mm: vmscan: shrink all slab objects if tight on memory
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
70ddf637 22#include <linux/vmpressure.h>
e129b5c2 23#include <linux/vmstat.h>
1da177e4
LT
24#include <linux/file.h>
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h> /* for try_to_release_page(),
28 buffer_heads_over_limit */
29#include <linux/mm_inline.h>
1da177e4
LT
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
3e7d3449 35#include <linux/compaction.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/rwsem.h>
248a0301 38#include <linux/delay.h>
3218ae14 39#include <linux/kthread.h>
7dfb7103 40#include <linux/freezer.h>
66e1707b 41#include <linux/memcontrol.h>
873b4771 42#include <linux/delayacct.h>
af936a16 43#include <linux/sysctl.h>
929bea7c 44#include <linux/oom.h>
268bb0ce 45#include <linux/prefetch.h>
1da177e4
LT
46
47#include <asm/tlbflush.h>
48#include <asm/div64.h>
49
50#include <linux/swapops.h>
117aad1e 51#include <linux/balloon_compaction.h>
1da177e4 52
0f8053a5
NP
53#include "internal.h"
54
33906bc5
MG
55#define CREATE_TRACE_POINTS
56#include <trace/events/vmscan.h>
57
1da177e4 58struct scan_control {
1da177e4
LT
59 /* Incremented by the number of inactive pages that were scanned */
60 unsigned long nr_scanned;
61
a79311c1
RR
62 /* Number of pages freed so far during a call to shrink_zones() */
63 unsigned long nr_reclaimed;
64
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
7b51755c
KM
68 unsigned long hibernation_mode;
69
1da177e4 70 /* This context's GFP mask */
6daa0e28 71 gfp_t gfp_mask;
1da177e4
LT
72
73 int may_writepage;
74
a6dc60f8
JW
75 /* Can mapped pages be reclaimed? */
76 int may_unmap;
f1fd1067 77
2e2e4259
KM
78 /* Can pages be swapped as part of reclaim? */
79 int may_swap;
80
5ad333eb 81 int order;
66e1707b 82
9e3b2f8c
KK
83 /* Scan (total_size >> priority) pages at once */
84 int priority;
85
f16015fb
JW
86 /*
87 * The memory cgroup that hit its limit and as a result is the
88 * primary target of this reclaim invocation.
89 */
90 struct mem_cgroup *target_mem_cgroup;
66e1707b 91
327c0e96
KH
92 /*
93 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 * are scanned.
95 */
96 nodemask_t *nodemask;
1da177e4
LT
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
b21e0b90 133unsigned long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
c255a458 138#ifdef CONFIG_MEMCG
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
6e543d57
LD
150unsigned long zone_reclaimable_pages(struct zone *zone)
151{
152 int nr;
153
154 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
155 zone_page_state(zone, NR_INACTIVE_FILE);
156
157 if (get_nr_swap_pages() > 0)
158 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
159 zone_page_state(zone, NR_INACTIVE_ANON);
160
161 return nr;
162}
163
164bool zone_reclaimable(struct zone *zone)
165{
166 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
167}
168
4d7dcca2 169static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru)
c9f299d9 170{
c3c787e8 171 if (!mem_cgroup_disabled())
4d7dcca2 172 return mem_cgroup_get_lru_size(lruvec, lru);
a3d8e054 173
074291fe 174 return zone_page_state(lruvec_zone(lruvec), NR_LRU_BASE + lru);
c9f299d9
KM
175}
176
1da177e4 177/*
1d3d4437 178 * Add a shrinker callback to be called from the vm.
1da177e4 179 */
1d3d4437 180int register_shrinker(struct shrinker *shrinker)
1da177e4 181{
1d3d4437
GC
182 size_t size = sizeof(*shrinker->nr_deferred);
183
184 /*
185 * If we only have one possible node in the system anyway, save
186 * ourselves the trouble and disable NUMA aware behavior. This way we
187 * will save memory and some small loop time later.
188 */
189 if (nr_node_ids == 1)
190 shrinker->flags &= ~SHRINKER_NUMA_AWARE;
191
192 if (shrinker->flags & SHRINKER_NUMA_AWARE)
193 size *= nr_node_ids;
194
195 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
196 if (!shrinker->nr_deferred)
197 return -ENOMEM;
198
8e1f936b
RR
199 down_write(&shrinker_rwsem);
200 list_add_tail(&shrinker->list, &shrinker_list);
201 up_write(&shrinker_rwsem);
1d3d4437 202 return 0;
1da177e4 203}
8e1f936b 204EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
205
206/*
207 * Remove one
208 */
8e1f936b 209void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
210{
211 down_write(&shrinker_rwsem);
212 list_del(&shrinker->list);
213 up_write(&shrinker_rwsem);
ae393321 214 kfree(shrinker->nr_deferred);
1da177e4 215}
8e1f936b 216EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
217
218#define SHRINK_BATCH 128
1d3d4437
GC
219
220static unsigned long
221shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker,
222 unsigned long nr_pages_scanned, unsigned long lru_pages)
223{
224 unsigned long freed = 0;
225 unsigned long long delta;
226 long total_scan;
227 long max_pass;
228 long nr;
229 long new_nr;
230 int nid = shrinkctl->nid;
231 long batch_size = shrinker->batch ? shrinker->batch
232 : SHRINK_BATCH;
233
a0b02131 234 max_pass = shrinker->count_objects(shrinker, shrinkctl);
1d3d4437
GC
235 if (max_pass == 0)
236 return 0;
237
238 /*
239 * copy the current shrinker scan count into a local variable
240 * and zero it so that other concurrent shrinker invocations
241 * don't also do this scanning work.
242 */
243 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
244
245 total_scan = nr;
246 delta = (4 * nr_pages_scanned) / shrinker->seeks;
247 delta *= max_pass;
248 do_div(delta, lru_pages + 1);
249 total_scan += delta;
250 if (total_scan < 0) {
251 printk(KERN_ERR
252 "shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 253 shrinker->scan_objects, total_scan);
1d3d4437
GC
254 total_scan = max_pass;
255 }
256
257 /*
258 * We need to avoid excessive windup on filesystem shrinkers
259 * due to large numbers of GFP_NOFS allocations causing the
260 * shrinkers to return -1 all the time. This results in a large
261 * nr being built up so when a shrink that can do some work
262 * comes along it empties the entire cache due to nr >>>
263 * max_pass. This is bad for sustaining a working set in
264 * memory.
265 *
266 * Hence only allow the shrinker to scan the entire cache when
267 * a large delta change is calculated directly.
268 */
269 if (delta < max_pass / 4)
270 total_scan = min(total_scan, max_pass / 2);
271
272 /*
273 * Avoid risking looping forever due to too large nr value:
274 * never try to free more than twice the estimate number of
275 * freeable entries.
276 */
277 if (total_scan > max_pass * 2)
278 total_scan = max_pass * 2;
279
280 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
281 nr_pages_scanned, lru_pages,
282 max_pass, delta, total_scan);
283
0b1fb40a
VD
284 /*
285 * Normally, we should not scan less than batch_size objects in one
286 * pass to avoid too frequent shrinker calls, but if the slab has less
287 * than batch_size objects in total and we are really tight on memory,
288 * we will try to reclaim all available objects, otherwise we can end
289 * up failing allocations although there are plenty of reclaimable
290 * objects spread over several slabs with usage less than the
291 * batch_size.
292 *
293 * We detect the "tight on memory" situations by looking at the total
294 * number of objects we want to scan (total_scan). If it is greater
295 * than the total number of objects on slab (max_pass), we must be
296 * scanning at high prio and therefore should try to reclaim as much as
297 * possible.
298 */
299 while (total_scan >= batch_size ||
300 total_scan >= max_pass) {
a0b02131 301 unsigned long ret;
0b1fb40a 302 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 303
0b1fb40a 304 shrinkctl->nr_to_scan = nr_to_scan;
a0b02131
DC
305 ret = shrinker->scan_objects(shrinker, shrinkctl);
306 if (ret == SHRINK_STOP)
307 break;
308 freed += ret;
1d3d4437 309
0b1fb40a
VD
310 count_vm_events(SLABS_SCANNED, nr_to_scan);
311 total_scan -= nr_to_scan;
1d3d4437
GC
312
313 cond_resched();
314 }
315
316 /*
317 * move the unused scan count back into the shrinker in a
318 * manner that handles concurrent updates. If we exhausted the
319 * scan, there is no need to do an update.
320 */
321 if (total_scan > 0)
322 new_nr = atomic_long_add_return(total_scan,
323 &shrinker->nr_deferred[nid]);
324 else
325 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
326
327 trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr);
328 return freed;
1495f230
YH
329}
330
1da177e4
LT
331/*
332 * Call the shrink functions to age shrinkable caches
333 *
334 * Here we assume it costs one seek to replace a lru page and that it also
335 * takes a seek to recreate a cache object. With this in mind we age equal
336 * percentages of the lru and ageable caches. This should balance the seeks
337 * generated by these structures.
338 *
183ff22b 339 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
340 * slab to avoid swapping.
341 *
342 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
343 *
344 * `lru_pages' represents the number of on-LRU pages in all the zones which
345 * are eligible for the caller's allocation attempt. It is used for balancing
346 * slab reclaim versus page reclaim.
b15e0905 347 *
348 * Returns the number of slab objects which we shrunk.
1da177e4 349 */
24f7c6b9 350unsigned long shrink_slab(struct shrink_control *shrinkctl,
1495f230 351 unsigned long nr_pages_scanned,
a09ed5e0 352 unsigned long lru_pages)
1da177e4
LT
353{
354 struct shrinker *shrinker;
24f7c6b9 355 unsigned long freed = 0;
1da177e4 356
1495f230
YH
357 if (nr_pages_scanned == 0)
358 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 359
f06590bd 360 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
361 /*
362 * If we would return 0, our callers would understand that we
363 * have nothing else to shrink and give up trying. By returning
364 * 1 we keep it going and assume we'll be able to shrink next
365 * time.
366 */
367 freed = 1;
f06590bd
MK
368 goto out;
369 }
1da177e4
LT
370
371 list_for_each_entry(shrinker, &shrinker_list, list) {
1d3d4437
GC
372 for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) {
373 if (!node_online(shrinkctl->nid))
374 continue;
1da177e4 375
1d3d4437
GC
376 if (!(shrinker->flags & SHRINKER_NUMA_AWARE) &&
377 (shrinkctl->nid != 0))
1da177e4 378 break;
1da177e4 379
1d3d4437
GC
380 freed += shrink_slab_node(shrinkctl, shrinker,
381 nr_pages_scanned, lru_pages);
1da177e4 382
1da177e4 383 }
1da177e4
LT
384 }
385 up_read(&shrinker_rwsem);
f06590bd
MK
386out:
387 cond_resched();
24f7c6b9 388 return freed;
1da177e4
LT
389}
390
1da177e4
LT
391static inline int is_page_cache_freeable(struct page *page)
392{
ceddc3a5
JW
393 /*
394 * A freeable page cache page is referenced only by the caller
395 * that isolated the page, the page cache radix tree and
396 * optional buffer heads at page->private.
397 */
edcf4748 398 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
399}
400
7d3579e8
KM
401static int may_write_to_queue(struct backing_dev_info *bdi,
402 struct scan_control *sc)
1da177e4 403{
930d9152 404 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
405 return 1;
406 if (!bdi_write_congested(bdi))
407 return 1;
408 if (bdi == current->backing_dev_info)
409 return 1;
410 return 0;
411}
412
413/*
414 * We detected a synchronous write error writing a page out. Probably
415 * -ENOSPC. We need to propagate that into the address_space for a subsequent
416 * fsync(), msync() or close().
417 *
418 * The tricky part is that after writepage we cannot touch the mapping: nothing
419 * prevents it from being freed up. But we have a ref on the page and once
420 * that page is locked, the mapping is pinned.
421 *
422 * We're allowed to run sleeping lock_page() here because we know the caller has
423 * __GFP_FS.
424 */
425static void handle_write_error(struct address_space *mapping,
426 struct page *page, int error)
427{
7eaceacc 428 lock_page(page);
3e9f45bd
GC
429 if (page_mapping(page) == mapping)
430 mapping_set_error(mapping, error);
1da177e4
LT
431 unlock_page(page);
432}
433
04e62a29
CL
434/* possible outcome of pageout() */
435typedef enum {
436 /* failed to write page out, page is locked */
437 PAGE_KEEP,
438 /* move page to the active list, page is locked */
439 PAGE_ACTIVATE,
440 /* page has been sent to the disk successfully, page is unlocked */
441 PAGE_SUCCESS,
442 /* page is clean and locked */
443 PAGE_CLEAN,
444} pageout_t;
445
1da177e4 446/*
1742f19f
AM
447 * pageout is called by shrink_page_list() for each dirty page.
448 * Calls ->writepage().
1da177e4 449 */
c661b078 450static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 451 struct scan_control *sc)
1da177e4
LT
452{
453 /*
454 * If the page is dirty, only perform writeback if that write
455 * will be non-blocking. To prevent this allocation from being
456 * stalled by pagecache activity. But note that there may be
457 * stalls if we need to run get_block(). We could test
458 * PagePrivate for that.
459 *
6aceb53b 460 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
461 * this page's queue, we can perform writeback even if that
462 * will block.
463 *
464 * If the page is swapcache, write it back even if that would
465 * block, for some throttling. This happens by accident, because
466 * swap_backing_dev_info is bust: it doesn't reflect the
467 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
468 */
469 if (!is_page_cache_freeable(page))
470 return PAGE_KEEP;
471 if (!mapping) {
472 /*
473 * Some data journaling orphaned pages can have
474 * page->mapping == NULL while being dirty with clean buffers.
475 */
266cf658 476 if (page_has_private(page)) {
1da177e4
LT
477 if (try_to_free_buffers(page)) {
478 ClearPageDirty(page);
d40cee24 479 printk("%s: orphaned page\n", __func__);
1da177e4
LT
480 return PAGE_CLEAN;
481 }
482 }
483 return PAGE_KEEP;
484 }
485 if (mapping->a_ops->writepage == NULL)
486 return PAGE_ACTIVATE;
0e093d99 487 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
488 return PAGE_KEEP;
489
490 if (clear_page_dirty_for_io(page)) {
491 int res;
492 struct writeback_control wbc = {
493 .sync_mode = WB_SYNC_NONE,
494 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
495 .range_start = 0,
496 .range_end = LLONG_MAX,
1da177e4
LT
497 .for_reclaim = 1,
498 };
499
500 SetPageReclaim(page);
501 res = mapping->a_ops->writepage(page, &wbc);
502 if (res < 0)
503 handle_write_error(mapping, page, res);
994fc28c 504 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
505 ClearPageReclaim(page);
506 return PAGE_ACTIVATE;
507 }
c661b078 508
1da177e4
LT
509 if (!PageWriteback(page)) {
510 /* synchronous write or broken a_ops? */
511 ClearPageReclaim(page);
512 }
23b9da55 513 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 514 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
515 return PAGE_SUCCESS;
516 }
517
518 return PAGE_CLEAN;
519}
520
a649fd92 521/*
e286781d
NP
522 * Same as remove_mapping, but if the page is removed from the mapping, it
523 * gets returned with a refcount of 0.
a649fd92 524 */
e286781d 525static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 526{
28e4d965
NP
527 BUG_ON(!PageLocked(page));
528 BUG_ON(mapping != page_mapping(page));
49d2e9cc 529
19fd6231 530 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 531 /*
0fd0e6b0
NP
532 * The non racy check for a busy page.
533 *
534 * Must be careful with the order of the tests. When someone has
535 * a ref to the page, it may be possible that they dirty it then
536 * drop the reference. So if PageDirty is tested before page_count
537 * here, then the following race may occur:
538 *
539 * get_user_pages(&page);
540 * [user mapping goes away]
541 * write_to(page);
542 * !PageDirty(page) [good]
543 * SetPageDirty(page);
544 * put_page(page);
545 * !page_count(page) [good, discard it]
546 *
547 * [oops, our write_to data is lost]
548 *
549 * Reversing the order of the tests ensures such a situation cannot
550 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
551 * load is not satisfied before that of page->_count.
552 *
553 * Note that if SetPageDirty is always performed via set_page_dirty,
554 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 555 */
e286781d 556 if (!page_freeze_refs(page, 2))
49d2e9cc 557 goto cannot_free;
e286781d
NP
558 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
559 if (unlikely(PageDirty(page))) {
560 page_unfreeze_refs(page, 2);
49d2e9cc 561 goto cannot_free;
e286781d 562 }
49d2e9cc
CL
563
564 if (PageSwapCache(page)) {
565 swp_entry_t swap = { .val = page_private(page) };
566 __delete_from_swap_cache(page);
19fd6231 567 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 568 swapcache_free(swap, page);
e286781d 569 } else {
6072d13c
LT
570 void (*freepage)(struct page *);
571
572 freepage = mapping->a_ops->freepage;
573
e64a782f 574 __delete_from_page_cache(page);
19fd6231 575 spin_unlock_irq(&mapping->tree_lock);
e767e056 576 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
577
578 if (freepage != NULL)
579 freepage(page);
49d2e9cc
CL
580 }
581
49d2e9cc
CL
582 return 1;
583
584cannot_free:
19fd6231 585 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
586 return 0;
587}
588
e286781d
NP
589/*
590 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
591 * someone else has a ref on the page, abort and return 0. If it was
592 * successfully detached, return 1. Assumes the caller has a single ref on
593 * this page.
