swap_info: swap_map of chars not shorts
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
24#include <linux/module.h>
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
1da177e4
LT
32
33#include <asm/pgtable.h>
34#include <asm/tlbflush.h>
35#include <linux/swapops.h>
27a7faa0 36#include <linux/page_cgroup.h>
1da177e4 37
7c363b8c
AB
38static DEFINE_SPINLOCK(swap_lock);
39static unsigned int nr_swapfiles;
b962716b 40long nr_swap_pages;
1da177e4
LT
41long total_swap_pages;
42static int swap_overflow;
78ecba08 43static int least_priority;
1da177e4 44
1da177e4
LT
45static const char Bad_file[] = "Bad swap file entry ";
46static const char Unused_file[] = "Unused swap file entry ";
47static const char Bad_offset[] = "Bad swap offset entry ";
48static const char Unused_offset[] = "Unused swap offset entry ";
49
7c363b8c 50static struct swap_list_t swap_list = {-1, -1};
1da177e4 51
efa90a98 52static struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 53
fc0abb14 54static DEFINE_MUTEX(swapon_mutex);
1da177e4 55
8d69aaee 56static inline unsigned char swap_count(unsigned char ent)
355cfa73 57{
253d553b 58 return ent & ~SWAP_HAS_CACHE;
355cfa73
KH
59}
60
efa90a98 61/* returns 1 if swap entry is freed */
c9e44410
KH
62static int
63__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
64{
efa90a98 65 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
66 struct page *page;
67 int ret = 0;
68
69 page = find_get_page(&swapper_space, entry.val);
70 if (!page)
71 return 0;
72 /*
73 * This function is called from scan_swap_map() and it's called
74 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
75 * We have to use trylock for avoiding deadlock. This is a special
76 * case and you should use try_to_free_swap() with explicit lock_page()
77 * in usual operations.
78 */
79 if (trylock_page(page)) {
80 ret = try_to_free_swap(page);
81 unlock_page(page);
82 }
83 page_cache_release(page);
84 return ret;
85}
355cfa73 86
1da177e4
LT
87/*
88 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 89 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 90 * cannot be turned into a mutex.
1da177e4
LT
91 */
92static DECLARE_RWSEM(swap_unplug_sem);
93
1da177e4
LT
94void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
95{
96 swp_entry_t entry;
97
98 down_read(&swap_unplug_sem);
4c21e2f2 99 entry.val = page_private(page);
1da177e4 100 if (PageSwapCache(page)) {
efa90a98 101 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
1da177e4
LT
102 struct backing_dev_info *bdi;
103
104 /*
105 * If the page is removed from swapcache from under us (with a
106 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
107 * count to avoid reading garbage from page_private(page) above.
108 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
109 * condition and it's harmless. However if it triggers without
110 * swapoff it signals a problem.
111 */
112 WARN_ON(page_count(page) <= 1);
113
114 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 115 blk_run_backing_dev(bdi, page);
1da177e4
LT
116 }
117 up_read(&swap_unplug_sem);
118}
119
6a6ba831
HD
120/*
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
123 */
124static int discard_swap(struct swap_info_struct *si)
125{
126 struct swap_extent *se;
9625a5f2
HD
127 sector_t start_block;
128 sector_t nr_blocks;
6a6ba831
HD
129 int err = 0;
130
9625a5f2
HD
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 if (nr_blocks) {
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
138 if (err)
139 return err;
140 cond_resched();
141 }
6a6ba831 142
9625a5f2
HD
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
146
147 err = blkdev_issue_discard(si->bdev, start_block,
9625a5f2 148 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
6a6ba831
HD
149 if (err)
150 break;
151
152 cond_resched();
153 }
154 return err; /* That will often be -EOPNOTSUPP */
155}
156
7992fde7
HD
157/*
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
160 */
161static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
163{
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
166
167 while (nr_pages) {
168 struct list_head *lh;
169
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
858a2990 174 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
175
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
180
181 if (!found_extent++)
182 si->curr_swap_extent = se;
183
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
9625a5f2 187 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
7992fde7
HD
188 break;
189 }
190
191 lh = se->list.next;
7992fde7
HD
192 se = list_entry(lh, struct swap_extent, list);
193 }
194}
195
196static int wait_for_discard(void *word)
197{
198 schedule();
199 return 0;
200}
201
048c27fd
HD
202#define SWAPFILE_CLUSTER 256
203#define LATENCY_LIMIT 256
204
355cfa73 205static inline unsigned long scan_swap_map(struct swap_info_struct *si,
8d69aaee 206 unsigned char usage)
1da177e4 207{
ebebbbe9 208 unsigned long offset;
c60aa176 209 unsigned long scan_base;
7992fde7 210 unsigned long last_in_cluster = 0;
048c27fd 211 int latency_ration = LATENCY_LIMIT;
7992fde7 212 int found_free_cluster = 0;
7dfad418 213
886bb7e9 214 /*
7dfad418
HD
215 * We try to cluster swap pages by allocating them sequentially
216 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
217 * way, however, we resort to first-free allocation, starting
218 * a new cluster. This prevents us from scattering swap pages
219 * all over the entire swap partition, so that we reduce
220 * overall disk seek times between swap pages. -- sct
221 * But we do now try to find an empty cluster. -Andrea
c60aa176 222 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
223 */
224
52b7efdb 225 si->flags += SWP_SCANNING;
c60aa176 226 scan_base = offset = si->cluster_next;
ebebbbe9
HD
227
228 if (unlikely(!si->cluster_nr--)) {
229 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
230 si->cluster_nr = SWAPFILE_CLUSTER - 1;
231 goto checks;
232 }
7992fde7
HD
233 if (si->flags & SWP_DISCARDABLE) {
234 /*
235 * Start range check on racing allocations, in case
236 * they overlap the cluster we eventually decide on
237 * (we scan without swap_lock to allow preemption).
238 * It's hardly conceivable that cluster_nr could be
239 * wrapped during our scan, but don't depend on it.
240 */
241 if (si->lowest_alloc)
242 goto checks;
243 si->lowest_alloc = si->max;
244 si->highest_alloc = 0;
245 }
5d337b91 246 spin_unlock(&swap_lock);
7dfad418 247
c60aa176
HD
248 /*
249 * If seek is expensive, start searching for new cluster from
250 * start of partition, to minimize the span of allocated swap.
251 * But if seek is cheap, search from our current position, so
252 * that swap is allocated from all over the partition: if the
253 * Flash Translation Layer only remaps within limited zones,
254 * we don't want to wear out the first zone too quickly.
255 */
256 if (!(si->flags & SWP_SOLIDSTATE))
257 scan_base = offset = si->lowest_bit;
7dfad418
HD
258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
259
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 262 if (si->swap_map[offset])
7dfad418
HD
263 last_in_cluster = offset + SWAPFILE_CLUSTER;
264 else if (offset == last_in_cluster) {
5d337b91 265 spin_lock(&swap_lock);
ebebbbe9
HD
266 offset -= SWAPFILE_CLUSTER - 1;
267 si->cluster_next = offset;
268 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 269 found_free_cluster = 1;
ebebbbe9 270 goto checks;
1da177e4 271 }
048c27fd
HD
272 if (unlikely(--latency_ration < 0)) {
273 cond_resched();
274 latency_ration = LATENCY_LIMIT;
275 }
7dfad418 276 }
ebebbbe9
HD
277
278 offset = si->lowest_bit;
c60aa176
HD
279 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
280
281 /* Locate the first empty (unaligned) cluster */
282 for (; last_in_cluster < scan_base; offset++) {
283 if (si->swap_map[offset])
284 last_in_cluster = offset + SWAPFILE_CLUSTER;
285 else if (offset == last_in_cluster) {
286 spin_lock(&swap_lock);
287 offset -= SWAPFILE_CLUSTER - 1;
288 si->cluster_next = offset;
289 si->cluster_nr = SWAPFILE_CLUSTER - 1;
290 found_free_cluster = 1;
291 goto checks;
292 }
293 if (unlikely(--latency_ration < 0)) {
294 cond_resched();
295 latency_ration = LATENCY_LIMIT;
296 }
297 }
298
299 offset = scan_base;
5d337b91 300 spin_lock(&swap_lock);
ebebbbe9 301 si->cluster_nr = SWAPFILE_CLUSTER - 1;
7992fde7 302 si->lowest_alloc = 0;
1da177e4 303 }
7dfad418 304
ebebbbe9
HD
305checks:
306 if (!(si->flags & SWP_WRITEOK))
52b7efdb 307 goto no_page;
7dfad418
HD
308 if (!si->highest_bit)
309 goto no_page;
ebebbbe9 310 if (offset > si->highest_bit)
c60aa176 311 scan_base = offset = si->lowest_bit;
c9e44410
KH
312
313 /* reuse swap entry of cache-only swap if not busy. */
314 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
315 int swap_was_freed;
316 spin_unlock(&swap_lock);
317 swap_was_freed = __try_to_reclaim_swap(si, offset);
318 spin_lock(&swap_lock);
319 /* entry was freed successfully, try to use this again */
320 if (swap_was_freed)
321 goto checks;
322 goto scan; /* check next one */
323 }
324
ebebbbe9
HD
325 if (si->swap_map[offset])
326 goto scan;
327
328 if (offset == si->lowest_bit)
329 si->lowest_bit++;
330 if (offset == si->highest_bit)
331 si->highest_bit--;
332 si->inuse_pages++;
333 if (si->inuse_pages == si->pages) {
334 si->lowest_bit = si->max;
335 si->highest_bit = 0;
1da177e4 336 }
253d553b 337 si->swap_map[offset] = usage;
ebebbbe9
HD
338 si->cluster_next = offset + 1;
339 si->flags -= SWP_SCANNING;
7992fde7
HD
340
341 if (si->lowest_alloc) {
342 /*
343 * Only set when SWP_DISCARDABLE, and there's a scan
344 * for a free cluster in progress or just completed.
