mm: mark mm-inline functions as __always_inline
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
1da177e4
LT
29#include <linux/backing-dev.h>
30#include <linux/rmap.h>
31#include <linux/topology.h>
32#include <linux/cpu.h>
33#include <linux/cpuset.h>
3e7d3449 34#include <linux/compaction.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
929bea7c 43#include <linux/oom.h>
268bb0ce 44#include <linux/prefetch.h>
1da177e4
LT
45
46#include <asm/tlbflush.h>
47#include <asm/div64.h>
48
49#include <linux/swapops.h>
50
0f8053a5
NP
51#include "internal.h"
52
33906bc5
MG
53#define CREATE_TRACE_POINTS
54#include <trace/events/vmscan.h>
55
1da177e4 56struct scan_control {
1da177e4
LT
57 /* Incremented by the number of inactive pages that were scanned */
58 unsigned long nr_scanned;
59
a79311c1
RR
60 /* Number of pages freed so far during a call to shrink_zones() */
61 unsigned long nr_reclaimed;
62
22fba335
KM
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
65
7b51755c
KM
66 unsigned long hibernation_mode;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4
LT
70
71 int may_writepage;
72
a6dc60f8
JW
73 /* Can mapped pages be reclaimed? */
74 int may_unmap;
f1fd1067 75
2e2e4259
KM
76 /* Can pages be swapped as part of reclaim? */
77 int may_swap;
78
5ad333eb 79 int order;
66e1707b 80
f16015fb
JW
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
66e1707b 86
327c0e96
KH
87 /*
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
89 * are scanned.
90 */
91 nodemask_t *nodemask;
1da177e4
LT
92};
93
f16015fb
JW
94struct mem_cgroup_zone {
95 struct mem_cgroup *mem_cgroup;
96 struct zone *zone;
97};
98
1da177e4
LT
99#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
100
101#ifdef ARCH_HAS_PREFETCH
102#define prefetch_prev_lru_page(_page, _base, _field) \
103 do { \
104 if ((_page)->lru.prev != _base) { \
105 struct page *prev; \
106 \
107 prev = lru_to_page(&(_page->lru)); \
108 prefetch(&prev->_field); \
109 } \
110 } while (0)
111#else
112#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
113#endif
114
115#ifdef ARCH_HAS_PREFETCHW
116#define prefetchw_prev_lru_page(_page, _base, _field) \
117 do { \
118 if ((_page)->lru.prev != _base) { \
119 struct page *prev; \
120 \
121 prev = lru_to_page(&(_page->lru)); \
122 prefetchw(&prev->_field); \
123 } \
124 } while (0)
125#else
126#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
127#endif
128
129/*
130 * From 0 .. 100. Higher means more swappy.
131 */
132int vm_swappiness = 60;
bd1e22b8 133long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
134
135static LIST_HEAD(shrinker_list);
136static DECLARE_RWSEM(shrinker_rwsem);
137
00f0b825 138#ifdef CONFIG_CGROUP_MEM_RES_CTLR
89b5fae5
JW
139static bool global_reclaim(struct scan_control *sc)
140{
f16015fb 141 return !sc->target_mem_cgroup;
89b5fae5 142}
91a45470 143#else
89b5fae5
JW
144static bool global_reclaim(struct scan_control *sc)
145{
146 return true;
147}
91a45470
KH
148#endif
149
f16015fb 150static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
6e901571 151{
89abfab1 152 return &mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup)->reclaim_stat;
6e901571
KM
153}
154
f16015fb
JW
155static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
156 enum lru_list lru)
c9f299d9 157{
c3c787e8 158 if (!mem_cgroup_disabled())
f16015fb
JW
159 return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
160 zone_to_nid(mz->zone),
161 zone_idx(mz->zone),
162 BIT(lru));
a3d8e054 163
f16015fb 164 return zone_page_state(mz->zone, NR_LRU_BASE + lru);
c9f299d9
KM
165}
166
167
1da177e4
LT
168/*
169 * Add a shrinker callback to be called from the vm
170 */
8e1f936b 171void register_shrinker(struct shrinker *shrinker)
1da177e4 172{
83aeeada 173 atomic_long_set(&shrinker->nr_in_batch, 0);
8e1f936b
RR
174 down_write(&shrinker_rwsem);
175 list_add_tail(&shrinker->list, &shrinker_list);
176 up_write(&shrinker_rwsem);
1da177e4 177}
8e1f936b 178EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
179
180/*
181 * Remove one
182 */
8e1f936b 183void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
184{
185 down_write(&shrinker_rwsem);
186 list_del(&shrinker->list);
187 up_write(&shrinker_rwsem);
1da177e4 188}
8e1f936b 189EXPORT_SYMBOL(unregister_shrinker);
1da177e4 190
1495f230
YH
191static inline int do_shrinker_shrink(struct shrinker *shrinker,
192 struct shrink_control *sc,
193 unsigned long nr_to_scan)
194{
195 sc->nr_to_scan = nr_to_scan;
196 return (*shrinker->shrink)(shrinker, sc);
197}
198
1da177e4
LT
199#define SHRINK_BATCH 128
200/*
201 * Call the shrink functions to age shrinkable caches
202 *
203 * Here we assume it costs one seek to replace a lru page and that it also
204 * takes a seek to recreate a cache object. With this in mind we age equal
205 * percentages of the lru and ageable caches. This should balance the seeks
206 * generated by these structures.
207 *
183ff22b 208 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
209 * slab to avoid swapping.
210 *
211 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
212 *
213 * `lru_pages' represents the number of on-LRU pages in all the zones which
214 * are eligible for the caller's allocation attempt. It is used for balancing
215 * slab reclaim versus page reclaim.
b15e0905 216 *
217 * Returns the number of slab objects which we shrunk.
1da177e4 218 */
a09ed5e0 219unsigned long shrink_slab(struct shrink_control *shrink,
1495f230 220 unsigned long nr_pages_scanned,
a09ed5e0 221 unsigned long lru_pages)
1da177e4
LT
222{
223 struct shrinker *shrinker;
69e05944 224 unsigned long ret = 0;
1da177e4 225
1495f230
YH
226 if (nr_pages_scanned == 0)
227 nr_pages_scanned = SWAP_CLUSTER_MAX;
1da177e4 228
f06590bd
MK
229 if (!down_read_trylock(&shrinker_rwsem)) {
230 /* Assume we'll be able to shrink next time */
231 ret = 1;
232 goto out;
233 }
1da177e4
LT
234
235 list_for_each_entry(shrinker, &shrinker_list, list) {
236 unsigned long long delta;
635697c6
KK
237 long total_scan;
238 long max_pass;
09576073 239 int shrink_ret = 0;
acf92b48
DC
240 long nr;
241 long new_nr;
e9299f50
DC
242 long batch_size = shrinker->batch ? shrinker->batch
243 : SHRINK_BATCH;
1da177e4 244
635697c6
KK
245 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
246 if (max_pass <= 0)
247 continue;
248
acf92b48
DC
249 /*
250 * copy the current shrinker scan count into a local variable
251 * and zero it so that other concurrent shrinker invocations
252 * don't also do this scanning work.
253 */
83aeeada 254 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
acf92b48
DC
255
256 total_scan = nr;
1495f230 257 delta = (4 * nr_pages_scanned) / shrinker->seeks;
ea164d73 258 delta *= max_pass;
1da177e4 259 do_div(delta, lru_pages + 1);
acf92b48
DC
260 total_scan += delta;
261 if (total_scan < 0) {
88c3bd70
DR
262 printk(KERN_ERR "shrink_slab: %pF negative objects to "
263 "delete nr=%ld\n",
acf92b48
DC
264 shrinker->shrink, total_scan);
265 total_scan = max_pass;
ea164d73
AA
266 }
267
3567b59a
DC
268 /*
269 * We need to avoid excessive windup on filesystem shrinkers
270 * due to large numbers of GFP_NOFS allocations causing the
271 * shrinkers to return -1 all the time. This results in a large
272 * nr being built up so when a shrink that can do some work
273 * comes along it empties the entire cache due to nr >>>
274 * max_pass. This is bad for sustaining a working set in
275 * memory.
276 *
277 * Hence only allow the shrinker to scan the entire cache when
278 * a large delta change is calculated directly.
279 */
280 if (delta < max_pass / 4)
281 total_scan = min(total_scan, max_pass / 2);
282
ea164d73
AA
283 /*
284 * Avoid risking looping forever due to too large nr value:
285 * never try to free more than twice the estimate number of
286 * freeable entries.
287 */
acf92b48
DC
288 if (total_scan > max_pass * 2)
289 total_scan = max_pass * 2;
1da177e4 290
acf92b48 291 trace_mm_shrink_slab_start(shrinker, shrink, nr,
09576073
DC
292 nr_pages_scanned, lru_pages,
293 max_pass, delta, total_scan);
294
e9299f50 295 while (total_scan >= batch_size) {
b15e0905 296 int nr_before;
1da177e4 297
1495f230
YH
298 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
299 shrink_ret = do_shrinker_shrink(shrinker, shrink,
e9299f50 300 batch_size);
1da177e4
LT
301 if (shrink_ret == -1)
302 break;
b15e0905 303 if (shrink_ret < nr_before)
304 ret += nr_before - shrink_ret;
e9299f50
DC
305 count_vm_events(SLABS_SCANNED, batch_size);
306 total_scan -= batch_size;
1da177e4
LT
307
308 cond_resched();
309 }
310
acf92b48
DC
311 /*
312 * move the unused scan count back into the shrinker in a
313 * manner that handles concurrent updates. If we exhausted the
314 * scan, there is no need to do an update.
315 */
83aeeada
KK
316 if (total_scan > 0)
317 new_nr = atomic_long_add_return(total_scan,
318 &shrinker->nr_in_batch);
319 else
320 new_nr = atomic_long_read(&shrinker->nr_in_batch);
acf92b48
DC
321
322 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
1da177e4
LT
323 }
324 up_read(&shrinker_rwsem);
f06590bd
MK
325out:
326 cond_resched();
b15e0905 327 return ret;
1da177e4
LT
328}
329
1da177e4
LT
330static inline int is_page_cache_freeable(struct page *page)
331{
ceddc3a5
JW
332 /*
333 * A freeable page cache page is referenced only by the caller
334 * that isolated the page, the page cache radix tree and
335 * optional buffer heads at page->private.
336 */
edcf4748 337 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
338}
339
7d3579e8
KM
340static int may_write_to_queue(struct backing_dev_info *bdi,
341 struct scan_control *sc)
1da177e4 342{
930d9152 343 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
344 return 1;
345 if (!bdi_write_congested(bdi))
346 return 1;
347 if (bdi == current->backing_dev_info)
348 return 1;
349 return 0;
350}
351
352/*
353 * We detected a synchronous write error writing a page out. Probably
354 * -ENOSPC. We need to propagate that into the address_space for a subsequent
355 * fsync(), msync() or close().
356 *
357 * The tricky part is that after writepage we cannot touch the mapping: nothing
358 * prevents it from being freed up. But we have a ref on the page and once
359 * that page is locked, the mapping is pinned.
360 *
361 * We're allowed to run sleeping lock_page() here because we know the caller has
362 * __GFP_FS.
363 */
364static void handle_write_error(struct address_space *mapping,
365 struct page *page, int error)
366{
7eaceacc 367 lock_page(page);
3e9f45bd
GC
368 if (page_mapping(page) == mapping)
369 mapping_set_error(mapping, error);
1da177e4
LT
370 unlock_page(page);
371}
372
04e62a29
CL
373/* possible outcome of pageout() */
374typedef enum {
375 /* failed to write page out, page is locked */
376 PAGE_KEEP,
377 /* move page to the active list, page is locked */
378 PAGE_ACTIVATE,
379 /* page has been sent to the disk successfully, page is unlocked */
380 PAGE_SUCCESS,
381 /* page is clean and locked */
382 PAGE_CLEAN,
383} pageout_t;
384
1da177e4 385/*
1742f19f
AM
386 * pageout is called by shrink_page_list() for each dirty page.
387 * Calls ->writepage().
1da177e4 388 */
c661b078 389static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 390 struct scan_control *sc)
1da177e4
LT
391{
392 /*
393 * If the page is dirty, only perform writeback if that write
394 * will be non-blocking. To prevent this allocation from being
395 * stalled by pagecache activity. But note that there may be
396 * stalls if we need to run get_block(). We could test
397 * PagePrivate for that.
398 *
6aceb53b 399 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
400 * this page's queue, we can perform writeback even if that
401 * will block.
402 *
403 * If the page is swapcache, write it back even if that would
404 * block, for some throttling. This happens by accident, because
405 * swap_backing_dev_info is bust: it doesn't reflect the
406 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
407 */
408 if (!is_page_cache_freeable(page))
409 return PAGE_KEEP;
410 if (!mapping) {
411 /*
412 * Some data journaling orphaned pages can have
413 * page->mapping == NULL while being dirty with clean buffers.
414 */
266cf658 415 if (page_has_private(page)) {
1da177e4
LT
416 if (try_to_free_buffers(page)) {
417 ClearPageDirty(page);
d40cee24 418 printk("%s: orphaned page\n", __func__);
1da177e4
LT
419 return PAGE_CLEAN;
420 }
421 }
422 return PAGE_KEEP;
423 }
424 if (mapping->a_ops->writepage == NULL)
425 return PAGE_ACTIVATE;
0e093d99 426 if (!may_write_to_queue(mapping->backing_dev_info, sc))
1da177e4
LT
427 return PAGE_KEEP;
428
429 if (clear_page_dirty_for_io(page)) {
430 int res;
431 struct writeback_control wbc = {
432 .sync_mode = WB_SYNC_NONE,
433 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
434 .range_start = 0,
435 .range_end = LLONG_MAX,
1da177e4
LT
436 .for_reclaim = 1,
437 };
438
439 SetPageReclaim(page);
440 res = mapping->a_ops->writepage(page, &wbc);
441 if (res < 0)
442 handle_write_error(mapping, page, res);
994fc28c 443 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
444 ClearPageReclaim(page);
445 return PAGE_ACTIVATE;
446 }
c661b078 447
1da177e4
LT
448 if (!PageWriteback(page)) {
449 /* synchronous write or broken a_ops? */
450 ClearPageReclaim(page);
451 }
23b9da55 452 trace_mm_vmscan_writepage(page, trace_reclaim_flags(page));
e129b5c2 453 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
454 return PAGE_SUCCESS;
455 }
456
457 return PAGE_CLEAN;
458}
459
a649fd92 460/*
e286781d
NP
461 * Same as remove_mapping, but if the page is removed from the mapping, it
462 * gets returned with a refcount of 0.
a649fd92 463 */
e286781d 464static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 465{
28e4d965
NP
466 BUG_ON(!PageLocked(page));
467 BUG_ON(mapping != page_mapping(page));
49d2e9cc 468
19fd6231 469 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 470 /*
0fd0e6b0
NP
471 * The non racy check for a busy page.
472 *
473 * Must be careful with the order of the tests. When someone has
474 * a ref to the page, it may be possible that they dirty it then
475 * drop the reference. So if PageDirty is tested before page_count
476 * here, then the following race may occur:
477 *
478 * get_user_pages(&page);
479 * [user mapping goes away]
480 * write_to(page);
481 * !PageDirty(page) [good]
482 * SetPageDirty(page);
483 * put_page(page);
484 * !page_count(page) [good, discard it]
485 *
486 * [oops, our write_to data is lost]
487 *
488 * Reversing the order of the tests ensures such a situation cannot
489 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
490 * load is not satisfied before that of page->_count.
