mm: mm_struct: remove 16 bytes of alignment padding on 64 bit builds
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / truncate.c
CommitLineData
1da177e4
LT
1/*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
e1f8e874 6 * 10Sep2002 Andrew Morton
1da177e4
LT
7 * Initial version.
8 */
9
10#include <linux/kernel.h>
4af3c9cc 11#include <linux/backing-dev.h>
5a0e3ad6 12#include <linux/gfp.h>
1da177e4 13#include <linux/mm.h>
0fd0e6b0 14#include <linux/swap.h>
1da177e4
LT
15#include <linux/module.h>
16#include <linux/pagemap.h>
01f2705d 17#include <linux/highmem.h>
1da177e4 18#include <linux/pagevec.h>
e08748ce 19#include <linux/task_io_accounting_ops.h>
1da177e4 20#include <linux/buffer_head.h> /* grr. try_to_release_page,
aaa4059b 21 do_invalidatepage */
ba470de4 22#include "internal.h"
1da177e4
LT
23
24
cf9a2ae8 25/**
28bc44d7 26 * do_invalidatepage - invalidate part or all of a page
cf9a2ae8
DH
27 * @page: the page which is affected
28 * @offset: the index of the truncation point
29 *
30 * do_invalidatepage() is called when all or part of the page has become
31 * invalidated by a truncate operation.
32 *
33 * do_invalidatepage() does not have to release all buffers, but it must
34 * ensure that no dirty buffer is left outside @offset and that no I/O
35 * is underway against any of the blocks which are outside the truncation
36 * point. Because the caller is about to free (and possibly reuse) those
37 * blocks on-disk.
38 */
39void do_invalidatepage(struct page *page, unsigned long offset)
40{
41 void (*invalidatepage)(struct page *, unsigned long);
42 invalidatepage = page->mapping->a_ops->invalidatepage;
9361401e 43#ifdef CONFIG_BLOCK
cf9a2ae8
DH
44 if (!invalidatepage)
45 invalidatepage = block_invalidatepage;
9361401e 46#endif
cf9a2ae8
DH
47 if (invalidatepage)
48 (*invalidatepage)(page, offset);
49}
50
1da177e4
LT
51static inline void truncate_partial_page(struct page *page, unsigned partial)
52{
eebd2aa3 53 zero_user_segment(page, partial, PAGE_CACHE_SIZE);
266cf658 54 if (page_has_private(page))
1da177e4
LT
55 do_invalidatepage(page, partial);
56}
57
ecdfc978
LT
58/*
59 * This cancels just the dirty bit on the kernel page itself, it
60 * does NOT actually remove dirty bits on any mmap's that may be
61 * around. It also leaves the page tagged dirty, so any sync
62 * activity will still find it on the dirty lists, and in particular,
63 * clear_page_dirty_for_io() will still look at the dirty bits in
64 * the VM.
65 *
66 * Doing this should *normally* only ever be done when a page
67 * is truncated, and is not actually mapped anywhere at all. However,
68 * fs/buffer.c does this when it notices that somebody has cleaned
69 * out all the buffers on a page without actually doing it through
70 * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
71 */
fba2591b
LT
72void cancel_dirty_page(struct page *page, unsigned int account_size)
73{
8368e328
LT
74 if (TestClearPageDirty(page)) {
75 struct address_space *mapping = page->mapping;
76 if (mapping && mapping_cap_account_dirty(mapping)) {
77 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
78 dec_bdi_stat(mapping->backing_dev_info,
79 BDI_RECLAIMABLE);
8368e328
LT
80 if (account_size)
81 task_io_account_cancelled_write(account_size);
82 }
3e67c098 83 }
fba2591b 84}
8368e328 85EXPORT_SYMBOL(cancel_dirty_page);
fba2591b 86
1da177e4
LT
87/*
88 * If truncate cannot remove the fs-private metadata from the page, the page
62e1c553 89 * becomes orphaned. It will be left on the LRU and may even be mapped into
54cb8821 90 * user pagetables if we're racing with filemap_fault().