345 */
346 if (found_free_cluster) {
347 /*
348 * To optimize wear-levelling, discard the
349 * old data of the cluster, taking care not to
350 * discard any of its pages that have already
351 * been allocated by racing tasks (offset has
352 * already stepped over any at the beginning).
353 */
354 if (offset < si->highest_alloc &&
355 si->lowest_alloc <= last_in_cluster)
356 last_in_cluster = si->lowest_alloc - 1;
357 si->flags |= SWP_DISCARDING;
358 spin_unlock(&swap_lock);
359
360 if (offset < last_in_cluster)
361 discard_swap_cluster(si, offset,
362 last_in_cluster - offset + 1);
363
364 spin_lock(&swap_lock);
365 si->lowest_alloc = 0;
366 si->flags &= ~SWP_DISCARDING;
367
368 smp_mb(); /* wake_up_bit advises this */
369 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
370
371 } else if (si->flags & SWP_DISCARDING) {
372 /*
373 * Delay using pages allocated by racing tasks
374 * until the whole discard has been issued. We
375 * could defer that delay until swap_writepage,
376 * but it's easier to keep this self-contained.
377 */
378 spin_unlock(&swap_lock);
379 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
380 wait_for_discard, TASK_UNINTERRUPTIBLE);
381 spin_lock(&swap_lock);
382 } else {
383 /*
384 * Note pages allocated by racing tasks while
385 * scan for a free cluster is in progress, so
386 * that its final discard can exclude them.
387 */
388 if (offset < si->lowest_alloc)
389 si->lowest_alloc = offset;
390 if (offset > si->highest_alloc)
391 si->highest_alloc = offset;
392 }
393 }
ebebbbe9 394 return offset;
7dfad418 395
ebebbbe9 396scan:
5d337b91 397 spin_unlock(&swap_lock);
7dfad418 398 while (++offset <= si->highest_bit) {
52b7efdb 399 if (!si->swap_map[offset]) {
5d337b91 400 spin_lock(&swap_lock);
52b7efdb
HD
401 goto checks;
402 }
c9e44410
KH
403 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
404 spin_lock(&swap_lock);
405 goto checks;
406 }
048c27fd
HD
407 if (unlikely(--latency_ration < 0)) {
408 cond_resched();
409 latency_ration = LATENCY_LIMIT;
410 }
7dfad418 411 }
c60aa176
HD
412 offset = si->lowest_bit;
413 while (++offset < scan_base) {
414 if (!si->swap_map[offset]) {
415 spin_lock(&swap_lock);
416 goto checks;
417 }
c9e44410
KH
418 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
419 spin_lock(&swap_lock);
420 goto checks;
421 }
c60aa176
HD
422 if (unlikely(--latency_ration < 0)) {
423 cond_resched();
424 latency_ration = LATENCY_LIMIT;
425 }
426 }
5d337b91 427 spin_lock(&swap_lock);
7dfad418
HD
428
429no_page:
52b7efdb 430 si->flags -= SWP_SCANNING;
1da177e4
LT
431 return 0;
432}
433
434swp_entry_t get_swap_page(void)
435{
fb4f88dc
HD
436 struct swap_info_struct *si;
437 pgoff_t offset;
438 int type, next;
439 int wrapped = 0;
1da177e4 440
5d337b91 441 spin_lock(&swap_lock);
1da177e4 442 if (nr_swap_pages <= 0)
fb4f88dc
HD
443 goto noswap;
444 nr_swap_pages--;
445
446 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
efa90a98 447 si = swap_info[type];
fb4f88dc
HD
448 next = si->next;
449 if (next < 0 ||
efa90a98 450 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
451 next = swap_list.head;
452 wrapped++;
1da177e4 453 }
fb4f88dc
HD
454
455 if (!si->highest_bit)
456 continue;
457 if (!(si->flags & SWP_WRITEOK))
458 continue;
459
460 swap_list.next = next;
355cfa73 461 /* This is called for allocating swap entry for cache */
253d553b 462 offset = scan_swap_map(si, SWAP_HAS_CACHE);
5d337b91
HD
463 if (offset) {
464 spin_unlock(&swap_lock);
fb4f88dc 465 return swp_entry(type, offset);
5d337b91 466 }
fb4f88dc 467 next = swap_list.next;
1da177e4 468 }
fb4f88dc
HD
469
470 nr_swap_pages++;
471noswap:
5d337b91 472 spin_unlock(&swap_lock);
fb4f88dc 473 return (swp_entry_t) {0};
1da177e4
LT
474}
475
355cfa73 476/* The only caller of this function is now susupend routine */
3a291a20
RW
477swp_entry_t get_swap_page_of_type(int type)
478{
479 struct swap_info_struct *si;
480 pgoff_t offset;
481
482 spin_lock(&swap_lock);
efa90a98
HD
483 si = swap_info[type];
484 if (si && (si->flags & SWP_WRITEOK)) {
3a291a20 485 nr_swap_pages--;
355cfa73 486 /* This is called for allocating swap entry, not cache */
253d553b 487 offset = scan_swap_map(si, 1);
3a291a20
RW
488 if (offset) {
489 spin_unlock(&swap_lock);
490 return swp_entry(type, offset);
491 }
492 nr_swap_pages++;
493 }
494 spin_unlock(&swap_lock);
495 return (swp_entry_t) {0};
496}
497
73c34b6a 498static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 499{
73c34b6a 500 struct swap_info_struct *p;
1da177e4
LT
501 unsigned long offset, type;
502
503 if (!entry.val)
504 goto out;
505 type = swp_type(entry);
506 if (type >= nr_swapfiles)
507 goto bad_nofile;
efa90a98 508 p = swap_info[type];
1da177e4
LT
509 if (!(p->flags & SWP_USED))
510 goto bad_device;
511 offset = swp_offset(entry);
512 if (offset >= p->max)
513 goto bad_offset;
514 if (!p->swap_map[offset])
515 goto bad_free;
5d337b91 516 spin_lock(&swap_lock);
1da177e4
LT
517 return p;
518
519bad_free:
520 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
521 goto out;
522bad_offset:
523 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
524 goto out;
525bad_device:
526 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
527 goto out;
528bad_nofile:
529 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
530out:
531 return NULL;
886bb7e9 532}
1da177e4 533
8d69aaee
HD
534static unsigned char swap_entry_free(struct swap_info_struct *p,
535 swp_entry_t entry, unsigned char usage)
1da177e4 536{
253d553b 537 unsigned long offset = swp_offset(entry);
8d69aaee
HD
538 unsigned char count;
539 unsigned char has_cache;
355cfa73 540
253d553b
HD
541 count = p->swap_map[offset];
542 has_cache = count & SWAP_HAS_CACHE;
543 count &= ~SWAP_HAS_CACHE;
355cfa73 544
253d553b 545 if (usage == SWAP_HAS_CACHE) {
355cfa73 546 VM_BUG_ON(!has_cache);
253d553b
HD
547 has_cache = 0;
548 } else if (count < SWAP_MAP_MAX)
549 count--;
550
551 if (!count)
552 mem_cgroup_uncharge_swap(entry);
553
554 usage = count | has_cache;
555 p->swap_map[offset] = usage;
355cfa73 556
355cfa73 557 /* free if no reference */
253d553b 558 if (!usage) {
355cfa73
KH
559 if (offset < p->lowest_bit)
560 p->lowest_bit = offset;
561 if (offset > p->highest_bit)
562 p->highest_bit = offset;
efa90a98
HD
563 if (swap_list.next >= 0 &&
564 p->prio > swap_info[swap_list.next]->prio)
565 swap_list.next = p->type;
355cfa73
KH
566 nr_swap_pages++;
567 p->inuse_pages--;
1da177e4 568 }
253d553b
HD
569
570 return usage;
1da177e4
LT
571}
572
573/*
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
576 */
577void swap_free(swp_entry_t entry)
578{
73c34b6a 579 struct swap_info_struct *p;
1da177e4
LT
580
581 p = swap_info_get(entry);
582 if (p) {
253d553b 583 swap_entry_free(p, entry, 1);
5d337b91 584 spin_unlock(&swap_lock);
1da177e4
LT
585 }
586}
587
cb4b86ba
KH
588/*
589 * Called after dropping swapcache to decrease refcnt to swap entries.
590 */
591void swapcache_free(swp_entry_t entry, struct page *page)
592{
355cfa73 593 struct swap_info_struct *p;
8d69aaee 594 unsigned char count;
355cfa73 595
355cfa73
KH
596 p = swap_info_get(entry);
597 if (p) {
253d553b
HD
598 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599 if (page)
600 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
355cfa73
KH
601 spin_unlock(&swap_lock);
602 }
cb4b86ba
KH
603}
604
1da177e4 605/*
c475a8ab 606 * How many references to page are currently swapped out?
