swap_info: include first_swap_extent
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
1da177e4
LT
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
27a7faa0 36#include <linux/page_cgroup.h>
1da177e4 37
7c363b8c
AB
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
b962716b 40long nr_swap_pages;
1da177e4
LT
41long total_swap_pages;
42static int swap_overflow;
78ecba08 43static int least_priority;
1da177e4 44
1da177e4
LT
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
7c363b8c 50static struct swap_list_t swap_list = {-1, -1};
1da177e4 51
efa90a98 52static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 53
fc0abb14 54static DEFINE_MUTEX(swapon_mutex);
1da177e4 55
355cfa73
KH
56/* For reference count accounting in swap_map */
57/* enum for swap_map[] handling. internal use only */
58enum {
59 SWAP_MAP = 0, /* ops for reference from swap users */
60 SWAP_CACHE, /* ops for reference from swap cache */
61};
62
63static inline int swap_count(unsigned short ent)
64{
65 return ent & SWAP_COUNT_MASK;
66}
67
68static inline bool swap_has_cache(unsigned short ent)
69{
70 return !!(ent & SWAP_HAS_CACHE);
71}
72
73static inline unsigned short encode_swapmap(int count, bool has_cache)
74{
75 unsigned short ret = count;
76
77 if (has_cache)
78 return SWAP_HAS_CACHE | ret;
79 return ret;
80}
81
efa90a98 82/* returns 1 if swap entry is freed */
c9e44410
KH
83static int
84__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85{
efa90a98 86 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
87 struct page *page;
88 int ret = 0;
89
90 page = find_get_page(&swapper_space, entry.val);
91 if (!page)
92 return 0;
93 /*
94 * This function is called from scan_swap_map() and it's called
95 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
96 * We have to use trylock for avoiding deadlock. This is a special
97 * case and you should use try_to_free_swap() with explicit lock_page()
98 * in usual operations.
99 */
100 if (trylock_page(page)) {
101 ret = try_to_free_swap(page);
102 unlock_page(page);
103 }
104 page_cache_release(page);
105 return ret;
106}
355cfa73 107
1da177e4
LT
108/*
109 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 110 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 111 * cannot be turned into a mutex.
1da177e4
LT
112 */
113static DECLARE_RWSEM(swap_unplug_sem);
114
1da177e4
LT
115void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
116{
117 swp_entry_t entry;
118
119 down_read(&swap_unplug_sem);
4c21e2f2 120 entry.val = page_private(page);
1da177e4 121 if (PageSwapCache(page)) {
efa90a98 122 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
123 struct backing_dev_info *bdi;
124
125 /*
126 * If the page is removed from swapcache from under us (with a
127 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
128 * count to avoid reading garbage from page_private(page) above.
129 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
130 * condition and it's harmless. However if it triggers without
131 * swapoff it signals a problem.
132 */
133 WARN_ON(page_count(page) <= 1);
134
135 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 136 blk_run_backing_dev(bdi, page);
1da177e4
LT
137 }
138 up_read(&swap_unplug_sem);
139}
140
6a6ba831
HD
141/*
142 * swapon tell device that all the old swap contents can be discarded,
143 * to allow the swap device to optimize its wear-levelling.
144 */
145static int discard_swap(struct swap_info_struct *si)
146{
147 struct swap_extent *se;
9625a5f2
HD
148 sector_t start_block;
149 sector_t nr_blocks;
6a6ba831
HD
150 int err = 0;
151
9625a5f2
HD
152 /* Do not discard the swap header page! */
153 se = &si->first_swap_extent;
154 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
155 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
156 if (nr_blocks) {
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
159 if (err)
160 return err;
161 cond_resched();
162 }
6a6ba831 163
9625a5f2
HD
164 list_for_each_entry(se, &si->first_swap_extent.list, list) {
165 start_block = se->start_block << (PAGE_SHIFT - 9);
166 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
167
168 err = blkdev_issue_discard(si->bdev, start_block,
9625a5f2 169 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
6a6ba831
HD
170 if (err)
171 break;
172
173 cond_resched();
174 }
175 return err; /* That will often be -EOPNOTSUPP */
176}
177
7992fde7
HD
178/*
179 * swap allocation tell device that a cluster of swap can now be discarded,
180 * to allow the swap device to optimize its wear-levelling.
181 */
182static void discard_swap_cluster(struct swap_info_struct *si,
183 pgoff_t start_page, pgoff_t nr_pages)
184{
185 struct swap_extent *se = si->curr_swap_extent;
186 int found_extent = 0;
187
188 while (nr_pages) {
189 struct list_head *lh;
190
191 if (se->start_page <= start_page &&
192 start_page < se->start_page + se->nr_pages) {
193 pgoff_t offset = start_page - se->start_page;
194 sector_t start_block = se->start_block + offset;
858a2990 195 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
196
197 if (nr_blocks > nr_pages)
198 nr_blocks = nr_pages;
199 start_page += nr_blocks;
200 nr_pages -= nr_blocks;
201
202 if (!found_extent++)
203 si->curr_swap_extent = se;
204
205 start_block <<= PAGE_SHIFT - 9;
206 nr_blocks <<= PAGE_SHIFT - 9;
207 if (blkdev_issue_discard(si->bdev, start_block,
9625a5f2 208 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
7992fde7
HD
209 break;
210 }
211
212 lh = se->list.next;
7992fde7
HD
213 se = list_entry(lh, struct swap_extent, list);
214 }
215}
216
217static int wait_for_discard(void *word)
218{
219 schedule();
220 return 0;
221}
222
048c27fd
HD
223#define SWAPFILE_CLUSTER 256
224#define LATENCY_LIMIT 256
225
355cfa73
KH
226static inline unsigned long scan_swap_map(struct swap_info_struct *si,
227 int cache)
1da177e4 228{
ebebbbe9 229 unsigned long offset;
c60aa176 230 unsigned long scan_base;
7992fde7 231 unsigned long last_in_cluster = 0;
048c27fd 232 int latency_ration = LATENCY_LIMIT;
7992fde7 233 int found_free_cluster = 0;
7dfad418 234
886bb7e9 235 /*
7dfad418
HD
236 * We try to cluster swap pages by allocating them sequentially
237 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
238 * way, however, we resort to first-free allocation, starting
239 * a new cluster. This prevents us from scattering swap pages
240 * all over the entire swap partition, so that we reduce
241 * overall disk seek times between swap pages. -- sct
242 * But we do now try to find an empty cluster. -Andrea
c60aa176 243 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
244 */
245
52b7efdb 246 si->flags += SWP_SCANNING;
c60aa176 247 scan_base = offset = si->cluster_next;
ebebbbe9
HD
248
249 if (unlikely(!si->cluster_nr--)) {
250 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
251 si->cluster_nr = SWAPFILE_CLUSTER - 1;
252 goto checks;
253 }
7992fde7
HD
254 if (si->flags & SWP_DISCARDABLE) {
255 /*
256 * Start range check on racing allocations, in case
257 * they overlap the cluster we eventually decide on
258 * (we scan without swap_lock to allow preemption).
259 * It's hardly conceivable that cluster_nr could be
260 * wrapped during our scan, but don't depend on it.
261 */
262 if (si->lowest_alloc)
263 goto checks;
264 si->lowest_alloc = si->max;
265 si->highest_alloc = 0;
266 }
5d337b91 267 spin_unlock(&swap_lock);
7dfad418 268
c60aa176
HD
269 /*
270 * If seek is expensive, start searching for new cluster from
271 * start of partition, to minimize the span of allocated swap.
272 * But if seek is cheap, search from our current position, so
273 * that swap is allocated from all over the partition: if the
274 * Flash Translation Layer only remaps within limited zones,
275 * we don't want to wear out the first zone too quickly.
276 */
277 if (!(si->flags & SWP_SOLIDSTATE))
278 scan_base = offset = si->lowest_bit;
7dfad418
HD
279 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
280
281 /* Locate the first empty (unaligned) cluster */
282 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 283 if (si->swap_map[offset])
7dfad418
HD
284 last_in_cluster = offset + SWAPFILE_CLUSTER;
285 else if (offset == last_in_cluster) {
5d337b91 286 spin_lock(&swap_lock);
ebebbbe9
HD
287 offset -= SWAPFILE_CLUSTER - 1;
288 si->cluster_next = offset;
289 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 290 found_free_cluster = 1;
ebebbbe9 291 goto checks;
1da177e4 292 }
048c27fd
HD
293 if (unlikely(--latency_ration < 0)) {
294 cond_resched();
295 latency_ration = LATENCY_LIMIT;
296 }
7dfad418 297 }
ebebbbe9
HD
298
299 offset = si->lowest_bit;
c60aa176
HD
300 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
301
302 /* Locate the first empty (unaligned) cluster */
303 for (; last_in_cluster < scan_base; offset++) {
304 if (si->swap_map[offset])
305 last_in_cluster = offset + SWAPFILE_CLUSTER;
306 else if (offset == last_in_cluster) {
307 spin_lock(&swap_lock);
308 offset -= SWAPFILE_CLUSTER - 1;
309 si->cluster_next = offset;
310 si->cluster_nr = SWAPFILE_CLUSTER - 1;
311 found_free_cluster = 1;
312 goto checks;
313 }
314 if (unlikely(--latency_ration < 0)) {
315 cond_resched();
316 latency_ration = LATENCY_LIMIT;
317 }
318 }
319
320 offset = scan_base;
5d337b91 321 spin_lock(&swap_lock);
ebebbbe9 322 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 323 si->lowest_alloc = 0;
1da177e4 324 }
7dfad418 325
ebebbbe9
HD
326checks:
327 if (!(si->flags & SWP_WRITEOK))
52b7efdb 328 goto no_page;
7dfad418
HD
329 if (!si->highest_bit)
330 goto no_page;
ebebbbe9 331 if (offset > si->highest_bit)
c60aa176 332 scan_base = offset = si->lowest_bit;
c9e44410
KH
333
334 /* reuse swap entry of cache-only swap if not busy. */
335 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
336 int swap_was_freed;
337 spin_unlock(&swap_lock);
338 swap_was_freed = __try_to_reclaim_swap(si, offset);
339 spin_lock(&swap_lock);
340 /* entry was freed successfully, try to use this again */
341 if (swap_was_freed)
342 goto checks;
343 goto scan; /* check next one */
344 }
345
ebebbbe9
HD
346 if (si->swap_map[offset])
347 goto scan;
348
349 if (offset == si->lowest_bit)
350 si->lowest_bit++;
351 if (offset == si->highest_bit)
352 si->highest_bit--;
353 si->inuse_pages++;
354 if (si->inuse_pages == si->pages) {
355 si->lowest_bit = si->max;
356 si->highest_bit = 0;
1da177e4 357 }
355cfa73
KH
358 if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
359 si->swap_map[offset] = encode_swapmap(0, true);
360 else /* at suspend */
361 si->swap_map[offset] = encode_swapmap(1, false);
ebebbbe9
HD
362 si->cluster_next = offset + 1;
363 si->flags -= SWP_SCANNING;
7992fde7
HD
364
365 if (si->lowest_alloc) {
366 /*
367 * Only set when SWP_DISCARDABLE, and there's a scan
368 * for a free cluster in progress or just completed.
