Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / vmalloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmalloc.c
3 *
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
930fc45a 8 * Numa awareness, Christoph Lameter, SGI, June 2005
1da177e4
LT
9 */
10
db64fe02 11#include <linux/vmalloc.h>
1da177e4
LT
12#include <linux/mm.h>
13#include <linux/module.h>
14#include <linux/highmem.h>
d43c36dc 15#include <linux/sched.h>
1da177e4
LT
16#include <linux/slab.h>
17#include <linux/spinlock.h>
18#include <linux/interrupt.h>
5f6a6a9c 19#include <linux/proc_fs.h>
a10aa579 20#include <linux/seq_file.h>
3ac7fe5a 21#include <linux/debugobjects.h>
23016969 22#include <linux/kallsyms.h>
db64fe02
NP
23#include <linux/list.h>
24#include <linux/rbtree.h>
25#include <linux/radix-tree.h>
26#include <linux/rcupdate.h>
f0aa6617 27#include <linux/pfn.h>
89219d37 28#include <linux/kmemleak.h>
60063497 29#include <linux/atomic.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/tlbflush.h>
2dca6999 32#include <asm/shmparam.h>
1da177e4 33
db64fe02 34/*** Page table manipulation functions ***/
b221385b 35
1da177e4
LT
36static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37{
38 pte_t *pte;
39
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
45}
46
db64fe02 47static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
1da177e4
LT
48{
49 pmd_t *pmd;
50 unsigned long next;
51
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
59}
60
db64fe02 61static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
1da177e4
LT
62{
63 pud_t *pud;
64 unsigned long next;
65
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
73}
74
db64fe02 75static void vunmap_page_range(unsigned long addr, unsigned long end)
1da177e4
LT
76{
77 pgd_t *pgd;
78 unsigned long next;
1da177e4
LT
79
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
1da177e4
LT
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
1da177e4
LT
88}
89
90static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
db64fe02 91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
92{
93 pte_t *pte;
94
db64fe02
NP
95 /*
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
98 */
99
872fec16 100 pte = pte_alloc_kernel(pmd, addr);
1da177e4
LT
101 if (!pte)
102 return -ENOMEM;
103 do {
db64fe02
NP
104 struct page *page = pages[*nr];
105
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
1da177e4
LT
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
db64fe02 111 (*nr)++;
1da177e4
LT
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
114}
115
db64fe02
NP
116static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
118{
119 pmd_t *pmd;
120 unsigned long next;
121
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
db64fe02 127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
1da177e4
LT
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
131}
132
db64fe02
NP
133static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
1da177e4
LT
135{
136 pud_t *pud;
137 unsigned long next;
138
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
db64fe02 144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
1da177e4
LT
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
148}
149
db64fe02
NP
150/*
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
153 *
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 */
8fc48985
TH
156static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
1da177e4
LT
158{
159 pgd_t *pgd;
160 unsigned long next;
2e4e27c7 161 unsigned long addr = start;
db64fe02
NP
162 int err = 0;
163 int nr = 0;
1da177e4
LT
164
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
1da177e4
LT
167 do {
168 next = pgd_addr_end(addr, end);
db64fe02 169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
1da177e4 170 if (err)
bf88c8c8 171 return err;
1da177e4 172 } while (pgd++, addr = next, addr != end);
db64fe02 173
db64fe02 174 return nr;
1da177e4
LT
175}
176
8fc48985
TH
177static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
179{
180 int ret;
181
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
185}
186
81ac3ad9 187int is_vmalloc_or_module_addr(const void *x)
73bdf0a6
LT
188{
189 /*
ab4f2ee1 190 * ARM, x86-64 and sparc64 put modules in a special place,
73bdf0a6
LT
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
193 */
194#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198#endif
199 return is_vmalloc_addr(x);
200}
201
48667e7a 202/*
db64fe02 203 * Walk a vmap address to the struct page it maps.
48667e7a 204 */
b3bdda02 205struct page *vmalloc_to_page(const void *vmalloc_addr)
48667e7a
CL
206{
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
48667e7a 210
7aa413de
IM
211 /*
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
214 */
73bdf0a6 215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
59ea7463 216
48667e7a 217 if (!pgd_none(*pgd)) {
db64fe02 218 pud_t *pud = pud_offset(pgd, addr);
48667e7a 219 if (!pud_none(*pud)) {
db64fe02 220 pmd_t *pmd = pmd_offset(pud, addr);
48667e7a 221 if (!pmd_none(*pmd)) {
db64fe02
NP
222 pte_t *ptep, pte;
223
48667e7a
CL
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
229 }
230 }
231 }
232 return page;
233}
234EXPORT_SYMBOL(vmalloc_to_page);
235
236/*
237 * Map a vmalloc()-space virtual address to the physical page frame number.
238 */
b3bdda02 239unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
48667e7a
CL
240{
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
242}
243EXPORT_SYMBOL(vmalloc_to_pfn);
244
db64fe02
NP
245
246/*** Global kva allocator ***/
247
248#define VM_LAZY_FREE 0x01
249#define VM_LAZY_FREEING 0x02
250#define VM_VM_AREA 0x04
251
252struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
db1aecaf 259 struct vm_struct *vm;
db64fe02
NP
260 struct rcu_head rcu_head;
261};
262
263static DEFINE_SPINLOCK(vmap_area_lock);
db64fe02 264static LIST_HEAD(vmap_area_list);
89699605
NP
265static struct rb_root vmap_area_root = RB_ROOT;
266
267/* The vmap cache globals are protected by vmap_area_lock */
268static struct rb_node *free_vmap_cache;
269static unsigned long cached_hole_size;
270static unsigned long cached_vstart;
271static unsigned long cached_align;
272
ca23e405 273static unsigned long vmap_area_pcpu_hole;
db64fe02
NP
274
275static struct vmap_area *__find_vmap_area(unsigned long addr)
1da177e4 276{
db64fe02
NP
277 struct rb_node *n = vmap_area_root.rb_node;
278
279 while (n) {
280 struct vmap_area *va;
281
282 va = rb_entry(n, struct vmap_area, rb_node);
283 if (addr < va->va_start)
284 n = n->rb_left;
285 else if (addr > va->va_start)
286 n = n->rb_right;
287 else
288 return va;
289 }
290
291 return NULL;
292}
293
294static void __insert_vmap_area(struct vmap_area *va)
295{
296 struct rb_node **p = &vmap_area_root.rb_node;
297 struct rb_node *parent = NULL;
298 struct rb_node *tmp;
299
300 while (*p) {
170168d0 301 struct vmap_area *tmp_va;
db64fe02
NP
302
303 parent = *p;
170168d0
NK
304 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 if (va->va_start < tmp_va->va_end)
db64fe02 306 p = &(*p)->rb_left;
170168d0 307 else if (va->va_end > tmp_va->va_start)
db64fe02
NP
308 p = &(*p)->rb_right;
309 else
310 BUG();
311 }
312
313 rb_link_node(&va->rb_node, parent, p);
314 rb_insert_color(&va->rb_node, &vmap_area_root);
315
316 /* address-sort this list so it is usable like the vmlist */
317 tmp = rb_prev(&va->rb_node);
318 if (tmp) {
319 struct vmap_area *prev;
320 prev = rb_entry(tmp, struct vmap_area, rb_node);
321 list_add_rcu(&va->list, &prev->list);
322 } else
323 list_add_rcu(&va->list, &vmap_area_list);
324}
325
326static void purge_vmap_area_lazy(void);
327
328/*
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
331 */
332static struct vmap_area *alloc_vmap_area(unsigned long size,
333 unsigned long align,
334 unsigned long vstart, unsigned long vend,
335 int node, gfp_t gfp_mask)
336{
337 struct vmap_area *va;
338 struct rb_node *n;
1da177e4 339 unsigned long addr;
db64fe02 340 int purged = 0;
89699605 341 struct vmap_area *first;
db64fe02 342
7766970c 343 BUG_ON(!size);
db64fe02 344 BUG_ON(size & ~PAGE_MASK);
89699605 345 BUG_ON(!is_power_of_2(align));
db64fe02 346
db64fe02
NP
347 va = kmalloc_node(sizeof(struct vmap_area),
348 gfp_mask & GFP_RECLAIM_MASK, node);
349 if (unlikely(!va))
350 return ERR_PTR(-ENOMEM);
351
352retry:
353 spin_lock(&vmap_area_lock);
89699605
NP
354 /*
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
362 */
363 if (!free_vmap_cache ||
364 size < cached_hole_size ||
365 vstart < cached_vstart ||
366 align < cached_align) {
367nocache:
368 cached_hole_size = 0;
369 free_vmap_cache = NULL;
370 }
371 /* record if we encounter less permissive parameters */
372 cached_vstart = vstart;
373 cached_align = align;
374
375 /* find starting point for our search */
376 if (free_vmap_cache) {
377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
248ac0e1 378 addr = ALIGN(first->va_end, align);
89699605
NP
379 if (addr < vstart)
380 goto nocache;
381 if (addr + size - 1 < addr)
382 goto overflow;
383
384 } else {
385 addr = ALIGN(vstart, align);
386 if (addr + size - 1 < addr)
387 goto overflow;
388
389 n = vmap_area_root.rb_node;
390 first = NULL;
391
392 while (n) {
db64fe02
NP
393 struct vmap_area *tmp;
394 tmp = rb_entry(n, struct vmap_area, rb_node);
395 if (tmp->va_end >= addr) {
db64fe02 396 first = tmp;
89699605
NP
397 if (tmp->va_start <= addr)
398 break;
399 n = n->rb_left;
400 } else
db64fe02 401 n = n->rb_right;
89699605 402 }
db64fe02
NP
403
404 if (!first)
405 goto found;
db64fe02 406 }
89699605
NP
407
408 /* from the starting point, walk areas until a suitable hole is found */
248ac0e1 409 while (addr + size > first->va_start && addr + size <= vend) {
89699605
NP
410 if (addr + cached_hole_size < first->va_start)
411 cached_hole_size = first->va_start - addr;
248ac0e1 412 addr = ALIGN(first->va_end, align);
89699605
NP
413 if (addr + size - 1 < addr)
414 goto overflow;
415
92ca922f 416 if (list_is_last(&first->list, &vmap_area_list))
89699605 417 goto found;
92ca922f
H
418
419 first = list_entry(first->list.next,
420 struct vmap_area, list);
db64fe02
NP
421 }
422
89699605
NP
423found:
424 if (addr + size > vend)
425 goto overflow;
db64fe02
NP
426
427 va->va_start = addr;
428 va->va_end = addr + size;
429 va->flags = 0;
430 __insert_vmap_area(va);
89699605 431 free_vmap_cache = &va->rb_node;
db64fe02
NP
432 spin_unlock(&vmap_area_lock);
433
89699605
NP
434 BUG_ON(va->va_start & (align-1));
435 BUG_ON(va->va_start < vstart);
436 BUG_ON(va->va_end > vend);
437
db64fe02 438 return va;
89699605
NP
439
440overflow:
441 spin_unlock(&vmap_area_lock);
442 if (!purged) {
443 purge_vmap_area_lazy();
444 purged = 1;
445 goto retry;
446 }
447 if (printk_ratelimit())
448 printk(KERN_WARNING
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size);
451 kfree(va);
452 return ERR_PTR(-EBUSY);
db64fe02
NP
453}
454
db64fe02
NP
455static void __free_vmap_area(struct vmap_area *va)
456{
457 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
89699605
NP
458
459 if (free_vmap_cache) {
460 if (va->va_end < cached_vstart) {
461 free_vmap_cache = NULL;
462 } else {
463 struct vmap_area *cache;
464 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
465 if (va->va_start <= cache->va_start) {
466 free_vmap_cache = rb_prev(&va->rb_node);
467 /*
468 * We don't try to update cached_hole_size or
469 * cached_align, but it won't go very wrong.
