mm: add new mmget() helper
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
67afa38e 37#include <linux/swap_slots.h>
1da177e4
LT
38
39#include <asm/pgtable.h>
40#include <asm/tlbflush.h>
41#include <linux/swapops.h>
5d1ea48b 42#include <linux/swap_cgroup.h>
1da177e4 43
570a335b
HD
44static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 unsigned char);
46static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 47static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 48
38b5faf4 49DEFINE_SPINLOCK(swap_lock);
7c363b8c 50static unsigned int nr_swapfiles;
ec8acf20 51atomic_long_t nr_swap_pages;
fb0fec50
CW
52/*
53 * Some modules use swappable objects and may try to swap them out under
54 * memory pressure (via the shrinker). Before doing so, they may wish to
55 * check to see if any swap space is available.
56 */
57EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 58/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 59long total_swap_pages;
78ecba08 60static int least_priority;
1da177e4 61
1da177e4
LT
62static const char Bad_file[] = "Bad swap file entry ";
63static const char Unused_file[] = "Unused swap file entry ";
64static const char Bad_offset[] = "Bad swap offset entry ";
65static const char Unused_offset[] = "Unused swap offset entry ";
66
adfab836
DS
67/*
68 * all active swap_info_structs
69 * protected with swap_lock, and ordered by priority.
70 */
18ab4d4c
DS
71PLIST_HEAD(swap_active_head);
72
73/*
74 * all available (active, not full) swap_info_structs
75 * protected with swap_avail_lock, ordered by priority.
76 * This is used by get_swap_page() instead of swap_active_head
77 * because swap_active_head includes all swap_info_structs,
78 * but get_swap_page() doesn't need to look at full ones.
79 * This uses its own lock instead of swap_lock because when a
80 * swap_info_struct changes between not-full/full, it needs to
81 * add/remove itself to/from this list, but the swap_info_struct->lock
82 * is held and the locking order requires swap_lock to be taken
83 * before any swap_info_struct->lock.
84 */
85static PLIST_HEAD(swap_avail_head);
86static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 87
38b5faf4 88struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 89
fc0abb14 90static DEFINE_MUTEX(swapon_mutex);
1da177e4 91
66d7dd51
KS
92static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
93/* Activity counter to indicate that a swapon or swapoff has occurred */
94static atomic_t proc_poll_event = ATOMIC_INIT(0);
95
8d69aaee 96static inline unsigned char swap_count(unsigned char ent)
355cfa73 97{
570a335b 98 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
99}
100
efa90a98 101/* returns 1 if swap entry is freed */
c9e44410
KH
102static int
103__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104{
efa90a98 105 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
106 struct page *page;
107 int ret = 0;
108
f6ab1f7f 109 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
110 if (!page)
111 return 0;
112 /*
113 * This function is called from scan_swap_map() and it's called
114 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
115 * We have to use trylock for avoiding deadlock. This is a special
116 * case and you should use try_to_free_swap() with explicit lock_page()
117 * in usual operations.
118 */
119 if (trylock_page(page)) {
120 ret = try_to_free_swap(page);
121 unlock_page(page);
122 }
09cbfeaf 123 put_page(page);
c9e44410
KH
124 return ret;
125}
355cfa73 126
6a6ba831
HD
127/*
128 * swapon tell device that all the old swap contents can be discarded,
129 * to allow the swap device to optimize its wear-levelling.
130 */
131static int discard_swap(struct swap_info_struct *si)
132{
133 struct swap_extent *se;
9625a5f2
HD
134 sector_t start_block;
135 sector_t nr_blocks;
6a6ba831
HD
136 int err = 0;
137
9625a5f2
HD
138 /* Do not discard the swap header page! */
139 se = &si->first_swap_extent;
140 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 if (nr_blocks) {
143 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 144 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
145 if (err)
146 return err;
147 cond_resched();
148 }
6a6ba831 149
9625a5f2
HD
150 list_for_each_entry(se, &si->first_swap_extent.list, list) {
151 start_block = se->start_block << (PAGE_SHIFT - 9);
152 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
153
154 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 155 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
156 if (err)
157 break;
158
159 cond_resched();
160 }
161 return err; /* That will often be -EOPNOTSUPP */
162}
163
7992fde7
HD
164/*
165 * swap allocation tell device that a cluster of swap can now be discarded,
166 * to allow the swap device to optimize its wear-levelling.
167 */
168static void discard_swap_cluster(struct swap_info_struct *si,
169 pgoff_t start_page, pgoff_t nr_pages)
170{
171 struct swap_extent *se = si->curr_swap_extent;
172 int found_extent = 0;
173
174 while (nr_pages) {
7992fde7
HD
175 if (se->start_page <= start_page &&
176 start_page < se->start_page + se->nr_pages) {
177 pgoff_t offset = start_page - se->start_page;
178 sector_t start_block = se->start_block + offset;
858a2990 179 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
180
181 if (nr_blocks > nr_pages)
182 nr_blocks = nr_pages;
183 start_page += nr_blocks;
184 nr_pages -= nr_blocks;
185
186 if (!found_extent++)
187 si->curr_swap_extent = se;
188
189 start_block <<= PAGE_SHIFT - 9;
190 nr_blocks <<= PAGE_SHIFT - 9;
191 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 192 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
193 break;
194 }
195
a8ae4991 196 se = list_next_entry(se, list);
7992fde7
HD
197 }
198}
199
048c27fd
HD
200#define SWAPFILE_CLUSTER 256
201#define LATENCY_LIMIT 256
202
2a8f9449
SL
203static inline void cluster_set_flag(struct swap_cluster_info *info,
204 unsigned int flag)
205{
206 info->flags = flag;
207}
208
209static inline unsigned int cluster_count(struct swap_cluster_info *info)
210{
211 return info->data;
212}
213
214static inline void cluster_set_count(struct swap_cluster_info *info,
215 unsigned int c)
216{
217 info->data = c;
218}
219
220static inline void cluster_set_count_flag(struct swap_cluster_info *info,
221 unsigned int c, unsigned int f)
222{
223 info->flags = f;
224 info->data = c;
225}
226
227static inline unsigned int cluster_next(struct swap_cluster_info *info)
228{
229 return info->data;
230}
231
232static inline void cluster_set_next(struct swap_cluster_info *info,
233 unsigned int n)
234{
235 info->data = n;
236}
237
238static inline void cluster_set_next_flag(struct swap_cluster_info *info,
239 unsigned int n, unsigned int f)
240{
241 info->flags = f;
242 info->data = n;
243}
244
245static inline bool cluster_is_free(struct swap_cluster_info *info)
246{
247 return info->flags & CLUSTER_FLAG_FREE;
248}
249
250static inline bool cluster_is_null(struct swap_cluster_info *info)
251{
252 return info->flags & CLUSTER_FLAG_NEXT_NULL;
253}
254
255static inline void cluster_set_null(struct swap_cluster_info *info)
256{
257 info->flags = CLUSTER_FLAG_NEXT_NULL;
258 info->data = 0;
259}
260
235b6217
HY
261static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
262 unsigned long offset)
263{
264 struct swap_cluster_info *ci;
265
266 ci = si->cluster_info;
267 if (ci) {
268 ci += offset / SWAPFILE_CLUSTER;
269 spin_lock(&ci->lock);
270 }
271 return ci;
272}
273
274static inline void unlock_cluster(struct swap_cluster_info *ci)
275{
276 if (ci)
277 spin_unlock(&ci->lock);
278}
279
280static inline struct swap_cluster_info *lock_cluster_or_swap_info(
281 struct swap_info_struct *si,
282 unsigned long offset)
283{
284 struct swap_cluster_info *ci;
285
286 ci = lock_cluster(si, offset);
287 if (!ci)
288 spin_lock(&si->lock);
289
290 return ci;
291}
292
293static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
294 struct swap_cluster_info *ci)
295{
296 if (ci)
297 unlock_cluster(ci);
298 else
299 spin_unlock(&si->lock);
300}
301
6b534915
HY
302static inline bool cluster_list_empty(struct swap_cluster_list *list)
303{
304 return cluster_is_null(&list->head);
305}
306
307static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308{
309 return cluster_next(&list->head);
310}
311
312static void cluster_list_init(struct swap_cluster_list *list)
313{
314 cluster_set_null(&list->head);
315 cluster_set_null(&list->tail);
316}
317
318static void cluster_list_add_tail(struct swap_cluster_list *list,
319 struct swap_cluster_info *ci,
320 unsigned int idx)
321{
322 if (cluster_list_empty(list)) {
323 cluster_set_next_flag(&list->head, idx, 0);
324 cluster_set_next_flag(&list->tail, idx, 0);
325 } else {
235b6217 326 struct swap_cluster_info *ci_tail;
6b534915
HY
327 unsigned int tail = cluster_next(&list->tail);
328
235b6217
HY
329 /*
330 * Nested cluster lock, but both cluster locks are
331 * only acquired when we held swap_info_struct->lock
332 */
333 ci_tail = ci + tail;
334 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
335 cluster_set_next(ci_tail, idx);
336 unlock_cluster(ci_tail);
6b534915
HY
337 cluster_set_next_flag(&list->tail, idx, 0);
338 }
339}
340
341static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
342 struct swap_cluster_info *ci)
343{
344 unsigned int idx;
345
346 idx = cluster_next(&list->head);
347 if (cluster_next(&list->tail) == idx) {
348 cluster_set_null(&list->head);
349 cluster_set_null(&list->tail);
350 } else
351 cluster_set_next_flag(&list->head,
352 cluster_next(&ci[idx]), 0);
353
354 return idx;
355}
356
815c2c54
SL
357/* Add a cluster to discard list and schedule it to do discard */
358static void swap_cluster_schedule_discard(struct swap_info_struct *si,
359 unsigned int idx)
360{
361 /*
362 * If scan_swap_map() can't find a free cluster, it will check
363 * si->swap_map directly. To make sure the discarding cluster isn't
364 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
365 * will be cleared after discard
366 */
367 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
368 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369
6b534915 370 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
371
372 schedule_work(&si->discard_work);
373}
374
375/*
376 * Doing discard actually. After a cluster discard is finished, the cluster
377 * will be added to free cluster list. caller should hold si->lock.