1da177e4 607 */
c475a8ab 608static inline int page_swapcount(struct page *page)
1da177e4 609{
c475a8ab
HD
610 int count = 0;
611 struct swap_info_struct *p;
1da177e4
LT
612 swp_entry_t entry;
613
4c21e2f2 614 entry.val = page_private(page);
1da177e4
LT
615 p = swap_info_get(entry);
616 if (p) {
355cfa73 617 count = swap_count(p->swap_map[swp_offset(entry)]);
5d337b91 618 spin_unlock(&swap_lock);
1da177e4 619 }
c475a8ab 620 return count;
1da177e4
LT
621}
622
623/*
7b1fe597
HD
624 * We can write to an anon page without COW if there are no other references
625 * to it. And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
1da177e4 628 */
7b1fe597 629int reuse_swap_page(struct page *page)
1da177e4 630{
c475a8ab
HD
631 int count;
632
51726b12 633 VM_BUG_ON(!PageLocked(page));
c475a8ab 634 count = page_mapcount(page);
7b1fe597 635 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 636 count += page_swapcount(page);
7b1fe597
HD
637 if (count == 1 && !PageWriteback(page)) {
638 delete_from_swap_cache(page);
639 SetPageDirty(page);
640 }
641 }
c475a8ab 642 return count == 1;
1da177e4
LT
643}
644
645/*
a2c43eed
HD
646 * If swap is getting full, or if there are no more mappings of this page,
647 * then try_to_free_swap is called to free its swap space.
1da177e4 648 */
a2c43eed 649int try_to_free_swap(struct page *page)
1da177e4 650{
51726b12 651 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
652
653 if (!PageSwapCache(page))
654 return 0;
655 if (PageWriteback(page))
656 return 0;
a2c43eed 657 if (page_swapcount(page))
1da177e4
LT
658 return 0;
659
a2c43eed
HD
660 delete_from_swap_cache(page);
661 SetPageDirty(page);
662 return 1;
68a22394
RR
663}
664
1da177e4
LT
665/*
666 * Free the swap entry like above, but also try to
667 * free the page cache entry if it is the last user.
668 */
2509ef26 669int free_swap_and_cache(swp_entry_t entry)
1da177e4 670{
2509ef26 671 struct swap_info_struct *p;
1da177e4
LT
672 struct page *page = NULL;
673
a7420aa5 674 if (non_swap_entry(entry))
2509ef26 675 return 1;
0697212a 676
1da177e4
LT
677 p = swap_info_get(entry);
678 if (p) {
253d553b 679 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
93fac704 680 page = find_get_page(&swapper_space, entry.val);
8413ac9d 681 if (page && !trylock_page(page)) {
93fac704
NP
682 page_cache_release(page);
683 page = NULL;
684 }
685 }
5d337b91 686 spin_unlock(&swap_lock);
1da177e4
LT
687 }
688 if (page) {
a2c43eed
HD
689 /*
690 * Not mapped elsewhere, or swap space full? Free it!
691 * Also recheck PageSwapCache now page is locked (above).
692 */
93fac704 693 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 694 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
695 delete_from_swap_cache(page);
696 SetPageDirty(page);
697 }
698 unlock_page(page);
699 page_cache_release(page);
700 }
2509ef26 701 return p != NULL;
1da177e4
LT
702}
703
b0cb1a19 704#ifdef CONFIG_HIBERNATION
f577eb30 705/*
915bae9e 706 * Find the swap type that corresponds to given device (if any).
f577eb30 707 *
915bae9e
RW
708 * @offset - number of the PAGE_SIZE-sized block of the device, starting
709 * from 0, in which the swap header is expected to be located.
710 *
711 * This is needed for the suspend to disk (aka swsusp).
f577eb30 712 */
7bf23687 713int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 714{
915bae9e 715 struct block_device *bdev = NULL;
efa90a98 716 int type;
f577eb30 717
915bae9e
RW
718 if (device)
719 bdev = bdget(device);
720
f577eb30 721 spin_lock(&swap_lock);
efa90a98
HD
722 for (type = 0; type < nr_swapfiles; type++) {
723 struct swap_info_struct *sis = swap_info[type];
f577eb30 724
915bae9e 725 if (!(sis->flags & SWP_WRITEOK))
f577eb30 726 continue;
b6b5bce3 727
915bae9e 728 if (!bdev) {
7bf23687 729 if (bdev_p)
dddac6a7 730 *bdev_p = bdgrab(sis->bdev);
7bf23687 731
6e1819d6 732 spin_unlock(&swap_lock);
efa90a98 733 return type;
6e1819d6 734 }
915bae9e 735 if (bdev == sis->bdev) {
9625a5f2 736 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 737
915bae9e 738 if (se->start_block == offset) {
7bf23687 739 if (bdev_p)
dddac6a7 740 *bdev_p = bdgrab(sis->bdev);
7bf23687 741
915bae9e
RW
742 spin_unlock(&swap_lock);
743 bdput(bdev);
efa90a98 744 return type;
915bae9e 745 }
f577eb30
RW
746 }
747 }
748 spin_unlock(&swap_lock);
915bae9e
RW
749 if (bdev)
750 bdput(bdev);
751
f577eb30
RW
752 return -ENODEV;
753}
754
73c34b6a
HD
755/*
756 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
757 * corresponding to given index in swap_info (swap type).
758 */
759sector_t swapdev_block(int type, pgoff_t offset)
760{
761 struct block_device *bdev;
762
763 if ((unsigned int)type >= nr_swapfiles)
764 return 0;
765 if (!(swap_info[type]->flags & SWP_WRITEOK))
766 return 0;
767 return map_swap_page(swp_entry(type, offset), &bdev);
768}
769
f577eb30
RW
770/*
771 * Return either the total number of swap pages of given type, or the number
772 * of free pages of that type (depending on @free)
773 *
774 * This is needed for software suspend
775 */
776unsigned int count_swap_pages(int type, int free)
777{
778 unsigned int n = 0;
779
efa90a98
HD
780 spin_lock(&swap_lock);
781 if ((unsigned int)type < nr_swapfiles) {
782 struct swap_info_struct *sis = swap_info[type];
783
784 if (sis->flags & SWP_WRITEOK) {
785 n = sis->pages;
f577eb30 786 if (free)
efa90a98 787 n -= sis->inuse_pages;
f577eb30 788 }
f577eb30 789 }
efa90a98 790 spin_unlock(&swap_lock);
f577eb30
RW
791 return n;
792}
73c34b6a 793#endif /* CONFIG_HIBERNATION */
f577eb30 794
1da177e4 795/*
72866f6f
HD
796 * No need to decide whether this PTE shares the swap entry with others,
797 * just let do_wp_page work it out if a write is requested later - to
798 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 799 */
044d66c1 800static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
801 unsigned long addr, swp_entry_t entry, struct page *page)
802{
7a81b88c 803 struct mem_cgroup *ptr = NULL;
044d66c1
HD
804 spinlock_t *ptl;
805 pte_t *pte;
806 int ret = 1;
807
85d9fc89 808 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
044d66c1 809 ret = -ENOMEM;
85d9fc89
KH
810 goto out_nolock;
811 }
044d66c1
HD
812
813 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
814 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
815 if (ret > 0)
7a81b88c 816 mem_cgroup_cancel_charge_swapin(ptr);
044d66c1
HD
817 ret = 0;
818 goto out;
819 }
8a9f3ccd 820
4294621f 821 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
822 get_page(page);
823 set_pte_at(vma->vm_mm, addr, pte,
824 pte_mkold(mk_pte(page, vma->vm_page_prot)));
825 page_add_anon_rmap(page, vma, addr);
7a81b88c 826 mem_cgroup_commit_charge_swapin(page, ptr);
1da177e4
LT
827 swap_free(entry);
828 /*
829 * Move the page to the active list so it is not
830 * immediately swapped out again after swapon.
831 */
832 activate_page(page);
044d66c1
HD
833out:
834 pte_unmap_unlock(pte, ptl);
85d9fc89 835out_nolock:
044d66c1 836 return ret;
1da177e4
LT
837}
838
839static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
840 unsigned long addr, unsigned long end,
841 swp_entry_t entry, struct page *page)
842{
1da177e4 843 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 844 pte_t *pte;
8a9f3ccd 845 int ret = 0;
1da177e4 846
044d66c1
HD
847 /*
848 * We don't actually need pte lock while scanning for swp_pte: since
849 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
850 * page table while we're scanning; though it could get zapped, and on
851 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
852 * of unmatched parts which look like swp_pte, so unuse_pte must
853 * recheck under pte lock. Scanning without pte lock lets it be
854 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
855 */
856 pte = pte_offset_map(pmd, addr);
1da177e4
LT
857 do {
858 /*
859 * swapoff spends a _lot_ of time in this loop!
860 * Test inline before going to call unuse_pte.