594 */
595int remove_mapping(struct address_space *mapping, struct page *page)
596{
597 if (__remove_mapping(mapping, page)) {
598 /*
599 * Unfreezing the refcount with 1 rather than 2 effectively
600 * drops the pagecache ref for us without requiring another
601 * atomic operation.
602 */
603 page_unfreeze_refs(page, 1);
604 return 1;
605 }
606 return 0;
607}
608
894bc310
LS
609/**
610 * putback_lru_page - put previously isolated page onto appropriate LRU list
611 * @page: page to be put back to appropriate lru list
612 *
613 * Add previously isolated @page to appropriate LRU list.
614 * Page may still be unevictable for other reasons.
615 *
616 * lru_lock must not be held, interrupts must be enabled.
617 */
894bc310
LS
618void putback_lru_page(struct page *page)
619{
0ec3b74c 620 bool is_unevictable;
bbfd28ee 621 int was_unevictable = PageUnevictable(page);
894bc310 622
309381fe 623 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
624
625redo:
626 ClearPageUnevictable(page);
627
39b5f29a 628 if (page_evictable(page)) {
894bc310
LS
629 /*
630 * For evictable pages, we can use the cache.
631 * In event of a race, worst case is we end up with an
632 * unevictable page on [in]active list.
633 * We know how to handle that.
634 */
0ec3b74c 635 is_unevictable = false;
c53954a0 636 lru_cache_add(page);
894bc310
LS
637 } else {
638 /*
639 * Put unevictable pages directly on zone's unevictable
640 * list.
641 */
0ec3b74c 642 is_unevictable = true;
894bc310 643 add_page_to_unevictable_list(page);
6a7b9548 644 /*
21ee9f39
MK
645 * When racing with an mlock or AS_UNEVICTABLE clearing
646 * (page is unlocked) make sure that if the other thread
647 * does not observe our setting of PG_lru and fails
24513264 648 * isolation/check_move_unevictable_pages,
21ee9f39 649 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
650 * the page back to the evictable list.
651 *
21ee9f39 652 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
653 */
654 smp_mb();
894bc310 655 }
894bc310
LS
656
657 /*
658 * page's status can change while we move it among lru. If an evictable
659 * page is on unevictable list, it never be freed. To avoid that,
660 * check after we added it to the list, again.
661 */
0ec3b74c 662 if (is_unevictable && page_evictable(page)) {
894bc310
LS
663 if (!isolate_lru_page(page)) {
664 put_page(page);
665 goto redo;
666 }
667 /* This means someone else dropped this page from LRU
668 * So, it will be freed or putback to LRU again. There is
669 * nothing to do here.
670 */
671 }
672
0ec3b74c 673 if (was_unevictable && !is_unevictable)
bbfd28ee 674 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 675 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
676 count_vm_event(UNEVICTABLE_PGCULLED);
677
894bc310
LS
678 put_page(page); /* drop ref from isolate */
679}
680
dfc8d636
JW
681enum page_references {
682 PAGEREF_RECLAIM,
683 PAGEREF_RECLAIM_CLEAN,
64574746 684 PAGEREF_KEEP,
dfc8d636
JW
685 PAGEREF_ACTIVATE,
686};
687
688static enum page_references page_check_references(struct page *page,
689 struct scan_control *sc)
690{
64574746 691 int referenced_ptes, referenced_page;
dfc8d636 692 unsigned long vm_flags;
dfc8d636 693
c3ac9a8a
JW
694 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
695 &vm_flags);
64574746 696 referenced_page = TestClearPageReferenced(page);
dfc8d636 697
dfc8d636
JW
698 /*
699 * Mlock lost the isolation race with us. Let try_to_unmap()
700 * move the page to the unevictable list.
701 */
702 if (vm_flags & VM_LOCKED)
703 return PAGEREF_RECLAIM;
704
64574746 705 if (referenced_ptes) {
e4898273 706 if (PageSwapBacked(page))
64574746
JW
707 return PAGEREF_ACTIVATE;
708 /*
709 * All mapped pages start out with page table
710 * references from the instantiating fault, so we need
711 * to look twice if a mapped file page is used more
712 * than once.
713 *
714 * Mark it and spare it for another trip around the
715 * inactive list. Another page table reference will
716 * lead to its activation.
717 *
718 * Note: the mark is set for activated pages as well
719 * so that recently deactivated but used pages are
720 * quickly recovered.
721 */
722 SetPageReferenced(page);
723
34dbc67a 724 if (referenced_page || referenced_ptes > 1)
64574746
JW
725 return PAGEREF_ACTIVATE;
726
c909e993
KK
727 /*
728 * Activate file-backed executable pages after first usage.
729 */
730 if (vm_flags & VM_EXEC)
731 return PAGEREF_ACTIVATE;
732
64574746
JW
733 return PAGEREF_KEEP;
734 }
dfc8d636
JW
735
736 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 737 if (referenced_page && !PageSwapBacked(page))
64574746
JW
738 return PAGEREF_RECLAIM_CLEAN;
739
740 return PAGEREF_RECLAIM;
dfc8d636
JW
741}
742
e2be15f6
MG
743/* Check if a page is dirty or under writeback */
744static void page_check_dirty_writeback(struct page *page,
745 bool *dirty, bool *writeback)
746{
b4597226
MG
747 struct address_space *mapping;
748
e2be15f6
MG
749 /*
750 * Anonymous pages are not handled by flushers and must be written
751 * from reclaim context. Do not stall reclaim based on them
752 */
753 if (!page_is_file_cache(page)) {
754 *dirty = false;
755 *writeback = false;
756 return;
757 }
758
759 /* By default assume that the page flags are accurate */
760 *dirty = PageDirty(page);
761 *writeback = PageWriteback(page);
b4597226
MG
762
763 /* Verify dirty/writeback state if the filesystem supports it */
764 if (!page_has_private(page))
765 return;
766
767 mapping = page_mapping(page);
768 if (mapping && mapping->a_ops->is_dirty_writeback)
769 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
770}
771
1da177e4 772/*
1742f19f 773 * shrink_page_list() returns the number of reclaimed pages
1da177e4 774 */
1742f19f 775static unsigned long shrink_page_list(struct list_head *page_list,
6a18adb3 776 struct zone *zone,
f84f6e2b 777 struct scan_control *sc,
02c6de8d 778 enum ttu_flags ttu_flags,
8e950282 779 unsigned long *ret_nr_dirty,
d43006d5 780 unsigned long *ret_nr_unqueued_dirty,
8e950282 781 unsigned long *ret_nr_congested,
02c6de8d 782 unsigned long *ret_nr_writeback,
b1a6f21e 783 unsigned long *ret_nr_immediate,
02c6de8d 784 bool force_reclaim)
1da177e4
LT
785{
786 LIST_HEAD(ret_pages);
abe4c3b5 787 LIST_HEAD(free_pages);
1da177e4 788 int pgactivate = 0;
d43006d5 789 unsigned long nr_unqueued_dirty = 0;
0e093d99
MG
790 unsigned long nr_dirty = 0;
791 unsigned long nr_congested = 0;
05ff5137 792 unsigned long nr_reclaimed = 0;
92df3a72 793 unsigned long nr_writeback = 0;
b1a6f21e 794 unsigned long nr_immediate = 0;
1da177e4
LT
795
796 cond_resched();
797
69980e31 798 mem_cgroup_uncharge_start();
1da177e4
LT
799 while (!list_empty(page_list)) {
800 struct address_space *mapping;
801 struct page *page;
802 int may_enter_fs;
02c6de8d 803 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 804 bool dirty, writeback;
1da177e4
LT
805
806 cond_resched();
807
808 page = lru_to_page(page_list);
809 list_del(&page->lru);
810
529ae9aa 811 if (!trylock_page(page))
1da177e4
LT
812 goto keep;
813
309381fe
SL
814 VM_BUG_ON_PAGE(PageActive(page), page);
815 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1da177e4
LT
816
817 sc->nr_scanned++;
80e43426 818
39b5f29a 819 if (unlikely(!page_evictable(page)))
b291f000 820 goto cull_mlocked;
894bc310 821
a6dc60f8 822 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
823 goto keep_locked;
824
1da177e4
LT
825 /* Double the slab pressure for mapped and swapcache pages */
826 if (page_mapped(page) || PageSwapCache(page))
827 sc->nr_scanned++;
828
c661b078
AW
829 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
830 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
831
e2be15f6
MG
832 /*
833 * The number of dirty pages determines if a zone is marked
834 * reclaim_congested which affects wait_iff_congested. kswapd
835 * will stall and start writing pages if the tail of the LRU
836 * is all dirty unqueued pages.
837 */
838 page_check_dirty_writeback(page, &dirty, &writeback);
839 if (dirty || writeback)
840 nr_dirty++;
841
842 if (dirty && !writeback)
843 nr_unqueued_dirty++;
844
d04e8acd
MG
845 /*
846 * Treat this page as congested if the underlying BDI is or if
847 * pages are cycling through the LRU so quickly that the
848 * pages marked for immediate reclaim are making it to the
849 * end of the LRU a second time.
850 */
e2be15f6 851 mapping = page_mapping(page);
d04e8acd
MG
852 if ((mapping && bdi_write_congested(mapping->backing_dev_info)) ||
853 (writeback && PageReclaim(page)))
e2be15f6
MG
854 nr_congested++;
855
283aba9f
MG
856 /*
857 * If a page at the tail of the LRU is under writeback, there
858 * are three cases to consider.
859 *
860 * 1) If reclaim is encountering an excessive number of pages
861 * under writeback and this page is both under writeback and
862 * PageReclaim then it indicates that pages are being queued
863 * for IO but are being recycled through the LRU before the
864 * IO can complete. Waiting on the page itself risks an
865 * indefinite stall if it is impossible to writeback the
866 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
867 * note that the LRU is being scanned too quickly and the
868 * caller can stall after page list has been processed.
283aba9f
MG
869 *
870 * 2) Global reclaim encounters a page, memcg encounters a
871 * page that is not marked for immediate reclaim or
872 * the caller does not have __GFP_IO. In this case mark
873 * the page for immediate reclaim and continue scanning.
874 *
875 * __GFP_IO is checked because a loop driver thread might
876 * enter reclaim, and deadlock if it waits on a page for
877 * which it is needed to do the write (loop masks off
878 * __GFP_IO|__GFP_FS for this reason); but more thought
879 * would probably show more reasons.
880 *
881 * Don't require __GFP_FS, since we're not going into the
882 * FS, just waiting on its writeback completion. Worryingly,
883 * ext4 gfs2 and xfs allocate pages with
884 * grab_cache_page_write_begin(,,AOP_FLAG_NOFS), so testing
885 * may_enter_fs here is liable to OOM on them.
886 *
887 * 3) memcg encounters a page that is not already marked
888 * PageReclaim. memcg does not have any dirty pages
889 * throttling so we could easily OOM just because too many
890 * pages are in writeback and there is nothing else to
891 * reclaim. Wait for the writeback to complete.
892 */
c661b078 893 if (PageWriteback(page)) {
283aba9f
MG
894 /* Case 1 above */
895 if (current_is_kswapd() &&
896 PageReclaim(page) &&
897 zone_is_reclaim_writeback(zone)) {
b1a6f21e
MG
898 nr_immediate++;
899 goto keep_locked;
283aba9f
MG
900
901 /* Case 2 above */
902 } else if (global_reclaim(sc) ||
c3b94f44
HD
903 !PageReclaim(page) || !(sc->gfp_mask & __GFP_IO)) {
904 /*
905 * This is slightly racy - end_page_writeback()
906 * might have just cleared PageReclaim, then
907 * setting PageReclaim here end up interpreted
908 * as PageReadahead - but that does not matter
909 * enough to care. What we do want is for this
910 * page to have PageReclaim set next time memcg
911 * reclaim reaches the tests above, so it will
912 * then wait_on_page_writeback() to avoid OOM;
913 * and it's also appropriate in global reclaim.
914 */
915 SetPageReclaim(page);
e62e384e 916 nr_writeback++;
283aba9f 917
c3b94f44 918 goto keep_locked;
283aba9f
MG
919
920 /* Case 3 above */
921 } else {
922 wait_on_page_writeback(page);
e62e384e 923 }
c661b078 924 }
1da177e4 925
02c6de8d
MK
926 if (!force_reclaim)
927 references = page_check_references(page, sc);
928
dfc8d636
JW
929 switch (references) {
930 case PAGEREF_ACTIVATE:
1da177e4 931 goto activate_locked;
64574746
JW
932 case PAGEREF_KEEP:
933 goto keep_locked;
dfc8d636
JW
934 case PAGEREF_RECLAIM:
935 case PAGEREF_RECLAIM_CLEAN:
936 ; /* try to reclaim the page below */
937 }
1da177e4 938
1da177e4
LT
939 /*
940 * Anonymous process memory has backing store?
941 * Try to allocate it some swap space here.
942 */
b291f000 943 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
944 if (!(sc->gfp_mask & __GFP_IO))
945 goto keep_locked;
5bc7b8ac 946 if (!add_to_swap(page, page_list))
1da177e4 947 goto activate_locked;
63eb6b93 948 may_enter_fs = 1;
1da177e4 949
e2be15f6
MG
950 /* Adding to swap updated mapping */
951 mapping = page_mapping(page);
952 }
1da177e4
LT
953
954 /*
955 * The page is mapped into the page tables of one or more
956 * processes. Try to unmap it here.
957 */
958 if (page_mapped(page) && mapping) {
02c6de8d 959 switch (try_to_unmap(page, ttu_flags)) {
1da177e4
LT
960 case SWAP_FAIL:
961 goto activate_locked;
962 case SWAP_AGAIN:
963 goto keep_locked;
b291f000
NP
964 case SWAP_MLOCK:
965 goto cull_mlocked;
1da177e4
LT
966 case SWAP_SUCCESS:
967 ; /* try to free the page below */
968 }
969 }
970
971 if (PageDirty(page)) {
ee72886d
MG
972 /*
973 * Only kswapd can writeback filesystem pages to
d43006d5
MG
974 * avoid risk of stack overflow but only writeback
975 * if many dirty pages have been encountered.
ee72886d 976 */
f84f6e2b 977 if (page_is_file_cache(page) &&
9e3b2f8c 978 (!current_is_kswapd() ||
d43006d5 979 !zone_is_reclaim_dirty(zone))) {
49ea7eb6
MG
980 /*
981 * Immediately reclaim when written back.
982 * Similar in principal to deactivate_page()
983 * except we already have the page isolated
984 * and know it's dirty
985 */
986 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
987 SetPageReclaim(page);
988
ee72886d
MG
989 goto keep_locked;
990 }
991
dfc8d636 992 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 993 goto keep_locked;
4dd4b920 994 if (!may_enter_fs)
1da177e4 995 goto keep_locked;
52a8363e 996 if (!sc->may_writepage)
1da177e4
LT
997 goto keep_locked;
998
999 /* Page is dirty, try to write it out here */
7d3579e8 1000 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1001 case PAGE_KEEP:
1002 goto keep_locked;
1003 case PAGE_ACTIVATE:
1004 goto activate_locked;
1005 case PAGE_SUCCESS:
7d3579e8 1006 if (PageWriteback(page))
41ac1999 1007 goto keep;
7d3579e8 1008 if (PageDirty(page))
1da177e4 1009 goto keep;
7d3579e8 1010
1da177e4
LT
1011 /*
1012 * A synchronous write - probably a ramdisk. Go
1013 * ahead and try to reclaim the page.
1014 */
529ae9aa 1015 if (!trylock_page(page))
1da177e4
LT
1016 goto keep;
1017 if (PageDirty(page) || PageWriteback(page))
1018 goto keep_locked;
1019 mapping = page_mapping(page);
1020 case PAGE_CLEAN:
1021 ; /* try to free the page below */
1022 }
1023 }
1024
1025 /*
1026 * If the page has buffers, try to free the buffer mappings
1027 * associated with this page. If we succeed we try to free
1028 * the page as well.
1029 *
1030 * We do this even if the page is PageDirty().
1031 * try_to_release_page() does not perform I/O, but it is
1032 * possible for a page to have PageDirty set, but it is actually
1033 * clean (all its buffers are clean). This happens if the
1034 * buffers were written out directly, with submit_bh(). ext3
894bc310 1035 * will do this, as well as the blockdev mapping.