378*/
379static void swap_do_scheduled_discard(struct swap_info_struct *si)
380{
235b6217 381 struct swap_cluster_info *info, *ci;
815c2c54
SL
382 unsigned int idx;
383
384 info = si->cluster_info;
385
6b534915
HY
386 while (!cluster_list_empty(&si->discard_clusters)) {
387 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
388 spin_unlock(&si->lock);
389
390 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
391 SWAPFILE_CLUSTER);
392
393 spin_lock(&si->lock);
235b6217
HY
394 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
395 cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396 unlock_cluster(ci);
6b534915 397 cluster_list_add_tail(&si->free_clusters, info, idx);
235b6217 398 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
815c2c54
SL
399 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
400 0, SWAPFILE_CLUSTER);
235b6217 401 unlock_cluster(ci);
815c2c54
SL
402 }
403}
404
405static void swap_discard_work(struct work_struct *work)
406{
407 struct swap_info_struct *si;
408
409 si = container_of(work, struct swap_info_struct, discard_work);
410
411 spin_lock(&si->lock);
412 swap_do_scheduled_discard(si);
413 spin_unlock(&si->lock);
414}
415
2a8f9449
SL
416/*
417 * The cluster corresponding to page_nr will be used. The cluster will be
418 * removed from free cluster list and its usage counter will be increased.
419 */
420static void inc_cluster_info_page(struct swap_info_struct *p,
421 struct swap_cluster_info *cluster_info, unsigned long page_nr)
422{
423 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
424
425 if (!cluster_info)
426 return;
427 if (cluster_is_free(&cluster_info[idx])) {
6b534915
HY
428 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
429 cluster_list_del_first(&p->free_clusters, cluster_info);
2a8f9449
SL
430 cluster_set_count_flag(&cluster_info[idx], 0, 0);
431 }
432
433 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
434 cluster_set_count(&cluster_info[idx],
435 cluster_count(&cluster_info[idx]) + 1);
436}
437
438/*
439 * The cluster corresponding to page_nr decreases one usage. If the usage
440 * counter becomes 0, which means no page in the cluster is in using, we can
441 * optionally discard the cluster and add it to free cluster list.
442 */
443static void dec_cluster_info_page(struct swap_info_struct *p,
444 struct swap_cluster_info *cluster_info, unsigned long page_nr)
445{
446 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
447
448 if (!cluster_info)
449 return;
450
451 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
452 cluster_set_count(&cluster_info[idx],
453 cluster_count(&cluster_info[idx]) - 1);
454
455 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
456 /*
457 * If the swap is discardable, prepare discard the cluster
458 * instead of free it immediately. The cluster will be freed
459 * after discard.
460 */
edfe23da
SL
461 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
462 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
463 swap_cluster_schedule_discard(p, idx);
464 return;
465 }
466
2a8f9449 467 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915 468 cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
2a8f9449
SL
469 }
470}
471
472/*
473 * It's possible scan_swap_map() uses a free cluster in the middle of free
474 * cluster list. Avoiding such abuse to avoid list corruption.
475 */
ebc2a1a6
SL
476static bool
477scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
478 unsigned long offset)
479{
ebc2a1a6
SL
480 struct percpu_cluster *percpu_cluster;
481 bool conflict;
482
2a8f9449 483 offset /= SWAPFILE_CLUSTER;
6b534915
HY
484 conflict = !cluster_list_empty(&si->free_clusters) &&
485 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 486 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
487
488 if (!conflict)
489 return false;
490
491 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
492 cluster_set_null(&percpu_cluster->index);
493 return true;
494}
495
496/*
497 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
498 * might involve allocating a new cluster for current CPU too.
499 */
36005bae 500static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
501 unsigned long *offset, unsigned long *scan_base)
502{
503 struct percpu_cluster *cluster;
235b6217 504 struct swap_cluster_info *ci;
ebc2a1a6 505 bool found_free;
235b6217 506 unsigned long tmp, max;
ebc2a1a6
SL
507
508new_cluster:
509 cluster = this_cpu_ptr(si->percpu_cluster);
510 if (cluster_is_null(&cluster->index)) {
6b534915
HY
511 if (!cluster_list_empty(&si->free_clusters)) {
512 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
513 cluster->next = cluster_next(&cluster->index) *
514 SWAPFILE_CLUSTER;
6b534915 515 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
516 /*
517 * we don't have free cluster but have some clusters in
518 * discarding, do discard now and reclaim them
519 */
520 swap_do_scheduled_discard(si);
521 *scan_base = *offset = si->cluster_next;
522 goto new_cluster;
523 } else
36005bae 524 return false;
ebc2a1a6
SL
525 }
526
527 found_free = false;
528
529 /*
530 * Other CPUs can use our cluster if they can't find a free cluster,
531 * check if there is still free entry in the cluster
532 */
533 tmp = cluster->next;
235b6217
HY
534 max = min_t(unsigned long, si->max,
535 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536 if (tmp >= max) {
537 cluster_set_null(&cluster->index);
538 goto new_cluster;
539 }
540 ci = lock_cluster(si, tmp);
541 while (tmp < max) {
ebc2a1a6
SL
542 if (!si->swap_map[tmp]) {
543 found_free = true;
544 break;
545 }
546 tmp++;
547 }
235b6217 548 unlock_cluster(ci);
ebc2a1a6
SL
549 if (!found_free) {
550 cluster_set_null(&cluster->index);
551 goto new_cluster;
552 }
553 cluster->next = tmp + 1;
554 *offset = tmp;
555 *scan_base = tmp;
36005bae 556 return found_free;
2a8f9449
SL
557}
558
36005bae
TC
559static int scan_swap_map_slots(struct swap_info_struct *si,
560 unsigned char usage, int nr,
561 swp_entry_t slots[])
1da177e4 562{
235b6217 563 struct swap_cluster_info *ci;
ebebbbe9 564 unsigned long offset;
c60aa176 565 unsigned long scan_base;
7992fde7 566 unsigned long last_in_cluster = 0;
048c27fd 567 int latency_ration = LATENCY_LIMIT;
36005bae
TC
568 int n_ret = 0;
569
570 if (nr > SWAP_BATCH)
571 nr = SWAP_BATCH;
7dfad418 572
886bb7e9 573 /*
7dfad418
HD
574 * We try to cluster swap pages by allocating them sequentially
575 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
576 * way, however, we resort to first-free allocation, starting
577 * a new cluster. This prevents us from scattering swap pages
578 * all over the entire swap partition, so that we reduce
579 * overall disk seek times between swap pages. -- sct
580 * But we do now try to find an empty cluster. -Andrea
c60aa176 581 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
582 */
583
52b7efdb 584 si->flags += SWP_SCANNING;
c60aa176 585 scan_base = offset = si->cluster_next;
ebebbbe9 586
ebc2a1a6
SL
587 /* SSD algorithm */
588 if (si->cluster_info) {
36005bae
TC
589 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
590 goto checks;
591 else
592 goto scan;
ebc2a1a6
SL
593 }
594
ebebbbe9
HD
595 if (unlikely(!si->cluster_nr--)) {
596 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
597 si->cluster_nr = SWAPFILE_CLUSTER - 1;
598 goto checks;
599 }
2a8f9449 600
ec8acf20 601 spin_unlock(&si->lock);
7dfad418 602
c60aa176
HD
603 /*
604 * If seek is expensive, start searching for new cluster from
605 * start of partition, to minimize the span of allocated swap.