491 *
492 * Note that if SetPageDirty is always performed via set_page_dirty,
493 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 494 */
e286781d 495 if (!page_freeze_refs(page, 2))
49d2e9cc 496 goto cannot_free;
e286781d
NP
497 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
498 if (unlikely(PageDirty(page))) {
499 page_unfreeze_refs(page, 2);
49d2e9cc 500 goto cannot_free;
e286781d 501 }
49d2e9cc
CL
502
503 if (PageSwapCache(page)) {
504 swp_entry_t swap = { .val = page_private(page) };
505 __delete_from_swap_cache(page);
19fd6231 506 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 507 swapcache_free(swap, page);
e286781d 508 } else {
6072d13c
LT
509 void (*freepage)(struct page *);
510
511 freepage = mapping->a_ops->freepage;
512
e64a782f 513 __delete_from_page_cache(page);
19fd6231 514 spin_unlock_irq(&mapping->tree_lock);
e767e056 515 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
516
517 if (freepage != NULL)
518 freepage(page);
49d2e9cc
CL
519 }
520
49d2e9cc
CL
521 return 1;
522
523cannot_free:
19fd6231 524 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
525 return 0;
526}
527
e286781d
NP
528/*
529 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
530 * someone else has a ref on the page, abort and return 0. If it was
531 * successfully detached, return 1. Assumes the caller has a single ref on
532 * this page.
533 */
534int remove_mapping(struct address_space *mapping, struct page *page)
535{
536 if (__remove_mapping(mapping, page)) {
537 /*
538 * Unfreezing the refcount with 1 rather than 2 effectively
539 * drops the pagecache ref for us without requiring another
540 * atomic operation.
541 */
542 page_unfreeze_refs(page, 1);
543 return 1;
544 }
545 return 0;
546}
547
894bc310
LS
548/**
549 * putback_lru_page - put previously isolated page onto appropriate LRU list
550 * @page: page to be put back to appropriate lru list
551 *
552 * Add previously isolated @page to appropriate LRU list.
553 * Page may still be unevictable for other reasons.
554 *
555 * lru_lock must not be held, interrupts must be enabled.
556 */
894bc310
LS
557void putback_lru_page(struct page *page)
558{
559 int lru;
560 int active = !!TestClearPageActive(page);
bbfd28ee 561 int was_unevictable = PageUnevictable(page);
894bc310
LS
562
563 VM_BUG_ON(PageLRU(page));
564
565redo:
566 ClearPageUnevictable(page);
567
568 if (page_evictable(page, NULL)) {
569 /*
570 * For evictable pages, we can use the cache.
571 * In event of a race, worst case is we end up with an
572 * unevictable page on [in]active list.
573 * We know how to handle that.
574 */
401a8e1c 575 lru = active + page_lru_base_type(page);
894bc310
LS
576 lru_cache_add_lru(page, lru);
577 } else {
578 /*
579 * Put unevictable pages directly on zone's unevictable
580 * list.
581 */
582 lru = LRU_UNEVICTABLE;
583 add_page_to_unevictable_list(page);
6a7b9548 584 /*
21ee9f39
MK
585 * When racing with an mlock or AS_UNEVICTABLE clearing
586 * (page is unlocked) make sure that if the other thread
587 * does not observe our setting of PG_lru and fails
24513264 588 * isolation/check_move_unevictable_pages,
21ee9f39 589 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
590 * the page back to the evictable list.
591 *
21ee9f39 592 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
593 */
594 smp_mb();
894bc310 595 }
894bc310
LS
596
597 /*
598 * page's status can change while we move it among lru. If an evictable
599 * page is on unevictable list, it never be freed. To avoid that,
600 * check after we added it to the list, again.
601 */
602 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
603 if (!isolate_lru_page(page)) {
604 put_page(page);
605 goto redo;
606 }
607 /* This means someone else dropped this page from LRU
608 * So, it will be freed or putback to LRU again. There is
609 * nothing to do here.
610 */
611 }
612
bbfd28ee
LS
613 if (was_unevictable && lru != LRU_UNEVICTABLE)
614 count_vm_event(UNEVICTABLE_PGRESCUED);
615 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
616 count_vm_event(UNEVICTABLE_PGCULLED);
617
894bc310
LS
618 put_page(page); /* drop ref from isolate */
619}
620
dfc8d636
JW
621enum page_references {
622 PAGEREF_RECLAIM,
623 PAGEREF_RECLAIM_CLEAN,
64574746 624 PAGEREF_KEEP,
dfc8d636
JW
625 PAGEREF_ACTIVATE,
626};
627
628static enum page_references page_check_references(struct page *page,
f16015fb 629 struct mem_cgroup_zone *mz,
dfc8d636
JW
630 struct scan_control *sc)
631{
64574746 632 int referenced_ptes, referenced_page;
dfc8d636 633 unsigned long vm_flags;
dfc8d636 634
c3ac9a8a
JW
635 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
636 &vm_flags);
64574746 637 referenced_page = TestClearPageReferenced(page);
dfc8d636 638
dfc8d636
JW
639 /*
640 * Mlock lost the isolation race with us. Let try_to_unmap()
641 * move the page to the unevictable list.
642 */
643 if (vm_flags & VM_LOCKED)
644 return PAGEREF_RECLAIM;
645
64574746 646 if (referenced_ptes) {
e4898273 647 if (PageSwapBacked(page))
64574746
JW
648 return PAGEREF_ACTIVATE;
649 /*
650 * All mapped pages start out with page table
651 * references from the instantiating fault, so we need
652 * to look twice if a mapped file page is used more
653 * than once.
654 *
655 * Mark it and spare it for another trip around the
656 * inactive list. Another page table reference will
657 * lead to its activation.
658 *
659 * Note: the mark is set for activated pages as well
660 * so that recently deactivated but used pages are
661 * quickly recovered.
662 */
663 SetPageReferenced(page);
664
34dbc67a 665 if (referenced_page || referenced_ptes > 1)
64574746
JW
666 return PAGEREF_ACTIVATE;
667
c909e993
KK
668 /*
669 * Activate file-backed executable pages after first usage.
670 */
671 if (vm_flags & VM_EXEC)
672 return PAGEREF_ACTIVATE;
673
64574746
JW
674 return PAGEREF_KEEP;
675 }
dfc8d636
JW
676
677 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 678 if (referenced_page && !PageSwapBacked(page))
64574746
JW
679 return PAGEREF_RECLAIM_CLEAN;
680
681 return PAGEREF_RECLAIM;
dfc8d636
JW
682}
683
1da177e4 684/*
1742f19f 685 * shrink_page_list() returns the number of reclaimed pages
1da177e4 686 */
1742f19f 687static unsigned long shrink_page_list(struct list_head *page_list,
f16015fb 688 struct mem_cgroup_zone *mz,
f84f6e2b 689 struct scan_control *sc,
92df3a72
MG
690 int priority,
691 unsigned long *ret_nr_dirty,
692 unsigned long *ret_nr_writeback)
1da177e4
LT
693{
694 LIST_HEAD(ret_pages);
abe4c3b5 695 LIST_HEAD(free_pages);
1da177e4 696 int pgactivate = 0;
0e093d99
MG
697 unsigned long nr_dirty = 0;
698 unsigned long nr_congested = 0;
05ff5137 699 unsigned long nr_reclaimed = 0;
92df3a72 700 unsigned long nr_writeback = 0;
1da177e4
LT
701
702 cond_resched();
703
1da177e4 704 while (!list_empty(page_list)) {
dfc8d636 705 enum page_references references;
1da177e4
LT
706 struct address_space *mapping;
707 struct page *page;
708 int may_enter_fs;
1da177e4
LT
709
710 cond_resched();
711
712 page = lru_to_page(page_list);
713 list_del(&page->lru);
714
529ae9aa 715 if (!trylock_page(page))
1da177e4
LT
716 goto keep;
717
725d704e 718 VM_BUG_ON(PageActive(page));
f16015fb 719 VM_BUG_ON(page_zone(page) != mz->zone);
1da177e4
LT
720
721 sc->nr_scanned++;
80e43426 722
b291f000
NP
723 if (unlikely(!page_evictable(page, NULL)))
724 goto cull_mlocked;
894bc310 725
a6dc60f8 726 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
727 goto keep_locked;
728
1da177e4
LT
729 /* Double the slab pressure for mapped and swapcache pages */
730 if (page_mapped(page) || PageSwapCache(page))
731 sc->nr_scanned++;
732
c661b078
AW
733 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
734 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
735
736 if (PageWriteback(page)) {
92df3a72 737 nr_writeback++;
41ac1999
MG
738 unlock_page(page);
739 goto keep;
c661b078 740 }
1da177e4 741
f16015fb 742 references = page_check_references(page, mz, sc);
dfc8d636
JW
743 switch (references) {
744 case PAGEREF_ACTIVATE:
1da177e4 745 goto activate_locked;
64574746
JW
746 case PAGEREF_KEEP:
747 goto keep_locked;
dfc8d636
JW
748 case PAGEREF_RECLAIM:
749 case PAGEREF_RECLAIM_CLEAN:
750 ; /* try to reclaim the page below */
751 }
1da177e4 752
1da177e4
LT
753 /*
754 * Anonymous process memory has backing store?
755 * Try to allocate it some swap space here.
756 */
b291f000 757 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
758 if (!(sc->gfp_mask & __GFP_IO))
759 goto keep_locked;
ac47b003 760 if (!add_to_swap(page))
1da177e4 761 goto activate_locked;
63eb6b93 762 may_enter_fs = 1;
b291f000 763 }
1da177e4
LT
764
765 mapping = page_mapping(page);
1da177e4
LT
766
767 /*
768 * The page is mapped into the page tables of one or more
769 * processes. Try to unmap it here.
770 */
771 if (page_mapped(page) && mapping) {
14fa31b8 772 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
773 case SWAP_FAIL:
774 goto activate_locked;
775 case SWAP_AGAIN:
776 goto keep_locked;
b291f000
NP
777 case SWAP_MLOCK:
778 goto cull_mlocked;
1da177e4
LT
779 case SWAP_SUCCESS:
780 ; /* try to free the page below */
781 }
782 }
783
784 if (PageDirty(page)) {
0e093d99
MG
785 nr_dirty++;
786
ee72886d
MG
787 /*
788 * Only kswapd can writeback filesystem pages to
f84f6e2b
MG
789 * avoid risk of stack overflow but do not writeback
790 * unless under significant pressure.
ee72886d 791 */
f84f6e2b
MG
792 if (page_is_file_cache(page) &&
793 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
49ea7eb6
MG
794 /*
795 * Immediately reclaim when written back.
796 * Similar in principal to deactivate_page()
797 * except we already have the page isolated
798 * and know it's dirty
799 */
800 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
801 SetPageReclaim(page);
802
ee72886d
MG
803 goto keep_locked;
804 }
805
dfc8d636 806 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 807 goto keep_locked;
4dd4b920 808 if (!may_enter_fs)
1da177e4 809 goto keep_locked;
52a8363e 810 if (!sc->may_writepage)
1da177e4
LT
811 goto keep_locked;
812
813 /* Page is dirty, try to write it out here */
7d3579e8 814 switch (pageout(page, mapping, sc)) {
1da177e4 815 case PAGE_KEEP:
0e093d99 816 nr_congested++;
1da177e4
LT
817 goto keep_locked;
818 case PAGE_ACTIVATE:
819 goto activate_locked;
820 case PAGE_SUCCESS:
7d3579e8 821 if (PageWriteback(page))
41ac1999 822 goto keep;
7d3579e8 823 if (PageDirty(page))
1da177e4 824 goto keep;
7d3579e8 825
1da177e4
LT
826 /*
827 * A synchronous write - probably a ramdisk. Go
828 * ahead and try to reclaim the page.
829 */
529ae9aa 830 if (!trylock_page(page))
1da177e4
LT
831 goto keep;
832 if (PageDirty(page) || PageWriteback(page))
833 goto keep_locked;
834 mapping = page_mapping(page);
835 case PAGE_CLEAN:
836 ; /* try to free the page below */
837 }
838 }
839
840 /*
841 * If the page has buffers, try to free the buffer mappings
842 * associated with this page. If we succeed we try to free
843 * the page as well.
844 *
845 * We do this even if the page is PageDirty().
846 * try_to_release_page() does not perform I/O, but it is
847 * possible for a page to have PageDirty set, but it is actually
848 * clean (all its buffers are clean). This happens if the
849 * buffers were written out directly, with submit_bh(). ext3
894bc310 850 * will do this, as well as the blockdev mapping.
1da177e4
LT
851 * try_to_release_page() will discover that cleanness and will
852 * drop the buffers and mark the page clean - it can be freed.
853 *
854 * Rarely, pages can have buffers and no ->mapping. These are
855 * the pages which were not successfully invalidated in
856 * truncate_complete_page(). We try to drop those buffers here
857 * and if that worked, and the page is no longer mapped into
858 * process address space (page_count == 1) it can be freed.
859 * Otherwise, leave the page on the LRU so it is swappable.
860 */
266cf658 861 if (page_has_private(page)) {
1da177e4
LT
862 if (!try_to_release_page(page, sc->gfp_mask))
863 goto activate_locked;
e286781d
NP
864 if (!mapping && page_count(page) == 1) {
865 unlock_page(page);
866 if (put_page_testzero(page))
867 goto free_it;
868 else {
869 /*
870 * rare race with speculative reference.
871 * the speculative reference will free
872 * this page shortly, so we may
873 * increment nr_reclaimed here (and
874 * leave it off the LRU).
875 */
876 nr_reclaimed++;
877 continue;
878 }
879 }
1da177e4
LT
880 }
881
e286781d 882 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 883 goto keep_locked;
1da177e4 884
a978d6f5
NP
885 /*
886 * At this point, we have no other references and there is
887 * no way to pick any more up (removed from LRU, removed
888 * from pagecache). Can use non-atomic bitops now (and
889 * we obviously don't have to worry about waking up a process
890 * waiting on the page lock, because there are no references.
891 */
892 __clear_page_locked(page);
e286781d 893free_it:
05ff5137 894 nr_reclaimed++;
abe4c3b5
MG
895
896 /*
897 * Is there need to periodically free_page_list? It would
898 * appear not as the counts should be low
899 */
900 list_add(&page->lru, &free_pages);
1da177e4
LT
901 continue;
902
b291f000 903cull_mlocked:
63d6c5ad
HD
904 if (PageSwapCache(page))
905 try_to_free_swap(page);
b291f000
NP
906 unlock_page(page);
907 putback_lru_page(page);
908 continue;
909
1da177e4 910activate_locked:
68a22394
RR
911 /* Not a candidate for swapping, so reclaim swap space. */
912 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 913 try_to_free_swap(page);
894bc310 914 VM_BUG_ON(PageActive(page));
1da177e4
LT
915 SetPageActive(page);
916 pgactivate++;
917keep_locked:
918 unlock_page(page);
919keep:
920 list_add(&page->lru, &ret_pages);
b291f000 921 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 922 }
abe4c3b5 923
0e093d99
MG
924 /*
925 * Tag a zone as congested if all the dirty pages encountered were
926 * backed by a congested BDI. In this case, reclaimers should just
927 * back off and wait for congestion to clear because further reclaim
928 * will encounter the same problem
929 */
89b5fae5 930 if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
f16015fb 931 zone_set_flag(mz->zone, ZONE_CONGESTED);
0e093d99 932
cc59850e 933 free_hot_cold_page_list(&free_pages, 1);
abe4c3b5 934
1da177e4 935 list_splice(&ret_pages, page_list);
f8891e5e 936 count_vm_events(PGACTIVATE, pgactivate);
92df3a72
MG
937 *ret_nr_dirty += nr_dirty;
938 *ret_nr_writeback += nr_writeback;
05ff5137 939 return nr_reclaimed;
1da177e4
LT
940}
941
5ad333eb
AW
942/*
943 * Attempt to remove the specified page from its LRU. Only take this page
944 * if it is of the appropriate PageActive status. Pages which are being
945 * freed elsewhere are also ignored.
