,
1366 * so we ignore them here.
1367 */
41e20983 1368 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1369 list_add(&page->lru, &l_active);
1370 continue;
1371 }
1372 }
7e9cd484 1373
5205e56e 1374 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1375 list_add(&page->lru, &l_inactive);
1376 }
1377
b555749a 1378 /*
8cab4754 1379 * Move pages back to the lru list.
b555749a 1380 */
2a1dc509 1381 spin_lock_irq(&zone->lru_lock);
556adecb 1382 /*
8cab4754
WF
1383 * Count referenced pages from currently used mappings as rotated,
1384 * even though only some of them are actually re-activated. This
1385 * helps balance scan pressure between file and anonymous pages in
1386 * get_scan_ratio.
7e9cd484 1387 */
b7c46d15 1388 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1389
3eb4140f
WF
1390 move_active_pages_to_lru(zone, &l_active,
1391 LRU_ACTIVE + file * LRU_FILE);
1392 move_active_pages_to_lru(zone, &l_inactive,
1393 LRU_BASE + file * LRU_FILE);
a731286d 1394 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1395 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1396}
1397
14797e23 1398static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1399{
1400 unsigned long active, inactive;
1401
1402 active = zone_page_state(zone, NR_ACTIVE_ANON);
1403 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1404
1405 if (inactive * zone->inactive_ratio < active)
1406 return 1;
1407
1408 return 0;
1409}
1410
14797e23
KM
1411/**
1412 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1413 * @zone: zone to check
1414 * @sc: scan control of this context
1415 *
1416 * Returns true if the zone does not have enough inactive anon pages,
1417 * meaning some active anon pages need to be deactivated.
1418 */
1419static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1420{
1421 int low;
1422
e72e2bd6 1423 if (scanning_global_lru(sc))
14797e23
KM
1424 low = inactive_anon_is_low_global(zone);
1425 else
c772be93 1426 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1427 return low;
1428}
1429
56e49d21
RR
1430static int inactive_file_is_low_global(struct zone *zone)
1431{
1432 unsigned long active, inactive;
1433
1434 active = zone_page_state(zone, NR_ACTIVE_FILE);
1435 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1436
1437 return (active > inactive);
1438}
1439
1440/**
1441 * inactive_file_is_low - check if file pages need to be deactivated
1442 * @zone: zone to check
1443 * @sc: scan control of this context
1444 *
1445 * When the system is doing streaming IO, memory pressure here
1446 * ensures that active file pages get deactivated, until more
1447 * than half of the file pages are on the inactive list.
1448 *
1449 * Once we get to that situation, protect the system's working
1450 * set from being evicted by disabling active file page aging.
1451 *
1452 * This uses a different ratio than the anonymous pages, because
1453 * the page cache uses a use-once replacement algorithm.
1454 */
1455static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1456{
1457 int low;
1458
1459 if (scanning_global_lru(sc))
1460 low = inactive_file_is_low_global(zone);
1461 else
1462 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1463 return low;
1464}
1465
b39415b2
RR
1466static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1467 int file)
1468{
1469 if (file)
1470 return inactive_file_is_low(zone, sc);
1471 else
1472 return inactive_anon_is_low(zone, sc);
1473}
1474
4f98a2fe 1475static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1476 struct zone *zone, struct scan_control *sc, int priority)
1477{
4f98a2fe
RR
1478 int file = is_file_lru(lru);
1479
b39415b2
RR
1480 if (is_active_lru(lru)) {
1481 if (inactive_list_is_low(zone, sc, file))
1482 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1483 return 0;
1484 }
1485
33c120ed 1486 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1487}
1488
1489/*
1490 * Determine how aggressively the anon and file LRU lists should be
1491 * scanned. The relative value of each set of LRU lists is determined
1492 * by looking at the fraction of the pages scanned we did rotate back
1493 * onto the active list instead of evict.
1494 *
1495 * percent[0] specifies how much pressure to put on ram/swap backed
1496 * memory, while percent[1] determines pressure on the file LRUs.
1497 */
1498static void get_scan_ratio(struct zone *zone, struct scan_control *sc,
1499 unsigned long *percent)
1500{
1501 unsigned long anon, file, free;
1502 unsigned long anon_prio, file_prio;
1503 unsigned long ap, fp;
6e901571 1504 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
4f98a2fe 1505
0b217676
VL
1506 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1507 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1508 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1509 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1510
e72e2bd6 1511 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1512 free = zone_page_state(zone, NR_FREE_PAGES);
1513 /* If we have very few page cache pages,
1514 force-scan anon pages. */
41858966 1515 if (unlikely(file + free <= high_wmark_pages(zone))) {
eeee9a8c
KM
1516 percent[0] = 100;
1517 percent[1] = 0;
1518 return;
1519 }
4f98a2fe
RR
1520 }
1521
1522 /*
1523 * OK, so we have swap space and a fair amount of page cache
1524 * pages. We use the recently rotated / recently scanned
1525 * ratios to determine how valuable each cache is.
1526 *
1527 * Because workloads change over time (and to avoid overflow)
1528 * we keep these statistics as a floating average, which ends
1529 * up weighing recent references more than old ones.
1530 *
1531 * anon in [0], file in [1]
1532 */
6e901571 1533 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
4f98a2fe 1534 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1535 reclaim_stat->recent_scanned[0] /= 2;
1536 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1537 spin_unlock_irq(&zone->lru_lock);
1538 }
1539
6e901571 1540 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
4f98a2fe 1541 spin_lock_irq(&zone->lru_lock);
6e901571
KM
1542 reclaim_stat->recent_scanned[1] /= 2;
1543 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1544 spin_unlock_irq(&zone->lru_lock);
1545 }
1546
1547 /*
1548 * With swappiness at 100, anonymous and file have the same priority.
1549 * This scanning priority is essentially the inverse of IO cost.
1550 */
1551 anon_prio = sc->swappiness;
1552 file_prio = 200 - sc->swappiness;
1553
1554 /*
00d8089c
RR
1555 * The amount of pressure on anon vs file pages is inversely
1556 * proportional to the fraction of recently scanned pages on
1557 * each list that were recently referenced and in active use.
4f98a2fe 1558 */
6e901571
KM
1559 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1560 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1561
6e901571
KM
1562 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1563 fp /= reclaim_stat->recent_rotated[1] + 1;
4f98a2fe
RR
1564
1565 /* Normalize to percentages */
1566 percent[0] = 100 * ap / (ap + fp + 1);
1567 percent[1] = 100 - percent[0];
b69408e8
CL
1568}
1569
6e08a369
WF
1570/*
1571 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1572 * until we collected @swap_cluster_max pages to scan.