50088c44
CY
606 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
607 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 608 */
50088c44 609 scan_base = offset = si->lowest_bit;
7dfad418
HD
610 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611
612 /* Locate the first empty (unaligned) cluster */
613 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 614 if (si->swap_map[offset])
7dfad418
HD
615 last_in_cluster = offset + SWAPFILE_CLUSTER;
616 else if (offset == last_in_cluster) {
ec8acf20 617 spin_lock(&si->lock);
ebebbbe9
HD
618 offset -= SWAPFILE_CLUSTER - 1;
619 si->cluster_next = offset;
620 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
621 goto checks;
622 }
623 if (unlikely(--latency_ration < 0)) {
624 cond_resched();
625 latency_ration = LATENCY_LIMIT;
626 }
627 }
628
629 offset = scan_base;
ec8acf20 630 spin_lock(&si->lock);
ebebbbe9 631 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 632 }
7dfad418 633
ebebbbe9 634checks:
ebc2a1a6 635 if (si->cluster_info) {
36005bae
TC
636 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
637 /* take a break if we already got some slots */
638 if (n_ret)
639 goto done;
640 if (!scan_swap_map_try_ssd_cluster(si, &offset,
641 &scan_base))
642 goto scan;
643 }
ebc2a1a6 644 }
ebebbbe9 645 if (!(si->flags & SWP_WRITEOK))
52b7efdb 646 goto no_page;
7dfad418
HD
647 if (!si->highest_bit)
648 goto no_page;
ebebbbe9 649 if (offset > si->highest_bit)
c60aa176 650 scan_base = offset = si->lowest_bit;
c9e44410 651
235b6217 652 ci = lock_cluster(si, offset);
b73d7fce
HD
653 /* reuse swap entry of cache-only swap if not busy. */
654 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 655 int swap_was_freed;
235b6217 656 unlock_cluster(ci);
ec8acf20 657 spin_unlock(&si->lock);
c9e44410 658 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 659 spin_lock(&si->lock);
c9e44410
KH
660 /* entry was freed successfully, try to use this again */
661 if (swap_was_freed)
662 goto checks;
663 goto scan; /* check next one */
664 }
665
235b6217
HY
666 if (si->swap_map[offset]) {
667 unlock_cluster(ci);
36005bae
TC
668 if (!n_ret)
669 goto scan;
670 else
671 goto done;
235b6217 672 }
ebebbbe9
HD
673
674 if (offset == si->lowest_bit)
675 si->lowest_bit++;
676 if (offset == si->highest_bit)
677 si->highest_bit--;
678 si->inuse_pages++;
679 if (si->inuse_pages == si->pages) {
680 si->lowest_bit = si->max;
681 si->highest_bit = 0;
18ab4d4c
DS
682 spin_lock(&swap_avail_lock);
683 plist_del(&si->avail_list, &swap_avail_head);
684 spin_unlock(&swap_avail_lock);
1da177e4 685 }
253d553b 686 si->swap_map[offset] = usage;
2a8f9449 687 inc_cluster_info_page(si, si->cluster_info, offset);
235b6217 688 unlock_cluster(ci);
ebebbbe9 689 si->cluster_next = offset + 1;
36005bae
TC
690 slots[n_ret++] = swp_entry(si->type, offset);
691
692 /* got enough slots or reach max slots? */
693 if ((n_ret == nr) || (offset >= si->highest_bit))
694 goto done;
695
696 /* search for next available slot */
697
698 /* time to take a break? */
699 if (unlikely(--latency_ration < 0)) {
700 if (n_ret)
701 goto done;
702 spin_unlock(&si->lock);
703 cond_resched();
704 spin_lock(&si->lock);
705 latency_ration = LATENCY_LIMIT;
706 }
707
708 /* try to get more slots in cluster */
709 if (si->cluster_info) {
710 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
711 goto checks;
712 else
713 goto done;
714 }
715 /* non-ssd case */
716 ++offset;
717
718 /* non-ssd case, still more slots in cluster? */
719 if (si->cluster_nr && !si->swap_map[offset]) {
720 --si->cluster_nr;
721 goto checks;
722 }
7992fde7 723
36005bae
TC
724done:
725 si->flags -= SWP_SCANNING;
726 return n_ret;
7dfad418 727
ebebbbe9 728scan:
ec8acf20 729 spin_unlock(&si->lock);
7dfad418 730 while (++offset <= si->highest_bit) {
52b7efdb 731 if (!si->swap_map[offset]) {
ec8acf20 732 spin_lock(&si->lock);
52b7efdb
HD
733 goto checks;
734 }
c9e44410 735 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 736 spin_lock(&si->lock);
c9e44410
KH
737 goto checks;
738 }
048c27fd
HD
739 if (unlikely(--latency_ration < 0)) {
740 cond_resched();
741 latency_ration = LATENCY_LIMIT;
742 }
7dfad418 743 }
c60aa176 744 offset = si->lowest_bit;
a5998061 745 while (offset < scan_base) {
c60aa176 746 if (!si->swap_map[offset]) {
ec8acf20 747 spin_lock(&si->lock);
c60aa176
HD
748 goto checks;
749 }
c9e44410 750 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 751 spin_lock(&si->lock);
c9e44410
KH
752 goto checks;
753 }
c60aa176
HD
754 if (unlikely(--latency_ration < 0)) {
755 cond_resched();
756 latency_ration = LATENCY_LIMIT;
757 }
a5998061 758 offset++;
c60aa176 759 }
ec8acf20 760 spin_lock(&si->lock);
7dfad418
HD
761
762no_page:
52b7efdb 763 si->flags -= SWP_SCANNING;
36005bae 764 return n_ret;
1da177e4
LT
765}
766
36005bae
TC
767static unsigned long scan_swap_map(struct swap_info_struct *si,
768 unsigned char usage)
769{
770 swp_entry_t entry;
771 int n_ret;
772
773 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
774
775 if (n_ret)
776 return swp_offset(entry);
777 else
778 return 0;
779
780}
781
782int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
1da177e4 783{
adfab836 784 struct swap_info_struct *si, *next;
36005bae
TC
785 long avail_pgs;
786 int n_ret = 0;
1da177e4 787
36005bae
TC
788 avail_pgs = atomic_long_read(&nr_swap_pages);
789 if (avail_pgs <= 0)
fb4f88dc 790 goto noswap;
36005bae
TC
791
792 if (n_goal > SWAP_BATCH)
793 n_goal = SWAP_BATCH;
794
795 if (n_goal > avail_pgs)
796 n_goal = avail_pgs;
797
798 atomic_long_sub(n_goal, &nr_swap_pages);
fb4f88dc 799
18ab4d4c
DS
800 spin_lock(&swap_avail_lock);
801
802start_over:
803 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
804 /* requeue si to after same-priority siblings */
805 plist_requeue(&si->avail_list, &swap_avail_head);
806 spin_unlock(&swap_avail_lock);
ec8acf20 807 spin_lock(&si->lock);
adfab836 808 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c
DS
809 spin_lock(&swap_avail_lock);
810 if (plist_node_empty(&si->avail_list)) {
811 spin_unlock(&si->lock);
812 goto nextsi;
813 }
814 WARN(!si->highest_bit,
815 "swap_info %d in list but !highest_bit\n",
816 si->type);
817 WARN(!(si->flags & SWP_WRITEOK),
818 "swap_info %d in list but !SWP_WRITEOK\n",
819 si->type);
820 plist_del(&si->avail_list, &swap_avail_head);
ec8acf20 821 spin_unlock(&si->lock);
18ab4d4c 822 goto nextsi;
ec8acf20 823 }
36005bae
TC
824 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
825 n_goal, swp_entries);
ec8acf20 826 spin_unlock(&si->lock);
36005bae
TC
827 if (n_ret)
828 goto check_out;
18ab4d4c 829 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
830 si->type);
831
18ab4d4c
DS
832 spin_lock(&swap_avail_lock);
833nextsi:
adfab836
DS
834 /*
835 * if we got here, it's likely that si was almost full before,
836 * and since scan_swap_map() can drop the si->lock, multiple
837 * callers probably all tried to get a page from the same si
18ab4d4c
DS
838 * and it filled up before we could get one; or, the si filled
839 * up between us dropping swap_avail_lock and taking si->lock.