946 *
947 * page: page to consider
948 * mode: one of the LRU isolation modes defined above
949 *
950 * returns 0 on success, -ve errno on failure.
951 */
4356f21d 952int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
5ad333eb 953{
4356f21d 954 bool all_lru_mode;
5ad333eb
AW
955 int ret = -EINVAL;
956
957 /* Only take pages on the LRU. */
958 if (!PageLRU(page))
959 return ret;
960
4356f21d
MK
961 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
962 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
963
5ad333eb
AW
964 /*
965 * When checking the active state, we need to be sure we are
966 * dealing with comparible boolean values. Take the logical not
967 * of each.
968 */
4356f21d 969 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
5ad333eb
AW
970 return ret;
971
4356f21d 972 if (!all_lru_mode && !!page_is_file_cache(page) != file)
4f98a2fe
RR
973 return ret;
974
c53919ad 975 /* Do not give back unevictable pages for compaction */
894bc310
LS
976 if (PageUnevictable(page))
977 return ret;
978
5ad333eb 979 ret = -EBUSY;
08e552c6 980
c8244935
MG
981 /*
982 * To minimise LRU disruption, the caller can indicate that it only
983 * wants to isolate pages it will be able to operate on without
984 * blocking - clean pages for the most part.
985 *
986 * ISOLATE_CLEAN means that only clean pages should be isolated. This
987 * is used by reclaim when it is cannot write to backing storage
988 *
989 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
990 * that it is possible to migrate without blocking
991 */
992 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
993 /* All the caller can do on PageWriteback is block */
994 if (PageWriteback(page))
995 return ret;
996
997 if (PageDirty(page)) {
998 struct address_space *mapping;
999
1000 /* ISOLATE_CLEAN means only clean pages */
1001 if (mode & ISOLATE_CLEAN)
1002 return ret;
1003
1004 /*
1005 * Only pages without mappings or that have a
1006 * ->migratepage callback are possible to migrate
1007 * without blocking
1008 */
1009 mapping = page_mapping(page);
1010 if (mapping && !mapping->a_ops->migratepage)
1011 return ret;
1012 }
1013 }
39deaf85 1014
f80c0673
MK
1015 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1016 return ret;
1017
5ad333eb
AW
1018 if (likely(get_page_unless_zero(page))) {
1019 /*
1020 * Be careful not to clear PageLRU until after we're
1021 * sure the page is not being freed elsewhere -- the
1022 * page release code relies on it.
1023 */
1024 ClearPageLRU(page);
1025 ret = 0;
1026 }
1027
1028 return ret;
1029}
1030
1da177e4
LT
1031/*
1032 * zone->lru_lock is heavily contended. Some of the functions that
1033 * shrink the lists perform better by taking out a batch of pages
1034 * and working on them outside the LRU lock.
1035 *
1036 * For pagecache intensive workloads, this function is the hottest
1037 * spot in the kernel (apart from copy_*_user functions).
1038 *
1039 * Appropriate locks must be held before calling this function.
1040 *
1041 * @nr_to_scan: The number of pages to look through on the list.
f626012d 1042 * @mz: The mem_cgroup_zone to pull pages from.
1da177e4 1043 * @dst: The temp list to put pages on to.
f626012d 1044 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1045 * @sc: The scan_control struct for this reclaim session
5ad333eb 1046 * @mode: One of the LRU isolation modes
3cb99451 1047 * @lru: LRU list id for isolating
1da177e4
LT
1048 *
1049 * returns how many pages were moved onto *@dst.
1050 */
69e05944 1051static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
f626012d 1052 struct mem_cgroup_zone *mz, struct list_head *dst,
fe2c2a10 1053 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1054 isolate_mode_t mode, enum lru_list lru)
1da177e4 1055{
f626012d
HD
1056 struct lruvec *lruvec;
1057 struct list_head *src;
69e05944 1058 unsigned long nr_taken = 0;
c9b02d97 1059 unsigned long scan;
3cb99451 1060 int file = is_file_lru(lru);
f626012d
HD
1061
1062 lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
f626012d 1063 src = &lruvec->lists[lru];
1da177e4 1064
c9b02d97 1065 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb 1066 struct page *page;
5ad333eb 1067
1da177e4
LT
1068 page = lru_to_page(src);
1069 prefetchw_prev_lru_page(page, src, flags);
1070
725d704e 1071 VM_BUG_ON(!PageLRU(page));
8d438f96 1072
4f98a2fe 1073 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb 1074 case 0:
925b7673 1075 mem_cgroup_lru_del(page);
5ad333eb 1076 list_move(&page->lru, dst);
2c888cfb 1077 nr_taken += hpage_nr_pages(page);
5ad333eb
AW
1078 break;
1079
1080 case -EBUSY:
1081 /* else it is being freed elsewhere */
1082 list_move(&page->lru, src);
1083 continue;
46453a6e 1084
5ad333eb
AW
1085 default:
1086 BUG();
1087 }
1da177e4
LT
1088 }
1089
f626012d 1090 *nr_scanned = scan;
a8a94d15 1091
fe2c2a10 1092 trace_mm_vmscan_lru_isolate(sc->order,
a8a94d15
MG
1093 nr_to_scan, scan,
1094 nr_taken,
ea4d349f 1095 mode, file);
1da177e4
LT
1096 return nr_taken;
1097}
1098
62695a84
NP
1099/**
1100 * isolate_lru_page - tries to isolate a page from its LRU list
1101 * @page: page to isolate from its LRU list
1102 *
1103 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1104 * vmstat statistic corresponding to whatever LRU list the page was on.
1105 *
1106 * Returns 0 if the page was removed from an LRU list.
1107 * Returns -EBUSY if the page was not on an LRU list.
1108 *
1109 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1110 * the active list, it will have PageActive set. If it was found on
1111 * the unevictable list, it will have the PageUnevictable bit set. That flag
1112 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1113 *
1114 * The vmstat statistic corresponding to the list on which the page was
1115 * found will be decremented.
1116 *
1117 * Restrictions:
1118 * (1) Must be called with an elevated refcount on the page. This is a
1119 * fundamentnal difference from isolate_lru_pages (which is called
1120 * without a stable reference).
1121 * (2) the lru_lock must not be held.
1122 * (3) interrupts must be enabled.
1123 */
1124int isolate_lru_page(struct page *page)
1125{
1126 int ret = -EBUSY;
1127
0c917313
KK
1128 VM_BUG_ON(!page_count(page));
1129
62695a84
NP
1130 if (PageLRU(page)) {
1131 struct zone *zone = page_zone(page);
1132
1133 spin_lock_irq(&zone->lru_lock);
0c917313 1134 if (PageLRU(page)) {
894bc310 1135 int lru = page_lru(page);
62695a84 1136 ret = 0;
0c917313 1137 get_page(page);
62695a84 1138 ClearPageLRU(page);
4f98a2fe 1139
4f98a2fe 1140 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1141 }
1142 spin_unlock_irq(&zone->lru_lock);
1143 }
1144 return ret;
1145}
1146
35cd7815
RR
1147/*
1148 * Are there way too many processes in the direct reclaim path already?
1149 */
1150static int too_many_isolated(struct zone *zone, int file,
1151 struct scan_control *sc)
1152{
1153 unsigned long inactive, isolated;
1154
1155 if (current_is_kswapd())
1156 return 0;
1157
89b5fae5 1158 if (!global_reclaim(sc))
35cd7815
RR
1159 return 0;
1160
1161 if (file) {
1162 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1163 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1164 } else {
1165 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1166 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1167 }
1168
1169 return isolated > inactive;
1170}
1171
66635629 1172static noinline_for_stack void
3f79768f
HD
1173putback_inactive_pages(struct mem_cgroup_zone *mz,
1174 struct list_head *page_list)
66635629 1175{
f16015fb 1176 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
3f79768f
HD
1177 struct zone *zone = mz->zone;
1178 LIST_HEAD(pages_to_free);
66635629 1179
66635629
MG
1180 /*
1181 * Put back any unfreeable pages.
1182 */
66635629 1183 while (!list_empty(page_list)) {
3f79768f 1184 struct page *page = lru_to_page(page_list);
66635629 1185 int lru;
3f79768f 1186
66635629
MG
1187 VM_BUG_ON(PageLRU(page));
1188 list_del(&page->lru);
1189 if (unlikely(!page_evictable(page, NULL))) {
1190 spin_unlock_irq(&zone->lru_lock);
1191 putback_lru_page(page);
1192 spin_lock_irq(&zone->lru_lock);
1193 continue;
1194 }
7a608572 1195 SetPageLRU(page);
66635629 1196 lru = page_lru(page);
7a608572 1197 add_page_to_lru_list(zone, page, lru);
66635629
MG
1198 if (is_active_lru(lru)) {
1199 int file = is_file_lru(lru);
9992af10
RR
1200 int numpages = hpage_nr_pages(page);
1201 reclaim_stat->recent_rotated[file] += numpages;
66635629 1202 }
2bcf8879
HD
1203 if (put_page_testzero(page)) {
1204 __ClearPageLRU(page);
1205 __ClearPageActive(page);
1206 del_page_from_lru_list(zone, page, lru);
1207
1208 if (unlikely(PageCompound(page))) {
1209 spin_unlock_irq(&zone->lru_lock);
1210 (*get_compound_page_dtor(page))(page);
1211 spin_lock_irq(&zone->lru_lock);
1212 } else
1213 list_add(&page->lru, &pages_to_free);
66635629
MG
1214 }
1215 }
66635629 1216
3f79768f
HD
1217 /*
1218 * To save our caller's stack, now use input list for pages to free.
1219 */
1220 list_splice(&pages_to_free, page_list);
66635629
MG
1221}
1222
f16015fb
JW
1223static noinline_for_stack void
1224update_isolated_counts(struct mem_cgroup_zone *mz,
3f79768f 1225 struct list_head *page_list,
f16015fb 1226 unsigned long *nr_anon,
3f79768f 1227 unsigned long *nr_file)
1489fa14 1228{
f16015fb 1229 struct zone *zone = mz->zone;
1489fa14 1230 unsigned int count[NR_LRU_LISTS] = { 0, };
3f79768f
HD
1231 unsigned long nr_active = 0;
1232 struct page *page;
1233 int lru;
1234
1235 /*
1236 * Count pages and clear active flags
1237 */
1238 list_for_each_entry(page, page_list, lru) {
1239 int numpages = hpage_nr_pages(page);
1240 lru = page_lru_base_type(page);
1241 if (PageActive(page)) {
1242 lru += LRU_ACTIVE;
1243 ClearPageActive(page);
1244 nr_active += numpages;
1245 }
1246 count[lru] += numpages;
1247 }
1489fa14 1248
d563c050 1249 preempt_disable();
1489fa14
MG
1250 __count_vm_events(PGDEACTIVATE, nr_active);
1251
1252 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1253 -count[LRU_ACTIVE_FILE]);
1254 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1255 -count[LRU_INACTIVE_FILE]);
1256 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1257 -count[LRU_ACTIVE_ANON]);
1258 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1259 -count[LRU_INACTIVE_ANON]);
1260
1261 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1262 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1489fa14 1263
d563c050
HD
1264 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1265 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1266 preempt_enable();
1489fa14
MG
1267}
1268
1da177e4 1269/*
1742f19f
AM
1270 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1271 * of reclaimed pages
1da177e4 1272 */
66635629 1273static noinline_for_stack unsigned long
f16015fb 1274shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
3cb99451 1275 struct scan_control *sc, int priority, enum lru_list lru)
1da177e4
LT
1276{
1277 LIST_HEAD(page_list);
e247dbce 1278 unsigned long nr_scanned;
05ff5137 1279 unsigned long nr_reclaimed = 0;
e247dbce 1280 unsigned long nr_taken;
e247dbce
KM
1281 unsigned long nr_anon;
1282 unsigned long nr_file;
92df3a72
MG
1283 unsigned long nr_dirty = 0;
1284 unsigned long nr_writeback = 0;
61317289 1285 isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
3cb99451 1286 int file = is_file_lru(lru);
f16015fb 1287 struct zone *zone = mz->zone;
d563c050 1288 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
78dc583d 1289
35cd7815 1290 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1291 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1292
1293 /* We are about to die and free our memory. Return now. */
1294 if (fatal_signal_pending(current))
1295 return SWAP_CLUSTER_MAX;
1296 }
1297
1da177e4 1298 lru_add_drain();
f80c0673
MK
1299
1300 if (!sc->may_unmap)
61317289 1301 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1302 if (!sc->may_writepage)
61317289 1303 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1304
1da177e4 1305 spin_lock_irq(&zone->lru_lock);
b35ea17b 1306
fe2c2a10 1307 nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
3cb99451 1308 sc, isolate_mode, lru);
89b5fae5 1309 if (global_reclaim(sc)) {
e247dbce
KM
1310 zone->pages_scanned += nr_scanned;
1311 if (current_is_kswapd())
1312 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1313 nr_scanned);
1314 else
1315 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1316 nr_scanned);
e247dbce 1317 }
d563c050 1318 spin_unlock_irq(&zone->lru_lock);
b35ea17b 1319
d563c050 1320 if (nr_taken == 0)
66635629 1321 return 0;
5ad333eb 1322
3f79768f
HD
1323 update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1324
f16015fb 1325 nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
92df3a72 1326 &nr_dirty, &nr_writeback);
c661b078 1327
3f79768f
HD
1328 spin_lock_irq(&zone->lru_lock);
1329
d563c050
HD
1330 reclaim_stat->recent_scanned[0] += nr_anon;
1331 reclaim_stat->recent_scanned[1] += nr_file;
1332
904249aa
YH
1333 if (global_reclaim(sc)) {
1334 if (current_is_kswapd())
1335 __count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1336 nr_reclaimed);
1337 else
1338 __count_zone_vm_events(PGSTEAL_DIRECT, zone,
1339 nr_reclaimed);
1340 }
a74609fa 1341
3f79768f
HD
1342 putback_inactive_pages(mz, &page_list);
1343
1344 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1345 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1346
1347 spin_unlock_irq(&zone->lru_lock);
1348
1349 free_hot_cold_page_list(&page_list, 1);
e11da5b4 1350
92df3a72
MG
1351 /*
1352 * If reclaim is isolating dirty pages under writeback, it implies
1353 * that the long-lived page allocation rate is exceeding the page
1354 * laundering rate. Either the global limits are not being effective
1355 * at throttling processes due to the page distribution throughout
1356 * zones or there is heavy usage of a slow backing device. The
1357 * only option is to throttle from reclaim context which is not ideal
1358 * as there is no guarantee the dirtying process is throttled in the
1359 * same way balance_dirty_pages() manages.
