fs: consolidate {nr,free}_cached_objects args in shrink_control
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
b1de0d13
MH
14#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
1da177e4
LT
16#include <linux/mm.h>
17#include <linux/module.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/swap.h>
21#include <linux/pagemap.h>
22#include <linux/init.h>
23#include <linux/highmem.h>
70ddf637 24#include <linux/vmpressure.h>
e129b5c2 25#include <linux/vmstat.h>
1da177e4
LT
26#include <linux/file.h>
27#include <linux/writeback.h>
28#include <linux/blkdev.h>
29#include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31#include <linux/mm_inline.h>
1da177e4
LT
32#include <linux/backing-dev.h>
33#include <linux/rmap.h>
34#include <linux/topology.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
3e7d3449 37#include <linux/compaction.h>
1da177e4
LT
38#include <linux/notifier.h>
39#include <linux/rwsem.h>
248a0301 40#include <linux/delay.h>
3218ae14 41#include <linux/kthread.h>
7dfb7103 42#include <linux/freezer.h>
66e1707b 43#include <linux/memcontrol.h>
873b4771 44#include <linux/delayacct.h>
af936a16 45#include <linux/sysctl.h>
929bea7c 46#include <linux/oom.h>
268bb0ce 47#include <linux/prefetch.h>
b1de0d13 48#include <linux/printk.h>
1da177e4
LT
49
50#include <asm/tlbflush.h>
51#include <asm/div64.h>
52
53#include <linux/swapops.h>
117aad1e 54#include <linux/balloon_compaction.h>
1da177e4 55
0f8053a5
NP
56#include "internal.h"
57
33906bc5
MG
58#define CREATE_TRACE_POINTS
59#include <trace/events/vmscan.h>
60
1da177e4 61struct scan_control {
22fba335
KM
62 /* How many pages shrink_list() should reclaim */
63 unsigned long nr_to_reclaim;
64
1da177e4 65 /* This context's GFP mask */
6daa0e28 66 gfp_t gfp_mask;
1da177e4 67
ee814fe2 68 /* Allocation order */
5ad333eb 69 int order;
66e1707b 70
ee814fe2
JW
71 /*
72 * Nodemask of nodes allowed by the caller. If NULL, all nodes
73 * are scanned.
74 */
75 nodemask_t *nodemask;
9e3b2f8c 76
f16015fb
JW
77 /*
78 * The memory cgroup that hit its limit and as a result is the
79 * primary target of this reclaim invocation.
80 */
81 struct mem_cgroup *target_mem_cgroup;
66e1707b 82
ee814fe2
JW
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
86 unsigned int may_writepage:1;
87
88 /* Can mapped pages be reclaimed? */
89 unsigned int may_unmap:1;
90
91 /* Can pages be swapped as part of reclaim? */
92 unsigned int may_swap:1;
93
241994ed
JW
94 /* Can cgroups be reclaimed below their normal consumption range? */
95 unsigned int may_thrash:1;
96
ee814fe2
JW
97 unsigned int hibernation_mode:1;
98
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
101
102 /* Incremented by the number of inactive pages that were scanned */
103 unsigned long nr_scanned;
104
105 /* Number of pages freed so far during a call to shrink_zones() */
106 unsigned long nr_reclaimed;
1da177e4
LT
107};
108
1da177e4
LT
109#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
110
111#ifdef ARCH_HAS_PREFETCH
112#define prefetch_prev_lru_page(_page, _base, _field) \
113 do { \
114 if ((_page)->lru.prev != _base) { \
115 struct page *prev; \
116 \
117 prev = lru_to_page(&(_page->lru)); \
118 prefetch(&prev->_field); \
119 } \
120 } while (0)
121#else
122#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
123#endif
124
125#ifdef ARCH_HAS_PREFETCHW
126#define prefetchw_prev_lru_page(_page, _base, _field) \
127 do { \
128 if ((_page)->lru.prev != _base) { \
129 struct page *prev; \
130 \
131 prev = lru_to_page(&(_page->lru)); \
132 prefetchw(&prev->_field); \
133 } \
134 } while (0)
135#else
136#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
137#endif
138
139/*
140 * From 0 .. 100. Higher means more swappy.
141 */
142int vm_swappiness = 60;
d0480be4
WSH
143/*
144 * The total number of pages which are beyond the high watermark within all
145 * zones.
146 */
147unsigned long vm_total_pages;
1da177e4
LT
148
149static LIST_HEAD(shrinker_list);
150static DECLARE_RWSEM(shrinker_rwsem);
151
c255a458 152#ifdef CONFIG_MEMCG
89b5fae5
JW
153static bool global_reclaim(struct scan_control *sc)
154{
f16015fb 155 return !sc->target_mem_cgroup;
89b5fae5 156}
91a45470 157#else
89b5fae5
JW
158static bool global_reclaim(struct scan_control *sc)
159{
160 return true;
161}
91a45470
KH
162#endif
163
a1c3bfb2 164static unsigned long zone_reclaimable_pages(struct zone *zone)
6e543d57
LD
165{
166 int nr;
167
168 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
169 zone_page_state(zone, NR_INACTIVE_FILE);
170
171 if (get_nr_swap_pages() > 0)
172 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
173 zone_page_state(zone, NR_INACTIVE_ANON);
174
175 return nr;
176}
177
178bool zone_reclaimable(struct zone *zone)
179{
0d5d823a
MG
180 return zone_page_state(zone, NR_PAGES_SCANNED) <
181 zone_reclaimable_pages(zone) * 6;
6e543d57
LD
182}
183
4d7dcca2 184static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 185{
c3c787e8 186 if (!mem_cgroup_disabled())
4d7dcca2 187 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 188
074291fe 189 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
190}
191
1da177e4 192/*
1d3d4437 193 * Add a shrinker callback to be called from the vm.
1da177e4 194 */
1d3d4437 195int register_shrinker(struct shrinker *shrinker)
1da177e4 196{
1d3d4437
GC
197 size_t size = sizeof(*shrinker->nr_deferred);
198
199 /*
200 * If we only have one possible node in the system anyway, save
201 * ourselves the trouble and disable NUMA aware behavior. This way we
202 * will save memory and some small loop time later.
203 */
204 if (nr_node_ids == 1)
205 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
206
207 if (shrinker->flags & SHRINKER_NUMA_AWARE)
208 size *= nr_node_ids;
209
210 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
211 if (!shrinker->nr_deferred)
212 return -ENOMEM;
213
8e1f936b
RR
214 down_write(&shrinker_rwsem);
215 list_add_tail(&shrinker->list, &shrinker_list);
216 up_write(&shrinker_rwsem);
1d3d4437 217 return 0;
1da177e4 218}
8e1f936b 219EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
220
221/*
222 * Remove one
223 */
8e1f936b 224void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
225{
226 down_write(&shrinker_rwsem);
227 list_del(&shrinker->list);
228 up_write(&shrinker_rwsem);
ae393321 229 kfree(shrinker->nr_deferred);
1da177e4 230}
8e1f936b 231EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
232
233#define SHRINK_BATCH 128
1d3d4437 234
6b4f7799
JW
235static unsigned long shrink_slabs(struct shrink_control *shrinkctl,
236 struct shrinker *shrinker,
237 unsigned long nr_scanned,
238 unsigned long nr_eligible)
1d3d4437
GC
239{
240 unsigned long freed = 0;
241 unsigned long long delta;
242 long total_scan;
d5bc5fd3 243 long freeable;
1d3d4437
GC
244 long nr;
245 long new_nr;
246 int nid = shrinkctl->nid;
247 long batch_size = shrinker->batch ? shrinker->batch
248 : SHRINK_BATCH;
249
d5bc5fd3
VD
250 freeable = shrinker->count_objects(shrinker, shrinkctl);
251 if (freeable == 0)
1d3d4437
GC
252 return 0;
253
254 /*
255 * copy the current shrinker scan count into a local variable
256 * and zero it so that other concurrent shrinker invocations
257 * don't also do this scanning work.
258 */
259 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
260
261 total_scan = nr;
6b4f7799 262 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 263 delta *= freeable;
6b4f7799 264 do_div(delta, nr_eligible + 1);
1d3d4437
GC
265 total_scan += delta;
266 if (total_scan < 0) {
8612c663 267 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 268 shrinker->scan_objects, total_scan);
d5bc5fd3 269 total_scan = freeable;
1d3d4437
GC
270 }
271
272 /*
273 * We need to avoid excessive windup on filesystem shrinkers
274 * due to large numbers of GFP_NOFS allocations causing the
275 * shrinkers to return -1 all the time. This results in a large
276 * nr being built up so when a shrink that can do some work
277 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 278 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
279 * memory.
280 *
281 * Hence only allow the shrinker to scan the entire cache when
282 * a large delta change is calculated directly.
283 */
d5bc5fd3
VD
284 if (delta < freeable / 4)
285 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
286
287 /*
288 * Avoid risking looping forever due to too large nr value:
289 * never try to free more than twice the estimate number of
290 * freeable entries.
291 */
d5bc5fd3
VD
292 if (total_scan > freeable * 2)
293 total_scan = freeable * 2;
1d3d4437
GC
294
295 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
296 nr_scanned, nr_eligible,
297 freeable, delta, total_scan);
1d3d4437 298
0b1fb40a
VD
299 /*
300 * Normally, we should not scan less than batch_size objects in one
301 * pass to avoid too frequent shrinker calls, but if the slab has less
302 * than batch_size objects in total and we are really tight on memory,
303 * we will try to reclaim all available objects, otherwise we can end
304 * up failing allocations although there are plenty of reclaimable
305 * objects spread over several slabs with usage less than the
306 * batch_size.
307 *
308 * We detect the "tight on memory" situations by looking at the total
309 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 310 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
311 * scanning at high prio and therefore should try to reclaim as much as
312 * possible.
313 */
314 while (total_scan >= batch_size ||
d5bc5fd3 315 total_scan >= freeable) {
a0b02131 316 unsigned long ret;
0b1fb40a 317 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 318
0b1fb40a 319 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
320 ret = shrinker->scan_objects(shrinker, shrinkctl);
321 if (ret == SHRINK_STOP)
322 break;
323 freed += ret;
1d3d4437 324
0b1fb40a
VD
325 count_vm_events(SLABS_SCANNED, nr_to_scan);
326 total_scan -= nr_to_scan;
1d3d4437
GC
327
328 cond_resched();
329 }
330
331 /*
332 * move the unused scan count back into the shrinker in a
333 * manner that handles concurrent updates. If we exhausted the
334 * scan, there is no need to do an update.
335 */
336 if (total_scan > 0)
337 new_nr = atomic_long_add_return(total_scan,
338 &shrinker->nr_deferred[nid]);
339 else
340 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
341
df9024a8 342 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 343 return freed;
1495f230
YH
344}
345
6b4f7799
JW
346/**
347 * shrink_node_slabs - shrink slab caches of a given node
348 * @gfp_mask: allocation context
349 * @nid: node whose slab caches to target
350 * @nr_scanned: pressure numerator
351 * @nr_eligible: pressure denominator
1da177e4 352 *
6b4f7799 353 * Call the shrink functions to age shrinkable caches.
1da177e4 354 *
6b4f7799
JW
355 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
356 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 357 *
6b4f7799
JW
358 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
359 * the available objects should be scanned. Page reclaim for example
360 * passes the number of pages scanned and the number of pages on the
361 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
362 * when it encountered mapped pages. The ratio is further biased by
363 * the ->seeks setting of the shrink function, which indicates the
364 * cost to recreate an object relative to that of an LRU page.
b15e0905 365 *
6b4f7799 366 * Returns the number of reclaimed slab objects.
1da177e4 367 */
6b4f7799
JW
368unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
369 unsigned long nr_scanned,
370 unsigned long nr_eligible)
1da177e4
LT
371{
372 struct shrinker *shrinker;
24f7c6b9 373 unsigned long freed = 0;
1da177e4 374
6b4f7799
JW
375 if (nr_scanned == 0)
376 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 377
f06590bd 378 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
379 /*
380 * If we would return 0, our callers would understand that we
381 * have nothing else to shrink and give up trying. By returning
382 * 1 we keep it going and assume we'll be able to shrink next
383 * time.
384 */
385 freed = 1;
f06590bd
MK
386 goto out;
387 }
1da177e4
LT
388
389 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
390 struct shrink_control sc = {
391 .gfp_mask = gfp_mask,
392 .nid = nid,
393 };
ec97097b 394
6b4f7799
JW
395 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
396 sc.nid = 0;
1da177e4 397
6b4f7799 398 freed += shrink_slabs(&sc, shrinker, nr_scanned, nr_eligible);
1da177e4 399 }
6b4f7799 400
1da177e4 401 up_read(&shrinker_rwsem);
f06590bd
MK
402out:
403 cond_resched();
24f7c6b9 404 return freed;
1da177e4
LT
405}
406
1da177e4
LT
407static inline int is_page_cache_freeable(struct page *page)
408{
ceddc3a5
JW
409 /*
410 * A freeable page cache page is referenced only by the caller
411 * that isolated the page, the page cache radix tree and
412 * optional buffer heads at page->private.
413 */
edcf4748 414 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
415}
416
7d3579e8
KM
417static int may_write_to_queue(struct backing_dev_info *bdi,
418 struct scan_control *sc)
1da177e4 419{
930d9152 420 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
421 return 1;
422 if (!bdi_write_congested(bdi))
423 return 1;
424 if (bdi == current->backing_dev_info)
425 return 1;
426 return 0;
427}
428
429/*
430 * We detected a synchronous write error writing a page out. Probably
431 * -ENOSPC. We need to propagate that into the address_space for a subsequent
432 * fsync(), msync() or close().
433 *
434 * The tricky part is that after writepage we cannot touch the mapping: nothing
435 * prevents it from being freed up. But we have a ref on the page and once
436 * that page is locked, the mapping is pinned.
437 *
438 * We're allowed to run sleeping lock_page() here because we know the caller has
439 * __GFP_FS.
440 */
441static void handle_write_error(struct address_space *mapping,
442 struct page *page, int error)
443{
7eaceacc 444 lock_page(page);
3e9f45bd
GC
445 if (page_mapping(page) == mapping)
446 mapping_set_error(mapping, error);
1da177e4
LT
447 unlock_page(page);
448}
449
04e62a29
CL
450/* possible outcome of pageout() */
451typedef enum {
452 /* failed to write page out, page is locked */
453 PAGE_KEEP,
454 /* move page to the active list, page is locked */
455 PAGE_ACTIVATE,
456 /* page has been sent to the disk successfully, page is unlocked */
457 PAGE_SUCCESS,
458 /* page is clean and locked */
459 PAGE_CLEAN,
460} pageout_t;
461
1da177e4 462/*
1742f19f
AM
463 * pageout is called by shrink_page_list() for each dirty page.
464 * Calls ->writepage().
1da177e4 465 */
c661b078 466static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 467 struct scan_control *sc)
1da177e4
LT
468{
469 /*
470 * If the page is dirty, only perform writeback if that write
471 * will be non-blocking. To prevent this allocation from being
472 * stalled by pagecache activity. But note that there may be
473 * stalls if we need to run get_block(). We could test
474 * PagePrivate for that.
475 *
8174202b 476 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
477 * this page's queue, we can perform writeback even if that
478 * will block.
479 *
480 * If the page is swapcache, write it back even if that would
481 * block, for some throttling. This happens by accident, because
482 * swap_backing_dev_info is bust: it doesn't reflect the
483 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
484 */
485 if (!is_page_cache_freeable(page))
486 return PAGE_KEEP;
487 if (!mapping) {
488 /*
489 * Some data journaling orphaned pages can have
490 * page->mapping == NULL while being dirty with clean buffers.
491 */
266cf658 492 if (page_has_private(page)) {
1da177e4
LT
493 if (try_to_free_buffers(page)) {
494 ClearPageDirty(page);
b1de0d13 495 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
496 return PAGE_CLEAN;
497 }
498 }
499 return PAGE_KEEP;
500 }
501 if (mapping->a_ops->writepage == NULL)
502 return PAGE_ACTIVATE;
0e093d99 503 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
504 return PAGE_KEEP;
505
506 if (clear_page_dirty_for_io(page)) {
507 int res;
508 struct writeback_control wbc = {
509 .sync_mode = WB_SYNC_NONE,
510 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
511 .range_start = 0,
512 .range_end = LLONG_MAX,
1da177e4
LT
513 .for_reclaim = 1,
514 };
515
516 SetPageReclaim(page);
517 res = mapping->a_ops->writepage(page, &wbc);
518 if (res < 0)
519 handle_write_error(mapping, page, res);
994fc28c 520 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
521 ClearPageReclaim(page);
522 return PAGE_ACTIVATE;
523 }
c661b078 524
1da177e4
LT
525 if (!PageWriteback(page)) {
526 /* synchronous write or broken a_ops? */
527 ClearPageReclaim(page);
528 }
23b9da55 529 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 530 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
531 return PAGE_SUCCESS;
532 }
533
534 return PAGE_CLEAN;
535}
536
a649fd92 537/*
e286781d
NP
538 * Same as remove_mapping, but if the page is removed from the mapping, it
539 * gets returned with a refcount of 0.
a649fd92 540 */
a528910e
JW
541static int __remove_mapping(struct address_space *mapping, struct page *page,
542 bool reclaimed)
49d2e9cc 543{
28e4d965
NP
544 BUG_ON(!PageLocked(page));
545 BUG_ON(mapping != page_mapping(page));
49d2e9cc 546
19fd6231 547 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 548 /*
0fd0e6b0
NP
549 * The non racy check for a busy page.