840 * Since we dropped the swap_avail_lock, the swap_avail_head
841 * list may have been modified; so if next is still in the
36005bae
TC
842 * swap_avail_head list then try it, otherwise start over
843 * if we have not gotten any slots.
adfab836 844 */
18ab4d4c
DS
845 if (plist_node_empty(&next->avail_list))
846 goto start_over;
1da177e4 847 }
fb4f88dc 848
18ab4d4c
DS
849 spin_unlock(&swap_avail_lock);
850
36005bae
TC
851check_out:
852 if (n_ret < n_goal)
853 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
fb4f88dc 854noswap:
36005bae
TC
855 return n_ret;
856}
857
2de1a7e4 858/* The only caller of this function is now suspend routine */
910321ea
HD
859swp_entry_t get_swap_page_of_type(int type)
860{
861 struct swap_info_struct *si;
862 pgoff_t offset;
863
910321ea 864 si = swap_info[type];
ec8acf20 865 spin_lock(&si->lock);
910321ea 866 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 867 atomic_long_dec(&nr_swap_pages);
910321ea
HD
868 /* This is called for allocating swap entry, not cache */
869 offset = scan_swap_map(si, 1);
870 if (offset) {
ec8acf20 871 spin_unlock(&si->lock);
910321ea
HD
872 return swp_entry(type, offset);
873 }
ec8acf20 874 atomic_long_inc(&nr_swap_pages);
910321ea 875 }
ec8acf20 876 spin_unlock(&si->lock);
910321ea
HD
877 return (swp_entry_t) {0};
878}
879
e8c26ab6 880static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 881{
73c34b6a 882 struct swap_info_struct *p;
1da177e4
LT
883 unsigned long offset, type;
884
885 if (!entry.val)
886 goto out;
887 type = swp_type(entry);
888 if (type >= nr_swapfiles)
889 goto bad_nofile;
efa90a98 890 p = swap_info[type];
1da177e4
LT
891 if (!(p->flags & SWP_USED))
892 goto bad_device;
893 offset = swp_offset(entry);
894 if (offset >= p->max)
895 goto bad_offset;
1da177e4
LT
896 return p;
897
1da177e4 898bad_offset:
6a991fc7 899 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
900 goto out;
901bad_device:
6a991fc7 902 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
903 goto out;
904bad_nofile:
6a991fc7 905 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
906out:
907 return NULL;
886bb7e9 908}
1da177e4 909
e8c26ab6
TC
910static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
911{
912 struct swap_info_struct *p;
913
914 p = __swap_info_get(entry);
915 if (!p)
916 goto out;
917 if (!p->swap_map[swp_offset(entry)])
918 goto bad_free;
919 return p;
920
921bad_free:
922 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
923 goto out;
924out:
925 return NULL;
926}
927
235b6217
HY
928static struct swap_info_struct *swap_info_get(swp_entry_t entry)
929{
930 struct swap_info_struct *p;
931
932 p = _swap_info_get(entry);
933 if (p)
934 spin_lock(&p->lock);
935 return p;
936}
937
7c00bafe
TC
938static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
939 struct swap_info_struct *q)
940{
941 struct swap_info_struct *p;
942
943 p = _swap_info_get(entry);
944
945 if (p != q) {
946 if (q != NULL)
947 spin_unlock(&q->lock);
948 if (p != NULL)
949 spin_lock(&p->lock);
950 }
951 return p;
952}
953
954static unsigned char __swap_entry_free(struct swap_info_struct *p,
955 swp_entry_t entry, unsigned char usage)
1da177e4 956{
235b6217 957 struct swap_cluster_info *ci;
253d553b 958 unsigned long offset = swp_offset(entry);
8d69aaee
HD
959 unsigned char count;
960 unsigned char has_cache;
235b6217 961
7c00bafe 962 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 963
253d553b 964 count = p->swap_map[offset];
235b6217 965
253d553b
HD
966 has_cache = count & SWAP_HAS_CACHE;
967 count &= ~SWAP_HAS_CACHE;
355cfa73 968
253d553b 969 if (usage == SWAP_HAS_CACHE) {
355cfa73 970 VM_BUG_ON(!has_cache);
253d553b 971 has_cache = 0;
aaa46865
HD
972 } else if (count == SWAP_MAP_SHMEM) {
973 /*
974 * Or we could insist on shmem.c using a special
975 * swap_shmem_free() and free_shmem_swap_and_cache()...
976 */
977 count = 0;
570a335b
HD
978 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
979 if (count == COUNT_CONTINUED) {
980 if (swap_count_continued(p, offset, count))
981 count = SWAP_MAP_MAX | COUNT_CONTINUED;
982 else
983 count = SWAP_MAP_MAX;
984 } else
985 count--;
986 }
253d553b 987
253d553b 988 usage = count | has_cache;
7c00bafe
TC
989 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
990
991 unlock_cluster_or_swap_info(p, ci);
992
993 return usage;
994}
355cfa73 995
7c00bafe
TC
996static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
997{
998 struct swap_cluster_info *ci;
999 unsigned long offset = swp_offset(entry);
1000 unsigned char count;
1001
1002 ci = lock_cluster(p, offset);
1003 count = p->swap_map[offset];
1004 VM_BUG_ON(count != SWAP_HAS_CACHE);
1005 p->swap_map[offset] = 0;
1006 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1007 unlock_cluster(ci);
1008
7c00bafe
TC
1009 mem_cgroup_uncharge_swap(entry);
1010 if (offset < p->lowest_bit)
1011 p->lowest_bit = offset;
1012 if (offset > p->highest_bit) {
1013 bool was_full = !p->highest_bit;
1014
1015 p->highest_bit = offset;
1016 if (was_full && (p->flags & SWP_WRITEOK)) {
1017 spin_lock(&swap_avail_lock);
1018 WARN_ON(!plist_node_empty(&p->avail_list));
1019 if (plist_node_empty(&p->avail_list))
1020 plist_add(&p->avail_list,
1021 &swap_avail_head);
1022 spin_unlock(&swap_avail_lock);
73744923 1023 }
1da177e4 1024 }
7c00bafe
TC
1025 atomic_long_inc(&nr_swap_pages);
1026 p->inuse_pages--;
1027 frontswap_invalidate_page(p->type, offset);
1028 if (p->flags & SWP_BLKDEV) {
1029 struct gendisk *disk = p->bdev->bd_disk;
1030
1031 if (disk->fops->swap_slot_free_notify)
1032 disk->fops->swap_slot_free_notify(p->bdev,
1033 offset);
1034 }
1da177e4
LT
1035}
1036
1037/*
2de1a7e4 1038 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1039 * is still around or has not been recycled.
1040 */
1041void swap_free(swp_entry_t entry)
1042{
73c34b6a 1043 struct swap_info_struct *p;
1da177e4 1044
235b6217 1045 p = _swap_info_get(entry);
7c00bafe
TC
1046 if (p) {
1047 if (!__swap_entry_free(p, entry, 1))
67afa38e 1048 free_swap_slot(entry);
7c00bafe 1049 }
1da177e4
LT
1050}
1051
cb4b86ba
KH
1052/*
1053 * Called after dropping swapcache to decrease refcnt to swap entries.
1054 */
0a31bc97 1055void swapcache_free(swp_entry_t entry)
cb4b86ba 1056{
355cfa73
KH
1057 struct swap_info_struct *p;
1058
235b6217 1059 p = _swap_info_get(entry);
7c00bafe
TC
1060 if (p) {
1061 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1062 free_swap_slot(entry);
7c00bafe
TC
1063 }
1064}
1065
1066void swapcache_free_entries(swp_entry_t *entries, int n)
1067{
1068 struct swap_info_struct *p, *prev;
1069 int i;
1070
1071 if (n <= 0)
1072 return;
1073
1074 prev = NULL;
1075 p = NULL;
1076 for (i = 0; i < n; ++i) {
1077 p = swap_info_get_cont(entries[i], prev);
1078 if (p)
1079 swap_entry_free(p, entries[i]);
1080 else
1081 break;
1082 prev = p;
1083 }
235b6217 1084 if (p)
7c00bafe 1085 spin_unlock(&p->lock);
cb4b86ba
KH
1086}
1087
1da177e4 1088/*
c475a8ab 1089 * How many references to page are currently swapped out?
570a335b
HD
1090 * This does not give an exact answer when swap count is continued,
1091 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1092 */
bde05d1c 1093int page_swapcount(struct page *page)
1da177e4 1094{
c475a8ab
HD
1095 int count = 0;
1096 struct swap_info_struct *p;
235b6217 1097 struct swap_cluster_info *ci;
1da177e4 1098 swp_entry_t entry;
235b6217 1099 unsigned long offset;
1da177e4 1100
4c21e2f2 1101 entry.val = page_private(page);
235b6217 1102 p = _swap_info_get(entry);
1da177e4 1103 if (p) {
235b6217
HY
1104 offset = swp_offset(entry);
1105 ci = lock_cluster_or_swap_info(p, offset);
1106 count = swap_count(p->swap_map[offset]);
1107 unlock_cluster_or_swap_info(p, ci);
1da177e4 1108 }
c475a8ab 1109 return count;
1da177e4
LT
1110}
1111
e8c26ab6
TC
1112/*
1113 * How many references to @entry are currently swapped out?
1114 * This does not give an exact answer when swap count is continued,
1115 * but does include the high COUNT_CONTINUED flag to allow for that.
1116 */
1117int __swp_swapcount(swp_entry_t entry)
1118{
1119 int count = 0;
1120 pgoff_t offset;
1121 struct swap_info_struct *si;
1122 struct swap_cluster_info *ci;
1123
1124 si = __swap_info_get(entry);
1125 if (si) {
1126 offset = swp_offset(entry);
1127 ci = lock_cluster_or_swap_info(si, offset);
1128 count = swap_count(si->swap_map[offset]);
1129 unlock_cluster_or_swap_info(si, ci);
1130 }
1131 return count;
1132}
1133
8334b962
MK
1134/*
1135 * How many references to @entry are currently swapped out?
1136 * This considers COUNT_CONTINUED so it returns exact answer.