1360 *
1361 * This scales the number of dirty pages that must be under writeback
1362 * before throttling depending on priority. It is a simple backoff
1363 * function that has the most effect in the range DEF_PRIORITY to
1364 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1365 * in trouble and reclaim is considered to be in trouble.
1366 *
1367 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1368 * DEF_PRIORITY-1 50% must be PageWriteback
1369 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1370 * ...
1371 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1372 * isolated page is PageWriteback
1373 */
1374 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1375 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1376
e11da5b4
MG
1377 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1378 zone_idx(zone),
1379 nr_scanned, nr_reclaimed,
1380 priority,
23b9da55 1381 trace_shrink_flags(file));
05ff5137 1382 return nr_reclaimed;
1da177e4
LT
1383}
1384
1385/*
1386 * This moves pages from the active list to the inactive list.
1387 *
1388 * We move them the other way if the page is referenced by one or more
1389 * processes, from rmap.
1390 *
1391 * If the pages are mostly unmapped, the processing is fast and it is
1392 * appropriate to hold zone->lru_lock across the whole operation. But if
1393 * the pages are mapped, the processing is slow (page_referenced()) so we
1394 * should drop zone->lru_lock around each page. It's impossible to balance
1395 * this, so instead we remove the pages from the LRU while processing them.
1396 * It is safe to rely on PG_active against the non-LRU pages in here because
1397 * nobody will play with that bit on a non-LRU page.
1398 *
1399 * The downside is that we have to touch page->_count against each page.
1400 * But we had to alter page->flags anyway.
1401 */
1cfb419b 1402
3eb4140f
WF
1403static void move_active_pages_to_lru(struct zone *zone,
1404 struct list_head *list,
2bcf8879 1405 struct list_head *pages_to_free,
3eb4140f
WF
1406 enum lru_list lru)
1407{
1408 unsigned long pgmoved = 0;
3eb4140f
WF
1409 struct page *page;
1410
3eb4140f 1411 while (!list_empty(list)) {
925b7673
JW
1412 struct lruvec *lruvec;
1413
3eb4140f 1414 page = lru_to_page(list);
3eb4140f
WF
1415
1416 VM_BUG_ON(PageLRU(page));
1417 SetPageLRU(page);
1418
925b7673
JW
1419 lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1420 list_move(&page->lru, &lruvec->lists[lru]);
2c888cfb 1421 pgmoved += hpage_nr_pages(page);
3eb4140f 1422
2bcf8879
HD
1423 if (put_page_testzero(page)) {
1424 __ClearPageLRU(page);
1425 __ClearPageActive(page);
1426 del_page_from_lru_list(zone, page, lru);
1427
1428 if (unlikely(PageCompound(page))) {
1429 spin_unlock_irq(&zone->lru_lock);
1430 (*get_compound_page_dtor(page))(page);
1431 spin_lock_irq(&zone->lru_lock);
1432 } else
1433 list_add(&page->lru, pages_to_free);
3eb4140f
WF
1434 }
1435 }
1436 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1437 if (!is_active_lru(lru))
1438 __count_vm_events(PGDEACTIVATE, pgmoved);
1439}
1cfb419b 1440
f626012d 1441static void shrink_active_list(unsigned long nr_to_scan,
f16015fb
JW
1442 struct mem_cgroup_zone *mz,
1443 struct scan_control *sc,
3cb99451 1444 int priority, enum lru_list lru)
1da177e4 1445{
44c241f1 1446 unsigned long nr_taken;
f626012d 1447 unsigned long nr_scanned;
6fe6b7e3 1448 unsigned long vm_flags;
1da177e4 1449 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1450 LIST_HEAD(l_active);
b69408e8 1451 LIST_HEAD(l_inactive);
1da177e4 1452 struct page *page;
f16015fb 1453 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
44c241f1 1454 unsigned long nr_rotated = 0;
61317289 1455 isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
3cb99451 1456 int file = is_file_lru(lru);
f16015fb 1457 struct zone *zone = mz->zone;
1da177e4
LT
1458
1459 lru_add_drain();
f80c0673
MK
1460
1461 if (!sc->may_unmap)
61317289 1462 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1463 if (!sc->may_writepage)
61317289 1464 isolate_mode |= ISOLATE_CLEAN;
f80c0673 1465
1da177e4 1466 spin_lock_irq(&zone->lru_lock);
925b7673 1467
fe2c2a10 1468 nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
3cb99451 1469 isolate_mode, lru);
89b5fae5 1470 if (global_reclaim(sc))
f626012d 1471 zone->pages_scanned += nr_scanned;
89b5fae5 1472
b7c46d15 1473 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1474
f626012d 1475 __count_zone_vm_events(PGREFILL, zone, nr_scanned);
3cb99451 1476 __mod_zone_page_state(zone, NR_LRU_BASE + lru, -nr_taken);
a731286d 1477 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1478 spin_unlock_irq(&zone->lru_lock);
1479
1da177e4
LT
1480 while (!list_empty(&l_hold)) {
1481 cond_resched();
1482 page = lru_to_page(&l_hold);
1483 list_del(&page->lru);
7e9cd484 1484
894bc310
LS
1485 if (unlikely(!page_evictable(page, NULL))) {
1486 putback_lru_page(page);
1487 continue;
1488 }
1489
cc715d99
MG
1490 if (unlikely(buffer_heads_over_limit)) {
1491 if (page_has_private(page) && trylock_page(page)) {
1492 if (page_has_private(page))
1493 try_to_release_page(page, 0);
1494 unlock_page(page);
1495 }
1496 }
1497
c3ac9a8a
JW
1498 if (page_referenced(page, 0, sc->target_mem_cgroup,
1499 &vm_flags)) {
9992af10 1500 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
1501 /*
1502 * Identify referenced, file-backed active pages and
1503 * give them one more trip around the active list. So
1504 * that executable code get better chances to stay in
1505 * memory under moderate memory pressure. Anon pages
1506 * are not likely to be evicted by use-once streaming
1507 * IO, plus JVM can create lots of anon VM_EXEC pages,
1508 * so we ignore them here.
1509 */
41e20983 1510 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1511 list_add(&page->lru, &l_active);
1512 continue;
1513 }
1514 }
7e9cd484 1515
5205e56e 1516 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1517 list_add(&page->lru, &l_inactive);
1518 }
1519
b555749a 1520 /*
8cab4754 1521 * Move pages back to the lru list.
b555749a 1522 */
2a1dc509 1523 spin_lock_irq(&zone->lru_lock);
556adecb 1524 /*
8cab4754
WF
1525 * Count referenced pages from currently used mappings as rotated,
1526 * even though only some of them are actually re-activated. This
1527 * helps balance scan pressure between file and anonymous pages in
1528 * get_scan_ratio.
7e9cd484 1529 */
b7c46d15 1530 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1531
3cb99451
KK
1532 move_active_pages_to_lru(zone, &l_active, &l_hold, lru);
1533 move_active_pages_to_lru(zone, &l_inactive, &l_hold, lru - LRU_ACTIVE);
a731286d 1534 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1535 spin_unlock_irq(&zone->lru_lock);
2bcf8879
HD
1536
1537 free_hot_cold_page_list(&l_hold, 1);
1da177e4
LT
1538}
1539
74e3f3c3 1540#ifdef CONFIG_SWAP
14797e23 1541static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1542{
1543 unsigned long active, inactive;
1544
1545 active = zone_page_state(zone, NR_ACTIVE_ANON);
1546 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1547
1548 if (inactive * zone->inactive_ratio < active)
1549 return 1;
1550
1551 return 0;
1552}
1553
14797e23
KM
1554/**
1555 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1556 * @zone: zone to check
1557 * @sc: scan control of this context
1558 *
1559 * Returns true if the zone does not have enough inactive anon pages,
1560 * meaning some active anon pages need to be deactivated.
1561 */
f16015fb 1562static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
14797e23 1563{
74e3f3c3
MK
1564 /*
1565 * If we don't have swap space, anonymous page deactivation
1566 * is pointless.
1567 */
1568 if (!total_swap_pages)
1569 return 0;
1570
c3c787e8 1571 if (!mem_cgroup_disabled())
f16015fb
JW
1572 return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1573 mz->zone);
1574
1575 return inactive_anon_is_low_global(mz->zone);
14797e23 1576}
74e3f3c3 1577#else
f16015fb 1578static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
74e3f3c3
MK
1579{
1580 return 0;
1581}
1582#endif
14797e23 1583
56e49d21
RR
1584static int inactive_file_is_low_global(struct zone *zone)
1585{
1586 unsigned long active, inactive;
1587
1588 active = zone_page_state(zone, NR_ACTIVE_FILE);
1589 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1590
1591 return (active > inactive);
1592}
1593
1594/**
1595 * inactive_file_is_low - check if file pages need to be deactivated
f16015fb 1596 * @mz: memory cgroup and zone to check
56e49d21
RR
1597 *
1598 * When the system is doing streaming IO, memory pressure here
1599 * ensures that active file pages get deactivated, until more
1600 * than half of the file pages are on the inactive list.
1601 *
1602 * Once we get to that situation, protect the system's working
1603 * set from being evicted by disabling active file page aging.
1604 *
1605 * This uses a different ratio than the anonymous pages, because
1606 * the page cache uses a use-once replacement algorithm.
1607 */
f16015fb 1608static int inactive_file_is_low(struct mem_cgroup_zone *mz)
56e49d21 1609{
c3c787e8 1610 if (!mem_cgroup_disabled())
f16015fb
JW
1611 return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1612 mz->zone);
56e49d21 1613
f16015fb 1614 return inactive_file_is_low_global(mz->zone);
56e49d21
RR
1615}
1616
f16015fb 1617static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
b39415b2
RR
1618{
1619 if (file)
f16015fb 1620 return inactive_file_is_low(mz);
b39415b2 1621 else
f16015fb 1622 return inactive_anon_is_low(mz);
b39415b2
RR
1623}
1624
4f98a2fe 1625static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
f16015fb
JW
1626 struct mem_cgroup_zone *mz,
1627 struct scan_control *sc, int priority)
b69408e8 1628{
4f98a2fe
RR
1629 int file = is_file_lru(lru);
1630
b39415b2 1631 if (is_active_lru(lru)) {
f16015fb 1632 if (inactive_list_is_low(mz, file))
3cb99451 1633 shrink_active_list(nr_to_scan, mz, sc, priority, lru);
556adecb
RR
1634 return 0;
1635 }
1636
3cb99451 1637 return shrink_inactive_list(nr_to_scan, mz, sc, priority, lru);
4f98a2fe
RR
1638}
1639
f16015fb
JW
1640static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1641 struct scan_control *sc)
1f4c025b 1642{
89b5fae5 1643 if (global_reclaim(sc))
1f4c025b 1644 return vm_swappiness;
f16015fb 1645 return mem_cgroup_swappiness(mz->mem_cgroup);
1f4c025b
KH
1646}
1647
4f98a2fe
RR
1648/*
1649 * Determine how aggressively the anon and file LRU lists should be
1650 * scanned. The relative value of each set of LRU lists is determined
1651 * by looking at the fraction of the pages scanned we did rotate back
1652 * onto the active list instead of evict.
1653 *
76a33fc3 1654 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1655 */
f16015fb
JW
1656static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1657 unsigned long *nr, int priority)
4f98a2fe
RR
1658{
1659 unsigned long anon, file, free;
1660 unsigned long anon_prio, file_prio;
1661 unsigned long ap, fp;
f16015fb 1662 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
76a33fc3 1663 u64 fraction[2], denominator;
4111304d 1664 enum lru_list lru;
76a33fc3 1665 int noswap = 0;
a4d3e9e7 1666 bool force_scan = false;
246e87a9 1667
f11c0ca5
JW
1668 /*
1669 * If the zone or memcg is small, nr[l] can be 0. This
1670 * results in no scanning on this priority and a potential
1671 * priority drop. Global direct reclaim can go to the next
1672 * zone and tends to have no problems. Global kswapd is for
1673 * zone balancing and it needs to scan a minimum amount. When
1674 * reclaiming for a memcg, a priority drop can cause high
1675 * latencies, so it's better to scan a minimum amount there as
1676 * well.
1677 */
b95a2f2d 1678 if (current_is_kswapd() && mz->zone->all_unreclaimable)
a4d3e9e7 1679 force_scan = true;
89b5fae5 1680 if (!global_reclaim(sc))
a4d3e9e7 1681 force_scan = true;
76a33fc3
SL
1682
1683 /* If we have no swap space, do not bother scanning anon pages. */
1684 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1685 noswap = 1;
1686 fraction[0] = 0;
1687 fraction[1] = 1;
1688 denominator = 1;
1689 goto out;
1690 }
4f98a2fe 1691
f16015fb
JW
1692 anon = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1693 zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1694 file = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1695 zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
a4d3e9e7 1696
89b5fae5 1697 if (global_reclaim(sc)) {
f16015fb 1698 free = zone_page_state(mz->zone, NR_FREE_PAGES);
eeee9a8c
KM
1699 /* If we have very few page cache pages,
1700 force-scan anon pages. */
f16015fb 1701 if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
76a33fc3
SL
1702 fraction[0] = 1;
1703 fraction[1] = 0;
1704 denominator = 1;
1705 goto out;
eeee9a8c 1706 }
4f98a2fe
RR
1707 }
1708
58c37f6e
KM
1709 /*
1710 * With swappiness at 100, anonymous and file have the same priority.
1711 * This scanning priority is essentially the inverse of IO cost.
1712 */
f16015fb
JW
1713 anon_prio = vmscan_swappiness(mz, sc);
1714 file_prio = 200 - vmscan_swappiness(mz, sc);
58c37f6e 1715
4f98a2fe
RR
1716 /*
1717 * OK, so we have swap space and a fair amount of page cache
1718 * pages. We use the recently rotated / recently scanned
1719 * ratios to determine how valuable each cache is.
1720 *
1721 * Because workloads change over time (and to avoid overflow)
1722 * we keep these statistics as a floating average, which ends
1723 * up weighing recent references more than old ones.
1724 *
1725 * anon in [0], file in [1]
1726 */
f16015fb 1727 spin_lock_irq(&mz->zone->lru_lock);
6e901571 1728 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1729 reclaim_stat->recent_scanned[0] /= 2;
1730 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1731 }
1732
6e901571 1733 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1734 reclaim_stat->recent_scanned[1] /= 2;
1735 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1736 }
1737
4f98a2fe 1738 /*
00d8089c
RR
1739 * The amount of pressure on anon vs file pages is inversely
1740 * proportional to the fraction of recently scanned pages on
1741 * each list that were recently referenced and in active use.
4f98a2fe 1742 */
fe35004f 1743 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 1744 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1745
fe35004f 1746 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 1747 fp /= reclaim_stat->recent_rotated[1] + 1;
f16015fb 1748 spin_unlock_irq(&mz->zone->lru_lock);
4f98a2fe 1749
76a33fc3
SL
1750 fraction[0] = ap;
1751 fraction[1] = fp;
1752 denominator = ap + fp + 1;
1753out:
4111304d
HD
1754 for_each_evictable_lru(lru) {
1755 int file = is_file_lru(lru);
76a33fc3 1756 unsigned long scan;
6e08a369 1757
4111304d 1758 scan = zone_nr_lru_pages(mz, lru);
fe35004f 1759 if (priority || noswap || !vmscan_swappiness(mz, sc)) {
76a33fc3 1760 scan >>= priority;
f11c0ca5
JW
1761 if (!scan && force_scan)
1762 scan = SWAP_CLUSTER_MAX;
76a33fc3
SL
1763 scan = div64_u64(scan * fraction[file], denominator);
1764 }
4111304d 1765 nr[lru] = scan;
76a33fc3 1766 }
6e08a369 1767}
4f98a2fe 1768
23b9da55
MG
1769/* Use reclaim/compaction for costly allocs or under memory pressure */
1770static bool in_reclaim_compaction(int priority, struct scan_control *sc)
1771{
1772 if (COMPACTION_BUILD && sc->order &&
1773 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
1774 priority < DEF_PRIORITY - 2))
1775 return true;
1776
1777 return false;
1778}
1779
3e7d3449 1780/*
23b9da55
MG
1781 * Reclaim/compaction is used for high-order allocation requests. It reclaims
1782 * order-0 pages before compacting the zone. should_continue_reclaim() returns
1783 * true if more pages should be reclaimed such that when the page allocator
1784 * calls try_to_compact_zone() that it will have enough free pages to succeed.