550 *
551 * Must be careful with the order of the tests. When someone has
552 * a ref to the page, it may be possible that they dirty it then
553 * drop the reference. So if PageDirty is tested before page_count
554 * here, then the following race may occur:
555 *
556 * get_user_pages(&page);
557 * [user mapping goes away]
558 * write_to(page);
559 * !PageDirty(page) [good]
560 * SetPageDirty(page);
561 * put_page(page);
562 * !page_count(page) [good, discard it]
563 *
564 * [oops, our write_to data is lost]
565 *
566 * Reversing the order of the tests ensures such a situation cannot
567 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
568 * load is not satisfied before that of page->_count.
569 *
570 * Note that if SetPageDirty is always performed via set_page_dirty,
571 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 572 */
e286781d 573 if (!page_freeze_refs(page, 2))
49d2e9cc 574 goto cannot_free;
e286781d
NP
575 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
576 if (unlikely(PageDirty(page))) {
577 page_unfreeze_refs(page, 2);
49d2e9cc 578 goto cannot_free;
e286781d 579 }
49d2e9cc
CL
580
581 if (PageSwapCache(page)) {
582 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 583 mem_cgroup_swapout(page, swap);
49d2e9cc 584 __delete_from_swap_cache(page);
19fd6231 585 spin_unlock_irq(&mapping->tree_lock);
0a31bc97 586 swapcache_free(swap);
e286781d 587 } else {
6072d13c 588 void (*freepage)(struct page *);
a528910e 589 void *shadow = NULL;
6072d13c
LT
590
591 freepage = mapping->a_ops->freepage;
a528910e
JW
592 /*
593 * Remember a shadow entry for reclaimed file cache in
594 * order to detect refaults, thus thrashing, later on.
595 *
596 * But don't store shadows in an address space that is
597 * already exiting. This is not just an optizimation,
598 * inode reclaim needs to empty out the radix tree or
599 * the nodes are lost. Don't plant shadows behind its
600 * back.
601 */
602 if (reclaimed && page_is_file_cache(page) &&
603 !mapping_exiting(mapping))
604 shadow = workingset_eviction(mapping, page);
605 __delete_from_page_cache(page, shadow);
19fd6231 606 spin_unlock_irq(&mapping->tree_lock);
6072d13c
LT
607
608 if (freepage != NULL)
609 freepage(page);
49d2e9cc
CL
610 }
611
49d2e9cc
CL
612 return 1;
613
614cannot_free:
19fd6231 615 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
616 return 0;
617}
618
e286781d
NP
619/*
620 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
621 * someone else has a ref on the page, abort and return 0. If it was
622 * successfully detached, return 1. Assumes the caller has a single ref on
623 * this page.
624 */
625int remove_mapping(struct address_space *mapping, struct page *page)
626{
a528910e 627 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
628 /*
629 * Unfreezing the refcount with 1 rather than 2 effectively
630 * drops the pagecache ref for us without requiring another
631 * atomic operation.
632 */
633 page_unfreeze_refs(page, 1);
634 return 1;
635 }
636 return 0;
637}
638
894bc310
LS
639/**
640 * putback_lru_page - put previously isolated page onto appropriate LRU list
641 * @page: page to be put back to appropriate lru list
642 *
643 * Add previously isolated @page to appropriate LRU list.
644 * Page may still be unevictable for other reasons.
645 *
646 * lru_lock must not be held, interrupts must be enabled.
647 */
894bc310
LS
648void putback_lru_page(struct page *page)
649{
0ec3b74c 650 bool is_unevictable;
bbfd28ee 651 int was_unevictable = PageUnevictable(page);
894bc310 652
309381fe 653 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
654
655redo:
656 ClearPageUnevictable(page);
657
39b5f29a 658 if (page_evictable(page)) {
894bc310
LS
659 /*
660 * For evictable pages, we can use the cache.
661 * In event of a race, worst case is we end up with an
662 * unevictable page on [in]active list.
663 * We know how to handle that.
664 */
0ec3b74c 665 is_unevictable = false;
c53954a0 666 lru_cache_add(page);
894bc310
LS
667 } else {
668 /*
669 * Put unevictable pages directly on zone's unevictable
670 * list.
671 */
0ec3b74c 672 is_unevictable = true;
894bc310 673 add_page_to_unevictable_list(page);
6a7b9548 674 /*
21ee9f39
MK
675 * When racing with an mlock or AS_UNEVICTABLE clearing
676 * (page is unlocked) make sure that if the other thread
677 * does not observe our setting of PG_lru and fails
24513264 678 * isolation/check_move_unevictable_pages,
21ee9f39 679 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
680 * the page back to the evictable list.
681 *
21ee9f39 682 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
683 */
684 smp_mb();
894bc310 685 }
894bc310
LS
686
687 /*
688 * page's status can change while we move it among lru. If an evictable
689 * page is on unevictable list, it never be freed. To avoid that,
690 * check after we added it to the list, again.
691 */
0ec3b74c 692 if (is_unevictable && page_evictable(page)) {
894bc310
LS
693 if (!isolate_lru_page(page)) {
694 put_page(page);
695 goto redo;
696 }
697 /* This means someone else dropped this page from LRU
698 * So, it will be freed or putback to LRU again. There is
699 * nothing to do here.
700 */
701 }
702
0ec3b74c 703 if (was_unevictable && !is_unevictable)
bbfd28ee 704 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 705 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
706 count_vm_event(UNEVICTABLE_PGCULLED);
707
894bc310
LS
708 put_page(page); /* drop ref from isolate */
709}
710
dfc8d636
JW
711enum page_references {
712 PAGEREF_RECLAIM,
713 PAGEREF_RECLAIM_CLEAN,
64574746 714 PAGEREF_KEEP,
dfc8d636
JW
715 PAGEREF_ACTIVATE,
716};
717
718static enum page_references page_check_references(struct page *page,
719 struct scan_control *sc)
720{
64574746 721 int referenced_ptes, referenced_page;
dfc8d636 722 unsigned long vm_flags;
dfc8d636 723
c3ac9a8a
JW
724 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
725 &vm_flags);
64574746 726 referenced_page = TestClearPageReferenced(page);
dfc8d636 727
dfc8d636
JW
728 /*
729 * Mlock lost the isolation race with us. Let try_to_unmap()
730 * move the page to the unevictable list.
731 */
732 if (vm_flags & VM_LOCKED)
733 return PAGEREF_RECLAIM;
734
64574746 735 if (referenced_ptes) {
e4898273 736 if (PageSwapBacked(page))
64574746
JW
737 return PAGEREF_ACTIVATE;
738 /*
739 * All mapped pages start out with page table
740 * references from the instantiating fault, so we need
741 * to look twice if a mapped file page is used more
742 * than once.
743 *
744 * Mark it and spare it for another trip around the
745 * inactive list. Another page table reference will
746 * lead to its activation.
747 *
748 * Note: the mark is set for activated pages as well
749 * so that recently deactivated but used pages are
750 * quickly recovered.
751 */
752 SetPageReferenced(page);
753
34dbc67a 754 if (referenced_page || referenced_ptes > 1)
64574746
JW
755 return PAGEREF_ACTIVATE;
756
c909e993
KK
757 /*
758 * Activate file-backed executable pages after first usage.
759 */
760 if (vm_flags & VM_EXEC)
761 return PAGEREF_ACTIVATE;
762
64574746
JW
763 return PAGEREF_KEEP;
764 }
dfc8d636
JW
765
766 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 767 if (referenced_page && !PageSwapBacked(page))
64574746
JW
768 return PAGEREF_RECLAIM_CLEAN;
769
770 return PAGEREF_RECLAIM;
dfc8d636
JW
771}
772
e2be15f6
MG
773/* Check if a page is dirty or under writeback */
774static void page_check_dirty_writeback(struct page *page,
775 bool *dirty, bool *writeback)
776{
b4597226
MG
777 struct address_space *mapping;
778
e2be15f6
MG
779 /*
780 * Anonymous pages are not handled by flushers and must be written
781 * from reclaim context. Do not stall reclaim based on them
782 */
783 if (!page_is_file_cache(page)) {
784 *dirty = false;
785 *writeback = false;
786 return;
787 }
788
789 /* By default assume that the page flags are accurate */
790 *dirty = PageDirty(page);
791 *writeback = PageWriteback(page);
b4597226
MG
792
793 /* Verify dirty/writeback state if the filesystem supports it */
794 if (!page_has_private(page))
795 return;
796
797 mapping = page_mapping(page);
798 if (mapping && mapping->a_ops->is_dirty_writeback)
799 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
800}
801
1da177e4 802/*
1742f19f 803 * shrink_page_list() returns the number of reclaimed pages
1da177e4 804 */
1742f19f 805static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 806 struct zone *zone,
f84f6e2b 807 struct scan_control *sc,
02c6de8d 808 enum ttu_flags ttu_flags,
8e950282 809 unsigned long *ret_nr_dirty,
d43006d5 810 unsigned long *ret_nr_unqueued_dirty,
8e950282 811 unsigned long *ret_nr_congested,
02c6de8d 812 unsigned long *ret_nr_writeback,
b1a6f21e 813 unsigned long *ret_nr_immediate,
02c6de8d 814 bool force_reclaim)
1da177e4
LT
815{
816 LIST_HEAD(ret_pages);
abe4c3b5 817 LIST_HEAD(free_pages);
1da177e4 818 int pgactivate = 0;
d43006d5 819 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
820 unsigned long nr_dirty = 0;
821 unsigned long nr_congested = 0;
05ff5137 822 unsigned long nr_reclaimed = 0;
92df3a72 823 unsigned long nr_writeback = 0;
b1a6f21e 824 unsigned long nr_immediate = 0;
1da177e4
LT
825
826 cond_resched();
827
1da177e4
LT
828 while (!list_empty(page_list)) {
829 struct address_space *mapping;
830 struct page *page;
831 int may_enter_fs;
02c6de8d 832 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 833 bool dirty, writeback;
1da177e4
LT
834
835 cond_resched();
836
837 page = lru_to_page(page_list);
838 list_del(&page->lru);
839
529ae9aa 840 if (!trylock_page(page))
1da177e4
LT
841 goto keep;
842
309381fe
SL
843 VM_BUG_ON_PAGE(PageActive(page), page);
844 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
845
846 sc->nr_scanned++;
80e43426 847
39b5f29a 848 if (unlikely(!page_evictable(page)))
b291f000 849 goto cull_mlocked;
894bc310 850
a6dc60f8 851 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
852 goto keep_locked;
853
1da177e4
LT
854 /* Double the slab pressure for mapped and swapcache pages */
855 if (page_mapped(page) || PageSwapCache(page))
856 sc->nr_scanned++;
857
c661b078
AW
858 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
859 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
860
e2be15f6
MG
861 /*
862 * The number of dirty pages determines if a zone is marked
863 * reclaim_congested which affects wait_iff_congested. kswapd
864 * will stall and start writing pages if the tail of the LRU
865 * is all dirty unqueued pages.
866 */
867 page_check_dirty_writeback(page, &dirty, &writeback);
868 if (dirty || writeback)
869 nr_dirty++;
870
871 if (dirty && !writeback)
872 nr_unqueued_dirty++;
873
d04e8acd
MG
874 /*
875 * Treat this page as congested if the underlying BDI is or if
876 * pages are cycling through the LRU so quickly that the
877 * pages marked for immediate reclaim are making it to the
878 * end of the LRU a second time.
879 */
e2be15f6 880 mapping = page_mapping(page);
1da58ee2
JL
881 if (((dirty || writeback) && mapping &&
882 bdi_write_congested(mapping->backing_dev_info)) ||
d04e8acd 883 (writeback && PageReclaim(page)))
e2be15f6
MG
884 nr_congested++;
885
283aba9f
MG
886 /*
887 * If a page at the tail of the LRU is under writeback, there
888 * are three cases to consider.
889 *
890 * 1) If reclaim is encountering an excessive number of pages
891 * under writeback and this page is both under writeback and
892 * PageReclaim then it indicates that pages are being queued
893 * for IO but are being recycled through the LRU before the
894 * IO can complete. Waiting on the page itself risks an
895 * indefinite stall if it is impossible to writeback the
896 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
897 * note that the LRU is being scanned too quickly and the
898 * caller can stall after page list has been processed.
283aba9f
MG
899 *
900 * 2) Global reclaim encounters a page, memcg encounters a
901 * page that is not marked for immediate reclaim or
902 * the caller does not have __GFP_IO. In this case mark
903 * the page for immediate reclaim and continue scanning.
904 *
905 * __GFP_IO is checked because a loop driver thread might
906 * enter reclaim, and deadlock if it waits on a page for
907 * which it is needed to do the write (loop masks off
908 * __GFP_IO|__GFP_FS for this reason); but more thought
909 * would probably show more reasons.
910 *
911 * Don't require __GFP_FS, since we're not going into the
912 * FS, just waiting on its writeback completion. Worryingly,
913 * ext4 gfs2 and xfs allocate pages with
914 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
915 * may_enter_fs here is liable to OOM on them.
916 *
917 * 3) memcg encounters a page that is not already marked
918 * PageReclaim. memcg does not have any dirty pages
919 * throttling so we could easily OOM just because too many
920 * pages are in writeback and there is nothing else to
921 * reclaim. Wait for the writeback to complete.
922 */
c661b078 923 if (PageWriteback(page)) {
283aba9f
MG
924 /* Case 1 above */
925 if (current_is_kswapd() &&
926 PageReclaim(page) &&
57054651 927 test_bit(ZONE_WRITEBACK, &zone->flags)) {
b1a6f21e
MG
928 nr_immediate++;
929 goto keep_locked;
283aba9f
MG
930
931 /* Case 2 above */
932 } else if (global_reclaim(sc) ||
c3b94f44
HD
933 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
934 /*
935 * This is slightly racy - end_page_writeback()
936 * might have just cleared PageReclaim, then
937 * setting PageReclaim here end up interpreted
938 * as PageReadahead - but that does not matter
939 * enough to care. What we do want is for this
940 * page to have PageReclaim set next time memcg
941 * reclaim reaches the tests above, so it will
942 * then wait_on_page_writeback() to avoid OOM;
943 * and it's also appropriate in global reclaim.
944 */
945 SetPageReclaim(page);
e62e384e 946 nr_writeback++;
283aba9f 947
c3b94f44 948 goto keep_locked;
283aba9f
MG
949
950 /* Case 3 above */
951 } else {
952 wait_on_page_writeback(page);
e62e384e 953 }
c661b078 954 }
1da177e4 955
02c6de8d
MK
956 if (!force_reclaim)
957 references = page_check_references(page, sc);
958
dfc8d636
JW
959 switch (references) {
960 case PAGEREF_ACTIVATE:
1da177e4 961 goto activate_locked;
64574746
JW
962 case PAGEREF_KEEP:
963 goto keep_locked;
dfc8d636
JW
964 case PAGEREF_RECLAIM:
965 case PAGEREF_RECLAIM_CLEAN:
966 ; /* try to reclaim the page below */
967 }
1da177e4 968
1da177e4
LT
969 /*
970 * Anonymous process memory has backing store?
971 * Try to allocate it some swap space here.
972 */
b291f000 973 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
974 if (!(sc->gfp_mask & __GFP_IO))
975 goto keep_locked;
5bc7b8ac 976 if (!add_to_swap(page, page_list))
1da177e4 977 goto activate_locked;
63eb6b93 978 may_enter_fs = 1;
1da177e4 979
e2be15f6
MG
980 /* Adding to swap updated mapping */
981 mapping = page_mapping(page);
982 }
1da177e4
LT
983
984 /*
985 * The page is mapped into the page tables of one or more
986 * processes. Try to unmap it here.
