swapfile: rearrange scan and swap_info
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
7c363b8c
AB
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
b962716b 38long nr_swap_pages;
1da177e4
LT
39long total_swap_pages;
40static int swap_overflow;
78ecba08 41static int least_priority;
1da177e4 42
1da177e4
LT
43static const char Bad_file[] = "Bad swap file entry ";
44static const char Unused_file[] = "Unused swap file entry ";
45static const char Bad_offset[] = "Bad swap offset entry ";
46static const char Unused_offset[] = "Unused swap offset entry ";
47
7c363b8c 48static struct swap_list_t swap_list = {-1, -1};
1da177e4 49
f577eb30 50static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 51
fc0abb14 52static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
53
54/*
55 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 56 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 57 * cannot be turned into a mutex.
1da177e4
LT
58 */
59static DECLARE_RWSEM(swap_unplug_sem);
60
1da177e4
LT
61void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
62{
63 swp_entry_t entry;
64
65 down_read(&swap_unplug_sem);
4c21e2f2 66 entry.val = page_private(page);
1da177e4
LT
67 if (PageSwapCache(page)) {
68 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
69 struct backing_dev_info *bdi;
70
71 /*
72 * If the page is removed from swapcache from under us (with a
73 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
74 * count to avoid reading garbage from page_private(page) above.
75 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
76 * condition and it's harmless. However if it triggers without
77 * swapoff it signals a problem.
78 */
79 WARN_ON(page_count(page) <= 1);
80
81 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 82 blk_run_backing_dev(bdi, page);
1da177e4
LT
83 }
84 up_read(&swap_unplug_sem);
85}
86
048c27fd
HD
87#define SWAPFILE_CLUSTER 256
88#define LATENCY_LIMIT 256
89
6eb396dc 90static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 91{
ebebbbe9
HD
92 unsigned long offset;
93 unsigned long last_in_cluster;
048c27fd 94 int latency_ration = LATENCY_LIMIT;
7dfad418 95
886bb7e9 96 /*
7dfad418
HD
97 * We try to cluster swap pages by allocating them sequentially
98 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
99 * way, however, we resort to first-free allocation, starting
100 * a new cluster. This prevents us from scattering swap pages
101 * all over the entire swap partition, so that we reduce
102 * overall disk seek times between swap pages. -- sct
103 * But we do now try to find an empty cluster. -Andrea
104 */
105
52b7efdb 106 si->flags += SWP_SCANNING;
ebebbbe9
HD
107 offset = si->cluster_next;
108
109 if (unlikely(!si->cluster_nr--)) {
110 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
111 si->cluster_nr = SWAPFILE_CLUSTER - 1;
112 goto checks;
113 }
5d337b91 114 spin_unlock(&swap_lock);
7dfad418
HD
115
116 offset = si->lowest_bit;
117 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
118
119 /* Locate the first empty (unaligned) cluster */
120 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 121 if (si->swap_map[offset])
7dfad418
HD
122 last_in_cluster = offset + SWAPFILE_CLUSTER;
123 else if (offset == last_in_cluster) {
5d337b91 124 spin_lock(&swap_lock);
ebebbbe9
HD
125 offset -= SWAPFILE_CLUSTER - 1;
126 si->cluster_next = offset;
127 si->cluster_nr = SWAPFILE_CLUSTER - 1;
128 goto checks;
1da177e4 129 }
048c27fd
HD
130 if (unlikely(--latency_ration < 0)) {
131 cond_resched();
132 latency_ration = LATENCY_LIMIT;
133 }
7dfad418 134 }
ebebbbe9
HD
135
136 offset = si->lowest_bit;
5d337b91 137 spin_lock(&swap_lock);
ebebbbe9 138 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 139 }
7dfad418 140
ebebbbe9
HD
141checks:
142 if (!(si->flags & SWP_WRITEOK))
52b7efdb 143 goto no_page;
7dfad418
HD
144 if (!si->highest_bit)
145 goto no_page;
ebebbbe9
HD
146 if (offset > si->highest_bit)
147 offset = si->lowest_bit;
148 if (si->swap_map[offset])
149 goto scan;
150
151 if (offset == si->lowest_bit)
152 si->lowest_bit++;
153 if (offset == si->highest_bit)
154 si->highest_bit--;
155 si->inuse_pages++;
156 if (si->inuse_pages == si->pages) {
157 si->lowest_bit = si->max;
158 si->highest_bit = 0;
1da177e4 159 }
ebebbbe9
HD
160 si->swap_map[offset] = 1;
161 si->cluster_next = offset + 1;
162 si->flags -= SWP_SCANNING;
163 return offset;
7dfad418 164
ebebbbe9 165scan:
5d337b91 166 spin_unlock(&swap_lock);
7dfad418 167 while (++offset <= si->highest_bit) {
52b7efdb 168 if (!si->swap_map[offset]) {
5d337b91 169 spin_lock(&swap_lock);
52b7efdb
HD
170 goto checks;
171 }
048c27fd
HD
172 if (unlikely(--latency_ration < 0)) {
173 cond_resched();
174 latency_ration = LATENCY_LIMIT;
175 }
7dfad418 176 }
5d337b91 177 spin_lock(&swap_lock);
ebebbbe9 178 goto checks;
7dfad418
HD
179
180no_page:
52b7efdb 181 si->flags -= SWP_SCANNING;
1da177e4
LT
182 return 0;
183}
184
185swp_entry_t get_swap_page(void)
186{
fb4f88dc
HD
187 struct swap_info_struct *si;
188 pgoff_t offset;
189 int type, next;
190 int wrapped = 0;
1da177e4 191
5d337b91 192 spin_lock(&swap_lock);
1da177e4 193 if (nr_swap_pages <= 0)
fb4f88dc
HD
194 goto noswap;
195 nr_swap_pages--;
196
197 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
198 si = swap_info + type;
199 next = si->next;
200 if (next < 0 ||
201 (!wrapped && si->prio != swap_info[next].prio)) {
202 next = swap_list.head;
203 wrapped++;
1da177e4 204 }
fb4f88dc
HD
205
206 if (!si->highest_bit)
207 continue;
208 if (!(si->flags & SWP_WRITEOK))
209 continue;
210
211 swap_list.next = next;
fb4f88dc 212 offset = scan_swap_map(si);
5d337b91
HD
213 if (offset) {
214 spin_unlock(&swap_lock);
fb4f88dc 215 return swp_entry(type, offset);
5d337b91 216 }
fb4f88dc 217 next = swap_list.next;
1da177e4 218 }
fb4f88dc
HD
219
220 nr_swap_pages++;
221noswap:
5d337b91 222 spin_unlock(&swap_lock);
fb4f88dc 223 return (swp_entry_t) {0};
1da177e4
LT
224}
225
3a291a20
RW
226swp_entry_t get_swap_page_of_type(int type)
227{
228 struct swap_info_struct *si;
229 pgoff_t offset;
230
231 spin_lock(&swap_lock);
232 si = swap_info + type;
233 if (si->flags & SWP_WRITEOK) {
234 nr_swap_pages--;
235 offset = scan_swap_map(si);
236 if (offset) {
237 spin_unlock(&swap_lock);
238 return swp_entry(type, offset);
239 }
240 nr_swap_pages++;
241 }
242 spin_unlock(&swap_lock);
243 return (swp_entry_t) {0};
244}
245
1da177e4
LT
246static struct swap_info_struct * swap_info_get(swp_entry_t entry)
247{
248 struct swap_info_struct * p;
249 unsigned long offset, type;
250
251 if (!entry.val)
252 goto out;
253 type = swp_type(entry);
254 if (type >= nr_swapfiles)
255 goto bad_nofile;
256 p = & swap_info[type];
257 if (!(p->flags & SWP_USED))
258 goto bad_device;
259 offset = swp_offset(entry);
260 if (offset >= p->max)
261 goto bad_offset;
262 if (!p->swap_map[offset])
263 goto bad_free;
5d337b91 264 spin_lock(&swap_lock);
1da177e4
LT
265 return p;
266
267bad_free:
268 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
269 goto out;
270bad_offset:
271 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
272 goto out;
273bad_device:
274 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
275 goto out;
276bad_nofile:
277 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
278out:
279 return NULL;
886bb7e9 280}
1da177e4 281
1da177e4
LT
282static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
283{
284 int count = p->swap_map[offset];
285
286 if (count < SWAP_MAP_MAX) {
287 count--;
288 p->swap_map[offset] = count;
289 if (!count) {
290 if (offset < p->lowest_bit)
291 p->lowest_bit = offset;
292 if (offset > p->highest_bit)
293 p->highest_bit = offset;
89d09a2c
HD
294 if (p->prio > swap_info[swap_list.next].prio)
295 swap_list.next = p - swap_info;
1da177e4
LT
296 nr_swap_pages++;
297 p->inuse_pages--;
298 }
299 }
300 return count;
301}
302
303/*
304 * Caller has made sure that the swapdevice corresponding to entry
305 * is still around or has not been recycled.