1785 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 1786 */
f16015fb 1787static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
3e7d3449
MG
1788 unsigned long nr_reclaimed,
1789 unsigned long nr_scanned,
23b9da55 1790 int priority,
3e7d3449
MG
1791 struct scan_control *sc)
1792{
1793 unsigned long pages_for_compaction;
1794 unsigned long inactive_lru_pages;
1795
1796 /* If not in reclaim/compaction mode, stop */
23b9da55 1797 if (!in_reclaim_compaction(priority, sc))
3e7d3449
MG
1798 return false;
1799
2876592f
MG
1800 /* Consider stopping depending on scan and reclaim activity */
1801 if (sc->gfp_mask & __GFP_REPEAT) {
1802 /*
1803 * For __GFP_REPEAT allocations, stop reclaiming if the
1804 * full LRU list has been scanned and we are still failing
1805 * to reclaim pages. This full LRU scan is potentially
1806 * expensive but a __GFP_REPEAT caller really wants to succeed
1807 */
1808 if (!nr_reclaimed && !nr_scanned)
1809 return false;
1810 } else {
1811 /*
1812 * For non-__GFP_REPEAT allocations which can presumably
1813 * fail without consequence, stop if we failed to reclaim
1814 * any pages from the last SWAP_CLUSTER_MAX number of
1815 * pages that were scanned. This will return to the
1816 * caller faster at the risk reclaim/compaction and
1817 * the resulting allocation attempt fails
1818 */
1819 if (!nr_reclaimed)
1820 return false;
1821 }
3e7d3449
MG
1822
1823 /*
1824 * If we have not reclaimed enough pages for compaction and the
1825 * inactive lists are large enough, continue reclaiming
1826 */
1827 pages_for_compaction = (2UL << sc->order);
f16015fb 1828 inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
86cfd3a4 1829 if (nr_swap_pages > 0)
f16015fb 1830 inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
3e7d3449
MG
1831 if (sc->nr_reclaimed < pages_for_compaction &&
1832 inactive_lru_pages > pages_for_compaction)
1833 return true;
1834
1835 /* If compaction would go ahead or the allocation would succeed, stop */
f16015fb 1836 switch (compaction_suitable(mz->zone, sc->order)) {
3e7d3449
MG
1837 case COMPACT_PARTIAL:
1838 case COMPACT_CONTINUE:
1839 return false;
1840 default:
1841 return true;
1842 }
1843}
1844
1da177e4
LT
1845/*
1846 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1847 */
f16015fb
JW
1848static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
1849 struct scan_control *sc)
1da177e4 1850{
b69408e8 1851 unsigned long nr[NR_LRU_LISTS];
8695949a 1852 unsigned long nr_to_scan;
4111304d 1853 enum lru_list lru;
f0fdc5e8 1854 unsigned long nr_reclaimed, nr_scanned;
22fba335 1855 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
3da367c3 1856 struct blk_plug plug;
e0f79b8f 1857
3e7d3449
MG
1858restart:
1859 nr_reclaimed = 0;
f0fdc5e8 1860 nr_scanned = sc->nr_scanned;
f16015fb 1861 get_scan_count(mz, sc, nr, priority);
1da177e4 1862
3da367c3 1863 blk_start_plug(&plug);
556adecb
RR
1864 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1865 nr[LRU_INACTIVE_FILE]) {
4111304d
HD
1866 for_each_evictable_lru(lru) {
1867 if (nr[lru]) {
ece74b2e 1868 nr_to_scan = min_t(unsigned long,
4111304d
HD
1869 nr[lru], SWAP_CLUSTER_MAX);
1870 nr[lru] -= nr_to_scan;
1da177e4 1871
4111304d 1872 nr_reclaimed += shrink_list(lru, nr_to_scan,
f16015fb 1873 mz, sc, priority);
b69408e8 1874 }
1da177e4 1875 }
a79311c1
RR
1876 /*
1877 * On large memory systems, scan >> priority can become
1878 * really large. This is fine for the starting priority;
1879 * we want to put equal scanning pressure on each zone.
1880 * However, if the VM has a harder time of freeing pages,
1881 * with multiple processes reclaiming pages, the total
1882 * freeing target can get unreasonably large.
1883 */
41c93088 1884 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1885 break;
1da177e4 1886 }
3da367c3 1887 blk_finish_plug(&plug);
3e7d3449 1888 sc->nr_reclaimed += nr_reclaimed;
01dbe5c9 1889
556adecb
RR
1890 /*
1891 * Even if we did not try to evict anon pages at all, we want to
1892 * rebalance the anon lru active/inactive ratio.
1893 */
f16015fb 1894 if (inactive_anon_is_low(mz))
3cb99451
KK
1895 shrink_active_list(SWAP_CLUSTER_MAX, mz,
1896 sc, priority, LRU_ACTIVE_ANON);
556adecb 1897
3e7d3449 1898 /* reclaim/compaction might need reclaim to continue */
f16015fb 1899 if (should_continue_reclaim(mz, nr_reclaimed,
23b9da55
MG
1900 sc->nr_scanned - nr_scanned,
1901 priority, sc))
3e7d3449
MG
1902 goto restart;
1903
232ea4d6 1904 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1905}
1906
f16015fb
JW
1907static void shrink_zone(int priority, struct zone *zone,
1908 struct scan_control *sc)
1909{
5660048c
JW
1910 struct mem_cgroup *root = sc->target_mem_cgroup;
1911 struct mem_cgroup_reclaim_cookie reclaim = {
f16015fb 1912 .zone = zone,
5660048c 1913 .priority = priority,
f16015fb 1914 };
5660048c
JW
1915 struct mem_cgroup *memcg;
1916
5660048c
JW
1917 memcg = mem_cgroup_iter(root, NULL, &reclaim);
1918 do {
1919 struct mem_cgroup_zone mz = {
1920 .mem_cgroup = memcg,
1921 .zone = zone,
1922 };
f16015fb 1923
5660048c
JW
1924 shrink_mem_cgroup_zone(priority, &mz, sc);
1925 /*
1926 * Limit reclaim has historically picked one memcg and
1927 * scanned it with decreasing priority levels until
1928 * nr_to_reclaim had been reclaimed. This priority
1929 * cycle is thus over after a single memcg.
b95a2f2d
JW
1930 *
1931 * Direct reclaim and kswapd, on the other hand, have
1932 * to scan all memory cgroups to fulfill the overall
1933 * scan target for the zone.
5660048c
JW
1934 */
1935 if (!global_reclaim(sc)) {
1936 mem_cgroup_iter_break(root, memcg);
1937 break;
1938 }
1939 memcg = mem_cgroup_iter(root, memcg, &reclaim);
1940 } while (memcg);
f16015fb
JW
1941}
1942
fe4b1b24
MG
1943/* Returns true if compaction should go ahead for a high-order request */
1944static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
1945{
1946 unsigned long balance_gap, watermark;
1947 bool watermark_ok;
1948
1949 /* Do not consider compaction for orders reclaim is meant to satisfy */
1950 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
1951 return false;
1952
1953 /*
1954 * Compaction takes time to run and there are potentially other
1955 * callers using the pages just freed. Continue reclaiming until
1956 * there is a buffer of free pages available to give compaction
1957 * a reasonable chance of completing and allocating the page
1958 */
1959 balance_gap = min(low_wmark_pages(zone),
1960 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
1961 KSWAPD_ZONE_BALANCE_GAP_RATIO);
1962 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
1963 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
1964
1965 /*
1966 * If compaction is deferred, reclaim up to a point where
1967 * compaction will have a chance of success when re-enabled
1968 */
aff62249 1969 if (compaction_deferred(zone, sc->order))
fe4b1b24
MG
1970 return watermark_ok;
1971
1972 /* If compaction is not ready to start, keep reclaiming */
1973 if (!compaction_suitable(zone, sc->order))
1974 return false;
1975
1976 return watermark_ok;
1977}
1978
1da177e4
LT
1979/*
1980 * This is the direct reclaim path, for page-allocating processes. We only
1981 * try to reclaim pages from zones which will satisfy the caller's allocation
1982 * request.
1983 *
41858966
MG
1984 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1985 * Because:
1da177e4
LT
1986 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1987 * allocation or
41858966
MG
1988 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1989 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1990 * zone defense algorithm.
1da177e4 1991 *
1da177e4
LT
1992 * If a zone is deemed to be full of pinned pages then just give it a light
1993 * scan then give up on it.
e0c23279
MG
1994 *
1995 * This function returns true if a zone is being reclaimed for a costly
fe4b1b24 1996 * high-order allocation and compaction is ready to begin. This indicates to
0cee34fd
MG
1997 * the caller that it should consider retrying the allocation instead of
1998 * further reclaim.
1da177e4 1999 */
e0c23279 2000static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 2001 struct scan_control *sc)
1da177e4 2002{
dd1a239f 2003 struct zoneref *z;
54a6eb5c 2004 struct zone *zone;
d149e3b2
YH
2005 unsigned long nr_soft_reclaimed;
2006 unsigned long nr_soft_scanned;
0cee34fd 2007 bool aborted_reclaim = false;
1cfb419b 2008
cc715d99
MG
2009 /*
2010 * If the number of buffer_heads in the machine exceeds the maximum
2011 * allowed level, force direct reclaim to scan the highmem zone as
2012 * highmem pages could be pinning lowmem pages storing buffer_heads
2013 */
2014 if (buffer_heads_over_limit)
2015 sc->gfp_mask |= __GFP_HIGHMEM;
2016
d4debc66
MG
2017 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2018 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 2019 if (!populated_zone(zone))
1da177e4 2020 continue;
1cfb419b
KH
2021 /*
2022 * Take care memory controller reclaiming has small influence
2023 * to global LRU.
2024 */
89b5fae5 2025 if (global_reclaim(sc)) {
1cfb419b
KH
2026 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2027 continue;
93e4a89a 2028 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 2029 continue; /* Let kswapd poll it */
e0887c19
RR
2030 if (COMPACTION_BUILD) {
2031 /*
e0c23279
MG
2032 * If we already have plenty of memory free for
2033 * compaction in this zone, don't free any more.
2034 * Even though compaction is invoked for any
2035 * non-zero order, only frequent costly order
2036 * reclamation is disruptive enough to become a
c7cfa37b
CA
2037 * noticeable problem, like transparent huge
2038 * page allocations.
e0887c19 2039 */
fe4b1b24 2040 if (compaction_ready(zone, sc)) {
0cee34fd 2041 aborted_reclaim = true;
e0887c19 2042 continue;
e0c23279 2043 }
e0887c19 2044 }
ac34a1a3
KH
2045 /*
2046 * This steals pages from memory cgroups over softlimit
2047 * and returns the number of reclaimed pages and
2048 * scanned pages. This works for global memory pressure
2049 * and balancing, not for a memcg's limit.
2050 */
2051 nr_soft_scanned = 0;
2052 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2053 sc->order, sc->gfp_mask,
2054 &nr_soft_scanned);
2055 sc->nr_reclaimed += nr_soft_reclaimed;
2056 sc->nr_scanned += nr_soft_scanned;
2057 /* need some check for avoid more shrink_zone() */
1cfb419b 2058 }
408d8544 2059
a79311c1 2060 shrink_zone(priority, zone, sc);
1da177e4 2061 }
e0c23279 2062
0cee34fd 2063 return aborted_reclaim;
d1908362
MK
2064}
2065
2066static bool zone_reclaimable(struct zone *zone)
2067{
2068 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2069}
2070
929bea7c 2071/* All zones in zonelist are unreclaimable? */
d1908362
MK
2072static bool all_unreclaimable(struct zonelist *zonelist,
2073 struct scan_control *sc)
2074{
2075 struct zoneref *z;
2076 struct zone *zone;
d1908362
MK
2077
2078 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2079 gfp_zone(sc->gfp_mask), sc->nodemask) {
2080 if (!populated_zone(zone))
2081 continue;
2082 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2083 continue;
929bea7c
KM
2084 if (!zone->all_unreclaimable)
2085 return false;
d1908362
MK
2086 }
2087
929bea7c 2088 return true;
1da177e4 2089}
4f98a2fe 2090
1da177e4
LT
2091/*
2092 * This is the main entry point to direct page reclaim.
2093 *
2094 * If a full scan of the inactive list fails to free enough memory then we
2095 * are "out of memory" and something needs to be killed.
2096 *
2097 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2098 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2099 * caller can't do much about. We kick the writeback threads and take explicit
2100 * naps in the hope that some of these pages can be written. But if the
2101 * allocating task holds filesystem locks which prevent writeout this might not
2102 * work, and the allocation attempt will fail.
a41f24ea
NA
2103 *
2104 * returns: 0, if no pages reclaimed
2105 * else, the number of pages reclaimed
1da177e4 2106 */
dac1d27b 2107static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
a09ed5e0
YH
2108 struct scan_control *sc,
2109 struct shrink_control *shrink)
1da177e4
LT
2110{
2111 int priority;
69e05944 2112 unsigned long total_scanned = 0;
1da177e4 2113 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 2114 struct zoneref *z;
54a6eb5c 2115 struct zone *zone;
22fba335 2116 unsigned long writeback_threshold;
0cee34fd 2117 bool aborted_reclaim;
1da177e4 2118
873b4771
KK
2119 delayacct_freepages_start();
2120
89b5fae5 2121 if (global_reclaim(sc))
1cfb419b 2122 count_vm_event(ALLOCSTALL);
1da177e4
LT
2123
2124 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 2125 sc->nr_scanned = 0;
0cee34fd 2126 aborted_reclaim = shrink_zones(priority, zonelist, sc);
e0c23279 2127
66e1707b
BS
2128 /*
2129 * Don't shrink slabs when reclaiming memory from
2130 * over limit cgroups
2131 */
89b5fae5 2132 if (global_reclaim(sc)) {
c6a8a8c5 2133 unsigned long lru_pages = 0;
d4debc66
MG
2134 for_each_zone_zonelist(zone, z, zonelist,
2135 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
2136 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2137 continue;
2138
2139 lru_pages += zone_reclaimable_pages(zone);
2140 }
2141
1495f230 2142 shrink_slab(shrink, sc->nr_scanned, lru_pages);
91a45470 2143 if (reclaim_state) {
a79311c1 2144 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
2145 reclaim_state->reclaimed_slab = 0;
2146 }
1da177e4 2147 }
66e1707b 2148 total_scanned += sc->nr_scanned;
bb21c7ce 2149 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 2150 goto out;
1da177e4
LT
2151
2152 /*
2153 * Try to write back as many pages as we just scanned. This
2154 * tends to cause slow streaming writers to write data to the
2155 * disk smoothly, at the dirtying rate, which is nice. But
2156 * that's undesirable in laptop mode, where we *want* lumpy
2157 * writeout. So in laptop mode, write out the whole world.