1573 */
1574static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
ece74b2e 1575 unsigned long *nr_saved_scan)
6e08a369
WF
1576{
1577 unsigned long nr;
1578
1579 *nr_saved_scan += nr_to_scan;
1580 nr = *nr_saved_scan;
1581
ece74b2e 1582 if (nr >= SWAP_CLUSTER_MAX)
6e08a369
WF
1583 *nr_saved_scan = 0;
1584 else
1585 nr = 0;
1586
1587 return nr;
1588}
4f98a2fe 1589
1da177e4
LT
1590/*
1591 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1592 */
a79311c1 1593static void shrink_zone(int priority, struct zone *zone,
05ff5137 1594 struct scan_control *sc)
1da177e4 1595{
b69408e8 1596 unsigned long nr[NR_LRU_LISTS];
8695949a 1597 unsigned long nr_to_scan;
4f98a2fe 1598 unsigned long percent[2]; /* anon @ 0; file @ 1 */
b69408e8 1599 enum lru_list l;
01dbe5c9 1600 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1601 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
f8629631 1602 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
9198e96c 1603 int noswap = 0;
1da177e4 1604
9198e96c
DN
1605 /* If we have no swap space, do not bother scanning anon pages. */
1606 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1607 noswap = 1;
1608 percent[0] = 0;
1609 percent[1] = 100;
1610 } else
1611 get_scan_ratio(zone, sc, percent);
4f98a2fe 1612
894bc310 1613 for_each_evictable_lru(l) {
9439c1c9 1614 int file = is_file_lru(l);
8713e012 1615 unsigned long scan;
e0f79b8f 1616
0b217676 1617 scan = zone_nr_lru_pages(zone, sc, l);
9198e96c 1618 if (priority || noswap) {
9439c1c9
KM
1619 scan >>= priority;
1620 scan = (scan * percent[file]) / 100;
1621 }
f8629631 1622 nr[l] = nr_scan_try_batch(scan,
ece74b2e 1623 &reclaim_stat->nr_saved_scan[l]);
1cfb419b 1624 }
1da177e4 1625
556adecb
RR
1626 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1627 nr[LRU_INACTIVE_FILE]) {
894bc310 1628 for_each_evictable_lru(l) {
b69408e8 1629 if (nr[l]) {
ece74b2e
KM
1630 nr_to_scan = min_t(unsigned long,
1631 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1632 nr[l] -= nr_to_scan;
1da177e4 1633
01dbe5c9
KM
1634 nr_reclaimed += shrink_list(l, nr_to_scan,
1635 zone, sc, priority);
b69408e8 1636 }
1da177e4 1637 }
a79311c1
RR
1638 /*
1639 * On large memory systems, scan >> priority can become
1640 * really large. This is fine for the starting priority;
1641 * we want to put equal scanning pressure on each zone.
1642 * However, if the VM has a harder time of freeing pages,
1643 * with multiple processes reclaiming pages, the total
1644 * freeing target can get unreasonably large.
1645 */
338fde90 1646 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1647 break;
1da177e4
LT
1648 }
1649
01dbe5c9
KM
1650 sc->nr_reclaimed = nr_reclaimed;
1651
556adecb
RR
1652 /*
1653 * Even if we did not try to evict anon pages at all, we want to
1654 * rebalance the anon lru active/inactive ratio.
1655 */
69c85481 1656 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1657 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1658
232ea4d6 1659 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1660}
1661
1662/*
1663 * This is the direct reclaim path, for page-allocating processes. We only
1664 * try to reclaim pages from zones which will satisfy the caller's allocation
1665 * request.
1666 *
41858966
MG
1667 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1668 * Because:
1da177e4
LT
1669 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1670 * allocation or
41858966
MG
1671 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1672 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1673 * zone defense algorithm.
1da177e4 1674 *
1da177e4
LT
1675 * If a zone is deemed to be full of pinned pages then just give it a light
1676 * scan then give up on it.
1677 */
a79311c1 1678static void shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1679 struct scan_control *sc)
1da177e4 1680{
54a6eb5c 1681 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
dd1a239f 1682 struct zoneref *z;
54a6eb5c 1683 struct zone *zone;
1cfb419b 1684
408d8544 1685 sc->all_unreclaimable = 1;
327c0e96
KH
1686 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1687 sc->nodemask) {
f3fe6512 1688 if (!populated_zone(zone))
1da177e4 1689 continue;
1cfb419b
KH
1690 /*
1691 * Take care memory controller reclaiming has small influence
1692 * to global LRU.
1693 */
e72e2bd6 1694 if (scanning_global_lru(sc)) {
1cfb419b
KH
1695 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1696 continue;
1697 note_zone_scanning_priority(zone, priority);
1da177e4 1698
1cfb419b
KH
1699 if (zone_is_all_unreclaimable(zone) &&
1700 priority != DEF_PRIORITY)
1701 continue; /* Let kswapd poll it */
1702 sc->all_unreclaimable = 0;
1703 } else {
1704 /*
1705 * Ignore cpuset limitation here. We just want to reduce
1706 * # of used pages by us regardless of memory shortage.
1707 */
1708 sc->all_unreclaimable = 0;
1709 mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1710 priority);
1711 }
408d8544 1712
a79311c1 1713 shrink_zone(priority, zone, sc);
1da177e4
LT
1714 }
1715}
4f98a2fe 1716
1da177e4
LT
1717/*
1718 * This is the main entry point to direct page reclaim.
1719 *
1720 * If a full scan of the inactive list fails to free enough memory then we
1721 * are "out of memory" and something needs to be killed.
1722 *
1723 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1724 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1725 * caller can't do much about. We kick the writeback threads and take explicit
1726 * naps in the hope that some of these pages can be written. But if the
1727 * allocating task holds filesystem locks which prevent writeout this might not
1728 * work, and the allocation attempt will fail.
a41f24ea
NA
1729 *
1730 * returns: 0, if no pages reclaimed
1731 * else, the number of pages reclaimed
1da177e4 1732 */
dac1d27b 1733static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1734 struct scan_control *sc)
1da177e4
LT
1735{
1736 int priority;
c700be3d 1737 unsigned long ret = 0;
69e05944 1738 unsigned long total_scanned = 0;
1da177e4 1739 struct reclaim_state *reclaim_state = current->reclaim_state;
1da177e4 1740 unsigned long lru_pages = 0;
dd1a239f 1741 struct zoneref *z;
54a6eb5c 1742 struct zone *zone;
dd1a239f 1743 enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
22fba335 1744 unsigned long writeback_threshold;
1da177e4 1745
873b4771
KK
1746 delayacct_freepages_start();
1747
e72e2bd6 1748 if (scanning_global_lru(sc))
1cfb419b
KH
1749 count_vm_event(ALLOCSTALL);
1750 /*
1751 * mem_cgroup will not do shrink_slab.