861 */
862 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
863 pte_unmap(pte);
864 ret = unuse_pte(vma, pmd, addr, entry, page);
865 if (ret)
866 goto out;
867 pte = pte_offset_map(pmd, addr);
1da177e4
LT
868 }
869 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
870 pte_unmap(pte - 1);
871out:
8a9f3ccd 872 return ret;
1da177e4
LT
873}
874
875static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
876 unsigned long addr, unsigned long end,
877 swp_entry_t entry, struct page *page)
878{
879 pmd_t *pmd;
880 unsigned long next;
8a9f3ccd 881 int ret;
1da177e4
LT
882
883 pmd = pmd_offset(pud, addr);
884 do {
885 next = pmd_addr_end(addr, end);
886 if (pmd_none_or_clear_bad(pmd))
887 continue;
8a9f3ccd
BS
888 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
889 if (ret)
890 return ret;
1da177e4
LT
891 } while (pmd++, addr = next, addr != end);
892 return 0;
893}
894
895static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
896 unsigned long addr, unsigned long end,
897 swp_entry_t entry, struct page *page)
898{
899 pud_t *pud;
900 unsigned long next;
8a9f3ccd 901 int ret;
1da177e4
LT
902
903 pud = pud_offset(pgd, addr);
904 do {
905 next = pud_addr_end(addr, end);
906 if (pud_none_or_clear_bad(pud))
907 continue;
8a9f3ccd
BS
908 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
909 if (ret)
910 return ret;
1da177e4
LT
911 } while (pud++, addr = next, addr != end);
912 return 0;
913}
914
915static int unuse_vma(struct vm_area_struct *vma,
916 swp_entry_t entry, struct page *page)
917{
918 pgd_t *pgd;
919 unsigned long addr, end, next;
8a9f3ccd 920 int ret;
1da177e4
LT
921
922 if (page->mapping) {
923 addr = page_address_in_vma(page, vma);
924 if (addr == -EFAULT)
925 return 0;
926 else
927 end = addr + PAGE_SIZE;
928 } else {
929 addr = vma->vm_start;
930 end = vma->vm_end;
931 }
932
933 pgd = pgd_offset(vma->vm_mm, addr);
934 do {
935 next = pgd_addr_end(addr, end);
936 if (pgd_none_or_clear_bad(pgd))
937 continue;
8a9f3ccd
BS
938 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
939 if (ret)
940 return ret;
1da177e4
LT
941 } while (pgd++, addr = next, addr != end);
942 return 0;
943}
944
945static int unuse_mm(struct mm_struct *mm,
946 swp_entry_t entry, struct page *page)
947{
948 struct vm_area_struct *vma;
8a9f3ccd 949 int ret = 0;
1da177e4
LT
950
951 if (!down_read_trylock(&mm->mmap_sem)) {
952 /*
7d03431c
FLVC
953 * Activate page so shrink_inactive_list is unlikely to unmap
954 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 955 */
c475a8ab 956 activate_page(page);
1da177e4
LT
957 unlock_page(page);
958 down_read(&mm->mmap_sem);
959 lock_page(page);
960 }
1da177e4 961 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 962 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
963 break;
964 }
1da177e4 965 up_read(&mm->mmap_sem);
8a9f3ccd 966 return (ret < 0)? ret: 0;
1da177e4
LT
967}
968
969/*
970 * Scan swap_map from current position to next entry still in use.
971 * Recycle to start on reaching the end, returning 0 when empty.
972 */
6eb396dc
HD
973static unsigned int find_next_to_unuse(struct swap_info_struct *si,
974 unsigned int prev)
1da177e4 975{
6eb396dc
HD
976 unsigned int max = si->max;
977 unsigned int i = prev;
8d69aaee 978 unsigned char count;
1da177e4
LT
979
980 /*
5d337b91 981 * No need for swap_lock here: we're just looking
1da177e4
LT
982 * for whether an entry is in use, not modifying it; false
983 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 984 * allocations from this area (while holding swap_lock).
1da177e4
LT
985 */
986 for (;;) {
987 if (++i >= max) {
988 if (!prev) {
989 i = 0;
990 break;
991 }
992 /*
993 * No entries in use at top of swap_map,
994 * loop back to start and recheck there.
995 */
996 max = prev + 1;
997 prev = 0;
998 i = 1;
999 }
1000 count = si->swap_map[i];
355cfa73 1001 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1002 break;
1003 }
1004 return i;
1005}
1006
1007/*
1008 * We completely avoid races by reading each swap page in advance,
1009 * and then search for the process using it. All the necessary
1010 * page table adjustments can then be made atomically.
1011 */
1012static int try_to_unuse(unsigned int type)
1013{
efa90a98 1014 struct swap_info_struct *si = swap_info[type];
1da177e4 1015 struct mm_struct *start_mm;
8d69aaee
HD
1016 unsigned char *swap_map;
1017 unsigned char swcount;
1da177e4
LT
1018 struct page *page;
1019 swp_entry_t entry;
6eb396dc 1020 unsigned int i = 0;
1da177e4
LT
1021 int retval = 0;
1022 int reset_overflow = 0;
1023 int shmem;
1024
1025 /*
1026 * When searching mms for an entry, a good strategy is to
1027 * start at the first mm we freed the previous entry from
1028 * (though actually we don't notice whether we or coincidence
1029 * freed the entry). Initialize this start_mm with a hold.
1030 *
1031 * A simpler strategy would be to start at the last mm we
1032 * freed the previous entry from; but that would take less
1033 * advantage of mmlist ordering, which clusters forked mms
1034 * together, child after parent. If we race with dup_mmap(), we
1035 * prefer to resolve parent before child, lest we miss entries
1036 * duplicated after we scanned child: using last mm would invert
1037 * that. Though it's only a serious concern when an overflowed
1038 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1039 */
1040 start_mm = &init_mm;
1041 atomic_inc(&init_mm.mm_users);
1042
1043 /*
1044 * Keep on scanning until all entries have gone. Usually,
1045 * one pass through swap_map is enough, but not necessarily:
1046 * there are races when an instance of an entry might be missed.
1047 */
1048 while ((i = find_next_to_unuse(si, i)) != 0) {
1049 if (signal_pending(current)) {
1050 retval = -EINTR;
1051 break;
1052 }
1053
886bb7e9 1054 /*
1da177e4
LT
1055 * Get a page for the entry, using the existing swap
1056 * cache page if there is one. Otherwise, get a clean
886bb7e9 1057 * page and read the swap into it.
1da177e4
LT
1058 */
1059 swap_map = &si->swap_map[i];
1060 entry = swp_entry(type, i);
02098fea
HD
1061 page = read_swap_cache_async(entry,
1062 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1063 if (!page) {
1064 /*
1065 * Either swap_duplicate() failed because entry
1066 * has been freed independently, and will not be
1067 * reused since sys_swapoff() already disabled
1068 * allocation from here, or alloc_page() failed.
1069 */
1070 if (!*swap_map)
1071 continue;
1072 retval = -ENOMEM;
1073 break;
1074 }
1075
1076 /*
1077 * Don't hold on to start_mm if it looks like exiting.
1078 */
1079 if (atomic_read(&start_mm->mm_users) == 1) {
1080 mmput(start_mm);
1081 start_mm = &init_mm;
1082 atomic_inc(&init_mm.mm_users);
1083 }
1084
1085 /*
1086 * Wait for and lock page. When do_swap_page races with
1087 * try_to_unuse, do_swap_page can handle the fault much
1088 * faster than try_to_unuse can locate the entry. This
1089 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1090 * defer to do_swap_page in such a case - in some tests,
1091 * do_swap_page and try_to_unuse repeatedly compete.
1092 */
1093 wait_on_page_locked(page);
1094 wait_on_page_writeback(page);
1095 lock_page(page);
1096 wait_on_page_writeback(page);
1097
1098 /*
1099 * Remove all references to entry.
1100 * Whenever we reach init_mm, there's no address space
1101 * to search, but use it as a reminder to search shmem.
1102 */
1103 shmem = 0;
1104 swcount = *swap_map;
355cfa73 1105 if (swap_count(swcount)) {
1da177e4
LT
1106 if (start_mm == &init_mm)
1107 shmem = shmem_unuse(entry, page);
1108 else
1109 retval = unuse_mm(start_mm, entry, page);
1110 }
355cfa73 1111 if (swap_count(*swap_map)) {
1da177e4
LT
1112 int set_start_mm = (*swap_map >= swcount);
1113 struct list_head *p = &start_mm->mmlist;
1114 struct mm_struct *new_start_mm = start_mm;
1115 struct mm_struct *prev_mm = start_mm;
1116 struct mm_struct *mm;
1117
1118 atomic_inc(&new_start_mm->mm_users);
1119 atomic_inc(&prev_mm->mm_users);
1120 spin_lock(&mmlist_lock);
355cfa73 1121 while (swap_count(*swap_map) && !retval && !shmem &&
1da177e4
LT
1122 (p = p->next) != &start_mm->mmlist) {
1123 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1124 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1125 continue;
1da177e4
LT
1126 spin_unlock(&mmlist_lock);
1127 mmput(prev_mm);
1128 prev_mm = mm;
1129
1130 cond_resched();
1131
1132 swcount = *swap_map;
355cfa73 1133 if (!swap_count(swcount)) /* any usage ? */
1da177e4
LT
1134 ;
1135 else if (mm == &init_mm) {
1136 set_start_mm = 1;
1137 shmem = shmem_unuse(entry, page);
1138 } else
1139 retval = unuse_mm(mm, entry, page);
355cfa73 1140
32c5fc10 1141 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1142 mmput(new_start_mm);
1143 atomic_inc(&mm->mm_users);
1144 new_start_mm = mm;
1145 set_start_mm = 0;
1146 }
1147 spin_lock(&mmlist_lock);
1148 }
1149 spin_unlock(&mmlist_lock);
1150 mmput(prev_mm);
1151 mmput(start_mm);
1152 start_mm = new_start_mm;
1153 }
2e0e26c7
HD
1154 if (shmem) {
1155 /* page has already been unlocked and released */
1156 if (shmem > 0)
1157 continue;
1158 retval = shmem;
1159 break;
1160 }
1da177e4
LT
1161 if (retval) {
1162 unlock_page(page);
1163 page_cache_release(page);
1164 break;
1165 }
1166
1167 /*
355cfa73
KH
1168 * How could swap count reach 0x7ffe ?