1da177e4
LT
1036 * try_to_release_page() will discover that cleanness and will
1037 * drop the buffers and mark the page clean - it can be freed.
1038 *
1039 * Rarely, pages can have buffers and no ->mapping. These are
1040 * the pages which were not successfully invalidated in
1041 * truncate_complete_page(). We try to drop those buffers here
1042 * and if that worked, and the page is no longer mapped into
1043 * process address space (page_count == 1) it can be freed.
1044 * Otherwise, leave the page on the LRU so it is swappable.
1045 */
266cf658 1046 if (page_has_private(page)) {
1da177e4
LT
1047 if (!try_to_release_page(page, sc->gfp_mask))
1048 goto activate_locked;
e286781d
NP
1049 if (!mapping && page_count(page) == 1) {
1050 unlock_page(page);
1051 if (put_page_testzero(page))
1052 goto free_it;
1053 else {
1054 /*
1055 * rare race with speculative reference.
1056 * the speculative reference will free
1057 * this page shortly, so we may
1058 * increment nr_reclaimed here (and
1059 * leave it off the LRU).
1060 */
1061 nr_reclaimed++;
1062 continue;
1063 }
1064 }
1da177e4
LT
1065 }
1066
e286781d 1067 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 1068 goto keep_locked;
1da177e4 1069
a978d6f5
NP
1070 /*
1071 * At this point, we have no other references and there is
1072 * no way to pick any more up (removed from LRU, removed
1073 * from pagecache). Can use non-atomic bitops now (and
1074 * we obviously don't have to worry about waking up a process
1075 * waiting on the page lock, because there are no references.
1076 */
1077 __clear_page_locked(page);
e286781d 1078free_it:
05ff5137 1079 nr_reclaimed++;
abe4c3b5
MG
1080
1081 /*
1082 * Is there need to periodically free_page_list? It would
1083 * appear not as the counts should be low
1084 */
1085 list_add(&page->lru, &free_pages);
1da177e4
LT
1086 continue;
1087
b291f000 1088cull_mlocked:
63d6c5ad
HD
1089 if (PageSwapCache(page))
1090 try_to_free_swap(page);
b291f000
NP
1091 unlock_page(page);
1092 putback_lru_page(page);
1093 continue;
1094
1da177e4 1095activate_locked:
68a22394
RR
1096 /* Not a candidate for swapping, so reclaim swap space. */
1097 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 1098 try_to_free_swap(page);
309381fe 1099 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1100 SetPageActive(page);
1101 pgactivate++;
1102keep_locked:
1103 unlock_page(page);
1104keep:
1105 list_add(&page->lru, &ret_pages);
309381fe 1106 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1107 }
abe4c3b5 1108
cc59850e 1109 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 1110
1da177e4 1111 list_splice(&ret_pages, page_list);
f8891e5e 1112 count_vm_events(PGACTIVATE, pgactivate);
69980e31 1113 mem_cgroup_uncharge_end();
8e950282
MG
1114 *ret_nr_dirty += nr_dirty;
1115 *ret_nr_congested += nr_congested;
d43006d5 1116 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
92df3a72 1117 *ret_nr_writeback += nr_writeback;
b1a6f21e 1118 *ret_nr_immediate += nr_immediate;
05ff5137 1119 return nr_reclaimed;
1da177e4
LT
1120}
1121
02c6de8d
MK
1122unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1123 struct list_head *page_list)
1124{
1125 struct scan_control sc = {
1126 .gfp_mask = GFP_KERNEL,
1127 .priority = DEF_PRIORITY,
1128 .may_unmap = 1,
1129 };
8e950282 1130 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
02c6de8d
MK
1131 struct page *page, *next;
1132 LIST_HEAD(clean_pages);
1133
1134 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e
RA
1135 if (page_is_file_cache(page) && !PageDirty(page) &&
1136 !isolated_balloon_page(page)) {
02c6de8d
MK
1137 ClearPageActive(page);
1138 list_move(&page->lru, &clean_pages);
1139 }
1140 }
1141
1142 ret = shrink_page_list(&clean_pages, zone, &sc,
8e950282
MG
1143 TTU_UNMAP|TTU_IGNORE_ACCESS,
1144 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
02c6de8d
MK
1145 list_splice(&clean_pages, page_list);
1146 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -ret);
1147 return ret;
1148}
1149
5ad333eb
AW
1150/*
1151 * Attempt to remove the specified page from its LRU. Only take this page
1152 * if it is of the appropriate PageActive status. Pages which are being
1153 * freed elsewhere are also ignored.
1154 *
1155 * page: page to consider
1156 * mode: one of the LRU isolation modes defined above
1157 *
1158 * returns 0 on success, -ve errno on failure.
1159 */
f3fd4a61 1160int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1161{
1162 int ret = -EINVAL;
1163
1164 /* Only take pages on the LRU. */
1165 if (!PageLRU(page))
1166 return ret;
1167
e46a2879
MK
1168 /* Compaction should not handle unevictable pages but CMA can do so */
1169 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1170 return ret;
1171
5ad333eb 1172 ret = -EBUSY;
08e552c6 1173
c8244935
MG
1174 /*
1175 * To minimise LRU disruption, the caller can indicate that it only
1176 * wants to isolate pages it will be able to operate on without
1177 * blocking - clean pages for the most part.
1178 *
1179 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1180 * is used by reclaim when it is cannot write to backing storage
1181 *
1182 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1183 * that it is possible to migrate without blocking
1184 */
1185 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1186 /* All the caller can do on PageWriteback is block */
1187 if (PageWriteback(page))
1188 return ret;
1189
1190 if (PageDirty(page)) {
1191 struct address_space *mapping;
1192
1193 /* ISOLATE_CLEAN means only clean pages */
1194 if (mode & ISOLATE_CLEAN)
1195 return ret;
1196
1197 /*
1198 * Only pages without mappings or that have a
1199 * ->migratepage callback are possible to migrate
1200 * without blocking
1201 */
1202 mapping = page_mapping(page);
1203 if (mapping && !mapping->a_ops->migratepage)
1204 return ret;
1205 }
1206 }
39deaf85 1207
f80c0673
MK
1208 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1209 return ret;
1210
5ad333eb
AW
1211 if (likely(get_page_unless_zero(page))) {
1212 /*
1213 * Be careful not to clear PageLRU until after we're
1214 * sure the page is not being freed elsewhere -- the
1215 * page release code relies on it.
1216 */
1217 ClearPageLRU(page);
1218 ret = 0;
1219 }
1220
1221 return ret;
1222}
1223
1da177e4
LT
1224/*
1225 * zone->lru_lock is heavily contended. Some of the functions that
1226 * shrink the lists perform better by taking out a batch of pages
1227 * and working on them outside the LRU lock.
1228 *
1229 * For pagecache intensive workloads, this function is the hottest
1230 * spot in the kernel (apart from copy_*_user functions).
1231 *
1232 * Appropriate locks must be held before calling this function.
1233 *
1234 * @nr_to_scan: The number of pages to look through on the list.
5dc35979 1235 * @lruvec: The LRU vector to pull pages from.
1da177e4 1236 * @dst: The temp list to put pages on to.
f626012d 1237 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1238 * @sc: The scan_control struct for this reclaim session
5ad333eb 1239 * @mode: One of the LRU isolation modes
3cb99451 1240 * @lru: LRU list id for isolating
1da177e4
LT
1241 *
1242 * returns how many pages were moved onto *@dst.
1243 */
69e05944 1244static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1245 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1246 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1247 isolate_mode_t mode, enum lru_list lru)
1da177e4 1248{
75b00af7 1249 struct list_head *src = &lruvec->lists[lru];
69e05944 1250 unsigned long nr_taken = 0;
c9b02d97 1251 unsigned long scan;
1da177e4 1252
c9b02d97 1253 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1254 struct page *page;
fa9add64 1255 int nr_pages;
5ad333eb 1256
1da177e4
LT
1257 page = lru_to_page(src);
1258 prefetchw_prev_lru_page(page, src, flags);
1259
309381fe 1260 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1261
f3fd4a61 1262 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1263 case 0:
fa9add64
HD
1264 nr_pages = hpage_nr_pages(page);
1265 mem_cgroup_update_lru_size(lruvec, lru, -nr_pages);
5ad333eb 1266 list_move(&page->lru, dst);
fa9add64 1267 nr_taken += nr_pages;
5ad333eb
AW
1268 break;
1269
1270 case -EBUSY:
1271 /* else it is being freed elsewhere */
1272 list_move(&page->lru, src);
1273 continue;
46453a6e 1274
5ad333eb
AW
1275 default:
1276 BUG();
1277 }
1da177e4
LT
1278 }
1279
f626012d 1280 *nr_scanned = scan;
75b00af7
HD
1281 trace_mm_vmscan_lru_isolate(sc->order, nr_to_scan, scan,
1282 nr_taken, mode, is_file_lru(lru));
1da177e4
LT
1283 return nr_taken;
1284}
1285
62695a84
NP
1286/**
1287 * isolate_lru_page - tries to isolate a page from its LRU list
1288 * @page: page to isolate from its LRU list
1289 *
1290 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291 * vmstat statistic corresponding to whatever LRU list the page was on.
1292 *
1293 * Returns 0 if the page was removed from an LRU list.
1294 * Returns -EBUSY if the page was not on an LRU list.
1295 *
1296 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1297 * the active list, it will have PageActive set. If it was found on
1298 * the unevictable list, it will have the PageUnevictable bit set. That flag
1299 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1300 *
1301 * The vmstat statistic corresponding to the list on which the page was
1302 * found will be decremented.
1303 *
1304 * Restrictions:
1305 * (1) Must be called with an elevated refcount on the page. This is a
1306 * fundamentnal difference from isolate_lru_pages (which is called
1307 * without a stable reference).
1308 * (2) the lru_lock must not be held.
1309 * (3) interrupts must be enabled.
1310 */
1311int isolate_lru_page(struct page *page)
1312{
1313 int ret = -EBUSY;
1314
309381fe 1315 VM_BUG_ON_PAGE(!page_count(page), page);
0c917313 1316
62695a84
NP
1317 if (PageLRU(page)) {
1318 struct zone *zone = page_zone(page);
fa9add64 1319 struct lruvec *lruvec;
62695a84
NP
1320
1321 spin_lock_irq(&zone->lru_lock);
fa9add64 1322 lruvec = mem_cgroup_page_lruvec(page, zone);
0c917313 1323 if (PageLRU(page)) {
894bc310 1324 int lru = page_lru(page);
0c917313 1325 get_page(page);
62695a84 1326 ClearPageLRU(page);
fa9add64
HD
1327 del_page_from_lru_list(page, lruvec, lru);
1328 ret = 0;
62695a84
NP
1329 }
1330 spin_unlock_irq(&zone->lru_lock);
1331 }
1332 return ret;
1333}
1334
35cd7815 1335/*
d37dd5dc
FW
1336 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1337 * then get resheduled. When there are massive number of tasks doing page
1338 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1339 * the LRU list will go small and be scanned faster than necessary, leading to
1340 * unnecessary swapping, thrashing and OOM.
35cd7815
RR
1341 */
1342static int too_many_isolated(struct zone *zone, int file,
1343 struct scan_control *sc)
1344{
1345 unsigned long inactive, isolated;
1346
1347 if (current_is_kswapd())
1348 return 0;
1349
89b5fae5 1350 if (!global_reclaim(sc))
35cd7815
RR
1351 return 0;
1352
1353 if (file) {
1354 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1355 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1356 } else {
1357 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1358 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1359 }
1360
3cf23841
FW
1361 /*
1362 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1363 * won't get blocked by normal direct-reclaimers, forming a circular
1364 * deadlock.
1365 */
1366 if ((sc->gfp_mask & GFP_IOFS) == GFP_IOFS)
1367 inactive >>= 3;
1368
35cd7815
RR
1369 return isolated > inactive;
1370}
1371
66635629 1372static noinline_for_stack void
75b00af7 1373putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1374{
27ac81d8
KK
1375 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1376 struct zone *zone = lruvec_zone(lruvec);
3f79768f 1377 LIST_HEAD(pages_to_free);
66635629 1378
66635629
MG
1379 /*
1380 * Put back any unfreeable pages.
1381 */
66635629 1382 while (!list_empty(page_list)) {
3f79768f 1383 struct page *page = lru_to_page(page_list);
66635629 1384 int lru;
3f79768f 1385
309381fe 1386 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1387 list_del(&page->lru);
39b5f29a 1388 if (unlikely(!page_evictable(page))) {
66635629
MG
1389 spin_unlock_irq(&zone->lru_lock);
1390 putback_lru_page(page);
1391 spin_lock_irq(&zone->lru_lock);
1392 continue;
1393 }
fa9add64
HD
1394
1395 lruvec = mem_cgroup_page_lruvec(page, zone);
1396
7a608572 1397 SetPageLRU(page);
66635629 1398 lru = page_lru(page);
fa9add64
HD
1399 add_page_to_lru_list(page, lruvec, lru);
1400
66635629
MG
1401 if (is_active_lru(lru)) {
1402 int file = is_file_lru(lru);
9992af10
RR
1403 int numpages = hpage_nr_pages(page);
1404 reclaim_stat->recent_rotated[file] += numpages;
66635629 1405 }
2bcf8879
HD
1406 if (put_page_testzero(page)) {
1407 __ClearPageLRU(page);
1408 __ClearPageActive(page);
fa9add64 1409 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1410
1411 if (unlikely(PageCompound(page))) {
1412 spin_unlock_irq(&zone->lru_lock);
1413 (*get_compound_page_dtor(page))(page);
1414 spin_lock_irq(&zone->lru_lock);
1415 } else
1416 list_add(&page->lru, &pages_to_free);
66635629
MG
1417 }
1418 }
66635629 1419
3f79768f
HD
1420 /*
1421 * To save our caller's stack, now use input list for pages to free.
1422 */
1423 list_splice(&pages_to_free, page_list);
66635629
MG
1424}
1425
1da177e4 1426/*
1742f19f
AM
1427 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1428 * of reclaimed pages
1da177e4 1429 */
66635629 1430static noinline_for_stack unsigned long
1a93be0e 1431shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1432 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1433{
1434 LIST_HEAD(page_list);
e247dbce 1435 unsigned long nr_scanned;
05ff5137 1436 unsigned long nr_reclaimed = 0;
e247dbce 1437 unsigned long nr_taken;
8e950282
MG
1438 unsigned long nr_dirty = 0;
1439 unsigned long nr_congested = 0;
e2be15f6 1440 unsigned long nr_unqueued_dirty = 0;
92df3a72 1441 unsigned long nr_writeback = 0;
b1a6f21e 1442 unsigned long nr_immediate = 0;
f3fd4a61 1443 isolate_mode_t isolate_mode = 0;
3cb99451 1444 int file = is_file_lru(lru);
1a93be0e
KK
1445 struct zone *zone = lruvec_zone(lruvec);
1446 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
78dc583d 1447
35cd7815 1448 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1449 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1450
1451 /* We are about to die and free our memory. Return now. */
1452 if (fatal_signal_pending(current))
1453 return SWAP_CLUSTER_MAX;
1454 }
1455
1da177e4 1456 lru_add_drain();
f80c0673
MK
1457
1458 if (!sc->may_unmap)
61317289 1459 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1460 if (!sc->may_writepage)
61317289 1461 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1462
1da177e4 1463 spin_lock_irq(&zone->lru_lock);
b35ea17b 1464
5dc35979
KK
1465 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1466 &nr_scanned, sc, isolate_mode, lru);
95d918fc
KK
1467
1468 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
1469 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1470
89b5fae5 1471 if (global_reclaim(sc)) {
e247dbce
KM
1472 zone->pages_scanned += nr_scanned;
1473 if (current_is_kswapd())
75b00af7 1474 __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scanned);
e247dbce 1475 else
75b00af7 1476 __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scanned);
e247dbce 1477 }
d563c050 1478 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1479
d563c050 1480 if (nr_taken == 0)
66635629 1481 return 0;
5ad333eb 1482
02c6de8d 1483 nr_reclaimed = shrink_page_list(&page_list, zone, sc, TTU_UNMAP,
8e950282
MG
1484 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1485 &nr_writeback, &nr_immediate,
1486 false);
c661b078 1487
3f79768f
HD
1488 spin_lock_irq(&zone->lru_lock);
1489
95d918fc 1490 reclaim_stat->recent_scanned[file] += nr_taken;
d563c050 1491
904249aa
YH
1492 if (global_reclaim(sc)) {
1493 if (current_is_kswapd())
1494 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1495 nr_reclaimed);
1496 else
1497 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1498 nr_reclaimed);
1499 }
a74609fa 1500
27ac81d8 1501 putback_inactive_pages(lruvec, &page_list);
3f79768f 1502
95d918fc 1503 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f
HD
1504
1505 spin_unlock_irq(&zone->lru_lock);
1506
1507 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1508
92df3a72
MG
1509 /*
1510 * If reclaim is isolating dirty pages under writeback, it implies
1511 * that the long-lived page allocation rate is exceeding the page
1512 * laundering rate. Either the global limits are not being effective
1513 * at throttling processes due to the page distribution throughout
1514 * zones or there is heavy usage of a slow backing device. The
1515 * only option is to throttle from reclaim context which is not ideal
1516 * as there is no guarantee the dirtying process is throttled in the
1517 * same way balance_dirty_pages() manages.