1137 */
1138int swp_swapcount(swp_entry_t entry)
1139{
1140 int count, tmp_count, n;
1141 struct swap_info_struct *p;
235b6217 1142 struct swap_cluster_info *ci;
8334b962
MK
1143 struct page *page;
1144 pgoff_t offset;
1145 unsigned char *map;
1146
235b6217 1147 p = _swap_info_get(entry);
8334b962
MK
1148 if (!p)
1149 return 0;
1150
235b6217
HY
1151 offset = swp_offset(entry);
1152
1153 ci = lock_cluster_or_swap_info(p, offset);
1154
1155 count = swap_count(p->swap_map[offset]);
8334b962
MK
1156 if (!(count & COUNT_CONTINUED))
1157 goto out;
1158
1159 count &= ~COUNT_CONTINUED;
1160 n = SWAP_MAP_MAX + 1;
1161
8334b962
MK
1162 page = vmalloc_to_page(p->swap_map + offset);
1163 offset &= ~PAGE_MASK;
1164 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1165
1166 do {
a8ae4991 1167 page = list_next_entry(page, lru);
8334b962
MK
1168 map = kmap_atomic(page);
1169 tmp_count = map[offset];
1170 kunmap_atomic(map);
1171
1172 count += (tmp_count & ~COUNT_CONTINUED) * n;
1173 n *= (SWAP_CONT_MAX + 1);
1174 } while (tmp_count & COUNT_CONTINUED);
1175out:
235b6217 1176 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1177 return count;
1178}
1179
1da177e4 1180/*
7b1fe597
HD
1181 * We can write to an anon page without COW if there are no other references
1182 * to it. And as a side-effect, free up its swap: because the old content
1183 * on disk will never be read, and seeking back there to write new content
1184 * later would only waste time away from clustering.
6d0a07ed
AA
1185 *
1186 * NOTE: total_mapcount should not be relied upon by the caller if
1187 * reuse_swap_page() returns false, but it may be always overwritten
1188 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1189 */
6d0a07ed 1190bool reuse_swap_page(struct page *page, int *total_mapcount)
1da177e4 1191{
c475a8ab
HD
1192 int count;
1193
309381fe 1194 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1195 if (unlikely(PageKsm(page)))
6d0a07ed
AA
1196 return false;
1197 count = page_trans_huge_mapcount(page, total_mapcount);
7b1fe597 1198 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 1199 count += page_swapcount(page);
f0571429
MK
1200 if (count != 1)
1201 goto out;
1202 if (!PageWriteback(page)) {
7b1fe597
HD
1203 delete_from_swap_cache(page);
1204 SetPageDirty(page);
f0571429
MK
1205 } else {
1206 swp_entry_t entry;
1207 struct swap_info_struct *p;
1208
1209 entry.val = page_private(page);
1210 p = swap_info_get(entry);
1211 if (p->flags & SWP_STABLE_WRITES) {
1212 spin_unlock(&p->lock);
1213 return false;
1214 }
1215 spin_unlock(&p->lock);
7b1fe597
HD
1216 }
1217 }
f0571429 1218out:
5ad64688 1219 return count <= 1;
1da177e4
LT
1220}
1221
1222/*
a2c43eed
HD
1223 * If swap is getting full, or if there are no more mappings of this page,
1224 * then try_to_free_swap is called to free its swap space.
1da177e4 1225 */
a2c43eed 1226int try_to_free_swap(struct page *page)
1da177e4 1227{
309381fe 1228 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1229
1230 if (!PageSwapCache(page))
1231 return 0;
1232 if (PageWriteback(page))
1233 return 0;
a2c43eed 1234 if (page_swapcount(page))
1da177e4
LT
1235 return 0;
1236
b73d7fce
HD
1237 /*
1238 * Once hibernation has begun to create its image of memory,
1239 * there's a danger that one of the calls to try_to_free_swap()
1240 * - most probably a call from __try_to_reclaim_swap() while
1241 * hibernation is allocating its own swap pages for the image,
1242 * but conceivably even a call from memory reclaim - will free
1243 * the swap from a page which has already been recorded in the
1244 * image as a clean swapcache page, and then reuse its swap for
1245 * another page of the image. On waking from hibernation, the
1246 * original page might be freed under memory pressure, then
1247 * later read back in from swap, now with the wrong data.
1248 *
2de1a7e4 1249 * Hibernation suspends storage while it is writing the image
f90ac398 1250 * to disk so check that here.
b73d7fce 1251 */
f90ac398 1252 if (pm_suspended_storage())
b73d7fce
HD
1253 return 0;
1254
a2c43eed
HD
1255 delete_from_swap_cache(page);
1256 SetPageDirty(page);
1257 return 1;
68a22394
RR
1258}
1259
1da177e4
LT
1260/*
1261 * Free the swap entry like above, but also try to
1262 * free the page cache entry if it is the last user.
1263 */
2509ef26 1264int free_swap_and_cache(swp_entry_t entry)
1da177e4 1265{
2509ef26 1266 struct swap_info_struct *p;
1da177e4 1267 struct page *page = NULL;
7c00bafe 1268 unsigned char count;
1da177e4 1269
a7420aa5 1270 if (non_swap_entry(entry))
2509ef26 1271 return 1;
0697212a 1272
7c00bafe 1273 p = _swap_info_get(entry);
1da177e4 1274 if (p) {
7c00bafe
TC
1275 count = __swap_entry_free(p, entry, 1);
1276 if (count == SWAP_HAS_CACHE) {
33806f06 1277 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1278 swp_offset(entry));
8413ac9d 1279 if (page && !trylock_page(page)) {
09cbfeaf 1280 put_page(page);
93fac704
NP
1281 page = NULL;
1282 }
7c00bafe 1283 } else if (!count)
67afa38e 1284 free_swap_slot(entry);
1da177e4
LT
1285 }
1286 if (page) {
a2c43eed
HD
1287 /*
1288 * Not mapped elsewhere, or swap space full? Free it!
1289 * Also recheck PageSwapCache now page is locked (above).
1290 */
93fac704 1291 if (PageSwapCache(page) && !PageWriteback(page) &&
5ccc5aba 1292 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1da177e4
LT
1293 delete_from_swap_cache(page);
1294 SetPageDirty(page);
1295 }
1296 unlock_page(page);
09cbfeaf 1297 put_page(page);
1da177e4 1298 }
2509ef26 1299 return p != NULL;
1da177e4
LT
1300}
1301
b0cb1a19 1302#ifdef CONFIG_HIBERNATION
f577eb30 1303/*
915bae9e 1304 * Find the swap type that corresponds to given device (if any).
f577eb30 1305 *
915bae9e
RW
1306 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1307 * from 0, in which the swap header is expected to be located.
1308 *
1309 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1310 */
7bf23687 1311int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1312{
915bae9e 1313 struct block_device *bdev = NULL;
efa90a98 1314 int type;
f577eb30 1315
915bae9e
RW
1316 if (device)
1317 bdev = bdget(device);
1318
f577eb30 1319 spin_lock(&swap_lock);
efa90a98
HD
1320 for (type = 0; type < nr_swapfiles; type++) {
1321 struct swap_info_struct *sis = swap_info[type];
f577eb30 1322
915bae9e 1323 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1324 continue;
b6b5bce3 1325
915bae9e 1326 if (!bdev) {
7bf23687 1327 if (bdev_p)
dddac6a7 1328 *bdev_p = bdgrab(sis->bdev);
7bf23687 1329
6e1819d6 1330 spin_unlock(&swap_lock);
efa90a98 1331 return type;
6e1819d6 1332 }
915bae9e 1333 if (bdev == sis->bdev) {
9625a5f2 1334 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1335
915bae9e 1336 if (se->start_block == offset) {
7bf23687 1337 if (bdev_p)
dddac6a7 1338 *bdev_p = bdgrab(sis->bdev);
7bf23687 1339
915bae9e
RW
1340 spin_unlock(&swap_lock);
1341 bdput(bdev);
efa90a98 1342 return type;
915bae9e 1343 }
f577eb30
RW
1344 }
1345 }
1346 spin_unlock(&swap_lock);
915bae9e
RW
1347 if (bdev)
1348 bdput(bdev);
1349
f577eb30
RW
1350 return -ENODEV;
1351}
1352
73c34b6a
HD
1353/*
1354 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1355 * corresponding to given index in swap_info (swap type).
