mm: reuse_swap_page replaces can_share_swap_page
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
17#include <linux/shm.h>
18#include <linux/blkdev.h>
19#include <linux/writeback.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/rmap.h>
25#include <linux/security.h>
26#include <linux/backing-dev.h>
fc0abb14 27#include <linux/mutex.h>
c59ede7b 28#include <linux/capability.h>
1da177e4 29#include <linux/syscalls.h>
8a9f3ccd 30#include <linux/memcontrol.h>
1da177e4
LT
31
32#include <asm/pgtable.h>
33#include <asm/tlbflush.h>
34#include <linux/swapops.h>
35
7c363b8c
AB
36static DEFINE_SPINLOCK(swap_lock);
37static unsigned int nr_swapfiles;
1da177e4
LT
38long total_swap_pages;
39static int swap_overflow;
78ecba08 40static int least_priority;
1da177e4 41
1da177e4
LT
42static const char Bad_file[] = "Bad swap file entry ";
43static const char Unused_file[] = "Unused swap file entry ";
44static const char Bad_offset[] = "Bad swap offset entry ";
45static const char Unused_offset[] = "Unused swap offset entry ";
46
7c363b8c 47static struct swap_list_t swap_list = {-1, -1};
1da177e4 48
f577eb30 49static struct swap_info_struct swap_info[MAX_SWAPFILES];
1da177e4 50
fc0abb14 51static DEFINE_MUTEX(swapon_mutex);
1da177e4
LT
52
53/*
54 * We need this because the bdev->unplug_fn can sleep and we cannot
5d337b91 55 * hold swap_lock while calling the unplug_fn. And swap_lock
fc0abb14 56 * cannot be turned into a mutex.
1da177e4
LT
57 */
58static DECLARE_RWSEM(swap_unplug_sem);
59
1da177e4
LT
60void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
61{
62 swp_entry_t entry;
63
64 down_read(&swap_unplug_sem);
4c21e2f2 65 entry.val = page_private(page);
1da177e4
LT
66 if (PageSwapCache(page)) {
67 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
68 struct backing_dev_info *bdi;
69
70 /*
71 * If the page is removed from swapcache from under us (with a
72 * racy try_to_unuse/swapoff) we need an additional reference
4c21e2f2
HD
73 * count to avoid reading garbage from page_private(page) above.
74 * If the WARN_ON triggers during a swapoff it maybe the race
1da177e4
LT
75 * condition and it's harmless. However if it triggers without
76 * swapoff it signals a problem.
77 */
78 WARN_ON(page_count(page) <= 1);
79
80 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
ba32311e 81 blk_run_backing_dev(bdi, page);
1da177e4
LT
82 }
83 up_read(&swap_unplug_sem);
84}
85
048c27fd
HD
86#define SWAPFILE_CLUSTER 256
87#define LATENCY_LIMIT 256
88
6eb396dc 89static inline unsigned long scan_swap_map(struct swap_info_struct *si)
1da177e4 90{
7dfad418 91 unsigned long offset, last_in_cluster;
048c27fd 92 int latency_ration = LATENCY_LIMIT;
7dfad418 93
1da177e4 94 /*
7dfad418
HD
95 * We try to cluster swap pages by allocating them sequentially
96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
97 * way, however, we resort to first-free allocation, starting
98 * a new cluster. This prevents us from scattering swap pages
99 * all over the entire swap partition, so that we reduce
100 * overall disk seek times between swap pages. -- sct
101 * But we do now try to find an empty cluster. -Andrea
102 */
103
52b7efdb 104 si->flags += SWP_SCANNING;
7dfad418
HD
105 if (unlikely(!si->cluster_nr)) {
106 si->cluster_nr = SWAPFILE_CLUSTER - 1;
107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
108 goto lowest;
5d337b91 109 spin_unlock(&swap_lock);
7dfad418
HD
110
111 offset = si->lowest_bit;
112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
113
114 /* Locate the first empty (unaligned) cluster */
115 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 116 if (si->swap_map[offset])
7dfad418
HD
117 last_in_cluster = offset + SWAPFILE_CLUSTER;
118 else if (offset == last_in_cluster) {
5d337b91 119 spin_lock(&swap_lock);
9b65ef59 120 si->cluster_next = offset-SWAPFILE_CLUSTER+1;
7dfad418 121 goto cluster;
1da177e4 122 }
048c27fd
HD
123 if (unlikely(--latency_ration < 0)) {
124 cond_resched();
125 latency_ration = LATENCY_LIMIT;
126 }
7dfad418 127 }
5d337b91 128 spin_lock(&swap_lock);
7dfad418 129 goto lowest;
1da177e4 130 }
7dfad418
HD
131
132 si->cluster_nr--;
133cluster:
134 offset = si->cluster_next;
135 if (offset > si->highest_bit)
136lowest: offset = si->lowest_bit;
52b7efdb
HD
137checks: if (!(si->flags & SWP_WRITEOK))
138 goto no_page;
7dfad418
HD
139 if (!si->highest_bit)
140 goto no_page;
141 if (!si->swap_map[offset]) {
52b7efdb 142 if (offset == si->lowest_bit)
1da177e4
LT
143 si->lowest_bit++;
144 if (offset == si->highest_bit)
145 si->highest_bit--;
7dfad418
HD
146 si->inuse_pages++;
147 if (si->inuse_pages == si->pages) {
1da177e4
LT
148 si->lowest_bit = si->max;
149 si->highest_bit = 0;
150 }
151 si->swap_map[offset] = 1;
7dfad418 152 si->cluster_next = offset + 1;
52b7efdb 153 si->flags -= SWP_SCANNING;
1da177e4
LT
154 return offset;
155 }
7dfad418 156
5d337b91 157 spin_unlock(&swap_lock);
7dfad418 158 while (++offset <= si->highest_bit) {
52b7efdb 159 if (!si->swap_map[offset]) {
5d337b91 160 spin_lock(&swap_lock);
52b7efdb
HD
161 goto checks;
162 }
048c27fd
HD
163 if (unlikely(--latency_ration < 0)) {
164 cond_resched();
165 latency_ration = LATENCY_LIMIT;
166 }
7dfad418 167 }
5d337b91 168 spin_lock(&swap_lock);
7dfad418
HD
169 goto lowest;
170
171no_page:
52b7efdb 172 si->flags -= SWP_SCANNING;
1da177e4
LT
173 return 0;
174}
175
176swp_entry_t get_swap_page(void)
177{
fb4f88dc
HD
178 struct swap_info_struct *si;
179 pgoff_t offset;
180 int type, next;
181 int wrapped = 0;
1da177e4 182
5d337b91 183 spin_lock(&swap_lock);
1da177e4 184 if (nr_swap_pages <= 0)
fb4f88dc
HD
185 goto noswap;
186 nr_swap_pages--;
187
188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
189 si = swap_info + type;
190 next = si->next;
191 if (next < 0 ||
192 (!wrapped && si->prio != swap_info[next].prio)) {
193 next = swap_list.head;
194 wrapped++;
1da177e4 195 }
fb4f88dc
HD
196
197 if (!si->highest_bit)
198 continue;
199 if (!(si->flags & SWP_WRITEOK))
200 continue;
201
202 swap_list.next = next;
fb4f88dc 203 offset = scan_swap_map(si);
5d337b91
HD
204 if (offset) {
205 spin_unlock(&swap_lock);
fb4f88dc 206 return swp_entry(type, offset);
5d337b91 207 }
fb4f88dc 208 next = swap_list.next;
1da177e4 209 }
fb4f88dc
HD
210
211 nr_swap_pages++;
212noswap:
5d337b91 213 spin_unlock(&swap_lock);
fb4f88dc 214 return (swp_entry_t) {0};
1da177e4
LT
215}
216
3a291a20
RW
217swp_entry_t get_swap_page_of_type(int type)
218{
219 struct swap_info_struct *si;
220 pgoff_t offset;
221
222 spin_lock(&swap_lock);
223 si = swap_info + type;
224 if (si->flags & SWP_WRITEOK) {
225 nr_swap_pages--;
226 offset = scan_swap_map(si);
227 if (offset) {
228 spin_unlock(&swap_lock);
229 return swp_entry(type, offset);
230 }
231 nr_swap_pages++;
232 }
233 spin_unlock(&swap_lock);
234 return (swp_entry_t) {0};
235}
236
1da177e4
LT
237static struct swap_info_struct * swap_info_get(swp_entry_t entry)
238{
239 struct swap_info_struct * p;
240 unsigned long offset, type;
241
242 if (!entry.val)
243 goto out;
244 type = swp_type(entry);
245 if (type >= nr_swapfiles)
246 goto bad_nofile;
247 p = & swap_info[type];
248 if (!(p->flags & SWP_USED))
249 goto bad_device;
250 offset = swp_offset(entry);
251 if (offset >= p->max)
252 goto bad_offset;
253 if (!p->swap_map[offset])
254 goto bad_free;
5d337b91 255 spin_lock(&swap_lock);
1da177e4
LT
256 return p;
257
258bad_free:
259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
260 goto out;
261bad_offset:
262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
263 goto out;
264bad_device:
265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
266 goto out;
267bad_nofile:
268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
269out:
270 return NULL;
271}
272
1da177e4
LT
273static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
274{
275 int count = p->swap_map[offset];
276
277 if (count < SWAP_MAP_MAX) {
278 count--;
279 p->swap_map[offset] = count;
280 if (!count) {
281 if (offset < p->lowest_bit)
282 p->lowest_bit = offset;
283 if (offset > p->highest_bit)
284 p->highest_bit = offset;
89d09a2c
HD
285 if (p->prio > swap_info[swap_list.next].prio)
286 swap_list.next = p - swap_info;
1da177e4
LT
287 nr_swap_pages++;
288 p->inuse_pages--;
289 }
290 }
291 return count;
292}
293
294/*
295 * Caller has made sure that the swapdevice corresponding to entry
296 * is still around or has not been recycled.