369 */
370 if (found_free_cluster) {
371 /*
372 * To optimize wear-levelling, discard the
373 * old data of the cluster, taking care not to
374 * discard any of its pages that have already
375 * been allocated by racing tasks (offset has
376 * already stepped over any at the beginning).
377 */
378 if (offset < si->highest_alloc &&
379 si->lowest_alloc <= last_in_cluster)
380 last_in_cluster = si->lowest_alloc - 1;
381 si->flags |= SWP_DISCARDING;
382 spin_unlock(&swap_lock);
383
384 if (offset < last_in_cluster)
385 discard_swap_cluster(si, offset,
386 last_in_cluster - offset + 1);
387
388 spin_lock(&swap_lock);
389 si->lowest_alloc = 0;
390 si->flags &= ~SWP_DISCARDING;
391
392 smp_mb(); /* wake_up_bit advises this */
393 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
394
395 } else if (si->flags & SWP_DISCARDING) {
396 /*
397 * Delay using pages allocated by racing tasks
398 * until the whole discard has been issued. We
399 * could defer that delay until swap_writepage,
400 * but it's easier to keep this self-contained.
401 */
402 spin_unlock(&swap_lock);
403 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
404 wait_for_discard, TASK_UNINTERRUPTIBLE);
405 spin_lock(&swap_lock);
406 } else {
407 /*
408 * Note pages allocated by racing tasks while
409 * scan for a free cluster is in progress, so
410 * that its final discard can exclude them.
411 */
412 if (offset < si->lowest_alloc)
413 si->lowest_alloc = offset;
414 if (offset > si->highest_alloc)
415 si->highest_alloc = offset;
416 }
417 }
ebebbbe9 418 return offset;
7dfad418 419
ebebbbe9 420scan:
5d337b91 421 spin_unlock(&swap_lock);
7dfad418 422 while (++offset <= si->highest_bit) {
52b7efdb 423 if (!si->swap_map[offset]) {
5d337b91 424 spin_lock(&swap_lock);
52b7efdb
HD
425 goto checks;
426 }
c9e44410
KH
427 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
428 spin_lock(&swap_lock);
429 goto checks;
430 }
048c27fd
HD
431 if (unlikely(--latency_ration < 0)) {
432 cond_resched();
433 latency_ration = LATENCY_LIMIT;
434 }
7dfad418 435 }
c60aa176
HD
436 offset = si->lowest_bit;
437 while (++offset < scan_base) {
438 if (!si->swap_map[offset]) {
439 spin_lock(&swap_lock);
440 goto checks;
441 }
c9e44410
KH
442 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
443 spin_lock(&swap_lock);
444 goto checks;
445 }
c60aa176
HD
446 if (unlikely(--latency_ration < 0)) {
447 cond_resched();
448 latency_ration = LATENCY_LIMIT;
449 }
450 }
5d337b91 451 spin_lock(&swap_lock);
7dfad418
HD
452
453no_page:
52b7efdb 454 si->flags -= SWP_SCANNING;
1da177e4
LT
455 return 0;
456}
457
458swp_entry_t get_swap_page(void)
459{
fb4f88dc
HD
460 struct swap_info_struct *si;
461 pgoff_t offset;
462 int type, next;
463 int wrapped = 0;
1da177e4 464
5d337b91 465 spin_lock(&swap_lock);
1da177e4 466 if (nr_swap_pages <= 0)
fb4f88dc
HD
467 goto noswap;
468 nr_swap_pages--;
469
470 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 471 si = swap_info[type];
fb4f88dc
HD
472 next = si->next;
473 if (next < 0 ||
efa90a98 474 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
475 next = swap_list.head;
476 wrapped++;
1da177e4 477 }
fb4f88dc
HD
478
479 if (!si->highest_bit)
480 continue;
481 if (!(si->flags & SWP_WRITEOK))
482 continue;
483
484 swap_list.next = next;
355cfa73
KH
485 /* This is called for allocating swap entry for cache */
486 offset = scan_swap_map(si, SWAP_CACHE);
5d337b91
HD
487 if (offset) {
488 spin_unlock(&swap_lock);
fb4f88dc 489 return swp_entry(type, offset);
5d337b91 490 }
fb4f88dc 491 next = swap_list.next;
1da177e4 492 }
fb4f88dc
HD
493
494 nr_swap_pages++;
495noswap:
5d337b91 496 spin_unlock(&swap_lock);
fb4f88dc 497 return (swp_entry_t) {0};
1da177e4
LT
498}
499
355cfa73 500/* The only caller of this function is now susupend routine */
3a291a20
RW
501swp_entry_t get_swap_page_of_type(int type)
502{
503 struct swap_info_struct *si;
504 pgoff_t offset;
505
506 spin_lock(&swap_lock);
efa90a98
HD
507 si = swap_info[type];
508 if (si && (si->flags & SWP_WRITEOK)) {
3a291a20 509 nr_swap_pages--;
355cfa73
KH
510 /* This is called for allocating swap entry, not cache */
511 offset = scan_swap_map(si, SWAP_MAP);
3a291a20
RW
512 if (offset) {
513 spin_unlock(&swap_lock);
514 return swp_entry(type, offset);
515 }
516 nr_swap_pages++;
517 }
518 spin_unlock(&swap_lock);
519 return (swp_entry_t) {0};
520}
521
1da177e4
LT
522static struct swap_info_struct * swap_info_get(swp_entry_t entry)
523{
524 struct swap_info_struct * p;
525 unsigned long offset, type;
526
527 if (!entry.val)
528 goto out;
529 type = swp_type(entry);
530 if (type >= nr_swapfiles)
531 goto bad_nofile;
efa90a98 532 p = swap_info[type];
1da177e4
LT
533 if (!(p->flags & SWP_USED))
534 goto bad_device;
535 offset = swp_offset(entry);
536 if (offset >= p->max)
537 goto bad_offset;
538 if (!p->swap_map[offset])
539 goto bad_free;
5d337b91 540 spin_lock(&swap_lock);
1da177e4
LT
541 return p;
542
543bad_free:
544 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
545 goto out;
546bad_offset:
547 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
548 goto out;
549bad_device:
550 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
551 goto out;
552bad_nofile:
553 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
554out:
555 return NULL;
886bb7e9 556}
1da177e4 557
355cfa73
KH
558static int swap_entry_free(struct swap_info_struct *p,
559 swp_entry_t ent, int cache)
1da177e4 560{
8c7c6e34 561 unsigned long offset = swp_offset(ent);
355cfa73
KH
562 int count = swap_count(p->swap_map[offset]);
563 bool has_cache;
564
565 has_cache = swap_has_cache(p->swap_map[offset]);
566
567 if (cache == SWAP_MAP) { /* dropping usage count of swap */
568 if (count < SWAP_MAP_MAX) {
569 count--;
570 p->swap_map[offset] = encode_swapmap(count, has_cache);
1da177e4 571 }
355cfa73
KH
572 } else { /* dropping swap cache flag */
573 VM_BUG_ON(!has_cache);
574 p->swap_map[offset] = encode_swapmap(count, false);
575
576 }
577 /* return code. */
578 count = p->swap_map[offset];
579 /* free if no reference */
580 if (!count) {
581 if (offset < p->lowest_bit)
582 p->lowest_bit = offset;
583 if (offset > p->highest_bit)
584 p->highest_bit = offset;
efa90a98
HD
585 if (swap_list.next >= 0 &&
586 p->prio > swap_info[swap_list.next]->prio)
587 swap_list.next = p->type;
355cfa73
KH
588 nr_swap_pages++;
589 p->inuse_pages--;
1da177e4 590 }
8a9478ca
KH
591 if (!swap_count(count))
592 mem_cgroup_uncharge_swap(ent);
1da177e4
LT
593 return count;
594}
595
596/*
597 * Caller has made sure that the swapdevice corresponding to entry
598 * is still around or has not been recycled.