2158 */
22fba335
KM
2159 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2160 if (total_scanned > writeback_threshold) {
0e175a18
CW
2161 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2162 WB_REASON_TRY_TO_FREE_PAGES);
66e1707b 2163 sc->may_writepage = 1;
1da177e4
LT
2164 }
2165
2166 /* Take a nap, wait for some writeback to complete */
7b51755c 2167 if (!sc->hibernation_mode && sc->nr_scanned &&
0e093d99
MG
2168 priority < DEF_PRIORITY - 2) {
2169 struct zone *preferred_zone;
2170
2171 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
f33261d7
DR
2172 &cpuset_current_mems_allowed,
2173 &preferred_zone);
0e093d99
MG
2174 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2175 }
1da177e4 2176 }
bb21c7ce 2177
1da177e4 2178out:
873b4771
KK
2179 delayacct_freepages_end();
2180
bb21c7ce
KM
2181 if (sc->nr_reclaimed)
2182 return sc->nr_reclaimed;
2183
929bea7c
KM
2184 /*
2185 * As hibernation is going on, kswapd is freezed so that it can't mark
2186 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2187 * check.
2188 */
2189 if (oom_killer_disabled)
2190 return 0;
2191
0cee34fd
MG
2192 /* Aborted reclaim to try compaction? don't OOM, then */
2193 if (aborted_reclaim)
7335084d
MG
2194 return 1;
2195
bb21c7ce 2196 /* top priority shrink_zones still had more to do? don't OOM, then */
89b5fae5 2197 if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
bb21c7ce
KM
2198 return 1;
2199
2200 return 0;
1da177e4
LT
2201}
2202
dac1d27b 2203unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 2204 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 2205{
33906bc5 2206 unsigned long nr_reclaimed;
66e1707b
BS
2207 struct scan_control sc = {
2208 .gfp_mask = gfp_mask,
2209 .may_writepage = !laptop_mode,
22fba335 2210 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 2211 .may_unmap = 1,
2e2e4259 2212 .may_swap = 1,
66e1707b 2213 .order = order,
f16015fb 2214 .target_mem_cgroup = NULL,
327c0e96 2215 .nodemask = nodemask,
66e1707b 2216 };
a09ed5e0
YH
2217 struct shrink_control shrink = {
2218 .gfp_mask = sc.gfp_mask,
2219 };
66e1707b 2220
33906bc5
MG
2221 trace_mm_vmscan_direct_reclaim_begin(order,
2222 sc.may_writepage,
2223 gfp_mask);
2224
a09ed5e0 2225 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
33906bc5
MG
2226
2227 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2228
2229 return nr_reclaimed;
66e1707b
BS
2230}
2231
00f0b825 2232#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 2233
72835c86 2234unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
4e416953 2235 gfp_t gfp_mask, bool noswap,
0ae5e89c
YH
2236 struct zone *zone,
2237 unsigned long *nr_scanned)
4e416953
BS
2238{
2239 struct scan_control sc = {
0ae5e89c 2240 .nr_scanned = 0,
b8f5c566 2241 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
2242 .may_writepage = !laptop_mode,
2243 .may_unmap = 1,
2244 .may_swap = !noswap,
4e416953 2245 .order = 0,
72835c86 2246 .target_mem_cgroup = memcg,
4e416953 2247 };
5660048c 2248 struct mem_cgroup_zone mz = {
72835c86 2249 .mem_cgroup = memcg,
5660048c
JW
2250 .zone = zone,
2251 };
0ae5e89c 2252
4e416953
BS
2253 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2254 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
2255
2256 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2257 sc.may_writepage,
2258 sc.gfp_mask);
2259
4e416953
BS
2260 /*
2261 * NOTE: Although we can get the priority field, using it
2262 * here is not a good idea, since it limits the pages we can scan.
2263 * if we don't reclaim here, the shrink_zone from balance_pgdat
2264 * will pick up pages from other mem cgroup's as well. We hack
2265 * the priority and make it zero.
2266 */
5660048c 2267 shrink_mem_cgroup_zone(0, &mz, &sc);
bdce6d9e
KM
2268
2269 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2270
0ae5e89c 2271 *nr_scanned = sc.nr_scanned;
4e416953
BS
2272 return sc.nr_reclaimed;
2273}
2274
72835c86 2275unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
a7885eb8 2276 gfp_t gfp_mask,
185efc0f 2277 bool noswap)
66e1707b 2278{
4e416953 2279 struct zonelist *zonelist;
bdce6d9e 2280 unsigned long nr_reclaimed;
889976db 2281 int nid;
66e1707b 2282 struct scan_control sc = {
66e1707b 2283 .may_writepage = !laptop_mode,
a6dc60f8 2284 .may_unmap = 1,
2e2e4259 2285 .may_swap = !noswap,
22fba335 2286 .nr_to_reclaim = SWAP_CLUSTER_MAX,
66e1707b 2287 .order = 0,
72835c86 2288 .target_mem_cgroup = memcg,
327c0e96 2289 .nodemask = NULL, /* we don't care the placement */
a09ed5e0
YH
2290 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2291 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2292 };
2293 struct shrink_control shrink = {
2294 .gfp_mask = sc.gfp_mask,
66e1707b 2295 };
66e1707b 2296
889976db
YH
2297 /*
2298 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2299 * take care of from where we get pages. So the node where we start the
2300 * scan does not need to be the current node.
2301 */
72835c86 2302 nid = mem_cgroup_select_victim_node(memcg);
889976db
YH
2303
2304 zonelist = NODE_DATA(nid)->node_zonelists;
bdce6d9e
KM
2305
2306 trace_mm_vmscan_memcg_reclaim_begin(0,
2307 sc.may_writepage,
2308 sc.gfp_mask);
2309
a09ed5e0 2310 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
bdce6d9e
KM
2311
2312 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2313
2314 return nr_reclaimed;
66e1707b
BS
2315}
2316#endif
2317
f16015fb
JW
2318static void age_active_anon(struct zone *zone, struct scan_control *sc,
2319 int priority)
2320{
b95a2f2d 2321 struct mem_cgroup *memcg;
f16015fb 2322
b95a2f2d
JW
2323 if (!total_swap_pages)
2324 return;
2325
2326 memcg = mem_cgroup_iter(NULL, NULL, NULL);
2327 do {
2328 struct mem_cgroup_zone mz = {
2329 .mem_cgroup = memcg,
2330 .zone = zone,
2331 };
2332
2333 if (inactive_anon_is_low(&mz))
2334 shrink_active_list(SWAP_CLUSTER_MAX, &mz,
3cb99451 2335 sc, priority, LRU_ACTIVE_ANON);
b95a2f2d
JW
2336
2337 memcg = mem_cgroup_iter(NULL, memcg, NULL);
2338 } while (memcg);
f16015fb
JW
2339}
2340
1741c877
MG
2341/*
2342 * pgdat_balanced is used when checking if a node is balanced for high-order
2343 * allocations. Only zones that meet watermarks and are in a zone allowed
2344 * by the callers classzone_idx are added to balanced_pages. The total of
2345 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2346 * for the node to be considered balanced. Forcing all zones to be balanced
2347 * for high orders can cause excessive reclaim when there are imbalanced zones.
2348 * The choice of 25% is due to
2349 * o a 16M DMA zone that is balanced will not balance a zone on any
2350 * reasonable sized machine
2351 * o On all other machines, the top zone must be at least a reasonable
25985edc 2352 * percentage of the middle zones. For example, on 32-bit x86, highmem
1741c877
MG
2353 * would need to be at least 256M for it to be balance a whole node.
2354 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2355 * to balance a node on its own. These seemed like reasonable ratios.
2356 */
2357static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2358 int classzone_idx)
2359{
2360 unsigned long present_pages = 0;
2361 int i;
2362
2363 for (i = 0; i <= classzone_idx; i++)
2364 present_pages += pgdat->node_zones[i].present_pages;
2365
4746efde
SL
2366 /* A special case here: if zone has no page, we think it's balanced */
2367 return balanced_pages >= (present_pages >> 2);
1741c877
MG
2368}
2369
f50de2d3 2370/* is kswapd sleeping prematurely? */
dc83edd9
MG
2371static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2372 int classzone_idx)
f50de2d3 2373{
bb3ab596 2374 int i;
1741c877
MG
2375 unsigned long balanced = 0;
2376 bool all_zones_ok = true;
f50de2d3
MG
2377
2378 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2379 if (remaining)
dc83edd9 2380 return true;
f50de2d3 2381
0abdee2b 2382 /* Check the watermark levels */
08951e54 2383 for (i = 0; i <= classzone_idx; i++) {
bb3ab596
KM
2384 struct zone *zone = pgdat->node_zones + i;
2385
2386 if (!populated_zone(zone))
2387 continue;
2388
355b09c4
MG
2389 /*
2390 * balance_pgdat() skips over all_unreclaimable after
2391 * DEF_PRIORITY. Effectively, it considers them balanced so
2392 * they must be considered balanced here as well if kswapd
2393 * is to sleep
2394 */
2395 if (zone->all_unreclaimable) {
2396 balanced += zone->present_pages;
de3fab39 2397 continue;
355b09c4 2398 }
de3fab39 2399
88f5acf8 2400 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
da175d06 2401 i, 0))
1741c877
MG
2402 all_zones_ok = false;
2403 else
2404 balanced += zone->present_pages;
bb3ab596 2405 }
f50de2d3 2406
1741c877
MG
2407 /*
2408 * For high-order requests, the balanced zones must contain at least
2409 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2410 * must be balanced
2411 */
2412 if (order)
afc7e326 2413 return !pgdat_balanced(pgdat, balanced, classzone_idx);
1741c877
MG
2414 else
2415 return !all_zones_ok;
f50de2d3
MG
2416}
2417
1da177e4
LT
2418/*
2419 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2420 * they are all at high_wmark_pages(zone).
1da177e4 2421 *
0abdee2b 2422 * Returns the final order kswapd was reclaiming at
1da177e4
LT
2423 *
2424 * There is special handling here for zones which are full of pinned pages.
2425 * This can happen if the pages are all mlocked, or if they are all used by
2426 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2427 * What we do is to detect the case where all pages in the zone have been
2428 * scanned twice and there has been zero successful reclaim. Mark the zone as
2429 * dead and from now on, only perform a short scan. Basically we're polling
2430 * the zone for when the problem goes away.
2431 *
2432 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2433 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2434 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2435 * lower zones regardless of the number of free pages in the lower zones. This
2436 * interoperates with the page allocator fallback scheme to ensure that aging
2437 * of pages is balanced across the zones.
1da177e4 2438 */
99504748 2439static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
dc83edd9 2440 int *classzone_idx)
1da177e4 2441{
1da177e4 2442 int all_zones_ok;
1741c877 2443 unsigned long balanced;
1da177e4
LT
2444 int priority;
2445 int i;
99504748 2446 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
69e05944 2447 unsigned long total_scanned;
1da177e4 2448 struct reclaim_state *reclaim_state = current->reclaim_state;
0ae5e89c
YH
2449 unsigned long nr_soft_reclaimed;
2450 unsigned long nr_soft_scanned;
179e9639
AM
2451 struct scan_control sc = {
2452 .gfp_mask = GFP_KERNEL,
a6dc60f8 2453 .may_unmap = 1,
2e2e4259 2454 .may_swap = 1,
22fba335
KM
2455 /*
2456 * kswapd doesn't want to be bailed out while reclaim. because
2457 * we want to put equal scanning pressure on each zone.
2458 */
2459 .nr_to_reclaim = ULONG_MAX,
5ad333eb 2460 .order = order,
f16015fb 2461 .target_mem_cgroup = NULL,
179e9639 2462 };
a09ed5e0
YH
2463 struct shrink_control shrink = {
2464 .gfp_mask = sc.gfp_mask,
2465 };
1da177e4
LT
2466loop_again:
2467 total_scanned = 0;
a79311c1 2468 sc.nr_reclaimed = 0;
c0bbbc73 2469 sc.may_writepage = !laptop_mode;
f8891e5e 2470 count_vm_event(PAGEOUTRUN);
1da177e4 2471
1da177e4 2472 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1da177e4 2473 unsigned long lru_pages = 0;
bb3ab596 2474 int has_under_min_watermark_zone = 0;
1da177e4
LT
2475
2476 all_zones_ok = 1;
1741c877 2477 balanced = 0;
1da177e4 2478
d6277db4
RW
2479 /*
2480 * Scan in the highmem->dma direction for the highest
2481 * zone which needs scanning
2482 */
2483 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2484 struct zone *zone = pgdat->node_zones + i;
1da177e4 2485
d6277db4
RW
2486 if (!populated_zone(zone))
2487 continue;
1da177e4 2488
93e4a89a 2489 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2490 continue;
1da177e4 2491
556adecb
RR
2492 /*
2493 * Do some background aging of the anon list, to give
2494 * pages a chance to be referenced before reclaiming.
2495 */
f16015fb 2496 age_active_anon(zone, &sc, priority);
556adecb 2497
cc715d99
MG
2498 /*
2499 * If the number of buffer_heads in the machine
2500 * exceeds the maximum allowed level and this node
2501 * has a highmem zone, force kswapd to reclaim from
2502 * it to relieve lowmem pressure.
2503 */
2504 if (buffer_heads_over_limit && is_highmem_idx(i)) {
2505 end_zone = i;
2506 break;
2507 }
2508
88f5acf8 2509 if (!zone_watermark_ok_safe(zone, order,
41858966 2510 high_wmark_pages(zone), 0, 0)) {
d6277db4 2511 end_zone = i;
e1dbeda6 2512 break;
439423f6
SL
2513 } else {
2514 /* If balanced, clear the congested flag */
2515 zone_clear_flag(zone, ZONE_CONGESTED);
1da177e4 2516 }
1da177e4 2517 }
e1dbeda6
AM
2518 if (i < 0)
2519 goto out;
2520
1da177e4
LT
2521 for (i = 0; i <= end_zone; i++) {
2522 struct zone *zone = pgdat->node_zones + i;
2523
adea02a1 2524 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2525 }
2526
2527 /*
2528 * Now scan the zone in the dma->highmem direction, stopping
2529 * at the last zone which needs scanning.
2530 *
2531 * We do this because the page allocator works in the opposite
2532 * direction. This prevents the page allocator from allocating
2533 * pages behind kswapd's direction of progress, which would
2534 * cause too much scanning of the lower zones.
2535 */
2536 for (i = 0; i <= end_zone; i++) {
2537 struct zone *zone = pgdat->node_zones + i;
fe2c2a10 2538 int nr_slab, testorder;
8afdcece 2539 unsigned long balance_gap;
1da177e4 2540
f3fe6512 2541 if (!populated_zone(zone))
1da177e4
LT
2542 continue;
2543
93e4a89a 2544 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2545 continue;
2546
1da177e4 2547 sc.nr_scanned = 0;
4e416953 2548
0ae5e89c 2549 nr_soft_scanned = 0;
4e416953
BS
2550 /*
2551 * Call soft limit reclaim before calling shrink_zone.