297 */
298void swap_free(swp_entry_t entry)
299{
300 struct swap_info_struct * p;
301
302 p = swap_info_get(entry);
303 if (p) {
304 swap_entry_free(p, swp_offset(entry));
5d337b91 305 spin_unlock(&swap_lock);
1da177e4
LT
306 }
307}
308
309/*
c475a8ab 310 * How many references to page are currently swapped out?
1da177e4 311 */
c475a8ab 312static inline int page_swapcount(struct page *page)
1da177e4 313{
c475a8ab
HD
314 int count = 0;
315 struct swap_info_struct *p;
1da177e4
LT
316 swp_entry_t entry;
317
4c21e2f2 318 entry.val = page_private(page);
1da177e4
LT
319 p = swap_info_get(entry);
320 if (p) {
c475a8ab
HD
321 /* Subtract the 1 for the swap cache itself */
322 count = p->swap_map[swp_offset(entry)] - 1;
5d337b91 323 spin_unlock(&swap_lock);
1da177e4 324 }
c475a8ab 325 return count;
1da177e4
LT
326}
327
328/*
7b1fe597
HD
329 * We can write to an anon page without COW if there are no other references
330 * to it. And as a side-effect, free up its swap: because the old content
331 * on disk will never be read, and seeking back there to write new content
332 * later would only waste time away from clustering.
1da177e4 333 */
7b1fe597 334int reuse_swap_page(struct page *page)
1da177e4 335{
c475a8ab
HD
336 int count;
337
51726b12 338 VM_BUG_ON(!PageLocked(page));
c475a8ab 339 count = page_mapcount(page);
7b1fe597 340 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 341 count += page_swapcount(page);
7b1fe597
HD
342 if (count == 1 && !PageWriteback(page)) {
343 delete_from_swap_cache(page);
344 SetPageDirty(page);
345 }
346 }
c475a8ab 347 return count == 1;
1da177e4
LT
348}
349
350/*
351 * Work out if there are any other processes sharing this
352 * swap cache page. Free it if you can. Return success.
353 */
68a22394 354static int remove_exclusive_swap_page_count(struct page *page, int count)
1da177e4
LT
355{
356 int retval;
357 struct swap_info_struct * p;
358 swp_entry_t entry;
359
51726b12 360 VM_BUG_ON(!PageLocked(page));
1da177e4
LT
361
362 if (!PageSwapCache(page))
363 return 0;
364 if (PageWriteback(page))
365 return 0;
68a22394 366 if (page_count(page) != count) /* us + cache + ptes */
1da177e4
LT
367 return 0;
368
4c21e2f2 369 entry.val = page_private(page);
1da177e4
LT
370 p = swap_info_get(entry);
371 if (!p)
372 return 0;
373
374 /* Is the only swap cache user the cache itself? */
375 retval = 0;
376 if (p->swap_map[swp_offset(entry)] == 1) {
377 /* Recheck the page count with the swapcache lock held.. */
19fd6231 378 spin_lock_irq(&swapper_space.tree_lock);
68a22394 379 if ((page_count(page) == count) && !PageWriteback(page)) {
1da177e4
LT
380 __delete_from_swap_cache(page);
381 SetPageDirty(page);
382 retval = 1;
383 }
19fd6231 384 spin_unlock_irq(&swapper_space.tree_lock);
1da177e4 385 }
5d337b91 386 spin_unlock(&swap_lock);
1da177e4
LT
387
388 if (retval) {
389 swap_free(entry);
390 page_cache_release(page);
391 }
392
393 return retval;
394}
395
68a22394
RR
396/*
397 * Most of the time the page should have two references: one for the
398 * process and one for the swap cache.
399 */
400int remove_exclusive_swap_page(struct page *page)
401{
402 return remove_exclusive_swap_page_count(page, 2);
403}
404
405/*
406 * The pageout code holds an extra reference to the page. That raises
407 * the reference count to test for to 2 for a page that is only in the
408 * swap cache plus 1 for each process that maps the page.
409 */
410int remove_exclusive_swap_page_ref(struct page *page)
411{
412 return remove_exclusive_swap_page_count(page, 2 + page_mapcount(page));
413}
414
1da177e4
LT
415/*
416 * Free the swap entry like above, but also try to
417 * free the page cache entry if it is the last user.
418 */
419void free_swap_and_cache(swp_entry_t entry)
420{
421 struct swap_info_struct * p;
422 struct page *page = NULL;
423
0697212a
CL
424 if (is_migration_entry(entry))
425 return;
426
1da177e4
LT
427 p = swap_info_get(entry);
428 if (p) {
93fac704
NP
429 if (swap_entry_free(p, swp_offset(entry)) == 1) {
430 page = find_get_page(&swapper_space, entry.val);
8413ac9d 431 if (page && !trylock_page(page)) {
93fac704
NP
432 page_cache_release(page);
433 page = NULL;
434 }
435 }
5d337b91 436 spin_unlock(&swap_lock);
1da177e4
LT
437 }
438 if (page) {
439 int one_user;
440
1da177e4
LT
441 one_user = (page_count(page) == 2);
442 /* Only cache user (+us), or swap space full? Free it! */
93fac704
NP
443 /* Also recheck PageSwapCache after page is locked (above) */
444 if (PageSwapCache(page) && !PageWriteback(page) &&
445 (one_user || vm_swap_full())) {
1da177e4
LT
446 delete_from_swap_cache(page);
447 SetPageDirty(page);
448 }
449 unlock_page(page);
450 page_cache_release(page);
451 }
452}
453
b0cb1a19 454#ifdef CONFIG_HIBERNATION
f577eb30 455/*
915bae9e 456 * Find the swap type that corresponds to given device (if any).
f577eb30 457 *
915bae9e
RW
458 * @offset - number of the PAGE_SIZE-sized block of the device, starting
459 * from 0, in which the swap header is expected to be located.