1518 *
8e950282
MG
1519 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1520 * of pages under pages flagged for immediate reclaim and stall if any
1521 * are encountered in the nr_immediate check below.
92df3a72 1522 */
918fc718 1523 if (nr_writeback && nr_writeback == nr_taken)
283aba9f 1524 zone_set_flag(zone, ZONE_WRITEBACK);
92df3a72 1525
d43006d5 1526 /*
b1a6f21e
MG
1527 * memcg will stall in page writeback so only consider forcibly
1528 * stalling for global reclaim
d43006d5 1529 */
b1a6f21e 1530 if (global_reclaim(sc)) {
8e950282
MG
1531 /*
1532 * Tag a zone as congested if all the dirty pages scanned were
1533 * backed by a congested BDI and wait_iff_congested will stall.
1534 */
1535 if (nr_dirty && nr_dirty == nr_congested)
1536 zone_set_flag(zone, ZONE_CONGESTED);
1537
b1a6f21e
MG
1538 /*
1539 * If dirty pages are scanned that are not queued for IO, it
1540 * implies that flushers are not keeping up. In this case, flag
1541 * the zone ZONE_TAIL_LRU_DIRTY and kswapd will start writing
1542 * pages from reclaim context. It will forcibly stall in the
1543 * next check.
1544 */
1545 if (nr_unqueued_dirty == nr_taken)
1546 zone_set_flag(zone, ZONE_TAIL_LRU_DIRTY);
1547
1548 /*
1549 * In addition, if kswapd scans pages marked marked for
1550 * immediate reclaim and under writeback (nr_immediate), it
1551 * implies that pages are cycling through the LRU faster than
1552 * they are written so also forcibly stall.
1553 */
1554 if (nr_unqueued_dirty == nr_taken || nr_immediate)
1555 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1556 }
d43006d5 1557
8e950282
MG
1558 /*
1559 * Stall direct reclaim for IO completions if underlying BDIs or zone
1560 * is congested. Allow kswapd to continue until it starts encountering
1561 * unqueued dirty pages or cycling through the LRU too quickly.
1562 */
1563 if (!sc->hibernation_mode && !current_is_kswapd())
1564 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1565
e11da5b4
MG
1566 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1567 zone_idx(zone),
1568 nr_scanned, nr_reclaimed,
9e3b2f8c 1569 sc->priority,
23b9da55 1570 trace_shrink_flags(file));
05ff5137 1571 return nr_reclaimed;
1da177e4
LT
1572}
1573
1574/*
1575 * This moves pages from the active list to the inactive list.
1576 *
1577 * We move them the other way if the page is referenced by one or more
1578 * processes, from rmap.
1579 *
1580 * If the pages are mostly unmapped, the processing is fast and it is
1581 * appropriate to hold zone->lru_lock across the whole operation. But if
1582 * the pages are mapped, the processing is slow (page_referenced()) so we
1583 * should drop zone->lru_lock around each page. It's impossible to balance
1584 * this, so instead we remove the pages from the LRU while processing them.
1585 * It is safe to rely on PG_active against the non-LRU pages in here because
1586 * nobody will play with that bit on a non-LRU page.
1587 *
1588 * The downside is that we have to touch page->_count against each page.
1589 * But we had to alter page->flags anyway.
1590 */
1cfb419b 1591
fa9add64 1592static void move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1593 struct list_head *list,
2bcf8879 1594 struct list_head *pages_to_free,
3eb4140f
WF
1595 enum lru_list lru)
1596{
fa9add64 1597 struct zone *zone = lruvec_zone(lruvec);
3eb4140f 1598 unsigned long pgmoved = 0;
3eb4140f 1599 struct page *page;
fa9add64 1600 int nr_pages;
3eb4140f 1601
3eb4140f
WF
1602 while (!list_empty(list)) {
1603 page = lru_to_page(list);
fa9add64 1604 lruvec = mem_cgroup_page_lruvec(page, zone);
3eb4140f 1605
309381fe 1606 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1607 SetPageLRU(page);
1608
fa9add64
HD
1609 nr_pages = hpage_nr_pages(page);
1610 mem_cgroup_update_lru_size(lruvec, lru, nr_pages);
925b7673 1611 list_move(&page->lru, &lruvec->lists[lru]);
fa9add64 1612 pgmoved += nr_pages;
3eb4140f 1613
2bcf8879
HD
1614 if (put_page_testzero(page)) {
1615 __ClearPageLRU(page);
1616 __ClearPageActive(page);
fa9add64 1617 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1618
1619 if (unlikely(PageCompound(page))) {
1620 spin_unlock_irq(&zone->lru_lock);
1621 (*get_compound_page_dtor(page))(page);
1622 spin_lock_irq(&zone->lru_lock);
1623 } else
1624 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1625 }
1626 }
1627 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1628 if (!is_active_lru(lru))
1629 __count_vm_events(PGDEACTIVATE, pgmoved);
1630}
1cfb419b 1631
f626012d 1632static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 1633 struct lruvec *lruvec,
f16015fb 1634 struct scan_control *sc,
9e3b2f8c 1635 enum lru_list lru)
1da177e4 1636{
44c241f1 1637 unsigned long nr_taken;
f626012d 1638 unsigned long nr_scanned;
6fe6b7e3 1639 unsigned long vm_flags;
1da177e4 1640 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1641 LIST_HEAD(l_active);
b69408e8 1642 LIST_HEAD(l_inactive);
1da177e4 1643 struct page *page;
1a93be0e 1644 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
44c241f1 1645 unsigned long nr_rotated = 0;
f3fd4a61 1646 isolate_mode_t isolate_mode = 0;
3cb99451 1647 int file = is_file_lru(lru);
1a93be0e 1648 struct zone *zone = lruvec_zone(lruvec);
1da177e4
LT
1649
1650 lru_add_drain();
f80c0673
MK
1651
1652 if (!sc->may_unmap)
61317289 1653 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1654 if (!sc->may_writepage)
61317289 1655 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1656
1da177e4 1657 spin_lock_irq(&zone->lru_lock);
925b7673 1658
5dc35979
KK
1659 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1660 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 1661 if (global_reclaim(sc))
f626012d 1662 zone->pages_scanned += nr_scanned;
89b5fae5 1663
b7c46d15 1664 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1665
f626012d 1666 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1667 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1668 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1669 spin_unlock_irq(&zone->lru_lock);
1670
1da177e4
LT
1671 while (!list_empty(&l_hold)) {
1672 cond_resched();
1673 page = lru_to_page(&l_hold);
1674 list_del(&page->lru);
7e9cd484 1675
39b5f29a 1676 if (unlikely(!page_evictable(page))) {
894bc310
LS
1677 putback_lru_page(page);
1678 continue;
1679 }
1680
cc715d99
MG
1681 if (unlikely(buffer_heads_over_limit)) {
1682 if (page_has_private(page) && trylock_page(page)) {
1683 if (page_has_private(page))
1684 try_to_release_page(page, 0);
1685 unlock_page(page);
1686 }
1687 }
1688
c3ac9a8a
JW
1689 if (page_referenced(page, 0, sc->target_mem_cgroup,
1690 &vm_flags)) {
9992af10 1691 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1692 /*
1693 * Identify referenced, file-backed active pages and
1694 * give them one more trip around the active list. So
1695 * that executable code get better chances to stay in
1696 * memory under moderate memory pressure. Anon pages
1697 * are not likely to be evicted by use-once streaming
1698 * IO, plus JVM can create lots of anon VM_EXEC pages,
1699 * so we ignore them here.
1700 */
41e20983 1701 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1702 list_add(&page->lru, &l_active);
1703 continue;
1704 }
1705 }
7e9cd484 1706
5205e56e 1707 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1708 list_add(&page->lru, &l_inactive);
1709 }
1710
b555749a 1711 /*
8cab4754 1712 * Move pages back to the lru list.
b555749a 1713 */
2a1dc509 1714 spin_lock_irq(&zone->lru_lock);
556adecb 1715 /*
8cab4754
WF
1716 * Count referenced pages from currently used mappings as rotated,
1717 * even though only some of them are actually re-activated. This
1718 * helps balance scan pressure between file and anonymous pages in
1719 * get_scan_ratio.
7e9cd484 1720 */
b7c46d15 1721 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1722
fa9add64
HD
1723 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
1724 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1725 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1726 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1727
1728 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1729}
1730
74e3f3c3 1731#ifdef CONFIG_SWAP
14797e23 1732static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1733{
1734 unsigned long active, inactive;
1735
1736 active = zone_page_state(zone, NR_ACTIVE_ANON);
1737 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1738
1739 if (inactive * zone->inactive_ratio < active)
1740 return 1;
1741
1742 return 0;
1743}
1744
14797e23
KM
1745/**
1746 * inactive_anon_is_low - check if anonymous pages need to be deactivated
c56d5c7d 1747 * @lruvec: LRU vector to check
14797e23
KM
1748 *
1749 * Returns true if the zone does not have enough inactive anon pages,
1750 * meaning some active anon pages need to be deactivated.
1751 */
c56d5c7d 1752static int inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1753{
74e3f3c3
MK
1754 /*
1755 * If we don't have swap space, anonymous page deactivation
1756 * is pointless.
1757 */
1758 if (!total_swap_pages)
1759 return 0;
1760
c3c787e8 1761 if (!mem_cgroup_disabled())
c56d5c7d 1762 return mem_cgroup_inactive_anon_is_low(lruvec);
f16015fb 1763
c56d5c7d 1764 return inactive_anon_is_low_global(lruvec_zone(lruvec));
14797e23 1765}
74e3f3c3 1766#else
c56d5c7d 1767static inline int inactive_anon_is_low(struct lruvec *lruvec)
74e3f3c3
MK
1768{
1769 return 0;
1770}
1771#endif
14797e23 1772
56e49d21
RR
1773/**
1774 * inactive_file_is_low - check if file pages need to be deactivated
c56d5c7d 1775 * @lruvec: LRU vector to check
56e49d21
RR
1776 *
1777 * When the system is doing streaming IO, memory pressure here
1778 * ensures that active file pages get deactivated, until more
1779 * than half of the file pages are on the inactive list.
1780 *
1781 * Once we get to that situation, protect the system's working
1782 * set from being evicted by disabling active file page aging.
1783 *
1784 * This uses a different ratio than the anonymous pages, because
1785 * the page cache uses a use-once replacement algorithm.
1786 */
c56d5c7d 1787static int inactive_file_is_low(struct lruvec *lruvec)
56e49d21 1788{
e3790144
JW
1789 unsigned long inactive;
1790 unsigned long active;
1791
1792 inactive = get_lru_size(lruvec, LRU_INACTIVE_FILE);
1793 active = get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21 1794
e3790144 1795 return active > inactive;
56e49d21
RR
1796}
1797
75b00af7 1798static int inactive_list_is_low(struct lruvec *lruvec, enum lru_list lru)
b39415b2 1799{
75b00af7 1800 if (is_file_lru(lru))
c56d5c7d 1801 return inactive_file_is_low(lruvec);
b39415b2 1802 else
c56d5c7d 1803 return inactive_anon_is_low(lruvec);
b39415b2
RR
1804}
1805
4f98a2fe 1806static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1a93be0e 1807 struct lruvec *lruvec, struct scan_control *sc)
b69408e8 1808{
b39415b2 1809 if (is_active_lru(lru)) {
75b00af7 1810 if (inactive_list_is_low(lruvec, lru))
1a93be0e 1811 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
1812 return 0;
1813 }
1814
1a93be0e 1815 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
1816}
1817
3d58ab5c 1818static int vmscan_swappiness(struct scan_control *sc)
1f4c025b 1819{
89b5fae5 1820 if (global_reclaim(sc))
1f4c025b 1821 return vm_swappiness;
3d58ab5c 1822 return mem_cgroup_swappiness(sc->target_mem_cgroup);
1f4c025b
KH
1823}
1824
9a265114
JW
1825enum scan_balance {
1826 SCAN_EQUAL,
1827 SCAN_FRACT,
1828 SCAN_ANON,
1829 SCAN_FILE,
1830};
1831
4f98a2fe
RR
1832/*
1833 * Determine how aggressively the anon and file LRU lists should be
1834 * scanned. The relative value of each set of LRU lists is determined
1835 * by looking at the fraction of the pages scanned we did rotate back
1836 * onto the active list instead of evict.
1837 *
be7bd59d
WL
1838 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
1839 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 1840 */
90126375 1841static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
9e3b2f8c 1842 unsigned long *nr)
4f98a2fe 1843{
9a265114
JW
1844 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1845 u64 fraction[2];
1846 u64 denominator = 0; /* gcc */
1847 struct zone *zone = lruvec_zone(lruvec);
4f98a2fe 1848 unsigned long anon_prio, file_prio;
9a265114
JW
1849 enum scan_balance scan_balance;
1850 unsigned long anon, file, free;
1851 bool force_scan = false;
4f98a2fe 1852 unsigned long ap, fp;
4111304d 1853 enum lru_list lru;
246e87a9 1854
f11c0ca5
JW
1855 /*
1856 * If the zone or memcg is small, nr[l] can be 0. This
1857 * results in no scanning on this priority and a potential
1858 * priority drop. Global direct reclaim can go to the next
1859 * zone and tends to have no problems. Global kswapd is for
1860 * zone balancing and it needs to scan a minimum amount. When
1861 * reclaiming for a memcg, a priority drop can cause high
1862 * latencies, so it's better to scan a minimum amount there as
1863 * well.
1864 */
6e543d57 1865 if (current_is_kswapd() && !zone_reclaimable(zone))
a4d3e9e7 1866 force_scan = true;
89b5fae5 1867 if (!global_reclaim(sc))
a4d3e9e7 1868 force_scan = true;
76a33fc3
SL
1869
1870 /* If we have no swap space, do not bother scanning anon pages. */
ec8acf20 1871 if (!sc->may_swap || (get_nr_swap_pages() <= 0)) {
9a265114 1872 scan_balance = SCAN_FILE;
76a33fc3
SL
1873 goto out;
1874 }
4f98a2fe 1875
10316b31
JW
1876 /*
1877 * Global reclaim will swap to prevent OOM even with no
1878 * swappiness, but memcg users want to use this knob to
1879 * disable swapping for individual groups completely when
1880 * using the memory controller's swap limit feature would be
1881 * too expensive.
1882 */
1883 if (!global_reclaim(sc) && !vmscan_swappiness(sc)) {
9a265114 1884 scan_balance = SCAN_FILE;
10316b31
JW
1885 goto out;
1886 }
1887
1888 /*
1889 * Do not apply any pressure balancing cleverness when the
1890 * system is close to OOM, scan both anon and file equally
1891 * (unless the swappiness setting disagrees with swapping).
1892 */
1893 if (!sc->priority && vmscan_swappiness(sc)) {
9a265114 1894 scan_balance = SCAN_EQUAL;
10316b31
JW
1895 goto out;
1896 }
1897
4d7dcca2
HD
1898 anon = get_lru_size(lruvec, LRU_ACTIVE_ANON) +
1899 get_lru_size(lruvec, LRU_INACTIVE_ANON);
1900 file = get_lru_size(lruvec, LRU_ACTIVE_FILE) +
1901 get_lru_size(lruvec, LRU_INACTIVE_FILE);
a4d3e9e7 1902
11d16c25
JW
1903 /*
1904 * If it's foreseeable that reclaiming the file cache won't be
1905 * enough to get the zone back into a desirable shape, we have
1906 * to swap. Better start now and leave the - probably heavily
1907 * thrashing - remaining file pages alone.
1908 */
89b5fae5 1909 if (global_reclaim(sc)) {
11d16c25 1910 free = zone_page_state(zone, NR_FREE_PAGES);
90126375 1911 if (unlikely(file + free <= high_wmark_pages(zone))) {
9a265114 1912 scan_balance = SCAN_ANON;
76a33fc3 1913 goto out;
eeee9a8c 1914 }
4f98a2fe
RR
1915 }
1916
7c5bd705
JW
1917 /*
1918 * There is enough inactive page cache, do not reclaim
1919 * anything from the anonymous working set right now.
1920 */
1921 if (!inactive_file_is_low(lruvec)) {
9a265114 1922 scan_balance = SCAN_FILE;
7c5bd705
JW
1923 goto out;
1924 }
1925
9a265114
JW
1926 scan_balance = SCAN_FRACT;
1927
58c37f6e
KM
1928 /*
1929 * With swappiness at 100, anonymous and file have the same priority.