1169 * There's no way to repeat a swap page within an mm
1170 * (except in shmem, where it's the shared object which takes
1171 * the reference count)?
1172 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1173 * short is too small....)
1da177e4
LT
1174 * If that's wrong, then we should worry more about
1175 * exit_mmap() and do_munmap() cases described above:
1176 * we might be resetting SWAP_MAP_MAX too early here.
8d69aaee
HD
1177 *
1178 * Yes, that's wrong: though very unlikely, swap count 0x7ffe
1179 * could surely occur if pid_max raised from PID_MAX_DEFAULT;
1180 * and we are now lowering SWAP_MAP_MAX to 0x7e, making it
1181 * much easier to reach. But the next patch will fix that.
1182 *
1da177e4
LT
1183 * We know "Undead"s can happen, they're okay, so don't
1184 * report them; but do report if we reset SWAP_MAP_MAX.
1185 */
355cfa73
KH
1186 /* We might release the lock_page() in unuse_mm(). */
1187 if (!PageSwapCache(page) || page_private(page) != entry.val)
1188 goto retry;
1189
1190 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
5d337b91 1191 spin_lock(&swap_lock);
253d553b 1192 *swap_map = SWAP_HAS_CACHE;
5d337b91 1193 spin_unlock(&swap_lock);
1da177e4
LT
1194 reset_overflow = 1;
1195 }
1196
1197 /*
1198 * If a reference remains (rare), we would like to leave
1199 * the page in the swap cache; but try_to_unmap could
1200 * then re-duplicate the entry once we drop page lock,
1201 * so we might loop indefinitely; also, that page could
1202 * not be swapped out to other storage meanwhile. So:
1203 * delete from cache even if there's another reference,
1204 * after ensuring that the data has been saved to disk -
1205 * since if the reference remains (rarer), it will be
1206 * read from disk into another page. Splitting into two
1207 * pages would be incorrect if swap supported "shared
1208 * private" pages, but they are handled by tmpfs files.
1da177e4 1209 */
355cfa73
KH
1210 if (swap_count(*swap_map) &&
1211 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1212 struct writeback_control wbc = {
1213 .sync_mode = WB_SYNC_NONE,
1214 };
1215
1216 swap_writepage(page, &wbc);
1217 lock_page(page);
1218 wait_on_page_writeback(page);
1219 }
68bdc8d6
HD
1220
1221 /*
1222 * It is conceivable that a racing task removed this page from
1223 * swap cache just before we acquired the page lock at the top,
1224 * or while we dropped it in unuse_mm(). The page might even
1225 * be back in swap cache on another swap area: that we must not
1226 * delete, since it may not have been written out to swap yet.
1227 */
1228 if (PageSwapCache(page) &&
1229 likely(page_private(page) == entry.val))
2e0e26c7 1230 delete_from_swap_cache(page);
1da177e4
LT
1231
1232 /*
1233 * So we could skip searching mms once swap count went
1234 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1235 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1236 */
1237 SetPageDirty(page);
355cfa73 1238retry:
1da177e4
LT
1239 unlock_page(page);
1240 page_cache_release(page);
1241
1242 /*
1243 * Make sure that we aren't completely killing
1244 * interactive performance.
1245 */
1246 cond_resched();
1247 }
1248
1249 mmput(start_mm);
1250 if (reset_overflow) {
1251 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1252 swap_overflow = 0;
1253 }
1254 return retval;
1255}
1256
1257/*
5d337b91
HD
1258 * After a successful try_to_unuse, if no swap is now in use, we know
1259 * we can empty the mmlist. swap_lock must be held on entry and exit.
1260 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1261 * added to the mmlist just after page_duplicate - before would be racy.
1262 */
1263static void drain_mmlist(void)
1264{
1265 struct list_head *p, *next;
efa90a98 1266 unsigned int type;
1da177e4 1267
efa90a98
HD
1268 for (type = 0; type < nr_swapfiles; type++)
1269 if (swap_info[type]->inuse_pages)
1da177e4
LT
1270 return;
1271 spin_lock(&mmlist_lock);
1272 list_for_each_safe(p, next, &init_mm.mmlist)
1273 list_del_init(p);
1274 spin_unlock(&mmlist_lock);
1275}
1276
1277/*
1278 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
f29ad6a9
HD
1279 * corresponds to page offset `offset'. Note that the type of this function
1280 * is sector_t, but it returns page offset into the bdev, not sector offset.
1da177e4 1281 */
f29ad6a9 1282sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1da177e4 1283{
f29ad6a9
HD
1284 struct swap_info_struct *sis;
1285 struct swap_extent *start_se;
1286 struct swap_extent *se;
1287 pgoff_t offset;
1288
efa90a98 1289 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1290 *bdev = sis->bdev;
1291
1292 offset = swp_offset(entry);
1293 start_se = sis->curr_swap_extent;
1294 se = start_se;
1da177e4
LT
1295
1296 for ( ; ; ) {
1297 struct list_head *lh;
1298
1299 if (se->start_page <= offset &&
1300 offset < (se->start_page + se->nr_pages)) {
1301 return se->start_block + (offset - se->start_page);
1302 }
11d31886 1303 lh = se->list.next;
1da177e4
LT
1304 se = list_entry(lh, struct swap_extent, list);
1305 sis->curr_swap_extent = se;
1306 BUG_ON(se == start_se); /* It *must* be present */
1307 }
1308}
1309
1310/*
1311 * Free all of a swapdev's extent information
1312 */
1313static void destroy_swap_extents(struct swap_info_struct *sis)
1314{
9625a5f2 1315 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1316 struct swap_extent *se;
1317
9625a5f2 1318 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1319 struct swap_extent, list);
1320 list_del(&se->list);
1321 kfree(se);
1322 }
1da177e4
LT
1323}
1324
1325/*
1326 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1327 * extent list. The extent list is kept sorted in page order.
1da177e4 1328 *
11d31886 1329 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1330 */
1331static int
1332add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1333 unsigned long nr_pages, sector_t start_block)
1334{
1335 struct swap_extent *se;
1336 struct swap_extent *new_se;
1337 struct list_head *lh;
1338
9625a5f2
HD
1339 if (start_page == 0) {
1340 se = &sis->first_swap_extent;
1341 sis->curr_swap_extent = se;
1342 se->start_page = 0;
1343 se->nr_pages = nr_pages;
1344 se->start_block = start_block;
1345 return 1;
1346 } else {
1347 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1348 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1349 BUG_ON(se->start_page + se->nr_pages != start_page);
1350 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1351 /* Merge it */
1352 se->nr_pages += nr_pages;
1353 return 0;
1354 }
1da177e4
LT
1355 }
1356
1357 /*
1358 * No merge. Insert a new extent, preserving ordering.
1359 */
1360 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1361 if (new_se == NULL)
1362 return -ENOMEM;
1363 new_se->start_page = start_page;
1364 new_se->nr_pages = nr_pages;
1365 new_se->start_block = start_block;
1366
9625a5f2 1367 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1368 return 1;
1da177e4
LT
1369}
1370
1371/*
1372 * A `swap extent' is a simple thing which maps a contiguous range of pages
1373 * onto a contiguous range of disk blocks. An ordered list of swap extents
1374 * is built at swapon time and is then used at swap_writepage/swap_readpage
1375 * time for locating where on disk a page belongs.
1376 *
1377 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1378 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1379 * swap files identically.
1380 *
1381 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1382 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1383 * swapfiles are handled *identically* after swapon time.
1384 *
1385 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1386 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1387 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1388 * requirements, they are simply tossed out - we will never use those blocks
1389 * for swapping.
1390 *
b0d9bcd4 1391 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1392 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1393 * which will scribble on the fs.
1394 *
1395 * The amount of disk space which a single swap extent represents varies.
1396 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1397 * extents in the list. To avoid much list walking, we cache the previous
1398 * search location in `curr_swap_extent', and start new searches from there.
1399 * This is extremely effective. The average number of iterations in
1400 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1401 */
53092a74 1402static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1403{
1404 struct inode *inode;
1405 unsigned blocks_per_page;
1406 unsigned long page_no;
1407 unsigned blkbits;
1408 sector_t probe_block;
1409 sector_t last_block;
53092a74
HD
1410 sector_t lowest_block = -1;
1411 sector_t highest_block = 0;
1412 int nr_extents = 0;
1da177e4
LT
1413 int ret;
1414
1415 inode = sis->swap_file->f_mapping->host;
1416 if (S_ISBLK(inode->i_mode)) {
1417 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1418 *span = sis->pages;
9625a5f2 1419 goto out;
1da177e4
LT
1420 }
1421
1422 blkbits = inode->i_blkbits;
1423 blocks_per_page = PAGE_SIZE >> blkbits;
1424
1425 /*
1426 * Map all the blocks into the extent list. This code doesn't try
1427 * to be very smart.