1752 */
e72e2bd6 1753 if (scanning_global_lru(sc)) {
54a6eb5c 1754 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1da177e4 1755
1cfb419b
KH
1756 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1757 continue;
1da177e4 1758
adea02a1 1759 lru_pages += zone_reclaimable_pages(zone);
1cfb419b 1760 }
1da177e4
LT
1761 }
1762
1763 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1764 sc->nr_scanned = 0;
f7b7fd8f
RR
1765 if (!priority)
1766 disable_swap_token();
a79311c1 1767 shrink_zones(priority, zonelist, sc);
66e1707b
BS
1768 /*
1769 * Don't shrink slabs when reclaiming memory from
1770 * over limit cgroups
1771 */
e72e2bd6 1772 if (scanning_global_lru(sc)) {
dd1a239f 1773 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1774 if (reclaim_state) {
a79311c1 1775 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1776 reclaim_state->reclaimed_slab = 0;
1777 }
1da177e4 1778 }
66e1707b 1779 total_scanned += sc->nr_scanned;
22fba335 1780 if (sc->nr_reclaimed >= sc->nr_to_reclaim) {
a79311c1 1781 ret = sc->nr_reclaimed;
1da177e4
LT
1782 goto out;
1783 }
1784
1785 /*
1786 * Try to write back as many pages as we just scanned. This
1787 * tends to cause slow streaming writers to write data to the
1788 * disk smoothly, at the dirtying rate, which is nice. But
1789 * that's undesirable in laptop mode, where we *want* lumpy
1790 * writeout. So in laptop mode, write out the whole world.
1791 */
22fba335
KM
1792 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1793 if (total_scanned > writeback_threshold) {
03ba3782 1794 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1795 sc->may_writepage = 1;
1da177e4
LT
1796 }
1797
1798 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1799 if (!sc->hibernation_mode && sc->nr_scanned &&
1800 priority < DEF_PRIORITY - 2)
8aa7e847 1801 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1802 }
87547ee9 1803 /* top priority shrink_zones still had more to do? don't OOM, then */
e72e2bd6 1804 if (!sc->all_unreclaimable && scanning_global_lru(sc))
a79311c1 1805 ret = sc->nr_reclaimed;
1da177e4 1806out:
3bb1a852
MB
1807 /*
1808 * Now that we've scanned all the zones at this priority level, note
1809 * that level within the zone so that the next thread which performs
1810 * scanning of this zone will immediately start out at this priority
1811 * level. This affects only the decision whether or not to bring
1812 * mapped pages onto the inactive list.
1813 */
1814 if (priority < 0)
1815 priority = 0;
1da177e4 1816
e72e2bd6 1817 if (scanning_global_lru(sc)) {
54a6eb5c 1818 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1cfb419b
KH
1819
1820 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1821 continue;
1822
1823 zone->prev_priority = priority;
1824 }
1825 } else
1826 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1da177e4 1827
873b4771
KK
1828 delayacct_freepages_end();
1829
1da177e4
LT
1830 return ret;
1831}
1832
dac1d27b 1833unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1834 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b
BS
1835{
1836 struct scan_control sc = {
1837 .gfp_mask = gfp_mask,
1838 .may_writepage = !laptop_mode,
22fba335 1839 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1840 .may_unmap = 1,
2e2e4259 1841 .may_swap = 1,
66e1707b
BS
1842 .swappiness = vm_swappiness,
1843 .order = order,
1844 .mem_cgroup = NULL,
1845 .isolate_pages = isolate_pages_global,
327c0e96 1846 .nodemask = nodemask,
66e1707b
BS
1847 };
1848
dd1a239f 1849 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1850}
1851
00f0b825 1852#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1853
4e416953
BS
1854unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1855 gfp_t gfp_mask, bool noswap,
1856 unsigned int swappiness,
1857 struct zone *zone, int nid)
1858{
1859 struct scan_control sc = {
1860 .may_writepage = !laptop_mode,
1861 .may_unmap = 1,
1862 .may_swap = !noswap,
4e416953
BS
1863 .swappiness = swappiness,
1864 .order = 0,
1865 .mem_cgroup = mem,
1866 .isolate_pages = mem_cgroup_isolate_pages,
1867 };
1868 nodemask_t nm = nodemask_of_node(nid);
1869
1870 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1871 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1872 sc.nodemask = &nm;
1873 sc.nr_reclaimed = 0;
1874 sc.nr_scanned = 0;
1875 /*
1876 * NOTE: Although we can get the priority field, using it
1877 * here is not a good idea, since it limits the pages we can scan.
1878 * if we don't reclaim here, the shrink_zone from balance_pgdat
1879 * will pick up pages from other mem cgroup's as well. We hack
1880 * the priority and make it zero.
1881 */
1882 shrink_zone(0, zone, &sc);
1883 return sc.nr_reclaimed;
1884}
1885
e1a1cd59 1886unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
1887 gfp_t gfp_mask,
1888 bool noswap,
1889 unsigned int swappiness)
66e1707b 1890{
4e416953 1891 struct zonelist *zonelist;
66e1707b 1892 struct scan_control sc = {
66e1707b 1893 .may_writepage = !laptop_mode,
a6dc60f8 1894 .may_unmap = 1,
2e2e4259 1895 .may_swap = !noswap,
22fba335 1896 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 1897 .swappiness = swappiness,
66e1707b
BS
1898 .order = 0,
1899 .mem_cgroup = mem_cont,
1900 .isolate_pages = mem_cgroup_isolate_pages,
327c0e96 1901 .nodemask = NULL, /* we don't care the placement */
66e1707b 1902 };
66e1707b 1903
dd1a239f
MG
1904 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1905 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
1906 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
1907 return do_try_to_free_pages(zonelist, &sc);
66e1707b
BS
1908}
1909#endif
1910
f50de2d3 1911/* is kswapd sleeping prematurely? */
bb3ab596 1912static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 1913{
bb3ab596 1914 int i;
f50de2d3
MG
1915
1916 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1917 if (remaining)
1918 return 1;
1919
1920 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
1921 for (i = 0; i < pgdat->nr_zones; i++) {
1922 struct zone *zone = pgdat->node_zones + i;
1923
1924 if (!populated_zone(zone))
1925 continue;
1926
f50de2d3
MG
1927 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
1928 0, 0))
1929 return 1;
bb3ab596 1930 }
f50de2d3
MG
1931
1932 return 0;
1933}
1934
1da177e4
LT
1935/*
1936 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 1937 * they are all at high_wmark_pages(zone).