470 */
471 }
472 }
473 }
db64fe02
NP
474 rb_erase(&va->rb_node, &vmap_area_root);
475 RB_CLEAR_NODE(&va->rb_node);
476 list_del_rcu(&va->list);
477
ca23e405
TH
478 /*
479 * Track the highest possible candidate for pcpu area
480 * allocation. Areas outside of vmalloc area can be returned
481 * here too, consider only end addresses which fall inside
482 * vmalloc area proper.
483 */
484 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
485 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
486
14769de9 487 kfree_rcu(va, rcu_head);
db64fe02
NP
488}
489
490/*
491 * Free a region of KVA allocated by alloc_vmap_area
492 */
493static void free_vmap_area(struct vmap_area *va)
494{
495 spin_lock(&vmap_area_lock);
496 __free_vmap_area(va);
497 spin_unlock(&vmap_area_lock);
498}
499
500/*
501 * Clear the pagetable entries of a given vmap_area
502 */
503static void unmap_vmap_area(struct vmap_area *va)
504{
505 vunmap_page_range(va->va_start, va->va_end);
506}
507
cd52858c
NP
508static void vmap_debug_free_range(unsigned long start, unsigned long end)
509{
510 /*
511 * Unmap page tables and force a TLB flush immediately if
512 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
513 * bugs similarly to those in linear kernel virtual address
514 * space after a page has been freed.
515 *
516 * All the lazy freeing logic is still retained, in order to
517 * minimise intrusiveness of this debugging feature.
518 *
519 * This is going to be *slow* (linear kernel virtual address
520 * debugging doesn't do a broadcast TLB flush so it is a lot
521 * faster).
522 */
523#ifdef CONFIG_DEBUG_PAGEALLOC
524 vunmap_page_range(start, end);
525 flush_tlb_kernel_range(start, end);
526#endif
527}
528
db64fe02
NP
529/*
530 * lazy_max_pages is the maximum amount of virtual address space we gather up
531 * before attempting to purge with a TLB flush.
532 *
533 * There is a tradeoff here: a larger number will cover more kernel page tables
534 * and take slightly longer to purge, but it will linearly reduce the number of
535 * global TLB flushes that must be performed. It would seem natural to scale
536 * this number up linearly with the number of CPUs (because vmapping activity
537 * could also scale linearly with the number of CPUs), however it is likely
538 * that in practice, workloads might be constrained in other ways that mean
539 * vmap activity will not scale linearly with CPUs. Also, I want to be
540 * conservative and not introduce a big latency on huge systems, so go with
541 * a less aggressive log scale. It will still be an improvement over the old
542 * code, and it will be simple to change the scale factor if we find that it
543 * becomes a problem on bigger systems.
544 */
545static unsigned long lazy_max_pages(void)
546{
547 unsigned int log;
548
549 log = fls(num_online_cpus());
550
551 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
552}
553
554static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
555
02b709df
NP
556/* for per-CPU blocks */
557static void purge_fragmented_blocks_allcpus(void);
558
3ee48b6a
CW
559/*
560 * called before a call to iounmap() if the caller wants vm_area_struct's
561 * immediately freed.
562 */
563void set_iounmap_nonlazy(void)
564{
565 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
566}
567
db64fe02
NP
568/*
569 * Purges all lazily-freed vmap areas.
570 *
571 * If sync is 0 then don't purge if there is already a purge in progress.
572 * If force_flush is 1, then flush kernel TLBs between *start and *end even
573 * if we found no lazy vmap areas to unmap (callers can use this to optimise
574 * their own TLB flushing).
575 * Returns with *start = min(*start, lowest purged address)
576 * *end = max(*end, highest purged address)
577 */
578static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
579 int sync, int force_flush)
580{
46666d8a 581 static DEFINE_SPINLOCK(purge_lock);
db64fe02
NP
582 LIST_HEAD(valist);
583 struct vmap_area *va;
cbb76676 584 struct vmap_area *n_va;
db64fe02
NP
585 int nr = 0;
586
587 /*
588 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
589 * should not expect such behaviour. This just simplifies locking for
590 * the case that isn't actually used at the moment anyway.
591 */
592 if (!sync && !force_flush) {
46666d8a 593 if (!spin_trylock(&purge_lock))
db64fe02
NP
594 return;
595 } else
46666d8a 596 spin_lock(&purge_lock);
db64fe02 597
02b709df
NP
598 if (sync)
599 purge_fragmented_blocks_allcpus();
600
db64fe02
NP
601 rcu_read_lock();
602 list_for_each_entry_rcu(va, &vmap_area_list, list) {
603 if (va->flags & VM_LAZY_FREE) {
604 if (va->va_start < *start)
605 *start = va->va_start;
606 if (va->va_end > *end)
607 *end = va->va_end;
608 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
db64fe02
NP
609 list_add_tail(&va->purge_list, &valist);
610 va->flags |= VM_LAZY_FREEING;
611 va->flags &= ~VM_LAZY_FREE;
612 }
613 }
614 rcu_read_unlock();
615
88f50044 616 if (nr)
db64fe02 617 atomic_sub(nr, &vmap_lazy_nr);
db64fe02
NP
618
619 if (nr || force_flush)
620 flush_tlb_kernel_range(*start, *end);
621
622 if (nr) {
623 spin_lock(&vmap_area_lock);
cbb76676 624 list_for_each_entry_safe(va, n_va, &valist, purge_list)
db64fe02
NP
625 __free_vmap_area(va);
626 spin_unlock(&vmap_area_lock);
627 }
46666d8a 628 spin_unlock(&purge_lock);
db64fe02
NP
629}
630
496850e5
NP
631/*
632 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
633 * is already purging.
634 */
635static void try_purge_vmap_area_lazy(void)
636{
637 unsigned long start = ULONG_MAX, end = 0;
638
639 __purge_vmap_area_lazy(&start, &end, 0, 0);
640}
641
db64fe02
NP
642/*
643 * Kick off a purge of the outstanding lazy areas.
644 */
645static void purge_vmap_area_lazy(void)
646{
647 unsigned long start = ULONG_MAX, end = 0;
648
496850e5 649 __purge_vmap_area_lazy(&start, &end, 1, 0);
db64fe02
NP
650}
651
652/*
64141da5
JF
653 * Free a vmap area, caller ensuring that the area has been unmapped
654 * and flush_cache_vunmap had been called for the correct range
655 * previously.
db64fe02 656 */
64141da5 657static void free_vmap_area_noflush(struct vmap_area *va)
db64fe02
NP
658{
659 va->flags |= VM_LAZY_FREE;
660 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
661 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
496850e5 662 try_purge_vmap_area_lazy();
db64fe02
NP
663}
664
64141da5
JF
665/*
666 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
667 * called for the correct range previously.
668 */
669static void free_unmap_vmap_area_noflush(struct vmap_area *va)
670{
671 unmap_vmap_area(va);
672 free_vmap_area_noflush(va);
673}
674
b29acbdc
NP
675/*
676 * Free and unmap a vmap area
677 */
678static void free_unmap_vmap_area(struct vmap_area *va)
679{
680 flush_cache_vunmap(va->va_start, va->va_end);
681 free_unmap_vmap_area_noflush(va);
682}
683
db64fe02
NP
684static struct vmap_area *find_vmap_area(unsigned long addr)
685{
686 struct vmap_area *va;
687
688 spin_lock(&vmap_area_lock);
689 va = __find_vmap_area(addr);
690 spin_unlock(&vmap_area_lock);
691
692 return va;
693}
694
695static void free_unmap_vmap_area_addr(unsigned long addr)
696{
697 struct vmap_area *va;
698
699 va = find_vmap_area(addr);
700 BUG_ON(!va);
701 free_unmap_vmap_area(va);
702}
703
704
705/*** Per cpu kva allocator ***/
706
707/*
708 * vmap space is limited especially on 32 bit architectures. Ensure there is
709 * room for at least 16 percpu vmap blocks per CPU.
710 */
711/*
712 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
713 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
714 * instead (we just need a rough idea)
715 */
716#if BITS_PER_LONG == 32
717#define VMALLOC_SPACE (128UL*1024*1024)
718#else
719#define VMALLOC_SPACE (128UL*1024*1024*1024)
720#endif
721
722#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
723#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
724#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
725#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
726#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
727#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
f982f915
CL
728#define VMAP_BBMAP_BITS \
729 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
730 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
731 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
db64fe02
NP
732
733#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
734
9b463334
JF
735static bool vmap_initialized __read_mostly = false;
736
db64fe02
NP
737struct vmap_block_queue {
738 spinlock_t lock;
739 struct list_head free;
db64fe02
NP
740};
741
742struct vmap_block {
743 spinlock_t lock;
744 struct vmap_area *va;
745 struct vmap_block_queue *vbq;
746 unsigned long free, dirty;
747 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
748 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
de560423
NP
749 struct list_head free_list;
750 struct rcu_head rcu_head;
02b709df 751 struct list_head purge;
db64fe02
NP
752};
753
754/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
755static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
756
757/*
758 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
759 * in the free path. Could get rid of this if we change the API to return a
760 * "cookie" from alloc, to be passed to free. But no big deal yet.
761 */
762static DEFINE_SPINLOCK(vmap_block_tree_lock);
763static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
764
765/*
766 * We should probably have a fallback mechanism to allocate virtual memory
767 * out of partially filled vmap blocks. However vmap block sizing should be
768 * fairly reasonable according to the vmalloc size, so it shouldn't be a
769 * big problem.
