import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / util.c
CommitLineData
16d69265 1#include <linux/mm.h>
30992c97
MM
2#include <linux/slab.h>
3#include <linux/string.h>
b95f1b31 4#include <linux/export.h>
96840aa0 5#include <linux/err.h>
3b8f14b4 6#include <linux/sched.h>
eb36c587 7#include <linux/security.h>
9800339b 8#include <linux/swap.h>
33806f06 9#include <linux/swapops.h>
6fa3eb70 10#include <linux/vmalloc.h>
96840aa0 11#include <asm/uaccess.h>
30992c97 12
6038def0
NK
13#include "internal.h"
14
a8d154b0 15#define CREATE_TRACE_POINTS
ad8d75ff 16#include <trace/events/kmem.h>
a8d154b0 17
30992c97 18/**
30992c97 19 * kstrdup - allocate space for and copy an existing string
30992c97
MM
20 * @s: the string to duplicate
21 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
22 */
23char *kstrdup(const char *s, gfp_t gfp)
24{
25 size_t len;
26 char *buf;
27
28 if (!s)
29 return NULL;
30
31 len = strlen(s) + 1;
1d2c8eea 32 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
33 if (buf)
34 memcpy(buf, s, len);
35 return buf;
36}
37EXPORT_SYMBOL(kstrdup);
96840aa0 38
1e66df3e
JF
39/**
40 * kstrndup - allocate space for and copy an existing string
41 * @s: the string to duplicate
42 * @max: read at most @max chars from @s
43 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
44 */
45char *kstrndup(const char *s, size_t max, gfp_t gfp)
46{
47 size_t len;
48 char *buf;
49
50 if (!s)
51 return NULL;
52
53 len = strnlen(s, max);
54 buf = kmalloc_track_caller(len+1, gfp);
55 if (buf) {
56 memcpy(buf, s, len);
57 buf[len] = '\0';
58 }
59 return buf;
60}
61EXPORT_SYMBOL(kstrndup);
62
1a2f67b4
AD
63/**
64 * kmemdup - duplicate region of memory
65 *
66 * @src: memory region to duplicate
67 * @len: memory region length
68 * @gfp: GFP mask to use
69 */
70void *kmemdup(const void *src, size_t len, gfp_t gfp)
71{
72 void *p;
73
1d2c8eea 74 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
75 if (p)
76 memcpy(p, src, len);
77 return p;
78}
79EXPORT_SYMBOL(kmemdup);
80
610a77e0
LZ
81/**
82 * memdup_user - duplicate memory region from user space
83 *
84 * @src: source address in user space
85 * @len: number of bytes to copy
86 *
87 * Returns an ERR_PTR() on failure.
88 */
89void *memdup_user(const void __user *src, size_t len)
90{
91 void *p;
92
93 /*
94 * Always use GFP_KERNEL, since copy_from_user() can sleep and
95 * cause pagefault, which makes it pointless to use GFP_NOFS
96 * or GFP_ATOMIC.
97 */
98 p = kmalloc_track_caller(len, GFP_KERNEL);
99 if (!p)
100 return ERR_PTR(-ENOMEM);
101
102 if (copy_from_user(p, src, len)) {
103 kfree(p);
104 return ERR_PTR(-EFAULT);
105 }
106
107 return p;
108}
109EXPORT_SYMBOL(memdup_user);
110
e21827aa
EG
111static __always_inline void *__do_krealloc(const void *p, size_t new_size,
112 gfp_t flags)
113{
114 void *ret;
115 size_t ks = 0;
116
117 if (p)
118 ks = ksize(p);
119
120 if (ks >= new_size)
121 return (void *)p;
122
123 ret = kmalloc_track_caller(new_size, flags);
124 if (ret && p)
125 memcpy(ret, p, ks);
126
127 return ret;
128}
129
ef2ad80c 130/**
93bc4e89 131 * __krealloc - like krealloc() but don't free @p.
ef2ad80c
CL
132 * @p: object to reallocate memory for.
133 * @new_size: how many bytes of memory are required.
134 * @flags: the type of memory to allocate.
135 *
93bc4e89
PE
136 * This function is like krealloc() except it never frees the originally
137 * allocated buffer. Use this if you don't want to free the buffer immediately
138 * like, for example, with RCU.
ef2ad80c 139 */
93bc4e89 140void *__krealloc(const void *p, size_t new_size, gfp_t flags)
ef2ad80c 141{
93bc4e89 142 if (unlikely(!new_size))
6cb8f913 143 return ZERO_SIZE_PTR;
ef2ad80c 144
e21827aa 145 return __do_krealloc(p, new_size, flags);
ef8b4520 146
93bc4e89
PE
147}
148EXPORT_SYMBOL(__krealloc);
149
150/**
151 * krealloc - reallocate memory. The contents will remain unchanged.