1356 */
1357sector_t swapdev_block(int type, pgoff_t offset)
1358{
1359 struct block_device *bdev;
1360
1361 if ((unsigned int)type >= nr_swapfiles)
1362 return 0;
1363 if (!(swap_info[type]->flags & SWP_WRITEOK))
1364 return 0;
d4906e1a 1365 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1366}
1367
f577eb30
RW
1368/*
1369 * Return either the total number of swap pages of given type, or the number
1370 * of free pages of that type (depending on @free)
1371 *
1372 * This is needed for software suspend
1373 */
1374unsigned int count_swap_pages(int type, int free)
1375{
1376 unsigned int n = 0;
1377
efa90a98
HD
1378 spin_lock(&swap_lock);
1379 if ((unsigned int)type < nr_swapfiles) {
1380 struct swap_info_struct *sis = swap_info[type];
1381
ec8acf20 1382 spin_lock(&sis->lock);
efa90a98
HD
1383 if (sis->flags & SWP_WRITEOK) {
1384 n = sis->pages;
f577eb30 1385 if (free)
efa90a98 1386 n -= sis->inuse_pages;
f577eb30 1387 }
ec8acf20 1388 spin_unlock(&sis->lock);
f577eb30 1389 }
efa90a98 1390 spin_unlock(&swap_lock);
f577eb30
RW
1391 return n;
1392}
73c34b6a 1393#endif /* CONFIG_HIBERNATION */
f577eb30 1394
9f8bdb3f 1395static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1396{
9f8bdb3f 1397 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1398}
1399
1da177e4 1400/*
72866f6f
HD
1401 * No need to decide whether this PTE shares the swap entry with others,
1402 * just let do_wp_page work it out if a write is requested later - to
1403 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1404 */
044d66c1 1405static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1406 unsigned long addr, swp_entry_t entry, struct page *page)
1407{
9e16b7fb 1408 struct page *swapcache;
72835c86 1409 struct mem_cgroup *memcg;
044d66c1
HD
1410 spinlock_t *ptl;
1411 pte_t *pte;
1412 int ret = 1;
1413
9e16b7fb
HD
1414 swapcache = page;
1415 page = ksm_might_need_to_copy(page, vma, addr);
1416 if (unlikely(!page))
1417 return -ENOMEM;
1418
f627c2f5
KS
1419 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1420 &memcg, false)) {
044d66c1 1421 ret = -ENOMEM;
85d9fc89
KH
1422 goto out_nolock;
1423 }
044d66c1
HD
1424
1425 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1426 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1427 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1428 ret = 0;
1429 goto out;
1430 }
8a9f3ccd 1431
b084d435 1432 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1433 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1434 get_page(page);
1435 set_pte_at(vma->vm_mm, addr, pte,
1436 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1437 if (page == swapcache) {
d281ee61 1438 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1439 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1440 } else { /* ksm created a completely new copy */
d281ee61 1441 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1442 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1443 lru_cache_add_active_or_unevictable(page, vma);
1444 }
1da177e4
LT
1445 swap_free(entry);
1446 /*
1447 * Move the page to the active list so it is not
1448 * immediately swapped out again after swapon.
1449 */
1450 activate_page(page);
044d66c1
HD
1451out:
1452 pte_unmap_unlock(pte, ptl);
85d9fc89 1453out_nolock:
9e16b7fb
HD
1454 if (page != swapcache) {
1455 unlock_page(page);
1456 put_page(page);
1457 }
044d66c1 1458 return ret;
1da177e4
LT
1459}
1460
1461static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1462 unsigned long addr, unsigned long end,
1463 swp_entry_t entry, struct page *page)
1464{
1da177e4 1465 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1466 pte_t *pte;
8a9f3ccd 1467 int ret = 0;
1da177e4 1468
044d66c1
HD
1469 /*
1470 * We don't actually need pte lock while scanning for swp_pte: since
1471 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1472 * page table while we're scanning; though it could get zapped, and on
1473 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1474 * of unmatched parts which look like swp_pte, so unuse_pte must
1475 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1476 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1477 */
1478 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1479 do {
1480 /*
1481 * swapoff spends a _lot_ of time in this loop!
1482 * Test inline before going to call unuse_pte.
1483 */
9f8bdb3f 1484 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1485 pte_unmap(pte);
1486 ret = unuse_pte(vma, pmd, addr, entry, page);
1487 if (ret)
1488 goto out;
1489 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1490 }
1491 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1492 pte_unmap(pte - 1);
1493out:
8a9f3ccd 1494 return ret;
1da177e4
LT
1495}
1496
1497static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1498 unsigned long addr, unsigned long end,
1499 swp_entry_t entry, struct page *page)
1500{
1501 pmd_t *pmd;
1502 unsigned long next;
8a9f3ccd 1503 int ret;
1da177e4
LT
1504
1505 pmd = pmd_offset(pud, addr);
1506 do {
dc644a07 1507 cond_resched();
1da177e4 1508 next = pmd_addr_end(addr, end);
1a5a9906 1509 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1510 continue;
8a9f3ccd
BS
1511 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1512 if (ret)
1513 return ret;
1da177e4
LT
1514 } while (pmd++, addr = next, addr != end);
1515 return 0;
1516}
1517
1518static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1519 unsigned long addr, unsigned long end,
1520 swp_entry_t entry, struct page *page)
1521{
1522 pud_t *pud;
1523 unsigned long next;
8a9f3ccd 1524 int ret;
1da177e4
LT
1525
1526 pud = pud_offset(pgd, addr);
1527 do {
1528 next = pud_addr_end(addr, end);
1529 if (pud_none_or_clear_bad(pud))
1530 continue;
8a9f3ccd
BS
1531 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1532 if (ret)
1533 return ret;
1da177e4
LT
1534 } while (pud++, addr = next, addr != end);
1535 return 0;
1536}
1537
1538static int unuse_vma(struct vm_area_struct *vma,
1539 swp_entry_t entry, struct page *page)
1540{
1541 pgd_t *pgd;
1542 unsigned long addr, end, next;
8a9f3ccd 1543 int ret;
1da177e4 1544
3ca7b3c5 1545 if (page_anon_vma(page)) {
1da177e4
LT
1546 addr = page_address_in_vma(page, vma);
1547 if (addr == -EFAULT)
1548 return 0;
1549 else
1550 end = addr + PAGE_SIZE;
1551 } else {
1552 addr = vma->vm_start;
1553 end = vma->vm_end;
1554 }
1555
1556 pgd = pgd_offset(vma->vm_mm, addr);
1557 do {
1558 next = pgd_addr_end(addr, end);
1559 if (pgd_none_or_clear_bad(pgd))
1560 continue;
8a9f3ccd
BS
1561 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1562 if (ret)
1563 return ret;
1da177e4
LT
1564 } while (pgd++, addr = next, addr != end);
1565 return 0;
1566}
1567
1568static int unuse_mm(struct mm_struct *mm,
1569 swp_entry_t entry, struct page *page)
1570{
1571 struct vm_area_struct *vma;
8a9f3ccd 1572 int ret = 0;
1da177e4
LT
1573
1574 if (!down_read_trylock(&mm->mmap_sem)) {
1575 /*
7d03431c
FLVC
1576 * Activate page so shrink_inactive_list is unlikely to unmap
1577 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1578 */
c475a8ab 1579 activate_page(page);
1da177e4
LT
1580 unlock_page(page);
1581 down_read(&mm->mmap_sem);
1582 lock_page(page);
1583 }
1da177e4 1584 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1585 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1586 break;
dc644a07 1587 cond_resched();
1da177e4 1588 }
1da177e4 1589 up_read(&mm->mmap_sem);
8a9f3ccd 1590 return (ret < 0)? ret: 0;
1da177e4
LT
1591}
1592
1593/*
38b5faf4
DM
1594 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1595 * from current position to next entry still in use.
1da177e4
LT
1596 * Recycle to start on reaching the end, returning 0 when empty.
1597 */
6eb396dc 1598static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1599 unsigned int prev, bool frontswap)
1da177e4 1600{
6eb396dc
HD
1601 unsigned int max = si->max;
1602 unsigned int i = prev;
8d69aaee 1603 unsigned char count;
1da177e4
LT
1604
1605 /*
5d337b91 1606 * No need for swap_lock here: we're just looking
1da177e4
LT
1607 * for whether an entry is in use, not modifying it; false
1608 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1609 * allocations from this area (while holding swap_lock).
1da177e4
LT
1610 */
1611 for (;;) {
1612 if (++i >= max) {
1613 if (!prev) {
1614 i = 0;
1615 break;
1616 }
1617 /*
1618 * No entries in use at top of swap_map,
1619 * loop back to start and recheck there.
1620 */
1621 max = prev + 1;
1622 prev = 0;
1623 i = 1;
1624 }
4db0c3c2 1625 count = READ_ONCE(si->swap_map[i]);
355cfa73 1626 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
1627 if (!frontswap || frontswap_test(si, i))
1628 break;
1629 if ((i % LATENCY_LIMIT) == 0)
1630 cond_resched();
1da177e4
LT
1631 }
1632 return i;
1633}
1634
1635/*
1636 * We completely avoid races by reading each swap page in advance,
1637 * and then search for the process using it. All the necessary
1638 * page table adjustments can then be made atomically.
38b5faf4
DM
1639 *
1640 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1641 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1642 */
38b5faf4
DM
1643int try_to_unuse(unsigned int type, bool frontswap,
1644 unsigned long pages_to_unuse)
1da177e4 1645{
efa90a98 1646 struct swap_info_struct *si = swap_info[type];
1da177e4 1647 struct mm_struct *start_mm;
edfe23da
SL
1648 volatile unsigned char *swap_map; /* swap_map is accessed without
1649 * locking. Mark it as volatile
1650 * to prevent compiler doing
1651 * something odd.
1652 */
8d69aaee 1653 unsigned char swcount;
1da177e4
LT
1654 struct page *page;
1655 swp_entry_t entry;
6eb396dc 1656 unsigned int i = 0;
1da177e4 1657 int retval = 0;
1da177e4
LT
1658
1659 /*
1660 * When searching mms for an entry, a good strategy is to
1661 * start at the first mm we freed the previous entry from
1662 * (though actually we don't notice whether we or coincidence
1663 * freed the entry). Initialize this start_mm with a hold.