1930 * This scanning priority is essentially the inverse of IO cost.
1931 */
3d58ab5c 1932 anon_prio = vmscan_swappiness(sc);
75b00af7 1933 file_prio = 200 - anon_prio;
58c37f6e 1934
4f98a2fe
RR
1935 /*
1936 * OK, so we have swap space and a fair amount of page cache
1937 * pages. We use the recently rotated / recently scanned
1938 * ratios to determine how valuable each cache is.
1939 *
1940 * Because workloads change over time (and to avoid overflow)
1941 * we keep these statistics as a floating average, which ends
1942 * up weighing recent references more than old ones.
1943 *
1944 * anon in [0], file in [1]
1945 */
90126375 1946 spin_lock_irq(&zone->lru_lock);
6e901571 1947 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1948 reclaim_stat->recent_scanned[0] /= 2;
1949 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1950 }
1951
6e901571 1952 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1953 reclaim_stat->recent_scanned[1] /= 2;
1954 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1955 }
1956
4f98a2fe 1957 /*
00d8089c
RR
1958 * The amount of pressure on anon vs file pages is inversely
1959 * proportional to the fraction of recently scanned pages on
1960 * each list that were recently referenced and in active use.
4f98a2fe 1961 */
fe35004f 1962 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1963 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1964
fe35004f 1965 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1966 fp /= reclaim_stat->recent_rotated[1] + 1;
90126375 1967 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1968
76a33fc3
SL
1969 fraction[0] = ap;
1970 fraction[1] = fp;
1971 denominator = ap + fp + 1;
1972out:
4111304d
HD
1973 for_each_evictable_lru(lru) {
1974 int file = is_file_lru(lru);
d778df51 1975 unsigned long size;
76a33fc3 1976 unsigned long scan;
6e08a369 1977
d778df51 1978 size = get_lru_size(lruvec, lru);
10316b31 1979 scan = size >> sc->priority;
9a265114 1980
10316b31
JW
1981 if (!scan && force_scan)
1982 scan = min(size, SWAP_CLUSTER_MAX);
9a265114
JW
1983
1984 switch (scan_balance) {
1985 case SCAN_EQUAL:
1986 /* Scan lists relative to size */
1987 break;
1988 case SCAN_FRACT:
1989 /*
1990 * Scan types proportional to swappiness and
1991 * their relative recent reclaim efficiency.
1992 */
1993 scan = div64_u64(scan * fraction[file], denominator);
1994 break;
1995 case SCAN_FILE:
1996 case SCAN_ANON:
1997 /* Scan one type exclusively */
1998 if ((scan_balance == SCAN_FILE) != file)
1999 scan = 0;
2000 break;
2001 default:
2002 /* Look ma, no brain */
2003 BUG();
2004 }
4111304d 2005 nr[lru] = scan;
76a33fc3 2006 }
6e08a369 2007}
4f98a2fe 2008
9b4f98cd
JW
2009/*
2010 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2011 */
2012static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2013{
2014 unsigned long nr[NR_LRU_LISTS];
e82e0561 2015 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2016 unsigned long nr_to_scan;
2017 enum lru_list lru;
2018 unsigned long nr_reclaimed = 0;
2019 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2020 struct blk_plug plug;
e82e0561 2021 bool scan_adjusted = false;
9b4f98cd
JW
2022
2023 get_scan_count(lruvec, sc, nr);
2024
e82e0561
MG
2025 /* Record the original scan target for proportional adjustments later */
2026 memcpy(targets, nr, sizeof(nr));
2027
9b4f98cd
JW
2028 blk_start_plug(&plug);
2029 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2030 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2031 unsigned long nr_anon, nr_file, percentage;
2032 unsigned long nr_scanned;
2033
9b4f98cd
JW
2034 for_each_evictable_lru(lru) {
2035 if (nr[lru]) {
2036 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2037 nr[lru] -= nr_to_scan;
2038
2039 nr_reclaimed += shrink_list(lru, nr_to_scan,
2040 lruvec, sc);
2041 }
2042 }
e82e0561
MG
2043
2044 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2045 continue;
2046
9b4f98cd 2047 /*
e82e0561
MG
2048 * For global direct reclaim, reclaim only the number of pages
2049 * requested. Less care is taken to scan proportionally as it
2050 * is more important to minimise direct reclaim stall latency
2051 * than it is to properly age the LRU lists.
9b4f98cd 2052 */
e82e0561 2053 if (global_reclaim(sc) && !current_is_kswapd())
9b4f98cd 2054 break;
e82e0561
MG
2055
2056 /*
2057 * For kswapd and memcg, reclaim at least the number of pages
2058 * requested. Ensure that the anon and file LRUs shrink
2059 * proportionally what was requested by get_scan_count(). We
2060 * stop reclaiming one LRU and reduce the amount scanning
2061 * proportional to the original scan target.
2062 */
2063 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2064 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2065
2066 if (nr_file > nr_anon) {
2067 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2068 targets[LRU_ACTIVE_ANON] + 1;
2069 lru = LRU_BASE;
2070 percentage = nr_anon * 100 / scan_target;
2071 } else {
2072 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2073 targets[LRU_ACTIVE_FILE] + 1;
2074 lru = LRU_FILE;
2075 percentage = nr_file * 100 / scan_target;
2076 }
2077
2078 /* Stop scanning the smaller of the LRU */
2079 nr[lru] = 0;
2080 nr[lru + LRU_ACTIVE] = 0;
2081
2082 /*
2083 * Recalculate the other LRU scan count based on its original
2084 * scan target and the percentage scanning already complete
2085 */
2086 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2087 nr_scanned = targets[lru] - nr[lru];
2088 nr[lru] = targets[lru] * (100 - percentage) / 100;
2089 nr[lru] -= min(nr[lru], nr_scanned);
2090
2091 lru += LRU_ACTIVE;
2092 nr_scanned = targets[lru] - nr[lru];
2093 nr[lru] = targets[lru] * (100 - percentage) / 100;
2094 nr[lru] -= min(nr[lru], nr_scanned);
2095
2096 scan_adjusted = true;
9b4f98cd
JW
2097 }
2098 blk_finish_plug(&plug);
2099 sc->nr_reclaimed += nr_reclaimed;
2100
2101 /*
2102 * Even if we did not try to evict anon pages at all, we want to
2103 * rebalance the anon lru active/inactive ratio.
2104 */
2105 if (inactive_anon_is_low(lruvec))
2106 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2107 sc, LRU_ACTIVE_ANON);
2108
2109 throttle_vm_writeout(sc->gfp_mask);
2110}
2111
23b9da55 2112/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2113static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2114{
d84da3f9 2115 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2116 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2117 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2118 return true;
2119
2120 return false;
2121}
2122
3e7d3449 2123/*
23b9da55
MG
2124 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2125 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2126 * true if more pages should be reclaimed such that when the page allocator
2127 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2128 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2129 */
9b4f98cd 2130static inline bool should_continue_reclaim(struct zone *zone,
3e7d3449
MG
2131 unsigned long nr_reclaimed,
2132 unsigned long nr_scanned,
2133 struct scan_control *sc)
2134{
2135 unsigned long pages_for_compaction;
2136 unsigned long inactive_lru_pages;
2137
2138 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2139 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2140 return false;
2141
2876592f
MG
2142 /* Consider stopping depending on scan and reclaim activity */
2143 if (sc->gfp_mask & __GFP_REPEAT) {
2144 /*
2145 * For __GFP_REPEAT allocations, stop reclaiming if the
2146 * full LRU list has been scanned and we are still failing
2147 * to reclaim pages. This full LRU scan is potentially
2148 * expensive but a __GFP_REPEAT caller really wants to succeed
2149 */
2150 if (!nr_reclaimed && !nr_scanned)
2151 return false;
2152 } else {
2153 /*
2154 * For non-__GFP_REPEAT allocations which can presumably
2155 * fail without consequence, stop if we failed to reclaim
2156 * any pages from the last SWAP_CLUSTER_MAX number of
2157 * pages that were scanned. This will return to the
2158 * caller faster at the risk reclaim/compaction and
2159 * the resulting allocation attempt fails
2160 */
2161 if (!nr_reclaimed)
2162 return false;
2163 }
3e7d3449
MG
2164
2165 /*
2166 * If we have not reclaimed enough pages for compaction and the
2167 * inactive lists are large enough, continue reclaiming
2168 */
2169 pages_for_compaction = (2UL << sc->order);
9b4f98cd 2170 inactive_lru_pages = zone_page_state(zone, NR_INACTIVE_FILE);
ec8acf20 2171 if (get_nr_swap_pages() > 0)
9b4f98cd 2172 inactive_lru_pages += zone_page_state(zone, NR_INACTIVE_ANON);
3e7d3449
MG
2173 if (sc->nr_reclaimed < pages_for_compaction &&
2174 inactive_lru_pages > pages_for_compaction)
2175 return true;
2176
2177 /* If compaction would go ahead or the allocation would succeed, stop */
9b4f98cd 2178 switch (compaction_suitable(zone, sc->order)) {
3e7d3449
MG
2179 case COMPACT_PARTIAL:
2180 case COMPACT_CONTINUE:
2181 return false;
2182 default:
2183 return true;
2184 }
2185}
2186
0608f43d 2187static void shrink_zone(struct zone *zone, struct scan_control *sc)
1da177e4 2188{
f0fdc5e8 2189 unsigned long nr_reclaimed, nr_scanned;
1da177e4 2190
9b4f98cd
JW
2191 do {
2192 struct mem_cgroup *root = sc->target_mem_cgroup;
2193 struct mem_cgroup_reclaim_cookie reclaim = {
2194 .zone = zone,
2195 .priority = sc->priority,
2196 };
694fbc0f 2197 struct mem_cgroup *memcg;
3e7d3449 2198
9b4f98cd
JW
2199 nr_reclaimed = sc->nr_reclaimed;
2200 nr_scanned = sc->nr_scanned;
1da177e4 2201
694fbc0f
AM
2202 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2203 do {
9b4f98cd 2204 struct lruvec *lruvec;
5660048c 2205
9b4f98cd 2206 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
f9be23d6 2207
9b4f98cd 2208 shrink_lruvec(lruvec, sc);
f16015fb 2209
9b4f98cd 2210 /*
a394cb8e
MH
2211 * Direct reclaim and kswapd have to scan all memory
2212 * cgroups to fulfill the overall scan target for the
9b4f98cd 2213 * zone.
a394cb8e
MH
2214 *
2215 * Limit reclaim, on the other hand, only cares about
2216 * nr_to_reclaim pages to be reclaimed and it will
2217 * retry with decreasing priority if one round over the
2218 * whole hierarchy is not sufficient.
9b4f98cd 2219 */
a394cb8e
MH
2220 if (!global_reclaim(sc) &&
2221 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2222 mem_cgroup_iter_break(root, memcg);
2223 break;
2224 }
694fbc0f
AM
2225 memcg = mem_cgroup_iter(root, memcg, &reclaim);
2226 } while (memcg);
70ddf637
AV
2227
2228 vmpressure(sc->gfp_mask, sc->target_mem_cgroup,
2229 sc->nr_scanned - nr_scanned,
2230 sc->nr_reclaimed - nr_reclaimed);
2231
9b4f98cd
JW
2232 } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed,
2233 sc->nr_scanned - nr_scanned, sc));
f16015fb
JW
2234}
2235
fe4b1b24
MG
2236/* Returns true if compaction should go ahead for a high-order request */
2237static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2238{
2239 unsigned long balance_gap, watermark;
2240 bool watermark_ok;
2241
2242 /* Do not consider compaction for orders reclaim is meant to satisfy */
2243 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2244 return false;
2245
2246 /*
2247 * Compaction takes time to run and there are potentially other
2248 * callers using the pages just freed. Continue reclaiming until
2249 * there is a buffer of free pages available to give compaction
2250 * a reasonable chance of completing and allocating the page
2251 */
2252 balance_gap = min(low_wmark_pages(zone),
b40da049 2253 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
fe4b1b24
MG
2254 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2255 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2256 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2257
2258 /*
2259 * If compaction is deferred, reclaim up to a point where
2260 * compaction will have a chance of success when re-enabled
2261 */
aff62249 2262 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
2263 return watermark_ok;
2264
2265 /* If compaction is not ready to start, keep reclaiming */
2266 if (!compaction_suitable(zone, sc->order))
2267 return false;
2268
2269 return watermark_ok;
2270}
2271
1da177e4
LT
2272/*
2273 * This is the direct reclaim path, for page-allocating processes. We only
2274 * try to reclaim pages from zones which will satisfy the caller's allocation
2275 * request.
2276 *
41858966
MG
2277 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2278 * Because:
1da177e4
LT
2279 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2280 * allocation or
41858966
MG
2281 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2282 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2283 * zone defense algorithm.
1da177e4 2284 *
1da177e4
LT
2285 * If a zone is deemed to be full of pinned pages then just give it a light
2286 * scan then give up on it.
e0c23279
MG
2287 *
2288 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 2289 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
2290 * the caller that it should consider retrying the allocation instead of
2291 * further reclaim.
1da177e4 2292 */
9e3b2f8c 2293static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2294{
dd1a239f 2295 struct zoneref *z;
54a6eb5c 2296 struct zone *zone;
0608f43d
AM
2297 unsigned long nr_soft_reclaimed;
2298 unsigned long nr_soft_scanned;
0cee34fd 2299 bool aborted_reclaim = false;
1cfb419b 2300
cc715d99
MG
2301 /*
2302 * If the number of buffer_heads in the machine exceeds the maximum
2303 * allowed level, force direct reclaim to scan the highmem zone as
2304 * highmem pages could be pinning lowmem pages storing buffer_heads
2305 */
2306 if (buffer_heads_over_limit)
2307 sc->gfp_mask |= __GFP_HIGHMEM;
2308
d4debc66
MG
2309 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2310 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2311 if (!populated_zone(zone))
1da177e4 2312 continue;
1cfb419b
KH
2313 /*
2314 * Take care memory controller reclaiming has small influence
2315 * to global LRU.
2316 */
89b5fae5 2317 if (global_reclaim(sc)) {
1cfb419b
KH
2318 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2319 continue;
6e543d57
LD
2320 if (sc->priority != DEF_PRIORITY &&
2321 !zone_reclaimable(zone))
1cfb419b 2322 continue; /* Let kswapd poll it */
d84da3f9 2323 if (IS_ENABLED(CONFIG_COMPACTION)) {
e0887c19 2324 /*
e0c23279
MG
2325 * If we already have plenty of memory free for
2326 * compaction in this zone, don't free any more.
2327 * Even though compaction is invoked for any
2328 * non-zero order, only frequent costly order
2329 * reclamation is disruptive enough to become a
c7cfa37b
CA
2330 * noticeable problem, like transparent huge
2331 * page allocations.
e0887c19 2332 */
fe4b1b24 2333 if (compaction_ready(zone, sc)) {
0cee34fd 2334 aborted_reclaim = true;
e0887c19 2335 continue;
e0c23279 2336 }
e0887c19 2337 }
0608f43d
AM
2338 /*
2339 * This steals pages from memory cgroups over softlimit
2340 * and returns the number of reclaimed pages and
2341 * scanned pages. This works for global memory pressure
2342 * and balancing, not for a memcg's limit.
2343 */
2344 nr_soft_scanned = 0;
2345 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2346 sc->order, sc->gfp_mask,
2347 &nr_soft_scanned);
2348 sc->nr_reclaimed += nr_soft_reclaimed;
2349 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2350 /* need some check for avoid more shrink_zone() */
1cfb419b 2351 }
408d8544 2352
9e3b2f8c 2353 shrink_zone(zone, sc);
1da177e4 2354 }
e0c23279 2355
0cee34fd 2356 return aborted_reclaim;
d1908362
MK
2357}
2358
929bea7c 2359/* All zones in zonelist are unreclaimable? */
d1908362
MK
2360static bool all_unreclaimable(struct zonelist *zonelist,
2361 struct scan_control *sc)
2362{
2363 struct zoneref *z;
2364 struct zone *zone;
d1908362
MK
2365
2366 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2367 gfp_zone(sc->gfp_mask), sc->nodemask) {
2368 if (!populated_zone(zone))
2369 continue;
2370 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2371 continue;
6e543d57 2372 if (zone_reclaimable(zone))
929bea7c 2373 return false;
d1908362
MK
2374 }
2375
929bea7c 2376 return true;
1da177e4 2377}
4f98a2fe 2378
1da177e4
LT
2379/*
2380 * This is the main entry point to direct page reclaim.
2381 *
2382 * If a full scan of the inactive list fails to free enough memory then we
2383 * are "out of memory" and something needs to be killed.