987 */
988 if (page_mapped(page) && mapping) {
02c6de8d 989 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
990 case SWAP_FAIL:
991 goto activate_locked;
992 case SWAP_AGAIN:
993 goto keep_locked;
b291f000
NP
994 case SWAP_MLOCK:
995 goto cull_mlocked;
1da177e4
LT
996 case SWAP_SUCCESS:
997 ; /* try to free the page below */
998 }
999 }
1000
1001 if (PageDirty(page)) {
ee72886d
MG
1002 /*
1003 * Only kswapd can writeback filesystem pages to
d43006d5
MG
1004 * avoid risk of stack overflow but only writeback
1005 * if many dirty pages have been encountered.
ee72886d 1006 */
f84f6e2b 1007 if (page_is_file_cache(page) &&
9e3b2f8c 1008 (!current_is_kswapd() ||
57054651 1009 !test_bit(ZONE_DIRTY, &zone->flags))) {
49ea7eb6
MG
1010 /*
1011 * Immediately reclaim when written back.
1012 * Similar in principal to deactivate_page()
1013 * except we already have the page isolated
1014 * and know it's dirty
1015 */
1016 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
1017 SetPageReclaim(page);
1018
ee72886d
MG
1019 goto keep_locked;
1020 }
1021
dfc8d636 1022 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1023 goto keep_locked;
4dd4b920 1024 if (!may_enter_fs)
1da177e4 1025 goto keep_locked;
52a8363e 1026 if (!sc->may_writepage)
1da177e4
LT
1027 goto keep_locked;
1028
1029 /* Page is dirty, try to write it out here */
7d3579e8 1030 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1031 case PAGE_KEEP:
1032 goto keep_locked;
1033 case PAGE_ACTIVATE:
1034 goto activate_locked;
1035 case PAGE_SUCCESS:
7d3579e8 1036 if (PageWriteback(page))
41ac1999 1037 goto keep;
7d3579e8 1038 if (PageDirty(page))
1da177e4 1039 goto keep;
7d3579e8 1040
1da177e4
LT
1041 /*
1042 * A synchronous write - probably a ramdisk. Go
1043 * ahead and try to reclaim the page.
1044 */
529ae9aa 1045 if (!trylock_page(page))
1da177e4
LT
1046 goto keep;
1047 if (PageDirty(page) || PageWriteback(page))
1048 goto keep_locked;
1049 mapping = page_mapping(page);
1050 case PAGE_CLEAN:
1051 ; /* try to free the page below */
1052 }
1053 }
1054
1055 /*
1056 * If the page has buffers, try to free the buffer mappings
1057 * associated with this page. If we succeed we try to free
1058 * the page as well.
1059 *
1060 * We do this even if the page is PageDirty().
1061 * try_to_release_page() does not perform I/O, but it is
1062 * possible for a page to have PageDirty set, but it is actually
1063 * clean (all its buffers are clean). This happens if the
1064 * buffers were written out directly, with submit_bh(). ext3
894bc310 1065 * will do this, as well as the blockdev mapping.
1da177e4
LT
1066 * try_to_release_page() will discover that cleanness and will
1067 * drop the buffers and mark the page clean - it can be freed.
1068 *
1069 * Rarely, pages can have buffers and no ->mapping. These are
1070 * the pages which were not successfully invalidated in
1071 * truncate_complete_page(). We try to drop those buffers here
1072 * and if that worked, and the page is no longer mapped into
1073 * process address space (page_count == 1) it can be freed.
1074 * Otherwise, leave the page on the LRU so it is swappable.
1075 */
266cf658 1076 if (page_has_private(page)) {
1da177e4
LT
1077 if (!try_to_release_page(page, sc->gfp_mask))
1078 goto activate_locked;
e286781d
NP
1079 if (!mapping && page_count(page) == 1) {
1080 unlock_page(page);
1081 if (put_page_testzero(page))
1082 goto free_it;
1083 else {
1084 /*
1085 * rare race with speculative reference.
1086 * the speculative reference will free
1087 * this page shortly, so we may
1088 * increment nr_reclaimed here (and
1089 * leave it off the LRU).
1090 */
1091 nr_reclaimed++;
1092 continue;
1093 }
1094 }
1da177e4
LT
1095 }
1096
a528910e 1097 if (!mapping || !__remove_mapping(mapping, page, true))
49d2e9cc 1098 goto keep_locked;
1da177e4 1099
a978d6f5
NP
1100 /*
1101 * At this point, we have no other references and there is
1102 * no way to pick any more up (removed from LRU, removed
1103 * from pagecache). Can use non-atomic bitops now (and
1104 * we obviously don't have to worry about waking up a process
1105 * waiting on the page lock, because there are no references.
1106 */
1107 __clear_page_locked(page);
e286781d 1108free_it:
05ff5137 1109 nr_reclaimed++;
abe4c3b5
MG
1110
1111 /*
1112 * Is there need to periodically free_page_list? It would
1113 * appear not as the counts should be low
1114 */
1115 list_add(&page->lru, &free_pages);
1da177e4
LT
1116 continue;
1117
b291f000 1118cull_mlocked:
63d6c5ad
HD
1119 if (PageSwapCache(page))
1120 try_to_free_swap(page);
b291f000
NP
1121 unlock_page(page);
1122 putback_lru_page(page);
1123 continue;
1124
1da177e4 1125activate_locked:
68a22394
RR
1126 /* Not a candidate for swapping, so reclaim swap space. */
1127 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1128 try_to_free_swap(page);
309381fe 1129 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1130 SetPageActive(page);
1131 pgactivate++;
1132keep_locked:
1133 unlock_page(page);
1134keep:
1135 list_add(&page->lru, &ret_pages);
309381fe 1136 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1137 }
abe4c3b5 1138
747db954 1139 mem_cgroup_uncharge_list(&free_pages);
b745bc85 1140 free_hot_cold_page_list(&free_pages, true);
abe4c3b5 1141
1da177e4 1142 list_splice(&ret_pages, page_list);
f8891e5e 1143 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1144
8e950282
MG
1145 *ret_nr_dirty += nr_dirty;
1146 *ret_nr_congested += nr_congested;
d43006d5 1147 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1148 *ret_nr_writeback += nr_writeback;
b1a6f21e 1149 *ret_nr_immediate += nr_immediate;
05ff5137 1150 return nr_reclaimed;
1da177e4
LT
1151}
1152
02c6de8d
MK
1153unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1154 struct list_head *page_list)
1155{
1156 struct scan_control sc = {
1157 .gfp_mask = GFP_KERNEL,
1158 .priority = DEF_PRIORITY,
1159 .may_unmap = 1,
1160 };
8e950282 1161 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1162 struct page *page, *next;
1163 LIST_HEAD(clean_pages);
1164
1165 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1166 if (page_is_file_cache(page) && !PageDirty(page) &&
1167 !isolated_balloon_page(page)) {
02c6de8d
MK
1168 ClearPageActive(page);
1169 list_move(&page->lru, &clean_pages);
1170 }
1171 }
1172
1173 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1174 TTU_UNMAP|TTU_IGNORE_ACCESS,
1175 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d 1176 list_splice(&clean_pages, page_list);
83da7510 1177 mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1178 return ret;
1179}
1180
5ad333eb
AW
1181/*
1182 * Attempt to remove the specified page from its LRU. Only take this page
1183 * if it is of the appropriate PageActive status. Pages which are being
1184 * freed elsewhere are also ignored.
1185 *
1186 * page: page to consider
1187 * mode: one of the LRU isolation modes defined above
1188 *
1189 * returns 0 on success, -ve errno on failure.
1190 */
f3fd4a61 1191int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1192{
1193 int ret = -EINVAL;
1194
1195 /* Only take pages on the LRU. */
1196 if (!PageLRU(page))
1197 return ret;
1198
e46a2879
MK
1199 /* Compaction should not handle unevictable pages but CMA can do so */
1200 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1201 return ret;
1202
5ad333eb 1203 ret = -EBUSY;
08e552c6 1204
c8244935
MG
1205 /*
1206 * To minimise LRU disruption, the caller can indicate that it only
1207 * wants to isolate pages it will be able to operate on without
1208 * blocking - clean pages for the most part.
1209 *
1210 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1211 * is used by reclaim when it is cannot write to backing storage
1212 *
1213 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1214 * that it is possible to migrate without blocking
1215 */
1216 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1217 /* All the caller can do on PageWriteback is block */
1218 if (PageWriteback(page))
1219 return ret;
1220
1221 if (PageDirty(page)) {
1222 struct address_space *mapping;
1223
1224 /* ISOLATE_CLEAN means only clean pages */
1225 if (mode & ISOLATE_CLEAN)
1226 return ret;
1227
1228 /*
1229 * Only pages without mappings or that have a
1230 * ->migratepage callback are possible to migrate
1231 * without blocking
1232 */
1233 mapping = page_mapping(page);
1234 if (mapping && !mapping->a_ops->migratepage)
1235 return ret;
1236 }
1237 }
39deaf85 1238
f80c0673
MK
1239 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1240 return ret;
1241
5ad333eb
AW
1242 if (likely(get_page_unless_zero(page))) {
1243 /*
1244 * Be careful not to clear PageLRU until after we're
1245 * sure the page is not being freed elsewhere -- the
1246 * page release code relies on it.
1247 */
1248 ClearPageLRU(page);
1249 ret = 0;
1250 }
1251
1252 return ret;
1253}
1254
1da177e4
LT
1255/*
1256 * zone->lru_lock is heavily contended. Some of the functions that
1257 * shrink the lists perform better by taking out a batch of pages
1258 * and working on them outside the LRU lock.
1259 *
1260 * For pagecache intensive workloads, this function is the hottest
1261 * spot in the kernel (apart from copy_*_user functions).
1262 *
1263 * Appropriate locks must be held before calling this function.
1264 *
1265 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1266 * @lruvec: The LRU vector to pull pages from.
1da177e4 1267 * @dst: The temp list to put pages on to.
f626012d 1268 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1269 * @sc: The scan_control struct for this reclaim session
5ad333eb 1270 * @mode: One of the LRU isolation modes
3cb99451 1271 * @lru: LRU list id for isolating
1da177e4
LT
1272 *
1273 * returns how many pages were moved onto *@dst.
1274 */
69e05944 1275static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1276 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1277 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1278 isolate_mode_t mode, enum lru_list lru)
1da177e4 1279{
75b00af7 1280 struct list_head *src = &lruvec->lists[lru];
69e05944 1281 unsigned long nr_taken = 0;
c9b02d97 1282 unsigned long scan;
1da177e4 1283
c9b02d97 1284 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1285 struct page *page;
fa9add64 1286 int nr_pages;
5ad333eb 1287
1da177e4
LT
1288 page = lru_to_page(src);
1289 prefetchw_prev_lru_page(page, src, flags);
1290
309381fe 1291 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1292
f3fd4a61 1293 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1294 case 0:
fa9add64
HD
1295 nr_pages = hpage_nr_pages(page);
1296 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1297 list_move(&page->lru, dst);
fa9add64 1298 nr_taken += nr_pages;
5ad333eb
AW
1299 break;
1300
1301 case -EBUSY:
1302 /* else it is being freed elsewhere */
1303 list_move(&page->lru, src);
1304 continue;
46453a6e 1305
5ad333eb
AW
1306 default:
1307 BUG();
1308 }
1da177e4
LT
1309 }
1310
f626012d 1311 *nr_scanned = scan;
75b00af7
HD
1312 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1313 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1314 return nr_taken;
1315}
1316
62695a84
NP
1317/**
1318 * isolate_lru_page - tries to isolate a page from its LRU list
1319 * @page: page to isolate from its LRU list
1320 *
1321 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1322 * vmstat statistic corresponding to whatever LRU list the page was on.
1323 *
1324 * Returns 0 if the page was removed from an LRU list.
1325 * Returns -EBUSY if the page was not on an LRU list.
1326 *
1327 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1328 * the active list, it will have PageActive set. If it was found on
1329 * the unevictable list, it will have the PageUnevictable bit set. That flag
1330 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1331 *
1332 * The vmstat statistic corresponding to the list on which the page was
1333 * found will be decremented.
1334 *
1335 * Restrictions:
1336 * (1) Must be called with an elevated refcount on the page. This is a
1337 * fundamentnal difference from isolate_lru_pages (which is called
1338 * without a stable reference).
1339 * (2) the lru_lock must not be held.
1340 * (3) interrupts must be enabled.
1341 */
1342int isolate_lru_page(struct page *page)
1343{
1344 int ret = -EBUSY;
1345
309381fe 1346 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1347
62695a84
NP
1348 if (PageLRU(page)) {
1349 struct zone *zone = page_zone(page);
fa9add64 1350 struct lruvec *lruvec;
62695a84
NP
1351
1352 spin_lock_irq(&zone->lru_lock);
fa9add64 1353 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1354 if (PageLRU(page)) {
894bc310 1355 int lru = page_lru(page);
0c917313 1356 get_page(page);
62695a84 1357 ClearPageLRU(page);
fa9add64
HD
1358 del_page_from_lru_list(page, lruvec, lru);
1359 ret = 0;
62695a84
NP
1360 }
1361 spin_unlock_irq(&zone->lru_lock);
1362 }
1363 return ret;
1364}
1365
35cd7815 1366/*
d37dd5dc
FW
1367 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1368 * then get resheduled. When there are massive number of tasks doing page
1369 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1370 * the LRU list will go small and be scanned faster than necessary, leading to
1371 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1372 */
1373static int too_many_isolated(struct zone *zone, int file,
1374 struct scan_control *sc)
1375{
1376 unsigned long inactive, isolated;
1377
1378 if (current_is_kswapd())
1379 return 0;
1380
89b5fae5 1381 if (!global_reclaim(sc))
35cd7815
RR
1382 return 0;
1383
1384 if (file) {
1385 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1386 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1387 } else {
1388 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1389 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1390 }
1391
3cf23841
FW
1392 /*
1393 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1394 * won't get blocked by normal direct-reclaimers, forming a circular
1395 * deadlock.
1396 */
1397 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1398 inactive >>= 3;
1399
35cd7815
RR
1400 return isolated > inactive;
1401}
1402
66635629 1403static noinline_for_stack void
75b00af7 1404putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1405{
27ac81d8
KK
1406 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1407 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1408 LIST_HEAD(pages_to_free);
66635629 1409
66635629
MG
1410 /*
1411 * Put back any unfreeable pages.
1412 */
66635629 1413 while (!list_empty(page_list)) {
3f79768f 1414 struct page *page = lru_to_page(page_list);
66635629 1415 int lru;
3f79768f 1416
309381fe 1417 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1418 list_del(&page->lru);
39b5f29a 1419 if (unlikely(!page_evictable(page))) {
66635629
MG
1420 spin_unlock_irq(&zone->lru_lock);
1421 putback_lru_page(page);
1422 spin_lock_irq(&zone->lru_lock);
1423 continue;
1424 }
fa9add64
HD
1425
1426 lruvec = mem_cgroup_page_lruvec(page, zone);
1427
7a608572 1428 SetPageLRU(page);
66635629 1429 lru = page_lru(page);
fa9add64
HD
1430 add_page_to_lru_list(page, lruvec, lru);
1431
66635629
MG
1432 if (is_active_lru(lru)) {
1433 int file = is_file_lru(lru);
9992af10
RR
1434 int numpages = hpage_nr_pages(page);
1435 reclaim_stat->recent_rotated[file] += numpages;
66635629 1436 }
2bcf8879
HD
1437 if (put_page_testzero(page)) {
1438 __ClearPageLRU(page);
1439 __ClearPageActive(page);
fa9add64 1440 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1441
1442 if (unlikely(PageCompound(page))) {
1443 spin_unlock_irq(&zone->lru_lock);
747db954 1444 mem_cgroup_uncharge(page);
2bcf8879
HD
1445 (*get_compound_page_dtor(page))(page);
1446 spin_lock_irq(&zone->lru_lock);
1447 } else
1448 list_add(&page->lru, &pages_to_free);
66635629
MG
1449 }
1450 }
66635629 1451
3f79768f
HD
1452 /*
1453 * To save our caller's stack, now use input list for pages to free.
1454 */
1455 list_splice(&pages_to_free, page_list);
66635629
MG
1456}
1457
399ba0b9
N
1458/*
1459 * If a kernel thread (such as nfsd for loop-back mounts) services
1460 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1461 * In that case we should only throttle if the backing device it is
1462 * writing to is congested. In other cases it is safe to throttle.