770 */
771
772static unsigned long addr_to_vb_idx(unsigned long addr)
773{
774 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
775 addr /= VMAP_BLOCK_SIZE;
776 return addr;
777}
778
779static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
780{
781 struct vmap_block_queue *vbq;
782 struct vmap_block *vb;
783 struct vmap_area *va;
784 unsigned long vb_idx;
785 int node, err;
786
787 node = numa_node_id();
788
789 vb = kmalloc_node(sizeof(struct vmap_block),
790 gfp_mask & GFP_RECLAIM_MASK, node);
791 if (unlikely(!vb))
792 return ERR_PTR(-ENOMEM);
793
794 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
795 VMALLOC_START, VMALLOC_END,
796 node, gfp_mask);
ddf9c6d4 797 if (IS_ERR(va)) {
db64fe02 798 kfree(vb);
e7d86340 799 return ERR_CAST(va);
db64fe02
NP
800 }
801
802 err = radix_tree_preload(gfp_mask);
803 if (unlikely(err)) {
804 kfree(vb);
805 free_vmap_area(va);
806 return ERR_PTR(err);
807 }
808
809 spin_lock_init(&vb->lock);
810 vb->va = va;
811 vb->free = VMAP_BBMAP_BITS;
812 vb->dirty = 0;
813 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
814 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
815 INIT_LIST_HEAD(&vb->free_list);
db64fe02
NP
816
817 vb_idx = addr_to_vb_idx(va->va_start);
818 spin_lock(&vmap_block_tree_lock);
819 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
820 spin_unlock(&vmap_block_tree_lock);
821 BUG_ON(err);
822 radix_tree_preload_end();
823
824 vbq = &get_cpu_var(vmap_block_queue);
825 vb->vbq = vbq;
826 spin_lock(&vbq->lock);
de560423 827 list_add_rcu(&vb->free_list, &vbq->free);
db64fe02 828 spin_unlock(&vbq->lock);
3f04ba85 829 put_cpu_var(vmap_block_queue);
db64fe02
NP
830
831 return vb;
832}
833
db64fe02
NP
834static void free_vmap_block(struct vmap_block *vb)
835{
836 struct vmap_block *tmp;
837 unsigned long vb_idx;
838
db64fe02
NP
839 vb_idx = addr_to_vb_idx(vb->va->va_start);
840 spin_lock(&vmap_block_tree_lock);
841 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
842 spin_unlock(&vmap_block_tree_lock);
843 BUG_ON(tmp != vb);
844
64141da5 845 free_vmap_area_noflush(vb->va);
22a3c7d1 846 kfree_rcu(vb, rcu_head);
db64fe02
NP
847}
848
02b709df
NP
849static void purge_fragmented_blocks(int cpu)
850{
851 LIST_HEAD(purge);
852 struct vmap_block *vb;
853 struct vmap_block *n_vb;
854 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
855
856 rcu_read_lock();
857 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
858
859 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
860 continue;
861
862 spin_lock(&vb->lock);
863 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
864 vb->free = 0; /* prevent further allocs after releasing lock */
865 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
866 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
867 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
868 spin_lock(&vbq->lock);
869 list_del_rcu(&vb->free_list);
870 spin_unlock(&vbq->lock);
871 spin_unlock(&vb->lock);
872 list_add_tail(&vb->purge, &purge);
873 } else
874 spin_unlock(&vb->lock);
875 }
876 rcu_read_unlock();
877
878 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
879 list_del(&vb->purge);
880 free_vmap_block(vb);
881 }
882}
883
884static void purge_fragmented_blocks_thiscpu(void)
885{
886 purge_fragmented_blocks(smp_processor_id());
887}
888
889static void purge_fragmented_blocks_allcpus(void)
890{
891 int cpu;
892
893 for_each_possible_cpu(cpu)
894 purge_fragmented_blocks(cpu);
895}
896
db64fe02
NP
897static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
898{
899 struct vmap_block_queue *vbq;
900 struct vmap_block *vb;
901 unsigned long addr = 0;
902 unsigned int order;
02b709df 903 int purge = 0;
db64fe02
NP
904
905 BUG_ON(size & ~PAGE_MASK);
906 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
aa91c4d8
JK
907 if (WARN_ON(size == 0)) {
908 /*
909 * Allocating 0 bytes isn't what caller wants since
910 * get_order(0) returns funny result. Just warn and terminate
911 * early.
912 */
913 return NULL;
914 }
db64fe02
NP
915 order = get_order(size);
916
917again:
918 rcu_read_lock();
919 vbq = &get_cpu_var(vmap_block_queue);
920 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
921 int i;
922
923 spin_lock(&vb->lock);
02b709df
NP
924 if (vb->free < 1UL << order)
925 goto next;
926
db64fe02
NP
927 i = bitmap_find_free_region(vb->alloc_map,
928 VMAP_BBMAP_BITS, order);
929
02b709df
NP
930 if (i < 0) {
931 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
932 /* fragmented and no outstanding allocations */
933 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
934 purge = 1;
db64fe02 935 }
02b709df 936 goto next;
db64fe02 937 }
02b709df
NP
938 addr = vb->va->va_start + (i << PAGE_SHIFT);
939 BUG_ON(addr_to_vb_idx(addr) !=
940 addr_to_vb_idx(vb->va->va_start));
941 vb->free -= 1UL << order;
942 if (vb->free == 0) {
943 spin_lock(&vbq->lock);
944 list_del_rcu(&vb->free_list);
945 spin_unlock(&vbq->lock);
946 }
947 spin_unlock(&vb->lock);
948 break;
949next:
db64fe02
NP
950 spin_unlock(&vb->lock);
951 }
02b709df
NP
952
953 if (purge)
954 purge_fragmented_blocks_thiscpu();
955
3f04ba85 956 put_cpu_var(vmap_block_queue);
db64fe02
NP
957 rcu_read_unlock();
958
959 if (!addr) {
960 vb = new_vmap_block(gfp_mask);
961 if (IS_ERR(vb))
962 return vb;
963 goto again;
964 }
965
966 return (void *)addr;
967}
968
969static void vb_free(const void *addr, unsigned long size)
970{
971 unsigned long offset;
972 unsigned long vb_idx;
973 unsigned int order;
974 struct vmap_block *vb;
975
976 BUG_ON(size & ~PAGE_MASK);
977 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
b29acbdc
NP
978
979 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
980
db64fe02
NP
981 order = get_order(size);
982
983 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
984
985 vb_idx = addr_to_vb_idx((unsigned long)addr);
986 rcu_read_lock();
987 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
988 rcu_read_unlock();
989 BUG_ON(!vb);
990
64141da5
JF
991 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
992
db64fe02 993 spin_lock(&vb->lock);
de560423 994 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
d086817d 995
db64fe02
NP
996 vb->dirty += 1UL << order;
997 if (vb->dirty == VMAP_BBMAP_BITS) {
de560423 998 BUG_ON(vb->free);
db64fe02
NP
999 spin_unlock(&vb->lock);
1000 free_vmap_block(vb);
1001 } else
1002 spin_unlock(&vb->lock);
1003}
1004
1005/**
1006 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1007 *
1008 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1009 * to amortize TLB flushing overheads. What this means is that any page you
1010 * have now, may, in a former life, have been mapped into kernel virtual
1011 * address by the vmap layer and so there might be some CPUs with TLB entries
1012 * still referencing that page (additional to the regular 1:1 kernel mapping).
1013 *
1014 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1015 * be sure that none of the pages we have control over will have any aliases
1016 * from the vmap layer.
1017 */
1018void vm_unmap_aliases(void)
1019{
1020 unsigned long start = ULONG_MAX, end = 0;
1021 int cpu;
1022 int flush = 0;
1023
9b463334
JF
1024 if (unlikely(!vmap_initialized))
1025 return;
1026
db64fe02
NP
1027 for_each_possible_cpu(cpu) {
1028 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1029 struct vmap_block *vb;
1030
1031 rcu_read_lock();
1032 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1033 int i;
1034
1035 spin_lock(&vb->lock);
1036 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1037 while (i < VMAP_BBMAP_BITS) {
1038 unsigned long s, e;
1039 int j;
1040 j = find_next_zero_bit(vb->dirty_map,
1041 VMAP_BBMAP_BITS, i);
1042
1043 s = vb->va->va_start + (i << PAGE_SHIFT);
1044 e = vb->va->va_start + (j << PAGE_SHIFT);
db64fe02
NP
1045 flush = 1;
1046
1047 if (s < start)
1048 start = s;
1049 if (e > end)
1050 end = e;
1051
1052 i = j;
1053 i = find_next_bit(vb->dirty_map,
1054 VMAP_BBMAP_BITS, i);
1055 }
1056 spin_unlock(&vb->lock);
1057 }
1058 rcu_read_unlock();
1059 }
1060
1061 __purge_vmap_area_lazy(&start, &end, 1, flush);
1062}
1063EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1064
1065/**
1066 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1067 * @mem: the pointer returned by vm_map_ram
1068 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1069 */
1070void vm_unmap_ram(const void *mem, unsigned int count)
1071{
1072 unsigned long size = count << PAGE_SHIFT;
1073 unsigned long addr = (unsigned long)mem;
1074
1075 BUG_ON(!addr);
1076 BUG_ON(addr < VMALLOC_START);
1077 BUG_ON(addr > VMALLOC_END);
1078 BUG_ON(addr & (PAGE_SIZE-1));
1079
1080 debug_check_no_locks_freed(mem, size);
cd52858c 1081 vmap_debug_free_range(addr, addr+size);
db64fe02
NP
1082
1083 if (likely(count <= VMAP_MAX_ALLOC))
1084 vb_free(mem, size);
1085 else
1086 free_unmap_vmap_area_addr(addr);
1087}
1088EXPORT_SYMBOL(vm_unmap_ram);
1089
1090/**
1091 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1092 * @pages: an array of pointers to the pages to be mapped
1093 * @count: number of pages
1094 * @node: prefer to allocate data structures on this node
1095 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
e99c97ad
RD
1096 *
1097 * Returns: a pointer to the address that has been mapped, or %NULL on failure
db64fe02
NP
1098 */
1099void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1100{
1101 unsigned long size = count << PAGE_SHIFT;
1102 unsigned long addr;
1103 void *mem;
1104
1105 if (likely(count <= VMAP_MAX_ALLOC)) {
1106 mem = vb_alloc(size, GFP_KERNEL);
1107 if (IS_ERR(mem))
1108 return NULL;
1109 addr = (unsigned long)mem;
1110 } else {
1111 struct vmap_area *va;
1112 va = alloc_vmap_area(size, PAGE_SIZE,
1113 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1114 if (IS_ERR(va))
1115 return NULL;
1116
1117 addr = va->va_start;
1118 mem = (void *)addr;
1119 }
1120 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1121 vm_unmap_ram(mem, count);
1122 return NULL;
1123 }
1124 return mem;
1125}
1126EXPORT_SYMBOL(vm_map_ram);
1127
be9b7335
NP
1128/**
1129 * vm_area_add_early - add vmap area early during boot
1130 * @vm: vm_struct to add
1131 *
1132 * This function is used to add fixed kernel vm area to vmlist before
1133 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1134 * should contain proper values and the other fields should be zero.