599 */
600void swap_free(swp_entry_t entry)
601{
602 struct swap_info_struct * p;
603
604 p = swap_info_get(entry);
605 if (p) {
355cfa73 606 swap_entry_free(p, entry, SWAP_MAP);
5d337b91 607 spin_unlock(&swap_lock);
1da177e4
LT
608 }
609}
610
cb4b86ba
KH
611/*
612 * Called after dropping swapcache to decrease refcnt to swap entries.
613 */
614void swapcache_free(swp_entry_t entry, struct page *page)
615{
355cfa73 616 struct swap_info_struct *p;
8a9478ca 617 int ret;
355cfa73 618
355cfa73
KH
619 p = swap_info_get(entry);
620 if (p) {
8a9478ca
KH
621 ret = swap_entry_free(p, entry, SWAP_CACHE);
622 if (page) {
623 bool swapout;
624 if (ret)
625 swapout = true; /* the end of swap out */
626 else
627 swapout = false; /* no more swap users! */
628 mem_cgroup_uncharge_swapcache(page, entry, swapout);
629 }
355cfa73
KH
630 spin_unlock(&swap_lock);
631 }
632 return;
cb4b86ba
KH
633}
634
1da177e4 635/*
c475a8ab 636 * How many references to page are currently swapped out?
1da177e4 637 */
c475a8ab 638static inline int page_swapcount(struct page *page)
1da177e4 639{
c475a8ab
HD
640 int count = 0;
641 struct swap_info_struct *p;
1da177e4
LT
642 swp_entry_t entry;
643
4c21e2f2 644 entry.val = page_private(page);
1da177e4
LT
645 p = swap_info_get(entry);
646 if (p) {
355cfa73 647 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 648 spin_unlock(&swap_lock);
1da177e4 649 }
c475a8ab 650 return count;
1da177e4
LT
651}
652
653/*
7b1fe597
HD
654 * We can write to an anon page without COW if there are no other references
655 * to it. And as a side-effect, free up its swap: because the old content
656 * on disk will never be read, and seeking back there to write new content
657 * later would only waste time away from clustering.
1da177e4 658 */
7b1fe597 659int reuse_swap_page(struct page *page)
1da177e4 660{
c475a8ab
HD
661 int count;
662
51726b12 663 VM_BUG_ON(!PageLocked(page));
c475a8ab 664 count = page_mapcount(page);
7b1fe597 665 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 666 count += page_swapcount(page);
7b1fe597
HD
667 if (count == 1 && !PageWriteback(page)) {
668 delete_from_swap_cache(page);
669 SetPageDirty(page);
670 }
671 }
c475a8ab 672 return count == 1;
1da177e4
LT
673}
674
675/*
a2c43eed
HD
676 * If swap is getting full, or if there are no more mappings of this page,
677 * then try_to_free_swap is called to free its swap space.
1da177e4 678 */
a2c43eed 679int try_to_free_swap(struct page *page)
1da177e4 680{
51726b12 681 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
682
683 if (!PageSwapCache(page))
684 return 0;
685 if (PageWriteback(page))
686 return 0;
a2c43eed 687 if (page_swapcount(page))
1da177e4
LT
688 return 0;
689
a2c43eed
HD
690 delete_from_swap_cache(page);
691 SetPageDirty(page);
692 return 1;
68a22394
RR
693}
694
1da177e4
LT
695/*
696 * Free the swap entry like above, but also try to
697 * free the page cache entry if it is the last user.
698 */
2509ef26 699int free_swap_and_cache(swp_entry_t entry)
1da177e4 700{
2509ef26 701 struct swap_info_struct *p;
1da177e4
LT
702 struct page *page = NULL;
703
a7420aa5 704 if (non_swap_entry(entry))
2509ef26 705 return 1;
0697212a 706
1da177e4
LT
707 p = swap_info_get(entry);
708 if (p) {
355cfa73 709 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
93fac704 710 page = find_get_page(&swapper_space, entry.val);
8413ac9d 711 if (page && !trylock_page(page)) {
93fac704
NP
712 page_cache_release(page);
713 page = NULL;
714 }
715 }
5d337b91 716 spin_unlock(&swap_lock);
1da177e4
LT
717 }
718 if (page) {
a2c43eed
HD
719 /*
720 * Not mapped elsewhere, or swap space full? Free it!
721 * Also recheck PageSwapCache now page is locked (above).
722 */
93fac704 723 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 724 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
725 delete_from_swap_cache(page);
726 SetPageDirty(page);
727 }
728 unlock_page(page);
729 page_cache_release(page);
730 }
2509ef26 731 return p != NULL;
1da177e4
LT
732}
733
b0cb1a19 734#ifdef CONFIG_HIBERNATION
f577eb30 735/*
915bae9e 736 * Find the swap type that corresponds to given device (if any).
f577eb30 737 *
915bae9e
RW
738 * @offset - number of the PAGE_SIZE-sized block of the device, starting
739 * from 0, in which the swap header is expected to be located.
740 *
741 * This is needed for the suspend to disk (aka swsusp).
f577eb30 742 */
7bf23687 743int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 744{
915bae9e 745 struct block_device *bdev = NULL;
efa90a98 746 int type;
f577eb30 747
915bae9e
RW
748 if (device)
749 bdev = bdget(device);
750
f577eb30 751 spin_lock(&swap_lock);
efa90a98
HD
752 for (type = 0; type < nr_swapfiles; type++) {
753 struct swap_info_struct *sis = swap_info[type];
f577eb30 754
915bae9e 755 if (!(sis->flags & SWP_WRITEOK))
f577eb30 756 continue;
b6b5bce3 757
915bae9e 758 if (!bdev) {
7bf23687 759 if (bdev_p)
dddac6a7 760 *bdev_p = bdgrab(sis->bdev);
7bf23687 761
6e1819d6 762 spin_unlock(&swap_lock);
efa90a98 763 return type;
6e1819d6 764 }
915bae9e 765 if (bdev == sis->bdev) {
9625a5f2 766 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 767
915bae9e 768 if (se->start_block == offset) {
7bf23687 769 if (bdev_p)
dddac6a7 770 *bdev_p = bdgrab(sis->bdev);
7bf23687 771
915bae9e
RW
772 spin_unlock(&swap_lock);
773 bdput(bdev);
efa90a98 774 return type;
915bae9e 775 }
f577eb30
RW
776 }
777 }
778 spin_unlock(&swap_lock);
915bae9e
RW
779 if (bdev)
780 bdput(bdev);
781
f577eb30
RW
782 return -ENODEV;
783}
784
785/*
786 * Return either the total number of swap pages of given type, or the number
787 * of free pages of that type (depending on @free)
788 *
789 * This is needed for software suspend
790 */
791unsigned int count_swap_pages(int type, int free)
792{
793 unsigned int n = 0;
794
efa90a98
HD
795 spin_lock(&swap_lock);
796 if ((unsigned int)type < nr_swapfiles) {
797 struct swap_info_struct *sis = swap_info[type];
798
799 if (sis->flags & SWP_WRITEOK) {
800 n = sis->pages;
f577eb30 801 if (free)
efa90a98 802 n -= sis->inuse_pages;
f577eb30 803 }
f577eb30 804 }
efa90a98 805 spin_unlock(&swap_lock);
f577eb30
RW
806 return n;
807}
808#endif
809
1da177e4 810/*
72866f6f
HD
811 * No need to decide whether this PTE shares the swap entry with others,
812 * just let do_wp_page work it out if a write is requested later - to
813 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 814 */
044d66c1 815static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
816 unsigned long addr, swp_entry_t entry, struct page *page)
817{
7a81b88c 818 struct mem_cgroup *ptr = NULL;
044d66c1
HD
819 spinlock_t *ptl;
820 pte_t *pte;
821 int ret = 1;
822
85d9fc89 823 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 824 ret = -ENOMEM;
85d9fc89
KH
825 goto out_nolock;
826 }
044d66c1
HD
827
828 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
829 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
830 if (ret > 0)
7a81b88c 831 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
832 ret = 0;
833 goto out;
834 }
8a9f3ccd 835
4294621f 836 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
837 get_page(page);
838 set_pte_at(vma->vm_mm, addr, pte,
839 pte_mkold(mk_pte(page, vma->vm_page_prot)));
840 page_add_anon_rmap(page, vma, addr);
7a81b88c 841 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
842 swap_free(entry);
843 /*
844 * Move the page to the active list so it is not
845 * immediately swapped out again after swapon.
846 */
847 activate_page(page);
044d66c1
HD
848out:
849 pte_unmap_unlock(pte, ptl);
85d9fc89 850out_nolock:
044d66c1 851 return ret;
1da177e4
LT
852}
853
854static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
855 unsigned long addr, unsigned long end,
856 swp_entry_t entry, struct page *page)
857{
1da177e4 858 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 859 pte_t *pte;
8a9f3ccd 860 int ret = 0;
1da177e4 861
044d66c1
HD
862 /*
863 * We don't actually need pte lock while scanning for swp_pte: since
864 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
865 * page table while we're scanning; though it could get zapped, and on
866 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
867 * of unmatched parts which look like swp_pte, so unuse_pte must
868 * recheck under pte lock. Scanning without pte lock lets it be
869 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
870 */
871 pte = pte_offset_map(pmd, addr);
1da177e4
LT
872 do {
873 /*
874 * swapoff spends a _lot_ of time in this loop!
875 * Test inline before going to call unuse_pte.