152 * @p: object to reallocate memory for.
153 * @new_size: how many bytes of memory are required.
154 * @flags: the type of memory to allocate.
155 *
156 * The contents of the object pointed to are preserved up to the
157 * lesser of the new and old sizes. If @p is %NULL, krealloc()
0db10c8e 158 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
93bc4e89
PE
159 * %NULL pointer, the object pointed to is freed.
160 */
161void *krealloc(const void *p, size_t new_size, gfp_t flags)
162{
163 void *ret;
164
165 if (unlikely(!new_size)) {
ef2ad80c 166 kfree(p);
93bc4e89 167 return ZERO_SIZE_PTR;
ef2ad80c 168 }
93bc4e89 169
e21827aa 170 ret = __do_krealloc(p, new_size, flags);
93bc4e89
PE
171 if (ret && p != ret)
172 kfree(p);
173
ef2ad80c
CL
174 return ret;
175}
176EXPORT_SYMBOL(krealloc);
177
3ef0e5ba
JW
178/**
179 * kzfree - like kfree but zero memory
180 * @p: object to free memory of
181 *
182 * The memory of the object @p points to is zeroed before freed.
183 * If @p is %NULL, kzfree() does nothing.
a234bdc9
PE
184 *
185 * Note: this function zeroes the whole allocated buffer which can be a good
186 * deal bigger than the requested buffer size passed to kmalloc(). So be
187 * careful when using this function in performance sensitive code.
3ef0e5ba
JW
188 */
189void kzfree(const void *p)
190{
191 size_t ks;
192 void *mem = (void *)p;
193
194 if (unlikely(ZERO_OR_NULL_PTR(mem)))
195 return;
196 ks = ksize(mem);
197 memset(mem, 0, ks);
198 kfree(mem);
199}
200EXPORT_SYMBOL(kzfree);
201
96840aa0
DA
202/*
203 * strndup_user - duplicate an existing string from user space
96840aa0
DA
204 * @s: The string to duplicate
205 * @n: Maximum number of bytes to copy, including the trailing NUL.
206 */
207char *strndup_user(const char __user *s, long n)
208{
209 char *p;
210 long length;
211
212 length = strnlen_user(s, n);
213
214 if (!length)
215 return ERR_PTR(-EFAULT);
216
217 if (length > n)
218 return ERR_PTR(-EINVAL);
219
90d74045 220 p = memdup_user(s, length);
96840aa0 221
90d74045
JL
222 if (IS_ERR(p))
223 return p;
96840aa0
DA
224
225 p[length - 1] = '\0';
226
227 return p;
228}
229EXPORT_SYMBOL(strndup_user);
16d69265 230
6038def0
NK
231void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
232 struct vm_area_struct *prev, struct rb_node *rb_parent)
233{
234 struct vm_area_struct *next;
235
236 vma->vm_prev = prev;
237 if (prev) {
238 next = prev->vm_next;
239 prev->vm_next = vma;
240 } else {
241 mm->mmap = vma;
242 if (rb_parent)
243 next = rb_entry(rb_parent,
244 struct vm_area_struct, vm_rb);
245 else
246 next = NULL;
247 }
248 vma->vm_next = next;
249 if (next)
250 next->vm_prev = vma;
251}
252
b7643757
SP
253/* Check if the vma is being used as a stack by this task */
254static int vm_is_stack_for_task(struct task_struct *t,
255 struct vm_area_struct *vma)
256{
257 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
258}
259
260/*
261 * Check if the vma is being used as a stack.
262 * If is_group is non-zero, check in the entire thread group or else
263 * just check in the current task. Returns the pid of the task that
264 * the vma is stack for.
265 */
266pid_t vm_is_stack(struct task_struct *task,
267 struct vm_area_struct *vma, int in_group)
268{
269 pid_t ret = 0;
270
271 if (vm_is_stack_for_task(task, vma))
272 return task->pid;
273
274 if (in_group) {
275 struct task_struct *t;
276 rcu_read_lock();
277 if (!pid_alive(task))
278 goto done;
279
280 t = task;
281 do {
282 if (vm_is_stack_for_task(t, vma)) {
283 ret = t->pid;
284 goto done;
285 }
286 } while_each_thread(task, t);
287done:
288 rcu_read_unlock();
289 }
290
291 return ret;
292}
293
efc1a3b1 294#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
16d69265
AM
295void arch_pick_mmap_layout(struct mm_struct *mm)
296{
297 mm->mmap_base = TASK_UNMAPPED_BASE;
298 mm->get_unmapped_area = arch_get_unmapped_area;
299 mm->unmap_area = arch_unmap_area;
300}
301#endif
912985dc 302
45888a0c
XG
303/*
304 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
305 * back to the regular GUP.