1463 */
1464static int current_may_throttle(void)
1465{
1466 return !(current->flags & PF_LESS_THROTTLE) ||
1467 current->backing_dev_info == NULL ||
1468 bdi_write_congested(current->backing_dev_info);
1469}
1470
1da177e4 1471/*
1742f19f
AM
1472 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1473 * of reclaimed pages
1da177e4 1474 */
66635629 1475static noinline_for_stack unsigned long
1a93be0e 1476shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1477 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1478{
1479 LIST_HEAD(page_list);
e247dbce 1480 unsigned long nr_scanned;
05ff5137 1481 unsigned long nr_reclaimed = 0;
e247dbce 1482 unsigned long nr_taken;
8e950282
MG
1483 unsigned long nr_dirty = 0;
1484 unsigned long nr_congested = 0;
e2be15f6 1485 unsigned long nr_unqueued_dirty = 0;
92df3a72 1486 unsigned long nr_writeback = 0;
b1a6f21e 1487 unsigned long nr_immediate = 0;
f3fd4a61 1488 isolate_mode_t isolate_mode = 0;
3cb99451 1489 int file = is_file_lru(lru);
1a93be0e
KK
1490 struct zone *zone = lruvec_zone(lruvec);
1491 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1492
35cd7815 1493 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1494 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1495
1496 /* We are about to die and free our memory. Return now. */
1497 if (fatal_signal_pending(current))
1498 return SWAP_CLUSTER_MAX;
1499 }
1500
1da177e4 1501 lru_add_drain();
f80c0673
MK
1502
1503 if (!sc->may_unmap)
61317289 1504 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1505 if (!sc->may_writepage)
61317289 1506 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1507
1da177e4 1508 spin_lock_irq(&zone->lru_lock);
b35ea17b 1509
5dc35979
KK
1510 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1511 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1512
1513 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1514 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1515
89b5fae5 1516 if (global_reclaim(sc)) {
0d5d823a 1517 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
e247dbce 1518 if (current_is_kswapd())
75b00af7 1519 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1520 else
75b00af7 1521 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1522 }
d563c050 1523 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1524
d563c050 1525 if (nr_taken == 0)
66635629 1526 return 0;
5ad333eb 1527
02c6de8d 1528 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1529 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1530 &nr_writeback, &nr_immediate,
1531 false);
c661b078 1532
3f79768f
HD
1533 spin_lock_irq(&zone->lru_lock);
1534
95d918fc 1535 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1536
904249aa
YH
1537 if (global_reclaim(sc)) {
1538 if (current_is_kswapd())
1539 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1540 nr_reclaimed);
1541 else
1542 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1543 nr_reclaimed);
1544 }
a74609fa 1545
27ac81d8 1546 putback_inactive_pages(lruvec, &page_list);
3f79768f 1547
95d918fc 1548 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1549
1550 spin_unlock_irq(&zone->lru_lock);
1551
747db954 1552 mem_cgroup_uncharge_list(&page_list);
b745bc85 1553 free_hot_cold_page_list(&page_list, true);
e11da5b4 1554
92df3a72
MG
1555 /*
1556 * If reclaim is isolating dirty pages under writeback, it implies
1557 * that the long-lived page allocation rate is exceeding the page
1558 * laundering rate. Either the global limits are not being effective
1559 * at throttling processes due to the page distribution throughout
1560 * zones or there is heavy usage of a slow backing device. The
1561 * only option is to throttle from reclaim context which is not ideal
1562 * as there is no guarantee the dirtying process is throttled in the
1563 * same way balance_dirty_pages() manages.
1564 *
8e950282
MG
1565 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1566 * of pages under pages flagged for immediate reclaim and stall if any
1567 * are encountered in the nr_immediate check below.
92df3a72 1568 */
918fc718 1569 if (nr_writeback && nr_writeback == nr_taken)
57054651 1570 set_bit(ZONE_WRITEBACK, &zone->flags);
92df3a72 1571
d43006d5 1572 /*
b1a6f21e
MG
1573 * memcg will stall in page writeback so only consider forcibly
1574 * stalling for global reclaim
d43006d5 1575 */
b1a6f21e 1576 if (global_reclaim(sc)) {
8e950282
MG
1577 /*
1578 * Tag a zone as congested if all the dirty pages scanned were
1579 * backed by a congested BDI and wait_iff_congested will stall.
1580 */
1581 if (nr_dirty && nr_dirty == nr_congested)
57054651 1582 set_bit(ZONE_CONGESTED, &zone->flags);
8e950282 1583
b1a6f21e
MG
1584 /*
1585 * If dirty pages are scanned that are not queued for IO, it
1586 * implies that flushers are not keeping up. In this case, flag
57054651
JW
1587 * the zone ZONE_DIRTY and kswapd will start writing pages from
1588 * reclaim context.
b1a6f21e
MG
1589 */
1590 if (nr_unqueued_dirty == nr_taken)
57054651 1591 set_bit(ZONE_DIRTY, &zone->flags);
b1a6f21e
MG
1592
1593 /*
b738d764
LT
1594 * If kswapd scans pages marked marked for immediate
1595 * reclaim and under writeback (nr_immediate), it implies
1596 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1597 * they are written so also forcibly stall.
1598 */
b738d764 1599 if (nr_immediate && current_may_throttle())
b1a6f21e 1600 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1601 }
d43006d5 1602
8e950282
MG
1603 /*
1604 * Stall direct reclaim for IO completions if underlying BDIs or zone
1605 * is congested. Allow kswapd to continue until it starts encountering
1606 * unqueued dirty pages or cycling through the LRU too quickly.
1607 */
399ba0b9
N
1608 if (!sc->hibernation_mode && !current_is_kswapd() &&
1609 current_may_throttle())
8e950282
MG
1610 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1611
e11da5b4
MG
1612 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1613 zone_idx(zone),
1614 nr_scanned, nr_reclaimed,
9e3b2f8c 1615 sc->priority,
23b9da55 1616 trace_shrink_flags(file));
05ff5137 1617 return nr_reclaimed;
1da177e4
LT
1618}
1619
1620/*
1621 * This moves pages from the active list to the inactive list.
1622 *
1623 * We move them the other way if the page is referenced by one or more
1624 * processes, from rmap.
1625 *
1626 * If the pages are mostly unmapped, the processing is fast and it is
1627 * appropriate to hold zone->lru_lock across the whole operation. But if
1628 * the pages are mapped, the processing is slow (page_referenced()) so we
1629 * should drop zone->lru_lock around each page. It's impossible to balance
1630 * this, so instead we remove the pages from the LRU while processing them.
1631 * It is safe to rely on PG_active against the non-LRU pages in here because
1632 * nobody will play with that bit on a non-LRU page.
1633 *
1634 * The downside is that we have to touch page->_count against each page.
1635 * But we had to alter page->flags anyway.
1636 */
1cfb419b 1637
fa9add64 1638static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1639 struct list_head *list,
2bcf8879 1640 struct list_head *pages_to_free,
3eb4140f
WF
1641 enum lru_list lru)
1642{
fa9add64 1643 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1644 unsigned long pgmoved = 0;
3eb4140f 1645 struct page *page;
fa9add64 1646 int nr_pages;
3eb4140f 1647
3eb4140f
WF
1648 while (!list_empty(list)) {
1649 page = lru_to_page(list);
fa9add64 1650 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1651
309381fe 1652 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1653 SetPageLRU(page);
1654
fa9add64
HD
1655 nr_pages = hpage_nr_pages(page);
1656 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1657 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1658 pgmoved += nr_pages;
3eb4140f 1659
2bcf8879
HD
1660 if (put_page_testzero(page)) {
1661 __ClearPageLRU(page);
1662 __ClearPageActive(page);
fa9add64 1663 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1664
1665 if (unlikely(PageCompound(page))) {
1666 spin_unlock_irq(&zone->lru_lock);
747db954 1667 mem_cgroup_uncharge(page);
2bcf8879
HD
1668 (*get_compound_page_dtor(page))(page);
1669 spin_lock_irq(&zone->lru_lock);
1670 } else
1671 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1672 }
1673 }
1674 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1675 if (!is_active_lru(lru))
1676 __count_vm_events(PGDEACTIVATE, pgmoved);
1677}
1cfb419b 1678
f626012d 1679static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1680 struct lruvec *lruvec,
f16015fb 1681 struct scan_control *sc,
9e3b2f8c 1682 enum lru_list lru)
1da177e4 1683{
44c241f1 1684 unsigned long nr_taken;
f626012d 1685 unsigned long nr_scanned;
6fe6b7e3 1686 unsigned long vm_flags;
1da177e4 1687 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1688 LIST_HEAD(l_active);
b69408e8 1689 LIST_HEAD(l_inactive);
1da177e4 1690 struct page *page;
1a93be0e 1691 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1692 unsigned long nr_rotated = 0;
f3fd4a61 1693 isolate_mode_t isolate_mode = 0;
3cb99451 1694 int file = is_file_lru(lru);
1a93be0e 1695 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1696
1697 lru_add_drain();
f80c0673
MK
1698
1699 if (!sc->may_unmap)
61317289 1700 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1701 if (!sc->may_writepage)
61317289 1702 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1703
1da177e4 1704 spin_lock_irq(&zone->lru_lock);
925b7673 1705
5dc35979
KK
1706 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1707 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1708 if (global_reclaim(sc))
0d5d823a 1709 __mod_zone_page_state(zone, NR_PAGES_SCANNED, nr_scanned);
89b5fae5 1710
b7c46d15 1711 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1712
f626012d 1713 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1714 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1715 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1716 spin_unlock_irq(&zone->lru_lock);
1717
1da177e4
LT
1718 while (!list_empty(&l_hold)) {
1719 cond_resched();
1720 page = lru_to_page(&l_hold);
1721 list_del(&page->lru);
7e9cd484 1722
39b5f29a 1723 if (unlikely(!page_evictable(page))) {
894bc310
LS
1724 putback_lru_page(page);
1725 continue;
1726 }
1727
cc715d99
MG
1728 if (unlikely(buffer_heads_over_limit)) {
1729 if (page_has_private(page) && trylock_page(page)) {
1730 if (page_has_private(page))
1731 try_to_release_page(page, 0);
1732 unlock_page(page);
1733 }
1734 }
1735
c3ac9a8a
JW
1736 if (page_referenced(page, 0, sc->target_mem_cgroup,
1737 &vm_flags)) {
9992af10 1738 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1739 /*
1740 * Identify referenced, file-backed active pages and
1741 * give them one more trip around the active list. So
1742 * that executable code get better chances to stay in
1743 * memory under moderate memory pressure. Anon pages
1744 * are not likely to be evicted by use-once streaming
1745 * IO, plus JVM can create lots of anon VM_EXEC pages,
1746 * so we ignore them here.
1747 */
41e20983 1748 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1749 list_add(&page->lru, &l_active);
1750 continue;
1751 }
1752 }
7e9cd484 1753
5205e56e 1754 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1755 list_add(&page->lru, &l_inactive);
1756 }
1757
b555749a 1758 /*
8cab4754 1759 * Move pages back to the lru list.
b555749a 1760 */
2a1dc509 1761 spin_lock_irq(&zone->lru_lock);
556adecb 1762 /*
8cab4754
WF
1763 * Count referenced pages from currently used mappings as rotated,
1764 * even though only some of them are actually re-activated. This
1765 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 1766 * get_scan_count.
7e9cd484 1767 */
b7c46d15 1768 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1769
fa9add64
HD
1770 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1771 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1772 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1773 spin_unlock_irq(&zone->lru_lock);
2bcf8879 1774
747db954 1775 mem_cgroup_uncharge_list(&l_hold);
b745bc85 1776 free_hot_cold_page_list(&l_hold, true);
1da177e4
LT
1777}
1778
74e3f3c3 1779#ifdef CONFIG_SWAP
14797e23 1780static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1781{
1782 unsigned long active, inactive;
1783
1784 active = zone_page_state(zone, NR_ACTIVE_ANON);
1785 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1786
1787 if (inactive * zone->inactive_ratio < active)
1788 return 1;
1789
1790 return 0;
1791}
1792
14797e23
KM
1793/**
1794 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1795 * @lruvec: LRU vector to check
14797e23
KM
1796 *
1797 * Returns true if the zone does not have enough inactive anon pages,
1798 * meaning some active anon pages need to be deactivated.
1799 */
c56d5c7d 1800static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1801{
74e3f3c3
MK
1802 /*
1803 * If we don't have swap space, anonymous page deactivation
1804 * is pointless.
1805 */
1806 if (!total_swap_pages)
1807 return 0;
1808
c3c787e8 1809 if (!mem_cgroup_disabled())
c56d5c7d 1810 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1811
c56d5c7d 1812 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1813}
74e3f3c3 1814#else
c56d5c7d 1815static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1816{
1817 return 0;
1818}
1819#endif
14797e23 1820
56e49d21
RR
1821/**
1822 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1823 * @lruvec: LRU vector to check
56e49d21
RR
1824 *
1825 * When the system is doing streaming IO, memory pressure here
1826 * ensures that active file pages get deactivated, until more
1827 * than half of the file pages are on the inactive list.
1828 *
1829 * Once we get to that situation, protect the system's working
1830 * set from being evicted by disabling active file page aging.
1831 *
1832 * This uses a different ratio than the anonymous pages, because
1833 * the page cache uses a use-once replacement algorithm.
1834 */
c56d5c7d 1835static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1836{
e3790144
JW
1837 unsigned long inactive;
1838 unsigned long active;
1839
1840 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1841 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1842
e3790144 1843 return active > inactive;
56e49d21
RR
1844}
1845
75b00af7 1846static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1847{
75b00af7 1848 if (is_file_lru(lru))
c56d5c7d 1849 return inactive_file_is_low(lruvec);
b39415b2 1850 else
c56d5c7d 1851 return inactive_anon_is_low(lruvec);
b39415b2
RR
1852}
1853
4f98a2fe 1854static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1855 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1856{
b39415b2 1857 if (is_active_lru(lru)) {
75b00af7 1858 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1859 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1860 return 0;
1861 }
1862
1a93be0e 1863 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1864}
1865
9a265114
JW
1866enum scan_balance {
1867 SCAN_EQUAL,
1868 SCAN_FRACT,
1869 SCAN_ANON,
1870 SCAN_FILE,
1871};
1872
4f98a2fe
RR
1873/*
1874 * Determine how aggressively the anon and file LRU lists should be
1875 * scanned. The relative value of each set of LRU lists is determined
1876 * by looking at the fraction of the pages scanned we did rotate back
1877 * onto the active list instead of evict.
1878 *
be7bd59d
WL
1879 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1880 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1881 */
02695175 1882static void get_scan_count(struct lruvec *lruvec, int swappiness,
6b4f7799
JW
1883 struct scan_control *sc, unsigned long *nr,
1884 unsigned long *lru_pages)
4f98a2fe 1885{
9a265114
JW
1886 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1887 u64 fraction[2];
1888 u64 denominator = 0; /* gcc */
1889 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1890 unsigned long anon_prio, file_prio;
9a265114 1891 enum scan_balance scan_balance;
0bf1457f 1892 unsigned long anon, file;
9a265114 1893 bool force_scan = false;
4f98a2fe 1894 unsigned long ap, fp;
4111304d 1895 enum lru_list lru;
6f04f48d
SS
1896 bool some_scanned;
1897 int pass;
246e87a9 1898
f11c0ca5
JW
1899 /*
1900 * If the zone or memcg is small, nr[l] can be 0. This
1901 * results in no scanning on this priority and a potential
1902 * priority drop. Global direct reclaim can go to the next
1903 * zone and tends to have no problems. Global kswapd is for
1904 * zone balancing and it needs to scan a minimum amount. When
1905 * reclaiming for a memcg, a priority drop can cause high
1906 * latencies, so it's better to scan a minimum amount there as
1907 * well.
1908 */
90cbc250
VD
1909 if (current_is_kswapd()) {
1910 if (!zone_reclaimable(zone))
1911 force_scan = true;
1912 if (!mem_cgroup_lruvec_online(lruvec))
1913 force_scan = true;
1914 }
89b5fae5 1915 if (!global_reclaim(sc))
a4d3e9e7 1916 force_scan = true;
76a33fc3
SL
1917
1918 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1919 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1920 scan_balance = SCAN_FILE;
76a33fc3
SL
1921 goto out;
1922 }
4f98a2fe 1923
10316b31
JW
1924 /*
1925 * Global reclaim will swap to prevent OOM even with no
1926 * swappiness, but memcg users want to use this knob to
1927 * disable swapping for individual groups completely when
1928 * using the memory controller's swap limit feature would be
1929 * too expensive.
1930 */
02695175 1931 if (!global_reclaim(sc) && !swappiness) {
9a265114 1932 scan_balance = SCAN_FILE;
10316b31
JW
1933 goto out;
1934 }
1935
1936 /*
1937 * Do not apply any pressure balancing cleverness when the
1938 * system is close to OOM, scan both anon and file equally
1939 * (unless the swappiness setting disagrees with swapping).