1da177e4 1938 *
1da177e4
LT
1939 * Returns the number of pages which were actually freed.
1940 *
1941 * There is special handling here for zones which are full of pinned pages.
1942 * This can happen if the pages are all mlocked, or if they are all used by
1943 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1944 * What we do is to detect the case where all pages in the zone have been
1945 * scanned twice and there has been zero successful reclaim. Mark the zone as
1946 * dead and from now on, only perform a short scan. Basically we're polling
1947 * the zone for when the problem goes away.
1948 *
1949 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
1950 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1951 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
1952 * lower zones regardless of the number of free pages in the lower zones. This
1953 * interoperates with the page allocator fallback scheme to ensure that aging
1954 * of pages is balanced across the zones.
1da177e4 1955 */
d6277db4 1956static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 1957{
1da177e4
LT
1958 int all_zones_ok;
1959 int priority;
1960 int i;
69e05944 1961 unsigned long total_scanned;
1da177e4 1962 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
1963 struct scan_control sc = {
1964 .gfp_mask = GFP_KERNEL,
a6dc60f8 1965 .may_unmap = 1,
2e2e4259 1966 .may_swap = 1,
22fba335
KM
1967 /*
1968 * kswapd doesn't want to be bailed out while reclaim. because
1969 * we want to put equal scanning pressure on each zone.
1970 */
1971 .nr_to_reclaim = ULONG_MAX,
d6277db4 1972 .swappiness = vm_swappiness,
5ad333eb 1973 .order = order,
66e1707b
BS
1974 .mem_cgroup = NULL,
1975 .isolate_pages = isolate_pages_global,
179e9639 1976 };
3bb1a852
MB
1977 /*
1978 * temp_priority is used to remember the scanning priority at which
41858966
MG
1979 * this zone was successfully refilled to
1980 * free_pages == high_wmark_pages(zone).
3bb1a852
MB
1981 */
1982 int temp_priority[MAX_NR_ZONES];
1da177e4
LT
1983
1984loop_again:
1985 total_scanned = 0;
a79311c1 1986 sc.nr_reclaimed = 0;
c0bbbc73 1987 sc.may_writepage = !laptop_mode;
f8891e5e 1988 count_vm_event(PAGEOUTRUN);
1da177e4 1989
3bb1a852
MB
1990 for (i = 0; i < pgdat->nr_zones; i++)
1991 temp_priority[i] = DEF_PRIORITY;
1da177e4
LT
1992
1993 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1994 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
1995 unsigned long lru_pages = 0;
bb3ab596 1996 int has_under_min_watermark_zone = 0;
1da177e4 1997
f7b7fd8f
RR
1998 /* The swap token gets in the way of swapout... */
1999 if (!priority)
2000 disable_swap_token();
2001
1da177e4
LT
2002 all_zones_ok = 1;
2003
d6277db4
RW
2004 /*
2005 * Scan in the highmem->dma direction for the highest
2006 * zone which needs scanning
2007 */
2008 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2009 struct zone *zone = pgdat->node_zones + i;
1da177e4 2010
d6277db4
RW
2011 if (!populated_zone(zone))
2012 continue;
1da177e4 2013
e815af95
DR
2014 if (zone_is_all_unreclaimable(zone) &&
2015 priority != DEF_PRIORITY)
d6277db4 2016 continue;
1da177e4 2017
556adecb
RR
2018 /*
2019 * Do some background aging of the anon list, to give
2020 * pages a chance to be referenced before reclaiming.
2021 */
14797e23 2022 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2023 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2024 &sc, priority, 0);
2025
41858966
MG
2026 if (!zone_watermark_ok(zone, order,
2027 high_wmark_pages(zone), 0, 0)) {
d6277db4 2028 end_zone = i;
e1dbeda6 2029 break;
1da177e4 2030 }
1da177e4 2031 }
e1dbeda6
AM
2032 if (i < 0)
2033 goto out;
2034
1da177e4
LT
2035 for (i = 0; i <= end_zone; i++) {
2036 struct zone *zone = pgdat->node_zones + i;
2037
adea02a1 2038 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2039 }
2040
2041 /*
2042 * Now scan the zone in the dma->highmem direction, stopping
2043 * at the last zone which needs scanning.
2044 *
2045 * We do this because the page allocator works in the opposite
2046 * direction. This prevents the page allocator from allocating
2047 * pages behind kswapd's direction of progress, which would
2048 * cause too much scanning of the lower zones.
2049 */
2050 for (i = 0; i <= end_zone; i++) {
2051 struct zone *zone = pgdat->node_zones + i;
b15e0905 2052 int nr_slab;
4e416953 2053 int nid, zid;
1da177e4 2054
f3fe6512 2055 if (!populated_zone(zone))
1da177e4
LT
2056 continue;
2057
e815af95
DR
2058 if (zone_is_all_unreclaimable(zone) &&
2059 priority != DEF_PRIORITY)
1da177e4
LT
2060 continue;
2061
41858966
MG
2062 if (!zone_watermark_ok(zone, order,
2063 high_wmark_pages(zone), end_zone, 0))
d6277db4 2064 all_zones_ok = 0;
3bb1a852 2065 temp_priority[i] = priority;
1da177e4 2066 sc.nr_scanned = 0;
3bb1a852 2067 note_zone_scanning_priority(zone, priority);
4e416953
BS
2068
2069 nid = pgdat->node_id;
2070 zid = zone_idx(zone);
2071 /*
2072 * Call soft limit reclaim before calling shrink_zone.
2073 * For now we ignore the return value
2074 */
2075 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask,
2076 nid, zid);
32a4330d
RR
2077 /*
2078 * We put equal pressure on every zone, unless one
2079 * zone has way too many pages free already.