460 *
461 * This is needed for the suspend to disk (aka swsusp).
f577eb30 462 */
7bf23687 463int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 464{
915bae9e 465 struct block_device *bdev = NULL;
f577eb30
RW
466 int i;
467
915bae9e
RW
468 if (device)
469 bdev = bdget(device);
470
f577eb30
RW
471 spin_lock(&swap_lock);
472 for (i = 0; i < nr_swapfiles; i++) {
915bae9e 473 struct swap_info_struct *sis = swap_info + i;
f577eb30 474
915bae9e 475 if (!(sis->flags & SWP_WRITEOK))
f577eb30 476 continue;
b6b5bce3 477
915bae9e 478 if (!bdev) {
7bf23687
RW
479 if (bdev_p)
480 *bdev_p = sis->bdev;
481
6e1819d6
RW
482 spin_unlock(&swap_lock);
483 return i;
484 }
915bae9e
RW
485 if (bdev == sis->bdev) {
486 struct swap_extent *se;
487
488 se = list_entry(sis->extent_list.next,
489 struct swap_extent, list);
490 if (se->start_block == offset) {
7bf23687
RW
491 if (bdev_p)
492 *bdev_p = sis->bdev;
493
915bae9e
RW
494 spin_unlock(&swap_lock);
495 bdput(bdev);
496 return i;
497 }
f577eb30
RW
498 }
499 }
500 spin_unlock(&swap_lock);
915bae9e
RW
501 if (bdev)
502 bdput(bdev);
503
f577eb30
RW
504 return -ENODEV;
505}
506
507/*
508 * Return either the total number of swap pages of given type, or the number
509 * of free pages of that type (depending on @free)
510 *
511 * This is needed for software suspend
512 */
513unsigned int count_swap_pages(int type, int free)
514{
515 unsigned int n = 0;
516
517 if (type < nr_swapfiles) {
518 spin_lock(&swap_lock);
519 if (swap_info[type].flags & SWP_WRITEOK) {
520 n = swap_info[type].pages;
521 if (free)
522 n -= swap_info[type].inuse_pages;
523 }
524 spin_unlock(&swap_lock);
525 }
526 return n;
527}
528#endif
529
1da177e4 530/*
72866f6f
HD
531 * No need to decide whether this PTE shares the swap entry with others,
532 * just let do_wp_page work it out if a write is requested later - to
533 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 534 */
044d66c1 535static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
536 unsigned long addr, swp_entry_t entry, struct page *page)
537{
044d66c1
HD
538 spinlock_t *ptl;
539 pte_t *pte;
540 int ret = 1;
541
e1a1cd59 542 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
044d66c1
HD
543 ret = -ENOMEM;
544
545 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
546 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
547 if (ret > 0)
548 mem_cgroup_uncharge_page(page);
549 ret = 0;
550 goto out;
551 }
8a9f3ccd 552
4294621f 553 inc_mm_counter(vma->vm_mm, anon_rss);
1da177e4
LT
554 get_page(page);
555 set_pte_at(vma->vm_mm, addr, pte,
556 pte_mkold(mk_pte(page, vma->vm_page_prot)));
557 page_add_anon_rmap(page, vma, addr);
558 swap_free(entry);
559 /*
560 * Move the page to the active list so it is not
561 * immediately swapped out again after swapon.
562 */
563 activate_page(page);
044d66c1
HD
564out:
565 pte_unmap_unlock(pte, ptl);
566 return ret;
1da177e4
LT
567}
568
569static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
570 unsigned long addr, unsigned long end,
571 swp_entry_t entry, struct page *page)
572{
1da177e4 573 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 574 pte_t *pte;
8a9f3ccd 575 int ret = 0;
1da177e4 576
044d66c1
HD
577 /*
578 * We don't actually need pte lock while scanning for swp_pte: since
579 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
580 * page table while we're scanning; though it could get zapped, and on
581 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
582 * of unmatched parts which look like swp_pte, so unuse_pte must
583 * recheck under pte lock. Scanning without pte lock lets it be
584 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
585 */
586 pte = pte_offset_map(pmd, addr);
1da177e4
LT
587 do {
588 /*
589 * swapoff spends a _lot_ of time in this loop!
590 * Test inline before going to call unuse_pte.
591 */
592 if (unlikely(pte_same(*pte, swp_pte))) {
044d66c1
HD
593 pte_unmap(pte);
594 ret = unuse_pte(vma, pmd, addr, entry, page);
595 if (ret)
596 goto out;
597 pte = pte_offset_map(pmd, addr);
1da177e4
LT
598 }
599 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
600 pte_unmap(pte - 1);
601out:
8a9f3ccd 602 return ret;
1da177e4
LT
603}
604
605static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
606 unsigned long addr, unsigned long end,
607 swp_entry_t entry, struct page *page)
608{
609 pmd_t *pmd;
610 unsigned long next;
8a9f3ccd 611 int ret;
1da177e4
LT
612
613 pmd = pmd_offset(pud, addr);
614 do {
615 next = pmd_addr_end(addr, end);
616 if (pmd_none_or_clear_bad(pmd))
617 continue;
8a9f3ccd
BS
618 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
619 if (ret)
620 return ret;
1da177e4
LT
621 } while (pmd++, addr = next, addr != end);
622 return 0;
623}
624
625static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
626 unsigned long addr, unsigned long end,
627 swp_entry_t entry, struct page *page)
628{
629 pud_t *pud;
630 unsigned long next;
8a9f3ccd 631 int ret;
1da177e4
LT
632
633 pud = pud_offset(pgd, addr);
634 do {
635 next = pud_addr_end(addr, end);
636 if (pud_none_or_clear_bad(pud))
637 continue;
8a9f3ccd
BS
638 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
639 if (ret)
640 return ret;
1da177e4
LT
641 } while (pud++, addr = next, addr != end);
642 return 0;
643}
644
645static int unuse_vma(struct vm_area_struct *vma,
646 swp_entry_t entry, struct page *page)
647{
648 pgd_t *pgd;
649 unsigned long addr, end, next;
8a9f3ccd 650 int ret;
1da177e4
LT
651
652 if (page->mapping) {
653 addr = page_address_in_vma(page, vma);
654 if (addr == -EFAULT)
655 return 0;
656 else
657 end = addr + PAGE_SIZE;
658 } else {
659 addr = vma->vm_start;
660 end = vma->vm_end;
661 }
662
663 pgd = pgd_offset(vma->vm_mm, addr);
664 do {
665 next = pgd_addr_end(addr, end);
666 if (pgd_none_or_clear_bad(pgd))
667 continue;
8a9f3ccd
BS
668 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
669 if (ret)
670 return ret;
1da177e4
LT
671 } while (pgd++, addr = next, addr != end);
672 return 0;
673}
674
675static int unuse_mm(struct mm_struct *mm,
676 swp_entry_t entry, struct page *page)
677{
678 struct vm_area_struct *vma;
8a9f3ccd 679 int ret = 0;
1da177e4
LT
680
681 if (!down_read_trylock(&mm->mmap_sem)) {
682 /*
7d03431c
FLVC
683 * Activate page so shrink_inactive_list is unlikely to unmap
684 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 685 */
c475a8ab 686 activate_page(page);
1da177e4
LT
687 unlock_page(page);
688 down_read(&mm->mmap_sem);
689 lock_page(page);
690 }
1da177e4 691 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 692 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
693 break;
694 }
1da177e4 695 up_read(&mm->mmap_sem);
8a9f3ccd 696 return (ret < 0)? ret: 0;
1da177e4
LT
697}
698
699/*
700 * Scan swap_map from current position to next entry still in use.
701 * Recycle to start on reaching the end, returning 0 when empty.
702 */
6eb396dc
HD
703static unsigned int find_next_to_unuse(struct swap_info_struct *si,
704 unsigned int prev)
1da177e4 705{
6eb396dc
HD
706 unsigned int max = si->max;
707 unsigned int i = prev;
1da177e4
LT
708 int count;
709
710 /*
5d337b91 711 * No need for swap_lock here: we're just looking
1da177e4
LT
712 * for whether an entry is in use, not modifying it; false
713 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 714 * allocations from this area (while holding swap_lock).