1da177e4
LT
91 *
92 * We need to bale out if page->mapping is no longer equal to the original
93 * mapping. This happens a) when the VM reclaimed the page while we waited on
fc0ecff6 94 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
1da177e4
LT
95 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
96 */
750b4987 97static int
1da177e4
LT
98truncate_complete_page(struct address_space *mapping, struct page *page)
99{
100 if (page->mapping != mapping)
750b4987 101 return -EIO;
1da177e4 102
266cf658 103 if (page_has_private(page))
1da177e4
LT
104 do_invalidatepage(page, 0);
105
a2b34564
BS
106 cancel_dirty_page(page, PAGE_CACHE_SIZE);
107
ba470de4 108 clear_page_mlock(page);
1da177e4 109 ClearPageMappedToDisk(page);
5adc7b51 110 delete_from_page_cache(page);
750b4987 111 return 0;
1da177e4
LT
112}
113
114/*
fc0ecff6 115 * This is for invalidate_mapping_pages(). That function can be called at
1da177e4 116 * any time, and is not supposed to throw away dirty pages. But pages can
0fd0e6b0
NP
117 * be marked dirty at any time too, so use remove_mapping which safely
118 * discards clean, unused pages.
1da177e4
LT
119 *
120 * Returns non-zero if the page was successfully invalidated.
121 */
122static int
123invalidate_complete_page(struct address_space *mapping, struct page *page)
124{
0fd0e6b0
NP
125 int ret;
126
1da177e4
LT
127 if (page->mapping != mapping)
128 return 0;
129
266cf658 130 if (page_has_private(page) && !try_to_release_page(page, 0))
1da177e4
LT
131 return 0;
132
ba470de4 133 clear_page_mlock(page);
0fd0e6b0 134 ret = remove_mapping(mapping, page);
0fd0e6b0
NP
135
136 return ret;
1da177e4
LT
137}
138
750b4987
NP
139int truncate_inode_page(struct address_space *mapping, struct page *page)
140{
141 if (page_mapped(page)) {
142 unmap_mapping_range(mapping,
143 (loff_t)page->index << PAGE_CACHE_SHIFT,
144 PAGE_CACHE_SIZE, 0);
145 }
146 return truncate_complete_page(mapping, page);
147}
148
25718736
AK
149/*
150 * Used to get rid of pages on hardware memory corruption.
151 */
152int generic_error_remove_page(struct address_space *mapping, struct page *page)
153{
154 if (!mapping)
155 return -EINVAL;
156 /*
157 * Only punch for normal data pages for now.
158 * Handling other types like directories would need more auditing.
159 */
160 if (!S_ISREG(mapping->host->i_mode))
161 return -EIO;
162 return truncate_inode_page(mapping, page);
163}
164EXPORT_SYMBOL(generic_error_remove_page);
165
83f78668
WF
166/*
167 * Safely invalidate one page from its pagecache mapping.
168 * It only drops clean, unused pages. The page must be locked.
169 *
170 * Returns 1 if the page is successfully invalidated, otherwise 0.
171 */
172int invalidate_inode_page(struct page *page)
173{
174 struct address_space *mapping = page_mapping(page);
175 if (!mapping)
176 return 0;
177 if (PageDirty(page) || PageWriteback(page))
178 return 0;
179 if (page_mapped(page))
180 return 0;
181 return invalidate_complete_page(mapping, page);
182}
183
1da177e4 184/**
0643245f 185 * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
1da177e4
LT
186 * @mapping: mapping to truncate
187 * @lstart: offset from which to truncate
d7339071 188 * @lend: offset to which to truncate
1da177e4 189 *
d7339071
HR
190 * Truncate the page cache, removing the pages that are between
191 * specified offsets (and zeroing out partial page
192 * (if lstart is not page aligned)).
1da177e4
LT
193 *
194 * Truncate takes two passes - the first pass is nonblocking. It will not
195 * block on page locks and it will not block on writeback. The second pass
196 * will wait. This is to prevent as much IO as possible in the affected region.
197 * The first pass will remove most pages, so the search cost of the second pass
198 * is low.
199 *
200 * When looking at page->index outside the page lock we need to be careful to
201 * copy it into a local to avoid races (it could change at any time).
202 *
203 * We pass down the cache-hot hint to the page freeing code. Even if the
204 * mapping is large, it is probably the case that the final pages are the most
205 * recently touched, and freeing happens in ascending file offset order.