876 */
877 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
878 pte_unmap(pte);
879 ret = unuse_pte(vma, pmd, addr, entry, page);
880 if (ret)
881 goto out;
882 pte = pte_offset_map(pmd, addr);
1da177e4
LT
883 }
884 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
885 pte_unmap(pte - 1);
886out:
8a9f3ccd 887 return ret;
1da177e4
LT
888}
889
890static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
891 unsigned long addr, unsigned long end,
892 swp_entry_t entry, struct page *page)
893{
894 pmd_t *pmd;
895 unsigned long next;
8a9f3ccd 896 int ret;
1da177e4
LT
897
898 pmd = pmd_offset(pud, addr);
899 do {
900 next = pmd_addr_end(addr, end);
901 if (pmd_none_or_clear_bad(pmd))
902 continue;
8a9f3ccd
BS
903 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
904 if (ret)
905 return ret;
1da177e4
LT
906 } while (pmd++, addr = next, addr != end);
907 return 0;
908}
909
910static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
911 unsigned long addr, unsigned long end,
912 swp_entry_t entry, struct page *page)
913{
914 pud_t *pud;
915 unsigned long next;
8a9f3ccd 916 int ret;
1da177e4
LT
917
918 pud = pud_offset(pgd, addr);
919 do {
920 next = pud_addr_end(addr, end);
921 if (pud_none_or_clear_bad(pud))
922 continue;
8a9f3ccd
BS
923 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
924 if (ret)
925 return ret;
1da177e4
LT
926 } while (pud++, addr = next, addr != end);
927 return 0;
928}
929
930static int unuse_vma(struct vm_area_struct *vma,
931 swp_entry_t entry, struct page *page)
932{
933 pgd_t *pgd;
934 unsigned long addr, end, next;
8a9f3ccd 935 int ret;
1da177e4
LT
936
937 if (page->mapping) {
938 addr = page_address_in_vma(page, vma);
939 if (addr == -EFAULT)
940 return 0;
941 else
942 end = addr + PAGE_SIZE;
943 } else {
944 addr = vma->vm_start;
945 end = vma->vm_end;
946 }
947
948 pgd = pgd_offset(vma->vm_mm, addr);
949 do {
950 next = pgd_addr_end(addr, end);
951 if (pgd_none_or_clear_bad(pgd))
952 continue;
8a9f3ccd
BS
953 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
954 if (ret)
955 return ret;
1da177e4
LT
956 } while (pgd++, addr = next, addr != end);
957 return 0;
958}
959
960static int unuse_mm(struct mm_struct *mm,
961 swp_entry_t entry, struct page *page)
962{
963 struct vm_area_struct *vma;
8a9f3ccd 964 int ret = 0;
1da177e4
LT
965
966 if (!down_read_trylock(&mm->mmap_sem)) {
967 /*
7d03431c
FLVC
968 * Activate page so shrink_inactive_list is unlikely to unmap
969 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 970 */
c475a8ab 971 activate_page(page);
1da177e4
LT
972 unlock_page(page);
973 down_read(&mm->mmap_sem);
974 lock_page(page);
975 }
1da177e4 976 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 977 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
978 break;
979 }
1da177e4 980 up_read(&mm->mmap_sem);
8a9f3ccd 981 return (ret < 0)? ret: 0;
1da177e4
LT
982}
983
984/*
985 * Scan swap_map from current position to next entry still in use.
986 * Recycle to start on reaching the end, returning 0 when empty.
987 */
6eb396dc
HD
988static unsigned int find_next_to_unuse(struct swap_info_struct *si,
989 unsigned int prev)
1da177e4 990{
6eb396dc
HD
991 unsigned int max = si->max;
992 unsigned int i = prev;
1da177e4
LT
993 int count;
994
995 /*
5d337b91 996 * No need for swap_lock here: we're just looking
1da177e4
LT
997 * for whether an entry is in use, not modifying it; false
998 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 999 * allocations from this area (while holding swap_lock).
1da177e4
LT
1000 */
1001 for (;;) {
1002 if (++i >= max) {
1003 if (!prev) {
1004 i = 0;
1005 break;
1006 }
1007 /*
1008 * No entries in use at top of swap_map,
1009 * loop back to start and recheck there.
1010 */
1011 max = prev + 1;
1012 prev = 0;
1013 i = 1;
1014 }
1015 count = si->swap_map[i];
355cfa73 1016 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1017 break;
1018 }
1019 return i;
1020}
1021
1022/*
1023 * We completely avoid races by reading each swap page in advance,
1024 * and then search for the process using it. All the necessary
1025 * page table adjustments can then be made atomically.
1026 */
1027static int try_to_unuse(unsigned int type)
1028{
efa90a98 1029 struct swap_info_struct *si = swap_info[type];
1da177e4
LT
1030 struct mm_struct *start_mm;
1031 unsigned short *swap_map;
1032 unsigned short swcount;
1033 struct page *page;
1034 swp_entry_t entry;
6eb396dc 1035 unsigned int i = 0;
1da177e4
LT
1036 int retval = 0;
1037 int reset_overflow = 0;
1038 int shmem;
1039
1040 /*
1041 * When searching mms for an entry, a good strategy is to
1042 * start at the first mm we freed the previous entry from
1043 * (though actually we don't notice whether we or coincidence
1044 * freed the entry). Initialize this start_mm with a hold.
1045 *
1046 * A simpler strategy would be to start at the last mm we
1047 * freed the previous entry from; but that would take less
1048 * advantage of mmlist ordering, which clusters forked mms
1049 * together, child after parent. If we race with dup_mmap(), we
1050 * prefer to resolve parent before child, lest we miss entries
1051 * duplicated after we scanned child: using last mm would invert
1052 * that. Though it's only a serious concern when an overflowed
1053 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1054 */
1055 start_mm = &init_mm;
1056 atomic_inc(&init_mm.mm_users);
1057
1058 /*
1059 * Keep on scanning until all entries have gone. Usually,
1060 * one pass through swap_map is enough, but not necessarily:
1061 * there are races when an instance of an entry might be missed.
1062 */
1063 while ((i = find_next_to_unuse(si, i)) != 0) {
1064 if (signal_pending(current)) {
1065 retval = -EINTR;
1066 break;
1067 }
1068
886bb7e9 1069 /*
1da177e4
LT
1070 * Get a page for the entry, using the existing swap
1071 * cache page if there is one. Otherwise, get a clean
886bb7e9 1072 * page and read the swap into it.
1da177e4
LT
1073 */
1074 swap_map = &si->swap_map[i];
1075 entry = swp_entry(type, i);
02098fea
HD
1076 page = read_swap_cache_async(entry,
1077 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1078 if (!page) {
1079 /*
1080 * Either swap_duplicate() failed because entry
1081 * has been freed independently, and will not be
1082 * reused since sys_swapoff() already disabled
1083 * allocation from here, or alloc_page() failed.
1084 */
1085 if (!*swap_map)
1086 continue;
1087 retval = -ENOMEM;
1088 break;
1089 }
1090
1091 /*
1092 * Don't hold on to start_mm if it looks like exiting.
1093 */
1094 if (atomic_read(&start_mm->mm_users) == 1) {
1095 mmput(start_mm);
1096 start_mm = &init_mm;
1097 atomic_inc(&init_mm.mm_users);
1098 }
1099
1100 /*
1101 * Wait for and lock page. When do_swap_page races with
1102 * try_to_unuse, do_swap_page can handle the fault much
1103 * faster than try_to_unuse can locate the entry. This
1104 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1105 * defer to do_swap_page in such a case - in some tests,
1106 * do_swap_page and try_to_unuse repeatedly compete.
1107 */
1108 wait_on_page_locked(page);
1109 wait_on_page_writeback(page);
1110 lock_page(page);
1111 wait_on_page_writeback(page);
1112
1113 /*
1114 * Remove all references to entry.
1115 * Whenever we reach init_mm, there's no address space
1116 * to search, but use it as a reminder to search shmem.
1117 */
1118 shmem = 0;
1119 swcount = *swap_map;
355cfa73 1120 if (swap_count(swcount)) {
1da177e4
LT
1121 if (start_mm == &init_mm)
1122 shmem = shmem_unuse(entry, page);
1123 else
1124 retval = unuse_mm(start_mm, entry, page);
1125 }
355cfa73 1126 if (swap_count(*swap_map)) {
1da177e4
LT
1127 int set_start_mm = (*swap_map >= swcount);
1128 struct list_head *p = &start_mm->mmlist;
1129 struct mm_struct *new_start_mm = start_mm;
1130 struct mm_struct *prev_mm = start_mm;
1131 struct mm_struct *mm;
1132
1133 atomic_inc(&new_start_mm->mm_users);
1134 atomic_inc(&prev_mm->mm_users);
1135 spin_lock(&mmlist_lock);
355cfa73 1136 while (swap_count(*swap_map) && !retval && !shmem &&
1da177e4
LT
1137 (p = p->next) != &start_mm->mmlist) {
1138 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1139 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1140 continue;
1da177e4
LT
1141 spin_unlock(&mmlist_lock);
1142 mmput(prev_mm);
1143 prev_mm = mm;
1144
1145 cond_resched();
1146
1147 swcount = *swap_map;
355cfa73 1148 if (!swap_count(swcount)) /* any usage ? */
1da177e4
LT
1149 ;
1150 else if (mm == &init_mm) {
1151 set_start_mm = 1;
1152 shmem = shmem_unuse(entry, page);
1153 } else
1154 retval = unuse_mm(mm, entry, page);
355cfa73 1155
32c5fc10 1156 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1157 mmput(new_start_mm);
1158 atomic_inc(&mm->mm_users);
1159 new_start_mm = mm;
1160 set_start_mm = 0;
1161 }
1162 spin_lock(&mmlist_lock);
1163 }
1164 spin_unlock(&mmlist_lock);
1165 mmput(prev_mm);
1166 mmput(start_mm);
1167 start_mm = new_start_mm;
1168 }
2e0e26c7
HD
1169 if (shmem) {
1170 /* page has already been unlocked and released */
1171 if (shmem > 0)
1172 continue;
1173 retval = shmem;
1174 break;
1175 }
1da177e4
LT
1176 if (retval) {
1177 unlock_page(page);
1178 page_cache_release(page);
1179 break;
1180 }
1181
1182 /*
355cfa73
KH
1183 * How could swap count reach 0x7ffe ?