1da177e4
LT
715 */
716 for (;;) {
717 if (++i >= max) {
718 if (!prev) {
719 i = 0;
720 break;
721 }
722 /*
723 * No entries in use at top of swap_map,
724 * loop back to start and recheck there.
725 */
726 max = prev + 1;
727 prev = 0;
728 i = 1;
729 }
730 count = si->swap_map[i];
731 if (count && count != SWAP_MAP_BAD)
732 break;
733 }
734 return i;
735}
736
737/*
738 * We completely avoid races by reading each swap page in advance,
739 * and then search for the process using it. All the necessary
740 * page table adjustments can then be made atomically.
741 */
742static int try_to_unuse(unsigned int type)
743{
744 struct swap_info_struct * si = &swap_info[type];
745 struct mm_struct *start_mm;
746 unsigned short *swap_map;
747 unsigned short swcount;
748 struct page *page;
749 swp_entry_t entry;
6eb396dc 750 unsigned int i = 0;
1da177e4
LT
751 int retval = 0;
752 int reset_overflow = 0;
753 int shmem;
754
755 /*
756 * When searching mms for an entry, a good strategy is to
757 * start at the first mm we freed the previous entry from
758 * (though actually we don't notice whether we or coincidence
759 * freed the entry). Initialize this start_mm with a hold.
760 *
761 * A simpler strategy would be to start at the last mm we
762 * freed the previous entry from; but that would take less
763 * advantage of mmlist ordering, which clusters forked mms
764 * together, child after parent. If we race with dup_mmap(), we
765 * prefer to resolve parent before child, lest we miss entries
766 * duplicated after we scanned child: using last mm would invert
767 * that. Though it's only a serious concern when an overflowed
768 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
769 */
770 start_mm = &init_mm;
771 atomic_inc(&init_mm.mm_users);
772
773 /*
774 * Keep on scanning until all entries have gone. Usually,
775 * one pass through swap_map is enough, but not necessarily:
776 * there are races when an instance of an entry might be missed.
777 */
778 while ((i = find_next_to_unuse(si, i)) != 0) {
779 if (signal_pending(current)) {
780 retval = -EINTR;
781 break;
782 }
783
784 /*
785 * Get a page for the entry, using the existing swap
786 * cache page if there is one. Otherwise, get a clean
787 * page and read the swap into it.
788 */
789 swap_map = &si->swap_map[i];
790 entry = swp_entry(type, i);
02098fea
HD
791 page = read_swap_cache_async(entry,
792 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
793 if (!page) {
794 /*
795 * Either swap_duplicate() failed because entry
796 * has been freed independently, and will not be
797 * reused since sys_swapoff() already disabled
798 * allocation from here, or alloc_page() failed.
799 */
800 if (!*swap_map)
801 continue;
802 retval = -ENOMEM;
803 break;
804 }
805
806 /*
807 * Don't hold on to start_mm if it looks like exiting.
808 */
809 if (atomic_read(&start_mm->mm_users) == 1) {
810 mmput(start_mm);
811 start_mm = &init_mm;
812 atomic_inc(&init_mm.mm_users);
813 }
814
815 /*
816 * Wait for and lock page. When do_swap_page races with
817 * try_to_unuse, do_swap_page can handle the fault much
818 * faster than try_to_unuse can locate the entry. This
819 * apparently redundant "wait_on_page_locked" lets try_to_unuse
820 * defer to do_swap_page in such a case - in some tests,
821 * do_swap_page and try_to_unuse repeatedly compete.
822 */
823 wait_on_page_locked(page);
824 wait_on_page_writeback(page);
825 lock_page(page);
826 wait_on_page_writeback(page);
827
828 /*
829 * Remove all references to entry.
830 * Whenever we reach init_mm, there's no address space
831 * to search, but use it as a reminder to search shmem.
832 */
833 shmem = 0;
834 swcount = *swap_map;
835 if (swcount > 1) {
836 if (start_mm == &init_mm)
837 shmem = shmem_unuse(entry, page);
838 else
839 retval = unuse_mm(start_mm, entry, page);
840 }
841 if (*swap_map > 1) {
842 int set_start_mm = (*swap_map >= swcount);
843 struct list_head *p = &start_mm->mmlist;
844 struct mm_struct *new_start_mm = start_mm;
845 struct mm_struct *prev_mm = start_mm;
846 struct mm_struct *mm;
847
848 atomic_inc(&new_start_mm->mm_users);
849 atomic_inc(&prev_mm->mm_users);
850 spin_lock(&mmlist_lock);
2e0e26c7 851 while (*swap_map > 1 && !retval && !shmem &&
1da177e4
LT
852 (p = p->next) != &start_mm->mmlist) {
853 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 854 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 855 continue;
1da177e4
LT
856 spin_unlock(&mmlist_lock);
857 mmput(prev_mm);
858 prev_mm = mm;
859
860 cond_resched();
861
862 swcount = *swap_map;
863 if (swcount <= 1)
864 ;
865 else if (mm == &init_mm) {
866 set_start_mm = 1;
867 shmem = shmem_unuse(entry, page);
868 } else
869 retval = unuse_mm(mm, entry, page);
870 if (set_start_mm && *swap_map < swcount) {
871 mmput(new_start_mm);
872 atomic_inc(&mm->mm_users);
873 new_start_mm = mm;
874 set_start_mm = 0;
875 }
876 spin_lock(&mmlist_lock);
877 }
878 spin_unlock(&mmlist_lock);
879 mmput(prev_mm);
880 mmput(start_mm);
881 start_mm = new_start_mm;
882 }
2e0e26c7
HD
883 if (shmem) {
884 /* page has already been unlocked and released */
885 if (shmem > 0)
886 continue;
887 retval = shmem;
888 break;
889 }
1da177e4
LT
890 if (retval) {
891 unlock_page(page);
892 page_cache_release(page);
893 break;
894 }
895
896 /*
897 * How could swap count reach 0x7fff when the maximum
898 * pid is 0x7fff, and there's no way to repeat a swap
899 * page within an mm (except in shmem, where it's the
900 * shared object which takes the reference count)?
901 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
902 *
903 * If that's wrong, then we should worry more about
904 * exit_mmap() and do_munmap() cases described above:
905 * we might be resetting SWAP_MAP_MAX too early here.
906 * We know "Undead"s can happen, they're okay, so don't
907 * report them; but do report if we reset SWAP_MAP_MAX.
908 */
909 if (*swap_map == SWAP_MAP_MAX) {
5d337b91 910 spin_lock(&swap_lock);
1da177e4 911 *swap_map = 1;
5d337b91 912 spin_unlock(&swap_lock);
1da177e4
LT
913 reset_overflow = 1;
914 }
915
916 /*
917 * If a reference remains (rare), we would like to leave
918 * the page in the swap cache; but try_to_unmap could
919 * then re-duplicate the entry once we drop page lock,
920 * so we might loop indefinitely; also, that page could
921 * not be swapped out to other storage meanwhile. So:
922 * delete from cache even if there's another reference,
923 * after ensuring that the data has been saved to disk -
924 * since if the reference remains (rarer), it will be
925 * read from disk into another page. Splitting into two
926 * pages would be incorrect if swap supported "shared
927 * private" pages, but they are handled by tmpfs files.
1da177e4
LT
928 */
929 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
930 struct writeback_control wbc = {
931 .sync_mode = WB_SYNC_NONE,
932 };
933
934 swap_writepage(page, &wbc);
935 lock_page(page);
936 wait_on_page_writeback(page);
937 }
2e0e26c7
HD
938 if (PageSwapCache(page))
939 delete_from_swap_cache(page);
1da177e4
LT
940
941 /*
942 * So we could skip searching mms once swap count went
943 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 944 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
945 */
946 SetPageDirty(page);
947 unlock_page(page);
948 page_cache_release(page);
949
950 /*
951 * Make sure that we aren't completely killing
952 * interactive performance.
953 */
954 cond_resched();
955 }
956
957 mmput(start_mm);
958 if (reset_overflow) {
959 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
960 swap_overflow = 0;
961 }
962 return retval;
963}
964
965/*
5d337b91
HD
966 * After a successful try_to_unuse, if no swap is now in use, we know
967 * we can empty the mmlist. swap_lock must be held on entry and exit.