1da177e4 206 */
d7339071
HR
207void truncate_inode_pages_range(struct address_space *mapping,
208 loff_t lstart, loff_t lend)
1da177e4
LT
209{
210 const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
d7339071 211 pgoff_t end;
1da177e4
LT
212 const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
213 struct pagevec pvec;
214 pgoff_t next;
215 int i;
216
217 if (mapping->nrpages == 0)
218 return;
219
d7339071
HR
220 BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221 end = (lend >> PAGE_CACHE_SHIFT);
222
1da177e4
LT
223 pagevec_init(&pvec, 0);
224 next = start;
d7339071
HR
225 while (next <= end &&
226 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
e5598f8b 227 mem_cgroup_uncharge_start();
1da177e4
LT
228 for (i = 0; i < pagevec_count(&pvec); i++) {
229 struct page *page = pvec.pages[i];
230 pgoff_t page_index = page->index;
231
d7339071
HR
232 if (page_index > end) {
233 next = page_index;
234 break;
235 }
236
1da177e4
LT
237 if (page_index > next)
238 next = page_index;
239 next++;
529ae9aa 240 if (!trylock_page(page))
1da177e4
LT
241 continue;
242 if (PageWriteback(page)) {
243 unlock_page(page);
244 continue;
245 }
750b4987 246 truncate_inode_page(mapping, page);
1da177e4
LT
247 unlock_page(page);
248 }
249 pagevec_release(&pvec);
e5598f8b 250 mem_cgroup_uncharge_end();
1da177e4
LT
251 cond_resched();
252 }
253
254 if (partial) {
255 struct page *page = find_lock_page(mapping, start - 1);
256 if (page) {
257 wait_on_page_writeback(page);
258 truncate_partial_page(page, partial);
259 unlock_page(page);
260 page_cache_release(page);
261 }
262 }
263
264 next = start;
265 for ( ; ; ) {
266 cond_resched();
267 if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
268 if (next == start)
269 break;
270 next = start;
271 continue;
272 }
d7339071
HR
273 if (pvec.pages[0]->index > end) {
274 pagevec_release(&pvec);
275 break;
276 }
569b846d 277 mem_cgroup_uncharge_start();
1da177e4
LT
278 for (i = 0; i < pagevec_count(&pvec); i++) {
279 struct page *page = pvec.pages[i];
280
d7339071
HR
281 if (page->index > end)
282 break;
1da177e4
LT
283 lock_page(page);
284 wait_on_page_writeback(page);
750b4987 285 truncate_inode_page(mapping, page);
1da177e4
LT
286 if (page->index > next)
287 next = page->index;
288 next++;
1da177e4
LT
289 unlock_page(page);
290 }
291 pagevec_release(&pvec);
569b846d 292 mem_cgroup_uncharge_end();
1da177e4
LT
293 }
294}
d7339071 295EXPORT_SYMBOL(truncate_inode_pages_range);
1da177e4 296
d7339071
HR
297/**
298 * truncate_inode_pages - truncate *all* the pages from an offset
299 * @mapping: mapping to truncate
300 * @lstart: offset from which to truncate
301 *
1b1dcc1b 302 * Called under (and serialised by) inode->i_mutex.
d7339071
HR
303 */
304void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
305{
306 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
307}
1da177e4
LT
308EXPORT_SYMBOL(truncate_inode_pages);
309
28697355
MW
310/**
311 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
312 * @mapping: the address_space which holds the pages to invalidate
313 * @start: the offset 'from' which to invalidate
314 * @end: the offset 'to' which to invalidate (inclusive)
315 *
316 * This function only removes the unlocked pages, if you want to
317 * remove all the pages of one inode, you must call truncate_inode_pages.
318 *
319 * invalidate_mapping_pages() will not block on IO activity. It will not
320 * invalidate pages which are dirty, locked, under writeback or mapped into
321 * pagetables.
322 */
323unsigned long invalidate_mapping_pages(struct address_space *mapping,
324 pgoff_t start, pgoff_t end)
1da177e4
LT
325{
326 struct pagevec pvec;
327 pgoff_t next = start;
328 unsigned long ret = 0;
329 int i;
330
331 pagevec_init(&pvec, 0);
332 while (next <= end &&
333 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
569b846d 334 mem_cgroup_uncharge_start();
1da177e4
LT
335 for (i = 0; i < pagevec_count(&pvec); i++) {
336 struct page *page = pvec.pages[i];
e0f23603
N
337 pgoff_t index;
338 int lock_failed;
1da177e4 339
529ae9aa 340 lock_failed = !trylock_page(page);
e0f23603
N
341
342 /*
343 * We really shouldn't be looking at the ->index of an
344 * unlocked page. But we're not allowed to lock these
345 * pages. So we rely upon nobody altering the ->index
346 * of this (pinned-by-us) page.