2384 *
2385 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2386 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2387 * caller can't do much about. We kick the writeback threads and take explicit
2388 * naps in the hope that some of these pages can be written. But if the
2389 * allocating task holds filesystem locks which prevent writeout this might not
2390 * work, and the allocation attempt will fail.
a41f24ea
NA
2391 *
2392 * returns: 0, if no pages reclaimed
2393 * else, the number of pages reclaimed
1da177e4 2394 */
dac1d27b 2395static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2396 struct scan_control *sc,
2397 struct shrink_control *shrink)
1da177e4 2398{
69e05944 2399 unsigned long total_scanned = 0;
1da177e4 2400 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2401 struct zoneref *z;
54a6eb5c 2402 struct zone *zone;
22fba335 2403 unsigned long writeback_threshold;
0cee34fd 2404 bool aborted_reclaim;
1da177e4 2405
873b4771
KK
2406 delayacct_freepages_start();
2407
89b5fae5 2408 if (global_reclaim(sc))
1cfb419b 2409 count_vm_event(ALLOCSTALL);
1da177e4 2410
9e3b2f8c 2411 do {
70ddf637
AV
2412 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2413 sc->priority);
66e1707b 2414 sc->nr_scanned = 0;
9e3b2f8c 2415 aborted_reclaim = shrink_zones(zonelist, sc);
e0c23279 2416
66e1707b 2417 /*
5a1c9cbc
MG
2418 * Don't shrink slabs when reclaiming memory from over limit
2419 * cgroups but do shrink slab at least once when aborting
2420 * reclaim for compaction to avoid unevenly scanning file/anon
2421 * LRU pages over slab pages.
66e1707b 2422 */
89b5fae5 2423 if (global_reclaim(sc)) {
c6a8a8c5 2424 unsigned long lru_pages = 0;
0ce3d744
DC
2425
2426 nodes_clear(shrink->nodes_to_scan);
d4debc66
MG
2427 for_each_zone_zonelist(zone, z, zonelist,
2428 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2429 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2430 continue;
2431
2432 lru_pages += zone_reclaimable_pages(zone);
0ce3d744
DC
2433 node_set(zone_to_nid(zone),
2434 shrink->nodes_to_scan);
c6a8a8c5
KM
2435 }
2436
1495f230 2437 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2438 if (reclaim_state) {
a79311c1 2439 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2440 reclaim_state->reclaimed_slab = 0;
2441 }
1da177e4 2442 }
66e1707b 2443 total_scanned += sc->nr_scanned;
bb21c7ce 2444 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2445 goto out;
1da177e4 2446
0e50ce3b
MK
2447 /*
2448 * If we're getting trouble reclaiming, start doing
2449 * writepage even in laptop mode.
2450 */
2451 if (sc->priority < DEF_PRIORITY - 2)
2452 sc->may_writepage = 1;
2453
1da177e4
LT
2454 /*
2455 * Try to write back as many pages as we just scanned. This
2456 * tends to cause slow streaming writers to write data to the
2457 * disk smoothly, at the dirtying rate, which is nice. But
2458 * that's undesirable in laptop mode, where we *want* lumpy
2459 * writeout. So in laptop mode, write out the whole world.
2460 */
22fba335
KM
2461 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2462 if (total_scanned > writeback_threshold) {
0e175a18
CW
2463 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2464 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2465 sc->may_writepage = 1;
1da177e4 2466 }
5a1c9cbc 2467 } while (--sc->priority >= 0 && !aborted_reclaim);
bb21c7ce 2468
1da177e4 2469out:
873b4771
KK
2470 delayacct_freepages_end();
2471
bb21c7ce
KM
2472 if (sc->nr_reclaimed)
2473 return sc->nr_reclaimed;
2474
929bea7c
KM
2475 /*
2476 * As hibernation is going on, kswapd is freezed so that it can't mark
2477 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2478 * check.
2479 */
2480 if (oom_killer_disabled)
2481 return 0;
2482
0cee34fd
MG
2483 /* Aborted reclaim to try compaction? don't OOM, then */
2484 if (aborted_reclaim)
7335084d
MG
2485 return 1;
2486
bb21c7ce 2487 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2488 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2489 return 1;
2490
2491 return 0;
1da177e4
LT
2492}
2493
5515061d
MG
2494static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2495{
2496 struct zone *zone;
2497 unsigned long pfmemalloc_reserve = 0;
2498 unsigned long free_pages = 0;
2499 int i;
2500 bool wmark_ok;
2501
2502 for (i = 0; i <= ZONE_NORMAL; i++) {
2503 zone = &pgdat->node_zones[i];
2504 pfmemalloc_reserve += min_wmark_pages(zone);
2505 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2506 }
2507
2508 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2509
2510 /* kswapd must be awake if processes are being throttled */
2511 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2512 pgdat->classzone_idx = min(pgdat->classzone_idx,
2513 (enum zone_type)ZONE_NORMAL);
2514 wake_up_interruptible(&pgdat->kswapd_wait);
2515 }
2516
2517 return wmark_ok;
2518}
2519
2520/*
2521 * Throttle direct reclaimers if backing storage is backed by the network
2522 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2523 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2524 * when the low watermark is reached.
2525 *
2526 * Returns true if a fatal signal was delivered during throttling. If this
2527 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2528 */
50694c28 2529static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2530 nodemask_t *nodemask)
2531{
2532 struct zone *zone;
2533 int high_zoneidx = gfp_zone(gfp_mask);
2534 pg_data_t *pgdat;
2535
2536 /*
2537 * Kernel threads should not be throttled as they may be indirectly
2538 * responsible for cleaning pages necessary for reclaim to make forward
2539 * progress. kjournald for example may enter direct reclaim while
2540 * committing a transaction where throttling it could forcing other
2541 * processes to block on log_wait_commit().
2542 */
2543 if (current->flags & PF_KTHREAD)
50694c28
MG
2544 goto out;
2545
2546 /*
2547 * If a fatal signal is pending, this process should not throttle.
2548 * It should return quickly so it can exit and free its memory
2549 */
2550 if (fatal_signal_pending(current))
2551 goto out;
5515061d
MG
2552
2553 /* Check if the pfmemalloc reserves are ok */
2554 first_zones_zonelist(zonelist, high_zoneidx, NULL, &zone);
2555 pgdat = zone->zone_pgdat;
2556 if (pfmemalloc_watermark_ok(pgdat))
50694c28 2557 goto out;
5515061d 2558
68243e76
MG
2559 /* Account for the throttling */
2560 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2561
5515061d
MG
2562 /*
2563 * If the caller cannot enter the filesystem, it's possible that it
2564 * is due to the caller holding an FS lock or performing a journal
2565 * transaction in the case of a filesystem like ext[3|4]. In this case,
2566 * it is not safe to block on pfmemalloc_wait as kswapd could be
2567 * blocked waiting on the same lock. Instead, throttle for up to a
2568 * second before continuing.
2569 */
2570 if (!(gfp_mask & __GFP_FS)) {
2571 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2572 pfmemalloc_watermark_ok(pgdat), HZ);
50694c28
MG
2573
2574 goto check_pending;
5515061d
MG
2575 }
2576
2577 /* Throttle until kswapd wakes the process */
2578 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2579 pfmemalloc_watermark_ok(pgdat));
50694c28
MG
2580
2581check_pending:
2582 if (fatal_signal_pending(current))
2583 return true;
2584
2585out:
2586 return false;
5515061d
MG
2587}
2588
dac1d27b 2589unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2590 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2591{
33906bc5 2592 unsigned long nr_reclaimed;
66e1707b 2593 struct scan_control sc = {
21caf2fc 2594 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
66e1707b 2595 .may_writepage = !laptop_mode,
22fba335 2596 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2597 .may_unmap = 1,
2e2e4259 2598 .may_swap = 1,
66e1707b 2599 .order = order,
9e3b2f8c 2600 .priority = DEF_PRIORITY,
f16015fb 2601 .target_mem_cgroup = NULL,
327c0e96 2602 .nodemask = nodemask,
66e1707b 2603 };
a09ed5e0
YH
2604 struct shrink_control shrink = {
2605 .gfp_mask = sc.gfp_mask,
2606 };
66e1707b 2607
5515061d 2608 /*
50694c28
MG
2609 * Do not enter reclaim if fatal signal was delivered while throttled.
2610 * 1 is returned so that the page allocator does not OOM kill at this
2611 * point.
5515061d 2612 */
50694c28 2613 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
5515061d
MG
2614 return 1;
2615
33906bc5
MG
2616 trace_mm_vmscan_direct_reclaim_begin(order,
2617 sc.may_writepage,
2618 gfp_mask);
2619
a09ed5e0 2620 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2621
2622 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2623
2624 return nr_reclaimed;
66e1707b
BS
2625}
2626
c255a458 2627#ifdef CONFIG_MEMCG
66e1707b 2628
72835c86 2629unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2630 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2631 struct zone *zone,
2632 unsigned long *nr_scanned)
4e416953
BS
2633{
2634 struct scan_control sc = {
0ae5e89c 2635 .nr_scanned = 0,
b8f5c566 2636 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2637 .may_writepage = !laptop_mode,
2638 .may_unmap = 1,
2639 .may_swap = !noswap,
4e416953 2640 .order = 0,
9e3b2f8c 2641 .priority = 0,
72835c86 2642 .target_mem_cgroup = memcg,
4e416953 2643 };
f9be23d6 2644 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
0ae5e89c 2645
4e416953
BS
2646 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2647 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 2648
9e3b2f8c 2649 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e
KM
2650 sc.may_writepage,
2651 sc.gfp_mask);
2652
4e416953
BS
2653 /*
2654 * NOTE: Although we can get the priority field, using it
2655 * here is not a good idea, since it limits the pages we can scan.
2656 * if we don't reclaim here, the shrink_zone from balance_pgdat
2657 * will pick up pages from other mem cgroup's as well. We hack
2658 * the priority and make it zero.
2659 */
f9be23d6 2660 shrink_lruvec(lruvec, &sc);
bdce6d9e
KM
2661
2662 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2663
0ae5e89c 2664 *nr_scanned = sc.nr_scanned;
4e416953
BS
2665 return sc.nr_reclaimed;
2666}
2667
72835c86 2668unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2669 gfp_t gfp_mask,
185efc0f 2670 bool noswap)
66e1707b 2671{
4e416953 2672 struct zonelist *zonelist;
bdce6d9e 2673 unsigned long nr_reclaimed;
889976db 2674 int nid;
66e1707b 2675 struct scan_control sc = {
66e1707b 2676 .may_writepage = !laptop_mode,
a6dc60f8 2677 .may_unmap = 1,
2e2e4259 2678 .may_swap = !noswap,
22fba335 2679 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2680 .order = 0,
9e3b2f8c 2681 .priority = DEF_PRIORITY,
72835c86 2682 .target_mem_cgroup = memcg,
327c0e96 2683 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2684 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2685 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2686 };
2687 struct shrink_control shrink = {
2688 .gfp_mask = sc.gfp_mask,
66e1707b 2689 };
66e1707b 2690
889976db
YH
2691 /*
2692 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2693 * take care of from where we get pages. So the node where we start the
2694 * scan does not need to be the current node.
2695 */
72835c86 2696 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2697
2698 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2699
2700 trace_mm_vmscan_memcg_reclaim_begin(0,
2701 sc.may_writepage,
2702 sc.gfp_mask);
2703
a09ed5e0 2704 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2705
2706 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2707
2708 return nr_reclaimed;
66e1707b
BS
2709}
2710#endif
2711
9e3b2f8c 2712static void age_active_anon(struct zone *zone, struct scan_control *sc)
f16015fb 2713{
b95a2f2d 2714 struct mem_cgroup *memcg;
f16015fb 2715
b95a2f2d
JW
2716 if (!total_swap_pages)
2717 return;
2718
2719 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2720 do {
c56d5c7d 2721 struct lruvec *lruvec = mem_cgroup_zone_lruvec(zone, memcg);
b95a2f2d 2722
c56d5c7d 2723 if (inactive_anon_is_low(lruvec))
1a93be0e 2724 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 2725 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
2726
2727 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2728 } while (memcg);
f16015fb
JW
2729}
2730
60cefed4
JW
2731static bool zone_balanced(struct zone *zone, int order,
2732 unsigned long balance_gap, int classzone_idx)
2733{
2734 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2735 balance_gap, classzone_idx, 0))
2736 return false;
2737
d84da3f9
KS
2738 if (IS_ENABLED(CONFIG_COMPACTION) && order &&
2739 !compaction_suitable(zone, order))
60cefed4
JW
2740 return false;
2741
2742 return true;
2743}
2744
1741c877 2745/*
4ae0a48b
ZC
2746 * pgdat_balanced() is used when checking if a node is balanced.
2747 *
2748 * For order-0, all zones must be balanced!
2749 *
2750 * For high-order allocations only zones that meet watermarks and are in a
2751 * zone allowed by the callers classzone_idx are added to balanced_pages. The
2752 * total of balanced pages must be at least 25% of the zones allowed by
2753 * classzone_idx for the node to be considered balanced. Forcing all zones to
2754 * be balanced for high orders can cause excessive reclaim when there are
2755 * imbalanced zones.
1741c877
MG
2756 * The choice of 25% is due to
2757 * o a 16M DMA zone that is balanced will not balance a zone on any
2758 * reasonable sized machine
2759 * o On all other machines, the top zone must be at least a reasonable
25985edc 2760 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2761 * would need to be at least 256M for it to be balance a whole node.
2762 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2763 * to balance a node on its own. These seemed like reasonable ratios.
2764 */
4ae0a48b 2765static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
1741c877 2766{
b40da049 2767 unsigned long managed_pages = 0;
4ae0a48b 2768 unsigned long balanced_pages = 0;
1741c877
MG
2769 int i;
2770
4ae0a48b
ZC
2771 /* Check the watermark levels */
2772 for (i = 0; i <= classzone_idx; i++) {
2773 struct zone *zone = pgdat->node_zones + i;
1741c877 2774
4ae0a48b
ZC
2775 if (!populated_zone(zone))
2776 continue;
2777
b40da049 2778 managed_pages += zone->managed_pages;
4ae0a48b
ZC
2779
2780 /*
2781 * A special case here:
2782 *
2783 * balance_pgdat() skips over all_unreclaimable after
2784 * DEF_PRIORITY. Effectively, it considers them balanced so
2785 * they must be considered balanced here as well!
2786 */
6e543d57 2787 if (!zone_reclaimable(zone)) {
b40da049 2788 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2789 continue;
2790 }
2791
2792 if (zone_balanced(zone, order, 0, i))
b40da049 2793 balanced_pages += zone->managed_pages;
4ae0a48b
ZC
2794 else if (!order)
2795 return false;
2796 }
2797
2798 if (order)
b40da049 2799 return balanced_pages >= (managed_pages >> 2);
4ae0a48b
ZC
2800 else
2801 return true;
1741c877
MG
2802}
2803
5515061d
MG
2804/*
2805 * Prepare kswapd for sleeping. This verifies that there are no processes
2806 * waiting in throttle_direct_reclaim() and that watermarks have been met.
2807 *
2808 * Returns true if kswapd is ready to sleep
2809 */
2810static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
dc83edd9 2811 int classzone_idx)
f50de2d3 2812{
f50de2d3
MG
2813 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2814 if (remaining)
5515061d
MG
2815 return false;
2816
2817 /*
2818 * There is a potential race between when kswapd checks its watermarks
2819 * and a process gets throttled. There is also a potential race if
2820 * processes get throttled, kswapd wakes, a large process exits therby
2821 * balancing the zones that causes kswapd to miss a wakeup. If kswapd
2822 * is going to sleep, no process should be sleeping on pfmemalloc_wait
2823 * so wake them now if necessary. If necessary, processes will wake
2824 * kswapd and get throttled again
2825 */
2826 if (waitqueue_active(&pgdat->pfmemalloc_wait)) {
2827 wake_up(&pgdat->pfmemalloc_wait);
2828 return false;
2829 }
f50de2d3 2830
4ae0a48b 2831 return pgdat_balanced(pgdat, order, classzone_idx);
f50de2d3
MG
2832}
2833
75485363
MG
2834/*
2835 * kswapd shrinks the zone by the number of pages required to reach
2836 * the high watermark.
b8e83b94
MG
2837 *
2838 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
2839 * reclaim or if the lack of progress was due to pages under writeback.
2840 * This is used to determine if the scanning priority needs to be raised.
75485363 2841 */
b8e83b94 2842static bool kswapd_shrink_zone(struct zone *zone,
7c954f6d 2843 int classzone_idx,
75485363 2844 struct scan_control *sc,
2ab44f43
MG
2845 unsigned long lru_pages,
2846 unsigned long *nr_attempted)
75485363 2847{
7c954f6d
MG
2848 int testorder = sc->order;
2849 unsigned long balance_gap;
75485363
MG
2850 struct reclaim_state *reclaim_state = current->reclaim_state;
2851 struct shrink_control shrink = {
2852 .gfp_mask = sc->gfp_mask,
2853 };
7c954f6d 2854 bool lowmem_pressure;
75485363
MG
2855
2856 /* Reclaim above the high watermark. */
2857 sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
7c954f6d
MG
2858
2859 /*
2860 * Kswapd reclaims only single pages with compaction enabled. Trying
2861 * too hard to reclaim until contiguous free pages have become
2862 * available can hurt performance by evicting too much useful data
2863 * from memory. Do not reclaim more than needed for compaction.