1184 * There's no way to repeat a swap page within an mm
1185 * (except in shmem, where it's the shared object which takes
1186 * the reference count)?
1187 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1188 * short is too small....)
1da177e4
LT
1189 * If that's wrong, then we should worry more about
1190 * exit_mmap() and do_munmap() cases described above:
1191 * we might be resetting SWAP_MAP_MAX too early here.
1192 * We know "Undead"s can happen, they're okay, so don't
1193 * report them; but do report if we reset SWAP_MAP_MAX.
1194 */
355cfa73
KH
1195 /* We might release the lock_page() in unuse_mm(). */
1196 if (!PageSwapCache(page) || page_private(page) != entry.val)
1197 goto retry;
1198
1199 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
5d337b91 1200 spin_lock(&swap_lock);
355cfa73 1201 *swap_map = encode_swapmap(0, true);
5d337b91 1202 spin_unlock(&swap_lock);
1da177e4
LT
1203 reset_overflow = 1;
1204 }
1205
1206 /*
1207 * If a reference remains (rare), we would like to leave
1208 * the page in the swap cache; but try_to_unmap could
1209 * then re-duplicate the entry once we drop page lock,
1210 * so we might loop indefinitely; also, that page could
1211 * not be swapped out to other storage meanwhile. So:
1212 * delete from cache even if there's another reference,
1213 * after ensuring that the data has been saved to disk -
1214 * since if the reference remains (rarer), it will be
1215 * read from disk into another page. Splitting into two
1216 * pages would be incorrect if swap supported "shared
1217 * private" pages, but they are handled by tmpfs files.
1da177e4 1218 */
355cfa73
KH
1219 if (swap_count(*swap_map) &&
1220 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1221 struct writeback_control wbc = {
1222 .sync_mode = WB_SYNC_NONE,
1223 };
1224
1225 swap_writepage(page, &wbc);
1226 lock_page(page);
1227 wait_on_page_writeback(page);
1228 }
68bdc8d6
HD
1229
1230 /*
1231 * It is conceivable that a racing task removed this page from
1232 * swap cache just before we acquired the page lock at the top,
1233 * or while we dropped it in unuse_mm(). The page might even
1234 * be back in swap cache on another swap area: that we must not
1235 * delete, since it may not have been written out to swap yet.
1236 */
1237 if (PageSwapCache(page) &&
1238 likely(page_private(page) == entry.val))
2e0e26c7 1239 delete_from_swap_cache(page);
1da177e4
LT
1240
1241 /*
1242 * So we could skip searching mms once swap count went
1243 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1244 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1245 */
1246 SetPageDirty(page);
355cfa73 1247retry:
1da177e4
LT
1248 unlock_page(page);
1249 page_cache_release(page);
1250
1251 /*
1252 * Make sure that we aren't completely killing
1253 * interactive performance.
1254 */
1255 cond_resched();
1256 }
1257
1258 mmput(start_mm);
1259 if (reset_overflow) {
1260 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1261 swap_overflow = 0;
1262 }
1263 return retval;
1264}
1265
1266/*
5d337b91
HD
1267 * After a successful try_to_unuse, if no swap is now in use, we know
1268 * we can empty the mmlist. swap_lock must be held on entry and exit.
1269 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1270 * added to the mmlist just after page_duplicate - before would be racy.
1271 */
1272static void drain_mmlist(void)
1273{
1274 struct list_head *p, *next;
efa90a98 1275 unsigned int type;
1da177e4 1276
efa90a98
HD
1277 for (type = 0; type < nr_swapfiles; type++)
1278 if (swap_info[type]->inuse_pages)
1da177e4
LT
1279 return;
1280 spin_lock(&mmlist_lock);
1281 list_for_each_safe(p, next, &init_mm.mmlist)
1282 list_del_init(p);
1283 spin_unlock(&mmlist_lock);
1284}
1285
1286/*
1287 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
f29ad6a9
HD
1288 * corresponds to page offset `offset'. Note that the type of this function
1289 * is sector_t, but it returns page offset into the bdev, not sector offset.
1da177e4 1290 */
f29ad6a9 1291sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1da177e4 1292{
f29ad6a9
HD
1293 struct swap_info_struct *sis;
1294 struct swap_extent *start_se;
1295 struct swap_extent *se;
1296 pgoff_t offset;
1297
efa90a98 1298 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1299 *bdev = sis->bdev;
1300
1301 offset = swp_offset(entry);
1302 start_se = sis->curr_swap_extent;
1303 se = start_se;
1da177e4
LT
1304
1305 for ( ; ; ) {
1306 struct list_head *lh;
1307
1308 if (se->start_page <= offset &&
1309 offset < (se->start_page + se->nr_pages)) {
1310 return se->start_block + (offset - se->start_page);
1311 }
11d31886 1312 lh = se->list.next;
1da177e4
LT
1313 se = list_entry(lh, struct swap_extent, list);
1314 sis->curr_swap_extent = se;
1315 BUG_ON(se == start_se); /* It *must* be present */
1316 }
1317}
1318
b0cb1a19 1319#ifdef CONFIG_HIBERNATION
3aef83e0
RW
1320/*
1321 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1322 * corresponding to given index in swap_info (swap type).
1323 */
efa90a98 1324sector_t swapdev_block(int type, pgoff_t offset)
3aef83e0 1325{
f29ad6a9 1326 struct block_device *bdev;
3aef83e0 1327
efa90a98 1328 if ((unsigned int)type >= nr_swapfiles)
3aef83e0 1329 return 0;
efa90a98
HD
1330 if (!(swap_info[type]->flags & SWP_WRITEOK))
1331 return 0;
1332 return map_swap_page(swp_entry(type, offset), &bdev);
3aef83e0 1333}
b0cb1a19 1334#endif /* CONFIG_HIBERNATION */
3aef83e0 1335
1da177e4
LT
1336/*
1337 * Free all of a swapdev's extent information
1338 */
1339static void destroy_swap_extents(struct swap_info_struct *sis)
1340{
9625a5f2 1341 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1342 struct swap_extent *se;
1343
9625a5f2 1344 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1345 struct swap_extent, list);
1346 list_del(&se->list);
1347 kfree(se);
1348 }
1da177e4
LT
1349}
1350
1351/*
1352 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1353 * extent list. The extent list is kept sorted in page order.
1da177e4 1354 *
11d31886 1355 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1356 */
1357static int
1358add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1359 unsigned long nr_pages, sector_t start_block)
1360{
1361 struct swap_extent *se;
1362 struct swap_extent *new_se;
1363 struct list_head *lh;
1364
9625a5f2
HD
1365 if (start_page == 0) {
1366 se = &sis->first_swap_extent;
1367 sis->curr_swap_extent = se;
1368 se->start_page = 0;
1369 se->nr_pages = nr_pages;
1370 se->start_block = start_block;
1371 return 1;
1372 } else {
1373 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1374 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1375 BUG_ON(se->start_page + se->nr_pages != start_page);
1376 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1377 /* Merge it */
1378 se->nr_pages += nr_pages;
1379 return 0;
1380 }
1da177e4
LT
1381 }
1382
1383 /*
1384 * No merge. Insert a new extent, preserving ordering.
1385 */
1386 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1387 if (new_se == NULL)
1388 return -ENOMEM;
1389 new_se->start_page = start_page;
1390 new_se->nr_pages = nr_pages;
1391 new_se->start_block = start_block;
1392
9625a5f2 1393 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1394 return 1;
1da177e4
LT
1395}
1396
1397/*
1398 * A `swap extent' is a simple thing which maps a contiguous range of pages
1399 * onto a contiguous range of disk blocks. An ordered list of swap extents
1400 * is built at swapon time and is then used at swap_writepage/swap_readpage
1401 * time for locating where on disk a page belongs.
1402 *
1403 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1404 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1405 * swap files identically.
1406 *
1407 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1408 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1409 * swapfiles are handled *identically* after swapon time.
1410 *
1411 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1412 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1413 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1414 * requirements, they are simply tossed out - we will never use those blocks
1415 * for swapping.
1416 *
b0d9bcd4 1417 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1418 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1419 * which will scribble on the fs.
1420 *
1421 * The amount of disk space which a single swap extent represents varies.
1422 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1423 * extents in the list. To avoid much list walking, we cache the previous
1424 * search location in `curr_swap_extent', and start new searches from there.
1425 * This is extremely effective. The average number of iterations in
1426 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1427 */
53092a74 1428static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1429{
1430 struct inode *inode;
1431 unsigned blocks_per_page;
1432 unsigned long page_no;
1433 unsigned blkbits;
1434 sector_t probe_block;
1435 sector_t last_block;
53092a74
HD
1436 sector_t lowest_block = -1;
1437 sector_t highest_block = 0;
1438 int nr_extents = 0;
1da177e4
LT
1439 int ret;
1440
1441 inode = sis->swap_file->f_mapping->host;
1442 if (S_ISBLK(inode->i_mode)) {
1443 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1444 *span = sis->pages;
9625a5f2 1445 goto out;
1da177e4
LT
1446 }
1447
1448 blkbits = inode->i_blkbits;
1449 blocks_per_page = PAGE_SIZE >> blkbits;
1450
1451 /*
1452 * Map all the blocks into the extent list. This code doesn't try
1453 * to be very smart.