1664 *
1665 * A simpler strategy would be to start at the last mm we
1666 * freed the previous entry from; but that would take less
1667 * advantage of mmlist ordering, which clusters forked mms
1668 * together, child after parent. If we race with dup_mmap(), we
1669 * prefer to resolve parent before child, lest we miss entries
1670 * duplicated after we scanned child: using last mm would invert
570a335b 1671 * that.
1da177e4
LT
1672 */
1673 start_mm = &init_mm;
3fce371b 1674 mmget(&init_mm);
1da177e4
LT
1675
1676 /*
1677 * Keep on scanning until all entries have gone. Usually,
1678 * one pass through swap_map is enough, but not necessarily:
1679 * there are races when an instance of an entry might be missed.
1680 */
38b5faf4 1681 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1682 if (signal_pending(current)) {
1683 retval = -EINTR;
1684 break;
1685 }
1686
886bb7e9 1687 /*
1da177e4
LT
1688 * Get a page for the entry, using the existing swap
1689 * cache page if there is one. Otherwise, get a clean
886bb7e9 1690 * page and read the swap into it.
1da177e4
LT
1691 */
1692 swap_map = &si->swap_map[i];
1693 entry = swp_entry(type, i);
02098fea
HD
1694 page = read_swap_cache_async(entry,
1695 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1696 if (!page) {
1697 /*
1698 * Either swap_duplicate() failed because entry
1699 * has been freed independently, and will not be
1700 * reused since sys_swapoff() already disabled
1701 * allocation from here, or alloc_page() failed.
1702 */
edfe23da
SL
1703 swcount = *swap_map;
1704 /*
1705 * We don't hold lock here, so the swap entry could be
1706 * SWAP_MAP_BAD (when the cluster is discarding).
1707 * Instead of fail out, We can just skip the swap
1708 * entry because swapoff will wait for discarding
1709 * finish anyway.
1710 */
1711 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1712 continue;
1713 retval = -ENOMEM;
1714 break;
1715 }
1716
1717 /*
1718 * Don't hold on to start_mm if it looks like exiting.
1719 */
1720 if (atomic_read(&start_mm->mm_users) == 1) {
1721 mmput(start_mm);
1722 start_mm = &init_mm;
3fce371b 1723 mmget(&init_mm);
1da177e4
LT
1724 }
1725
1726 /*
1727 * Wait for and lock page. When do_swap_page races with
1728 * try_to_unuse, do_swap_page can handle the fault much
1729 * faster than try_to_unuse can locate the entry. This
1730 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1731 * defer to do_swap_page in such a case - in some tests,
1732 * do_swap_page and try_to_unuse repeatedly compete.
1733 */
1734 wait_on_page_locked(page);
1735 wait_on_page_writeback(page);
1736 lock_page(page);
1737 wait_on_page_writeback(page);
1738
1739 /*
1740 * Remove all references to entry.
1da177e4 1741 */
1da177e4 1742 swcount = *swap_map;
aaa46865
HD
1743 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1744 retval = shmem_unuse(entry, page);
1745 /* page has already been unlocked and released */
1746 if (retval < 0)
1747 break;
1748 continue;
1da177e4 1749 }
aaa46865
HD
1750 if (swap_count(swcount) && start_mm != &init_mm)
1751 retval = unuse_mm(start_mm, entry, page);
1752
355cfa73 1753 if (swap_count(*swap_map)) {
1da177e4
LT
1754 int set_start_mm = (*swap_map >= swcount);
1755 struct list_head *p = &start_mm->mmlist;
1756 struct mm_struct *new_start_mm = start_mm;
1757 struct mm_struct *prev_mm = start_mm;
1758 struct mm_struct *mm;
1759
3fce371b
VN
1760 mmget(new_start_mm);
1761 mmget(prev_mm);
1da177e4 1762 spin_lock(&mmlist_lock);
aaa46865 1763 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1764 (p = p->next) != &start_mm->mmlist) {
1765 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1766 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1767 continue;
1da177e4
LT
1768 spin_unlock(&mmlist_lock);
1769 mmput(prev_mm);
1770 prev_mm = mm;
1771
1772 cond_resched();
1773
1774 swcount = *swap_map;
355cfa73 1775 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1776 ;
aaa46865 1777 else if (mm == &init_mm)
1da177e4 1778 set_start_mm = 1;
aaa46865 1779 else
1da177e4 1780 retval = unuse_mm(mm, entry, page);
355cfa73 1781
32c5fc10 1782 if (set_start_mm && *swap_map < swcount) {
1da177e4 1783 mmput(new_start_mm);
3fce371b 1784 mmget(mm);
1da177e4
LT
1785 new_start_mm = mm;
1786 set_start_mm = 0;
1787 }
1788 spin_lock(&mmlist_lock);
1789 }
1790 spin_unlock(&mmlist_lock);
1791 mmput(prev_mm);
1792 mmput(start_mm);
1793 start_mm = new_start_mm;
1794 }
1795 if (retval) {
1796 unlock_page(page);
09cbfeaf 1797 put_page(page);
1da177e4
LT
1798 break;
1799 }
1800
1da177e4
LT
1801 /*
1802 * If a reference remains (rare), we would like to leave
1803 * the page in the swap cache; but try_to_unmap could
1804 * then re-duplicate the entry once we drop page lock,
1805 * so we might loop indefinitely; also, that page could
1806 * not be swapped out to other storage meanwhile. So:
1807 * delete from cache even if there's another reference,
1808 * after ensuring that the data has been saved to disk -
1809 * since if the reference remains (rarer), it will be
1810 * read from disk into another page. Splitting into two
1811 * pages would be incorrect if swap supported "shared
1812 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1813 *
1814 * Given how unuse_vma() targets one particular offset
1815 * in an anon_vma, once the anon_vma has been determined,
1816 * this splitting happens to be just what is needed to
1817 * handle where KSM pages have been swapped out: re-reading
1818 * is unnecessarily slow, but we can fix that later on.
1da177e4 1819 */
355cfa73
KH
1820 if (swap_count(*swap_map) &&
1821 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1822 struct writeback_control wbc = {
1823 .sync_mode = WB_SYNC_NONE,
1824 };
1825
1826 swap_writepage(page, &wbc);
1827 lock_page(page);
1828 wait_on_page_writeback(page);
1829 }
68bdc8d6
HD
1830
1831 /*
1832 * It is conceivable that a racing task removed this page from
1833 * swap cache just before we acquired the page lock at the top,
1834 * or while we dropped it in unuse_mm(). The page might even
1835 * be back in swap cache on another swap area: that we must not
1836 * delete, since it may not have been written out to swap yet.
1837 */
1838 if (PageSwapCache(page) &&
1839 likely(page_private(page) == entry.val))
2e0e26c7 1840 delete_from_swap_cache(page);
1da177e4
LT
1841
1842 /*
1843 * So we could skip searching mms once swap count went
1844 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1845 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1846 */
1847 SetPageDirty(page);
1848 unlock_page(page);
09cbfeaf 1849 put_page(page);
1da177e4
LT
1850
1851 /*
1852 * Make sure that we aren't completely killing
1853 * interactive performance.
1854 */
1855 cond_resched();
38b5faf4
DM
1856 if (frontswap && pages_to_unuse > 0) {
1857 if (!--pages_to_unuse)
1858 break;
1859 }
1da177e4
LT
1860 }
1861
1862 mmput(start_mm);
1da177e4
LT
1863 return retval;
1864}
1865
1866/*
5d337b91
HD
1867 * After a successful try_to_unuse, if no swap is now in use, we know
1868 * we can empty the mmlist. swap_lock must be held on entry and exit.
1869 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1870 * added to the mmlist just after page_duplicate - before would be racy.
1871 */
1872static void drain_mmlist(void)
1873{
1874 struct list_head *p, *next;
efa90a98 1875 unsigned int type;
1da177e4 1876
efa90a98
HD
1877 for (type = 0; type < nr_swapfiles; type++)
1878 if (swap_info[type]->inuse_pages)
1da177e4
LT
1879 return;
1880 spin_lock(&mmlist_lock);
1881 list_for_each_safe(p, next, &init_mm.mmlist)
1882 list_del_init(p);
1883 spin_unlock(&mmlist_lock);
1884}
1885
1886/*
1887 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1888 * corresponds to page offset for the specified swap entry.
1889 * Note that the type of this function is sector_t, but it returns page offset
1890 * into the bdev, not sector offset.