1135 *
1136 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1137 */
1138void __init vm_area_add_early(struct vm_struct *vm)
1139{
1140 struct vm_struct *tmp, **p;
1141
1142 BUG_ON(vmap_initialized);
1143 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1144 if (tmp->addr >= vm->addr) {
1145 BUG_ON(tmp->addr < vm->addr + vm->size);
1146 break;
1147 } else
1148 BUG_ON(tmp->addr + tmp->size > vm->addr);
1149 }
1150 vm->next = *p;
1151 *p = vm;
1152}
1153
f0aa6617
TH
1154/**
1155 * vm_area_register_early - register vmap area early during boot
1156 * @vm: vm_struct to register
c0c0a293 1157 * @align: requested alignment
f0aa6617
TH
1158 *
1159 * This function is used to register kernel vm area before
1160 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1161 * proper values on entry and other fields should be zero. On return,
1162 * vm->addr contains the allocated address.
1163 *
1164 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1165 */
c0c0a293 1166void __init vm_area_register_early(struct vm_struct *vm, size_t align)
f0aa6617
TH
1167{
1168 static size_t vm_init_off __initdata;
c0c0a293
TH
1169 unsigned long addr;
1170
1171 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1172 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
f0aa6617 1173
c0c0a293 1174 vm->addr = (void *)addr;
f0aa6617 1175
be9b7335 1176 vm_area_add_early(vm);
f0aa6617
TH
1177}
1178
db64fe02
NP
1179void __init vmalloc_init(void)
1180{
822c18f2
IK
1181 struct vmap_area *va;
1182 struct vm_struct *tmp;
db64fe02
NP
1183 int i;
1184
1185 for_each_possible_cpu(i) {
1186 struct vmap_block_queue *vbq;
1187
1188 vbq = &per_cpu(vmap_block_queue, i);
1189 spin_lock_init(&vbq->lock);
1190 INIT_LIST_HEAD(&vbq->free);
db64fe02 1191 }
9b463334 1192
822c18f2
IK
1193 /* Import existing vmlist entries. */
1194 for (tmp = vmlist; tmp; tmp = tmp->next) {
43ebdac4 1195 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
dbda591d 1196 va->flags = VM_VM_AREA;
822c18f2
IK
1197 va->va_start = (unsigned long)tmp->addr;
1198 va->va_end = va->va_start + tmp->size;
dbda591d 1199 va->vm = tmp;
822c18f2
IK
1200 __insert_vmap_area(va);
1201 }
ca23e405
TH
1202
1203 vmap_area_pcpu_hole = VMALLOC_END;
1204
9b463334 1205 vmap_initialized = true;
db64fe02
NP
1206}
1207
8fc48985
TH
1208/**
1209 * map_kernel_range_noflush - map kernel VM area with the specified pages
1210 * @addr: start of the VM area to map
1211 * @size: size of the VM area to map
1212 * @prot: page protection flags to use
1213 * @pages: pages to map
1214 *
1215 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1216 * specify should have been allocated using get_vm_area() and its
1217 * friends.
1218 *
1219 * NOTE:
1220 * This function does NOT do any cache flushing. The caller is
1221 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1222 * before calling this function.
1223 *
1224 * RETURNS:
1225 * The number of pages mapped on success, -errno on failure.
1226 */
1227int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1228 pgprot_t prot, struct page **pages)
1229{
1230 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1231}
1232
1233/**
1234 * unmap_kernel_range_noflush - unmap kernel VM area
1235 * @addr: start of the VM area to unmap
1236 * @size: size of the VM area to unmap
1237 *
1238 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1239 * specify should have been allocated using get_vm_area() and its
1240 * friends.
1241 *
1242 * NOTE:
1243 * This function does NOT do any cache flushing. The caller is
1244 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1245 * before calling this function and flush_tlb_kernel_range() after.
1246 */
1247void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1248{
1249 vunmap_page_range(addr, addr + size);
1250}
81e88fdc 1251EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
8fc48985
TH
1252
1253/**
1254 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1255 * @addr: start of the VM area to unmap
1256 * @size: size of the VM area to unmap
1257 *
1258 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1259 * the unmapping and tlb after.
1260 */
db64fe02
NP
1261void unmap_kernel_range(unsigned long addr, unsigned long size)
1262{
1263 unsigned long end = addr + size;
f6fcba70
TH
1264
1265 flush_cache_vunmap(addr, end);
db64fe02
NP
1266 vunmap_page_range(addr, end);
1267 flush_tlb_kernel_range(addr, end);
1268}
1269
1270int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1271{
1272 unsigned long addr = (unsigned long)area->addr;
1273 unsigned long end = addr + area->size - PAGE_SIZE;
1274 int err;
1275
1276 err = vmap_page_range(addr, end, prot, *pages);
1277 if (err > 0) {
1278 *pages += err;
1279 err = 0;
1280 }
1281
1282 return err;
1283}
1284EXPORT_SYMBOL_GPL(map_vm_area);
1285
1286/*** Old vmalloc interfaces ***/
1287DEFINE_RWLOCK(vmlist_lock);
1288struct vm_struct *vmlist;
1289
f5252e00 1290static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1291 unsigned long flags, const void *caller)
cf88c790 1292{
cf88c790
TH
1293 vm->flags = flags;
1294 vm->addr = (void *)va->va_start;
1295 vm->size = va->va_end - va->va_start;
1296 vm->caller = caller;
db1aecaf 1297 va->vm = vm;
cf88c790 1298 va->flags |= VM_VM_AREA;
f5252e00 1299}
cf88c790 1300
f5252e00
MH
1301static void insert_vmalloc_vmlist(struct vm_struct *vm)
1302{
1303 struct vm_struct *tmp, **p;
1304
1305 vm->flags &= ~VM_UNLIST;
cf88c790
TH
1306 write_lock(&vmlist_lock);
1307 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1308 if (tmp->addr >= vm->addr)
1309 break;
1310 }
1311 vm->next = *p;
1312 *p = vm;
1313 write_unlock(&vmlist_lock);
1314}
1315
f5252e00 1316static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
5e6cafc8 1317 unsigned long flags, const void *caller)
f5252e00
MH
1318{
1319 setup_vmalloc_vm(vm, va, flags, caller);
1320 insert_vmalloc_vmlist(vm);
1321}
1322
db64fe02 1323static struct vm_struct *__get_vm_area_node(unsigned long size,
2dca6999 1324 unsigned long align, unsigned long flags, unsigned long start,
5e6cafc8 1325 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
db64fe02 1326{
0006526d 1327 struct vmap_area *va;
db64fe02 1328 struct vm_struct *area;
1da177e4 1329
52fd24ca 1330 BUG_ON(in_interrupt());
1da177e4
LT
1331 if (flags & VM_IOREMAP) {
1332 int bit = fls(size);
1333
1334 if (bit > IOREMAP_MAX_ORDER)
1335 bit = IOREMAP_MAX_ORDER;
1336 else if (bit < PAGE_SHIFT)
1337 bit = PAGE_SHIFT;
1338
1339 align = 1ul << bit;
1340 }
db64fe02 1341
1da177e4 1342 size = PAGE_ALIGN(size);
31be8309
OH
1343 if (unlikely(!size))
1344 return NULL;
1da177e4 1345
cf88c790 1346 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1da177e4
LT
1347 if (unlikely(!area))
1348 return NULL;
1349
1da177e4
LT
1350 /*
1351 * We always allocate a guard page.
1352 */
1353 size += PAGE_SIZE;
1354
db64fe02
NP
1355 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1356 if (IS_ERR(va)) {
1357 kfree(area);
1358 return NULL;
1da177e4 1359 }
1da177e4 1360
f5252e00
MH
1361 /*
1362 * When this function is called from __vmalloc_node_range,
1363 * we do not add vm_struct to vmlist here to avoid
1364 * accessing uninitialized members of vm_struct such as
1365 * pages and nr_pages fields. They will be set later.
1366 * To distinguish it from others, we use a VM_UNLIST flag.
1367 */
1368 if (flags & VM_UNLIST)
1369 setup_vmalloc_vm(area, va, flags, caller);
1370 else
1371 insert_vmalloc_vm(area, va, flags, caller);
1372
1da177e4 1373 return area;
1da177e4
LT
1374}
1375
930fc45a
CL
1376struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1377 unsigned long start, unsigned long end)
1378{
00ef2d2f
DR
1379 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1380 GFP_KERNEL, __builtin_return_address(0));
930fc45a 1381}
5992b6da 1382EXPORT_SYMBOL_GPL(__get_vm_area);
930fc45a 1383
c2968612
BH
1384struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1385 unsigned long start, unsigned long end,
5e6cafc8 1386 const void *caller)
c2968612 1387{
00ef2d2f
DR
1388 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1389 GFP_KERNEL, caller);
c2968612
BH
1390}
1391
1da177e4 1392/**
183ff22b 1393 * get_vm_area - reserve a contiguous kernel virtual area
1da177e4
LT
1394 * @size: size of the area
1395 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1396 *
1397 * Search an area of @size in the kernel virtual mapping area,
1398 * and reserved it for out purposes. Returns the area descriptor
1399 * on success or %NULL on failure.
1400 */
1401struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1402{
2dca6999 1403 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f
DR
1404 NUMA_NO_NODE, GFP_KERNEL,
1405 __builtin_return_address(0));
23016969
CL
1406}
1407
1408struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
5e6cafc8 1409 const void *caller)
23016969 1410{
2dca6999 1411 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
00ef2d2f 1412 NUMA_NO_NODE, GFP_KERNEL, caller);
1da177e4
LT
1413}
1414
e9da6e99
MS
1415/**
1416 * find_vm_area - find a continuous kernel virtual area
1417 * @addr: base address
1418 *
1419 * Search for the kernel VM area starting at @addr, and return it.