4e416953 2552 */
0ae5e89c
YH
2553 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2554 order, sc.gfp_mask,
2555 &nr_soft_scanned);
2556 sc.nr_reclaimed += nr_soft_reclaimed;
2557 total_scanned += nr_soft_scanned;
00918b6a 2558
32a4330d 2559 /*
8afdcece
MG
2560 * We put equal pressure on every zone, unless
2561 * one zone has way too many pages free
2562 * already. The "too many pages" is defined
2563 * as the high wmark plus a "gap" where the
2564 * gap is either the low watermark or 1%
2565 * of the zone, whichever is smaller.
32a4330d 2566 */
8afdcece
MG
2567 balance_gap = min(low_wmark_pages(zone),
2568 (zone->present_pages +
2569 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2570 KSWAPD_ZONE_BALANCE_GAP_RATIO);
fe2c2a10
RR
2571 /*
2572 * Kswapd reclaims only single pages with compaction
2573 * enabled. Trying too hard to reclaim until contiguous
2574 * free pages have become available can hurt performance
2575 * by evicting too much useful data from memory.
2576 * Do not reclaim more than needed for compaction.
2577 */
2578 testorder = order;
2579 if (COMPACTION_BUILD && order &&
2580 compaction_suitable(zone, order) !=
2581 COMPACT_SKIPPED)
2582 testorder = 0;
2583
cc715d99 2584 if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
643ac9fc 2585 !zone_watermark_ok_safe(zone, testorder,
8afdcece 2586 high_wmark_pages(zone) + balance_gap,
d7868dae 2587 end_zone, 0)) {
a79311c1 2588 shrink_zone(priority, zone, &sc);
5a03b051 2589
d7868dae
MG
2590 reclaim_state->reclaimed_slab = 0;
2591 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2592 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2593 total_scanned += sc.nr_scanned;
2594
2595 if (nr_slab == 0 && !zone_reclaimable(zone))
2596 zone->all_unreclaimable = 1;
2597 }
2598
1da177e4
LT
2599 /*
2600 * If we've done a decent amount of scanning and
2601 * the reclaim ratio is low, start doing writepage
2602 * even in laptop mode
2603 */
2604 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2605 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2606 sc.may_writepage = 1;
bb3ab596 2607
215ddd66
MG
2608 if (zone->all_unreclaimable) {
2609 if (end_zone && end_zone == i)
2610 end_zone--;
d7868dae 2611 continue;
215ddd66 2612 }
d7868dae 2613
fe2c2a10 2614 if (!zone_watermark_ok_safe(zone, testorder,
45973d74
MK
2615 high_wmark_pages(zone), end_zone, 0)) {
2616 all_zones_ok = 0;
2617 /*
2618 * We are still under min water mark. This
2619 * means that we have a GFP_ATOMIC allocation
2620 * failure risk. Hurry up!
2621 */
88f5acf8 2622 if (!zone_watermark_ok_safe(zone, order,
45973d74
MK
2623 min_wmark_pages(zone), end_zone, 0))
2624 has_under_min_watermark_zone = 1;
0e093d99
MG
2625 } else {
2626 /*
2627 * If a zone reaches its high watermark,
2628 * consider it to be no longer congested. It's
2629 * possible there are dirty pages backed by
2630 * congested BDIs but as pressure is relieved,
2631 * spectulatively avoid congestion waits
2632 */
2633 zone_clear_flag(zone, ZONE_CONGESTED);
dc83edd9 2634 if (i <= *classzone_idx)
1741c877 2635 balanced += zone->present_pages;
45973d74 2636 }
bb3ab596 2637
1da177e4 2638 }
dc83edd9 2639 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
1da177e4
LT
2640 break; /* kswapd: all done */
2641 /*
2642 * OK, kswapd is getting into trouble. Take a nap, then take
2643 * another pass across the zones.
2644 */
bb3ab596
KM
2645 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2646 if (has_under_min_watermark_zone)
2647 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2648 else
2649 congestion_wait(BLK_RW_ASYNC, HZ/10);
2650 }
1da177e4
LT
2651
2652 /*
2653 * We do this so kswapd doesn't build up large priorities for
2654 * example when it is freeing in parallel with allocators. It
2655 * matches the direct reclaim path behaviour in terms of impact
2656 * on zone->*_priority.
2657 */
a79311c1 2658 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2659 break;
2660 }
2661out:
99504748
MG
2662
2663 /*
2664 * order-0: All zones must meet high watermark for a balanced node
1741c877
MG
2665 * high-order: Balanced zones must make up at least 25% of the node
2666 * for the node to be balanced
99504748 2667 */
dc83edd9 2668 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
1da177e4 2669 cond_resched();
8357376d
RW
2670
2671 try_to_freeze();
2672
73ce02e9
KM
2673 /*
2674 * Fragmentation may mean that the system cannot be
2675 * rebalanced for high-order allocations in all zones.
2676 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2677 * it means the zones have been fully scanned and are still
2678 * not balanced. For high-order allocations, there is
2679 * little point trying all over again as kswapd may
2680 * infinite loop.
2681 *
2682 * Instead, recheck all watermarks at order-0 as they
2683 * are the most important. If watermarks are ok, kswapd will go
2684 * back to sleep. High-order users can still perform direct
2685 * reclaim if they wish.
2686 */
2687 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2688 order = sc.order = 0;
2689
1da177e4
LT
2690 goto loop_again;
2691 }
2692
99504748
MG
2693 /*
2694 * If kswapd was reclaiming at a higher order, it has the option of
2695 * sleeping without all zones being balanced. Before it does, it must
2696 * ensure that the watermarks for order-0 on *all* zones are met and
2697 * that the congestion flags are cleared. The congestion flag must
2698 * be cleared as kswapd is the only mechanism that clears the flag
2699 * and it is potentially going to sleep here.
2700 */
2701 if (order) {
7be62de9
RR
2702 int zones_need_compaction = 1;
2703
99504748
MG
2704 for (i = 0; i <= end_zone; i++) {
2705 struct zone *zone = pgdat->node_zones + i;
2706
2707 if (!populated_zone(zone))
2708 continue;
2709
2710 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2711 continue;
2712
fe2c2a10 2713 /* Would compaction fail due to lack of free memory? */
496b919b
RR
2714 if (COMPACTION_BUILD &&
2715 compaction_suitable(zone, order) == COMPACT_SKIPPED)
fe2c2a10
RR
2716 goto loop_again;
2717
99504748
MG
2718 /* Confirm the zone is balanced for order-0 */
2719 if (!zone_watermark_ok(zone, 0,
2720 high_wmark_pages(zone), 0, 0)) {
2721 order = sc.order = 0;
2722 goto loop_again;
2723 }
2724
7be62de9
RR
2725 /* Check if the memory needs to be defragmented. */
2726 if (zone_watermark_ok(zone, order,
2727 low_wmark_pages(zone), *classzone_idx, 0))
2728 zones_need_compaction = 0;
2729
99504748
MG
2730 /* If balanced, clear the congested flag */
2731 zone_clear_flag(zone, ZONE_CONGESTED);
2732 }
7be62de9
RR
2733
2734 if (zones_need_compaction)
2735 compact_pgdat(pgdat, order);
99504748
MG
2736 }
2737
0abdee2b
MG
2738 /*
2739 * Return the order we were reclaiming at so sleeping_prematurely()
2740 * makes a decision on the order we were last reclaiming at. However,
2741 * if another caller entered the allocator slow path while kswapd
2742 * was awake, order will remain at the higher level
2743 */
dc83edd9 2744 *classzone_idx = end_zone;
0abdee2b 2745 return order;
1da177e4
LT
2746}
2747
dc83edd9 2748static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f0bc0a60
KM
2749{
2750 long remaining = 0;
2751 DEFINE_WAIT(wait);
2752
2753 if (freezing(current) || kthread_should_stop())
2754 return;
2755
2756 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2757
2758 /* Try to sleep for a short interval */
dc83edd9 2759 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2760 remaining = schedule_timeout(HZ/10);
2761 finish_wait(&pgdat->kswapd_wait, &wait);
2762 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2763 }
2764
2765 /*
2766 * After a short sleep, check if it was a premature sleep. If not, then
2767 * go fully to sleep until explicitly woken up.
2768 */
dc83edd9 2769 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
f0bc0a60
KM
2770 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2771
2772 /*
2773 * vmstat counters are not perfectly accurate and the estimated
2774 * value for counters such as NR_FREE_PAGES can deviate from the
2775 * true value by nr_online_cpus * threshold. To avoid the zone
2776 * watermarks being breached while under pressure, we reduce the
2777 * per-cpu vmstat threshold while kswapd is awake and restore
2778 * them before going back to sleep.
2779 */
2780 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2781 schedule();
2782 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2783 } else {
2784 if (remaining)
2785 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2786 else
2787 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2788 }
2789 finish_wait(&pgdat->kswapd_wait, &wait);
2790}
2791
1da177e4
LT
2792/*
2793 * The background pageout daemon, started as a kernel thread
4f98a2fe 2794 * from the init process.
1da177e4
LT
2795 *
2796 * This basically trickles out pages so that we have _some_
2797 * free memory available even if there is no other activity
2798 * that frees anything up. This is needed for things like routing
2799 * etc, where we otherwise might have all activity going on in
2800 * asynchronous contexts that cannot page things out.
2801 *
2802 * If there are applications that are active memory-allocators
2803 * (most normal use), this basically shouldn't matter.
2804 */
2805static int kswapd(void *p)
2806{
215ddd66 2807 unsigned long order, new_order;
d2ebd0f6 2808 unsigned balanced_order;
215ddd66 2809 int classzone_idx, new_classzone_idx;
d2ebd0f6 2810 int balanced_classzone_idx;
1da177e4
LT
2811 pg_data_t *pgdat = (pg_data_t*)p;
2812 struct task_struct *tsk = current;
f0bc0a60 2813
1da177e4
LT
2814 struct reclaim_state reclaim_state = {
2815 .reclaimed_slab = 0,
2816 };
a70f7302 2817 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2818
cf40bd16
NP
2819 lockdep_set_current_reclaim_state(GFP_KERNEL);
2820
174596a0 2821 if (!cpumask_empty(cpumask))
c5f59f08 2822 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2823 current->reclaim_state = &reclaim_state;
2824
2825 /*
2826 * Tell the memory management that we're a "memory allocator",
2827 * and that if we need more memory we should get access to it
2828 * regardless (see "__alloc_pages()"). "kswapd" should
2829 * never get caught in the normal page freeing logic.
2830 *
2831 * (Kswapd normally doesn't need memory anyway, but sometimes
2832 * you need a small amount of memory in order to be able to
2833 * page out something else, and this flag essentially protects
2834 * us from recursively trying to free more memory as we're
2835 * trying to free the first piece of memory in the first place).
2836 */
930d9152 2837 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2838 set_freezable();
1da177e4 2839
215ddd66 2840 order = new_order = 0;
d2ebd0f6 2841 balanced_order = 0;
215ddd66 2842 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
d2ebd0f6 2843 balanced_classzone_idx = classzone_idx;
1da177e4 2844 for ( ; ; ) {
8fe23e05 2845 int ret;
3e1d1d28 2846
215ddd66
MG
2847 /*
2848 * If the last balance_pgdat was unsuccessful it's unlikely a
2849 * new request of a similar or harder type will succeed soon
2850 * so consider going to sleep on the basis we reclaimed at
2851 */
d2ebd0f6
AS
2852 if (balanced_classzone_idx >= new_classzone_idx &&
2853 balanced_order == new_order) {
215ddd66
MG
2854 new_order = pgdat->kswapd_max_order;
2855 new_classzone_idx = pgdat->classzone_idx;
2856 pgdat->kswapd_max_order = 0;
2857 pgdat->classzone_idx = pgdat->nr_zones - 1;
2858 }
2859
99504748 2860 if (order < new_order || classzone_idx > new_classzone_idx) {
1da177e4
LT
2861 /*
2862 * Don't sleep if someone wants a larger 'order'
99504748 2863 * allocation or has tigher zone constraints
1da177e4
LT
2864 */
2865 order = new_order;
99504748 2866 classzone_idx = new_classzone_idx;
1da177e4 2867 } else {
d2ebd0f6
AS
2868 kswapd_try_to_sleep(pgdat, balanced_order,
2869 balanced_classzone_idx);
1da177e4 2870 order = pgdat->kswapd_max_order;
99504748 2871 classzone_idx = pgdat->classzone_idx;
f0dfcde0
AS
2872 new_order = order;
2873 new_classzone_idx = classzone_idx;
4d40502e 2874 pgdat->kswapd_max_order = 0;
215ddd66 2875 pgdat->classzone_idx = pgdat->nr_zones - 1;
1da177e4 2876 }
1da177e4 2877
8fe23e05
DR
2878 ret = try_to_freeze();
2879 if (kthread_should_stop())
2880 break;
2881
2882 /*
2883 * We can speed up thawing tasks if we don't call balance_pgdat
2884 * after returning from the refrigerator
2885 */
33906bc5
MG
2886 if (!ret) {
2887 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
d2ebd0f6
AS
2888 balanced_classzone_idx = classzone_idx;
2889 balanced_order = balance_pgdat(pgdat, order,
2890 &balanced_classzone_idx);
33906bc5 2891 }
1da177e4
LT
2892 }
2893 return 0;
2894}
2895
2896/*
2897 * A zone is low on free memory, so wake its kswapd task to service it.
2898 */
99504748 2899void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
2900{
2901 pg_data_t *pgdat;
2902
f3fe6512 2903 if (!populated_zone(zone))
1da177e4
LT
2904 return;
2905
88f5acf8 2906 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2907 return;
88f5acf8 2908 pgdat = zone->zone_pgdat;
99504748 2909 if (pgdat->kswapd_max_order < order) {
1da177e4 2910 pgdat->kswapd_max_order = order;
99504748
MG
2911 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
2912 }
8d0986e2 2913 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2914 return;
88f5acf8
MG
2915 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
2916 return;
2917
2918 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
8d0986e2 2919 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2920}
2921
adea02a1
WF
2922/*
2923 * The reclaimable count would be mostly accurate.
2924 * The less reclaimable pages may be
2925 * - mlocked pages, which will be moved to unevictable list when encountered
2926 * - mapped pages, which may require several travels to be reclaimed
2927 * - dirty pages, which is not "instantly" reclaimable
2928 */
2929unsigned long global_reclaimable_pages(void)
4f98a2fe 2930{
adea02a1
WF
2931 int nr;
2932
2933 nr = global_page_state(NR_ACTIVE_FILE) +
2934 global_page_state(NR_INACTIVE_FILE);
2935
2936 if (nr_swap_pages > 0)
2937 nr += global_page_state(NR_ACTIVE_ANON) +
2938 global_page_state(NR_INACTIVE_ANON);
2939
2940 return nr;
2941}
2942
2943unsigned long zone_reclaimable_pages(struct zone *zone)
2944{
2945 int nr;
2946
2947 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2948 zone_page_state(zone, NR_INACTIVE_FILE);
2949
2950 if (nr_swap_pages > 0)
2951 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2952 zone_page_state(zone, NR_INACTIVE_ANON);
2953
2954 return nr;
4f98a2fe
RR
2955}
2956
c6f37f12 2957#ifdef CONFIG_HIBERNATION
1da177e4 2958/*
7b51755c 2959 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2960 * freed pages.