1940 */
02695175 1941 if (!sc->priority && swappiness) {
9a265114 1942 scan_balance = SCAN_EQUAL;
10316b31
JW
1943 goto out;
1944 }
1945
62376251
JW
1946 /*
1947 * Prevent the reclaimer from falling into the cache trap: as
1948 * cache pages start out inactive, every cache fault will tip
1949 * the scan balance towards the file LRU. And as the file LRU
1950 * shrinks, so does the window for rotation from references.
1951 * This means we have a runaway feedback loop where a tiny
1952 * thrashing file LRU becomes infinitely more attractive than
1953 * anon pages. Try to detect this based on file LRU size.
1954 */
1955 if (global_reclaim(sc)) {
2ab051e1
JM
1956 unsigned long zonefile;
1957 unsigned long zonefree;
1958
1959 zonefree = zone_page_state(zone, NR_FREE_PAGES);
1960 zonefile = zone_page_state(zone, NR_ACTIVE_FILE) +
1961 zone_page_state(zone, NR_INACTIVE_FILE);
62376251 1962
2ab051e1 1963 if (unlikely(zonefile + zonefree <= high_wmark_pages(zone))) {
62376251
JW
1964 scan_balance = SCAN_ANON;
1965 goto out;
1966 }
1967 }
1968
7c5bd705
JW
1969 /*
1970 * There is enough inactive page cache, do not reclaim
1971 * anything from the anonymous working set right now.
1972 */
1973 if (!inactive_file_is_low(lruvec)) {
9a265114 1974 scan_balance = SCAN_FILE;
7c5bd705
JW
1975 goto out;
1976 }
1977
9a265114
JW
1978 scan_balance = SCAN_FRACT;
1979
58c37f6e
KM
1980 /*
1981 * With swappiness at 100, anonymous and file have the same priority.
1982 * This scanning priority is essentially the inverse of IO cost.
1983 */
02695175 1984 anon_prio = swappiness;
75b00af7 1985 file_prio = 200 - anon_prio;
58c37f6e 1986
4f98a2fe
RR
1987 /*
1988 * OK, so we have swap space and a fair amount of page cache
1989 * pages. We use the recently rotated / recently scanned
1990 * ratios to determine how valuable each cache is.
1991 *
1992 * Because workloads change over time (and to avoid overflow)
1993 * we keep these statistics as a floating average, which ends
1994 * up weighing recent references more than old ones.
1995 *
1996 * anon in [0], file in [1]
1997 */
2ab051e1
JM
1998
1999 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
2000 get_lru_size(lruvec, LRU_INACTIVE_ANON);
2001 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
2002 get_lru_size(lruvec, LRU_INACTIVE_FILE);
2003
90126375 2004 spin_lock_irq(&zone->lru_lock);
6e901571 2005 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2006 reclaim_stat->recent_scanned[0] /= 2;
2007 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2008 }
2009
6e901571 2010 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2011 reclaim_stat->recent_scanned[1] /= 2;
2012 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2013 }
2014
4f98a2fe 2015 /*
00d8089c
RR
2016 * The amount of pressure on anon vs file pages is inversely
2017 * proportional to the fraction of recently scanned pages on
2018 * each list that were recently referenced and in active use.
4f98a2fe 2019 */
fe35004f 2020 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2021 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2022
fe35004f 2023 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2024 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 2025 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 2026
76a33fc3
SL
2027 fraction[0] = ap;
2028 fraction[1] = fp;
2029 denominator = ap + fp + 1;
2030out:
6f04f48d
SS
2031 some_scanned = false;
2032 /* Only use force_scan on second pass. */
2033 for (pass = 0; !some_scanned && pass < 2; pass++) {
6b4f7799 2034 *lru_pages = 0;
6f04f48d
SS
2035 for_each_evictable_lru(lru) {
2036 int file = is_file_lru(lru);
2037 unsigned long size;
2038 unsigned long scan;
6e08a369 2039
6f04f48d
SS
2040 size = get_lru_size(lruvec, lru);
2041 scan = size >> sc->priority;
9a265114 2042
6f04f48d
SS
2043 if (!scan && pass && force_scan)
2044 scan = min(size, SWAP_CLUSTER_MAX);
9a265114 2045
6f04f48d
SS
2046 switch (scan_balance) {
2047 case SCAN_EQUAL:
2048 /* Scan lists relative to size */
2049 break;
2050 case SCAN_FRACT:
2051 /*
2052 * Scan types proportional to swappiness and
2053 * their relative recent reclaim efficiency.
2054 */
2055 scan = div64_u64(scan * fraction[file],
2056 denominator);
2057 break;
2058 case SCAN_FILE:
2059 case SCAN_ANON:
2060 /* Scan one type exclusively */
6b4f7799
JW
2061 if ((scan_balance == SCAN_FILE) != file) {
2062 size = 0;
6f04f48d 2063 scan = 0;
6b4f7799 2064 }
6f04f48d
SS
2065 break;
2066 default:
2067 /* Look ma, no brain */
2068 BUG();
2069 }
6b4f7799
JW
2070
2071 *lru_pages += size;
6f04f48d 2072 nr[lru] = scan;
6b4f7799 2073
9a265114 2074 /*
6f04f48d
SS
2075 * Skip the second pass and don't force_scan,
2076 * if we found something to scan.
9a265114 2077 */
6f04f48d 2078 some_scanned |= !!scan;
9a265114 2079 }
76a33fc3 2080 }
6e08a369 2081}
4f98a2fe 2082
9b4f98cd
JW
2083/*
2084 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2085 */
02695175 2086static void shrink_lruvec(struct lruvec *lruvec, int swappiness,
6b4f7799 2087 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd
JW
2088{
2089 unsigned long nr[NR_LRU_LISTS];
e82e0561 2090 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2091 unsigned long nr_to_scan;
2092 enum lru_list lru;
2093 unsigned long nr_reclaimed = 0;
2094 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2095 struct blk_plug plug;
1a501907 2096 bool scan_adjusted;
9b4f98cd 2097
6b4f7799 2098 get_scan_count(lruvec, swappiness, sc, nr, lru_pages);
9b4f98cd 2099
e82e0561
MG
2100 /* Record the original scan target for proportional adjustments later */
2101 memcpy(targets, nr, sizeof(nr));
2102
1a501907
MG
2103 /*
2104 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2105 * event that can occur when there is little memory pressure e.g.
2106 * multiple streaming readers/writers. Hence, we do not abort scanning
2107 * when the requested number of pages are reclaimed when scanning at
2108 * DEF_PRIORITY on the assumption that the fact we are direct
2109 * reclaiming implies that kswapd is not keeping up and it is best to
2110 * do a batch of work at once. For memcg reclaim one check is made to
2111 * abort proportional reclaim if either the file or anon lru has already
2112 * dropped to zero at the first pass.
2113 */
2114 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2115 sc->priority == DEF_PRIORITY);
2116
9b4f98cd
JW
2117 blk_start_plug(&plug);
2118 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2119 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2120 unsigned long nr_anon, nr_file, percentage;
2121 unsigned long nr_scanned;
2122
9b4f98cd
JW
2123 for_each_evictable_lru(lru) {
2124 if (nr[lru]) {
2125 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2126 nr[lru] -= nr_to_scan;
2127
2128 nr_reclaimed += shrink_list(lru, nr_to_scan,
2129 lruvec, sc);
2130 }
2131 }
e82e0561
MG
2132
2133 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2134 continue;
2135
e82e0561
MG
2136 /*
2137 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2138 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2139 * proportionally what was requested by get_scan_count(). We
2140 * stop reclaiming one LRU and reduce the amount scanning
2141 * proportional to the original scan target.
2142 */
2143 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2144 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2145
1a501907
MG
2146 /*
2147 * It's just vindictive to attack the larger once the smaller
2148 * has gone to zero. And given the way we stop scanning the
2149 * smaller below, this makes sure that we only make one nudge
2150 * towards proportionality once we've got nr_to_reclaim.
2151 */
2152 if (!nr_file || !nr_anon)
2153 break;
2154
e82e0561
MG
2155 if (nr_file > nr_anon) {
2156 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2157 targets[LRU_ACTIVE_ANON] + 1;
2158 lru = LRU_BASE;
2159 percentage = nr_anon * 100 / scan_target;
2160 } else {
2161 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2162 targets[LRU_ACTIVE_FILE] + 1;
2163 lru = LRU_FILE;
2164 percentage = nr_file * 100 / scan_target;
2165 }
2166
2167 /* Stop scanning the smaller of the LRU */
2168 nr[lru] = 0;
2169 nr[lru + LRU_ACTIVE] = 0;
2170
2171 /*
2172 * Recalculate the other LRU scan count based on its original
2173 * scan target and the percentage scanning already complete
2174 */
2175 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2176 nr_scanned = targets[lru] - nr[lru];
2177 nr[lru] = targets[lru] * (100 - percentage) / 100;
2178 nr[lru] -= min(nr[lru], nr_scanned);
2179
2180 lru += LRU_ACTIVE;
2181 nr_scanned = targets[lru] - nr[lru];
2182 nr[lru] = targets[lru] * (100 - percentage) / 100;
2183 nr[lru] -= min(nr[lru], nr_scanned);
2184
2185 scan_adjusted = true;
9b4f98cd
JW
2186 }
2187 blk_finish_plug(&plug);
2188 sc->nr_reclaimed += nr_reclaimed;
2189
2190 /*
2191 * Even if we did not try to evict anon pages at all, we want to
2192 * rebalance the anon lru active/inactive ratio.
2193 */
2194 if (inactive_anon_is_low(lruvec))
2195 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2196 sc, LRU_ACTIVE_ANON);
2197
2198 throttle_vm_writeout(sc->gfp_mask);
2199}
2200
23b9da55 2201/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2202static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2203{
d84da3f9 2204 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2205 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2206 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2207 return true;
2208
2209 return false;
2210}
2211
3e7d3449 2212/*
23b9da55
MG
2213 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2214 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2215 * true if more pages should be reclaimed such that when the page allocator
2216 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2217 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2218 */
9b4f98cd 2219static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2220 unsigned long nr_reclaimed,
2221 unsigned long nr_scanned,
2222 struct scan_control *sc)
2223{
2224 unsigned long pages_for_compaction;
2225 unsigned long inactive_lru_pages;
2226
2227 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2228 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2229 return false;
2230
2876592f
MG
2231 /* Consider stopping depending on scan and reclaim activity */
2232 if (sc->gfp_mask & __GFP_REPEAT) {
2233 /*
2234 * For __GFP_REPEAT allocations, stop reclaiming if the
2235 * full LRU list has been scanned and we are still failing
2236 * to reclaim pages. This full LRU scan is potentially
2237 * expensive but a __GFP_REPEAT caller really wants to succeed
2238 */
2239 if (!nr_reclaimed && !nr_scanned)
2240 return false;
2241 } else {
2242 /*
2243 * For non-__GFP_REPEAT allocations which can presumably
2244 * fail without consequence, stop if we failed to reclaim
2245 * any pages from the last SWAP_CLUSTER_MAX number of
2246 * pages that were scanned. This will return to the
2247 * caller faster at the risk reclaim/compaction and
2248 * the resulting allocation attempt fails
2249 */
2250 if (!nr_reclaimed)
2251 return false;
2252 }
3e7d3449
MG
2253
2254 /*
2255 * If we have not reclaimed enough pages for compaction and the
2256 * inactive lists are large enough, continue reclaiming
2257 */
2258 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2259 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2260 if (get_nr_swap_pages() > 0)
9b4f98cd 2261 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2262 if (sc->nr_reclaimed < pages_for_compaction &&
2263 inactive_lru_pages > pages_for_compaction)
2264 return true;
2265
2266 /* If compaction would go ahead or the allocation would succeed, stop */
ebff3980 2267 switch (compaction_suitable(zone, sc->order, 0, 0)) {
3e7d3449
MG
2268 case COMPACT_PARTIAL:
2269 case COMPACT_CONTINUE:
2270 return false;
2271 default:
2272 return true;
2273 }
2274}
2275
6b4f7799
JW
2276static bool shrink_zone(struct zone *zone, struct scan_control *sc,
2277 bool is_classzone)
1da177e4 2278{
f0fdc5e8 2279 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2280 bool reclaimable = false;
1da177e4 2281
9b4f98cd
JW
2282 do {
2283 struct mem_cgroup *root = sc->target_mem_cgroup;
2284 struct mem_cgroup_reclaim_cookie reclaim = {
2285 .zone = zone,
2286 .priority = sc->priority,
2287 };
6b4f7799 2288 unsigned long zone_lru_pages = 0;
694fbc0f 2289 struct mem_cgroup *memcg;
3e7d3449 2290
9b4f98cd
JW
2291 nr_reclaimed = sc->nr_reclaimed;
2292 nr_scanned = sc->nr_scanned;
1da177e4 2293
694fbc0f
AM
2294 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2295 do {
6b4f7799 2296 unsigned long lru_pages;
9b4f98cd 2297 struct lruvec *lruvec;
02695175 2298 int swappiness;
5660048c 2299
241994ed
JW
2300 if (mem_cgroup_low(root, memcg)) {
2301 if (!sc->may_thrash)
2302 continue;
2303 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2304 }
2305
9b4f98cd 2306 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2307 swappiness = mem_cgroup_swappiness(memcg);
f9be23d6 2308
6b4f7799
JW
2309 shrink_lruvec(lruvec, swappiness, sc, &lru_pages);
2310 zone_lru_pages += lru_pages;
f16015fb 2311
9b4f98cd 2312 /*
a394cb8e
MH
2313 * Direct reclaim and kswapd have to scan all memory
2314 * cgroups to fulfill the overall scan target for the
9b4f98cd 2315 * zone.
a394cb8e
MH
2316 *
2317 * Limit reclaim, on the other hand, only cares about
2318 * nr_to_reclaim pages to be reclaimed and it will
2319 * retry with decreasing priority if one round over the
2320 * whole hierarchy is not sufficient.
9b4f98cd 2321 */
a394cb8e
MH
2322 if (!global_reclaim(sc) &&
2323 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2324 mem_cgroup_iter_break(root, memcg);
2325 break;
2326 }
241994ed 2327 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2328
6b4f7799
JW
2329 /*
2330 * Shrink the slab caches in the same proportion that
2331 * the eligible LRU pages were scanned.
2332 */
2333 if (global_reclaim(sc) && is_classzone) {
2334 struct reclaim_state *reclaim_state;
2335
2336 shrink_node_slabs(sc->gfp_mask, zone_to_nid(zone),
2337 sc->nr_scanned - nr_scanned,
2338 zone_lru_pages);
2339
2340 reclaim_state = current->reclaim_state;
2341 if (reclaim_state) {
2342 sc->nr_reclaimed +=
2343 reclaim_state->reclaimed_slab;
2344 reclaim_state->reclaimed_slab = 0;
2345 }
2346 }
2347
70ddf637
AV
2348 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2349 sc->nr_scanned - nr_scanned,
2350 sc->nr_reclaimed - nr_reclaimed);
2351
2344d7e4
JW
2352 if (sc->nr_reclaimed - nr_reclaimed)
2353 reclaimable = true;
2354
9b4f98cd
JW
2355 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2356 sc->nr_scanned - nr_scanned, sc));
2344d7e4
JW
2357
2358 return reclaimable;
f16015fb
JW
2359}
2360
53853e2d
VB
2361/*
2362 * Returns true if compaction should go ahead for a high-order request, or
2363 * the high-order allocation would succeed without compaction.
2364 */
0b06496a 2365static inline bool compaction_ready(struct zone *zone, int order)
fe4b1b24
MG
2366{
2367 unsigned long balance_gap, watermark;
2368 bool watermark_ok;
2369
fe4b1b24
MG
2370 /*
2371 * Compaction takes time to run and there are potentially other
2372 * callers using the pages just freed. Continue reclaiming until
2373 * there is a buffer of free pages available to give compaction
2374 * a reasonable chance of completing and allocating the page
2375 */
4be89a34
JZ
2376 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
2377 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
0b06496a 2378 watermark = high_wmark_pages(zone) + balance_gap + (2UL << order);
fe4b1b24
MG
2379 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2380
2381 /*
2382 * If compaction is deferred, reclaim up to a point where
2383 * compaction will have a chance of success when re-enabled
2384 */
0b06496a 2385 if (compaction_deferred(zone, order))
fe4b1b24
MG
2386 return watermark_ok;
2387
53853e2d
VB
2388 /*
2389 * If compaction is not ready to start and allocation is not likely
2390 * to succeed without it, then keep reclaiming.