306 */
307void swap_free(swp_entry_t entry)
308{
309 struct swap_info_struct * p;
310
311 p = swap_info_get(entry);
312 if (p) {
313 swap_entry_free(p, swp_offset(entry));
5d337b91 314 spin_unlock(&swap_lock);
1da177e4
LT
315 }
316}
317
318/*
c475a8ab 319 * How many references to page are currently swapped out?
1da177e4 320 */
c475a8ab 321static inline int page_swapcount(struct page *page)
1da177e4 322{
c475a8ab
HD
323 int count = 0;
324 struct swap_info_struct *p;
1da177e4
LT
325 swp_entry_t entry;
326
4c21e2f2 327 entry.val = page_private(page);
1da177e4
LT
328 p = swap_info_get(entry);
329 if (p) {
c475a8ab
HD
330 /* Subtract the 1 for the swap cache itself */
331 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 332 spin_unlock(&swap_lock);
1da177e4 333 }
c475a8ab 334 return count;
1da177e4
LT
335}
336
337/*
7b1fe597
HD
338 * We can write to an anon page without COW if there are no other references
339 * to it. And as a side-effect, free up its swap: because the old content
340 * on disk will never be read, and seeking back there to write new content
341 * later would only waste time away from clustering.
1da177e4 342 */
7b1fe597 343int reuse_swap_page(struct page *page)
1da177e4 344{
c475a8ab
HD
345 int count;
346
51726b12 347 VM_BUG_ON(!PageLocked(page));
c475a8ab 348 count = page_mapcount(page);
7b1fe597 349 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 350 count += page_swapcount(page);
7b1fe597
HD
351 if (count == 1 && !PageWriteback(page)) {
352 delete_from_swap_cache(page);
353 SetPageDirty(page);
354 }
355 }
c475a8ab 356 return count == 1;
1da177e4
LT
357}
358
359/*
a2c43eed
HD
360 * If swap is getting full, or if there are no more mappings of this page,
361 * then try_to_free_swap is called to free its swap space.
1da177e4 362 */
a2c43eed 363int try_to_free_swap(struct page *page)
1da177e4 364{
51726b12 365 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
366
367 if (!PageSwapCache(page))
368 return 0;
369 if (PageWriteback(page))
370 return 0;
a2c43eed 371 if (page_swapcount(page))
1da177e4
LT
372 return 0;
373
a2c43eed
HD
374 delete_from_swap_cache(page);
375 SetPageDirty(page);
376 return 1;
68a22394
RR
377}
378
1da177e4
LT
379/*
380 * Free the swap entry like above, but also try to
381 * free the page cache entry if it is the last user.
382 */
383void free_swap_and_cache(swp_entry_t entry)
384{
385 struct swap_info_struct * p;
386 struct page *page = NULL;
387
0697212a
CL
388 if (is_migration_entry(entry))
389 return;
390
1da177e4
LT
391 p = swap_info_get(entry);
392 if (p) {
93fac704
NP
393 if (swap_entry_free(p, swp_offset(entry)) == 1) {
394 page = find_get_page(&swapper_space, entry.val);
8413ac9d 395 if (page && !trylock_page(page)) {
93fac704
NP
396 page_cache_release(page);
397 page = NULL;
398 }
399 }
5d337b91 400 spin_unlock(&swap_lock);
1da177e4
LT
401 }
402 if (page) {
a2c43eed
HD
403 /*
404 * Not mapped elsewhere, or swap space full? Free it!
405 * Also recheck PageSwapCache now page is locked (above).
406 */
93fac704 407 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 408 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
409 delete_from_swap_cache(page);
410 SetPageDirty(page);
411 }
412 unlock_page(page);
413 page_cache_release(page);
414 }
415}
416
b0cb1a19 417#ifdef CONFIG_HIBERNATION
f577eb30 418/*
915bae9e 419 * Find the swap type that corresponds to given device (if any).
f577eb30 420 *
915bae9e
RW
421 * @offset - number of the PAGE_SIZE-sized block of the device, starting
422 * from 0, in which the swap header is expected to be located.
423 *
424 * This is needed for the suspend to disk (aka swsusp).
f577eb30 425 */
7bf23687 426int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 427{
915bae9e 428 struct block_device *bdev = NULL;
f577eb30
RW
429 int i;
430
915bae9e
RW
431 if (device)
432 bdev = bdget(device);
433
f577eb30
RW
434 spin_lock(&swap_lock);
435 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 436 struct swap_info_struct *sis = swap_info + i;
f577eb30 437
915bae9e 438 if (!(sis->flags & SWP_WRITEOK))
f577eb30 439 continue;
b6b5bce3 440
915bae9e 441 if (!bdev) {
7bf23687
RW
442 if (bdev_p)
443 *bdev_p = sis->bdev;
444
6e1819d6
RW
445 spin_unlock(&swap_lock);
446 return i;
447 }
915bae9e
RW
448 if (bdev == sis->bdev) {
449 struct swap_extent *se;
450
451 se = list_entry(sis->extent_list.next,
452 struct swap_extent, list);
453 if (se->start_block == offset) {
7bf23687
RW
454 if (bdev_p)
455 *bdev_p = sis->bdev;
456
915bae9e
RW
457 spin_unlock(&swap_lock);
458 bdput(bdev);
459 return i;
460 }
f577eb30
RW
461 }
462 }
463 spin_unlock(&swap_lock);
915bae9e
RW
464 if (bdev)
465 bdput(bdev);
466
f577eb30
RW
467 return -ENODEV;
468}
469
470/*
471 * Return either the total number of swap pages of given type, or the number
472 * of free pages of that type (depending on @free)
473 *
474 * This is needed for software suspend
475 */
476unsigned int count_swap_pages(int type, int free)
477{
478 unsigned int n = 0;
479
480 if (type < nr_swapfiles) {
481 spin_lock(&swap_lock);
482 if (swap_info[type].flags & SWP_WRITEOK) {
483 n = swap_info[type].pages;
484 if (free)
485 n -= swap_info[type].inuse_pages;
486 }
487 spin_unlock(&swap_lock);
488 }
489 return n;
490}
491#endif
492
1da177e4 493/*
72866f6f
HD
494 * No need to decide whether this PTE shares the swap entry with others,
495 * just let do_wp_page work it out if a write is requested later - to
496 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 497 */
044d66c1 498static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
499 unsigned long addr, swp_entry_t entry, struct page *page)
500{
044d66c1
HD
501 spinlock_t *ptl;
502 pte_t *pte;
503 int ret = 1;
504
e1a1cd59 505 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
506 ret = -ENOMEM;
507
508 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
509 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
510 if (ret > 0)
511 mem_cgroup_uncharge_page(page);
512 ret = 0;
513 goto out;
514 }
8a9f3ccd 515
4294621f 516 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
517 get_page(page);
518 set_pte_at(vma->vm_mm, addr, pte,
519 pte_mkold(mk_pte(page, vma->vm_page_prot)));
520 page_add_anon_rmap(page, vma, addr);
521 swap_free(entry);
522 /*
523 * Move the page to the active list so it is not
524 * immediately swapped out again after swapon.