2080 */
41858966
MG
2081 if (!zone_watermark_ok(zone, order,
2082 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2083 shrink_zone(priority, zone, &sc);
1da177e4 2084 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
2085 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2086 lru_pages);
a79311c1 2087 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2088 total_scanned += sc.nr_scanned;
e815af95 2089 if (zone_is_all_unreclaimable(zone))
1da177e4 2090 continue;
b15e0905 2091 if (nr_slab == 0 && zone->pages_scanned >=
adea02a1 2092 (zone_reclaimable_pages(zone) * 6))
e815af95
DR
2093 zone_set_flag(zone,
2094 ZONE_ALL_UNRECLAIMABLE);
1da177e4
LT
2095 /*
2096 * If we've done a decent amount of scanning and
2097 * the reclaim ratio is low, start doing writepage
2098 * even in laptop mode
2099 */
2100 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2101 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2102 sc.may_writepage = 1;
bb3ab596
KM
2103
2104 /*
2105 * We are still under min water mark. it mean we have
2106 * GFP_ATOMIC allocation failure risk. Hurry up!
2107 */
2108 if (!zone_watermark_ok(zone, order, min_wmark_pages(zone),
2109 end_zone, 0))
2110 has_under_min_watermark_zone = 1;
2111
1da177e4 2112 }
1da177e4
LT
2113 if (all_zones_ok)
2114 break; /* kswapd: all done */
2115 /*
2116 * OK, kswapd is getting into trouble. Take a nap, then take
2117 * another pass across the zones.
2118 */
bb3ab596
KM
2119 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2120 if (has_under_min_watermark_zone)
2121 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2122 else
2123 congestion_wait(BLK_RW_ASYNC, HZ/10);
2124 }
1da177e4
LT
2125
2126 /*
2127 * We do this so kswapd doesn't build up large priorities for
2128 * example when it is freeing in parallel with allocators. It
2129 * matches the direct reclaim path behaviour in terms of impact
2130 * on zone->*_priority.
2131 */
a79311c1 2132 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2133 break;
2134 }
2135out:
3bb1a852
MB
2136 /*
2137 * Note within each zone the priority level at which this zone was
2138 * brought into a happy state. So that the next thread which scans this
2139 * zone will start out at that priority level.
2140 */
1da177e4
LT
2141 for (i = 0; i < pgdat->nr_zones; i++) {
2142 struct zone *zone = pgdat->node_zones + i;
2143
3bb1a852 2144 zone->prev_priority = temp_priority[i];
1da177e4
LT
2145 }
2146 if (!all_zones_ok) {
2147 cond_resched();
8357376d
RW
2148
2149 try_to_freeze();
2150
73ce02e9
KM
2151 /*
2152 * Fragmentation may mean that the system cannot be
2153 * rebalanced for high-order allocations in all zones.
2154 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2155 * it means the zones have been fully scanned and are still
2156 * not balanced. For high-order allocations, there is
2157 * little point trying all over again as kswapd may
2158 * infinite loop.
2159 *
2160 * Instead, recheck all watermarks at order-0 as they
2161 * are the most important. If watermarks are ok, kswapd will go
2162 * back to sleep. High-order users can still perform direct
2163 * reclaim if they wish.
2164 */
2165 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2166 order = sc.order = 0;
2167
1da177e4
LT
2168 goto loop_again;
2169 }
2170
a79311c1 2171 return sc.nr_reclaimed;
1da177e4
LT
2172}
2173
2174/*
2175 * The background pageout daemon, started as a kernel thread
4f98a2fe 2176 * from the init process.
1da177e4
LT
2177 *
2178 * This basically trickles out pages so that we have _some_
2179 * free memory available even if there is no other activity
2180 * that frees anything up. This is needed for things like routing
2181 * etc, where we otherwise might have all activity going on in
2182 * asynchronous contexts that cannot page things out.
2183 *
2184 * If there are applications that are active memory-allocators
2185 * (most normal use), this basically shouldn't matter.
2186 */
2187static int kswapd(void *p)
2188{
2189 unsigned long order;
2190 pg_data_t *pgdat = (pg_data_t*)p;
2191 struct task_struct *tsk = current;
2192 DEFINE_WAIT(wait);
2193 struct reclaim_state reclaim_state = {
2194 .reclaimed_slab = 0,
2195 };
a70f7302 2196 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2197
cf40bd16
NP
2198 lockdep_set_current_reclaim_state(GFP_KERNEL);
2199
174596a0 2200 if (!cpumask_empty(cpumask))
c5f59f08 2201 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2202 current->reclaim_state = &reclaim_state;
2203
2204 /*
2205 * Tell the memory management that we're a "memory allocator",
2206 * and that if we need more memory we should get access to it
2207 * regardless (see "__alloc_pages()"). "kswapd" should
2208 * never get caught in the normal page freeing logic.
2209 *
2210 * (Kswapd normally doesn't need memory anyway, but sometimes
2211 * you need a small amount of memory in order to be able to
2212 * page out something else, and this flag essentially protects
2213 * us from recursively trying to free more memory as we're
2214 * trying to free the first piece of memory in the first place).
2215 */
930d9152 2216 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2217 set_freezable();
1da177e4
LT
2218
2219 order = 0;
2220 for ( ; ; ) {
2221 unsigned long new_order;
8fe23e05 2222 int ret;
3e1d1d28 2223
1da177e4
LT
2224 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2225 new_order = pgdat->kswapd_max_order;
2226 pgdat->kswapd_max_order = 0;
2227 if (order < new_order) {
2228 /*
2229 * Don't sleep if someone wants a larger 'order'
2230 * allocation
2231 */
2232 order = new_order;
2233 } else {
f50de2d3
MG
2234 if (!freezing(current) && !kthread_should_stop()) {
2235 long remaining = 0;
2236
2237 /* Try to sleep for a short interval */
bb3ab596 2238 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2239 remaining = schedule_timeout(HZ/10);
2240 finish_wait(&pgdat->kswapd_wait, &wait);
2241 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2242 }
2243
2244 /*
2245 * After a short sleep, check if it was a
2246 * premature sleep. If not, then go fully
2247 * to sleep until explicitly woken up
2248 */
bb3ab596 2249 if (!sleeping_prematurely(pgdat, order, remaining))
f50de2d3
MG
2250 schedule();
2251 else {
2252 if (remaining)
bb3ab596 2253 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2254 else
bb3ab596 2255 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2256 }
2257 }
b1296cc4 2258
1da177e4
LT
2259 order = pgdat->kswapd_max_order;
2260 }
2261 finish_wait(&pgdat->kswapd_wait, &wait);
2262
8fe23e05
DR
2263 ret = try_to_freeze();
2264 if (kthread_should_stop())
2265 break;
2266
2267 /*
2268 * We can speed up thawing tasks if we don't call balance_pgdat
2269 * after returning from the refrigerator
2270 */
2271 if (!ret)
b1296cc4 2272 balance_pgdat(pgdat, order);
1da177e4
LT
2273 }
2274 return 0;
2275}
2276
2277/*
2278 * A zone is low on free memory, so wake its kswapd task to service it.