2391 */
ebff3980 2392 if (compaction_suitable(zone, order, 0, 0) == COMPACT_SKIPPED)
fe4b1b24
MG
2393 return false;
2394
2395 return watermark_ok;
2396}
2397
1da177e4
LT
2398/*
2399 * This is the direct reclaim path, for page-allocating processes. We only
2400 * try to reclaim pages from zones which will satisfy the caller's allocation
2401 * request.
2402 *
41858966
MG
2403 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2404 * Because:
1da177e4
LT
2405 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2406 * allocation or
41858966
MG
2407 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2408 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2409 * zone defense algorithm.
1da177e4 2410 *
1da177e4
LT
2411 * If a zone is deemed to be full of pinned pages then just give it a light
2412 * scan then give up on it.
2344d7e4
JW
2413 *
2414 * Returns true if a zone was reclaimable.
1da177e4 2415 */
2344d7e4 2416static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2417{
dd1a239f 2418 struct zoneref *z;
54a6eb5c 2419 struct zone *zone;
0608f43d
AM
2420 unsigned long nr_soft_reclaimed;
2421 unsigned long nr_soft_scanned;
619d0d76 2422 gfp_t orig_mask;
9bbc04ee 2423 enum zone_type requested_highidx = gfp_zone(sc->gfp_mask);
2344d7e4 2424 bool reclaimable = false;
1cfb419b 2425
cc715d99
MG
2426 /*
2427 * If the number of buffer_heads in the machine exceeds the maximum
2428 * allowed level, force direct reclaim to scan the highmem zone as
2429 * highmem pages could be pinning lowmem pages storing buffer_heads
2430 */
619d0d76 2431 orig_mask = sc->gfp_mask;
cc715d99
MG
2432 if (buffer_heads_over_limit)
2433 sc->gfp_mask |= __GFP_HIGHMEM;
2434
d4debc66 2435 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6b4f7799
JW
2436 requested_highidx, sc->nodemask) {
2437 enum zone_type classzone_idx;
2438
f3fe6512 2439 if (!populated_zone(zone))
1da177e4 2440 continue;
6b4f7799
JW
2441
2442 classzone_idx = requested_highidx;
2443 while (!populated_zone(zone->zone_pgdat->node_zones +
2444 classzone_idx))
2445 classzone_idx--;
2446
1cfb419b
KH
2447 /*
2448 * Take care memory controller reclaiming has small influence
2449 * to global LRU.
2450 */
89b5fae5 2451 if (global_reclaim(sc)) {
344736f2
VD
2452 if (!cpuset_zone_allowed(zone,
2453 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2454 continue;
65ec02cb 2455
6e543d57
LD
2456 if (sc->priority != DEF_PRIORITY &&
2457 !zone_reclaimable(zone))
1cfb419b 2458 continue; /* Let kswapd poll it */
0b06496a
JW
2459
2460 /*
2461 * If we already have plenty of memory free for
2462 * compaction in this zone, don't free any more.
2463 * Even though compaction is invoked for any
2464 * non-zero order, only frequent costly order
2465 * reclamation is disruptive enough to become a
2466 * noticeable problem, like transparent huge
2467 * page allocations.
2468 */
2469 if (IS_ENABLED(CONFIG_COMPACTION) &&
2470 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2471 zonelist_zone_idx(z) <= requested_highidx &&
2472 compaction_ready(zone, sc->order)) {
2473 sc->compaction_ready = true;
2474 continue;
e0887c19 2475 }
0b06496a 2476
0608f43d
AM
2477 /*
2478 * This steals pages from memory cgroups over softlimit
2479 * and returns the number of reclaimed pages and
2480 * scanned pages. This works for global memory pressure
2481 * and balancing, not for a memcg's limit.
2482 */
2483 nr_soft_scanned = 0;
2484 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2485 sc->order, sc->gfp_mask,
2486 &nr_soft_scanned);
2487 sc->nr_reclaimed += nr_soft_reclaimed;
2488 sc->nr_scanned += nr_soft_scanned;
2344d7e4
JW
2489 if (nr_soft_reclaimed)
2490 reclaimable = true;
ac34a1a3 2491 /* need some check for avoid more shrink_zone() */
1cfb419b 2492 }
408d8544 2493
6b4f7799 2494 if (shrink_zone(zone, sc, zone_idx(zone) == classzone_idx))
2344d7e4
JW
2495 reclaimable = true;
2496
2497 if (global_reclaim(sc) &&
2498 !reclaimable && zone_reclaimable(zone))
2499 reclaimable = true;
1da177e4 2500 }
e0c23279 2501
619d0d76
WY
2502 /*
2503 * Restore to original mask to avoid the impact on the caller if we
2504 * promoted it to __GFP_HIGHMEM.
2505 */
2506 sc->gfp_mask = orig_mask;
d1908362 2507
2344d7e4 2508 return reclaimable;
1da177e4 2509}
4f98a2fe 2510
1da177e4
LT
2511/*
2512 * This is the main entry point to direct page reclaim.
2513 *
2514 * If a full scan of the inactive list fails to free enough memory then we
2515 * are "out of memory" and something needs to be killed.
2516 *
2517 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2518 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2519 * caller can't do much about. We kick the writeback threads and take explicit
2520 * naps in the hope that some of these pages can be written. But if the
2521 * allocating task holds filesystem locks which prevent writeout this might not
2522 * work, and the allocation attempt will fail.
a41f24ea
NA
2523 *
2524 * returns: 0, if no pages reclaimed
2525 * else, the number of pages reclaimed
1da177e4 2526 */
dac1d27b 2527static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2528 struct scan_control *sc)
1da177e4 2529{
241994ed 2530 int initial_priority = sc->priority;
69e05944 2531 unsigned long total_scanned = 0;
22fba335 2532 unsigned long writeback_threshold;
2344d7e4 2533 bool zones_reclaimable;
241994ed 2534retry:
873b4771
KK
2535 delayacct_freepages_start();
2536
89b5fae5 2537 if (global_reclaim(sc))
1cfb419b 2538 count_vm_event(ALLOCSTALL);
1da177e4 2539
9e3b2f8c 2540 do {
70ddf637
AV
2541 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2542 sc->priority);
66e1707b 2543 sc->nr_scanned = 0;
2344d7e4 2544 zones_reclaimable = shrink_zones(zonelist, sc);
c6a8a8c5 2545
66e1707b 2546 total_scanned += sc->nr_scanned;
bb21c7ce 2547 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2548 break;
2549
2550 if (sc->compaction_ready)
2551 break;
1da177e4 2552
0e50ce3b
MK
2553 /*
2554 * If we're getting trouble reclaiming, start doing
2555 * writepage even in laptop mode.
2556 */
2557 if (sc->priority < DEF_PRIORITY - 2)
2558 sc->may_writepage = 1;
2559
1da177e4
LT
2560 /*
2561 * Try to write back as many pages as we just scanned. This
2562 * tends to cause slow streaming writers to write data to the
2563 * disk smoothly, at the dirtying rate, which is nice. But
2564 * that's undesirable in laptop mode, where we *want* lumpy
2565 * writeout. So in laptop mode, write out the whole world.
2566 */
22fba335
KM
2567 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2568 if (total_scanned > writeback_threshold) {
0e175a18
CW
2569 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2570 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2571 sc->may_writepage = 1;
1da177e4 2572 }
0b06496a 2573 } while (--sc->priority >= 0);
bb21c7ce 2574
873b4771
KK
2575 delayacct_freepages_end();
2576
bb21c7ce
KM
2577 if (sc->nr_reclaimed)
2578 return sc->nr_reclaimed;
2579
0cee34fd 2580 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2581 if (sc->compaction_ready)
7335084d
MG
2582 return 1;
2583
241994ed
JW
2584 /* Untapped cgroup reserves? Don't OOM, retry. */
2585 if (!sc->may_thrash) {
2586 sc->priority = initial_priority;
2587 sc->may_thrash = 1;
2588 goto retry;
2589 }
2590
2344d7e4
JW
2591 /* Any of the zones still reclaimable? Don't OOM. */
2592 if (zones_reclaimable)
bb21c7ce
KM
2593 return 1;
2594
2595 return 0;
1da177e4
LT
2596}
2597
5515061d
MG
2598static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2599{
2600 struct zone *zone;
2601 unsigned long pfmemalloc_reserve = 0;
2602 unsigned long free_pages = 0;
2603 int i;
2604 bool wmark_ok;
2605
2606 for (i = 0; i <= ZONE_NORMAL; i++) {
2607 zone = &pgdat->node_zones[i];
675becce
MG
2608 if (!populated_zone(zone))
2609 continue;
2610
5515061d
MG
2611 pfmemalloc_reserve += min_wmark_pages(zone);
2612 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2613 }
2614
675becce
MG
2615 /* If there are no reserves (unexpected config) then do not throttle */
2616 if (!pfmemalloc_reserve)
2617 return true;
2618
5515061d
MG
2619 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2620
2621 /* kswapd must be awake if processes are being throttled */
2622 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2623 pgdat->classzone_idx = min(pgdat->classzone_idx,
2624 (enum zone_type)ZONE_NORMAL);
2625 wake_up_interruptible(&pgdat->kswapd_wait);
2626 }
2627
2628 return wmark_ok;
2629}
2630
2631/*
2632 * Throttle direct reclaimers if backing storage is backed by the network
2633 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2634 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2635 * when the low watermark is reached.
2636 *
2637 * Returns true if a fatal signal was delivered during throttling. If this
2638 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2639 */
50694c28 2640static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2641 nodemask_t *nodemask)
2642{
675becce 2643 struct zoneref *z;
5515061d 2644 struct zone *zone;
675becce 2645 pg_data_t *pgdat = NULL;
5515061d
MG
2646
2647 /*
2648 * Kernel threads should not be throttled as they may be indirectly
2649 * responsible for cleaning pages necessary for reclaim to make forward
2650 * progress. kjournald for example may enter direct reclaim while
2651 * committing a transaction where throttling it could forcing other
2652 * processes to block on log_wait_commit().
2653 */
2654 if (current->flags & PF_KTHREAD)
50694c28
MG
2655 goto out;
2656
2657 /*
2658 * If a fatal signal is pending, this process should not throttle.
2659 * It should return quickly so it can exit and free its memory
2660 */
2661 if (fatal_signal_pending(current))
2662 goto out;
5515061d 2663
675becce
MG
2664 /*
2665 * Check if the pfmemalloc reserves are ok by finding the first node
2666 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2667 * GFP_KERNEL will be required for allocating network buffers when
2668 * swapping over the network so ZONE_HIGHMEM is unusable.
2669 *
2670 * Throttling is based on the first usable node and throttled processes
2671 * wait on a queue until kswapd makes progress and wakes them. There
2672 * is an affinity then between processes waking up and where reclaim
2673 * progress has been made assuming the process wakes on the same node.
2674 * More importantly, processes running on remote nodes will not compete
2675 * for remote pfmemalloc reserves and processes on different nodes
2676 * should make reasonable progress.
2677 */
2678 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 2679 gfp_zone(gfp_mask), nodemask) {
675becce
MG
2680 if (zone_idx(zone) > ZONE_NORMAL)
2681 continue;
2682
2683 /* Throttle based on the first usable node */
2684 pgdat = zone->zone_pgdat;
2685 if (pfmemalloc_watermark_ok(pgdat))
2686 goto out;
2687 break;
2688 }
2689
2690 /* If no zone was usable by the allocation flags then do not throttle */
2691 if (!pgdat)
50694c28 2692 goto out;
5515061d 2693
68243e76
MG
2694 /* Account for the throttling */
2695 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2696
5515061d
MG
2697 /*
2698 * If the caller cannot enter the filesystem, it's possible that it
2699 * is due to the caller holding an FS lock or performing a journal
2700 * transaction in the case of a filesystem like ext[3|4]. In this case,
2701 * it is not safe to block on pfmemalloc_wait as kswapd could be
2702 * blocked waiting on the same lock. Instead, throttle for up to a
2703 * second before continuing.
2704 */
2705 if (!(gfp_mask & __GFP_FS)) {
2706 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2707 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2708
2709 goto check_pending;
5515061d
MG
2710 }
2711
2712 /* Throttle until kswapd wakes the process */
2713 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2714 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2715
2716check_pending:
2717 if (fatal_signal_pending(current))
2718 return true;
2719
2720out:
2721 return false;
5515061d
MG
2722}
2723
dac1d27b 2724unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2725 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2726{
33906bc5 2727 unsigned long nr_reclaimed;
66e1707b 2728 struct scan_control sc = {
ee814fe2 2729 .nr_to_reclaim = SWAP_CLUSTER_MAX,
21caf2fc 2730 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
ee814fe2
JW
2731 .order = order,
2732 .nodemask = nodemask,
2733 .priority = DEF_PRIORITY,
66e1707b 2734 .may_writepage = !laptop_mode,
a6dc60f8 2735 .may_unmap = 1,
2e2e4259 2736 .may_swap = 1,
66e1707b
BS
2737 };
2738
5515061d 2739 /*
50694c28
MG
2740 * Do not enter reclaim if fatal signal was delivered while throttled.
2741 * 1 is returned so that the page allocator does not OOM kill at this
2742 * point.
5515061d 2743 */
50694c28 2744 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2745 return 1;
2746
33906bc5
MG
2747 trace_mm_vmscan_direct_reclaim_begin(order,
2748 sc.may_writepage,
2749 gfp_mask);
2750
3115cd91 2751 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
2752
2753 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2754
2755 return nr_reclaimed;
66e1707b
BS
2756}
2757
c255a458 2758#ifdef CONFIG_MEMCG
66e1707b 2759
72835c86 2760unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2761 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2762 struct zone *zone,
2763 unsigned long *nr_scanned)
4e416953
BS
2764{
2765 struct scan_control sc = {
b8f5c566 2766 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 2767 .target_mem_cgroup = memcg,
4e416953
BS
2768 .may_writepage = !laptop_mode,
2769 .may_unmap = 1,
2770 .may_swap = !noswap,
4e416953 2771 };
f9be23d6 2772 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
02695175 2773 int swappiness = mem_cgroup_swappiness(memcg);
6b4f7799 2774 unsigned long lru_pages;
0ae5e89c 2775
4e416953
BS
2776 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2777 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2778
9e3b2f8c 2779 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2780 sc.may_writepage,
2781 sc.gfp_mask);
2782
4e416953
BS
2783 /*
2784 * NOTE: Although we can get the priority field, using it
2785 * here is not a good idea, since it limits the pages we can scan.
2786 * if we don't reclaim here, the shrink_zone from balance_pgdat
2787 * will pick up pages from other mem cgroup's as well. We hack
2788 * the priority and make it zero.
2789 */
6b4f7799 2790 shrink_lruvec(lruvec, swappiness, &sc, &lru_pages);
bdce6d9e
KM
2791
2792 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2793
0ae5e89c 2794 *nr_scanned = sc.nr_scanned;
4e416953
BS
2795 return sc.nr_reclaimed;
2796}
2797
72835c86 2798unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 2799 unsigned long nr_pages,
a7885eb8 2800 gfp_t gfp_mask,
b70a2a21 2801 bool may_swap)
66e1707b 2802{
4e416953 2803 struct zonelist *zonelist;
bdce6d9e 2804 unsigned long nr_reclaimed;
889976db 2805 int nid;
66e1707b 2806 struct scan_control sc = {
b70a2a21 2807 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
a09ed5e0
YH
2808 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2809 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
ee814fe2
JW
2810 .target_mem_cgroup = memcg,
2811 .priority = DEF_PRIORITY,
2812 .may_writepage = !laptop_mode,
2813 .may_unmap = 1,
b70a2a21 2814 .may_swap = may_swap,
a09ed5e0 2815 };
66e1707b 2816
889976db
YH
2817 /*
2818 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2819 * take care of from where we get pages. So the node where we start the
2820 * scan does not need to be the current node.
2821 */
72835c86 2822 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2823
2824 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2825
2826 trace_mm_vmscan_memcg_reclaim_begin(0,
2827 sc.may_writepage,
2828 sc.gfp_mask);
2829
3115cd91 2830 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
bdce6d9e
KM
2831
2832 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2833
2834 return nr_reclaimed;
66e1707b
BS
2835}
2836#endif
2837
9e3b2f8c 2838static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2839{
b95a2f2d 2840 struct mem_cgroup *memcg;
f16015fb 2841
b95a2f2d
JW
2842 if (!total_swap_pages)
2843 return;
2844
2845 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2846 do {
c56d5c7d 2847 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2848
c56d5c7d 2849 if (inactive_anon_is_low(lruvec))
1a93be0e 2850 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2851 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2852
2853 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2854 } while (memcg);
f16015fb
JW
2855}
2856
60cefed4
JW
2857static bool zone_balanced(struct zone *zone, int order,
2858 unsigned long balance_gap, int classzone_idx)
2859{
2860 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2861 balance_gap, classzone_idx, 0))
2862 return false;
2863
ebff3980
VB
2864 if (IS_ENABLED(CONFIG_COMPACTION) && order && compaction_suitable(zone,
2865 order, 0, classzone_idx) == COMPACT_SKIPPED)
60cefed4
JW
2866 return false;
2867
2868 return true;
2869}
2870
1741c877 2871/*
4ae0a48b
ZC
2872 * pgdat_balanced() is used when checking if a node is balanced.