525 */
526 activate_page(page);
044d66c1
HD
527out:
528 pte_unmap_unlock(pte, ptl);
529 return ret;
1da177e4
LT
530}
531
532static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
533 unsigned long addr, unsigned long end,
534 swp_entry_t entry, struct page *page)
535{
1da177e4 536 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 537 pte_t *pte;
8a9f3ccd 538 int ret = 0;
1da177e4 539
044d66c1
HD
540 /*
541 * We don't actually need pte lock while scanning for swp_pte: since
542 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
543 * page table while we're scanning; though it could get zapped, and on
544 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
545 * of unmatched parts which look like swp_pte, so unuse_pte must
546 * recheck under pte lock. Scanning without pte lock lets it be
547 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
548 */
549 pte = pte_offset_map(pmd, addr);
1da177e4
LT
550 do {
551 /*
552 * swapoff spends a _lot_ of time in this loop!
553 * Test inline before going to call unuse_pte.
554 */
555 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
556 pte_unmap(pte);
557 ret = unuse_pte(vma, pmd, addr, entry, page);
558 if (ret)
559 goto out;
560 pte = pte_offset_map(pmd, addr);
1da177e4
LT
561 }
562 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
563 pte_unmap(pte - 1);
564out:
8a9f3ccd 565 return ret;
1da177e4
LT
566}
567
568static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
569 unsigned long addr, unsigned long end,
570 swp_entry_t entry, struct page *page)
571{
572 pmd_t *pmd;
573 unsigned long next;
8a9f3ccd 574 int ret;
1da177e4
LT
575
576 pmd = pmd_offset(pud, addr);
577 do {
578 next = pmd_addr_end(addr, end);
579 if (pmd_none_or_clear_bad(pmd))
580 continue;
8a9f3ccd
BS
581 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
582 if (ret)
583 return ret;
1da177e4
LT
584 } while (pmd++, addr = next, addr != end);
585 return 0;
586}
587
588static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
589 unsigned long addr, unsigned long end,
590 swp_entry_t entry, struct page *page)
591{
592 pud_t *pud;
593 unsigned long next;
8a9f3ccd 594 int ret;
1da177e4
LT
595
596 pud = pud_offset(pgd, addr);
597 do {
598 next = pud_addr_end(addr, end);
599 if (pud_none_or_clear_bad(pud))
600 continue;
8a9f3ccd
BS
601 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
602 if (ret)
603 return ret;
1da177e4
LT
604 } while (pud++, addr = next, addr != end);
605 return 0;
606}
607
608static int unuse_vma(struct vm_area_struct *vma,
609 swp_entry_t entry, struct page *page)
610{
611 pgd_t *pgd;
612 unsigned long addr, end, next;
8a9f3ccd 613 int ret;
1da177e4
LT
614
615 if (page->mapping) {
616 addr = page_address_in_vma(page, vma);
617 if (addr == -EFAULT)
618 return 0;
619 else
620 end = addr + PAGE_SIZE;
621 } else {
622 addr = vma->vm_start;
623 end = vma->vm_end;
624 }
625
626 pgd = pgd_offset(vma->vm_mm, addr);
627 do {
628 next = pgd_addr_end(addr, end);
629 if (pgd_none_or_clear_bad(pgd))
630 continue;
8a9f3ccd
BS
631 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
632 if (ret)
633 return ret;
1da177e4
LT
634 } while (pgd++, addr = next, addr != end);
635 return 0;
636}
637
638static int unuse_mm(struct mm_struct *mm,
639 swp_entry_t entry, struct page *page)
640{
641 struct vm_area_struct *vma;
8a9f3ccd 642 int ret = 0;
1da177e4
LT
643
644 if (!down_read_trylock(&mm->mmap_sem)) {
645 /*
7d03431c
FLVC
646 * Activate page so shrink_inactive_list is unlikely to unmap
647 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 648 */
c475a8ab 649 activate_page(page);
1da177e4
LT
650 unlock_page(page);
651 down_read(&mm->mmap_sem);
652 lock_page(page);
653 }
1da177e4 654 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 655 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
656 break;
657 }
1da177e4 658 up_read(&mm->mmap_sem);
8a9f3ccd 659 return (ret < 0)? ret: 0;
1da177e4
LT
660}
661
662/*
663 * Scan swap_map from current position to next entry still in use.
664 * Recycle to start on reaching the end, returning 0 when empty.
665 */
6eb396dc
HD
666static unsigned int find_next_to_unuse(struct swap_info_struct *si,
667 unsigned int prev)
1da177e4 668{
6eb396dc
HD
669 unsigned int max = si->max;
670 unsigned int i = prev;
1da177e4
LT
671 int count;
672
673 /*
5d337b91 674 * No need for swap_lock here: we're just looking
1da177e4
LT
675 * for whether an entry is in use, not modifying it; false
676 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 677 * allocations from this area (while holding swap_lock).
1da177e4
LT
678 */
679 for (;;) {
680 if (++i >= max) {
681 if (!prev) {
682 i = 0;
683 break;
684 }
685 /*
686 * No entries in use at top of swap_map,
687 * loop back to start and recheck there.
688 */
689 max = prev + 1;
690 prev = 0;
691 i = 1;
692 }
693 count = si->swap_map[i];
694 if (count && count != SWAP_MAP_BAD)
695 break;
696 }
697 return i;
698}
699
700/*
701 * We completely avoid races by reading each swap page in advance,
702 * and then search for the process using it. All the necessary
703 * page table adjustments can then be made atomically.
704 */
705static int try_to_unuse(unsigned int type)
706{
707 struct swap_info_struct * si = &swap_info[type];
708 struct mm_struct *start_mm;
709 unsigned short *swap_map;
710 unsigned short swcount;
711 struct page *page;
712 swp_entry_t entry;
6eb396dc 713 unsigned int i = 0;
1da177e4
LT
714 int retval = 0;
715 int reset_overflow = 0;
716 int shmem;
717
718 /*
719 * When searching mms for an entry, a good strategy is to
720 * start at the first mm we freed the previous entry from
721 * (though actually we don't notice whether we or coincidence
722 * freed the entry). Initialize this start_mm with a hold.