2961 *
2962 * Rather than trying to age LRUs the aim is to preserve the overall
2963 * LRU order by reclaiming preferentially
2964 * inactive > active > active referenced > active mapped
1da177e4 2965 */
7b51755c 2966unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2967{
d6277db4 2968 struct reclaim_state reclaim_state;
d6277db4 2969 struct scan_control sc = {
7b51755c
KM
2970 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2971 .may_swap = 1,
2972 .may_unmap = 1,
d6277db4 2973 .may_writepage = 1,
7b51755c
KM
2974 .nr_to_reclaim = nr_to_reclaim,
2975 .hibernation_mode = 1,
7b51755c 2976 .order = 0,
1da177e4 2977 };
a09ed5e0
YH
2978 struct shrink_control shrink = {
2979 .gfp_mask = sc.gfp_mask,
2980 };
2981 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
2982 struct task_struct *p = current;
2983 unsigned long nr_reclaimed;
1da177e4 2984
7b51755c
KM
2985 p->flags |= PF_MEMALLOC;
2986 lockdep_set_current_reclaim_state(sc.gfp_mask);
2987 reclaim_state.reclaimed_slab = 0;
2988 p->reclaim_state = &reclaim_state;
d6277db4 2989
a09ed5e0 2990 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
d979677c 2991
7b51755c
KM
2992 p->reclaim_state = NULL;
2993 lockdep_clear_current_reclaim_state();
2994 p->flags &= ~PF_MEMALLOC;
d6277db4 2995
7b51755c 2996 return nr_reclaimed;
1da177e4 2997}
c6f37f12 2998#endif /* CONFIG_HIBERNATION */
1da177e4 2999
1da177e4
LT
3000/* It's optimal to keep kswapds on the same CPUs as their memory, but
3001 not required for correctness. So if the last cpu in a node goes
3002 away, we get changed to run anywhere: as the first one comes back,
3003 restore their cpu bindings. */
9c7b216d 3004static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 3005 unsigned long action, void *hcpu)
1da177e4 3006{
58c0a4a7 3007 int nid;
1da177e4 3008
8bb78442 3009 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 3010 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 3011 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
3012 const struct cpumask *mask;
3013
3014 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3015
3e597945 3016 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 3017 /* One of our CPUs online: restore mask */
c5f59f08 3018 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
3019 }
3020 }
3021 return NOTIFY_OK;
3022}
1da177e4 3023
3218ae14
YG
3024/*
3025 * This kswapd start function will be called by init and node-hot-add.
3026 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3027 */
3028int kswapd_run(int nid)
3029{
3030 pg_data_t *pgdat = NODE_DATA(nid);
3031 int ret = 0;
3032
3033 if (pgdat->kswapd)
3034 return 0;
3035
3036 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3037 if (IS_ERR(pgdat->kswapd)) {
3038 /* failure at boot is fatal */
3039 BUG_ON(system_state == SYSTEM_BOOTING);
3040 printk("Failed to start kswapd on node %d\n",nid);
3041 ret = -1;
3042 }
3043 return ret;
3044}
3045
8fe23e05
DR
3046/*
3047 * Called by memory hotplug when all memory in a node is offlined.
3048 */
3049void kswapd_stop(int nid)
3050{
3051 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3052
3053 if (kswapd)
3054 kthread_stop(kswapd);
3055}
3056
1da177e4
LT
3057static int __init kswapd_init(void)
3058{
3218ae14 3059 int nid;
69e05944 3060
1da177e4 3061 swap_setup();
9422ffba 3062 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 3063 kswapd_run(nid);
1da177e4
LT
3064 hotcpu_notifier(cpu_callback, 0);
3065 return 0;
3066}
3067
3068module_init(kswapd_init)
9eeff239
CL
3069
3070#ifdef CONFIG_NUMA
3071/*
3072 * Zone reclaim mode
3073 *
3074 * If non-zero call zone_reclaim when the number of free pages falls below
3075 * the watermarks.
9eeff239
CL
3076 */
3077int zone_reclaim_mode __read_mostly;
3078
1b2ffb78 3079#define RECLAIM_OFF 0
7d03431c 3080#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
3081#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3082#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3083
a92f7126
CL
3084/*
3085 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3086 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3087 * a zone.
3088 */
3089#define ZONE_RECLAIM_PRIORITY 4
3090
9614634f
CL
3091/*
3092 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3093 * occur.
3094 */
3095int sysctl_min_unmapped_ratio = 1;
3096
0ff38490
CL
3097/*
3098 * If the number of slab pages in a zone grows beyond this percentage then
3099 * slab reclaim needs to occur.
3100 */
3101int sysctl_min_slab_ratio = 5;
3102
90afa5de
MG
3103static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3104{
3105 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3106 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3107 zone_page_state(zone, NR_ACTIVE_FILE);
3108
3109 /*
3110 * It's possible for there to be more file mapped pages than
3111 * accounted for by the pages on the file LRU lists because
3112 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3113 */
3114 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3115}
3116
3117/* Work out how many page cache pages we can reclaim in this reclaim_mode */
3118static long zone_pagecache_reclaimable(struct zone *zone)
3119{
3120 long nr_pagecache_reclaimable;
3121 long delta = 0;
3122
3123 /*
3124 * If RECLAIM_SWAP is set, then all file pages are considered
3125 * potentially reclaimable. Otherwise, we have to worry about
3126 * pages like swapcache and zone_unmapped_file_pages() provides
3127 * a better estimate
3128 */
3129 if (zone_reclaim_mode & RECLAIM_SWAP)
3130 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3131 else
3132 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3133
3134 /* If we can't clean pages, remove dirty pages from consideration */
3135 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3136 delta += zone_page_state(zone, NR_FILE_DIRTY);
3137
3138 /* Watch for any possible underflows due to delta */
3139 if (unlikely(delta > nr_pagecache_reclaimable))
3140 delta = nr_pagecache_reclaimable;
3141
3142 return nr_pagecache_reclaimable - delta;
3143}
3144
9eeff239
CL
3145/*
3146 * Try to free up some pages from this zone through reclaim.
3147 */
179e9639 3148static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 3149{
7fb2d46d 3150 /* Minimum pages needed in order to stay on node */
69e05944 3151 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3152 struct task_struct *p = current;
3153 struct reclaim_state reclaim_state;
8695949a 3154 int priority;
179e9639
AM
3155 struct scan_control sc = {
3156 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 3157 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 3158 .may_swap = 1,
22fba335
KM
3159 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3160 SWAP_CLUSTER_MAX),
179e9639 3161 .gfp_mask = gfp_mask,
bd2f6199 3162 .order = order,
179e9639 3163 };
a09ed5e0
YH
3164 struct shrink_control shrink = {
3165 .gfp_mask = sc.gfp_mask,
3166 };
15748048 3167 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 3168
9eeff239 3169 cond_resched();
d4f7796e
CL
3170 /*
3171 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3172 * and we also need to be able to write out pages for RECLAIM_WRITE
3173 * and RECLAIM_SWAP.
3174 */
3175 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 3176 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
3177 reclaim_state.reclaimed_slab = 0;
3178 p->reclaim_state = &reclaim_state;
c84db23c 3179
90afa5de 3180 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
3181 /*
3182 * Free memory by calling shrink zone with increasing
3183 * priorities until we have enough memory freed.
3184 */
3185 priority = ZONE_RECLAIM_PRIORITY;
3186 do {
a79311c1 3187 shrink_zone(priority, zone, &sc);
0ff38490 3188 priority--;
a79311c1 3189 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 3190 }
c84db23c 3191
15748048
KM
3192 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3193 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 3194 /*
7fb2d46d 3195 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
3196 * many pages were freed in this zone. So we take the current
3197 * number of slab pages and shake the slab until it is reduced
3198 * by the same nr_pages that we used for reclaiming unmapped
3199 * pages.
2a16e3f4 3200 *
0ff38490
CL
3201 * Note that shrink_slab will free memory on all zones and may
3202 * take a long time.
2a16e3f4 3203 */
4dc4b3d9
KM
3204 for (;;) {
3205 unsigned long lru_pages = zone_reclaimable_pages(zone);
3206
3207 /* No reclaimable slab or very low memory pressure */
1495f230 3208 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
4dc4b3d9
KM
3209 break;
3210
3211 /* Freed enough memory */
3212 nr_slab_pages1 = zone_page_state(zone,
3213 NR_SLAB_RECLAIMABLE);
3214 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3215 break;
3216 }
83e33a47
CL
3217
3218 /*
3219 * Update nr_reclaimed by the number of slab pages we
3220 * reclaimed from this zone.
3221 */
15748048
KM
3222 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3223 if (nr_slab_pages1 < nr_slab_pages0)
3224 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
3225 }
3226
9eeff239 3227 p->reclaim_state = NULL;
d4f7796e 3228 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 3229 lockdep_clear_current_reclaim_state();
a79311c1 3230 return sc.nr_reclaimed >= nr_pages;
9eeff239 3231}
179e9639
AM
3232
3233int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3234{
179e9639 3235 int node_id;
d773ed6b 3236 int ret;
179e9639
AM
3237
3238 /*
0ff38490
CL
3239 * Zone reclaim reclaims unmapped file backed pages and
3240 * slab pages if we are over the defined limits.
34aa1330 3241 *
9614634f
CL
3242 * A small portion of unmapped file backed pages is needed for
3243 * file I/O otherwise pages read by file I/O will be immediately
3244 * thrown out if the zone is overallocated. So we do not reclaim
3245 * if less than a specified percentage of the zone is used by
3246 * unmapped file backed pages.
179e9639 3247 */
90afa5de
MG
3248 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3249 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 3250 return ZONE_RECLAIM_FULL;
179e9639 3251
93e4a89a 3252 if (zone->all_unreclaimable)
fa5e084e 3253 return ZONE_RECLAIM_FULL;
d773ed6b 3254
179e9639 3255 /*
d773ed6b 3256 * Do not scan if the allocation should not be delayed.
179e9639 3257 */
d773ed6b 3258 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 3259 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
3260
3261 /*
3262 * Only run zone reclaim on the local zone or on zones that do not
3263 * have associated processors. This will favor the local processor
3264 * over remote processors and spread off node memory allocations
3265 * as wide as possible.
3266 */
89fa3024 3267 node_id = zone_to_nid(zone);
37c0708d 3268 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 3269 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
3270
3271 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
3272 return ZONE_RECLAIM_NOSCAN;
3273
d773ed6b
DR
3274 ret = __zone_reclaim(zone, gfp_mask, order);
3275 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3276
24cf7251
MG
3277 if (!ret)
3278 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3279
d773ed6b 3280 return ret;
179e9639 3281}
9eeff239 3282#endif
894bc310 3283
894bc310
LS
3284/*
3285 * page_evictable - test whether a page is evictable
3286 * @page: the page to test
3287 * @vma: the VMA in which the page is or will be mapped, may be NULL
3288 *
3289 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
3290 * lists vs unevictable list. The vma argument is !NULL when called from the
3291 * fault path to determine how to instantate a new page.
894bc310
LS
3292 *
3293 * Reasons page might not be evictable:
ba9ddf49 3294 * (1) page's mapping marked unevictable
b291f000 3295 * (2) page is part of an mlocked VMA
ba9ddf49 3296 *
894bc310
LS
3297 */
3298int page_evictable(struct page *page, struct vm_area_struct *vma)
3299{
3300
ba9ddf49
LS
3301 if (mapping_unevictable(page_mapping(page)))
3302 return 0;
3303
096a7cf4 3304 if (PageMlocked(page) || (vma && mlocked_vma_newpage(vma, page)))
b291f000 3305 return 0;
894bc310
LS
3306
3307 return 1;
3308}
89e004ea 3309
85046579 3310#ifdef CONFIG_SHMEM
89e004ea 3311/**
24513264
HD
3312 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3313 * @pages: array of pages to check
3314 * @nr_pages: number of pages to check
89e004ea 3315 *
24513264 3316 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
3317 *
3318 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 3319 */
24513264 3320void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 3321{
925b7673 3322 struct lruvec *lruvec;
24513264
HD
3323 struct zone *zone = NULL;
3324 int pgscanned = 0;
3325 int pgrescued = 0;
3326 int i;
89e004ea 3327
24513264
HD
3328 for (i = 0; i < nr_pages; i++) {
3329 struct page *page = pages[i];
3330 struct zone *pagezone;
89e004ea 3331
24513264
HD
3332 pgscanned++;
3333 pagezone = page_zone(page);
3334 if (pagezone != zone) {
3335 if (zone)
3336 spin_unlock_irq(&zone->lru_lock);
3337 zone = pagezone;
3338 spin_lock_irq(&zone->lru_lock);
3339 }
89e004ea 3340
24513264
HD
3341 if (!PageLRU(page) || !PageUnevictable(page))
3342 continue;
89e004ea 3343
24513264
HD
3344 if (page_evictable(page, NULL)) {
3345 enum lru_list lru = page_lru_base_type(page);
3346
3347 VM_BUG_ON(PageActive(page));
3348 ClearPageUnevictable(page);
3349 __dec_zone_state(zone, NR_UNEVICTABLE);
3350 lruvec = mem_cgroup_lru_move_lists(zone, page,
3351 LRU_UNEVICTABLE, lru);
3352 list_move(&page->lru, &lruvec->lists[lru]);
3353 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3354 pgrescued++;
89e004ea 3355 }
24513264 3356 }
89e004ea 3357
24513264
HD
3358 if (zone) {
3359 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3360 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3361 spin_unlock_irq(&zone->lru_lock);
89e004ea 3362 }
89e004ea 3363}
85046579 3364#endif /* CONFIG_SHMEM */
af936a16 3365
264e56d8 3366static void warn_scan_unevictable_pages(void)
af936a16 3367{
264e56d8 3368 printk_once(KERN_WARNING
25bd91bd 3369 "%s: The scan_unevictable_pages sysctl/node-interface has been "
264e56d8 3370 "disabled for lack of a legitimate use case. If you have "
25bd91bd
KM
3371 "one, please send an email to linux-mm@kvack.org.\n",
3372 current->comm);
af936a16
LS
3373}
3374
3375/*
3376 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3377 * all nodes' unevictable lists for evictable pages
3378 */
3379unsigned long scan_unevictable_pages;
3380
3381int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 3382 void __user *buffer,
af936a16
LS
3383 size_t *length, loff_t *ppos)
3384{
264e56d8 3385 warn_scan_unevictable_pages();
8d65af78 3386 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
3387 scan_unevictable_pages = 0;
3388 return 0;
3389}
3390
e4455abb 3391#ifdef CONFIG_NUMA
af936a16
LS
3392/*
3393 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3394 * a specified node's per zone unevictable lists for evictable pages.
3395 */
3396
10fbcf4c
KS
3397static ssize_t read_scan_unevictable_node(struct device *dev,
3398 struct device_attribute *attr,
af936a16
LS
3399 char *buf)
3400{
264e56d8 3401 warn_scan_unevictable_pages();
af936a16
LS
3402 return sprintf(buf, "0\n"); /* always zero; should fit... */
3403}
3404
10fbcf4c
KS
3405static ssize_t write_scan_unevictable_node(struct device *dev,
3406 struct device_attribute *attr,
af936a16
LS
3407 const char *buf, size_t count)
3408{
264e56d8 3409 warn_scan_unevictable_pages();
af936a16
LS
3410 return 1;
3411}
3412
3413
10fbcf4c 3414static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
af936a16
LS
3415 read_scan_unevictable_node,
3416 write_scan_unevictable_node);
3417
3418int scan_unevictable_register_node(struct node *node)
3419{
10fbcf4c 3420 return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16
LS
3421}
3422
3423void scan_unevictable_unregister_node(struct node *node)
3424{
10fbcf4c 3425 device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
af936a16 3426}
e4455abb 3427#endif