2279 */
2280void wakeup_kswapd(struct zone *zone, int order)
2281{
2282 pg_data_t *pgdat;
2283
f3fe6512 2284 if (!populated_zone(zone))
1da177e4
LT
2285 return;
2286
2287 pgdat = zone->zone_pgdat;
41858966 2288 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2289 return;
2290 if (pgdat->kswapd_max_order < order)
2291 pgdat->kswapd_max_order = order;
02a0e53d 2292 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2293 return;
8d0986e2 2294 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2295 return;
8d0986e2 2296 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2297}
2298
adea02a1
WF
2299/*
2300 * The reclaimable count would be mostly accurate.
2301 * The less reclaimable pages may be
2302 * - mlocked pages, which will be moved to unevictable list when encountered
2303 * - mapped pages, which may require several travels to be reclaimed
2304 * - dirty pages, which is not "instantly" reclaimable
2305 */
2306unsigned long global_reclaimable_pages(void)
4f98a2fe 2307{
adea02a1
WF
2308 int nr;
2309
2310 nr = global_page_state(NR_ACTIVE_FILE) +
2311 global_page_state(NR_INACTIVE_FILE);
2312
2313 if (nr_swap_pages > 0)
2314 nr += global_page_state(NR_ACTIVE_ANON) +
2315 global_page_state(NR_INACTIVE_ANON);
2316
2317 return nr;
2318}
2319
2320unsigned long zone_reclaimable_pages(struct zone *zone)
2321{
2322 int nr;
2323
2324 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2325 zone_page_state(zone, NR_INACTIVE_FILE);
2326
2327 if (nr_swap_pages > 0)
2328 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2329 zone_page_state(zone, NR_INACTIVE_ANON);
2330
2331 return nr;
4f98a2fe
RR
2332}
2333
c6f37f12 2334#ifdef CONFIG_HIBERNATION
1da177e4 2335/*
7b51755c 2336 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2337 * freed pages.
2338 *
2339 * Rather than trying to age LRUs the aim is to preserve the overall
2340 * LRU order by reclaiming preferentially
2341 * inactive > active > active referenced > active mapped
1da177e4 2342 */
7b51755c 2343unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2344{
d6277db4 2345 struct reclaim_state reclaim_state;
d6277db4 2346 struct scan_control sc = {
7b51755c
KM
2347 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2348 .may_swap = 1,
2349 .may_unmap = 1,
d6277db4 2350 .may_writepage = 1,
7b51755c
KM
2351 .nr_to_reclaim = nr_to_reclaim,
2352 .hibernation_mode = 1,
2353 .swappiness = vm_swappiness,
2354 .order = 0,
66e1707b 2355 .isolate_pages = isolate_pages_global,
1da177e4 2356 };
7b51755c
KM
2357 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2358 struct task_struct *p = current;
2359 unsigned long nr_reclaimed;
1da177e4 2360
7b51755c
KM
2361 p->flags |= PF_MEMALLOC;
2362 lockdep_set_current_reclaim_state(sc.gfp_mask);
2363 reclaim_state.reclaimed_slab = 0;
2364 p->reclaim_state = &reclaim_state;
d6277db4 2365
7b51755c 2366 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2367
7b51755c
KM
2368 p->reclaim_state = NULL;
2369 lockdep_clear_current_reclaim_state();
2370 p->flags &= ~PF_MEMALLOC;
d6277db4 2371
7b51755c 2372 return nr_reclaimed;
1da177e4 2373}
c6f37f12 2374#endif /* CONFIG_HIBERNATION */
1da177e4 2375
1da177e4
LT
2376/* It's optimal to keep kswapds on the same CPUs as their memory, but
2377 not required for correctness. So if the last cpu in a node goes
2378 away, we get changed to run anywhere: as the first one comes back,
2379 restore their cpu bindings. */
9c7b216d 2380static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2381 unsigned long action, void *hcpu)
1da177e4 2382{
58c0a4a7 2383 int nid;
1da177e4 2384
8bb78442 2385 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2386 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2387 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2388 const struct cpumask *mask;
2389
2390 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2391
3e597945 2392 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2393 /* One of our CPUs online: restore mask */
c5f59f08 2394 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2395 }
2396 }
2397 return NOTIFY_OK;
2398}
1da177e4 2399
3218ae14
YG
2400/*
2401 * This kswapd start function will be called by init and node-hot-add.
2402 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2403 */
2404int kswapd_run(int nid)
2405{
2406 pg_data_t *pgdat = NODE_DATA(nid);
2407 int ret = 0;
2408
2409 if (pgdat->kswapd)
2410 return 0;
2411
2412 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2413 if (IS_ERR(pgdat->kswapd)) {
2414 /* failure at boot is fatal */
2415 BUG_ON(system_state == SYSTEM_BOOTING);
2416 printk("Failed to start kswapd on node %d\n",nid);
2417 ret = -1;
2418 }
2419 return ret;
2420}
2421
8fe23e05
DR
2422/*
2423 * Called by memory hotplug when all memory in a node is offlined.
2424 */
2425void kswapd_stop(int nid)
2426{
2427 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2428
2429 if (kswapd)
2430 kthread_stop(kswapd);
2431}
2432
1da177e4
LT
2433static int __init kswapd_init(void)
2434{
3218ae14 2435 int nid;
69e05944 2436
1da177e4 2437 swap_setup();
9422ffba 2438 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2439 kswapd_run(nid);
1da177e4
LT
2440 hotcpu_notifier(cpu_callback, 0);
2441 return 0;
2442}
2443
2444module_init(kswapd_init)
9eeff239
CL
2445
2446#ifdef CONFIG_NUMA
2447/*
2448 * Zone reclaim mode
2449 *
2450 * If non-zero call zone_reclaim when the number of free pages falls below
2451 * the watermarks.
9eeff239
CL
2452 */
2453int zone_reclaim_mode __read_mostly;
2454
1b2ffb78 2455#define RECLAIM_OFF 0
7d03431c 2456#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2457#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2458#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2459
a92f7126
CL
2460/*
2461 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2462 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2463 * a zone.
2464 */
2465#define ZONE_RECLAIM_PRIORITY 4
2466
9614634f
CL
2467/*
2468 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2469 * occur.
2470 */
2471int sysctl_min_unmapped_ratio = 1;
2472
0ff38490
CL
2473/*
2474 * If the number of slab pages in a zone grows beyond this percentage then
2475 * slab reclaim needs to occur.