723 *
724 * A simpler strategy would be to start at the last mm we
725 * freed the previous entry from; but that would take less
726 * advantage of mmlist ordering, which clusters forked mms
727 * together, child after parent. If we race with dup_mmap(), we
728 * prefer to resolve parent before child, lest we miss entries
729 * duplicated after we scanned child: using last mm would invert
730 * that. Though it's only a serious concern when an overflowed
731 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
732 */
733 start_mm = &init_mm;
734 atomic_inc(&init_mm.mm_users);
735
736 /*
737 * Keep on scanning until all entries have gone. Usually,
738 * one pass through swap_map is enough, but not necessarily:
739 * there are races when an instance of an entry might be missed.
740 */
741 while ((i = find_next_to_unuse(si, i)) != 0) {
742 if (signal_pending(current)) {
743 retval = -EINTR;
744 break;
745 }
746
886bb7e9 747 /*
1da177e4
LT
748 * Get a page for the entry, using the existing swap
749 * cache page if there is one. Otherwise, get a clean
886bb7e9 750 * page and read the swap into it.
1da177e4
LT
751 */
752 swap_map = &si->swap_map[i];
753 entry = swp_entry(type, i);
02098fea
HD
754 page = read_swap_cache_async(entry,
755 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
756 if (!page) {
757 /*
758 * Either swap_duplicate() failed because entry
759 * has been freed independently, and will not be
760 * reused since sys_swapoff() already disabled
761 * allocation from here, or alloc_page() failed.
762 */
763 if (!*swap_map)
764 continue;
765 retval = -ENOMEM;
766 break;
767 }
768
769 /*
770 * Don't hold on to start_mm if it looks like exiting.
771 */
772 if (atomic_read(&start_mm->mm_users) == 1) {
773 mmput(start_mm);
774 start_mm = &init_mm;
775 atomic_inc(&init_mm.mm_users);
776 }
777
778 /*
779 * Wait for and lock page. When do_swap_page races with
780 * try_to_unuse, do_swap_page can handle the fault much
781 * faster than try_to_unuse can locate the entry. This
782 * apparently redundant "wait_on_page_locked" lets try_to_unuse
783 * defer to do_swap_page in such a case - in some tests,
784 * do_swap_page and try_to_unuse repeatedly compete.
785 */
786 wait_on_page_locked(page);
787 wait_on_page_writeback(page);
788 lock_page(page);
789 wait_on_page_writeback(page);
790
791 /*
792 * Remove all references to entry.
793 * Whenever we reach init_mm, there's no address space
794 * to search, but use it as a reminder to search shmem.
795 */
796 shmem = 0;
797 swcount = *swap_map;
798 if (swcount > 1) {
799 if (start_mm == &init_mm)
800 shmem = shmem_unuse(entry, page);
801 else
802 retval = unuse_mm(start_mm, entry, page);
803 }
804 if (*swap_map > 1) {
805 int set_start_mm = (*swap_map >= swcount);
806 struct list_head *p = &start_mm->mmlist;
807 struct mm_struct *new_start_mm = start_mm;
808 struct mm_struct *prev_mm = start_mm;
809 struct mm_struct *mm;
810
811 atomic_inc(&new_start_mm->mm_users);
812 atomic_inc(&prev_mm->mm_users);
813 spin_lock(&mmlist_lock);
2e0e26c7 814 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
815 (p = p->next) != &start_mm->mmlist) {
816 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 817 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 818 continue;
1da177e4
LT
819 spin_unlock(&mmlist_lock);
820 mmput(prev_mm);
821 prev_mm = mm;
822
823 cond_resched();
824
825 swcount = *swap_map;
826 if (swcount <= 1)
827 ;
828 else if (mm == &init_mm) {
829 set_start_mm = 1;
830 shmem = shmem_unuse(entry, page);
831 } else
832 retval = unuse_mm(mm, entry, page);
833 if (set_start_mm && *swap_map < swcount) {
834 mmput(new_start_mm);
835 atomic_inc(&mm->mm_users);
836 new_start_mm = mm;
837 set_start_mm = 0;
838 }
839 spin_lock(&mmlist_lock);
840 }
841 spin_unlock(&mmlist_lock);
842 mmput(prev_mm);
843 mmput(start_mm);
844 start_mm = new_start_mm;
845 }
2e0e26c7
HD
846 if (shmem) {
847 /* page has already been unlocked and released */
848 if (shmem > 0)
849 continue;
850 retval = shmem;
851 break;
852 }
1da177e4
LT
853 if (retval) {
854 unlock_page(page);
855 page_cache_release(page);
856 break;
857 }
858
859 /*
860 * How could swap count reach 0x7fff when the maximum
861 * pid is 0x7fff, and there's no way to repeat a swap
862 * page within an mm (except in shmem, where it's the
863 * shared object which takes the reference count)?
864 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
865 *
866 * If that's wrong, then we should worry more about
867 * exit_mmap() and do_munmap() cases described above:
868 * we might be resetting SWAP_MAP_MAX too early here.
869 * We know "Undead"s can happen, they're okay, so don't
870 * report them; but do report if we reset SWAP_MAP_MAX.
871 */
872 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 873 spin_lock(&swap_lock);
1da177e4 874 *swap_map = 1;
5d337b91 875 spin_unlock(&swap_lock);
1da177e4
LT
876 reset_overflow = 1;
877 }
878
879 /*
880 * If a reference remains (rare), we would like to leave
881 * the page in the swap cache; but try_to_unmap could
882 * then re-duplicate the entry once we drop page lock,
883 * so we might loop indefinitely; also, that page could
884 * not be swapped out to other storage meanwhile. So:
885 * delete from cache even if there's another reference,
886 * after ensuring that the data has been saved to disk -
887 * since if the reference remains (rarer), it will be
888 * read from disk into another page. Splitting into two
889 * pages would be incorrect if swap supported "shared
890 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
891 */
892 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
893 struct writeback_control wbc = {
894 .sync_mode = WB_SYNC_NONE,
895 };
896
897 swap_writepage(page, &wbc);
898 lock_page(page);
899 wait_on_page_writeback(page);
900 }
68bdc8d6
HD
901
902 /*
903 * It is conceivable that a racing task removed this page from
904 * swap cache just before we acquired the page lock at the top,
905 * or while we dropped it in unuse_mm(). The page might even
906 * be back in swap cache on another swap area: that we must not
907 * delete, since it may not have been written out to swap yet.
908 */
909 if (PageSwapCache(page) &&
910 likely(page_private(page) == entry.val))
2e0e26c7 911 delete_from_swap_cache(page);
1da177e4
LT
912
913 /*
914 * So we could skip searching mms once swap count went
915 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 916 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
917 */
918 SetPageDirty(page);
919 unlock_page(page);
920 page_cache_release(page);
921
922 /*
923 * Make sure that we aren't completely killing
924 * interactive performance.
925 */
926 cond_resched();
927 }
928
929 mmput(start_mm);
930 if (reset_overflow) {
931 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
932 swap_overflow = 0;
933 }
934 return retval;
935}
936
937/*
5d337b91
HD
938 * After a successful try_to_unuse, if no swap is now in use, we know
939 * we can empty the mmlist. swap_lock must be held on entry and exit.
940 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
941 * added to the mmlist just after page_duplicate - before would be racy.
942 */
943static void drain_mmlist(void)
944{
945 struct list_head *p, *next;
946 unsigned int i;
947
948 for (i = 0; i < nr_swapfiles; i++)
949 if (swap_info[i].inuse_pages)
950 return;
951 spin_lock(&mmlist_lock);
952 list_for_each_safe(p, next, &init_mm.mmlist)
953 list_del_init(p);
954 spin_unlock(&mmlist_lock);
955}
956
957/*
958 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
959 * corresponds to page offset `offset'.