1420 * It is up to the caller to do all required locking to keep the returned
1421 * pointer valid.
1422 */
1423struct vm_struct *find_vm_area(const void *addr)
83342314 1424{
db64fe02 1425 struct vmap_area *va;
83342314 1426
db64fe02
NP
1427 va = find_vmap_area((unsigned long)addr);
1428 if (va && va->flags & VM_VM_AREA)
db1aecaf 1429 return va->vm;
1da177e4 1430
1da177e4 1431 return NULL;
1da177e4
LT
1432}
1433
7856dfeb 1434/**
183ff22b 1435 * remove_vm_area - find and remove a continuous kernel virtual area
7856dfeb
AK
1436 * @addr: base address
1437 *
1438 * Search for the kernel VM area starting at @addr, and remove it.
1439 * This function returns the found VM area, but using it is NOT safe
1440 * on SMP machines, except for its size or flags.
1441 */
b3bdda02 1442struct vm_struct *remove_vm_area(const void *addr)
7856dfeb 1443{
db64fe02
NP
1444 struct vmap_area *va;
1445
1446 va = find_vmap_area((unsigned long)addr);
1447 if (va && va->flags & VM_VM_AREA) {
db1aecaf 1448 struct vm_struct *vm = va->vm;
f5252e00
MH
1449
1450 if (!(vm->flags & VM_UNLIST)) {
1451 struct vm_struct *tmp, **p;
1452 /*
1453 * remove from list and disallow access to
1454 * this vm_struct before unmap. (address range
1455 * confliction is maintained by vmap.)
1456 */
1457 write_lock(&vmlist_lock);
1458 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1459 ;
1460 *p = tmp->next;
1461 write_unlock(&vmlist_lock);
1462 }
db64fe02 1463
dd32c279
KH
1464 vmap_debug_free_range(va->va_start, va->va_end);
1465 free_unmap_vmap_area(va);
1466 vm->size -= PAGE_SIZE;
1467
db64fe02
NP
1468 return vm;
1469 }
1470 return NULL;
7856dfeb
AK
1471}
1472
b3bdda02 1473static void __vunmap(const void *addr, int deallocate_pages)
1da177e4
LT
1474{
1475 struct vm_struct *area;
1476
1477 if (!addr)
1478 return;
1479
1480 if ((PAGE_SIZE-1) & (unsigned long)addr) {
4c8573e2 1481 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1da177e4
LT
1482 return;
1483 }
1484
1485 area = remove_vm_area(addr);
1486 if (unlikely(!area)) {
4c8573e2 1487 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1da177e4 1488 addr);
1da177e4
LT
1489 return;
1490 }
1491
9a11b49a 1492 debug_check_no_locks_freed(addr, area->size);
3ac7fe5a 1493 debug_check_no_obj_freed(addr, area->size);
9a11b49a 1494
1da177e4
LT
1495 if (deallocate_pages) {
1496 int i;
1497
1498 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8
CL
1499 struct page *page = area->pages[i];
1500
1501 BUG_ON(!page);
1502 __free_page(page);
1da177e4
LT
1503 }
1504
8757d5fa 1505 if (area->flags & VM_VPAGES)
1da177e4
LT
1506 vfree(area->pages);
1507 else
1508 kfree(area->pages);
1509 }
1510
1511 kfree(area);
1512 return;
1513}
1514
1515/**
1516 * vfree - release memory allocated by vmalloc()
1da177e4
LT
1517 * @addr: memory base address
1518 *
183ff22b 1519 * Free the virtually continuous memory area starting at @addr, as
80e93eff
PE
1520 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1521 * NULL, no operation is performed.
1da177e4 1522 *
80e93eff 1523 * Must not be called in interrupt context.
1da177e4 1524 */
b3bdda02 1525void vfree(const void *addr)
1da177e4
LT
1526{
1527 BUG_ON(in_interrupt());
89219d37
CM
1528
1529 kmemleak_free(addr);
1530
1da177e4
LT
1531 __vunmap(addr, 1);
1532}
1da177e4
LT
1533EXPORT_SYMBOL(vfree);
1534
1535/**
1536 * vunmap - release virtual mapping obtained by vmap()
1da177e4
LT
1537 * @addr: memory base address
1538 *
1539 * Free the virtually contiguous memory area starting at @addr,
1540 * which was created from the page array passed to vmap().
1541 *
80e93eff 1542 * Must not be called in interrupt context.
1da177e4 1543 */
b3bdda02 1544void vunmap(const void *addr)
1da177e4
LT
1545{
1546 BUG_ON(in_interrupt());
34754b69 1547 might_sleep();
1da177e4
LT
1548 __vunmap(addr, 0);
1549}
1da177e4
LT
1550EXPORT_SYMBOL(vunmap);
1551
1552/**
1553 * vmap - map an array of pages into virtually contiguous space
1da177e4
LT
1554 * @pages: array of page pointers
1555 * @count: number of pages to map
1556 * @flags: vm_area->flags
1557 * @prot: page protection for the mapping
1558 *
1559 * Maps @count pages from @pages into contiguous kernel virtual
1560 * space.
1561 */
1562void *vmap(struct page **pages, unsigned int count,
1563 unsigned long flags, pgprot_t prot)
1564{
1565 struct vm_struct *area;
1566
34754b69
PZ
1567 might_sleep();
1568
4481374c 1569 if (count > totalram_pages)
1da177e4
LT
1570 return NULL;
1571
23016969
CL
1572 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1573 __builtin_return_address(0));
1da177e4
LT
1574 if (!area)
1575 return NULL;
23016969 1576
1da177e4
LT
1577 if (map_vm_area(area, prot, &pages)) {
1578 vunmap(area->addr);
1579 return NULL;
1580 }
1581
1582 return area->addr;
1583}
1da177e4
LT
1584EXPORT_SYMBOL(vmap);
1585
2dca6999
DM
1586static void *__vmalloc_node(unsigned long size, unsigned long align,
1587 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1588 int node, const void *caller);
e31d9eb5 1589static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
5e6cafc8 1590 pgprot_t prot, int node, const void *caller)
1da177e4 1591{
22943ab1 1592 const int order = 0;
1da177e4
LT
1593 struct page **pages;
1594 unsigned int nr_pages, array_size, i;
976d6dfb 1595 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1da177e4
LT
1596
1597 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1598 array_size = (nr_pages * sizeof(struct page *));
1599
1600 area->nr_pages = nr_pages;
1601 /* Please note that the recursion is strictly bounded. */
8757d5fa 1602 if (array_size > PAGE_SIZE) {
976d6dfb 1603 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
23016969 1604 PAGE_KERNEL, node, caller);
8757d5fa 1605 area->flags |= VM_VPAGES;
286e1ea3 1606 } else {
976d6dfb 1607 pages = kmalloc_node(array_size, nested_gfp, node);
286e1ea3 1608 }
1da177e4 1609 area->pages = pages;
23016969 1610 area->caller = caller;
1da177e4
LT
1611 if (!area->pages) {
1612 remove_vm_area(area->addr);
1613 kfree(area);
1614 return NULL;
1615 }
1da177e4
LT
1616
1617 for (i = 0; i < area->nr_pages; i++) {
bf53d6f8 1618 struct page *page;
22943ab1 1619 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
bf53d6f8 1620
930fc45a 1621 if (node < 0)
22943ab1 1622 page = alloc_page(tmp_mask);
930fc45a 1623 else
22943ab1 1624 page = alloc_pages_node(node, tmp_mask, order);
bf53d6f8
CL
1625
1626 if (unlikely(!page)) {
1da177e4
LT
1627 /* Successfully allocated i pages, free them in __vunmap() */
1628 area->nr_pages = i;
1629 goto fail;
1630 }
bf53d6f8 1631 area->pages[i] = page;
1da177e4
LT
1632 }
1633
1634 if (map_vm_area(area, prot, &pages))
1635 goto fail;
1636 return area->addr;
1637
1638fail:
3ee9a4f0
JP
1639 warn_alloc_failed(gfp_mask, order,
1640 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
22943ab1 1641 (area->nr_pages*PAGE_SIZE), area->size);
1da177e4
LT
1642 vfree(area->addr);
1643 return NULL;
1644}
1645
1646/**
d0a21265 1647 * __vmalloc_node_range - allocate virtually contiguous memory
1da177e4 1648 * @size: allocation size
2dca6999 1649 * @align: desired alignment
d0a21265
DR
1650 * @start: vm area range start
1651 * @end: vm area range end
1da177e4
LT
1652 * @gfp_mask: flags for the page level allocator
1653 * @prot: protection mask for the allocated pages
00ef2d2f 1654 * @node: node to use for allocation or NUMA_NO_NODE
c85d194b 1655 * @caller: caller's return address
1da177e4
LT
1656 *
1657 * Allocate enough pages to cover @size from the page level
1658 * allocator with @gfp_mask flags. Map them into contiguous
1659 * kernel virtual space, using a pagetable protection of @prot.
1660 */
d0a21265
DR
1661void *__vmalloc_node_range(unsigned long size, unsigned long align,
1662 unsigned long start, unsigned long end, gfp_t gfp_mask,
5e6cafc8 1663 pgprot_t prot, int node, const void *caller)
1da177e4
LT
1664{
1665 struct vm_struct *area;
89219d37
CM
1666 void *addr;
1667 unsigned long real_size = size;
1da177e4
LT
1668
1669 size = PAGE_ALIGN(size);
4481374c 1670 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
de7d2b56 1671 goto fail;
1da177e4 1672
f5252e00
MH
1673 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1674 start, end, node, gfp_mask, caller);
1da177e4 1675 if (!area)
de7d2b56 1676 goto fail;
1da177e4 1677
89219d37 1678 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1368edf0
MG
1679 if (!addr)
1680 return NULL;
89219d37 1681
f5252e00
MH
1682 /*
1683 * In this function, newly allocated vm_struct is not added
1684 * to vmlist at __get_vm_area_node(). so, it is added here.
1685 */
1686 insert_vmalloc_vmlist(area);
1687
89219d37
CM
1688 /*
1689 * A ref_count = 3 is needed because the vm_struct and vmap_area
1690 * structures allocated in the __get_vm_area_node() function contain
1691 * references to the virtual address of the vmalloc'ed block.