2873 *
2874 * For order-0, all zones must be balanced!
2875 *
2876 * For high-order allocations only zones that meet watermarks and are in a
2877 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2878 * total of balanced pages must be at least 25% of the zones allowed by
2879 * classzone_idx for the node to be considered balanced. Forcing all zones to
2880 * be balanced for high orders can cause excessive reclaim when there are
2881 * imbalanced zones.
1741c877
MG
2882 * The choice of 25% is due to
2883 * o a 16M DMA zone that is balanced will not balance a zone on any
2884 * reasonable sized machine
2885 * o On all other machines, the top zone must be at least a reasonable
25985edc 2886 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2887 * would need to be at least 256M for it to be balance a whole node.
2888 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2889 * to balance a node on its own. These seemed like reasonable ratios.
2890 */
4ae0a48b 2891static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2892{
b40da049 2893 unsigned long managed_pages = 0;
4ae0a48b 2894 unsigned long balanced_pages = 0;
1741c877
MG
2895 int i;
2896
4ae0a48b
ZC
2897 /* Check the watermark levels */
2898 for (i = 0; i <= classzone_idx; i++) {
2899 struct zone *zone = pgdat->node_zones + i;
1741c877 2900
4ae0a48b
ZC
2901 if (!populated_zone(zone))
2902 continue;
2903
b40da049 2904 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2905
2906 /*
2907 * A special case here:
2908 *
2909 * balance_pgdat() skips over all_unreclaimable after
2910 * DEF_PRIORITY. Effectively, it considers them balanced so
2911 * they must be considered balanced here as well!
2912 */
6e543d57 2913 if (!zone_reclaimable(zone)) {
b40da049 2914 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2915 continue;
2916 }
2917
2918 if (zone_balanced(zone, order, 0, i))
b40da049 2919 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2920 else if (!order)
2921 return false;
2922 }
2923
2924 if (order)
b40da049 2925 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2926 else
2927 return true;
1741c877
MG
2928}
2929
5515061d
MG
2930/*
2931 * Prepare kswapd for sleeping. This verifies that there are no processes
2932 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2933 *
2934 * Returns true if kswapd is ready to sleep
2935 */
2936static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2937 int classzone_idx)
f50de2d3 2938{
f50de2d3
MG
2939 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2940 if (remaining)
5515061d
MG
2941 return false;
2942
2943 /*
9e5e3661
VB
2944 * The throttled processes are normally woken up in balance_pgdat() as
2945 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
2946 * race between when kswapd checks the watermarks and a process gets
2947 * throttled. There is also a potential race if processes get
2948 * throttled, kswapd wakes, a large process exits thereby balancing the
2949 * zones, which causes kswapd to exit balance_pgdat() before reaching
2950 * the wake up checks. If kswapd is going to sleep, no process should
2951 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
2952 * the wake up is premature, processes will wake kswapd and get
2953 * throttled again. The difference from wake ups in balance_pgdat() is
2954 * that here we are under prepare_to_wait().
5515061d 2955 */
9e5e3661
VB
2956 if (waitqueue_active(&pgdat->pfmemalloc_wait))
2957 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 2958
4ae0a48b 2959 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2960}
2961
75485363
MG
2962/*
2963 * kswapd shrinks the zone by the number of pages required to reach
2964 * the high watermark.
b8e83b94
MG
2965 *
2966 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2967 * reclaim or if the lack of progress was due to pages under writeback.
2968 * This is used to determine if the scanning priority needs to be raised.
75485363 2969 */
b8e83b94 2970static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2971 int classzone_idx,
75485363 2972 struct scan_control *sc,
2ab44f43 2973 unsigned long *nr_attempted)
75485363 2974{
7c954f6d
MG
2975 int testorder = sc->order;
2976 unsigned long balance_gap;
7c954f6d 2977 bool lowmem_pressure;
75485363
MG
2978
2979 /* Reclaim above the high watermark. */
2980 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2981
2982 /*
2983 * Kswapd reclaims only single pages with compaction enabled. Trying
2984 * too hard to reclaim until contiguous free pages have become
2985 * available can hurt performance by evicting too much useful data
2986 * from memory. Do not reclaim more than needed for compaction.
2987 */
2988 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
ebff3980
VB
2989 compaction_suitable(zone, sc->order, 0, classzone_idx)
2990 != COMPACT_SKIPPED)
7c954f6d
MG
2991 testorder = 0;
2992
2993 /*
2994 * We put equal pressure on every zone, unless one zone has way too
2995 * many pages free already. The "too many pages" is defined as the
2996 * high wmark plus a "gap" where the gap is either the low
2997 * watermark or 1% of the zone, whichever is smaller.
2998 */
4be89a34
JZ
2999 balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
3000 zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));
7c954f6d
MG
3001
3002 /*
3003 * If there is no low memory pressure or the zone is balanced then no
3004 * reclaim is necessary
3005 */
3006 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
3007 if (!lowmem_pressure && zone_balanced(zone, testorder,
3008 balance_gap, classzone_idx))
3009 return true;
3010
6b4f7799 3011 shrink_zone(zone, sc, zone_idx(zone) == classzone_idx);
75485363 3012
2ab44f43
MG
3013 /* Account for the number of pages attempted to reclaim */
3014 *nr_attempted += sc->nr_to_reclaim;
3015
57054651 3016 clear_bit(ZONE_WRITEBACK, &zone->flags);
283aba9f 3017
7c954f6d
MG
3018 /*
3019 * If a zone reaches its high watermark, consider it to be no longer
3020 * congested. It's possible there are dirty pages backed by congested
3021 * BDIs but as pressure is relieved, speculatively avoid congestion
3022 * waits.
3023 */
6e543d57 3024 if (zone_reclaimable(zone) &&
7c954f6d 3025 zone_balanced(zone, testorder, 0, classzone_idx)) {
57054651
JW
3026 clear_bit(ZONE_CONGESTED, &zone->flags);
3027 clear_bit(ZONE_DIRTY, &zone->flags);
7c954f6d
MG
3028 }
3029
b8e83b94 3030 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3031}
3032
1da177e4
LT
3033/*
3034 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 3035 * they are all at high_wmark_pages(zone).
1da177e4 3036 *
0abdee2b 3037 * Returns the final order kswapd was reclaiming at
1da177e4
LT
3038 *
3039 * There is special handling here for zones which are full of pinned pages.
3040 * This can happen if the pages are all mlocked, or if they are all used by
3041 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
3042 * What we do is to detect the case where all pages in the zone have been
3043 * scanned twice and there has been zero successful reclaim. Mark the zone as
3044 * dead and from now on, only perform a short scan. Basically we're polling
3045 * the zone for when the problem goes away.
3046 *
3047 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
3048 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3049 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
3050 * lower zones regardless of the number of free pages in the lower zones. This
3051 * interoperates with the page allocator fallback scheme to ensure that aging
3052 * of pages is balanced across the zones.
1da177e4 3053 */
99504748 3054static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 3055 int *classzone_idx)
1da177e4 3056{
1da177e4 3057 int i;
99504748 3058 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
3059 unsigned long nr_soft_reclaimed;
3060 unsigned long nr_soft_scanned;
179e9639
AM
3061 struct scan_control sc = {
3062 .gfp_mask = GFP_KERNEL,
ee814fe2 3063 .order = order,
b8e83b94 3064 .priority = DEF_PRIORITY,
ee814fe2 3065 .may_writepage = !laptop_mode,
a6dc60f8 3066 .may_unmap = 1,
2e2e4259 3067 .may_swap = 1,
179e9639 3068 };
f8891e5e 3069 count_vm_event(PAGEOUTRUN);
1da177e4 3070
9e3b2f8c 3071 do {
2ab44f43 3072 unsigned long nr_attempted = 0;
b8e83b94 3073 bool raise_priority = true;
2ab44f43 3074 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
3075
3076 sc.nr_reclaimed = 0;
1da177e4 3077
d6277db4
RW
3078 /*
3079 * Scan in the highmem->dma direction for the highest
3080 * zone which needs scanning
3081 */
3082 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
3083 struct zone *zone = pgdat->node_zones + i;
1da177e4 3084
d6277db4
RW
3085 if (!populated_zone(zone))
3086 continue;
1da177e4 3087
6e543d57
LD
3088 if (sc.priority != DEF_PRIORITY &&
3089 !zone_reclaimable(zone))
d6277db4 3090 continue;
1da177e4 3091
556adecb
RR
3092 /*
3093 * Do some background aging of the anon list, to give
3094 * pages a chance to be referenced before reclaiming.
3095 */
9e3b2f8c 3096 age_active_anon(zone, &sc);
556adecb 3097
cc715d99
MG
3098 /*
3099 * If the number of buffer_heads in the machine
3100 * exceeds the maximum allowed level and this node
3101 * has a highmem zone, force kswapd to reclaim from
3102 * it to relieve lowmem pressure.
3103 */
3104 if (buffer_heads_over_limit && is_highmem_idx(i)) {
3105 end_zone = i;
3106 break;
3107 }
3108
60cefed4 3109 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 3110 end_zone = i;
e1dbeda6 3111 break;
439423f6 3112 } else {
d43006d5
MG
3113 /*
3114 * If balanced, clear the dirty and congested
3115 * flags
3116 */
57054651
JW
3117 clear_bit(ZONE_CONGESTED, &zone->flags);
3118 clear_bit(ZONE_DIRTY, &zone->flags);
1da177e4 3119 }
1da177e4 3120 }
dafcb73e 3121
b8e83b94 3122 if (i < 0)
e1dbeda6
AM
3123 goto out;
3124
1da177e4
LT
3125 for (i = 0; i <= end_zone; i++) {
3126 struct zone *zone = pgdat->node_zones + i;
3127
2ab44f43
MG
3128 if (!populated_zone(zone))
3129 continue;
3130
2ab44f43
MG
3131 /*
3132 * If any zone is currently balanced then kswapd will
3133 * not call compaction as it is expected that the
3134 * necessary pages are already available.
3135 */
3136 if (pgdat_needs_compaction &&
3137 zone_watermark_ok(zone, order,
3138 low_wmark_pages(zone),
3139 *classzone_idx, 0))
3140 pgdat_needs_compaction = false;
1da177e4
LT
3141 }
3142
b7ea3c41
MG
3143 /*
3144 * If we're getting trouble reclaiming, start doing writepage
3145 * even in laptop mode.
3146 */
3147 if (sc.priority < DEF_PRIORITY - 2)
3148 sc.may_writepage = 1;
3149
1da177e4
LT
3150 /*
3151 * Now scan the zone in the dma->highmem direction, stopping
3152 * at the last zone which needs scanning.
3153 *
3154 * We do this because the page allocator works in the opposite
3155 * direction. This prevents the page allocator from allocating
3156 * pages behind kswapd's direction of progress, which would
3157 * cause too much scanning of the lower zones.
3158 */
3159 for (i = 0; i <= end_zone; i++) {
3160 struct zone *zone = pgdat->node_zones + i;
3161
f3fe6512 3162 if (!populated_zone(zone))
1da177e4
LT
3163 continue;
3164
6e543d57
LD
3165 if (sc.priority != DEF_PRIORITY &&
3166 !zone_reclaimable(zone))
1da177e4
LT
3167 continue;
3168
1da177e4 3169 sc.nr_scanned = 0;
4e416953 3170
0608f43d
AM
3171 nr_soft_scanned = 0;
3172 /*
3173 * Call soft limit reclaim before calling shrink_zone.
3174 */
3175 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3176 order, sc.gfp_mask,
3177 &nr_soft_scanned);
3178 sc.nr_reclaimed += nr_soft_reclaimed;
3179
32a4330d 3180 /*
7c954f6d
MG
3181 * There should be no need to raise the scanning
3182 * priority if enough pages are already being scanned
3183 * that that high watermark would be met at 100%
3184 * efficiency.
fe2c2a10 3185 */
6b4f7799
JW
3186 if (kswapd_shrink_zone(zone, end_zone,
3187 &sc, &nr_attempted))
7c954f6d 3188 raise_priority = false;
1da177e4 3189 }
5515061d
MG
3190
3191 /*
3192 * If the low watermark is met there is no need for processes
3193 * to be throttled on pfmemalloc_wait as they should not be
3194 * able to safely make forward progress. Wake them
3195 */
3196 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3197 pfmemalloc_watermark_ok(pgdat))
cfc51155 3198 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3199
1da177e4 3200 /*
b8e83b94
MG
3201 * Fragmentation may mean that the system cannot be rebalanced
3202 * for high-order allocations in all zones. If twice the
3203 * allocation size has been reclaimed and the zones are still
3204 * not balanced then recheck the watermarks at order-0 to
3205 * prevent kswapd reclaiming excessively. Assume that a
3206 * process requested a high-order can direct reclaim/compact.
1da177e4 3207 */
b8e83b94
MG
3208 if (order && sc.nr_reclaimed >= 2UL << order)
3209 order = sc.order = 0;
8357376d 3210
b8e83b94
MG
3211 /* Check if kswapd should be suspending */
3212 if (try_to_freeze() || kthread_should_stop())
3213 break;
8357376d 3214
2ab44f43
MG
3215 /*
3216 * Compact if necessary and kswapd is reclaiming at least the
3217 * high watermark number of pages as requsted
3218 */
3219 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3220 compact_pgdat(pgdat, order);
3221
73ce02e9 3222 /*
b8e83b94
MG
3223 * Raise priority if scanning rate is too low or there was no
3224 * progress in reclaiming pages
73ce02e9 3225 */
b8e83b94
MG
3226 if (raise_priority || !sc.nr_reclaimed)
3227 sc.priority--;
9aa41348 3228 } while (sc.priority >= 1 &&
b8e83b94 3229 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3230
b8e83b94 3231out:
0abdee2b 3232 /*
5515061d 3233 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3234 * makes a decision on the order we were last reclaiming at. However,
3235 * if another caller entered the allocator slow path while kswapd
3236 * was awake, order will remain at the higher level
3237 */
dc83edd9 3238 *classzone_idx = end_zone;
0abdee2b 3239 return order;
1da177e4
LT
3240}
3241
dc83edd9 3242static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3243{
3244 long remaining = 0;
3245 DEFINE_WAIT(wait);
3246
3247 if (freezing(current) || kthread_should_stop())
3248 return;
3249
3250 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3251
3252 /* Try to sleep for a short interval */
5515061d 3253 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3254 remaining = schedule_timeout(HZ/10);
3255 finish_wait(&pgdat->kswapd_wait, &wait);
3256 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3257 }
3258
3259 /*
3260 * After a short sleep, check if it was a premature sleep. If not, then
3261 * go fully to sleep until explicitly woken up.
3262 */
5515061d 3263 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3264 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3265
3266 /*
3267 * vmstat counters are not perfectly accurate and the estimated
3268 * value for counters such as NR_FREE_PAGES can deviate from the
3269 * true value by nr_online_cpus * threshold. To avoid the zone
3270 * watermarks being breached while under pressure, we reduce the
3271 * per-cpu vmstat threshold while kswapd is awake and restore
3272 * them before going back to sleep.
3273 */
3274 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3275
62997027
MG
3276 /*
3277 * Compaction records what page blocks it recently failed to
3278 * isolate pages from and skips them in the future scanning.
3279 * When kswapd is going to sleep, it is reasonable to assume
3280 * that pages and compaction may succeed so reset the cache.
3281 */
3282 reset_isolation_suitable(pgdat);
3283
1c7e7f6c
AK
3284 if (!kthread_should_stop())
3285 schedule();
3286
f0bc0a60
KM
3287 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3288 } else {
3289 if (remaining)
3290 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3291 else
3292 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3293 }
3294 finish_wait(&pgdat->kswapd_wait, &wait);
3295}
3296
1da177e4
LT
3297/*
3298 * The background pageout daemon, started as a kernel thread
4f98a2fe 3299 * from the init process.
1da177e4
LT
3300 *
3301 * This basically trickles out pages so that we have _some_
3302 * free memory available even if there is no other activity
3303 * that frees anything up. This is needed for things like routing
3304 * etc, where we otherwise might have all activity going on in
3305 * asynchronous contexts that cannot page things out.