1454 */
1455 probe_block = 0;
1456 page_no = 0;
1457 last_block = i_size_read(inode) >> blkbits;
1458 while ((probe_block + blocks_per_page) <= last_block &&
1459 page_no < sis->max) {
1460 unsigned block_in_page;
1461 sector_t first_block;
1462
1463 first_block = bmap(inode, probe_block);
1464 if (first_block == 0)
1465 goto bad_bmap;
1466
1467 /*
1468 * It must be PAGE_SIZE aligned on-disk
1469 */
1470 if (first_block & (blocks_per_page - 1)) {
1471 probe_block++;
1472 goto reprobe;
1473 }
1474
1475 for (block_in_page = 1; block_in_page < blocks_per_page;
1476 block_in_page++) {
1477 sector_t block;
1478
1479 block = bmap(inode, probe_block + block_in_page);
1480 if (block == 0)
1481 goto bad_bmap;
1482 if (block != first_block + block_in_page) {
1483 /* Discontiguity */
1484 probe_block++;
1485 goto reprobe;
1486 }
1487 }
1488
53092a74
HD
1489 first_block >>= (PAGE_SHIFT - blkbits);
1490 if (page_no) { /* exclude the header page */
1491 if (first_block < lowest_block)
1492 lowest_block = first_block;
1493 if (first_block > highest_block)
1494 highest_block = first_block;
1495 }
1496
1da177e4
LT
1497 /*
1498 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1499 */
53092a74
HD
1500 ret = add_swap_extent(sis, page_no, 1, first_block);
1501 if (ret < 0)
1da177e4 1502 goto out;
53092a74 1503 nr_extents += ret;
1da177e4
LT
1504 page_no++;
1505 probe_block += blocks_per_page;
1506reprobe:
1507 continue;
1508 }
53092a74
HD
1509 ret = nr_extents;
1510 *span = 1 + highest_block - lowest_block;
1da177e4 1511 if (page_no == 0)
e2244ec2 1512 page_no = 1; /* force Empty message */
1da177e4 1513 sis->max = page_no;
e2244ec2 1514 sis->pages = page_no - 1;
1da177e4 1515 sis->highest_bit = page_no - 1;
9625a5f2
HD
1516out:
1517 return ret;
1da177e4
LT
1518bad_bmap:
1519 printk(KERN_ERR "swapon: swapfile has holes\n");
1520 ret = -EINVAL;
9625a5f2 1521 goto out;
1da177e4
LT
1522}
1523
c4ea37c2 1524SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4
LT
1525{
1526 struct swap_info_struct * p = NULL;
1527 unsigned short *swap_map;
1528 struct file *swap_file, *victim;
1529 struct address_space *mapping;
1530 struct inode *inode;
1531 char * pathname;
1532 int i, type, prev;
1533 int err;
886bb7e9 1534
1da177e4
LT
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537
1538 pathname = getname(specialfile);
1539 err = PTR_ERR(pathname);
1540 if (IS_ERR(pathname))
1541 goto out;
1542
1543 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1544 putname(pathname);
1545 err = PTR_ERR(victim);
1546 if (IS_ERR(victim))
1547 goto out;
1548
1549 mapping = victim->f_mapping;
1550 prev = -1;
5d337b91 1551 spin_lock(&swap_lock);
efa90a98
HD
1552 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1553 p = swap_info[type];
22c6f8fd 1554 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1555 if (p->swap_file->f_mapping == mapping)
1556 break;
1557 }
1558 prev = type;
1559 }
1560 if (type < 0) {
1561 err = -EINVAL;
5d337b91 1562 spin_unlock(&swap_lock);
1da177e4
LT
1563 goto out_dput;
1564 }
1565 if (!security_vm_enough_memory(p->pages))
1566 vm_unacct_memory(p->pages);
1567 else {
1568 err = -ENOMEM;
5d337b91 1569 spin_unlock(&swap_lock);
1da177e4
LT
1570 goto out_dput;
1571 }
efa90a98 1572 if (prev < 0)
1da177e4 1573 swap_list.head = p->next;
efa90a98
HD
1574 else
1575 swap_info[prev]->next = p->next;
1da177e4
LT
1576 if (type == swap_list.next) {
1577 /* just pick something that's safe... */
1578 swap_list.next = swap_list.head;
1579 }
78ecba08 1580 if (p->prio < 0) {
efa90a98
HD
1581 for (i = p->next; i >= 0; i = swap_info[i]->next)
1582 swap_info[i]->prio = p->prio--;
78ecba08
HD
1583 least_priority++;
1584 }
1da177e4
LT
1585 nr_swap_pages -= p->pages;
1586 total_swap_pages -= p->pages;
1587 p->flags &= ~SWP_WRITEOK;
5d337b91 1588 spin_unlock(&swap_lock);
fb4f88dc 1589
35451bee 1590 current->flags |= PF_OOM_ORIGIN;
1da177e4 1591 err = try_to_unuse(type);
35451bee 1592 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1593
1da177e4
LT
1594 if (err) {
1595 /* re-insert swap space back into swap_list */
5d337b91 1596 spin_lock(&swap_lock);
78ecba08
HD
1597 if (p->prio < 0)
1598 p->prio = --least_priority;
1599 prev = -1;
efa90a98
HD
1600 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1601 if (p->prio >= swap_info[i]->prio)
1da177e4 1602 break;
78ecba08
HD
1603 prev = i;
1604 }
1da177e4
LT
1605 p->next = i;
1606 if (prev < 0)
efa90a98 1607 swap_list.head = swap_list.next = type;
1da177e4 1608 else
efa90a98 1609 swap_info[prev]->next = type;
1da177e4
LT
1610 nr_swap_pages += p->pages;
1611 total_swap_pages += p->pages;
1612 p->flags |= SWP_WRITEOK;
5d337b91 1613 spin_unlock(&swap_lock);
1da177e4
LT
1614 goto out_dput;
1615 }
52b7efdb
HD
1616
1617 /* wait for any unplug function to finish */
1618 down_write(&swap_unplug_sem);
1619 up_write(&swap_unplug_sem);
1620
5d337b91 1621 destroy_swap_extents(p);
fc0abb14 1622 mutex_lock(&swapon_mutex);
5d337b91
HD
1623 spin_lock(&swap_lock);
1624 drain_mmlist();
1625
52b7efdb 1626 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1627 p->highest_bit = 0; /* cuts scans short */
1628 while (p->flags >= SWP_SCANNING) {
5d337b91 1629 spin_unlock(&swap_lock);
13e4b57f 1630 schedule_timeout_uninterruptible(1);
5d337b91 1631 spin_lock(&swap_lock);
52b7efdb 1632 }
52b7efdb 1633
1da177e4
LT
1634 swap_file = p->swap_file;
1635 p->swap_file = NULL;
1636 p->max = 0;
1637 swap_map = p->swap_map;
1638 p->swap_map = NULL;
1639 p->flags = 0;
5d337b91 1640 spin_unlock(&swap_lock);
fc0abb14 1641 mutex_unlock(&swapon_mutex);
1da177e4 1642 vfree(swap_map);
27a7faa0
KH
1643 /* Destroy swap account informatin */
1644 swap_cgroup_swapoff(type);
1645
1da177e4
LT
1646 inode = mapping->host;
1647 if (S_ISBLK(inode->i_mode)) {
1648 struct block_device *bdev = I_BDEV(inode);
1649 set_blocksize(bdev, p->old_block_size);
1650 bd_release(bdev);
1651 } else {
1b1dcc1b 1652 mutex_lock(&inode->i_mutex);
1da177e4 1653 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1654 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1655 }
1656 filp_close(swap_file, NULL);
1657 err = 0;
1658
1659out_dput:
1660 filp_close(victim, NULL);
1661out:
1662 return err;
1663}
1664
1665#ifdef CONFIG_PROC_FS
1666/* iterator */
1667static void *swap_start(struct seq_file *swap, loff_t *pos)
1668{
efa90a98
HD
1669 struct swap_info_struct *si;
1670 int type;
1da177e4
LT
1671 loff_t l = *pos;
1672
fc0abb14 1673 mutex_lock(&swapon_mutex);
1da177e4 1674
881e4aab
SS
1675 if (!l)
1676 return SEQ_START_TOKEN;
1677
efa90a98
HD
1678 for (type = 0; type < nr_swapfiles; type++) {
1679 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1680 si = swap_info[type];
1681 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1682 continue;
881e4aab 1683 if (!--l)
efa90a98 1684 return si;
1da177e4
LT
1685 }
1686
1687 return NULL;
1688}
1689
1690static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1691{
efa90a98
HD
1692 struct swap_info_struct *si = v;
1693 int type;
1da177e4 1694
881e4aab 1695 if (v == SEQ_START_TOKEN)
efa90a98
HD
1696 type = 0;
1697 else
1698 type = si->type + 1;
881e4aab 1699
efa90a98
HD
1700 for (; type < nr_swapfiles; type++) {
1701 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1702 si = swap_info[type];
1703 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1704 continue;