25985edc 306 * If the architecture not support this function, simply return with no
45888a0c
XG
307 * page pinned
308 */
309int __attribute__((weak)) __get_user_pages_fast(unsigned long start,
310 int nr_pages, int write, struct page **pages)
311{
312 return 0;
313}
314EXPORT_SYMBOL_GPL(__get_user_pages_fast);
315
9de100d0
AG
316/**
317 * get_user_pages_fast() - pin user pages in memory
318 * @start: starting user address
319 * @nr_pages: number of pages from start to pin
320 * @write: whether pages will be written to
321 * @pages: array that receives pointers to the pages pinned.
322 * Should be at least nr_pages long.
323 *
9de100d0
AG
324 * Returns number of pages pinned. This may be fewer than the number
325 * requested. If nr_pages is 0 or negative, returns 0. If no pages
326 * were pinned, returns -errno.
d2bf6be8
NP
327 *
328 * get_user_pages_fast provides equivalent functionality to get_user_pages,
329 * operating on current and current->mm, with force=0 and vma=NULL. However
330 * unlike get_user_pages, it must be called without mmap_sem held.
331 *
332 * get_user_pages_fast may take mmap_sem and page table locks, so no
333 * assumptions can be made about lack of locking. get_user_pages_fast is to be
334 * implemented in a way that is advantageous (vs get_user_pages()) when the
335 * user memory area is already faulted in and present in ptes. However if the
336 * pages have to be faulted in, it may turn out to be slightly slower so
337 * callers need to carefully consider what to use. On many architectures,
338 * get_user_pages_fast simply falls back to get_user_pages.
9de100d0 339 */
912985dc
RR
340int __attribute__((weak)) get_user_pages_fast(unsigned long start,
341 int nr_pages, int write, struct page **pages)
342{
343 struct mm_struct *mm = current->mm;
344 int ret;
345
346 down_read(&mm->mmap_sem);
347 ret = get_user_pages(current, mm, start, nr_pages,
348 write, 0, pages, NULL);
349 up_read(&mm->mmap_sem);
350
351 return ret;
352}
353EXPORT_SYMBOL_GPL(get_user_pages_fast);
ca2b84cb 354
eb36c587
AV
355unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
356 unsigned long len, unsigned long prot,
357 unsigned long flag, unsigned long pgoff)
358{
359 unsigned long ret;
360 struct mm_struct *mm = current->mm;
41badc15 361 unsigned long populate;
eb36c587
AV
362
363 ret = security_mmap_file(file, prot, flag);
364 if (!ret) {
365 down_write(&mm->mmap_sem);
bebeb3d6
ML
366 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
367 &populate);
eb36c587 368 up_write(&mm->mmap_sem);
41badc15
ML
369 if (populate)
370 mm_populate(ret, populate);
eb36c587
AV
371 }
372 return ret;
373}
374
375unsigned long vm_mmap(struct file *file, unsigned long addr,
376 unsigned long len, unsigned long prot,
377 unsigned long flag, unsigned long offset)
378{
379 if (unlikely(offset + PAGE_ALIGN(len) < offset))
380 return -EINVAL;
381 if (unlikely(offset & ~PAGE_MASK))
382 return -EINVAL;
383
384 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
385}
386EXPORT_SYMBOL(vm_mmap);
387
6fa3eb70
S
388void kvfree(const void *addr)
389{
390 if (is_vmalloc_addr(addr))
391 vfree(addr);
392 else
393 kfree(addr);
394}
395EXPORT_SYMBOL(kvfree);
396
9800339b
SL
397struct address_space *page_mapping(struct page *page)
398{
399 struct address_space *mapping = page->mapping;
400
401 VM_BUG_ON(PageSlab(page));
402#ifdef CONFIG_SWAP
33806f06
SL
403 if (unlikely(PageSwapCache(page))) {
404 swp_entry_t entry;
405
406 entry.val = page_private(page);
407 mapping = swap_address_space(entry);
408 } else
9800339b
SL
409#endif
410 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
411 mapping = NULL;
412 return mapping;
413}
6fa3eb70 414EXPORT_SYMBOL_GPL(page_mapping);
9800339b 415
ca2b84cb 416/* Tracepoints definitions. */
ca2b84cb
EGM
417EXPORT_TRACEPOINT_SYMBOL(kmalloc);
418EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
419EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
420EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
421EXPORT_TRACEPOINT_SYMBOL(kfree);
422EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);