960 */
961sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
962{
963 struct swap_extent *se = sis->curr_swap_extent;
964 struct swap_extent *start_se = se;
965
966 for ( ; ; ) {
967 struct list_head *lh;
968
969 if (se->start_page <= offset &&
970 offset < (se->start_page + se->nr_pages)) {
971 return se->start_block + (offset - se->start_page);
972 }
11d31886 973 lh = se->list.next;
1da177e4 974 if (lh == &sis->extent_list)
11d31886 975 lh = lh->next;
1da177e4
LT
976 se = list_entry(lh, struct swap_extent, list);
977 sis->curr_swap_extent = se;
978 BUG_ON(se == start_se); /* It *must* be present */
979 }
980}
981
b0cb1a19 982#ifdef CONFIG_HIBERNATION
3aef83e0
RW
983/*
984 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
985 * corresponding to given index in swap_info (swap type).
986 */
987sector_t swapdev_block(int swap_type, pgoff_t offset)
988{
989 struct swap_info_struct *sis;
990
991 if (swap_type >= nr_swapfiles)
992 return 0;
993
994 sis = swap_info + swap_type;
995 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
996}
b0cb1a19 997#endif /* CONFIG_HIBERNATION */
3aef83e0 998
1da177e4
LT
999/*
1000 * Free all of a swapdev's extent information
1001 */
1002static void destroy_swap_extents(struct swap_info_struct *sis)
1003{
1004 while (!list_empty(&sis->extent_list)) {
1005 struct swap_extent *se;
1006
1007 se = list_entry(sis->extent_list.next,
1008 struct swap_extent, list);
1009 list_del(&se->list);
1010 kfree(se);
1011 }
1da177e4
LT
1012}
1013
1014/*
1015 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1016 * extent list. The extent list is kept sorted in page order.
1da177e4 1017 *
11d31886 1018 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1019 */
1020static int
1021add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1022 unsigned long nr_pages, sector_t start_block)
1023{
1024 struct swap_extent *se;
1025 struct swap_extent *new_se;
1026 struct list_head *lh;
1027
11d31886
HD
1028 lh = sis->extent_list.prev; /* The highest page extent */
1029 if (lh != &sis->extent_list) {
1da177e4 1030 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1031 BUG_ON(se->start_page + se->nr_pages != start_page);
1032 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1033 /* Merge it */
1034 se->nr_pages += nr_pages;
1035 return 0;
1036 }
1da177e4
LT
1037 }
1038
1039 /*
1040 * No merge. Insert a new extent, preserving ordering.
1041 */
1042 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1043 if (new_se == NULL)
1044 return -ENOMEM;
1045 new_se->start_page = start_page;
1046 new_se->nr_pages = nr_pages;
1047 new_se->start_block = start_block;
1048
11d31886 1049 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1050 return 1;
1da177e4
LT
1051}
1052
1053/*
1054 * A `swap extent' is a simple thing which maps a contiguous range of pages
1055 * onto a contiguous range of disk blocks. An ordered list of swap extents
1056 * is built at swapon time and is then used at swap_writepage/swap_readpage
1057 * time for locating where on disk a page belongs.
1058 *
1059 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1060 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1061 * swap files identically.
1062 *
1063 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1064 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1065 * swapfiles are handled *identically* after swapon time.
1066 *
1067 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1068 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1069 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1070 * requirements, they are simply tossed out - we will never use those blocks
1071 * for swapping.
1072 *
b0d9bcd4 1073 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1074 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1075 * which will scribble on the fs.
1076 *
1077 * The amount of disk space which a single swap extent represents varies.
1078 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1079 * extents in the list. To avoid much list walking, we cache the previous
1080 * search location in `curr_swap_extent', and start new searches from there.
1081 * This is extremely effective. The average number of iterations in
1082 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1083 */
53092a74 1084static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1085{
1086 struct inode *inode;
1087 unsigned blocks_per_page;
1088 unsigned long page_no;
1089 unsigned blkbits;
1090 sector_t probe_block;
1091 sector_t last_block;
53092a74
HD
1092 sector_t lowest_block = -1;
1093 sector_t highest_block = 0;
1094 int nr_extents = 0;
1da177e4
LT
1095 int ret;
1096
1097 inode = sis->swap_file->f_mapping->host;
1098 if (S_ISBLK(inode->i_mode)) {
1099 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1100 *span = sis->pages;
1da177e4
LT
1101 goto done;
1102 }
1103
1104 blkbits = inode->i_blkbits;
1105 blocks_per_page = PAGE_SIZE >> blkbits;
1106
1107 /*
1108 * Map all the blocks into the extent list. This code doesn't try
1109 * to be very smart.
1110 */
1111 probe_block = 0;
1112 page_no = 0;
1113 last_block = i_size_read(inode) >> blkbits;
1114 while ((probe_block + blocks_per_page) <= last_block &&
1115 page_no < sis->max) {
1116 unsigned block_in_page;
1117 sector_t first_block;
1118
1119 first_block = bmap(inode, probe_block);
1120 if (first_block == 0)
1121 goto bad_bmap;
1122
1123 /*
1124 * It must be PAGE_SIZE aligned on-disk
1125 */
1126 if (first_block & (blocks_per_page - 1)) {
1127 probe_block++;
1128 goto reprobe;
1129 }
1130
1131 for (block_in_page = 1; block_in_page < blocks_per_page;
1132 block_in_page++) {
1133 sector_t block;
1134
1135 block = bmap(inode, probe_block + block_in_page);
1136 if (block == 0)
1137 goto bad_bmap;
1138 if (block != first_block + block_in_page) {
1139 /* Discontiguity */
1140 probe_block++;
1141 goto reprobe;
1142 }
1143 }
1144
53092a74
HD
1145 first_block >>= (PAGE_SHIFT - blkbits);
1146 if (page_no) { /* exclude the header page */
1147 if (first_block < lowest_block)
1148 lowest_block = first_block;
1149 if (first_block > highest_block)
1150 highest_block = first_block;
1151 }
1152
1da177e4
LT
1153 /*
1154 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1155 */
53092a74
HD
1156 ret = add_swap_extent(sis, page_no, 1, first_block);
1157 if (ret < 0)
1da177e4 1158 goto out;
53092a74 1159 nr_extents += ret;
1da177e4
LT
1160 page_no++;