1705 ++*pos;
efa90a98 1706 return si;
1da177e4
LT
1707 }
1708
1709 return NULL;
1710}
1711
1712static void swap_stop(struct seq_file *swap, void *v)
1713{
fc0abb14 1714 mutex_unlock(&swapon_mutex);
1da177e4
LT
1715}
1716
1717static int swap_show(struct seq_file *swap, void *v)
1718{
efa90a98 1719 struct swap_info_struct *si = v;
1da177e4
LT
1720 struct file *file;
1721 int len;
1722
efa90a98 1723 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1724 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1725 return 0;
1726 }
1da177e4 1727
efa90a98 1728 file = si->swap_file;
c32c2f63 1729 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1730 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1731 len < 40 ? 40 - len : 1, " ",
1732 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1733 "partition" : "file\t",
efa90a98
HD
1734 si->pages << (PAGE_SHIFT - 10),
1735 si->inuse_pages << (PAGE_SHIFT - 10),
1736 si->prio);
1da177e4
LT
1737 return 0;
1738}
1739
15ad7cdc 1740static const struct seq_operations swaps_op = {
1da177e4
LT
1741 .start = swap_start,
1742 .next = swap_next,
1743 .stop = swap_stop,
1744 .show = swap_show
1745};
1746
1747static int swaps_open(struct inode *inode, struct file *file)
1748{
1749 return seq_open(file, &swaps_op);
1750}
1751
15ad7cdc 1752static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1753 .open = swaps_open,
1754 .read = seq_read,
1755 .llseek = seq_lseek,
1756 .release = seq_release,
1757};
1758
1759static int __init procswaps_init(void)
1760{
3d71f86f 1761 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1762 return 0;
1763}
1764__initcall(procswaps_init);
1765#endif /* CONFIG_PROC_FS */
1766
1796316a
JB
1767#ifdef MAX_SWAPFILES_CHECK
1768static int __init max_swapfiles_check(void)
1769{
1770 MAX_SWAPFILES_CHECK();
1771 return 0;
1772}
1773late_initcall(max_swapfiles_check);
1774#endif
1775
1da177e4
LT
1776/*
1777 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1778 *
1779 * The swapon system call
1780 */
c4ea37c2 1781SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1da177e4
LT
1782{
1783 struct swap_info_struct * p;
1784 char *name = NULL;
1785 struct block_device *bdev = NULL;
1786 struct file *swap_file = NULL;
1787 struct address_space *mapping;
1788 unsigned int type;
1789 int i, prev;
1790 int error;
1da177e4 1791 union swap_header *swap_header = NULL;
6eb396dc
HD
1792 unsigned int nr_good_pages = 0;
1793 int nr_extents = 0;
53092a74 1794 sector_t span;
1da177e4 1795 unsigned long maxpages = 1;
73fd8748 1796 unsigned long swapfilepages;
78ecba08 1797 unsigned short *swap_map = NULL;
1da177e4
LT
1798 struct page *page = NULL;
1799 struct inode *inode = NULL;
1800 int did_down = 0;
1801
1802 if (!capable(CAP_SYS_ADMIN))
1803 return -EPERM;
efa90a98
HD
1804
1805 p = kzalloc(sizeof(*p), GFP_KERNEL);
1806 if (!p)
1807 return -ENOMEM;
1808
5d337b91 1809 spin_lock(&swap_lock);
efa90a98
HD
1810 for (type = 0; type < nr_swapfiles; type++) {
1811 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1812 break;
efa90a98 1813 }
1da177e4 1814 error = -EPERM;
0697212a 1815 if (type >= MAX_SWAPFILES) {
5d337b91 1816 spin_unlock(&swap_lock);
efa90a98 1817 kfree(p);
1da177e4
LT
1818 goto out;
1819 }
efa90a98
HD
1820 if (type >= nr_swapfiles) {
1821 p->type = type;
1822 swap_info[type] = p;
1823 /*
1824 * Write swap_info[type] before nr_swapfiles, in case a
1825 * racing procfs swap_start() or swap_next() is reading them.
1826 * (We never shrink nr_swapfiles, we never free this entry.)
1827 */
1828 smp_wmb();
1829 nr_swapfiles++;
1830 } else {
1831 kfree(p);
1832 p = swap_info[type];
1833 /*
1834 * Do not memset this entry: a racing procfs swap_next()
1835 * would be relying on p->type to remain valid.
1836 */
1837 }
9625a5f2 1838 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1839 p->flags = SWP_USED;
1da177e4 1840 p->next = -1;
5d337b91 1841 spin_unlock(&swap_lock);
efa90a98 1842
1da177e4
LT
1843 name = getname(specialfile);
1844 error = PTR_ERR(name);
1845 if (IS_ERR(name)) {
1846 name = NULL;
1847 goto bad_swap_2;
1848 }
1849 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1850 error = PTR_ERR(swap_file);
1851 if (IS_ERR(swap_file)) {
1852 swap_file = NULL;
1853 goto bad_swap_2;
1854 }
1855
1856 p->swap_file = swap_file;
1857 mapping = swap_file->f_mapping;
1858 inode = mapping->host;
1859
1860 error = -EBUSY;
1861 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1862 struct swap_info_struct *q = swap_info[i];
1da177e4
LT
1863
1864 if (i == type || !q->swap_file)
1865 continue;
1866 if (mapping == q->swap_file->f_mapping)
1867 goto bad_swap;
1868 }
1869
1870 error = -EINVAL;
1871 if (S_ISBLK(inode->i_mode)) {
1872 bdev = I_BDEV(inode);
1873 error = bd_claim(bdev, sys_swapon);
1874 if (error < 0) {
1875 bdev = NULL;
f7b3a435 1876 error = -EINVAL;
1da177e4
LT
1877 goto bad_swap;
1878 }
1879 p->old_block_size = block_size(bdev);
1880 error = set_blocksize(bdev, PAGE_SIZE);
1881 if (error < 0)
1882 goto bad_swap;
1883 p->bdev = bdev;
1884 } else if (S_ISREG(inode->i_mode)) {
1885 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1886 mutex_lock(&inode->i_mutex);
1da177e4
LT
1887 did_down = 1;
1888 if (IS_SWAPFILE(inode)) {
1889 error = -EBUSY;
1890 goto bad_swap;
1891 }
1892 } else {
1893 goto bad_swap;
1894 }
1895
73fd8748 1896 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1897
1898 /*
1899 * Read the swap header.
1900 */
1901 if (!mapping->a_ops->readpage) {
1902 error = -EINVAL;
1903 goto bad_swap;
1904 }
090d2b18 1905 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1906 if (IS_ERR(page)) {
1907 error = PTR_ERR(page);
1908 goto bad_swap;
1909 }
81e33971 1910 swap_header = kmap(page);
1da177e4 1911
81e33971 1912 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1913 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1914 error = -EINVAL;
1915 goto bad_swap;
1916 }
886bb7e9 1917
81e33971
HD
1918 /* swap partition endianess hack... */
1919 if (swab32(swap_header->info.version) == 1) {
1920 swab32s(&swap_header->info.version);
1921 swab32s(&swap_header->info.last_page);
1922 swab32s(&swap_header->info.nr_badpages);
1923 for (i = 0; i < swap_header->info.nr_badpages; i++)
1924 swab32s(&swap_header->info.badpages[i]);
1925 }
1926 /* Check the swap header's sub-version */
1927 if (swap_header->info.version != 1) {
1928 printk(KERN_WARNING
1929 "Unable to handle swap header version %d\n",
1930 swap_header->info.version);
1da177e4
LT
1931 error = -EINVAL;
1932 goto bad_swap;
81e33971 1933 }
1da177e4 1934
81e33971
HD
1935 p->lowest_bit = 1;
1936 p->cluster_next = 1;
efa90a98 1937 p->cluster_nr = 0;
52b7efdb 1938
81e33971
HD
1939 /*
1940 * Find out how many pages are allowed for a single swap
1941 * device. There are two limiting factors: 1) the number of
1942 * bits for the swap offset in the swp_entry_t type and
1943 * 2) the number of bits in the a swap pte as defined by
1944 * the different architectures. In order to find the
1945 * largest possible bit mask a swap entry with swap type 0
1946 * and swap offset ~0UL is created, encoded to a swap pte,
1947 * decoded to a swp_entry_t again and finally the swap
1948 * offset is extracted. This will mask all the bits from
1949 * the initial ~0UL mask that can't be encoded in either
1950 * the swp_entry_t or the architecture definition of a
1951 * swap pte.