1428 */
1429 probe_block = 0;
1430 page_no = 0;
1431 last_block = i_size_read(inode) >> blkbits;
1432 while ((probe_block + blocks_per_page) <= last_block &&
1433 page_no < sis->max) {
1434 unsigned block_in_page;
1435 sector_t first_block;
1436
1437 first_block = bmap(inode, probe_block);
1438 if (first_block == 0)
1439 goto bad_bmap;
1440
1441 /*
1442 * It must be PAGE_SIZE aligned on-disk
1443 */
1444 if (first_block & (blocks_per_page - 1)) {
1445 probe_block++;
1446 goto reprobe;
1447 }
1448
1449 for (block_in_page = 1; block_in_page < blocks_per_page;
1450 block_in_page++) {
1451 sector_t block;
1452
1453 block = bmap(inode, probe_block + block_in_page);
1454 if (block == 0)
1455 goto bad_bmap;
1456 if (block != first_block + block_in_page) {
1457 /* Discontiguity */
1458 probe_block++;
1459 goto reprobe;
1460 }
1461 }
1462
53092a74
HD
1463 first_block >>= (PAGE_SHIFT - blkbits);
1464 if (page_no) { /* exclude the header page */
1465 if (first_block < lowest_block)
1466 lowest_block = first_block;
1467 if (first_block > highest_block)
1468 highest_block = first_block;
1469 }
1470
1da177e4
LT
1471 /*
1472 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1473 */
53092a74
HD
1474 ret = add_swap_extent(sis, page_no, 1, first_block);
1475 if (ret < 0)
1da177e4 1476 goto out;
53092a74 1477 nr_extents += ret;
1da177e4
LT
1478 page_no++;
1479 probe_block += blocks_per_page;
1480reprobe:
1481 continue;
1482 }
53092a74
HD
1483 ret = nr_extents;
1484 *span = 1 + highest_block - lowest_block;
1da177e4 1485 if (page_no == 0)
e2244ec2 1486 page_no = 1; /* force Empty message */
1da177e4 1487 sis->max = page_no;
e2244ec2 1488 sis->pages = page_no - 1;
1da177e4 1489 sis->highest_bit = page_no - 1;
9625a5f2
HD
1490out:
1491 return ret;
1da177e4
LT
1492bad_bmap:
1493 printk(KERN_ERR "swapon: swapfile has holes\n");
1494 ret = -EINVAL;
9625a5f2 1495 goto out;
1da177e4
LT
1496}
1497
c4ea37c2 1498SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1499{
73c34b6a 1500 struct swap_info_struct *p = NULL;
8d69aaee 1501 unsigned char *swap_map;
1da177e4
LT
1502 struct file *swap_file, *victim;
1503 struct address_space *mapping;
1504 struct inode *inode;
73c34b6a 1505 char *pathname;
1da177e4
LT
1506 int i, type, prev;
1507 int err;
886bb7e9 1508
1da177e4
LT
1509 if (!capable(CAP_SYS_ADMIN))
1510 return -EPERM;
1511
1512 pathname = getname(specialfile);
1513 err = PTR_ERR(pathname);
1514 if (IS_ERR(pathname))
1515 goto out;
1516
1517 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1518 putname(pathname);
1519 err = PTR_ERR(victim);
1520 if (IS_ERR(victim))
1521 goto out;
1522
1523 mapping = victim->f_mapping;
1524 prev = -1;
5d337b91 1525 spin_lock(&swap_lock);
efa90a98
HD
1526 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1527 p = swap_info[type];
22c6f8fd 1528 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1529 if (p->swap_file->f_mapping == mapping)
1530 break;
1531 }
1532 prev = type;
1533 }
1534 if (type < 0) {
1535 err = -EINVAL;
5d337b91 1536 spin_unlock(&swap_lock);
1da177e4
LT
1537 goto out_dput;
1538 }
1539 if (!security_vm_enough_memory(p->pages))
1540 vm_unacct_memory(p->pages);
1541 else {
1542 err = -ENOMEM;
5d337b91 1543 spin_unlock(&swap_lock);
1da177e4
LT
1544 goto out_dput;
1545 }
efa90a98 1546 if (prev < 0)
1da177e4 1547 swap_list.head = p->next;
efa90a98
HD
1548 else
1549 swap_info[prev]->next = p->next;
1da177e4
LT
1550 if (type == swap_list.next) {
1551 /* just pick something that's safe... */
1552 swap_list.next = swap_list.head;
1553 }
78ecba08 1554 if (p->prio < 0) {
efa90a98
HD
1555 for (i = p->next; i >= 0; i = swap_info[i]->next)
1556 swap_info[i]->prio = p->prio--;
78ecba08
HD
1557 least_priority++;
1558 }
1da177e4
LT
1559 nr_swap_pages -= p->pages;
1560 total_swap_pages -= p->pages;
1561 p->flags &= ~SWP_WRITEOK;
5d337b91 1562 spin_unlock(&swap_lock);
fb4f88dc 1563
35451bee 1564 current->flags |= PF_OOM_ORIGIN;
1da177e4 1565 err = try_to_unuse(type);
35451bee 1566 current->flags &= ~PF_OOM_ORIGIN;
1da177e4 1567
1da177e4
LT
1568 if (err) {
1569 /* re-insert swap space back into swap_list */
5d337b91 1570 spin_lock(&swap_lock);
78ecba08
HD
1571 if (p->prio < 0)
1572 p->prio = --least_priority;
1573 prev = -1;
efa90a98
HD
1574 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1575 if (p->prio >= swap_info[i]->prio)
1da177e4 1576 break;
78ecba08
HD
1577 prev = i;
1578 }
1da177e4
LT
1579 p->next = i;
1580 if (prev < 0)
efa90a98 1581 swap_list.head = swap_list.next = type;
1da177e4 1582 else
efa90a98 1583 swap_info[prev]->next = type;
1da177e4
LT
1584 nr_swap_pages += p->pages;
1585 total_swap_pages += p->pages;
1586 p->flags |= SWP_WRITEOK;
5d337b91 1587 spin_unlock(&swap_lock);
1da177e4
LT
1588 goto out_dput;
1589 }
52b7efdb
HD
1590
1591 /* wait for any unplug function to finish */
1592 down_write(&swap_unplug_sem);
1593 up_write(&swap_unplug_sem);
1594
5d337b91 1595 destroy_swap_extents(p);
fc0abb14 1596 mutex_lock(&swapon_mutex);
5d337b91
HD
1597 spin_lock(&swap_lock);
1598 drain_mmlist();
1599
52b7efdb 1600 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1601 p->highest_bit = 0; /* cuts scans short */
1602 while (p->flags >= SWP_SCANNING) {
5d337b91 1603 spin_unlock(&swap_lock);
13e4b57f 1604 schedule_timeout_uninterruptible(1);
5d337b91 1605 spin_lock(&swap_lock);
52b7efdb 1606 }
52b7efdb 1607
1da177e4
LT
1608 swap_file = p->swap_file;
1609 p->swap_file = NULL;
1610 p->max = 0;
1611 swap_map = p->swap_map;
1612 p->swap_map = NULL;
1613 p->flags = 0;
5d337b91 1614 spin_unlock(&swap_lock);
fc0abb14 1615 mutex_unlock(&swapon_mutex);
1da177e4 1616 vfree(swap_map);
27a7faa0
KH
1617 /* Destroy swap account informatin */
1618 swap_cgroup_swapoff(type);
1619
1da177e4
LT
1620 inode = mapping->host;
1621 if (S_ISBLK(inode->i_mode)) {
1622 struct block_device *bdev = I_BDEV(inode);
1623 set_blocksize(bdev, p->old_block_size);
1624 bd_release(bdev);
1625 } else {
1b1dcc1b 1626 mutex_lock(&inode->i_mutex);
1da177e4 1627 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1628 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1629 }
1630 filp_close(swap_file, NULL);
1631 err = 0;
1632
1633out_dput:
1634 filp_close(victim, NULL);
1635out:
1636 return err;
1637}
1638
1639#ifdef CONFIG_PROC_FS
1640/* iterator */
1641static void *swap_start(struct seq_file *swap, loff_t *pos)
1642{
efa90a98
HD
1643 struct swap_info_struct *si;
1644 int type;
1da177e4
LT
1645 loff_t l = *pos;
1646
fc0abb14 1647 mutex_lock(&swapon_mutex);
1da177e4 1648
881e4aab
SS
1649 if (!l)
1650 return SEQ_START_TOKEN;
1651
efa90a98
HD
1652 for (type = 0; type < nr_swapfiles; type++) {
1653 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1654 si = swap_info[type];
1655 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1656 continue;
881e4aab 1657 if (!--l)
efa90a98 1658 return si;
1da177e4
LT
1659 }
1660
1661 return NULL;
1662}
1663
1664static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1665{
efa90a98
HD
1666 struct swap_info_struct *si = v;
1667 int type;
1da177e4 1668
881e4aab 1669 if (v == SEQ_START_TOKEN)
efa90a98
HD
1670 type = 0;
1671 else
1672 type = si->type + 1;
881e4aab 1673
efa90a98
HD
1674 for (; type < nr_swapfiles; type++) {
1675 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1676 si = swap_info[type];
1677 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
1678 continue;