1161 probe_block += blocks_per_page;
1162reprobe:
1163 continue;
1164 }
53092a74
HD
1165 ret = nr_extents;
1166 *span = 1 + highest_block - lowest_block;
1da177e4 1167 if (page_no == 0)
e2244ec2 1168 page_no = 1; /* force Empty message */
1da177e4 1169 sis->max = page_no;
e2244ec2 1170 sis->pages = page_no - 1;
1da177e4
LT
1171 sis->highest_bit = page_no - 1;
1172done:
1173 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1174 struct swap_extent, list);
1175 goto out;
1176bad_bmap:
1177 printk(KERN_ERR "swapon: swapfile has holes\n");
1178 ret = -EINVAL;
1179out:
1180 return ret;
1181}
1182
1183#if 0 /* We don't need this yet */
1184#include <linux/backing-dev.h>
1185int page_queue_congested(struct page *page)
1186{
1187 struct backing_dev_info *bdi;
1188
51726b12 1189 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1da177e4
LT
1190
1191 if (PageSwapCache(page)) {
4c21e2f2 1192 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1193 struct swap_info_struct *sis;
1194
1195 sis = get_swap_info_struct(swp_type(entry));
1196 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1197 } else
1198 bdi = page->mapping->backing_dev_info;
1199 return bdi_write_congested(bdi);
1200}
1201#endif
1202
1203asmlinkage long sys_swapoff(const char __user * specialfile)
1204{
1205 struct swap_info_struct * p = NULL;
1206 unsigned short *swap_map;
1207 struct file *swap_file, *victim;
1208 struct address_space *mapping;
1209 struct inode *inode;
1210 char * pathname;
1211 int i, type, prev;
1212 int err;
886bb7e9 1213
1da177e4
LT
1214 if (!capable(CAP_SYS_ADMIN))
1215 return -EPERM;
1216
1217 pathname = getname(specialfile);
1218 err = PTR_ERR(pathname);
1219 if (IS_ERR(pathname))
1220 goto out;
1221
1222 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1223 putname(pathname);
1224 err = PTR_ERR(victim);
1225 if (IS_ERR(victim))
1226 goto out;
1227
1228 mapping = victim->f_mapping;
1229 prev = -1;
5d337b91 1230 spin_lock(&swap_lock);
1da177e4
LT
1231 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1232 p = swap_info + type;
22c6f8fd 1233 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1234 if (p->swap_file->f_mapping == mapping)
1235 break;
1236 }
1237 prev = type;
1238 }
1239 if (type < 0) {
1240 err = -EINVAL;
5d337b91 1241 spin_unlock(&swap_lock);
1da177e4
LT
1242 goto out_dput;
1243 }
1244 if (!security_vm_enough_memory(p->pages))
1245 vm_unacct_memory(p->pages);
1246 else {
1247 err = -ENOMEM;
5d337b91 1248 spin_unlock(&swap_lock);
1da177e4
LT
1249 goto out_dput;
1250 }
1251 if (prev < 0) {
1252 swap_list.head = p->next;
1253 } else {
1254 swap_info[prev].next = p->next;
1255 }
1256 if (type == swap_list.next) {
1257 /* just pick something that's safe... */
1258 swap_list.next = swap_list.head;
1259 }
78ecba08
HD
1260 if (p->prio < 0) {
1261 for (i = p->next; i >= 0; i = swap_info[i].next)
1262 swap_info[i].prio = p->prio--;
1263 least_priority++;
1264 }
1da177e4
LT
1265 nr_swap_pages -= p->pages;
1266 total_swap_pages -= p->pages;
1267 p->flags &= ~SWP_WRITEOK;
5d337b91 1268 spin_unlock(&swap_lock);
fb4f88dc 1269
1da177e4
LT
1270 current->flags |= PF_SWAPOFF;
1271 err = try_to_unuse(type);
1272 current->flags &= ~PF_SWAPOFF;
1273
1da177e4
LT
1274 if (err) {
1275 /* re-insert swap space back into swap_list */
5d337b91 1276 spin_lock(&swap_lock);
78ecba08
HD
1277 if (p->prio < 0)
1278 p->prio = --least_priority;
1279 prev = -1;
1280 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1281 if (p->prio >= swap_info[i].prio)
1282 break;
78ecba08
HD
1283 prev = i;
1284 }
1da177e4
LT
1285 p->next = i;
1286 if (prev < 0)
1287 swap_list.head = swap_list.next = p - swap_info;
1288 else
1289 swap_info[prev].next = p - swap_info;
1290 nr_swap_pages += p->pages;
1291 total_swap_pages += p->pages;
1292 p->flags |= SWP_WRITEOK;
5d337b91 1293 spin_unlock(&swap_lock);
1da177e4
LT
1294 goto out_dput;
1295 }
52b7efdb
HD
1296
1297 /* wait for any unplug function to finish */
1298 down_write(&swap_unplug_sem);
1299 up_write(&swap_unplug_sem);
1300
5d337b91 1301 destroy_swap_extents(p);
fc0abb14 1302 mutex_lock(&swapon_mutex);
5d337b91
HD
1303 spin_lock(&swap_lock);
1304 drain_mmlist();
1305
52b7efdb 1306 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1307 p->highest_bit = 0; /* cuts scans short */
1308 while (p->flags >= SWP_SCANNING) {
5d337b91 1309 spin_unlock(&swap_lock);
13e4b57f 1310 schedule_timeout_uninterruptible(1);
5d337b91 1311 spin_lock(&swap_lock);
52b7efdb 1312 }
52b7efdb 1313
1da177e4
LT
1314 swap_file = p->swap_file;
1315 p->swap_file = NULL;
1316 p->max = 0;
1317 swap_map = p->swap_map;
1318 p->swap_map = NULL;
1319 p->flags = 0;
5d337b91 1320 spin_unlock(&swap_lock);
fc0abb14 1321 mutex_unlock(&swapon_mutex);
1da177e4
LT
1322 vfree(swap_map);
1323 inode = mapping->host;
1324 if (S_ISBLK(inode->i_mode)) {
1325 struct block_device *bdev = I_BDEV(inode);
1326 set_blocksize(bdev, p->old_block_size);
1327 bd_release(bdev);
1328 } else {
1b1dcc1b 1329 mutex_lock(&inode->i_mutex);
1da177e4 1330 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1331 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1332 }
1333 filp_close(swap_file, NULL);
1334 err = 0;
1335
1336out_dput:
1337 filp_close(victim, NULL);
1338out:
1339 return err;
1340}
1341
1342#ifdef CONFIG_PROC_FS
1343/* iterator */
1344static void *swap_start(struct seq_file *swap, loff_t *pos)
1345{
1346 struct swap_info_struct *ptr = swap_info;
1347 int i;
1348 loff_t l = *pos;
1349
fc0abb14 1350 mutex_lock(&swapon_mutex);
1da177e4 1351
881e4aab
SS
1352 if (!l)
1353 return SEQ_START_TOKEN;
1354
1da177e4
LT
1355 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1356 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1357 continue;
881e4aab 1358 if (!--l)
1da177e4
LT
1359 return ptr;
1360 }
1361
1362 return NULL;
1363}
1364
1365static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1366{
881e4aab 1367 struct swap_info_struct *ptr;
1da177e4
LT
1368 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1369
881e4aab
SS
1370 if (v == SEQ_START_TOKEN)
1371 ptr = swap_info;
1372 else {
1373 ptr = v;
1374 ptr++;
1375 }
1376
1377 for (; ptr < endptr; ptr++) {
1da177e4
LT
1378 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1379 continue;
1380 ++*pos;
1381 return ptr;
1382 }
1383
1384 return NULL;
1385}
1386
1387static void swap_stop(struct seq_file *swap, void *v)
1388{
fc0abb14 1389 mutex_unlock(&swapon_mutex);