2864 */
2865 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2866 compaction_suitable(zone, sc->order) !=
2867 COMPACT_SKIPPED)
2868 testorder = 0;
2869
2870 /*
2871 * We put equal pressure on every zone, unless one zone has way too
2872 * many pages free already. The "too many pages" is defined as the
2873 * high wmark plus a "gap" where the gap is either the low
2874 * watermark or 1% of the zone, whichever is smaller.
2875 */
2876 balance_gap = min(low_wmark_pages(zone),
2877 (zone->managed_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2878 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2879
2880 /*
2881 * If there is no low memory pressure or the zone is balanced then no
2882 * reclaim is necessary
2883 */
2884 lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
2885 if (!lowmem_pressure && zone_balanced(zone, testorder,
2886 balance_gap, classzone_idx))
2887 return true;
2888
75485363 2889 shrink_zone(zone, sc);
0ce3d744
DC
2890 nodes_clear(shrink.nodes_to_scan);
2891 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
75485363
MG
2892
2893 reclaim_state->reclaimed_slab = 0;
6e543d57 2894 shrink_slab(&shrink, sc->nr_scanned, lru_pages);
75485363
MG
2895 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2896
2ab44f43
MG
2897 /* Account for the number of pages attempted to reclaim */
2898 *nr_attempted += sc->nr_to_reclaim;
2899
283aba9f
MG
2900 zone_clear_flag(zone, ZONE_WRITEBACK);
2901
7c954f6d
MG
2902 /*
2903 * If a zone reaches its high watermark, consider it to be no longer
2904 * congested. It's possible there are dirty pages backed by congested
2905 * BDIs but as pressure is relieved, speculatively avoid congestion
2906 * waits.
2907 */
6e543d57 2908 if (zone_reclaimable(zone) &&
7c954f6d
MG
2909 zone_balanced(zone, testorder, 0, classzone_idx)) {
2910 zone_clear_flag(zone, ZONE_CONGESTED);
2911 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
2912 }
2913
b8e83b94 2914 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
2915}
2916
1da177e4
LT
2917/*
2918 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2919 * they are all at high_wmark_pages(zone).
1da177e4 2920 *
0abdee2b 2921 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2922 *
2923 * There is special handling here for zones which are full of pinned pages.
2924 * This can happen if the pages are all mlocked, or if they are all used by
2925 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2926 * What we do is to detect the case where all pages in the zone have been
2927 * scanned twice and there has been zero successful reclaim. Mark the zone as
2928 * dead and from now on, only perform a short scan. Basically we're polling
2929 * the zone for when the problem goes away.
2930 *
2931 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2932 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2933 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2934 * lower zones regardless of the number of free pages in the lower zones. This
2935 * interoperates with the page allocator fallback scheme to ensure that aging
2936 * of pages is balanced across the zones.
1da177e4 2937 */
99504748 2938static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2939 int *classzone_idx)
1da177e4 2940{
1da177e4 2941 int i;
99504748 2942 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
0608f43d
AM
2943 unsigned long nr_soft_reclaimed;
2944 unsigned long nr_soft_scanned;
179e9639
AM
2945 struct scan_control sc = {
2946 .gfp_mask = GFP_KERNEL,
b8e83b94 2947 .priority = DEF_PRIORITY,
a6dc60f8 2948 .may_unmap = 1,
2e2e4259 2949 .may_swap = 1,
b8e83b94 2950 .may_writepage = !laptop_mode,
5ad333eb 2951 .order = order,
f16015fb 2952 .target_mem_cgroup = NULL,
179e9639 2953 };
f8891e5e 2954 count_vm_event(PAGEOUTRUN);
1da177e4 2955
9e3b2f8c 2956 do {
1da177e4 2957 unsigned long lru_pages = 0;
2ab44f43 2958 unsigned long nr_attempted = 0;
b8e83b94 2959 bool raise_priority = true;
2ab44f43 2960 bool pgdat_needs_compaction = (order > 0);
b8e83b94
MG
2961
2962 sc.nr_reclaimed = 0;
1da177e4 2963
d6277db4
RW
2964 /*
2965 * Scan in the highmem->dma direction for the highest
2966 * zone which needs scanning
2967 */
2968 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2969 struct zone *zone = pgdat->node_zones + i;
1da177e4 2970
d6277db4
RW
2971 if (!populated_zone(zone))
2972 continue;
1da177e4 2973
6e543d57
LD
2974 if (sc.priority != DEF_PRIORITY &&
2975 !zone_reclaimable(zone))
d6277db4 2976 continue;
1da177e4 2977
556adecb
RR
2978 /*
2979 * Do some background aging of the anon list, to give
2980 * pages a chance to be referenced before reclaiming.
2981 */
9e3b2f8c 2982 age_active_anon(zone, &sc);
556adecb 2983
cc715d99
MG
2984 /*
2985 * If the number of buffer_heads in the machine
2986 * exceeds the maximum allowed level and this node
2987 * has a highmem zone, force kswapd to reclaim from
2988 * it to relieve lowmem pressure.
2989 */
2990 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2991 end_zone = i;
2992 break;
2993 }
2994
60cefed4 2995 if (!zone_balanced(zone, order, 0, 0)) {
d6277db4 2996 end_zone = i;
e1dbeda6 2997 break;
439423f6 2998 } else {
d43006d5
MG
2999 /*
3000 * If balanced, clear the dirty and congested
3001 * flags
3002 */
439423f6 3003 zone_clear_flag(zone, ZONE_CONGESTED);
d43006d5 3004 zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY);
1da177e4 3005 }
1da177e4 3006 }
dafcb73e 3007
b8e83b94 3008 if (i < 0)
e1dbeda6
AM
3009 goto out;
3010
1da177e4
LT
3011 for (i = 0; i <= end_zone; i++) {
3012 struct zone *zone = pgdat->node_zones + i;
3013
2ab44f43
MG
3014 if (!populated_zone(zone))
3015 continue;
3016
adea02a1 3017 lru_pages += zone_reclaimable_pages(zone);
2ab44f43
MG
3018
3019 /*
3020 * If any zone is currently balanced then kswapd will
3021 * not call compaction as it is expected that the
3022 * necessary pages are already available.
3023 */
3024 if (pgdat_needs_compaction &&
3025 zone_watermark_ok(zone, order,
3026 low_wmark_pages(zone),
3027 *classzone_idx, 0))
3028 pgdat_needs_compaction = false;
1da177e4
LT
3029 }
3030
b7ea3c41
MG
3031 /*
3032 * If we're getting trouble reclaiming, start doing writepage
3033 * even in laptop mode.
3034 */
3035 if (sc.priority < DEF_PRIORITY - 2)
3036 sc.may_writepage = 1;
3037
1da177e4
LT
3038 /*
3039 * Now scan the zone in the dma->highmem direction, stopping
3040 * at the last zone which needs scanning.
3041 *
3042 * We do this because the page allocator works in the opposite
3043 * direction. This prevents the page allocator from allocating
3044 * pages behind kswapd's direction of progress, which would
3045 * cause too much scanning of the lower zones.
3046 */
3047 for (i = 0; i <= end_zone; i++) {
3048 struct zone *zone = pgdat->node_zones + i;
3049
f3fe6512 3050 if (!populated_zone(zone))
1da177e4
LT
3051 continue;
3052
6e543d57
LD
3053 if (sc.priority != DEF_PRIORITY &&
3054 !zone_reclaimable(zone))
1da177e4
LT
3055 continue;
3056
1da177e4 3057 sc.nr_scanned = 0;
4e416953 3058
0608f43d
AM
3059 nr_soft_scanned = 0;
3060 /*
3061 * Call soft limit reclaim before calling shrink_zone.
3062 */
3063 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
3064 order, sc.gfp_mask,
3065 &nr_soft_scanned);
3066 sc.nr_reclaimed += nr_soft_reclaimed;
3067
32a4330d 3068 /*
7c954f6d
MG
3069 * There should be no need to raise the scanning
3070 * priority if enough pages are already being scanned
3071 * that that high watermark would be met at 100%
3072 * efficiency.
fe2c2a10 3073 */
7c954f6d
MG
3074 if (kswapd_shrink_zone(zone, end_zone, &sc,
3075 lru_pages, &nr_attempted))
3076 raise_priority = false;
1da177e4 3077 }
5515061d
MG
3078
3079 /*
3080 * If the low watermark is met there is no need for processes
3081 * to be throttled on pfmemalloc_wait as they should not be
3082 * able to safely make forward progress. Wake them
3083 */
3084 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3085 pfmemalloc_watermark_ok(pgdat))
3086 wake_up(&pgdat->pfmemalloc_wait);
3087
1da177e4 3088 /*
b8e83b94
MG
3089 * Fragmentation may mean that the system cannot be rebalanced
3090 * for high-order allocations in all zones. If twice the
3091 * allocation size has been reclaimed and the zones are still
3092 * not balanced then recheck the watermarks at order-0 to
3093 * prevent kswapd reclaiming excessively. Assume that a
3094 * process requested a high-order can direct reclaim/compact.
1da177e4 3095 */
b8e83b94
MG
3096 if (order && sc.nr_reclaimed >= 2UL << order)
3097 order = sc.order = 0;
8357376d 3098
b8e83b94
MG
3099 /* Check if kswapd should be suspending */
3100 if (try_to_freeze() || kthread_should_stop())
3101 break;
8357376d 3102
2ab44f43
MG
3103 /*
3104 * Compact if necessary and kswapd is reclaiming at least the
3105 * high watermark number of pages as requsted
3106 */
3107 if (pgdat_needs_compaction && sc.nr_reclaimed > nr_attempted)
3108 compact_pgdat(pgdat, order);
3109
73ce02e9 3110 /*
b8e83b94
MG
3111 * Raise priority if scanning rate is too low or there was no
3112 * progress in reclaiming pages
73ce02e9 3113 */
b8e83b94
MG
3114 if (raise_priority || !sc.nr_reclaimed)
3115 sc.priority--;
9aa41348 3116 } while (sc.priority >= 1 &&
b8e83b94 3117 !pgdat_balanced(pgdat, order, *classzone_idx));
1da177e4 3118
b8e83b94 3119out:
0abdee2b 3120 /*
5515061d 3121 * Return the order we were reclaiming at so prepare_kswapd_sleep()
0abdee2b
MG
3122 * makes a decision on the order we were last reclaiming at. However,
3123 * if another caller entered the allocator slow path while kswapd
3124 * was awake, order will remain at the higher level
3125 */
dc83edd9 3126 *classzone_idx = end_zone;
0abdee2b 3127 return order;
1da177e4
LT
3128}
3129
dc83edd9 3130static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
3131{
3132 long remaining = 0;
3133 DEFINE_WAIT(wait);
3134
3135 if (freezing(current) || kthread_should_stop())
3136 return;
3137
3138 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3139
3140 /* Try to sleep for a short interval */
5515061d 3141 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3142 remaining = schedule_timeout(HZ/10);
3143 finish_wait(&pgdat->kswapd_wait, &wait);
3144 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3145 }
3146
3147 /*
3148 * After a short sleep, check if it was a premature sleep. If not, then
3149 * go fully to sleep until explicitly woken up.
3150 */
5515061d 3151 if (prepare_kswapd_sleep(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
3152 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3153
3154 /*
3155 * vmstat counters are not perfectly accurate and the estimated
3156 * value for counters such as NR_FREE_PAGES can deviate from the
3157 * true value by nr_online_cpus * threshold. To avoid the zone
3158 * watermarks being breached while under pressure, we reduce the
3159 * per-cpu vmstat threshold while kswapd is awake and restore
3160 * them before going back to sleep.
3161 */
3162 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c 3163
62997027
MG
3164 /*
3165 * Compaction records what page blocks it recently failed to
3166 * isolate pages from and skips them in the future scanning.
3167 * When kswapd is going to sleep, it is reasonable to assume
3168 * that pages and compaction may succeed so reset the cache.
3169 */
3170 reset_isolation_suitable(pgdat);
3171
1c7e7f6c
AK
3172 if (!kthread_should_stop())
3173 schedule();
3174
f0bc0a60
KM
3175 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3176 } else {
3177 if (remaining)
3178 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3179 else
3180 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3181 }
3182 finish_wait(&pgdat->kswapd_wait, &wait);
3183}
3184
1da177e4
LT
3185/*
3186 * The background pageout daemon, started as a kernel thread
4f98a2fe 3187 * from the init process.
1da177e4
LT
3188 *
3189 * This basically trickles out pages so that we have _some_
3190 * free memory available even if there is no other activity
3191 * that frees anything up. This is needed for things like routing
3192 * etc, where we otherwise might have all activity going on in
3193 * asynchronous contexts that cannot page things out.
3194 *
3195 * If there are applications that are active memory-allocators
3196 * (most normal use), this basically shouldn't matter.
3197 */
3198static int kswapd(void *p)
3199{
215ddd66 3200 unsigned long order, new_order;
d2ebd0f6 3201 unsigned balanced_order;
215ddd66 3202 int classzone_idx, new_classzone_idx;
d2ebd0f6 3203 int balanced_classzone_idx;
1da177e4
LT
3204 pg_data_t *pgdat = (pg_data_t*)p;
3205 struct task_struct *tsk = current;
f0bc0a60 3206
1da177e4
LT
3207 struct reclaim_state reclaim_state = {
3208 .reclaimed_slab = 0,
3209 };
a70f7302 3210 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3211
cf40bd16
NP
3212 lockdep_set_current_reclaim_state(GFP_KERNEL);
3213
174596a0 3214 if (!cpumask_empty(cpumask))
c5f59f08 3215 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3216 current->reclaim_state = &reclaim_state;
3217
3218 /*
3219 * Tell the memory management that we're a "memory allocator",
3220 * and that if we need more memory we should get access to it
3221 * regardless (see "__alloc_pages()"). "kswapd" should
3222 * never get caught in the normal page freeing logic.
3223 *
3224 * (Kswapd normally doesn't need memory anyway, but sometimes
3225 * you need a small amount of memory in order to be able to
3226 * page out something else, and this flag essentially protects
3227 * us from recursively trying to free more memory as we're
3228 * trying to free the first piece of memory in the first place).
3229 */
930d9152 3230 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3231 set_freezable();
1da177e4 3232
215ddd66 3233 order = new_order = 0;
d2ebd0f6 3234 balanced_order = 0;
215ddd66 3235 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 3236 balanced_classzone_idx = classzone_idx;
1da177e4 3237 for ( ; ; ) {
6f6313d4 3238 bool ret;
3e1d1d28 3239
215ddd66
MG
3240 /*
3241 * If the last balance_pgdat was unsuccessful it's unlikely a
3242 * new request of a similar or harder type will succeed soon
3243 * so consider going to sleep on the basis we reclaimed at
3244 */
d2ebd0f6
AS
3245 if (balanced_classzone_idx >= new_classzone_idx &&
3246 balanced_order == new_order) {
215ddd66
MG
3247 new_order = pgdat->kswapd_max_order;
3248 new_classzone_idx = pgdat->classzone_idx;
3249 pgdat->kswapd_max_order = 0;
3250 pgdat->classzone_idx = pgdat->nr_zones - 1;
3251 }
3252
99504748 3253 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
3254 /*
3255 * Don't sleep if someone wants a larger 'order'
99504748 3256 * allocation or has tigher zone constraints
1da177e4
LT
3257 */
3258 order = new_order;
99504748 3259 classzone_idx = new_classzone_idx;
1da177e4 3260 } else {
d2ebd0f6
AS
3261 kswapd_try_to_sleep(pgdat, balanced_order,
3262 balanced_classzone_idx);
1da177e4 3263 order = pgdat->kswapd_max_order;
99504748 3264 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
3265 new_order = order;
3266 new_classzone_idx = classzone_idx;
4d40502e 3267 pgdat->kswapd_max_order = 0;
215ddd66 3268 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 3269 }
1da177e4 3270
8fe23e05
DR
3271 ret = try_to_freeze();
3272 if (kthread_should_stop())
3273 break;
3274
3275 /*
3276 * We can speed up thawing tasks if we don't call balance_pgdat
3277 * after returning from the refrigerator
3278 */
33906bc5
MG
3279 if (!ret) {
3280 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
3281 balanced_classzone_idx = classzone_idx;
3282 balanced_order = balance_pgdat(pgdat, order,
3283 &balanced_classzone_idx);
33906bc5 3284 }
1da177e4 3285 }
b0a8cc58
TY
3286
3287 current->reclaim_state = NULL;
1da177e4
LT
3288 return 0;
3289}
3290
3291/*
3292 * A zone is low on free memory, so wake its kswapd task to service it.