1692 */
1693 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1694
1695 return addr;
de7d2b56
JP
1696
1697fail:
1698 warn_alloc_failed(gfp_mask, 0,
1699 "vmalloc: allocation failure: %lu bytes\n",
1700 real_size);
1701 return NULL;
1da177e4
LT
1702}
1703
d0a21265
DR
1704/**
1705 * __vmalloc_node - allocate virtually contiguous memory
1706 * @size: allocation size
1707 * @align: desired alignment
1708 * @gfp_mask: flags for the page level allocator
1709 * @prot: protection mask for the allocated pages
00ef2d2f 1710 * @node: node to use for allocation or NUMA_NO_NODE
d0a21265
DR
1711 * @caller: caller's return address
1712 *
1713 * Allocate enough pages to cover @size from the page level
1714 * allocator with @gfp_mask flags. Map them into contiguous
1715 * kernel virtual space, using a pagetable protection of @prot.
1716 */
1717static void *__vmalloc_node(unsigned long size, unsigned long align,
1718 gfp_t gfp_mask, pgprot_t prot,
5e6cafc8 1719 int node, const void *caller)
d0a21265
DR
1720{
1721 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1722 gfp_mask, prot, node, caller);
1723}
1724
930fc45a
CL
1725void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1726{
00ef2d2f 1727 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
23016969 1728 __builtin_return_address(0));
930fc45a 1729}
1da177e4
LT
1730EXPORT_SYMBOL(__vmalloc);
1731
e1ca7788
DY
1732static inline void *__vmalloc_node_flags(unsigned long size,
1733 int node, gfp_t flags)
1734{
1735 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1736 node, __builtin_return_address(0));
1737}
1738
1da177e4
LT
1739/**
1740 * vmalloc - allocate virtually contiguous memory
1da177e4 1741 * @size: allocation size
1da177e4
LT
1742 * Allocate enough pages to cover @size from the page level
1743 * allocator and map them into contiguous kernel virtual space.
1744 *
c1c8897f 1745 * For tight control over page level allocator and protection flags
1da177e4
LT
1746 * use __vmalloc() instead.
1747 */
1748void *vmalloc(unsigned long size)
1749{
00ef2d2f
DR
1750 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1751 GFP_KERNEL | __GFP_HIGHMEM);
1da177e4 1752}
1da177e4
LT
1753EXPORT_SYMBOL(vmalloc);
1754
e1ca7788
DY
1755/**
1756 * vzalloc - allocate virtually contiguous memory with zero fill
1757 * @size: allocation size
1758 * Allocate enough pages to cover @size from the page level
1759 * allocator and map them into contiguous kernel virtual space.
1760 * The memory allocated is set to zero.
1761 *
1762 * For tight control over page level allocator and protection flags
1763 * use __vmalloc() instead.
1764 */
1765void *vzalloc(unsigned long size)
1766{
00ef2d2f 1767 return __vmalloc_node_flags(size, NUMA_NO_NODE,
e1ca7788
DY
1768 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1769}
1770EXPORT_SYMBOL(vzalloc);
1771
83342314 1772/**
ead04089
REB
1773 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1774 * @size: allocation size
83342314 1775 *
ead04089
REB
1776 * The resulting memory area is zeroed so it can be mapped to userspace
1777 * without leaking data.
83342314
NP
1778 */
1779void *vmalloc_user(unsigned long size)
1780{
1781 struct vm_struct *area;
1782 void *ret;
1783
2dca6999
DM
1784 ret = __vmalloc_node(size, SHMLBA,
1785 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
00ef2d2f
DR
1786 PAGE_KERNEL, NUMA_NO_NODE,
1787 __builtin_return_address(0));
2b4ac44e 1788 if (ret) {
db64fe02 1789 area = find_vm_area(ret);
2b4ac44e 1790 area->flags |= VM_USERMAP;
2b4ac44e 1791 }
83342314
NP
1792 return ret;
1793}
1794EXPORT_SYMBOL(vmalloc_user);
1795
930fc45a
CL
1796/**
1797 * vmalloc_node - allocate memory on a specific node
930fc45a 1798 * @size: allocation size
d44e0780 1799 * @node: numa node
930fc45a
CL
1800 *
1801 * Allocate enough pages to cover @size from the page level
1802 * allocator and map them into contiguous kernel virtual space.
1803 *
c1c8897f 1804 * For tight control over page level allocator and protection flags
930fc45a
CL
1805 * use __vmalloc() instead.
1806 */
1807void *vmalloc_node(unsigned long size, int node)
1808{
2dca6999 1809 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
23016969 1810 node, __builtin_return_address(0));
930fc45a
CL
1811}
1812EXPORT_SYMBOL(vmalloc_node);
1813
e1ca7788
DY
1814/**
1815 * vzalloc_node - allocate memory on a specific node with zero fill
1816 * @size: allocation size
1817 * @node: numa node
1818 *
1819 * Allocate enough pages to cover @size from the page level
1820 * allocator and map them into contiguous kernel virtual space.
1821 * The memory allocated is set to zero.
1822 *
1823 * For tight control over page level allocator and protection flags
1824 * use __vmalloc_node() instead.
1825 */
1826void *vzalloc_node(unsigned long size, int node)
1827{
1828 return __vmalloc_node_flags(size, node,
1829 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1830}
1831EXPORT_SYMBOL(vzalloc_node);
1832
4dc3b16b
PP
1833#ifndef PAGE_KERNEL_EXEC
1834# define PAGE_KERNEL_EXEC PAGE_KERNEL
1835#endif
1836
1da177e4
LT
1837/**
1838 * vmalloc_exec - allocate virtually contiguous, executable memory
1da177e4
LT
1839 * @size: allocation size
1840 *
1841 * Kernel-internal function to allocate enough pages to cover @size
1842 * the page level allocator and map them into contiguous and
1843 * executable kernel virtual space.
1844 *
c1c8897f 1845 * For tight control over page level allocator and protection flags
1da177e4
LT
1846 * use __vmalloc() instead.
1847 */
1848
1da177e4
LT
1849void *vmalloc_exec(unsigned long size)
1850{
2dca6999 1851 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
00ef2d2f 1852 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4
LT
1853}
1854
0d08e0d3 1855#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
7ac674f5 1856#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
0d08e0d3 1857#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
7ac674f5 1858#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
0d08e0d3
AK
1859#else
1860#define GFP_VMALLOC32 GFP_KERNEL
1861#endif
1862
1da177e4
LT
1863/**
1864 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1da177e4
LT
1865 * @size: allocation size
1866 *
1867 * Allocate enough 32bit PA addressable pages to cover @size from the
1868 * page level allocator and map them into contiguous kernel virtual space.
1869 */
1870void *vmalloc_32(unsigned long size)
1871{
2dca6999 1872 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
00ef2d2f 1873 NUMA_NO_NODE, __builtin_return_address(0));
1da177e4 1874}
1da177e4
LT
1875EXPORT_SYMBOL(vmalloc_32);
1876
83342314 1877/**
ead04089 1878 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
83342314 1879 * @size: allocation size
ead04089
REB
1880 *
1881 * The resulting memory area is 32bit addressable and zeroed so it can be
1882 * mapped to userspace without leaking data.
83342314
NP
1883 */
1884void *vmalloc_32_user(unsigned long size)
1885{
1886 struct vm_struct *area;
1887 void *ret;
1888
2dca6999 1889 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
00ef2d2f 1890 NUMA_NO_NODE, __builtin_return_address(0));
2b4ac44e 1891 if (ret) {
db64fe02 1892 area = find_vm_area(ret);
2b4ac44e 1893 area->flags |= VM_USERMAP;
2b4ac44e 1894 }
83342314
NP
1895 return ret;
1896}
1897EXPORT_SYMBOL(vmalloc_32_user);
1898
d0107eb0
KH
1899/*
1900 * small helper routine , copy contents to buf from addr.
1901 * If the page is not present, fill zero.
1902 */
1903
1904static int aligned_vread(char *buf, char *addr, unsigned long count)
1905{
1906 struct page *p;
1907 int copied = 0;
1908
1909 while (count) {
1910 unsigned long offset, length;
1911
1912 offset = (unsigned long)addr & ~PAGE_MASK;
1913 length = PAGE_SIZE - offset;
1914 if (length > count)
1915 length = count;
1916 p = vmalloc_to_page(addr);
1917 /*
1918 * To do safe access to this _mapped_ area, we need
1919 * lock. But adding lock here means that we need to add
1920 * overhead of vmalloc()/vfree() calles for this _debug_
1921 * interface, rarely used. Instead of that, we'll use
1922 * kmap() and get small overhead in this access function.
1923 */
1924 if (p) {
1925 /*
1926 * we can expect USER0 is not used (see vread/vwrite's
1927 * function description)
1928 */
9b04c5fe 1929 void *map = kmap_atomic(p);
d0107eb0 1930 memcpy(buf, map + offset, length);
9b04c5fe 1931 kunmap_atomic(map);
d0107eb0
KH
1932 } else
1933 memset(buf, 0, length);
1934
1935 addr += length;
1936 buf += length;
1937 copied += length;
1938 count -= length;
1939 }
1940 return copied;
1941}
1942
1943static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1944{
1945 struct page *p;
1946 int copied = 0;
1947
1948 while (count) {
1949 unsigned long offset, length;
1950
1951 offset = (unsigned long)addr & ~PAGE_MASK;
1952 length = PAGE_SIZE - offset;
1953 if (length > count)
1954 length = count;
1955 p = vmalloc_to_page(addr);
1956 /*
1957 * To do safe access to this _mapped_ area, we need
1958 * lock. But adding lock here means that we need to add
1959 * overhead of vmalloc()/vfree() calles for this _debug_
1960 * interface, rarely used. Instead of that, we'll use
1961 * kmap() and get small overhead in this access function.
1962 */
1963 if (p) {
1964 /*
1965 * we can expect USER0 is not used (see vread/vwrite's
1966 * function description)
1967 */
9b04c5fe 1968 void *map = kmap_atomic(p);
d0107eb0 1969 memcpy(map + offset, buf, length);
9b04c5fe 1970 kunmap_atomic(map);
d0107eb0
KH
1971 }
1972 addr += length;
1973 buf += length;
1974 copied += length;
1975 count -= length;
1976 }
1977 return copied;
1978}
1979
1980/**
1981 * vread() - read vmalloc area in a safe way.
1982 * @buf: buffer for reading data
1983 * @addr: vm address.
1984 * @count: number of bytes to be read.
1985 *
1986 * Returns # of bytes which addr and buf should be increased.
1987 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1988 * includes any intersect with alive vmalloc area.
1989 *
1990 * This function checks that addr is a valid vmalloc'ed area, and
1991 * copy data from that area to a given buffer. If the given memory range
1992 * of [addr...addr+count) includes some valid address, data is copied to
1993 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1994 * IOREMAP area is treated as memory hole and no copy is done.
1995 *
1996 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 1997 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
1998 *
1999 * Note: In usual ops, vread() is never necessary because the caller
2000 * should know vmalloc() area is valid and can use memcpy().