1952 */
1953 maxpages = swp_offset(pte_to_swp_entry(
1954 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1955 if (maxpages > swap_header->info.last_page)
1956 maxpages = swap_header->info.last_page;
1957 p->highest_bit = maxpages - 1;
1da177e4 1958
81e33971
HD
1959 error = -EINVAL;
1960 if (!maxpages)
1961 goto bad_swap;
1962 if (swapfilepages && maxpages > swapfilepages) {
1963 printk(KERN_WARNING
1964 "Swap area shorter than signature indicates\n");
1965 goto bad_swap;
1966 }
1967 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1968 goto bad_swap;
1969 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1970 goto bad_swap;
cd105df4 1971
81e33971
HD
1972 /* OK, set up the swap map and apply the bad block list */
1973 swap_map = vmalloc(maxpages * sizeof(short));
1974 if (!swap_map) {
1975 error = -ENOMEM;
1976 goto bad_swap;
1977 }
1da177e4 1978
81e33971
HD
1979 memset(swap_map, 0, maxpages * sizeof(short));
1980 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1981 int page_nr = swap_header->info.badpages[i];
1982 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1983 error = -EINVAL;
1da177e4 1984 goto bad_swap;
81e33971
HD
1985 }
1986 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1987 }
27a7faa0
KH
1988
1989 error = swap_cgroup_swapon(type, maxpages);
1990 if (error)
1991 goto bad_swap;
1992
81e33971
HD
1993 nr_good_pages = swap_header->info.last_page -
1994 swap_header->info.nr_badpages -
1995 1 /* header page */;
e2244ec2 1996
e2244ec2 1997 if (nr_good_pages) {
78ecba08 1998 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1999 p->max = maxpages;
2000 p->pages = nr_good_pages;
53092a74
HD
2001 nr_extents = setup_swap_extents(p, &span);
2002 if (nr_extents < 0) {
2003 error = nr_extents;
e2244ec2 2004 goto bad_swap;
53092a74 2005 }
e2244ec2
HD
2006 nr_good_pages = p->pages;
2007 }
1da177e4
LT
2008 if (!nr_good_pages) {
2009 printk(KERN_WARNING "Empty swap-file\n");
2010 error = -EINVAL;
2011 goto bad_swap;
2012 }
1da177e4 2013
3bd0f0c7
SJ
2014 if (p->bdev) {
2015 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2016 p->flags |= SWP_SOLIDSTATE;
2017 p->cluster_next = 1 + (random32() % p->highest_bit);
2018 }
2019 if (discard_swap(p) == 0)
2020 p->flags |= SWP_DISCARDABLE;
20137a49 2021 }
6a6ba831 2022
fc0abb14 2023 mutex_lock(&swapon_mutex);
5d337b91 2024 spin_lock(&swap_lock);
78ecba08
HD
2025 if (swap_flags & SWAP_FLAG_PREFER)
2026 p->prio =
2027 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2028 else
2029 p->prio = --least_priority;
2030 p->swap_map = swap_map;
22c6f8fd 2031 p->flags |= SWP_WRITEOK;
1da177e4
LT
2032 nr_swap_pages += nr_good_pages;
2033 total_swap_pages += nr_good_pages;
53092a74 2034
6eb396dc 2035 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2036 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2037 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2038 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2039 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2040 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2041
2042 /* insert swap space into swap_list: */
2043 prev = -1;
efa90a98
HD
2044 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2045 if (p->prio >= swap_info[i]->prio)
1da177e4 2046 break;
1da177e4
LT
2047 prev = i;
2048 }
2049 p->next = i;
efa90a98
HD
2050 if (prev < 0)
2051 swap_list.head = swap_list.next = type;
2052 else
2053 swap_info[prev]->next = type;
5d337b91 2054 spin_unlock(&swap_lock);
fc0abb14 2055 mutex_unlock(&swapon_mutex);
1da177e4
LT
2056 error = 0;
2057 goto out;
2058bad_swap:
2059 if (bdev) {
2060 set_blocksize(bdev, p->old_block_size);
2061 bd_release(bdev);
2062 }
4cd3bb10 2063 destroy_swap_extents(p);
27a7faa0 2064 swap_cgroup_swapoff(type);
1da177e4 2065bad_swap_2:
5d337b91 2066 spin_lock(&swap_lock);
1da177e4 2067 p->swap_file = NULL;
1da177e4 2068 p->flags = 0;
5d337b91 2069 spin_unlock(&swap_lock);
1da177e4
LT
2070 vfree(swap_map);
2071 if (swap_file)
2072 filp_close(swap_file, NULL);
2073out:
2074 if (page && !IS_ERR(page)) {
2075 kunmap(page);
2076 page_cache_release(page);
2077 }
2078 if (name)
2079 putname(name);
2080 if (did_down) {
2081 if (!error)
2082 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2083 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2084 }
2085 return error;
2086}
2087
2088void si_swapinfo(struct sysinfo *val)
2089{
efa90a98 2090 unsigned int type;
1da177e4
LT
2091 unsigned long nr_to_be_unused = 0;
2092
5d337b91 2093 spin_lock(&swap_lock);
efa90a98
HD
2094 for (type = 0; type < nr_swapfiles; type++) {
2095 struct swap_info_struct *si = swap_info[type];
2096
2097 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2098 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2099 }
2100 val->freeswap = nr_swap_pages + nr_to_be_unused;
2101 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2102 spin_unlock(&swap_lock);
1da177e4
LT
2103}
2104
2105/*
2106 * Verify that a swap entry is valid and increment its swap map count.
2107 *
2108 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2109 * "permanent", but will be reclaimed by the next swapoff.
355cfa73
KH
2110 * Returns error code in following case.
2111 * - success -> 0
2112 * - swp_entry is invalid -> EINVAL
2113 * - swp_entry is migration entry -> EINVAL
2114 * - swap-cache reference is requested but there is already one. -> EEXIST
2115 * - swap-cache reference is requested but the entry is not used. -> ENOENT
1da177e4 2116 */
355cfa73 2117static int __swap_duplicate(swp_entry_t entry, bool cache)
1da177e4
LT
2118{
2119 struct swap_info_struct * p;
2120 unsigned long offset, type;
355cfa73
KH
2121 int result = -EINVAL;
2122 int count;
2123 bool has_cache;
1da177e4 2124
a7420aa5 2125 if (non_swap_entry(entry))
355cfa73 2126 return -EINVAL;
0697212a 2127
1da177e4
LT
2128 type = swp_type(entry);
2129 if (type >= nr_swapfiles)
2130 goto bad_file;
efa90a98 2131 p = swap_info[type];
1da177e4
LT
2132 offset = swp_offset(entry);
2133
5d337b91 2134 spin_lock(&swap_lock);
355cfa73
KH
2135
2136 if (unlikely(offset >= p->max))
2137 goto unlock_out;
2138
2139 count = swap_count(p->swap_map[offset]);
2140 has_cache = swap_has_cache(p->swap_map[offset]);
2141
2142 if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2143
2144 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2145 if (!has_cache && count) {
2146 p->swap_map[offset] = encode_swapmap(count, true);
2147 result = 0;
2148 } else if (has_cache) /* someone added cache */
2149 result = -EEXIST;
2150 else if (!count) /* no users */
2151 result = -ENOENT;
2152
2153 } else if (count || has_cache) {
2154 if (count < SWAP_MAP_MAX - 1) {
2155 p->swap_map[offset] = encode_swapmap(count + 1,
2156 has_cache);
2157 result = 0;
2158 } else if (count <= SWAP_MAP_MAX) {
1da177e4 2159 if (swap_overflow++ < 5)
355cfa73
KH
2160 printk(KERN_WARNING
2161 "swap_dup: swap entry overflow\n");
2162 p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2163 has_cache);
2164 result = 0;
1da177e4 2165 }
355cfa73
KH
2166 } else
2167 result = -ENOENT; /* unused swap entry */
2168unlock_out:
5d337b91 2169 spin_unlock(&swap_lock);
1da177e4
LT
2170out:
2171 return result;
2172
2173bad_file:
2174 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2175 goto out;
2176}
355cfa73
KH
2177/*
2178 * increase reference count of swap entry by 1.
2179 */
2180void swap_duplicate(swp_entry_t entry)
2181{
2182 __swap_duplicate(entry, SWAP_MAP);
2183}
1da177e4 2184
cb4b86ba 2185/*
355cfa73
KH
2186 * @entry: swap entry for which we allocate swap cache.
2187 *
cb4b86ba 2188 * Called when allocating swap cache for exising swap entry,
355cfa73
KH
2189 * This can return error codes. Returns 0 at success.
2190 * -EBUSY means there is a swap cache.
2191 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2192 */
2193int swapcache_prepare(swp_entry_t entry)
2194{
355cfa73 2195 return __swap_duplicate(entry, SWAP_CACHE);
cb4b86ba
KH
2196}
2197
1da177e4 2198/*
5d337b91 2199 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2200 * reference on the swaphandle, it doesn't matter if it becomes unused.
2201 */
2202int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2203{
8952898b 2204 struct swap_info_struct *si;
3f9e7949 2205 int our_page_cluster = page_cluster;
8952898b
HD
2206 pgoff_t target, toff;
2207 pgoff_t base, end;
2208 int nr_pages = 0;
1da177e4 2209
3f9e7949 2210 if (!our_page_cluster) /* no readahead */
1da177e4 2211 return 0;
8952898b 2212
efa90a98 2213 si = swap_info[swp_type(entry)];
8952898b
HD
2214 target = swp_offset(entry);
2215 base = (target >> our_page_cluster) << our_page_cluster;
2216 end = base + (1 << our_page_cluster);
2217 if (!base) /* first page is swap header */
2218 base++;
1da177e4 2219
5d337b91 2220 spin_lock(&swap_lock);
8952898b
HD
2221 if (end > si->max) /* don't go beyond end of map */
2222 end = si->max;
2223
2224 /* Count contiguous allocated slots above our target */
2225 for (toff = target; ++toff < end; nr_pages++) {
2226 /* Don't read in free or bad pages */
2227 if (!si->swap_map[toff])
2228 break;
355cfa73 2229 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2230 break;
8952898b
HD
2231 }
2232 /* Count contiguous allocated slots below our target */
2233 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2234 /* Don't read in free or bad pages */
8952898b 2235 if (!si->swap_map[toff])
1da177e4 2236 break;
355cfa73 2237 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2238 break;
8952898b 2239 }
5d337b91 2240 spin_unlock(&swap_lock);
8952898b
HD
2241
2242 /*
2243 * Indicate starting offset, and return number of pages to get:
2244 * if only 1, say 0, since there's then no readahead to be done.
2245 */
2246 *offset = ++toff;
2247 return nr_pages? ++nr_pages: 0;
1da177e4 2248}