1da177e4
LT
1390}
1391
1392static int swap_show(struct seq_file *swap, void *v)
1393{
1394 struct swap_info_struct *ptr = v;
1395 struct file *file;
1396 int len;
1397
881e4aab
SS
1398 if (ptr == SEQ_START_TOKEN) {
1399 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1400 return 0;
1401 }
1da177e4
LT
1402
1403 file = ptr->swap_file;
c32c2f63 1404 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1405 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1406 len < 40 ? 40 - len : 1, " ",
1407 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1408 "partition" : "file\t",
886bb7e9
HD
1409 ptr->pages << (PAGE_SHIFT - 10),
1410 ptr->inuse_pages << (PAGE_SHIFT - 10),
1411 ptr->prio);
1da177e4
LT
1412 return 0;
1413}
1414
15ad7cdc 1415static const struct seq_operations swaps_op = {
1da177e4
LT
1416 .start = swap_start,
1417 .next = swap_next,
1418 .stop = swap_stop,
1419 .show = swap_show
1420};
1421
1422static int swaps_open(struct inode *inode, struct file *file)
1423{
1424 return seq_open(file, &swaps_op);
1425}
1426
15ad7cdc 1427static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1428 .open = swaps_open,
1429 .read = seq_read,
1430 .llseek = seq_lseek,
1431 .release = seq_release,
1432};
1433
1434static int __init procswaps_init(void)
1435{
3d71f86f 1436 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1437 return 0;
1438}
1439__initcall(procswaps_init);
1440#endif /* CONFIG_PROC_FS */
1441
1796316a
JB
1442#ifdef MAX_SWAPFILES_CHECK
1443static int __init max_swapfiles_check(void)
1444{
1445 MAX_SWAPFILES_CHECK();
1446 return 0;
1447}
1448late_initcall(max_swapfiles_check);
1449#endif
1450
1da177e4
LT
1451/*
1452 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1453 *
1454 * The swapon system call
1455 */
1456asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1457{
1458 struct swap_info_struct * p;
1459 char *name = NULL;
1460 struct block_device *bdev = NULL;
1461 struct file *swap_file = NULL;
1462 struct address_space *mapping;
1463 unsigned int type;
1464 int i, prev;
1465 int error;
1da177e4 1466 union swap_header *swap_header = NULL;
6eb396dc
HD
1467 unsigned int nr_good_pages = 0;
1468 int nr_extents = 0;
53092a74 1469 sector_t span;
1da177e4 1470 unsigned long maxpages = 1;
73fd8748 1471 unsigned long swapfilepages;
78ecba08 1472 unsigned short *swap_map = NULL;
1da177e4
LT
1473 struct page *page = NULL;
1474 struct inode *inode = NULL;
1475 int did_down = 0;
1476
1477 if (!capable(CAP_SYS_ADMIN))
1478 return -EPERM;
5d337b91 1479 spin_lock(&swap_lock);
1da177e4
LT
1480 p = swap_info;
1481 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1482 if (!(p->flags & SWP_USED))
1483 break;
1484 error = -EPERM;
0697212a 1485 if (type >= MAX_SWAPFILES) {
5d337b91 1486 spin_unlock(&swap_lock);
1da177e4
LT
1487 goto out;
1488 }
1489 if (type >= nr_swapfiles)
1490 nr_swapfiles = type+1;
78ecba08 1491 memset(p, 0, sizeof(*p));
1da177e4
LT
1492 INIT_LIST_HEAD(&p->extent_list);
1493 p->flags = SWP_USED;
1da177e4 1494 p->next = -1;
5d337b91 1495 spin_unlock(&swap_lock);
1da177e4
LT
1496 name = getname(specialfile);
1497 error = PTR_ERR(name);
1498 if (IS_ERR(name)) {
1499 name = NULL;
1500 goto bad_swap_2;
1501 }
1502 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1503 error = PTR_ERR(swap_file);
1504 if (IS_ERR(swap_file)) {
1505 swap_file = NULL;
1506 goto bad_swap_2;
1507 }
1508
1509 p->swap_file = swap_file;
1510 mapping = swap_file->f_mapping;
1511 inode = mapping->host;
1512
1513 error = -EBUSY;
1514 for (i = 0; i < nr_swapfiles; i++) {
1515 struct swap_info_struct *q = &swap_info[i];
1516
1517 if (i == type || !q->swap_file)
1518 continue;
1519 if (mapping == q->swap_file->f_mapping)
1520 goto bad_swap;
1521 }
1522
1523 error = -EINVAL;
1524 if (S_ISBLK(inode->i_mode)) {
1525 bdev = I_BDEV(inode);
1526 error = bd_claim(bdev, sys_swapon);
1527 if (error < 0) {
1528 bdev = NULL;
f7b3a435 1529 error = -EINVAL;
1da177e4
LT
1530 goto bad_swap;
1531 }
1532 p->old_block_size = block_size(bdev);
1533 error = set_blocksize(bdev, PAGE_SIZE);
1534 if (error < 0)
1535 goto bad_swap;
1536 p->bdev = bdev;
1537 } else if (S_ISREG(inode->i_mode)) {
1538 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1539 mutex_lock(&inode->i_mutex);
1da177e4
LT
1540 did_down = 1;
1541 if (IS_SWAPFILE(inode)) {
1542 error = -EBUSY;
1543 goto bad_swap;
1544 }
1545 } else {
1546 goto bad_swap;
1547 }
1548
73fd8748 1549 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1550
1551 /*
1552 * Read the swap header.
1553 */
1554 if (!mapping->a_ops->readpage) {
1555 error = -EINVAL;
1556 goto bad_swap;
1557 }
090d2b18 1558 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1559 if (IS_ERR(page)) {
1560 error = PTR_ERR(page);
1561 goto bad_swap;
1562 }
81e33971 1563 swap_header = kmap(page);
1da177e4 1564
81e33971 1565 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1566 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1567 error = -EINVAL;
1568 goto bad_swap;
1569 }
886bb7e9 1570
81e33971
HD
1571 /* swap partition endianess hack... */
1572 if (swab32(swap_header->info.version) == 1) {
1573 swab32s(&swap_header->info.version);
1574 swab32s(&swap_header->info.last_page);
1575 swab32s(&swap_header->info.nr_badpages);
1576 for (i = 0; i < swap_header->info.nr_badpages; i++)
1577 swab32s(&swap_header->info.badpages[i]);
1578 }
1579 /* Check the swap header's sub-version */
1580 if (swap_header->info.version != 1) {
1581 printk(KERN_WARNING
1582 "Unable to handle swap header version %d\n",
1583 swap_header->info.version);
1da177e4
LT
1584 error = -EINVAL;
1585 goto bad_swap;
81e33971 1586 }
1da177e4 1587
81e33971
HD
1588 p->lowest_bit = 1;
1589 p->cluster_next = 1;
52b7efdb 1590
81e33971
HD
1591 /*
1592 * Find out how many pages are allowed for a single swap
1593 * device. There are two limiting factors: 1) the number of
1594 * bits for the swap offset in the swp_entry_t type and
1595 * 2) the number of bits in the a swap pte as defined by
1596 * the different architectures. In order to find the
1597 * largest possible bit mask a swap entry with swap type 0
1598 * and swap offset ~0UL is created, encoded to a swap pte,
1599 * decoded to a swp_entry_t again and finally the swap
1600 * offset is extracted. This will mask all the bits from
1601 * the initial ~0UL mask that can't be encoded in either
1602 * the swp_entry_t or the architecture definition of a
1603 * swap pte.