3306 *
3307 * If there are applications that are active memory-allocators
3308 * (most normal use), this basically shouldn't matter.
3309 */
3310static int kswapd(void *p)
3311{
215ddd66 3312 unsigned long order, new_order;
d2ebd0f6 3313 unsigned balanced_order;
215ddd66 3314 int classzone_idx, new_classzone_idx;
d2ebd0f6 3315 int balanced_classzone_idx;
1da177e4
LT
3316 pg_data_t *pgdat = (pg_data_t*)p;
3317 struct task_struct *tsk = current;
f0bc0a60 3318
1da177e4
LT
3319 struct reclaim_state reclaim_state = {
3320 .reclaimed_slab = 0,
3321 };
a70f7302 3322 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3323
cf40bd16
NP
3324 lockdep_set_current_reclaim_state(GFP_KERNEL);
3325
174596a0 3326 if (!cpumask_empty(cpumask))
c5f59f08 3327 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3328 current->reclaim_state = &reclaim_state;
3329
3330 /*
3331 * Tell the memory management that we're a "memory allocator",
3332 * and that if we need more memory we should get access to it
3333 * regardless (see "__alloc_pages()"). "kswapd" should
3334 * never get caught in the normal page freeing logic.
3335 *
3336 * (Kswapd normally doesn't need memory anyway, but sometimes
3337 * you need a small amount of memory in order to be able to
3338 * page out something else, and this flag essentially protects
3339 * us from recursively trying to free more memory as we're
3340 * trying to free the first piece of memory in the first place).
3341 */
930d9152 3342 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3343 set_freezable();
1da177e4 3344
215ddd66 3345 order = new_order = 0;
d2ebd0f6 3346 balanced_order = 0;
215ddd66 3347 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3348 balanced_classzone_idx = classzone_idx;
1da177e4 3349 for ( ; ; ) {
6f6313d4 3350 bool ret;
3e1d1d28 3351
215ddd66
MG
3352 /*
3353 * If the last balance_pgdat was unsuccessful it's unlikely a
3354 * new request of a similar or harder type will succeed soon
3355 * so consider going to sleep on the basis we reclaimed at
3356 */
d2ebd0f6
AS
3357 if (balanced_classzone_idx >= new_classzone_idx &&
3358 balanced_order == new_order) {
215ddd66
MG
3359 new_order = pgdat->kswapd_max_order;
3360 new_classzone_idx = pgdat->classzone_idx;
3361 pgdat->kswapd_max_order = 0;
3362 pgdat->classzone_idx = pgdat->nr_zones - 1;
3363 }
3364
99504748 3365 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3366 /*
3367 * Don't sleep if someone wants a larger 'order'
99504748 3368 * allocation or has tigher zone constraints
1da177e4
LT
3369 */
3370 order = new_order;
99504748 3371 classzone_idx = new_classzone_idx;
1da177e4 3372 } else {
d2ebd0f6
AS
3373 kswapd_try_to_sleep(pgdat, balanced_order,
3374 balanced_classzone_idx);
1da177e4 3375 order = pgdat->kswapd_max_order;
99504748 3376 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3377 new_order = order;
3378 new_classzone_idx = classzone_idx;
4d40502e 3379 pgdat->kswapd_max_order = 0;
215ddd66 3380 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3381 }
1da177e4 3382
8fe23e05
DR
3383 ret = try_to_freeze();
3384 if (kthread_should_stop())
3385 break;
3386
3387 /*
3388 * We can speed up thawing tasks if we don't call balance_pgdat
3389 * after returning from the refrigerator
3390 */
33906bc5
MG
3391 if (!ret) {
3392 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3393 balanced_classzone_idx = classzone_idx;
3394 balanced_order = balance_pgdat(pgdat, order,
3395 &balanced_classzone_idx);
33906bc5 3396 }
1da177e4 3397 }
b0a8cc58 3398
71abdc15 3399 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3400 current->reclaim_state = NULL;
71abdc15
JW
3401 lockdep_clear_current_reclaim_state();
3402
1da177e4
LT
3403 return 0;
3404}
3405
3406/*
3407 * A zone is low on free memory, so wake its kswapd task to service it.
3408 */
99504748 3409void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3410{
3411 pg_data_t *pgdat;
3412
f3fe6512 3413 if (!populated_zone(zone))
1da177e4
LT
3414 return;
3415
344736f2 3416 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3417 return;
88f5acf8 3418 pgdat = zone->zone_pgdat;
99504748 3419 if (pgdat->kswapd_max_order < order) {
1da177e4 3420 pgdat->kswapd_max_order = order;
99504748
MG
3421 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3422 }
8d0986e2 3423 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3424 return;
892f795d 3425 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3426 return;
3427
3428 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3429 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3430}
3431
c6f37f12 3432#ifdef CONFIG_HIBERNATION
1da177e4 3433/*
7b51755c 3434 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3435 * freed pages.
3436 *
3437 * Rather than trying to age LRUs the aim is to preserve the overall
3438 * LRU order by reclaiming preferentially
3439 * inactive > active > active referenced > active mapped
1da177e4 3440 */
7b51755c 3441unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3442{
d6277db4 3443 struct reclaim_state reclaim_state;
d6277db4 3444 struct scan_control sc = {
ee814fe2 3445 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3446 .gfp_mask = GFP_HIGHUSER_MOVABLE,
ee814fe2 3447 .priority = DEF_PRIORITY,
d6277db4 3448 .may_writepage = 1,
ee814fe2
JW
3449 .may_unmap = 1,
3450 .may_swap = 1,
7b51755c 3451 .hibernation_mode = 1,
1da177e4 3452 };
a09ed5e0 3453 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3454 struct task_struct *p = current;
3455 unsigned long nr_reclaimed;
1da177e4 3456
7b51755c
KM
3457 p->flags |= PF_MEMALLOC;
3458 lockdep_set_current_reclaim_state(sc.gfp_mask);
3459 reclaim_state.reclaimed_slab = 0;
3460 p->reclaim_state = &reclaim_state;
d6277db4 3461
3115cd91 3462 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3463
7b51755c
KM
3464 p->reclaim_state = NULL;
3465 lockdep_clear_current_reclaim_state();
3466 p->flags &= ~PF_MEMALLOC;
d6277db4 3467
7b51755c 3468 return nr_reclaimed;
1da177e4 3469}
c6f37f12 3470#endif /* CONFIG_HIBERNATION */
1da177e4 3471
1da177e4
LT
3472/* It's optimal to keep kswapds on the same CPUs as their memory, but
3473 not required for correctness. So if the last cpu in a node goes
3474 away, we get changed to run anywhere: as the first one comes back,
3475 restore their cpu bindings. */
fcb35a9b
GKH
3476static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3477 void *hcpu)
1da177e4 3478{
58c0a4a7 3479 int nid;
1da177e4 3480
8bb78442 3481 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3482 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3483 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3484 const struct cpumask *mask;
3485
3486 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3487
3e597945 3488 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3489 /* One of our CPUs online: restore mask */
c5f59f08 3490 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3491 }
3492 }
3493 return NOTIFY_OK;
3494}
1da177e4 3495
3218ae14
YG
3496/*
3497 * This kswapd start function will be called by init and node-hot-add.
3498 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3499 */
3500int kswapd_run(int nid)
3501{
3502 pg_data_t *pgdat = NODE_DATA(nid);
3503 int ret = 0;
3504
3505 if (pgdat->kswapd)
3506 return 0;
3507
3508 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3509 if (IS_ERR(pgdat->kswapd)) {
3510 /* failure at boot is fatal */
3511 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3512 pr_err("Failed to start kswapd on node %d\n", nid);
3513 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3514 pgdat->kswapd = NULL;
3218ae14
YG
3515 }
3516 return ret;
3517}
3518
8fe23e05 3519/*
d8adde17 3520 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3521 * hold mem_hotplug_begin/end().
8fe23e05
DR
3522 */
3523void kswapd_stop(int nid)
3524{
3525 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3526
d8adde17 3527 if (kswapd) {
8fe23e05 3528 kthread_stop(kswapd);
d8adde17
JL
3529 NODE_DATA(nid)->kswapd = NULL;
3530 }
8fe23e05
DR
3531}
3532
1da177e4
LT
3533static int __init kswapd_init(void)
3534{
3218ae14 3535 int nid;
69e05944 3536
1da177e4 3537 swap_setup();
48fb2e24 3538 for_each_node_state(nid, N_MEMORY)
3218ae14 3539 kswapd_run(nid);
1da177e4
LT
3540 hotcpu_notifier(cpu_callback, 0);
3541 return 0;
3542}
3543
3544module_init(kswapd_init)
9eeff239
CL
3545
3546#ifdef CONFIG_NUMA
3547/*
3548 * Zone reclaim mode
3549 *
3550 * If non-zero call zone_reclaim when the number of free pages falls below
3551 * the watermarks.
9eeff239
CL
3552 */
3553int zone_reclaim_mode __read_mostly;
3554
1b2ffb78 3555#define RECLAIM_OFF 0
7d03431c 3556#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3557#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3558#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3559
a92f7126
CL
3560/*
3561 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3562 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3563 * a zone.
3564 */
3565#define ZONE_RECLAIM_PRIORITY 4
3566
9614634f
CL
3567/*
3568 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3569 * occur.
3570 */
3571int sysctl_min_unmapped_ratio = 1;
3572
0ff38490
CL
3573/*
3574 * If the number of slab pages in a zone grows beyond this percentage then
3575 * slab reclaim needs to occur.
3576 */
3577int sysctl_min_slab_ratio = 5;
3578
90afa5de
MG
3579static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3580{
3581 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3582 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3583 zone_page_state(zone, NR_ACTIVE_FILE);
3584
3585 /*
3586 * It's possible for there to be more file mapped pages than
3587 * accounted for by the pages on the file LRU lists because
3588 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3589 */
3590 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3591}
3592
3593/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3594static long zone_pagecache_reclaimable(struct zone *zone)
3595{
3596 long nr_pagecache_reclaimable;
3597 long delta = 0;
3598
3599 /*
3600 * If RECLAIM_SWAP is set, then all file pages are considered
3601 * potentially reclaimable. Otherwise, we have to worry about
3602 * pages like swapcache and zone_unmapped_file_pages() provides
3603 * a better estimate
3604 */
3605 if (zone_reclaim_mode & RECLAIM_SWAP)
3606 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3607 else
3608 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3609
3610 /* If we can't clean pages, remove dirty pages from consideration */
3611 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3612 delta += zone_page_state(zone, NR_FILE_DIRTY);
3613
3614 /* Watch for any possible underflows due to delta */
3615 if (unlikely(delta > nr_pagecache_reclaimable))
3616 delta = nr_pagecache_reclaimable;
3617
3618 return nr_pagecache_reclaimable - delta;
3619}
3620
9eeff239
CL
3621/*
3622 * Try to free up some pages from this zone through reclaim.
3623 */
179e9639 3624static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3625{
7fb2d46d 3626 /* Minimum pages needed in order to stay on node */
69e05944 3627 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3628 struct task_struct *p = current;
3629 struct reclaim_state reclaim_state;
179e9639 3630 struct scan_control sc = {
62b726c1 3631 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3632 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3633 .order = order,
9e3b2f8c 3634 .priority = ZONE_RECLAIM_PRIORITY,
ee814fe2
JW
3635 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3636 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3637 .may_swap = 1,
179e9639 3638 };
9eeff239 3639
9eeff239 3640 cond_resched();
d4f7796e
CL
3641 /*
3642 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3643 * and we also need to be able to write out pages for RECLAIM_WRITE
3644 * and RECLAIM_SWAP.
3645 */
3646 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3647 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3648 reclaim_state.reclaimed_slab = 0;
3649 p->reclaim_state = &reclaim_state;
c84db23c 3650
90afa5de 3651 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3652 /*
3653 * Free memory by calling shrink zone with increasing
3654 * priorities until we have enough memory freed.
3655 */
0ff38490 3656 do {
6b4f7799 3657 shrink_zone(zone, &sc, true);
9e3b2f8c 3658 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3659 }
c84db23c 3660
9eeff239 3661 p->reclaim_state = NULL;
d4f7796e 3662 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3663 lockdep_clear_current_reclaim_state();
a79311c1 3664 return sc.nr_reclaimed >= nr_pages;
9eeff239 3665}
179e9639
AM
3666
3667int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3668{
179e9639 3669 int node_id;
d773ed6b 3670 int ret;
179e9639
AM
3671
3672 /*
0ff38490
CL
3673 * Zone reclaim reclaims unmapped file backed pages and
3674 * slab pages if we are over the defined limits.
34aa1330 3675 *
9614634f
CL
3676 * A small portion of unmapped file backed pages is needed for
3677 * file I/O otherwise pages read by file I/O will be immediately
3678 * thrown out if the zone is overallocated. So we do not reclaim
3679 * if less than a specified percentage of the zone is used by
3680 * unmapped file backed pages.
179e9639 3681 */
90afa5de
MG
3682 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3683 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3684 return ZONE_RECLAIM_FULL;
179e9639 3685
6e543d57 3686 if (!zone_reclaimable(zone))
fa5e084e 3687 return ZONE_RECLAIM_FULL;
d773ed6b 3688
179e9639 3689 /*
d773ed6b 3690 * Do not scan if the allocation should not be delayed.
179e9639 3691 */
d773ed6b 3692 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3693 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3694
3695 /*
3696 * Only run zone reclaim on the local zone or on zones that do not
3697 * have associated processors. This will favor the local processor
3698 * over remote processors and spread off node memory allocations
3699 * as wide as possible.
3700 */
89fa3024 3701 node_id = zone_to_nid(zone);
37c0708d 3702 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3703 return ZONE_RECLAIM_NOSCAN;
d773ed6b 3704
57054651 3705 if (test_and_set_bit(ZONE_RECLAIM_LOCKED, &zone->flags))
fa5e084e
MG
3706 return ZONE_RECLAIM_NOSCAN;
3707
d773ed6b 3708 ret = __zone_reclaim(zone, gfp_mask, order);
57054651 3709 clear_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
d773ed6b 3710
24cf7251
MG
3711 if (!ret)
3712 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3713
d773ed6b 3714 return ret;
179e9639 3715}
9eeff239 3716#endif
894bc310 3717
894bc310
LS
3718/*
3719 * page_evictable - test whether a page is evictable
3720 * @page: the page to test
894bc310
LS
3721 *
3722 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3723 * lists vs unevictable list.
894bc310
LS
3724 *
3725 * Reasons page might not be evictable:
ba9ddf49 3726 * (1) page's mapping marked unevictable
b291f000 3727 * (2) page is part of an mlocked VMA
ba9ddf49 3728 *
894bc310 3729 */
39b5f29a 3730int page_evictable(struct page *page)
894bc310 3731{
39b5f29a 3732 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3733}
89e004ea 3734
85046579 3735#ifdef CONFIG_SHMEM
89e004ea 3736/**
24513264
HD
3737 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3738 * @pages: array of pages to check
3739 * @nr_pages: number of pages to check
89e004ea 3740 *
24513264 3741 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3742 *
3743 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3744 */
24513264 3745void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3746{
925b7673 3747 struct lruvec *lruvec;
24513264
HD
3748 struct zone *zone = NULL;
3749 int pgscanned = 0;
3750 int pgrescued = 0;
3751 int i;
89e004ea 3752
24513264
HD
3753 for (i = 0; i < nr_pages; i++) {
3754 struct page *page = pages[i];
3755 struct zone *pagezone;
89e004ea 3756
24513264
HD
3757 pgscanned++;
3758 pagezone = page_zone(page);
3759 if (pagezone != zone) {
3760 if (zone)
3761 spin_unlock_irq(&zone->lru_lock);
3762 zone = pagezone;
3763 spin_lock_irq(&zone->lru_lock);
3764 }
fa9add64 3765 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3766
24513264
HD
3767 if (!PageLRU(page) || !PageUnevictable(page))
3768 continue;
89e004ea 3769
39b5f29a 3770 if (page_evictable(page)) {
24513264
HD
3771 enum lru_list lru = page_lru_base_type(page);
3772
309381fe 3773 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3774 ClearPageUnevictable(page);
fa9add64
HD
3775 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3776 add_page_to_lru_list(page, lruvec, lru);
24513264 3777 pgrescued++;
89e004ea 3778 }
24513264 3779 }
89e004ea 3780
24513264
HD
3781 if (zone) {
3782 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3783 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3784 spin_unlock_irq(&zone->lru_lock);
89e004ea 3785 }
89e004ea 3786}
85046579 3787#endif /* CONFIG_SHMEM */