968 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
969 * added to the mmlist just after page_duplicate - before would be racy.
970 */
971static void drain_mmlist(void)
972{
973 struct list_head *p, *next;
974 unsigned int i;
975
976 for (i = 0; i < nr_swapfiles; i++)
977 if (swap_info[i].inuse_pages)
978 return;
979 spin_lock(&mmlist_lock);
980 list_for_each_safe(p, next, &init_mm.mmlist)
981 list_del_init(p);
982 spin_unlock(&mmlist_lock);
983}
984
985/*
986 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
987 * corresponds to page offset `offset'.
988 */
989sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
990{
991 struct swap_extent *se = sis->curr_swap_extent;
992 struct swap_extent *start_se = se;
993
994 for ( ; ; ) {
995 struct list_head *lh;
996
997 if (se->start_page <= offset &&
998 offset < (se->start_page + se->nr_pages)) {
999 return se->start_block + (offset - se->start_page);
1000 }
11d31886 1001 lh = se->list.next;
1da177e4 1002 if (lh == &sis->extent_list)
11d31886 1003 lh = lh->next;
1da177e4
LT
1004 se = list_entry(lh, struct swap_extent, list);
1005 sis->curr_swap_extent = se;
1006 BUG_ON(se == start_se); /* It *must* be present */
1007 }
1008}
1009
b0cb1a19 1010#ifdef CONFIG_HIBERNATION
3aef83e0
RW
1011/*
1012 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1013 * corresponding to given index in swap_info (swap type).
1014 */
1015sector_t swapdev_block(int swap_type, pgoff_t offset)
1016{
1017 struct swap_info_struct *sis;
1018
1019 if (swap_type >= nr_swapfiles)
1020 return 0;
1021
1022 sis = swap_info + swap_type;
1023 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1024}
b0cb1a19 1025#endif /* CONFIG_HIBERNATION */
3aef83e0 1026
1da177e4
LT
1027/*
1028 * Free all of a swapdev's extent information
1029 */
1030static void destroy_swap_extents(struct swap_info_struct *sis)
1031{
1032 while (!list_empty(&sis->extent_list)) {
1033 struct swap_extent *se;
1034
1035 se = list_entry(sis->extent_list.next,
1036 struct swap_extent, list);
1037 list_del(&se->list);
1038 kfree(se);
1039 }
1da177e4
LT
1040}
1041
1042/*
1043 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1044 * extent list. The extent list is kept sorted in page order.
1da177e4 1045 *
11d31886 1046 * This function rather assumes that it is called in ascending page order.
1da177e4
LT
1047 */
1048static int
1049add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1050 unsigned long nr_pages, sector_t start_block)
1051{
1052 struct swap_extent *se;
1053 struct swap_extent *new_se;
1054 struct list_head *lh;
1055
11d31886
HD
1056 lh = sis->extent_list.prev; /* The highest page extent */
1057 if (lh != &sis->extent_list) {
1da177e4 1058 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1059 BUG_ON(se->start_page + se->nr_pages != start_page);
1060 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1061 /* Merge it */
1062 se->nr_pages += nr_pages;
1063 return 0;
1064 }
1da177e4
LT
1065 }
1066
1067 /*
1068 * No merge. Insert a new extent, preserving ordering.
1069 */
1070 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1071 if (new_se == NULL)
1072 return -ENOMEM;
1073 new_se->start_page = start_page;
1074 new_se->nr_pages = nr_pages;
1075 new_se->start_block = start_block;
1076
11d31886 1077 list_add_tail(&new_se->list, &sis->extent_list);
53092a74 1078 return 1;
1da177e4
LT
1079}
1080
1081/*
1082 * A `swap extent' is a simple thing which maps a contiguous range of pages
1083 * onto a contiguous range of disk blocks. An ordered list of swap extents
1084 * is built at swapon time and is then used at swap_writepage/swap_readpage
1085 * time for locating where on disk a page belongs.
1086 *
1087 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1088 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1089 * swap files identically.
1090 *
1091 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1092 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1093 * swapfiles are handled *identically* after swapon time.
1094 *
1095 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1096 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1097 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1098 * requirements, they are simply tossed out - we will never use those blocks
1099 * for swapping.
1100 *
b0d9bcd4 1101 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1102 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1103 * which will scribble on the fs.
1104 *
1105 * The amount of disk space which a single swap extent represents varies.
1106 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1107 * extents in the list. To avoid much list walking, we cache the previous
1108 * search location in `curr_swap_extent', and start new searches from there.
1109 * This is extremely effective. The average number of iterations in
1110 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1111 */
53092a74 1112static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4
LT
1113{
1114 struct inode *inode;
1115 unsigned blocks_per_page;
1116 unsigned long page_no;
1117 unsigned blkbits;
1118 sector_t probe_block;
1119 sector_t last_block;
53092a74
HD
1120 sector_t lowest_block = -1;
1121 sector_t highest_block = 0;
1122 int nr_extents = 0;
1da177e4
LT
1123 int ret;
1124
1125 inode = sis->swap_file->f_mapping->host;
1126 if (S_ISBLK(inode->i_mode)) {
1127 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1128 *span = sis->pages;
1da177e4
LT
1129 goto done;
1130 }
1131
1132 blkbits = inode->i_blkbits;
1133 blocks_per_page = PAGE_SIZE >> blkbits;
1134
1135 /*
1136 * Map all the blocks into the extent list. This code doesn't try
1137 * to be very smart.
1138 */
1139 probe_block = 0;
1140 page_no = 0;
1141 last_block = i_size_read(inode) >> blkbits;
1142 while ((probe_block + blocks_per_page) <= last_block &&
1143 page_no < sis->max) {
1144 unsigned block_in_page;
1145 sector_t first_block;
1146
1147 first_block = bmap(inode, probe_block);
1148 if (first_block == 0)
1149 goto bad_bmap;
1150
1151 /*
1152 * It must be PAGE_SIZE aligned on-disk
1153 */
1154 if (first_block & (blocks_per_page - 1)) {
1155 probe_block++;
1156 goto reprobe;
1157 }
1158
1159 for (block_in_page = 1; block_in_page < blocks_per_page;
1160 block_in_page++) {
1161 sector_t block;
1162
1163 block = bmap(inode, probe_block + block_in_page);
1164 if (block == 0)
1165 goto bad_bmap;
1166 if (block != first_block + block_in_page) {
1167 /* Discontiguity */
1168 probe_block++;
1169 goto reprobe;
1170 }
1171 }
1172
53092a74
HD
1173 first_block >>= (PAGE_SHIFT - blkbits);
1174 if (page_no) { /* exclude the header page */
1175 if (first_block < lowest_block)
1176 lowest_block = first_block;
1177 if (first_block > highest_block)
1178 highest_block = first_block;