1604 */
1605 maxpages = swp_offset(pte_to_swp_entry(
1606 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1607 if (maxpages > swap_header->info.last_page)
1608 maxpages = swap_header->info.last_page;
1609 p->highest_bit = maxpages - 1;
1da177e4 1610
81e33971
HD
1611 error = -EINVAL;
1612 if (!maxpages)
1613 goto bad_swap;
1614 if (swapfilepages && maxpages > swapfilepages) {
1615 printk(KERN_WARNING
1616 "Swap area shorter than signature indicates\n");
1617 goto bad_swap;
1618 }
1619 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1620 goto bad_swap;
1621 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1622 goto bad_swap;
cd105df4 1623
81e33971
HD
1624 /* OK, set up the swap map and apply the bad block list */
1625 swap_map = vmalloc(maxpages * sizeof(short));
1626 if (!swap_map) {
1627 error = -ENOMEM;
1628 goto bad_swap;
1629 }
1da177e4 1630
81e33971
HD
1631 memset(swap_map, 0, maxpages * sizeof(short));
1632 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1633 int page_nr = swap_header->info.badpages[i];
1634 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1635 error = -EINVAL;
1da177e4 1636 goto bad_swap;
81e33971
HD
1637 }
1638 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1639 }
81e33971
HD
1640 nr_good_pages = swap_header->info.last_page -
1641 swap_header->info.nr_badpages -
1642 1 /* header page */;
e2244ec2 1643
e2244ec2 1644 if (nr_good_pages) {
78ecba08 1645 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1646 p->max = maxpages;
1647 p->pages = nr_good_pages;
53092a74
HD
1648 nr_extents = setup_swap_extents(p, &span);
1649 if (nr_extents < 0) {
1650 error = nr_extents;
e2244ec2 1651 goto bad_swap;
53092a74 1652 }
e2244ec2
HD
1653 nr_good_pages = p->pages;
1654 }
1da177e4
LT
1655 if (!nr_good_pages) {
1656 printk(KERN_WARNING "Empty swap-file\n");
1657 error = -EINVAL;
1658 goto bad_swap;
1659 }
1da177e4 1660
fc0abb14 1661 mutex_lock(&swapon_mutex);
5d337b91 1662 spin_lock(&swap_lock);
78ecba08
HD
1663 if (swap_flags & SWAP_FLAG_PREFER)
1664 p->prio =
1665 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1666 else
1667 p->prio = --least_priority;
1668 p->swap_map = swap_map;
22c6f8fd 1669 p->flags |= SWP_WRITEOK;
1da177e4
LT
1670 nr_swap_pages += nr_good_pages;
1671 total_swap_pages += nr_good_pages;
53092a74 1672
6eb396dc 1673 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1674 "Priority:%d extents:%d across:%lluk\n",
1675 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1676 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1677
1678 /* insert swap space into swap_list: */
1679 prev = -1;
1680 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1681 if (p->prio >= swap_info[i].prio) {
1682 break;
1683 }
1684 prev = i;
1685 }
1686 p->next = i;
1687 if (prev < 0) {
1688 swap_list.head = swap_list.next = p - swap_info;
1689 } else {
1690 swap_info[prev].next = p - swap_info;
1691 }
5d337b91 1692 spin_unlock(&swap_lock);
fc0abb14 1693 mutex_unlock(&swapon_mutex);
1da177e4
LT
1694 error = 0;
1695 goto out;
1696bad_swap:
1697 if (bdev) {
1698 set_blocksize(bdev, p->old_block_size);
1699 bd_release(bdev);
1700 }
4cd3bb10 1701 destroy_swap_extents(p);
1da177e4 1702bad_swap_2:
5d337b91 1703 spin_lock(&swap_lock);
1da177e4 1704 p->swap_file = NULL;
1da177e4 1705 p->flags = 0;
5d337b91 1706 spin_unlock(&swap_lock);
1da177e4
LT
1707 vfree(swap_map);
1708 if (swap_file)
1709 filp_close(swap_file, NULL);
1710out:
1711 if (page && !IS_ERR(page)) {
1712 kunmap(page);
1713 page_cache_release(page);
1714 }
1715 if (name)
1716 putname(name);
1717 if (did_down) {
1718 if (!error)
1719 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1720 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1721 }
1722 return error;
1723}
1724
1725void si_swapinfo(struct sysinfo *val)
1726{
1727 unsigned int i;
1728 unsigned long nr_to_be_unused = 0;
1729
5d337b91 1730 spin_lock(&swap_lock);
1da177e4
LT
1731 for (i = 0; i < nr_swapfiles; i++) {
1732 if (!(swap_info[i].flags & SWP_USED) ||
1733 (swap_info[i].flags & SWP_WRITEOK))
1734 continue;
1735 nr_to_be_unused += swap_info[i].inuse_pages;
1736 }
1737 val->freeswap = nr_swap_pages + nr_to_be_unused;
1738 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1739 spin_unlock(&swap_lock);
1da177e4
LT
1740}
1741
1742/*
1743 * Verify that a swap entry is valid and increment its swap map count.
1744 *
1745 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1746 * "permanent", but will be reclaimed by the next swapoff.
1747 */
1748int swap_duplicate(swp_entry_t entry)
1749{
1750 struct swap_info_struct * p;
1751 unsigned long offset, type;
1752 int result = 0;
1753
0697212a
CL
1754 if (is_migration_entry(entry))
1755 return 1;
1756
1da177e4
LT
1757 type = swp_type(entry);
1758 if (type >= nr_swapfiles)
1759 goto bad_file;
1760 p = type + swap_info;
1761 offset = swp_offset(entry);
1762
5d337b91 1763 spin_lock(&swap_lock);
1da177e4
LT
1764 if (offset < p->max && p->swap_map[offset]) {
1765 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1766 p->swap_map[offset]++;
1767 result = 1;
1768 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1769 if (swap_overflow++ < 5)
1770 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1771 p->swap_map[offset] = SWAP_MAP_MAX;
1772 result = 1;
1773 }
1774 }
5d337b91 1775 spin_unlock(&swap_lock);
1da177e4
LT
1776out:
1777 return result;
1778
1779bad_file:
1780 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1781 goto out;
1782}
1783
1784struct swap_info_struct *
1785get_swap_info_struct(unsigned type)
1786{
1787 return &swap_info[type];
1788}
1789
1790/*
5d337b91 1791 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1792 * reference on the swaphandle, it doesn't matter if it becomes unused.
1793 */
1794int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1795{
8952898b 1796 struct swap_info_struct *si;
3f9e7949 1797 int our_page_cluster = page_cluster;
8952898b
HD
1798 pgoff_t target, toff;
1799 pgoff_t base, end;
1800 int nr_pages = 0;
1da177e4 1801
3f9e7949 1802 if (!our_page_cluster) /* no readahead */
1da177e4 1803 return 0;
8952898b
HD
1804
1805 si = &swap_info[swp_type(entry)];
1806 target = swp_offset(entry);
1807 base = (target >> our_page_cluster) << our_page_cluster;
1808 end = base + (1 << our_page_cluster);
1809 if (!base) /* first page is swap header */
1810 base++;
1da177e4 1811
5d337b91 1812 spin_lock(&swap_lock);
8952898b
HD
1813 if (end > si->max) /* don't go beyond end of map */
1814 end = si->max;
1815
1816 /* Count contiguous allocated slots above our target */
1817 for (toff = target; ++toff < end; nr_pages++) {
1818 /* Don't read in free or bad pages */
1819 if (!si->swap_map[toff])
1820 break;
1821 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1822 break;
8952898b
HD
1823 }
1824 /* Count contiguous allocated slots below our target */
1825 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1826 /* Don't read in free or bad pages */
8952898b 1827 if (!si->swap_map[toff])
1da177e4 1828 break;
8952898b 1829 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1830 break;
8952898b 1831 }
5d337b91 1832 spin_unlock(&swap_lock);
8952898b
HD
1833
1834 /*
1835 * Indicate starting offset, and return number of pages to get:
1836 * if only 1, say 0, since there's then no readahead to be done.
1837 */
1838 *offset = ++toff;
1839 return nr_pages? ++nr_pages: 0;
1da177e4 1840}