1679 ++*pos;
efa90a98 1680 return si;
1da177e4
LT
1681 }
1682
1683 return NULL;
1684}
1685
1686static void swap_stop(struct seq_file *swap, void *v)
1687{
fc0abb14 1688 mutex_unlock(&swapon_mutex);
1da177e4
LT
1689}
1690
1691static int swap_show(struct seq_file *swap, void *v)
1692{
efa90a98 1693 struct swap_info_struct *si = v;
1da177e4
LT
1694 struct file *file;
1695 int len;
1696
efa90a98 1697 if (si == SEQ_START_TOKEN) {
881e4aab
SS
1698 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1699 return 0;
1700 }
1da177e4 1701
efa90a98 1702 file = si->swap_file;
c32c2f63 1703 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1704 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9
HD
1705 len < 40 ? 40 - len : 1, " ",
1706 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4 1707 "partition" : "file\t",
efa90a98
HD
1708 si->pages << (PAGE_SHIFT - 10),
1709 si->inuse_pages << (PAGE_SHIFT - 10),
1710 si->prio);
1da177e4
LT
1711 return 0;
1712}
1713
15ad7cdc 1714static const struct seq_operations swaps_op = {
1da177e4
LT
1715 .start = swap_start,
1716 .next = swap_next,
1717 .stop = swap_stop,
1718 .show = swap_show
1719};
1720
1721static int swaps_open(struct inode *inode, struct file *file)
1722{
1723 return seq_open(file, &swaps_op);
1724}
1725
15ad7cdc 1726static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1727 .open = swaps_open,
1728 .read = seq_read,
1729 .llseek = seq_lseek,
1730 .release = seq_release,
1731};
1732
1733static int __init procswaps_init(void)
1734{
3d71f86f 1735 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1736 return 0;
1737}
1738__initcall(procswaps_init);
1739#endif /* CONFIG_PROC_FS */
1740
1796316a
JB
1741#ifdef MAX_SWAPFILES_CHECK
1742static int __init max_swapfiles_check(void)
1743{
1744 MAX_SWAPFILES_CHECK();
1745 return 0;
1746}
1747late_initcall(max_swapfiles_check);
1748#endif
1749
1da177e4
LT
1750/*
1751 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1752 *
1753 * The swapon system call
1754 */
c4ea37c2 1755SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1da177e4 1756{
73c34b6a 1757 struct swap_info_struct *p;
1da177e4
LT
1758 char *name = NULL;
1759 struct block_device *bdev = NULL;
1760 struct file *swap_file = NULL;
1761 struct address_space *mapping;
1762 unsigned int type;
1763 int i, prev;
1764 int error;
1da177e4 1765 union swap_header *swap_header = NULL;
6eb396dc
HD
1766 unsigned int nr_good_pages = 0;
1767 int nr_extents = 0;
53092a74 1768 sector_t span;
1da177e4 1769 unsigned long maxpages = 1;
73fd8748 1770 unsigned long swapfilepages;
8d69aaee 1771 unsigned char *swap_map = NULL;
1da177e4
LT
1772 struct page *page = NULL;
1773 struct inode *inode = NULL;
1774 int did_down = 0;
1775
1776 if (!capable(CAP_SYS_ADMIN))
1777 return -EPERM;
efa90a98
HD
1778
1779 p = kzalloc(sizeof(*p), GFP_KERNEL);
1780 if (!p)
1781 return -ENOMEM;
1782
5d337b91 1783 spin_lock(&swap_lock);
efa90a98
HD
1784 for (type = 0; type < nr_swapfiles; type++) {
1785 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 1786 break;
efa90a98 1787 }
1da177e4 1788 error = -EPERM;
0697212a 1789 if (type >= MAX_SWAPFILES) {
5d337b91 1790 spin_unlock(&swap_lock);
efa90a98 1791 kfree(p);
1da177e4
LT
1792 goto out;
1793 }
efa90a98
HD
1794 if (type >= nr_swapfiles) {
1795 p->type = type;
1796 swap_info[type] = p;
1797 /*
1798 * Write swap_info[type] before nr_swapfiles, in case a
1799 * racing procfs swap_start() or swap_next() is reading them.
1800 * (We never shrink nr_swapfiles, we never free this entry.)
1801 */
1802 smp_wmb();
1803 nr_swapfiles++;
1804 } else {
1805 kfree(p);
1806 p = swap_info[type];
1807 /*
1808 * Do not memset this entry: a racing procfs swap_next()
1809 * would be relying on p->type to remain valid.
1810 */
1811 }
9625a5f2 1812 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 1813 p->flags = SWP_USED;
1da177e4 1814 p->next = -1;
5d337b91 1815 spin_unlock(&swap_lock);
efa90a98 1816
1da177e4
LT
1817 name = getname(specialfile);
1818 error = PTR_ERR(name);
1819 if (IS_ERR(name)) {
1820 name = NULL;
1821 goto bad_swap_2;
1822 }
1823 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1824 error = PTR_ERR(swap_file);
1825 if (IS_ERR(swap_file)) {
1826 swap_file = NULL;
1827 goto bad_swap_2;
1828 }
1829
1830 p->swap_file = swap_file;
1831 mapping = swap_file->f_mapping;
1832 inode = mapping->host;
1833
1834 error = -EBUSY;
1835 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 1836 struct swap_info_struct *q = swap_info[i];
1da177e4
LT
1837
1838 if (i == type || !q->swap_file)
1839 continue;
1840 if (mapping == q->swap_file->f_mapping)
1841 goto bad_swap;
1842 }
1843
1844 error = -EINVAL;
1845 if (S_ISBLK(inode->i_mode)) {
1846 bdev = I_BDEV(inode);
1847 error = bd_claim(bdev, sys_swapon);
1848 if (error < 0) {
1849 bdev = NULL;
f7b3a435 1850 error = -EINVAL;
1da177e4
LT
1851 goto bad_swap;
1852 }
1853 p->old_block_size = block_size(bdev);
1854 error = set_blocksize(bdev, PAGE_SIZE);
1855 if (error < 0)
1856 goto bad_swap;
1857 p->bdev = bdev;
1858 } else if (S_ISREG(inode->i_mode)) {
1859 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1860 mutex_lock(&inode->i_mutex);
1da177e4
LT
1861 did_down = 1;
1862 if (IS_SWAPFILE(inode)) {
1863 error = -EBUSY;
1864 goto bad_swap;
1865 }
1866 } else {
1867 goto bad_swap;
1868 }
1869
73fd8748 1870 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1da177e4
LT
1871
1872 /*
1873 * Read the swap header.
1874 */
1875 if (!mapping->a_ops->readpage) {
1876 error = -EINVAL;
1877 goto bad_swap;
1878 }
090d2b18 1879 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1880 if (IS_ERR(page)) {
1881 error = PTR_ERR(page);
1882 goto bad_swap;
1883 }
81e33971 1884 swap_header = kmap(page);
1da177e4 1885
81e33971 1886 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
e97a3111 1887 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1888 error = -EINVAL;
1889 goto bad_swap;
1890 }
886bb7e9 1891
81e33971
HD
1892 /* swap partition endianess hack... */
1893 if (swab32(swap_header->info.version) == 1) {
1894 swab32s(&swap_header->info.version);
1895 swab32s(&swap_header->info.last_page);
1896 swab32s(&swap_header->info.nr_badpages);
1897 for (i = 0; i < swap_header->info.nr_badpages; i++)
1898 swab32s(&swap_header->info.badpages[i]);
1899 }
1900 /* Check the swap header's sub-version */
1901 if (swap_header->info.version != 1) {
1902 printk(KERN_WARNING
1903 "Unable to handle swap header version %d\n",
1904 swap_header->info.version);
1da177e4
LT
1905 error = -EINVAL;
1906 goto bad_swap;
81e33971 1907 }
1da177e4 1908
81e33971
HD
1909 p->lowest_bit = 1;
1910 p->cluster_next = 1;
efa90a98 1911 p->cluster_nr = 0;
52b7efdb 1912
81e33971
HD
1913 /*
1914 * Find out how many pages are allowed for a single swap
1915 * device. There are two limiting factors: 1) the number of
1916 * bits for the swap offset in the swp_entry_t type and
1917 * 2) the number of bits in the a swap pte as defined by
1918 * the different architectures. In order to find the
1919 * largest possible bit mask a swap entry with swap type 0
1920 * and swap offset ~0UL is created, encoded to a swap pte,
1921 * decoded to a swp_entry_t again and finally the swap
1922 * offset is extracted. This will mask all the bits from
1923 * the initial ~0UL mask that can't be encoded in either
1924 * the swp_entry_t or the architecture definition of a
1925 * swap pte.