2476 */
2477int sysctl_min_slab_ratio = 5;
2478
90afa5de
MG
2479static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2480{
2481 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2482 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2483 zone_page_state(zone, NR_ACTIVE_FILE);
2484
2485 /*
2486 * It's possible for there to be more file mapped pages than
2487 * accounted for by the pages on the file LRU lists because
2488 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2489 */
2490 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2491}
2492
2493/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2494static long zone_pagecache_reclaimable(struct zone *zone)
2495{
2496 long nr_pagecache_reclaimable;
2497 long delta = 0;
2498
2499 /*
2500 * If RECLAIM_SWAP is set, then all file pages are considered
2501 * potentially reclaimable. Otherwise, we have to worry about
2502 * pages like swapcache and zone_unmapped_file_pages() provides
2503 * a better estimate
2504 */
2505 if (zone_reclaim_mode & RECLAIM_SWAP)
2506 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2507 else
2508 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2509
2510 /* If we can't clean pages, remove dirty pages from consideration */
2511 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2512 delta += zone_page_state(zone, NR_FILE_DIRTY);
2513
2514 /* Watch for any possible underflows due to delta */
2515 if (unlikely(delta > nr_pagecache_reclaimable))
2516 delta = nr_pagecache_reclaimable;
2517
2518 return nr_pagecache_reclaimable - delta;
2519}
2520
9eeff239
CL
2521/*
2522 * Try to free up some pages from this zone through reclaim.
2523 */
179e9639 2524static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2525{
7fb2d46d 2526 /* Minimum pages needed in order to stay on node */
69e05944 2527 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2528 struct task_struct *p = current;
2529 struct reclaim_state reclaim_state;
8695949a 2530 int priority;
179e9639
AM
2531 struct scan_control sc = {
2532 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2533 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2534 .may_swap = 1,
22fba335
KM
2535 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2536 SWAP_CLUSTER_MAX),
179e9639 2537 .gfp_mask = gfp_mask,
d6277db4 2538 .swappiness = vm_swappiness,
bd2f6199 2539 .order = order,
66e1707b 2540 .isolate_pages = isolate_pages_global,
179e9639 2541 };
83e33a47 2542 unsigned long slab_reclaimable;
9eeff239
CL
2543
2544 disable_swap_token();
9eeff239 2545 cond_resched();
d4f7796e
CL
2546 /*
2547 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2548 * and we also need to be able to write out pages for RECLAIM_WRITE
2549 * and RECLAIM_SWAP.
2550 */
2551 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
9eeff239
CL
2552 reclaim_state.reclaimed_slab = 0;
2553 p->reclaim_state = &reclaim_state;
c84db23c 2554
90afa5de 2555 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2556 /*
2557 * Free memory by calling shrink zone with increasing
2558 * priorities until we have enough memory freed.
2559 */
2560 priority = ZONE_RECLAIM_PRIORITY;
2561 do {
3bb1a852 2562 note_zone_scanning_priority(zone, priority);
a79311c1 2563 shrink_zone(priority, zone, &sc);
0ff38490 2564 priority--;
a79311c1 2565 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2566 }
c84db23c 2567
83e33a47
CL
2568 slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2569 if (slab_reclaimable > zone->min_slab_pages) {
2a16e3f4 2570 /*
7fb2d46d 2571 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2572 * many pages were freed in this zone. So we take the current
2573 * number of slab pages and shake the slab until it is reduced
2574 * by the same nr_pages that we used for reclaiming unmapped
2575 * pages.
2a16e3f4 2576 *
0ff38490
CL
2577 * Note that shrink_slab will free memory on all zones and may
2578 * take a long time.
2a16e3f4 2579 */
0ff38490 2580 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
83e33a47
CL
2581 zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2582 slab_reclaimable - nr_pages)
0ff38490 2583 ;
83e33a47
CL
2584
2585 /*
2586 * Update nr_reclaimed by the number of slab pages we
2587 * reclaimed from this zone.
2588 */
a79311c1 2589 sc.nr_reclaimed += slab_reclaimable -
83e33a47 2590 zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2a16e3f4
CL
2591 }
2592
9eeff239 2593 p->reclaim_state = NULL;
d4f7796e 2594 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
a79311c1 2595 return sc.nr_reclaimed >= nr_pages;
9eeff239 2596}
179e9639
AM
2597
2598int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2599{
179e9639 2600 int node_id;
d773ed6b 2601 int ret;
179e9639
AM
2602
2603 /*
0ff38490
CL
2604 * Zone reclaim reclaims unmapped file backed pages and
2605 * slab pages if we are over the defined limits.
34aa1330 2606 *
9614634f
CL
2607 * A small portion of unmapped file backed pages is needed for
2608 * file I/O otherwise pages read by file I/O will be immediately
2609 * thrown out if the zone is overallocated. So we do not reclaim
2610 * if less than a specified percentage of the zone is used by
2611 * unmapped file backed pages.
179e9639 2612 */
90afa5de
MG
2613 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2614 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2615 return ZONE_RECLAIM_FULL;
179e9639 2616
d773ed6b 2617 if (zone_is_all_unreclaimable(zone))
fa5e084e 2618 return ZONE_RECLAIM_FULL;
d773ed6b 2619
179e9639 2620 /*
d773ed6b 2621 * Do not scan if the allocation should not be delayed.
179e9639 2622 */
d773ed6b 2623 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2624 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2625
2626 /*
2627 * Only run zone reclaim on the local zone or on zones that do not
2628 * have associated processors. This will favor the local processor
2629 * over remote processors and spread off node memory allocations
2630 * as wide as possible.
2631 */
89fa3024 2632 node_id = zone_to_nid(zone);
37c0708d 2633 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2634 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2635
2636 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2637 return ZONE_RECLAIM_NOSCAN;
2638
d773ed6b
DR
2639 ret = __zone_reclaim(zone, gfp_mask, order);
2640 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2641
24cf7251
MG
2642 if (!ret)
2643 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2644
d773ed6b 2645 return ret;
179e9639 2646}
9eeff239 2647#endif
894bc310 2648
894bc310
LS
2649/*
2650 * page_evictable - test whether a page is evictable
2651 * @page: the page to test
2652 * @vma: the VMA in which the page is or will be mapped, may be NULL
2653 *
2654 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2655 * lists vs unevictable list. The vma argument is !NULL when called from the
2656 * fault path to determine how to instantate a new page.