1179 }
1180
1da177e4
LT
1181 /*
1182 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1183 */
53092a74
HD
1184 ret = add_swap_extent(sis, page_no, 1, first_block);
1185 if (ret < 0)
1da177e4 1186 goto out;
53092a74 1187 nr_extents += ret;
1da177e4
LT
1188 page_no++;
1189 probe_block += blocks_per_page;
1190reprobe:
1191 continue;
1192 }
53092a74
HD
1193 ret = nr_extents;
1194 *span = 1 + highest_block - lowest_block;
1da177e4 1195 if (page_no == 0)
e2244ec2 1196 page_no = 1; /* force Empty message */
1da177e4 1197 sis->max = page_no;
e2244ec2 1198 sis->pages = page_no - 1;
1da177e4
LT
1199 sis->highest_bit = page_no - 1;
1200done:
1201 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1202 struct swap_extent, list);
1203 goto out;
1204bad_bmap:
1205 printk(KERN_ERR "swapon: swapfile has holes\n");
1206 ret = -EINVAL;
1207out:
1208 return ret;
1209}
1210
1211#if 0 /* We don't need this yet */
1212#include <linux/backing-dev.h>
1213int page_queue_congested(struct page *page)
1214{
1215 struct backing_dev_info *bdi;
1216
51726b12 1217 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1da177e4
LT
1218
1219 if (PageSwapCache(page)) {
4c21e2f2 1220 swp_entry_t entry = { .val = page_private(page) };
1da177e4
LT
1221 struct swap_info_struct *sis;
1222
1223 sis = get_swap_info_struct(swp_type(entry));
1224 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1225 } else
1226 bdi = page->mapping->backing_dev_info;
1227 return bdi_write_congested(bdi);
1228}
1229#endif
1230
1231asmlinkage long sys_swapoff(const char __user * specialfile)
1232{
1233 struct swap_info_struct * p = NULL;
1234 unsigned short *swap_map;
1235 struct file *swap_file, *victim;
1236 struct address_space *mapping;
1237 struct inode *inode;
1238 char * pathname;
1239 int i, type, prev;
1240 int err;
1241
1242 if (!capable(CAP_SYS_ADMIN))
1243 return -EPERM;
1244
1245 pathname = getname(specialfile);
1246 err = PTR_ERR(pathname);
1247 if (IS_ERR(pathname))
1248 goto out;
1249
1250 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1251 putname(pathname);
1252 err = PTR_ERR(victim);
1253 if (IS_ERR(victim))
1254 goto out;
1255
1256 mapping = victim->f_mapping;
1257 prev = -1;
5d337b91 1258 spin_lock(&swap_lock);
1da177e4
LT
1259 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1260 p = swap_info + type;
1261 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1262 if (p->swap_file->f_mapping == mapping)
1263 break;
1264 }
1265 prev = type;
1266 }
1267 if (type < 0) {
1268 err = -EINVAL;
5d337b91 1269 spin_unlock(&swap_lock);
1da177e4
LT
1270 goto out_dput;
1271 }
1272 if (!security_vm_enough_memory(p->pages))
1273 vm_unacct_memory(p->pages);
1274 else {
1275 err = -ENOMEM;
5d337b91 1276 spin_unlock(&swap_lock);
1da177e4
LT
1277 goto out_dput;
1278 }
1279 if (prev < 0) {
1280 swap_list.head = p->next;
1281 } else {
1282 swap_info[prev].next = p->next;
1283 }
1284 if (type == swap_list.next) {
1285 /* just pick something that's safe... */
1286 swap_list.next = swap_list.head;
1287 }
78ecba08
HD
1288 if (p->prio < 0) {
1289 for (i = p->next; i >= 0; i = swap_info[i].next)
1290 swap_info[i].prio = p->prio--;
1291 least_priority++;
1292 }
1da177e4
LT
1293 nr_swap_pages -= p->pages;
1294 total_swap_pages -= p->pages;
1295 p->flags &= ~SWP_WRITEOK;
5d337b91 1296 spin_unlock(&swap_lock);
fb4f88dc 1297
1da177e4
LT
1298 current->flags |= PF_SWAPOFF;
1299 err = try_to_unuse(type);
1300 current->flags &= ~PF_SWAPOFF;
1301
1da177e4
LT
1302 if (err) {
1303 /* re-insert swap space back into swap_list */
5d337b91 1304 spin_lock(&swap_lock);
78ecba08
HD
1305 if (p->prio < 0)
1306 p->prio = --least_priority;
1307 prev = -1;
1308 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1da177e4
LT
1309 if (p->prio >= swap_info[i].prio)
1310 break;
78ecba08
HD
1311 prev = i;
1312 }
1da177e4
LT
1313 p->next = i;
1314 if (prev < 0)
1315 swap_list.head = swap_list.next = p - swap_info;
1316 else
1317 swap_info[prev].next = p - swap_info;
1318 nr_swap_pages += p->pages;
1319 total_swap_pages += p->pages;
1320 p->flags |= SWP_WRITEOK;
5d337b91 1321 spin_unlock(&swap_lock);
1da177e4
LT
1322 goto out_dput;
1323 }
52b7efdb
HD
1324
1325 /* wait for any unplug function to finish */
1326 down_write(&swap_unplug_sem);
1327 up_write(&swap_unplug_sem);
1328
5d337b91 1329 destroy_swap_extents(p);
fc0abb14 1330 mutex_lock(&swapon_mutex);
5d337b91
HD
1331 spin_lock(&swap_lock);
1332 drain_mmlist();
1333
52b7efdb 1334 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1335 p->highest_bit = 0; /* cuts scans short */
1336 while (p->flags >= SWP_SCANNING) {
5d337b91 1337 spin_unlock(&swap_lock);
13e4b57f 1338 schedule_timeout_uninterruptible(1);
5d337b91 1339 spin_lock(&swap_lock);
52b7efdb 1340 }
52b7efdb 1341
1da177e4
LT
1342 swap_file = p->swap_file;
1343 p->swap_file = NULL;
1344 p->max = 0;
1345 swap_map = p->swap_map;
1346 p->swap_map = NULL;
1347 p->flags = 0;
5d337b91 1348 spin_unlock(&swap_lock);
fc0abb14 1349 mutex_unlock(&swapon_mutex);
1da177e4
LT
1350 vfree(swap_map);
1351 inode = mapping->host;
1352 if (S_ISBLK(inode->i_mode)) {
1353 struct block_device *bdev = I_BDEV(inode);
1354 set_blocksize(bdev, p->old_block_size);
1355 bd_release(bdev);
1356 } else {
1b1dcc1b 1357 mutex_lock(&inode->i_mutex);
1da177e4 1358 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1359 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1360 }
1361 filp_close(swap_file, NULL);
1362 err = 0;
1363
1364out_dput:
1365 filp_close(victim, NULL);
1366out:
1367 return err;
1368}
1369
1370#ifdef CONFIG_PROC_FS
1371/* iterator */
1372static void *swap_start(struct seq_file *swap, loff_t *pos)
1373{
1374 struct swap_info_struct *ptr = swap_info;
1375 int i;
1376 loff_t l = *pos;
1377
fc0abb14 1378 mutex_lock(&swapon_mutex);
1da177e4 1379
881e4aab
SS
1380 if (!l)
1381 return SEQ_START_TOKEN;
1382
1da177e4
LT
1383 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1384 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1385 continue;
881e4aab 1386 if (!--l)
1da177e4
LT
1387 return ptr;
1388 }
1389
1390 return NULL;
1391}
1392
1393static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1394{
881e4aab 1395 struct swap_info_struct *ptr;
1da177e4
LT
1396 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1397
881e4aab
SS
1398 if (v == SEQ_START_TOKEN)
1399 ptr = swap_info;
1400 else {
1401 ptr = v;
1402 ptr++;
1403 }
1404
1405 for (; ptr < endptr; ptr++) {
1da177e4
LT
1406 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1407 continue;
1408 ++*pos;
1409 return ptr;
1410 }
1411
1412 return NULL;
1413}
1414
1415static void swap_stop(struct seq_file *swap, void *v)
1416{
fc0abb14 1417 mutex_unlock(&swapon_mutex);
1da177e4
LT
1418}
1419
1420static int swap_show(struct seq_file *swap, void *v)