347 */
348 index = page->index;
349 if (index > next)
350 next = index;
1da177e4 351 next++;
e0f23603
N
352 if (lock_failed)
353 continue;
354
83f78668
WF
355 ret += invalidate_inode_page(page);
356
1da177e4
LT
357 unlock_page(page);
358 if (next > end)
359 break;
360 }
361 pagevec_release(&pvec);
569b846d 362 mem_cgroup_uncharge_end();
28697355 363 cond_resched();
1da177e4
LT
364 }
365 return ret;
366}
54bc4855 367EXPORT_SYMBOL(invalidate_mapping_pages);
1da177e4 368
bd4c8ce4
AM
369/*
370 * This is like invalidate_complete_page(), except it ignores the page's
371 * refcount. We do this because invalidate_inode_pages2() needs stronger
372 * invalidation guarantees, and cannot afford to leave pages behind because
2706a1b8
AB
373 * shrink_page_list() has a temp ref on them, or because they're transiently
374 * sitting in the lru_cache_add() pagevecs.
bd4c8ce4
AM
375 */
376static int
377invalidate_complete_page2(struct address_space *mapping, struct page *page)
378{
379 if (page->mapping != mapping)
380 return 0;
381
266cf658 382 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
bd4c8ce4
AM
383 return 0;
384
19fd6231 385 spin_lock_irq(&mapping->tree_lock);
bd4c8ce4
AM
386 if (PageDirty(page))
387 goto failed;
388
ba470de4 389 clear_page_mlock(page);
266cf658 390 BUG_ON(page_has_private(page));
e64a782f 391 __delete_from_page_cache(page);
19fd6231 392 spin_unlock_irq(&mapping->tree_lock);
e767e056 393 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
394
395 if (mapping->a_ops->freepage)
396 mapping->a_ops->freepage(page);
397
bd4c8ce4
AM
398 page_cache_release(page); /* pagecache ref */
399 return 1;
400failed:
19fd6231 401 spin_unlock_irq(&mapping->tree_lock);
bd4c8ce4
AM
402 return 0;
403}
404
e3db7691
TM
405static int do_launder_page(struct address_space *mapping, struct page *page)
406{
407 if (!PageDirty(page))
408 return 0;
409 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
410 return 0;
411 return mapping->a_ops->launder_page(page);
412}
413
1da177e4
LT
414/**
415 * invalidate_inode_pages2_range - remove range of pages from an address_space
67be2dd1 416 * @mapping: the address_space
1da177e4
LT
417 * @start: the page offset 'from' which to invalidate
418 * @end: the page offset 'to' which to invalidate (inclusive)
419 *
420 * Any pages which are found to be mapped into pagetables are unmapped prior to
421 * invalidation.
422 *
6ccfa806 423 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
424 */
425int invalidate_inode_pages2_range(struct address_space *mapping,
426 pgoff_t start, pgoff_t end)
427{
428 struct pagevec pvec;
429 pgoff_t next;
430 int i;
431 int ret = 0;
0dd1334f 432 int ret2 = 0;
1da177e4
LT
433 int did_range_unmap = 0;
434 int wrapped = 0;
435
436 pagevec_init(&pvec, 0);
437 next = start;
7b965e08 438 while (next <= end && !wrapped &&
1da177e4
LT
439 pagevec_lookup(&pvec, mapping, next,
440 min(end - next, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
569b846d 441 mem_cgroup_uncharge_start();
7b965e08 442 for (i = 0; i < pagevec_count(&pvec); i++) {
1da177e4
LT
443 struct page *page = pvec.pages[i];
444 pgoff_t page_index;
1da177e4
LT
445
446 lock_page(page);
447 if (page->mapping != mapping) {
448 unlock_page(page);
449 continue;
450 }
451 page_index = page->index;
452 next = page_index + 1;
453 if (next == 0)
454 wrapped = 1;
455 if (page_index > end) {
456 unlock_page(page);
457 break;
458 }
459 wait_on_page_writeback(page);
d00806b1 460 if (page_mapped(page)) {
1da177e4
LT
461 if (!did_range_unmap) {
462 /*
463 * Zap the rest of the file in one hit.