2001 * This is for routines which have to access vmalloc area without
2002 * any informaion, as /dev/kmem.
2003 *
2004 */
2005
1da177e4
LT
2006long vread(char *buf, char *addr, unsigned long count)
2007{
2008 struct vm_struct *tmp;
2009 char *vaddr, *buf_start = buf;
d0107eb0 2010 unsigned long buflen = count;
1da177e4
LT
2011 unsigned long n;
2012
2013 /* Don't allow overflow */
2014 if ((unsigned long) addr + count < count)
2015 count = -(unsigned long) addr;
2016
2017 read_lock(&vmlist_lock);
d0107eb0 2018 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
2019 vaddr = (char *) tmp->addr;
2020 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2021 continue;
2022 while (addr < vaddr) {
2023 if (count == 0)
2024 goto finished;
2025 *buf = '\0';
2026 buf++;
2027 addr++;
2028 count--;
2029 }
2030 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
2031 if (n > count)
2032 n = count;
2033 if (!(tmp->flags & VM_IOREMAP))
2034 aligned_vread(buf, addr, n);
2035 else /* IOREMAP area is treated as memory hole */
2036 memset(buf, 0, n);
2037 buf += n;
2038 addr += n;
2039 count -= n;
1da177e4
LT
2040 }
2041finished:
2042 read_unlock(&vmlist_lock);
d0107eb0
KH
2043
2044 if (buf == buf_start)
2045 return 0;
2046 /* zero-fill memory holes */
2047 if (buf != buf_start + buflen)
2048 memset(buf, 0, buflen - (buf - buf_start));
2049
2050 return buflen;
1da177e4
LT
2051}
2052
d0107eb0
KH
2053/**
2054 * vwrite() - write vmalloc area in a safe way.
2055 * @buf: buffer for source data
2056 * @addr: vm address.
2057 * @count: number of bytes to be read.
2058 *
2059 * Returns # of bytes which addr and buf should be incresed.
2060 * (same number to @count).
2061 * If [addr...addr+count) doesn't includes any intersect with valid
2062 * vmalloc area, returns 0.
2063 *
2064 * This function checks that addr is a valid vmalloc'ed area, and
2065 * copy data from a buffer to the given addr. If specified range of
2066 * [addr...addr+count) includes some valid address, data is copied from
2067 * proper area of @buf. If there are memory holes, no copy to hole.
2068 * IOREMAP area is treated as memory hole and no copy is done.
2069 *
2070 * If [addr...addr+count) doesn't includes any intersects with alive
a8e5202d 2071 * vm_struct area, returns 0. @buf should be kernel's buffer.
d0107eb0
KH
2072 *
2073 * Note: In usual ops, vwrite() is never necessary because the caller
2074 * should know vmalloc() area is valid and can use memcpy().
2075 * This is for routines which have to access vmalloc area without
2076 * any informaion, as /dev/kmem.
d0107eb0
KH
2077 */
2078
1da177e4
LT
2079long vwrite(char *buf, char *addr, unsigned long count)
2080{
2081 struct vm_struct *tmp;
d0107eb0
KH
2082 char *vaddr;
2083 unsigned long n, buflen;
2084 int copied = 0;
1da177e4
LT
2085
2086 /* Don't allow overflow */
2087 if ((unsigned long) addr + count < count)
2088 count = -(unsigned long) addr;
d0107eb0 2089 buflen = count;
1da177e4
LT
2090
2091 read_lock(&vmlist_lock);
d0107eb0 2092 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1da177e4
LT
2093 vaddr = (char *) tmp->addr;
2094 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2095 continue;
2096 while (addr < vaddr) {
2097 if (count == 0)
2098 goto finished;
2099 buf++;
2100 addr++;
2101 count--;
2102 }
2103 n = vaddr + tmp->size - PAGE_SIZE - addr;
d0107eb0
KH
2104 if (n > count)
2105 n = count;
2106 if (!(tmp->flags & VM_IOREMAP)) {
2107 aligned_vwrite(buf, addr, n);
2108 copied++;
2109 }
2110 buf += n;
2111 addr += n;
2112 count -= n;
1da177e4
LT
2113 }
2114finished:
2115 read_unlock(&vmlist_lock);
d0107eb0
KH
2116 if (!copied)
2117 return 0;
2118 return buflen;
1da177e4 2119}
83342314
NP
2120
2121/**
2122 * remap_vmalloc_range - map vmalloc pages to userspace
83342314
NP
2123 * @vma: vma to cover (map full range of vma)
2124 * @addr: vmalloc memory
2125 * @pgoff: number of pages into addr before first page to map
7682486b
RD
2126 *
2127 * Returns: 0 for success, -Exxx on failure
83342314
NP
2128 *
2129 * This function checks that addr is a valid vmalloc'ed area, and
2130 * that it is big enough to cover the vma. Will return failure if
2131 * that criteria isn't met.
2132 *
72fd4a35 2133 * Similar to remap_pfn_range() (see mm/memory.c)
83342314
NP
2134 */
2135int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2136 unsigned long pgoff)
2137{
2138 struct vm_struct *area;
2139 unsigned long uaddr = vma->vm_start;
2140 unsigned long usize = vma->vm_end - vma->vm_start;
83342314
NP
2141
2142 if ((PAGE_SIZE-1) & (unsigned long)addr)
2143 return -EINVAL;
2144
db64fe02 2145 area = find_vm_area(addr);
83342314 2146 if (!area)
db64fe02 2147 return -EINVAL;
83342314
NP
2148
2149 if (!(area->flags & VM_USERMAP))
db64fe02 2150 return -EINVAL;
83342314
NP
2151
2152 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
db64fe02 2153 return -EINVAL;
83342314
NP
2154
2155 addr += pgoff << PAGE_SHIFT;
2156 do {
2157 struct page *page = vmalloc_to_page(addr);
db64fe02
NP
2158 int ret;
2159
83342314
NP
2160 ret = vm_insert_page(vma, uaddr, page);
2161 if (ret)
2162 return ret;
2163
2164 uaddr += PAGE_SIZE;
2165 addr += PAGE_SIZE;
2166 usize -= PAGE_SIZE;
2167 } while (usize > 0);
2168
314e51b9 2169 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
83342314 2170
db64fe02 2171 return 0;
83342314
NP
2172}
2173EXPORT_SYMBOL(remap_vmalloc_range);
2174
1eeb66a1
CH
2175/*
2176 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2177 * have one.
2178 */
2179void __attribute__((weak)) vmalloc_sync_all(void)
2180{
2181}
5f4352fb
JF
2182
2183
2f569afd 2184static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
5f4352fb 2185{
cd12909c
DV
2186 pte_t ***p = data;
2187
2188 if (p) {
2189 *(*p) = pte;
2190 (*p)++;
2191 }
5f4352fb
JF
2192 return 0;
2193}
2194
2195/**
2196 * alloc_vm_area - allocate a range of kernel address space
2197 * @size: size of the area
cd12909c 2198 * @ptes: returns the PTEs for the address space
7682486b
RD
2199 *
2200 * Returns: NULL on failure, vm_struct on success
5f4352fb
JF
2201 *
2202 * This function reserves a range of kernel address space, and
2203 * allocates pagetables to map that range. No actual mappings
cd12909c
DV
2204 * are created.
2205 *
2206 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2207 * allocated for the VM area are returned.
5f4352fb 2208 */
cd12909c 2209struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
5f4352fb
JF
2210{
2211 struct vm_struct *area;
2212
23016969
CL
2213 area = get_vm_area_caller(size, VM_IOREMAP,
2214 __builtin_return_address(0));
5f4352fb
JF
2215 if (area == NULL)
2216 return NULL;
2217
2218 /*
2219 * This ensures that page tables are constructed for this region
2220 * of kernel virtual address space and mapped into init_mm.
2221 */
2222 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
cd12909c 2223 size, f, ptes ? &ptes : NULL)) {
5f4352fb
JF
2224 free_vm_area(area);
2225 return NULL;
2226 }
2227
5f4352fb
JF
2228 return area;
2229}
2230EXPORT_SYMBOL_GPL(alloc_vm_area);
2231
2232void free_vm_area(struct vm_struct *area)
2233{
2234 struct vm_struct *ret;
2235 ret = remove_vm_area(area->addr);
2236 BUG_ON(ret != area);
2237 kfree(area);
2238}
2239EXPORT_SYMBOL_GPL(free_vm_area);
a10aa579 2240
4f8b02b4 2241#ifdef CONFIG_SMP
ca23e405
TH
2242static struct vmap_area *node_to_va(struct rb_node *n)
2243{
2244 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2245}
2246
2247/**
2248 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2249 * @end: target address
2250 * @pnext: out arg for the next vmap_area
2251 * @pprev: out arg for the previous vmap_area
2252 *
2253 * Returns: %true if either or both of next and prev are found,
2254 * %false if no vmap_area exists
2255 *
2256 * Find vmap_areas end addresses of which enclose @end. ie. if not
2257 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2258 */
2259static bool pvm_find_next_prev(unsigned long end,
2260 struct vmap_area **pnext,
2261 struct vmap_area **pprev)
2262{
2263 struct rb_node *n = vmap_area_root.rb_node;
2264 struct vmap_area *va = NULL;
2265
2266 while (n) {
2267 va = rb_entry(n, struct vmap_area, rb_node);
2268 if (end < va->va_end)
2269 n = n->rb_left;
2270 else if (end > va->va_end)
2271 n = n->rb_right;
2272 else
2273 break;
2274 }
2275
2276 if (!va)
2277 return false;
2278
2279 if (va->va_end > end) {
2280 *pnext = va;
2281 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2282 } else {
2283 *pprev = va;
2284 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2285 }
2286 return true;
2287}
2288
2289/**
2290 * pvm_determine_end - find the highest aligned address between two vmap_areas
2291 * @pnext: in/out arg for the next vmap_area
2292 * @pprev: in/out arg for the previous vmap_area
2293 * @align: alignment
2294 *
2295 * Returns: determined end address
2296 *
2297 * Find the highest aligned address between *@pnext and *@pprev below
2298 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2299 * down address is between the end addresses of the two vmap_areas.
2300 *
2301 * Please note that the address returned by this function may fall
2302 * inside *@pnext vmap_area. The caller is responsible for checking
2303 * that.