1421{
1422 struct swap_info_struct *ptr = v;
1423 struct file *file;
1424 int len;
1425
881e4aab
SS
1426 if (ptr == SEQ_START_TOKEN) {
1427 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1428 return 0;
1429 }
1da177e4
LT
1430
1431 file = ptr->swap_file;
c32c2f63 1432 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 1433 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1da177e4 1434 len < 40 ? 40 - len : 1, " ",
d3ac7f89 1435 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1da177e4
LT
1436 "partition" : "file\t",
1437 ptr->pages << (PAGE_SHIFT - 10),
1438 ptr->inuse_pages << (PAGE_SHIFT - 10),
1439 ptr->prio);
1440 return 0;
1441}
1442
15ad7cdc 1443static const struct seq_operations swaps_op = {
1da177e4
LT
1444 .start = swap_start,
1445 .next = swap_next,
1446 .stop = swap_stop,
1447 .show = swap_show
1448};
1449
1450static int swaps_open(struct inode *inode, struct file *file)
1451{
1452 return seq_open(file, &swaps_op);
1453}
1454
15ad7cdc 1455static const struct file_operations proc_swaps_operations = {
1da177e4
LT
1456 .open = swaps_open,
1457 .read = seq_read,
1458 .llseek = seq_lseek,
1459 .release = seq_release,
1460};
1461
1462static int __init procswaps_init(void)
1463{
3d71f86f 1464 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
1465 return 0;
1466}
1467__initcall(procswaps_init);
1468#endif /* CONFIG_PROC_FS */
1469
1796316a
JB
1470#ifdef MAX_SWAPFILES_CHECK
1471static int __init max_swapfiles_check(void)
1472{
1473 MAX_SWAPFILES_CHECK();
1474 return 0;
1475}
1476late_initcall(max_swapfiles_check);
1477#endif
1478
1da177e4
LT
1479/*
1480 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1481 *
1482 * The swapon system call
1483 */
1484asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1485{
1486 struct swap_info_struct * p;
1487 char *name = NULL;
1488 struct block_device *bdev = NULL;
1489 struct file *swap_file = NULL;
1490 struct address_space *mapping;
1491 unsigned int type;
1492 int i, prev;
1493 int error;
1da177e4
LT
1494 union swap_header *swap_header = NULL;
1495 int swap_header_version;
6eb396dc
HD
1496 unsigned int nr_good_pages = 0;
1497 int nr_extents = 0;
53092a74 1498 sector_t span;
1da177e4
LT
1499 unsigned long maxpages = 1;
1500 int swapfilesize;
78ecba08 1501 unsigned short *swap_map = NULL;
1da177e4
LT
1502 struct page *page = NULL;
1503 struct inode *inode = NULL;
1504 int did_down = 0;
1505
1506 if (!capable(CAP_SYS_ADMIN))
1507 return -EPERM;
5d337b91 1508 spin_lock(&swap_lock);
1da177e4
LT
1509 p = swap_info;
1510 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1511 if (!(p->flags & SWP_USED))
1512 break;
1513 error = -EPERM;
0697212a 1514 if (type >= MAX_SWAPFILES) {
5d337b91 1515 spin_unlock(&swap_lock);
1da177e4
LT
1516 goto out;
1517 }
1518 if (type >= nr_swapfiles)
1519 nr_swapfiles = type+1;
78ecba08 1520 memset(p, 0, sizeof(*p));
1da177e4
LT
1521 INIT_LIST_HEAD(&p->extent_list);
1522 p->flags = SWP_USED;
1da177e4 1523 p->next = -1;
5d337b91 1524 spin_unlock(&swap_lock);
1da177e4
LT
1525 name = getname(specialfile);
1526 error = PTR_ERR(name);
1527 if (IS_ERR(name)) {
1528 name = NULL;
1529 goto bad_swap_2;
1530 }
1531 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1532 error = PTR_ERR(swap_file);
1533 if (IS_ERR(swap_file)) {
1534 swap_file = NULL;
1535 goto bad_swap_2;
1536 }
1537
1538 p->swap_file = swap_file;
1539 mapping = swap_file->f_mapping;
1540 inode = mapping->host;
1541
1542 error = -EBUSY;
1543 for (i = 0; i < nr_swapfiles; i++) {
1544 struct swap_info_struct *q = &swap_info[i];
1545
1546 if (i == type || !q->swap_file)
1547 continue;
1548 if (mapping == q->swap_file->f_mapping)
1549 goto bad_swap;
1550 }
1551
1552 error = -EINVAL;
1553 if (S_ISBLK(inode->i_mode)) {
1554 bdev = I_BDEV(inode);
1555 error = bd_claim(bdev, sys_swapon);
1556 if (error < 0) {
1557 bdev = NULL;
f7b3a435 1558 error = -EINVAL;
1da177e4
LT
1559 goto bad_swap;
1560 }
1561 p->old_block_size = block_size(bdev);
1562 error = set_blocksize(bdev, PAGE_SIZE);
1563 if (error < 0)
1564 goto bad_swap;
1565 p->bdev = bdev;
1566 } else if (S_ISREG(inode->i_mode)) {
1567 p->bdev = inode->i_sb->s_bdev;
1b1dcc1b 1568 mutex_lock(&inode->i_mutex);
1da177e4
LT
1569 did_down = 1;
1570 if (IS_SWAPFILE(inode)) {
1571 error = -EBUSY;
1572 goto bad_swap;
1573 }
1574 } else {
1575 goto bad_swap;
1576 }
1577
1578 swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1579
1580 /*
1581 * Read the swap header.
1582 */
1583 if (!mapping->a_ops->readpage) {
1584 error = -EINVAL;
1585 goto bad_swap;
1586 }
090d2b18 1587 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
1588 if (IS_ERR(page)) {
1589 error = PTR_ERR(page);
1590 goto bad_swap;
1591 }
1da177e4
LT
1592 kmap(page);
1593 swap_header = page_address(page);
1594
1595 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1596 swap_header_version = 1;
1597 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1598 swap_header_version = 2;
1599 else {
e97a3111 1600 printk(KERN_ERR "Unable to find swap-space signature\n");
1da177e4
LT
1601 error = -EINVAL;
1602 goto bad_swap;
1603 }
1604
1605 switch (swap_header_version) {
1606 case 1:
1607 printk(KERN_ERR "version 0 swap is no longer supported. "
1608 "Use mkswap -v1 %s\n", name);
1609 error = -EINVAL;
1610 goto bad_swap;
1611 case 2:
797df574
CD
1612 /* swap partition endianess hack... */
1613 if (swab32(swap_header->info.version) == 1) {
1614 swab32s(&swap_header->info.version);
1615 swab32s(&swap_header->info.last_page);
1616 swab32s(&swap_header->info.nr_badpages);
1617 for (i = 0; i < swap_header->info.nr_badpages; i++)
1618 swab32s(&swap_header->info.badpages[i]);
1619 }
1da177e4
LT
1620 /* Check the swap header's sub-version and the size of
1621 the swap file and bad block lists */
1622 if (swap_header->info.version != 1) {
1623 printk(KERN_WARNING
1624 "Unable to handle swap header version %d\n",
1625 swap_header->info.version);
1626 error = -EINVAL;
1627 goto bad_swap;
1628 }
1629
1630 p->lowest_bit = 1;
52b7efdb
HD
1631 p->cluster_next = 1;
1632
1da177e4
LT
1633 /*
1634 * Find out how many pages are allowed for a single swap
1635 * device. There are two limiting factors: 1) the number of
1636 * bits for the swap offset in the swp_entry_t type and
1637 * 2) the number of bits in the a swap pte as defined by
1638 * the different architectures. In order to find the
1639 * largest possible bit mask a swap entry with swap type 0
1640 * and swap offset ~0UL is created, encoded to a swap pte,
1641 * decoded to a swp_entry_t again and finally the swap
1642 * offset is extracted. This will mask all the bits from
1643 * the initial ~0UL mask that can't be encoded in either
1644 * the swp_entry_t or the architecture definition of a
1645 * swap pte.