3293 */
99504748 3294void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3295{
3296 pg_data_t *pgdat;
3297
f3fe6512 3298 if (!populated_zone(zone))
1da177e4
LT
3299 return;
3300
88f5acf8 3301 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 3302 return;
88f5acf8 3303 pgdat = zone->zone_pgdat;
99504748 3304 if (pgdat->kswapd_max_order < order) {
1da177e4 3305 pgdat->kswapd_max_order = order;
99504748
MG
3306 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3307 }
8d0986e2 3308 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3309 return;
892f795d 3310 if (zone_balanced(zone, order, 0, 0))
88f5acf8
MG
3311 return;
3312
3313 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 3314 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3315}
3316
adea02a1
WF
3317/*
3318 * The reclaimable count would be mostly accurate.
3319 * The less reclaimable pages may be
3320 * - mlocked pages, which will be moved to unevictable list when encountered
3321 * - mapped pages, which may require several travels to be reclaimed
3322 * - dirty pages, which is not "instantly" reclaimable
3323 */
3324unsigned long global_reclaimable_pages(void)
4f98a2fe 3325{
adea02a1
WF
3326 int nr;
3327
3328 nr = global_page_state(NR_ACTIVE_FILE) +
3329 global_page_state(NR_INACTIVE_FILE);
3330
ec8acf20 3331 if (get_nr_swap_pages() > 0)
adea02a1
WF
3332 nr += global_page_state(NR_ACTIVE_ANON) +
3333 global_page_state(NR_INACTIVE_ANON);
3334
3335 return nr;
3336}
3337
c6f37f12 3338#ifdef CONFIG_HIBERNATION
1da177e4 3339/*
7b51755c 3340 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3341 * freed pages.
3342 *
3343 * Rather than trying to age LRUs the aim is to preserve the overall
3344 * LRU order by reclaiming preferentially
3345 * inactive > active > active referenced > active mapped
1da177e4 3346 */
7b51755c 3347unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3348{
d6277db4 3349 struct reclaim_state reclaim_state;
d6277db4 3350 struct scan_control sc = {
7b51755c
KM
3351 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3352 .may_swap = 1,
3353 .may_unmap = 1,
d6277db4 3354 .may_writepage = 1,
7b51755c
KM
3355 .nr_to_reclaim = nr_to_reclaim,
3356 .hibernation_mode = 1,
7b51755c 3357 .order = 0,
9e3b2f8c 3358 .priority = DEF_PRIORITY,
1da177e4 3359 };
a09ed5e0
YH
3360 struct shrink_control shrink = {
3361 .gfp_mask = sc.gfp_mask,
3362 };
3363 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3364 struct task_struct *p = current;
3365 unsigned long nr_reclaimed;
1da177e4 3366
7b51755c
KM
3367 p->flags |= PF_MEMALLOC;
3368 lockdep_set_current_reclaim_state(sc.gfp_mask);
3369 reclaim_state.reclaimed_slab = 0;
3370 p->reclaim_state = &reclaim_state;
d6277db4 3371
a09ed5e0 3372 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 3373
7b51755c
KM
3374 p->reclaim_state = NULL;
3375 lockdep_clear_current_reclaim_state();
3376 p->flags &= ~PF_MEMALLOC;
d6277db4 3377
7b51755c 3378 return nr_reclaimed;
1da177e4 3379}
c6f37f12 3380#endif /* CONFIG_HIBERNATION */
1da177e4 3381
1da177e4
LT
3382/* It's optimal to keep kswapds on the same CPUs as their memory, but
3383 not required for correctness. So if the last cpu in a node goes
3384 away, we get changed to run anywhere: as the first one comes back,
3385 restore their cpu bindings. */
fcb35a9b
GKH
3386static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3387 void *hcpu)
1da177e4 3388{
58c0a4a7 3389 int nid;
1da177e4 3390
8bb78442 3391 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
48fb2e24 3392 for_each_node_state(nid, N_MEMORY) {
c5f59f08 3393 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3394 const struct cpumask *mask;
3395
3396 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3397
3e597945 3398 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3399 /* One of our CPUs online: restore mask */
c5f59f08 3400 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3401 }
3402 }
3403 return NOTIFY_OK;
3404}
1da177e4 3405
3218ae14
YG
3406/*
3407 * This kswapd start function will be called by init and node-hot-add.
3408 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3409 */
3410int kswapd_run(int nid)
3411{
3412 pg_data_t *pgdat = NODE_DATA(nid);
3413 int ret = 0;
3414
3415 if (pgdat->kswapd)
3416 return 0;
3417
3418 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3419 if (IS_ERR(pgdat->kswapd)) {
3420 /* failure at boot is fatal */
3421 BUG_ON(system_state == SYSTEM_BOOTING);
d5dc0ad9
GS
3422 pr_err("Failed to start kswapd on node %d\n", nid);
3423 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3424 pgdat->kswapd = NULL;
3218ae14
YG
3425 }
3426 return ret;
3427}
3428
8fe23e05 3429/*
d8adde17
JL
3430 * Called by memory hotplug when all memory in a node is offlined. Caller must
3431 * hold lock_memory_hotplug().
8fe23e05
DR
3432 */
3433void kswapd_stop(int nid)
3434{
3435 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3436
d8adde17 3437 if (kswapd) {
8fe23e05 3438 kthread_stop(kswapd);
d8adde17
JL
3439 NODE_DATA(nid)->kswapd = NULL;
3440 }
8fe23e05
DR
3441}
3442
1da177e4
LT
3443static int __init kswapd_init(void)
3444{
3218ae14 3445 int nid;
69e05944 3446
1da177e4 3447 swap_setup();
48fb2e24 3448 for_each_node_state(nid, N_MEMORY)
3218ae14 3449 kswapd_run(nid);
1da177e4
LT
3450 hotcpu_notifier(cpu_callback, 0);
3451 return 0;
3452}
3453
3454module_init(kswapd_init)
9eeff239
CL
3455
3456#ifdef CONFIG_NUMA
3457/*
3458 * Zone reclaim mode
3459 *
3460 * If non-zero call zone_reclaim when the number of free pages falls below
3461 * the watermarks.
9eeff239
CL
3462 */
3463int zone_reclaim_mode __read_mostly;
3464
1b2ffb78 3465#define RECLAIM_OFF 0
7d03431c 3466#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3467#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3468#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3469
a92f7126
CL
3470/*
3471 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3472 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3473 * a zone.
3474 */
3475#define ZONE_RECLAIM_PRIORITY 4
3476
9614634f
CL
3477/*
3478 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3479 * occur.
3480 */
3481int sysctl_min_unmapped_ratio = 1;
3482
0ff38490
CL
3483/*
3484 * If the number of slab pages in a zone grows beyond this percentage then
3485 * slab reclaim needs to occur.
3486 */
3487int sysctl_min_slab_ratio = 5;
3488
90afa5de
MG
3489static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3490{
3491 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3492 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3493 zone_page_state(zone, NR_ACTIVE_FILE);
3494
3495 /*
3496 * It's possible for there to be more file mapped pages than
3497 * accounted for by the pages on the file LRU lists because
3498 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3499 */
3500 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3501}
3502
3503/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3504static long zone_pagecache_reclaimable(struct zone *zone)
3505{
3506 long nr_pagecache_reclaimable;
3507 long delta = 0;
3508
3509 /*
3510 * If RECLAIM_SWAP is set, then all file pages are considered
3511 * potentially reclaimable. Otherwise, we have to worry about
3512 * pages like swapcache and zone_unmapped_file_pages() provides
3513 * a better estimate
3514 */
3515 if (zone_reclaim_mode & RECLAIM_SWAP)
3516 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3517 else
3518 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3519
3520 /* If we can't clean pages, remove dirty pages from consideration */
3521 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3522 delta += zone_page_state(zone, NR_FILE_DIRTY);
3523
3524 /* Watch for any possible underflows due to delta */
3525 if (unlikely(delta > nr_pagecache_reclaimable))
3526 delta = nr_pagecache_reclaimable;
3527
3528 return nr_pagecache_reclaimable - delta;
3529}
3530
9eeff239
CL
3531/*
3532 * Try to free up some pages from this zone through reclaim.
3533 */
179e9639 3534static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3535{
7fb2d46d 3536 /* Minimum pages needed in order to stay on node */
69e05944 3537 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3538 struct task_struct *p = current;
3539 struct reclaim_state reclaim_state;
179e9639
AM
3540 struct scan_control sc = {
3541 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3542 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3543 .may_swap = 1,
62b726c1 3544 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
21caf2fc 3545 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
bd2f6199 3546 .order = order,
9e3b2f8c 3547 .priority = ZONE_RECLAIM_PRIORITY,
179e9639 3548 };
a09ed5e0
YH
3549 struct shrink_control shrink = {
3550 .gfp_mask = sc.gfp_mask,
3551 };
15748048 3552 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3553
9eeff239 3554 cond_resched();
d4f7796e
CL
3555 /*
3556 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3557 * and we also need to be able to write out pages for RECLAIM_WRITE
3558 * and RECLAIM_SWAP.
3559 */
3560 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3561 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3562 reclaim_state.reclaimed_slab = 0;
3563 p->reclaim_state = &reclaim_state;
c84db23c 3564
90afa5de 3565 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3566 /*
3567 * Free memory by calling shrink zone with increasing
3568 * priorities until we have enough memory freed.
3569 */
0ff38490 3570 do {
9e3b2f8c
KK
3571 shrink_zone(zone, &sc);
3572 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3573 }
c84db23c 3574
15748048
KM
3575 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3576 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3577 /*
7fb2d46d 3578 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3579 * many pages were freed in this zone. So we take the current
3580 * number of slab pages and shake the slab until it is reduced
3581 * by the same nr_pages that we used for reclaiming unmapped
3582 * pages.
2a16e3f4 3583 */
0ce3d744
DC
3584 nodes_clear(shrink.nodes_to_scan);
3585 node_set(zone_to_nid(zone), shrink.nodes_to_scan);
4dc4b3d9
KM
3586 for (;;) {
3587 unsigned long lru_pages = zone_reclaimable_pages(zone);
3588
3589 /* No reclaimable slab or very low memory pressure */
1495f230 3590 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3591 break;
3592
3593 /* Freed enough memory */
3594 nr_slab_pages1 = zone_page_state(zone,
3595 NR_SLAB_RECLAIMABLE);
3596 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3597 break;
3598 }
83e33a47
CL
3599
3600 /*
3601 * Update nr_reclaimed by the number of slab pages we
3602 * reclaimed from this zone.
3603 */
15748048
KM
3604 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3605 if (nr_slab_pages1 < nr_slab_pages0)
3606 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3607 }
3608
9eeff239 3609 p->reclaim_state = NULL;
d4f7796e 3610 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3611 lockdep_clear_current_reclaim_state();
a79311c1 3612 return sc.nr_reclaimed >= nr_pages;
9eeff239 3613}
179e9639
AM
3614
3615int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3616{
179e9639 3617 int node_id;
d773ed6b 3618 int ret;
179e9639
AM
3619
3620 /*
0ff38490
CL
3621 * Zone reclaim reclaims unmapped file backed pages and
3622 * slab pages if we are over the defined limits.
34aa1330 3623 *
9614634f
CL
3624 * A small portion of unmapped file backed pages is needed for
3625 * file I/O otherwise pages read by file I/O will be immediately
3626 * thrown out if the zone is overallocated. So we do not reclaim
3627 * if less than a specified percentage of the zone is used by
3628 * unmapped file backed pages.
179e9639 3629 */
90afa5de
MG
3630 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3631 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3632 return ZONE_RECLAIM_FULL;
179e9639 3633
6e543d57 3634 if (!zone_reclaimable(zone))
fa5e084e 3635 return ZONE_RECLAIM_FULL;
d773ed6b 3636
179e9639 3637 /*
d773ed6b 3638 * Do not scan if the allocation should not be delayed.
179e9639 3639 */
d773ed6b 3640 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3641 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3642
3643 /*
3644 * Only run zone reclaim on the local zone or on zones that do not
3645 * have associated processors. This will favor the local processor
3646 * over remote processors and spread off node memory allocations
3647 * as wide as possible.
3648 */
89fa3024 3649 node_id = zone_to_nid(zone);
37c0708d 3650 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3651 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3652
3653 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3654 return ZONE_RECLAIM_NOSCAN;
3655
d773ed6b
DR
3656 ret = __zone_reclaim(zone, gfp_mask, order);
3657 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3658
24cf7251
MG
3659 if (!ret)
3660 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3661
d773ed6b 3662 return ret;
179e9639 3663}
9eeff239 3664#endif
894bc310 3665
894bc310
LS
3666/*
3667 * page_evictable - test whether a page is evictable
3668 * @page: the page to test
894bc310
LS
3669 *
3670 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3671 * lists vs unevictable list.
894bc310
LS
3672 *
3673 * Reasons page might not be evictable:
ba9ddf49 3674 * (1) page's mapping marked unevictable
b291f000 3675 * (2) page is part of an mlocked VMA
ba9ddf49 3676 *
894bc310 3677 */
39b5f29a 3678int page_evictable(struct page *page)
894bc310 3679{
39b5f29a 3680 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
894bc310 3681}
89e004ea 3682
85046579 3683#ifdef CONFIG_SHMEM
89e004ea 3684/**
24513264
HD
3685 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3686 * @pages: array of pages to check
3687 * @nr_pages: number of pages to check
89e004ea 3688 *
24513264 3689 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3690 *
3691 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3692 */
24513264 3693void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3694{
925b7673 3695 struct lruvec *lruvec;
24513264
HD
3696 struct zone *zone = NULL;
3697 int pgscanned = 0;
3698 int pgrescued = 0;
3699 int i;
89e004ea 3700
24513264
HD
3701 for (i = 0; i < nr_pages; i++) {
3702 struct page *page = pages[i];
3703 struct zone *pagezone;
89e004ea 3704
24513264
HD
3705 pgscanned++;
3706 pagezone = page_zone(page);
3707 if (pagezone != zone) {
3708 if (zone)
3709 spin_unlock_irq(&zone->lru_lock);
3710 zone = pagezone;
3711 spin_lock_irq(&zone->lru_lock);
3712 }
fa9add64 3713 lruvec = mem_cgroup_page_lruvec(page, zone);
89e004ea 3714
24513264
HD
3715 if (!PageLRU(page) || !PageUnevictable(page))
3716 continue;
89e004ea 3717
39b5f29a 3718 if (page_evictable(page)) {
24513264
HD
3719 enum lru_list lru = page_lru_base_type(page);
3720
309381fe 3721 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 3722 ClearPageUnevictable(page);
fa9add64
HD
3723 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3724 add_page_to_lru_list(page, lruvec, lru);
24513264 3725 pgrescued++;
89e004ea 3726 }
24513264 3727 }
89e004ea 3728
24513264
HD
3729 if (zone) {
3730 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3731 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3732 spin_unlock_irq(&zone->lru_lock);
89e004ea 3733 }
89e004ea 3734}
85046579 3735#endif /* CONFIG_SHMEM */
af936a16 3736
264e56d8 3737static void warn_scan_unevictable_pages(void)
af936a16 3738{
264e56d8 3739 printk_once(KERN_WARNING
25bd91bd 3740 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3741 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3742 "one, please send an email to linux-mm@kvack.org.\n",
3743 current->comm);
af936a16
LS
3744}
3745
3746/*
3747 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3748 * all nodes' unevictable lists for evictable pages
3749 */
3750unsigned long scan_unevictable_pages;
3751
3752int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3753 void __user *buffer,
af936a16
LS
3754 size_t *length, loff_t *ppos)
3755{
264e56d8 3756 warn_scan_unevictable_pages();
8d65af78 3757 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3758 scan_unevictable_pages = 0;
3759 return 0;
3760}
3761
e4455abb 3762#ifdef CONFIG_NUMA
af936a16
LS
3763/*
3764 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3765 * a specified node's per zone unevictable lists for evictable pages.
3766 */
3767
10fbcf4c
KS
3768static ssize_t read_scan_unevictable_node(struct device *dev,
3769 struct device_attribute *attr,
af936a16
LS
3770 char *buf)
3771{
264e56d8 3772 warn_scan_unevictable_pages();
af936a16
LS
3773 return sprintf(buf, "0\n"); /* always zero; should fit... */
3774}
3775
10fbcf4c
KS
3776static ssize_t write_scan_unevictable_node(struct device *dev,
3777 struct device_attribute *attr,
af936a16
LS
3778 const char *buf, size_t count)
3779{
264e56d8 3780 warn_scan_unevictable_pages();
af936a16
LS
3781 return 1;
3782}
3783
3784
10fbcf4c 3785static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3786 read_scan_unevictable_node,
3787 write_scan_unevictable_node);
3788
3789int scan_unevictable_register_node(struct node *node)
3790{
10fbcf4c 3791 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3792}
3793
3794void scan_unevictable_unregister_node(struct node *node)
3795{
10fbcf4c 3796 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3797}
e4455abb 3798#endif