2304 */
2305static unsigned long pvm_determine_end(struct vmap_area **pnext,
2306 struct vmap_area **pprev,
2307 unsigned long align)
2308{
2309 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2310 unsigned long addr;
2311
2312 if (*pnext)
2313 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2314 else
2315 addr = vmalloc_end;
2316
2317 while (*pprev && (*pprev)->va_end > addr) {
2318 *pnext = *pprev;
2319 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2320 }
2321
2322 return addr;
2323}
2324
2325/**
2326 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2327 * @offsets: array containing offset of each area
2328 * @sizes: array containing size of each area
2329 * @nr_vms: the number of areas to allocate
2330 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
ca23e405
TH
2331 *
2332 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2333 * vm_structs on success, %NULL on failure
2334 *
2335 * Percpu allocator wants to use congruent vm areas so that it can
2336 * maintain the offsets among percpu areas. This function allocates
ec3f64fc
DR
2337 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2338 * be scattered pretty far, distance between two areas easily going up
2339 * to gigabytes. To avoid interacting with regular vmallocs, these
2340 * areas are allocated from top.
ca23e405
TH
2341 *
2342 * Despite its complicated look, this allocator is rather simple. It
2343 * does everything top-down and scans areas from the end looking for
2344 * matching slot. While scanning, if any of the areas overlaps with
2345 * existing vmap_area, the base address is pulled down to fit the
2346 * area. Scanning is repeated till all the areas fit and then all
2347 * necessary data structres are inserted and the result is returned.
2348 */
2349struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2350 const size_t *sizes, int nr_vms,
ec3f64fc 2351 size_t align)
ca23e405
TH
2352{
2353 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2354 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2355 struct vmap_area **vas, *prev, *next;
2356 struct vm_struct **vms;
2357 int area, area2, last_area, term_area;
2358 unsigned long base, start, end, last_end;
2359 bool purged = false;
2360
ca23e405
TH
2361 /* verify parameters and allocate data structures */
2362 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2363 for (last_area = 0, area = 0; area < nr_vms; area++) {
2364 start = offsets[area];
2365 end = start + sizes[area];
2366
2367 /* is everything aligned properly? */
2368 BUG_ON(!IS_ALIGNED(offsets[area], align));
2369 BUG_ON(!IS_ALIGNED(sizes[area], align));
2370
2371 /* detect the area with the highest address */
2372 if (start > offsets[last_area])
2373 last_area = area;
2374
2375 for (area2 = 0; area2 < nr_vms; area2++) {
2376 unsigned long start2 = offsets[area2];
2377 unsigned long end2 = start2 + sizes[area2];
2378
2379 if (area2 == area)
2380 continue;
2381
2382 BUG_ON(start2 >= start && start2 < end);
2383 BUG_ON(end2 <= end && end2 > start);
2384 }
2385 }
2386 last_end = offsets[last_area] + sizes[last_area];
2387
2388 if (vmalloc_end - vmalloc_start < last_end) {
2389 WARN_ON(true);
2390 return NULL;
2391 }
2392
4d67d860
TM
2393 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2394 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
ca23e405 2395 if (!vas || !vms)
f1db7afd 2396 goto err_free2;
ca23e405
TH
2397
2398 for (area = 0; area < nr_vms; area++) {
ec3f64fc
DR
2399 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2400 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
ca23e405
TH
2401 if (!vas[area] || !vms[area])
2402 goto err_free;
2403 }
2404retry:
2405 spin_lock(&vmap_area_lock);
2406
2407 /* start scanning - we scan from the top, begin with the last area */
2408 area = term_area = last_area;
2409 start = offsets[area];
2410 end = start + sizes[area];
2411
2412 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2413 base = vmalloc_end - last_end;
2414 goto found;
2415 }
2416 base = pvm_determine_end(&next, &prev, align) - end;
2417
2418 while (true) {
2419 BUG_ON(next && next->va_end <= base + end);
2420 BUG_ON(prev && prev->va_end > base + end);
2421
2422 /*
2423 * base might have underflowed, add last_end before
2424 * comparing.
2425 */
2426 if (base + last_end < vmalloc_start + last_end) {
2427 spin_unlock(&vmap_area_lock);
2428 if (!purged) {
2429 purge_vmap_area_lazy();
2430 purged = true;
2431 goto retry;
2432 }
2433 goto err_free;
2434 }
2435
2436 /*
2437 * If next overlaps, move base downwards so that it's
2438 * right below next and then recheck.
2439 */
2440 if (next && next->va_start < base + end) {
2441 base = pvm_determine_end(&next, &prev, align) - end;
2442 term_area = area;
2443 continue;
2444 }
2445
2446 /*
2447 * If prev overlaps, shift down next and prev and move
2448 * base so that it's right below new next and then
2449 * recheck.
2450 */
2451 if (prev && prev->va_end > base + start) {
2452 next = prev;
2453 prev = node_to_va(rb_prev(&next->rb_node));
2454 base = pvm_determine_end(&next, &prev, align) - end;
2455 term_area = area;
2456 continue;
2457 }
2458
2459 /*
2460 * This area fits, move on to the previous one. If
2461 * the previous one is the terminal one, we're done.
2462 */
2463 area = (area + nr_vms - 1) % nr_vms;
2464 if (area == term_area)
2465 break;
2466 start = offsets[area];
2467 end = start + sizes[area];
2468 pvm_find_next_prev(base + end, &next, &prev);
2469 }
2470found:
2471 /* we've found a fitting base, insert all va's */
2472 for (area = 0; area < nr_vms; area++) {
2473 struct vmap_area *va = vas[area];
2474
2475 va->va_start = base + offsets[area];
2476 va->va_end = va->va_start + sizes[area];
2477 __insert_vmap_area(va);
2478 }
2479
2480 vmap_area_pcpu_hole = base + offsets[last_area];
2481
2482 spin_unlock(&vmap_area_lock);
2483
2484 /* insert all vm's */
2485 for (area = 0; area < nr_vms; area++)
2486 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2487 pcpu_get_vm_areas);
2488
2489 kfree(vas);
2490 return vms;
2491
2492err_free:
2493 for (area = 0; area < nr_vms; area++) {
f1db7afd
KC
2494 kfree(vas[area]);
2495 kfree(vms[area]);
ca23e405 2496 }
f1db7afd 2497err_free2:
ca23e405
TH
2498 kfree(vas);
2499 kfree(vms);
2500 return NULL;
2501}
2502
2503/**
2504 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2505 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2506 * @nr_vms: the number of allocated areas
2507 *
2508 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2509 */
2510void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2511{
2512 int i;
2513
2514 for (i = 0; i < nr_vms; i++)
2515 free_vm_area(vms[i]);
2516 kfree(vms);
2517}
4f8b02b4 2518#endif /* CONFIG_SMP */
a10aa579
CL
2519
2520#ifdef CONFIG_PROC_FS
2521static void *s_start(struct seq_file *m, loff_t *pos)
e199b5d1 2522 __acquires(&vmlist_lock)
a10aa579
CL
2523{
2524 loff_t n = *pos;
2525 struct vm_struct *v;
2526
2527 read_lock(&vmlist_lock);
2528 v = vmlist;
2529 while (n > 0 && v) {
2530 n--;
2531 v = v->next;
2532 }
2533 if (!n)
2534 return v;
2535
2536 return NULL;
2537
2538}
2539
2540static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2541{
2542 struct vm_struct *v = p;
2543
2544 ++*pos;
2545 return v->next;
2546}
2547
2548static void s_stop(struct seq_file *m, void *p)
e199b5d1 2549 __releases(&vmlist_lock)
a10aa579
CL
2550{
2551 read_unlock(&vmlist_lock);
2552}
2553
a47a126a
ED
2554static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2555{
e5adfffc 2556 if (IS_ENABLED(CONFIG_NUMA)) {
a47a126a
ED
2557 unsigned int nr, *counters = m->private;
2558
2559 if (!counters)
2560 return;
2561
2562 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2563
2564 for (nr = 0; nr < v->nr_pages; nr++)
2565 counters[page_to_nid(v->pages[nr])]++;
2566
2567 for_each_node_state(nr, N_HIGH_MEMORY)
2568 if (counters[nr])
2569 seq_printf(m, " N%u=%u", nr, counters[nr]);
2570 }
2571}
2572
a10aa579
CL
2573static int s_show(struct seq_file *m, void *p)
2574{
2575 struct vm_struct *v = p;
2576
45ec1690 2577 seq_printf(m, "0x%pK-0x%pK %7ld",
a10aa579
CL
2578 v->addr, v->addr + v->size, v->size);
2579
62c70bce
JP
2580 if (v->caller)
2581 seq_printf(m, " %pS", v->caller);
23016969 2582
a10aa579
CL
2583 if (v->nr_pages)
2584 seq_printf(m, " pages=%d", v->nr_pages);
2585
2586 if (v->phys_addr)
ffa71f33 2587 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
a10aa579
CL
2588
2589 if (v->flags & VM_IOREMAP)
2590 seq_printf(m, " ioremap");
2591
2592 if (v->flags & VM_ALLOC)
2593 seq_printf(m, " vmalloc");
2594
2595 if (v->flags & VM_MAP)
2596 seq_printf(m, " vmap");
2597
2598 if (v->flags & VM_USERMAP)
2599 seq_printf(m, " user");
2600
2601 if (v->flags & VM_VPAGES)
2602 seq_printf(m, " vpages");
2603
a47a126a 2604 show_numa_info(m, v);
a10aa579
CL
2605 seq_putc(m, '\n');
2606 return 0;
2607}
2608
5f6a6a9c 2609static const struct seq_operations vmalloc_op = {
a10aa579
CL
2610 .start = s_start,
2611 .next = s_next,
2612 .stop = s_stop,
2613 .show = s_show,
2614};
5f6a6a9c
AD
2615
2616static int vmalloc_open(struct inode *inode, struct file *file)
2617{
2618 unsigned int *ptr = NULL;
2619 int ret;
2620
e5adfffc 2621 if (IS_ENABLED(CONFIG_NUMA)) {
5f6a6a9c 2622 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
51980ac9
KV
2623 if (ptr == NULL)
2624 return -ENOMEM;
2625 }
5f6a6a9c
AD
2626 ret = seq_open(file, &vmalloc_op);
2627 if (!ret) {
2628 struct seq_file *m = file->private_data;
2629 m->private = ptr;
2630 } else
2631 kfree(ptr);
2632 return ret;
2633}
2634
2635static const struct file_operations proc_vmalloc_operations = {
2636 .open = vmalloc_open,
2637 .read = seq_read,
2638 .llseek = seq_lseek,
2639 .release = seq_release_private,
2640};
2641
2642static int __init proc_vmalloc_init(void)
2643{
2644 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2645 return 0;
2646}
2647module_init(proc_vmalloc_init);
a10aa579
CL
2648#endif
2649