1646 */
1647 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1648 if (maxpages > swap_header->info.last_page)
1649 maxpages = swap_header->info.last_page;
1650 p->highest_bit = maxpages - 1;
1651
1652 error = -EINVAL;
e2244ec2
HD
1653 if (!maxpages)
1654 goto bad_swap;
5d1854e1
ES
1655 if (swapfilesize && maxpages > swapfilesize) {
1656 printk(KERN_WARNING
1657 "Swap area shorter than signature indicates\n");
1658 goto bad_swap;
1659 }
e2244ec2
HD
1660 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1661 goto bad_swap;
1da177e4
LT
1662 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1663 goto bad_swap;
cd105df4 1664
1da177e4 1665 /* OK, set up the swap map and apply the bad block list */
78ecba08
HD
1666 swap_map = vmalloc(maxpages * sizeof(short));
1667 if (!swap_map) {
1da177e4
LT
1668 error = -ENOMEM;
1669 goto bad_swap;
1670 }
1671
1672 error = 0;
78ecba08 1673 memset(swap_map, 0, maxpages * sizeof(short));
cd105df4
TK
1674 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1675 int page_nr = swap_header->info.badpages[i];
1676 if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1da177e4
LT
1677 error = -EINVAL;
1678 else
78ecba08 1679 swap_map[page_nr] = SWAP_MAP_BAD;
1da177e4
LT
1680 }
1681 nr_good_pages = swap_header->info.last_page -
1682 swap_header->info.nr_badpages -
1683 1 /* header page */;
cd105df4 1684 if (error)
1da177e4
LT
1685 goto bad_swap;
1686 }
e2244ec2 1687
e2244ec2 1688 if (nr_good_pages) {
78ecba08 1689 swap_map[0] = SWAP_MAP_BAD;
e2244ec2
HD
1690 p->max = maxpages;
1691 p->pages = nr_good_pages;
53092a74
HD
1692 nr_extents = setup_swap_extents(p, &span);
1693 if (nr_extents < 0) {
1694 error = nr_extents;
e2244ec2 1695 goto bad_swap;
53092a74 1696 }
e2244ec2
HD
1697 nr_good_pages = p->pages;
1698 }
1da177e4
LT
1699 if (!nr_good_pages) {
1700 printk(KERN_WARNING "Empty swap-file\n");
1701 error = -EINVAL;
1702 goto bad_swap;
1703 }
1da177e4 1704
fc0abb14 1705 mutex_lock(&swapon_mutex);
5d337b91 1706 spin_lock(&swap_lock);
78ecba08
HD
1707 if (swap_flags & SWAP_FLAG_PREFER)
1708 p->prio =
1709 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1710 else
1711 p->prio = --least_priority;
1712 p->swap_map = swap_map;
1da177e4
LT
1713 p->flags = SWP_ACTIVE;
1714 nr_swap_pages += nr_good_pages;
1715 total_swap_pages += nr_good_pages;
53092a74 1716
6eb396dc 1717 printk(KERN_INFO "Adding %uk swap on %s. "
53092a74
HD
1718 "Priority:%d extents:%d across:%lluk\n",
1719 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1720 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1da177e4
LT
1721
1722 /* insert swap space into swap_list: */
1723 prev = -1;
1724 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1725 if (p->prio >= swap_info[i].prio) {
1726 break;
1727 }
1728 prev = i;
1729 }
1730 p->next = i;
1731 if (prev < 0) {
1732 swap_list.head = swap_list.next = p - swap_info;
1733 } else {
1734 swap_info[prev].next = p - swap_info;
1735 }
5d337b91 1736 spin_unlock(&swap_lock);
fc0abb14 1737 mutex_unlock(&swapon_mutex);
1da177e4
LT
1738 error = 0;
1739 goto out;
1740bad_swap:
1741 if (bdev) {
1742 set_blocksize(bdev, p->old_block_size);
1743 bd_release(bdev);
1744 }
4cd3bb10 1745 destroy_swap_extents(p);
1da177e4 1746bad_swap_2:
5d337b91 1747 spin_lock(&swap_lock);
1da177e4 1748 p->swap_file = NULL;
1da177e4 1749 p->flags = 0;
5d337b91 1750 spin_unlock(&swap_lock);
1da177e4
LT
1751 vfree(swap_map);
1752 if (swap_file)
1753 filp_close(swap_file, NULL);
1754out:
1755 if (page && !IS_ERR(page)) {
1756 kunmap(page);
1757 page_cache_release(page);
1758 }
1759 if (name)
1760 putname(name);
1761 if (did_down) {
1762 if (!error)
1763 inode->i_flags |= S_SWAPFILE;
1b1dcc1b 1764 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1765 }
1766 return error;
1767}
1768
1769void si_swapinfo(struct sysinfo *val)
1770{
1771 unsigned int i;
1772 unsigned long nr_to_be_unused = 0;
1773
5d337b91 1774 spin_lock(&swap_lock);
1da177e4
LT
1775 for (i = 0; i < nr_swapfiles; i++) {
1776 if (!(swap_info[i].flags & SWP_USED) ||
1777 (swap_info[i].flags & SWP_WRITEOK))
1778 continue;
1779 nr_to_be_unused += swap_info[i].inuse_pages;
1780 }
1781 val->freeswap = nr_swap_pages + nr_to_be_unused;
1782 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 1783 spin_unlock(&swap_lock);
1da177e4
LT
1784}
1785
1786/*
1787 * Verify that a swap entry is valid and increment its swap map count.
1788 *
1789 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1790 * "permanent", but will be reclaimed by the next swapoff.
1791 */
1792int swap_duplicate(swp_entry_t entry)
1793{
1794 struct swap_info_struct * p;
1795 unsigned long offset, type;
1796 int result = 0;
1797
0697212a
CL
1798 if (is_migration_entry(entry))
1799 return 1;
1800
1da177e4
LT
1801 type = swp_type(entry);
1802 if (type >= nr_swapfiles)
1803 goto bad_file;
1804 p = type + swap_info;
1805 offset = swp_offset(entry);
1806
5d337b91 1807 spin_lock(&swap_lock);
1da177e4
LT
1808 if (offset < p->max && p->swap_map[offset]) {
1809 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1810 p->swap_map[offset]++;
1811 result = 1;
1812 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1813 if (swap_overflow++ < 5)
1814 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1815 p->swap_map[offset] = SWAP_MAP_MAX;
1816 result = 1;
1817 }
1818 }
5d337b91 1819 spin_unlock(&swap_lock);
1da177e4
LT
1820out:
1821 return result;
1822
1823bad_file:
1824 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1825 goto out;
1826}
1827
1828struct swap_info_struct *
1829get_swap_info_struct(unsigned type)
1830{
1831 return &swap_info[type];
1832}
1833
1834/*
5d337b91 1835 * swap_lock prevents swap_map being freed. Don't grab an extra
1da177e4
LT
1836 * reference on the swaphandle, it doesn't matter if it becomes unused.
1837 */
1838int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1839{
8952898b 1840 struct swap_info_struct *si;
3f9e7949 1841 int our_page_cluster = page_cluster;
8952898b
HD
1842 pgoff_t target, toff;
1843 pgoff_t base, end;
1844 int nr_pages = 0;
1da177e4 1845
3f9e7949 1846 if (!our_page_cluster) /* no readahead */
1da177e4 1847 return 0;
8952898b
HD
1848
1849 si = &swap_info[swp_type(entry)];
1850 target = swp_offset(entry);
1851 base = (target >> our_page_cluster) << our_page_cluster;
1852 end = base + (1 << our_page_cluster);
1853 if (!base) /* first page is swap header */
1854 base++;
1da177e4 1855
5d337b91 1856 spin_lock(&swap_lock);
8952898b
HD
1857 if (end > si->max) /* don't go beyond end of map */
1858 end = si->max;
1859
1860 /* Count contiguous allocated slots above our target */
1861 for (toff = target; ++toff < end; nr_pages++) {
1862 /* Don't read in free or bad pages */
1863 if (!si->swap_map[toff])
1864 break;
1865 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1866 break;
8952898b
HD
1867 }
1868 /* Count contiguous allocated slots below our target */
1869 for (toff = target; --toff >= base; nr_pages++) {
1da177e4 1870 /* Don't read in free or bad pages */
8952898b 1871 if (!si->swap_map[toff])
1da177e4 1872 break;
8952898b 1873 if (si->swap_map[toff] == SWAP_MAP_BAD)
1da177e4 1874 break;
8952898b 1875 }
5d337b91 1876 spin_unlock(&swap_lock);
8952898b
HD
1877
1878 /*
1879 * Indicate starting offset, and return number of pages to get:
1880 * if only 1, say 0, since there's then no readahead to be done.
1881 */
1882 *offset = ++toff;
1883 return nr_pages? ++nr_pages: 0;
1da177e4 1884}