1926 */
1927 maxpages = swp_offset(pte_to_swp_entry(
1928 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1929 if (maxpages > swap_header->info.last_page)
1930 maxpages = swap_header->info.last_page;
1931 p->highest_bit = maxpages - 1;
1da177e4 1932
81e33971
HD
1933 error = -EINVAL;
1934 if (!maxpages)
1935 goto bad_swap;
1936 if (swapfilepages && maxpages > swapfilepages) {
1937 printk(KERN_WARNING
1938 "Swap area shorter than signature indicates\n");
1939 goto bad_swap;
1940 }
1941 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1942 goto bad_swap;
1943 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1944 goto bad_swap;
cd105df4 1945
81e33971 1946 /* OK, set up the swap map and apply the bad block list */
8d69aaee 1947 swap_map = vmalloc(maxpages);
81e33971
HD
1948 if (!swap_map) {
1949 error = -ENOMEM;
1950 goto bad_swap;
1951 }
1da177e4 1952
8d69aaee 1953 memset(swap_map, 0, maxpages);
81e33971
HD
1954 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1955 int page_nr = swap_header->info.badpages[i];
1956 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1957 error = -EINVAL;
1da177e4 1958 goto bad_swap;
81e33971
HD
1959 }
1960 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4 1961 }
27a7faa0
KH
1962
1963 error = swap_cgroup_swapon(type, maxpages);
1964 if (error)
1965 goto bad_swap;
1966
81e33971
HD
1967 nr_good_pages = swap_header->info.last_page -
1968 swap_header->info.nr_badpages -
1969 1 /* header page */;
e2244ec2 1970
e2244ec2 1971 if (nr_good_pages) {
78ecba08 1972 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1973 p->max = maxpages;
1974 p->pages = nr_good_pages;
53092a74
HD
1975 nr_extents = setup_swap_extents(p, &span);
1976 if (nr_extents < 0) {
1977 error = nr_extents;
e2244ec2 1978 goto bad_swap;
53092a74 1979 }
e2244ec2
HD
1980 nr_good_pages = p->pages;
1981 }
1da177e4
LT
1982 if (!nr_good_pages) {
1983 printk(KERN_WARNING "Empty swap-file\n");
1984 error = -EINVAL;
1985 goto bad_swap;
1986 }
1da177e4 1987
3bd0f0c7
SJ
1988 if (p->bdev) {
1989 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1990 p->flags |= SWP_SOLIDSTATE;
1991 p->cluster_next = 1 + (random32() % p->highest_bit);
1992 }
1993 if (discard_swap(p) == 0)
1994 p->flags |= SWP_DISCARDABLE;
20137a49 1995 }
6a6ba831 1996
fc0abb14 1997 mutex_lock(&swapon_mutex);
5d337b91 1998 spin_lock(&swap_lock);
78ecba08
HD
1999 if (swap_flags & SWAP_FLAG_PREFER)
2000 p->prio =
2001 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2002 else
2003 p->prio = --least_priority;
2004 p->swap_map = swap_map;
22c6f8fd 2005 p->flags |= SWP_WRITEOK;
1da177e4
LT
2006 nr_swap_pages += nr_good_pages;
2007 total_swap_pages += nr_good_pages;
53092a74 2008
6eb396dc 2009 printk(KERN_INFO "Adding %uk swap on %s. "
20137a49 2010 "Priority:%d extents:%d across:%lluk %s%s\n",
53092a74 2011 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
6a6ba831 2012 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
20137a49
HD
2013 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2014 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1da177e4
LT
2015
2016 /* insert swap space into swap_list: */
2017 prev = -1;
efa90a98
HD
2018 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2019 if (p->prio >= swap_info[i]->prio)
1da177e4 2020 break;
1da177e4
LT
2021 prev = i;
2022 }
2023 p->next = i;
efa90a98
HD
2024 if (prev < 0)
2025 swap_list.head = swap_list.next = type;
2026 else
2027 swap_info[prev]->next = type;
5d337b91 2028 spin_unlock(&swap_lock);
fc0abb14 2029 mutex_unlock(&swapon_mutex);
1da177e4
LT
2030 error = 0;
2031 goto out;
2032bad_swap:
2033 if (bdev) {
2034 set_blocksize(bdev, p->old_block_size);
2035 bd_release(bdev);
2036 }
4cd3bb10 2037 destroy_swap_extents(p);
27a7faa0 2038 swap_cgroup_swapoff(type);
1da177e4 2039bad_swap_2:
5d337b91 2040 spin_lock(&swap_lock);
1da177e4 2041 p->swap_file = NULL;
1da177e4 2042 p->flags = 0;
5d337b91 2043 spin_unlock(&swap_lock);
1da177e4
LT
2044 vfree(swap_map);
2045 if (swap_file)
2046 filp_close(swap_file, NULL);
2047out:
2048 if (page && !IS_ERR(page)) {
2049 kunmap(page);
2050 page_cache_release(page);
2051 }
2052 if (name)
2053 putname(name);
2054 if (did_down) {
2055 if (!error)
2056 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 2057 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2058 }
2059 return error;
2060}
2061
2062void si_swapinfo(struct sysinfo *val)
2063{
efa90a98 2064 unsigned int type;
1da177e4
LT
2065 unsigned long nr_to_be_unused = 0;
2066
5d337b91 2067 spin_lock(&swap_lock);
efa90a98
HD
2068 for (type = 0; type < nr_swapfiles; type++) {
2069 struct swap_info_struct *si = swap_info[type];
2070
2071 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2072 nr_to_be_unused += si->inuse_pages;
1da177e4
LT
2073 }
2074 val->freeswap = nr_swap_pages + nr_to_be_unused;
2075 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2076 spin_unlock(&swap_lock);
1da177e4
LT
2077}
2078
2079/*
2080 * Verify that a swap entry is valid and increment its swap map count.
2081 *
2082 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2083 * "permanent", but will be reclaimed by the next swapoff.
355cfa73
KH
2084 * Returns error code in following case.
2085 * - success -> 0
2086 * - swp_entry is invalid -> EINVAL
2087 * - swp_entry is migration entry -> EINVAL
2088 * - swap-cache reference is requested but there is already one. -> EEXIST
2089 * - swap-cache reference is requested but the entry is not used. -> ENOENT
1da177e4 2090 */
8d69aaee 2091static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2092{
73c34b6a 2093 struct swap_info_struct *p;
1da177e4 2094 unsigned long offset, type;
8d69aaee
HD
2095 unsigned char count;
2096 unsigned char has_cache;
253d553b 2097 int err = -EINVAL;
1da177e4 2098
a7420aa5 2099 if (non_swap_entry(entry))
253d553b 2100 goto out;
0697212a 2101
1da177e4
LT
2102 type = swp_type(entry);
2103 if (type >= nr_swapfiles)
2104 goto bad_file;
efa90a98 2105 p = swap_info[type];
1da177e4
LT
2106 offset = swp_offset(entry);
2107
5d337b91 2108 spin_lock(&swap_lock);
355cfa73
KH
2109 if (unlikely(offset >= p->max))
2110 goto unlock_out;
2111
253d553b
HD
2112 count = p->swap_map[offset];
2113 has_cache = count & SWAP_HAS_CACHE;
2114 count &= ~SWAP_HAS_CACHE;
2115 err = 0;
355cfa73 2116
253d553b 2117 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2118
2119 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2120 if (!has_cache && count)
2121 has_cache = SWAP_HAS_CACHE;
2122 else if (has_cache) /* someone else added cache */
2123 err = -EEXIST;
2124 else /* no users remaining */
2125 err = -ENOENT;
355cfa73
KH
2126
2127 } else if (count || has_cache) {
253d553b
HD
2128
2129 if (count < SWAP_MAP_MAX - 1)
2130 count++;
2131 else if (count <= SWAP_MAP_MAX) {
1da177e4 2132 if (swap_overflow++ < 5)
355cfa73
KH
2133 printk(KERN_WARNING
2134 "swap_dup: swap entry overflow\n");
253d553b
HD
2135 count = SWAP_MAP_MAX;
2136 } else
2137 err = -EINVAL;
355cfa73 2138 } else
253d553b
HD
2139 err = -ENOENT; /* unused swap entry */
2140
2141 p->swap_map[offset] = count | has_cache;
2142
355cfa73 2143unlock_out:
5d337b91 2144 spin_unlock(&swap_lock);
1da177e4 2145out:
253d553b 2146 return err;
1da177e4
LT
2147
2148bad_file:
2149 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2150 goto out;
2151}
253d553b 2152
355cfa73
KH
2153/*
2154 * increase reference count of swap entry by 1.
2155 */
2156void swap_duplicate(swp_entry_t entry)
2157{
253d553b 2158 __swap_duplicate(entry, 1);
355cfa73 2159}
1da177e4 2160
cb4b86ba 2161/*
355cfa73
KH
2162 * @entry: swap entry for which we allocate swap cache.
2163 *
73c34b6a 2164 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2165 * This can return error codes. Returns 0 at success.
2166 * -EBUSY means there is a swap cache.
2167 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2168 */
2169int swapcache_prepare(swp_entry_t entry)
2170{
253d553b 2171 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2172}
2173
1da177e4 2174/*
5d337b91 2175 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
2176 * reference on the swaphandle, it doesn't matter if it becomes unused.
2177 */
2178int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2179{
8952898b 2180 struct swap_info_struct *si;
3f9e7949 2181 int our_page_cluster = page_cluster;
8952898b
HD
2182 pgoff_t target, toff;
2183 pgoff_t base, end;
2184 int nr_pages = 0;
1da177e4 2185
3f9e7949 2186 if (!our_page_cluster) /* no readahead */
1da177e4 2187 return 0;
8952898b 2188
efa90a98 2189 si = swap_info[swp_type(entry)];
8952898b
HD
2190 target = swp_offset(entry);
2191 base = (target >> our_page_cluster) << our_page_cluster;
2192 end = base + (1 << our_page_cluster);
2193 if (!base) /* first page is swap header */
2194 base++;
1da177e4 2195
5d337b91 2196 spin_lock(&swap_lock);
8952898b
HD
2197 if (end > si->max) /* don't go beyond end of map */
2198 end = si->max;
2199
2200 /* Count contiguous allocated slots above our target */
2201 for (toff = target; ++toff < end; nr_pages++) {
2202 /* Don't read in free or bad pages */
2203 if (!si->swap_map[toff])
2204 break;
355cfa73 2205 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2206 break;
8952898b
HD
2207 }
2208 /* Count contiguous allocated slots below our target */
2209 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 2210 /* Don't read in free or bad pages */
8952898b 2211 if (!si->swap_map[toff])
1da177e4 2212 break;
355cfa73 2213 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
1da177e4 2214 break;
8952898b 2215 }
5d337b91 2216 spin_unlock(&swap_lock);
8952898b
HD
2217
2218 /*
2219 * Indicate starting offset, and return number of pages to get:
2220 * if only 1, say 0, since there's then no readahead to be done.
2221 */
2222 *offset = ++toff;
2223 return nr_pages? ++nr_pages: 0;
1da177e4 2224}