464 */
465 unmap_mapping_range(mapping,
479ef592
OD
466 (loff_t)page_index<<PAGE_CACHE_SHIFT,
467 (loff_t)(end - page_index + 1)
1da177e4
LT
468 << PAGE_CACHE_SHIFT,
469 0);
470 did_range_unmap = 1;
471 } else {
472 /*
473 * Just zap this page
474 */
475 unmap_mapping_range(mapping,
479ef592 476 (loff_t)page_index<<PAGE_CACHE_SHIFT,
1da177e4
LT
477 PAGE_CACHE_SIZE, 0);
478 }
479 }
d00806b1 480 BUG_ON(page_mapped(page));
0dd1334f
HH
481 ret2 = do_launder_page(mapping, page);
482 if (ret2 == 0) {
483 if (!invalidate_complete_page2(mapping, page))
6ccfa806 484 ret2 = -EBUSY;
0dd1334f
HH
485 }
486 if (ret2 < 0)
487 ret = ret2;
1da177e4
LT
488 unlock_page(page);
489 }
490 pagevec_release(&pvec);
569b846d 491 mem_cgroup_uncharge_end();
1da177e4
LT
492 cond_resched();
493 }
494 return ret;
495}
496EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
497
498/**
499 * invalidate_inode_pages2 - remove all pages from an address_space
67be2dd1 500 * @mapping: the address_space
1da177e4
LT
501 *
502 * Any pages which are found to be mapped into pagetables are unmapped prior to
503 * invalidation.
504 *
e9de25dd 505 * Returns -EBUSY if any pages could not be invalidated.
1da177e4
LT
506 */
507int invalidate_inode_pages2(struct address_space *mapping)
508{
509 return invalidate_inode_pages2_range(mapping, 0, -1);
510}
511EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
25d9e2d1 512
513/**
514 * truncate_pagecache - unmap and remove pagecache that has been truncated
515 * @inode: inode
516 * @old: old file offset
517 * @new: new file offset
518 *
519 * inode's new i_size must already be written before truncate_pagecache
520 * is called.
521 *
522 * This function should typically be called before the filesystem
523 * releases resources associated with the freed range (eg. deallocates
524 * blocks). This way, pagecache will always stay logically coherent
525 * with on-disk format, and the filesystem would not have to deal with
526 * situations such as writepage being called for a page that has already
527 * had its underlying blocks deallocated.
528 */
529void truncate_pagecache(struct inode *inode, loff_t old, loff_t new)
530{
cedabed4
OH
531 struct address_space *mapping = inode->i_mapping;
532
533 /*
534 * unmap_mapping_range is called twice, first simply for
535 * efficiency so that truncate_inode_pages does fewer
536 * single-page unmaps. However after this first call, and
537 * before truncate_inode_pages finishes, it is possible for
538 * private pages to be COWed, which remain after
539 * truncate_inode_pages finishes, hence the second
540 * unmap_mapping_range call must be made for correctness.
541 */
542 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
543 truncate_inode_pages(mapping, new);
544 unmap_mapping_range(mapping, new + PAGE_SIZE - 1, 0, 1);
25d9e2d1 545}
546EXPORT_SYMBOL(truncate_pagecache);
547
2c27c65e
CH
548/**
549 * truncate_setsize - update inode and pagecache for a new file size
550 * @inode: inode
551 * @newsize: new file size
552 *
382e27da
JK
553 * truncate_setsize updates i_size and performs pagecache truncation (if
554 * necessary) to @newsize. It will be typically be called from the filesystem's
555 * setattr function when ATTR_SIZE is passed in.
2c27c65e 556 *
382e27da
JK
557 * Must be called with inode_mutex held and before all filesystem specific
558 * block truncation has been performed.
2c27c65e
CH
559 */
560void truncate_setsize(struct inode *inode, loff_t newsize)
561{
562 loff_t oldsize;
563
564 oldsize = inode->i_size;
565 i_size_write(inode, newsize);
566
567 truncate_pagecache(inode, oldsize, newsize);
568}
569EXPORT_SYMBOL(truncate_setsize);
570
25d9e2d1 571/**
572 * vmtruncate - unmap mappings "freed" by truncate() syscall
573 * @inode: inode of the file used
574 * @offset: file offset to start truncating
575 *
2c27c65e
CH
576 * This function is deprecated and truncate_setsize or truncate_pagecache
577 * should be used instead, together with filesystem specific block truncation.
25d9e2d1 578 */
579int vmtruncate(struct inode *inode, loff_t offset)
580{
25d9e2d1 581 int error;
582
2c27c65e 583 error = inode_newsize_ok(inode, offset);
25d9e2d1 584 if (error)
585 return error;
7bb46a67 586
2c27c65e 587 truncate_setsize(inode, offset);
25d9e2d1 588 if (inode->i_op->truncate)
589 inode->i_op->truncate(inode);
2c27c65e 590 return 0;
25d9e2d1 591}
592EXPORT_SYMBOL(vmtruncate);