894bc310
LS
2657 *
2658 * Reasons page might not be evictable:
ba9ddf49 2659 * (1) page's mapping marked unevictable
b291f000 2660 * (2) page is part of an mlocked VMA
ba9ddf49 2661 *
894bc310
LS
2662 */
2663int page_evictable(struct page *page, struct vm_area_struct *vma)
2664{
2665
ba9ddf49
LS
2666 if (mapping_unevictable(page_mapping(page)))
2667 return 0;
2668
b291f000
NP
2669 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2670 return 0;
894bc310
LS
2671
2672 return 1;
2673}
89e004ea
LS
2674
2675/**
2676 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2677 * @page: page to check evictability and move to appropriate lru list
2678 * @zone: zone page is in
2679 *
2680 * Checks a page for evictability and moves the page to the appropriate
2681 * zone lru list.
2682 *
2683 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2684 * have PageUnevictable set.
2685 */
2686static void check_move_unevictable_page(struct page *page, struct zone *zone)
2687{
2688 VM_BUG_ON(PageActive(page));
2689
2690retry:
2691 ClearPageUnevictable(page);
2692 if (page_evictable(page, NULL)) {
401a8e1c 2693 enum lru_list l = page_lru_base_type(page);
af936a16 2694
89e004ea
LS
2695 __dec_zone_state(zone, NR_UNEVICTABLE);
2696 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2697 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2698 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2699 __count_vm_event(UNEVICTABLE_PGRESCUED);
2700 } else {
2701 /*
2702 * rotate unevictable list
2703 */
2704 SetPageUnevictable(page);
2705 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2706 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2707 if (page_evictable(page, NULL))
2708 goto retry;
2709 }
2710}
2711
2712/**
2713 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2714 * @mapping: struct address_space to scan for evictable pages
2715 *
2716 * Scan all pages in mapping. Check unevictable pages for
2717 * evictability and move them to the appropriate zone lru list.
2718 */
2719void scan_mapping_unevictable_pages(struct address_space *mapping)
2720{
2721 pgoff_t next = 0;
2722 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2723 PAGE_CACHE_SHIFT;
2724 struct zone *zone;
2725 struct pagevec pvec;
2726
2727 if (mapping->nrpages == 0)
2728 return;
2729
2730 pagevec_init(&pvec, 0);
2731 while (next < end &&
2732 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2733 int i;
2734 int pg_scanned = 0;
2735
2736 zone = NULL;
2737
2738 for (i = 0; i < pagevec_count(&pvec); i++) {
2739 struct page *page = pvec.pages[i];
2740 pgoff_t page_index = page->index;
2741 struct zone *pagezone = page_zone(page);
2742
2743 pg_scanned++;
2744 if (page_index > next)
2745 next = page_index;
2746 next++;
2747
2748 if (pagezone != zone) {
2749 if (zone)
2750 spin_unlock_irq(&zone->lru_lock);
2751 zone = pagezone;
2752 spin_lock_irq(&zone->lru_lock);
2753 }
2754
2755 if (PageLRU(page) && PageUnevictable(page))
2756 check_move_unevictable_page(page, zone);
2757 }
2758 if (zone)
2759 spin_unlock_irq(&zone->lru_lock);
2760 pagevec_release(&pvec);
2761
2762 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2763 }
2764
2765}
af936a16
LS
2766
2767/**
2768 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2769 * @zone - zone of which to scan the unevictable list
2770 *
2771 * Scan @zone's unevictable LRU lists to check for pages that have become
2772 * evictable. Move those that have to @zone's inactive list where they
2773 * become candidates for reclaim, unless shrink_inactive_zone() decides
2774 * to reactivate them. Pages that are still unevictable are rotated
2775 * back onto @zone's unevictable list.
2776 */
2777#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2778static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2779{
2780 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2781 unsigned long scan;
2782 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2783
2784 while (nr_to_scan > 0) {
2785 unsigned long batch_size = min(nr_to_scan,
2786 SCAN_UNEVICTABLE_BATCH_SIZE);
2787
2788 spin_lock_irq(&zone->lru_lock);
2789 for (scan = 0; scan < batch_size; scan++) {
2790 struct page *page = lru_to_page(l_unevictable);
2791
2792 if (!trylock_page(page))
2793 continue;
2794
2795 prefetchw_prev_lru_page(page, l_unevictable, flags);
2796
2797 if (likely(PageLRU(page) && PageUnevictable(page)))
2798 check_move_unevictable_page(page, zone);
2799
2800 unlock_page(page);
2801 }
2802 spin_unlock_irq(&zone->lru_lock);
2803
2804 nr_to_scan -= batch_size;
2805 }
2806}
2807
2808
2809/**
2810 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2811 *
2812 * A really big hammer: scan all zones' unevictable LRU lists to check for
2813 * pages that have become evictable. Move those back to the zones'
2814 * inactive list where they become candidates for reclaim.
2815 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2816 * and we add swap to the system. As such, it runs in the context of a task
2817 * that has possibly/probably made some previously unevictable pages
2818 * evictable.
2819 */
ff30153b 2820static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2821{
2822 struct zone *zone;
2823
2824 for_each_zone(zone) {
2825 scan_zone_unevictable_pages(zone);
2826 }
2827}
2828
2829/*
2830 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2831 * all nodes' unevictable lists for evictable pages
2832 */
2833unsigned long scan_unevictable_pages;
2834
2835int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2836 void __user *buffer,
af936a16
LS
2837 size_t *length, loff_t *ppos)
2838{
8d65af78 2839 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2840
2841 if (write && *(unsigned long *)table->data)
2842 scan_all_zones_unevictable_pages();
2843
2844 scan_unevictable_pages = 0;
2845 return 0;
2846}
2847
2848/*
2849 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2850 * a specified node's per zone unevictable lists for evictable pages.
2851 */
2852
2853static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2854 struct sysdev_attribute *attr,
2855 char *buf)
2856{
2857 return sprintf(buf, "0\n"); /* always zero; should fit... */
2858}
2859
2860static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2861 struct sysdev_attribute *attr,
2862 const char *buf, size_t count)
2863{
2864 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2865 struct zone *zone;
2866 unsigned long res;
2867 unsigned long req = strict_strtoul(buf, 10, &res);
2868
2869 if (!req)
2870 return 1; /* zero is no-op */
2871
2872 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2873 if (!populated_zone(zone))
2874 continue;
2875 scan_zone_unevictable_pages(zone);
2876 }
2877 return 1;
2878}
2879
2880
2881static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2882 read_scan_unevictable_node,
2883 write_scan_unevictable_node);
2884
2885int scan_unevictable_register_node(struct node *node)
2886{
2887 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
2888}
2889
2890void scan_unevictable_unregister_node(struct node *node)
2891{
2892 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
2893}
2894