1da177e4 1891 */
d4906e1a 1892static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1893{
f29ad6a9
HD
1894 struct swap_info_struct *sis;
1895 struct swap_extent *start_se;
1896 struct swap_extent *se;
1897 pgoff_t offset;
1898
efa90a98 1899 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1900 *bdev = sis->bdev;
1901
1902 offset = swp_offset(entry);
1903 start_se = sis->curr_swap_extent;
1904 se = start_se;
1da177e4
LT
1905
1906 for ( ; ; ) {
1da177e4
LT
1907 if (se->start_page <= offset &&
1908 offset < (se->start_page + se->nr_pages)) {
1909 return se->start_block + (offset - se->start_page);
1910 }
a8ae4991 1911 se = list_next_entry(se, list);
1da177e4
LT
1912 sis->curr_swap_extent = se;
1913 BUG_ON(se == start_se); /* It *must* be present */
1914 }
1915}
1916
d4906e1a
LS
1917/*
1918 * Returns the page offset into bdev for the specified page's swap entry.
1919 */
1920sector_t map_swap_page(struct page *page, struct block_device **bdev)
1921{
1922 swp_entry_t entry;
1923 entry.val = page_private(page);
1924 return map_swap_entry(entry, bdev);
1925}
1926
1da177e4
LT
1927/*
1928 * Free all of a swapdev's extent information
1929 */
1930static void destroy_swap_extents(struct swap_info_struct *sis)
1931{
9625a5f2 1932 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1933 struct swap_extent *se;
1934
a8ae4991 1935 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
1936 struct swap_extent, list);
1937 list_del(&se->list);
1938 kfree(se);
1939 }
62c230bc
MG
1940
1941 if (sis->flags & SWP_FILE) {
1942 struct file *swap_file = sis->swap_file;
1943 struct address_space *mapping = swap_file->f_mapping;
1944
1945 sis->flags &= ~SWP_FILE;
1946 mapping->a_ops->swap_deactivate(swap_file);
1947 }
1da177e4
LT
1948}
1949
1950/*
1951 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1952 * extent list. The extent list is kept sorted in page order.
1da177e4 1953 *
11d31886 1954 * This function rather assumes that it is called in ascending page order.
1da177e4 1955 */
a509bc1a 1956int
1da177e4
LT
1957add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1958 unsigned long nr_pages, sector_t start_block)
1959{
1960 struct swap_extent *se;
1961 struct swap_extent *new_se;
1962 struct list_head *lh;
1963
9625a5f2
HD
1964 if (start_page == 0) {
1965 se = &sis->first_swap_extent;
1966 sis->curr_swap_extent = se;
1967 se->start_page = 0;
1968 se->nr_pages = nr_pages;
1969 se->start_block = start_block;
1970 return 1;
1971 } else {
1972 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1973 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1974 BUG_ON(se->start_page + se->nr_pages != start_page);
1975 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1976 /* Merge it */
1977 se->nr_pages += nr_pages;
1978 return 0;
1979 }
1da177e4
LT
1980 }
1981
1982 /*
1983 * No merge. Insert a new extent, preserving ordering.
1984 */
1985 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1986 if (new_se == NULL)
1987 return -ENOMEM;
1988 new_se->start_page = start_page;
1989 new_se->nr_pages = nr_pages;
1990 new_se->start_block = start_block;
1991
9625a5f2 1992 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1993 return 1;
1da177e4
LT
1994}
1995
1996/*
1997 * A `swap extent' is a simple thing which maps a contiguous range of pages
1998 * onto a contiguous range of disk blocks. An ordered list of swap extents
1999 * is built at swapon time and is then used at swap_writepage/swap_readpage
2000 * time for locating where on disk a page belongs.
2001 *
2002 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2003 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2004 * swap files identically.
2005 *
2006 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2007 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2008 * swapfiles are handled *identically* after swapon time.
2009 *
2010 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2011 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2012 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2013 * requirements, they are simply tossed out - we will never use those blocks
2014 * for swapping.
2015 *
b0d9bcd4 2016 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2017 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2018 * which will scribble on the fs.
2019 *
2020 * The amount of disk space which a single swap extent represents varies.
2021 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2022 * extents in the list. To avoid much list walking, we cache the previous
2023 * search location in `curr_swap_extent', and start new searches from there.
2024 * This is extremely effective. The average number of iterations in
2025 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2026 */
53092a74 2027static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2028{
62c230bc
MG
2029 struct file *swap_file = sis->swap_file;
2030 struct address_space *mapping = swap_file->f_mapping;
2031 struct inode *inode = mapping->host;
1da177e4
LT
2032 int ret;
2033
1da177e4
LT
2034 if (S_ISBLK(inode->i_mode)) {
2035 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2036 *span = sis->pages;
a509bc1a 2037 return ret;
1da177e4
LT
2038 }
2039
62c230bc 2040 if (mapping->a_ops->swap_activate) {
a509bc1a 2041 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2042 if (!ret) {
2043 sis->flags |= SWP_FILE;
2044 ret = add_swap_extent(sis, 0, sis->max, 0);
2045 *span = sis->pages;
2046 }
a509bc1a 2047 return ret;
62c230bc
MG
2048 }
2049
a509bc1a 2050 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2051}
2052
cf0cac0a 2053static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2054 unsigned char *swap_map,
2055 struct swap_cluster_info *cluster_info)
40531542 2056{
40531542
CEB
2057 if (prio >= 0)
2058 p->prio = prio;
2059 else
2060 p->prio = --least_priority;
18ab4d4c
DS
2061 /*
2062 * the plist prio is negated because plist ordering is
2063 * low-to-high, while swap ordering is high-to-low
2064 */
2065 p->list.prio = -p->prio;
2066 p->avail_list.prio = -p->prio;
40531542 2067 p->swap_map = swap_map;
2a8f9449 2068 p->cluster_info = cluster_info;
40531542 2069 p->flags |= SWP_WRITEOK;
ec8acf20 2070 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2071 total_swap_pages += p->pages;
2072
adfab836 2073 assert_spin_locked(&swap_lock);
adfab836 2074 /*
18ab4d4c
DS
2075 * both lists are plists, and thus priority ordered.
2076 * swap_active_head needs to be priority ordered for swapoff(),
2077 * which on removal of any swap_info_struct with an auto-assigned
2078 * (i.e. negative) priority increments the auto-assigned priority
2079 * of any lower-priority swap_info_structs.
2080 * swap_avail_head needs to be priority ordered for get_swap_page(),
2081 * which allocates swap pages from the highest available priority
2082 * swap_info_struct.
adfab836 2083 */
18ab4d4c
DS
2084 plist_add(&p->list, &swap_active_head);
2085 spin_lock(&swap_avail_lock);
2086 plist_add(&p->avail_list, &swap_avail_head);
2087 spin_unlock(&swap_avail_lock);
cf0cac0a
CEB
2088}
2089
2090static void enable_swap_info(struct swap_info_struct *p, int prio,
2091 unsigned char *swap_map,
2a8f9449 2092 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2093 unsigned long *frontswap_map)
2094{
4f89849d 2095 frontswap_init(p->type, frontswap_map);
cf0cac0a 2096 spin_lock(&swap_lock);
ec8acf20 2097 spin_lock(&p->lock);
2a8f9449 2098 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2099 spin_unlock(&p->lock);
cf0cac0a
CEB
2100 spin_unlock(&swap_lock);
2101}
2102
2103static void reinsert_swap_info(struct swap_info_struct *p)
2104{
2105 spin_lock(&swap_lock);
ec8acf20 2106 spin_lock(&p->lock);
2a8f9449 2107 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2108 spin_unlock(&p->lock);
40531542
CEB
2109 spin_unlock(&swap_lock);
2110}
2111
67afa38e
TC
2112bool has_usable_swap(void)
2113{
2114 bool ret = true;
2115
2116 spin_lock(&swap_lock);
2117 if (plist_head_empty(&swap_active_head))
2118 ret = false;
2119 spin_unlock(&swap_lock);
2120 return ret;
2121}
2122
c4ea37c2 2123SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2124{
73c34b6a 2125 struct swap_info_struct *p = NULL;
8d69aaee 2126 unsigned char *swap_map;
2a8f9449 2127 struct swap_cluster_info *cluster_info;
4f89849d 2128 unsigned long *frontswap_map;
1da177e4
LT
2129 struct file *swap_file, *victim;
2130 struct address_space *mapping;
2131 struct inode *inode;
91a27b2a 2132 struct filename *pathname;
adfab836 2133 int err, found = 0;
5b808a23 2134 unsigned int old_block_size;
886bb7e9 2135
1da177e4
LT
2136 if (!capable(CAP_SYS_ADMIN))
2137 return -EPERM;
2138
191c5424
AV
2139 BUG_ON(!current->mm);
2140
1da177e4 2141 pathname = getname(specialfile);
1da177e4 2142 if (IS_ERR(pathname))
f58b59c1 2143 return PTR_ERR(pathname);
1da177e4 2144
669abf4e 2145 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2146 err = PTR_ERR(victim);
2147 if (IS_ERR(victim))
2148 goto out;
2149
2150 mapping = victim->f_mapping;
5d337b91 2151 spin_lock(&swap_lock);
18ab4d4c 2152 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2153 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2154 if (p->swap_file->f_mapping == mapping) {
2155 found = 1;
1da177e4 2156 break;
adfab836 2157 }
1da177e4 2158 }
1da177e4 2159 }
adfab836 2160 if (!found) {
1da177e4 2161 err = -EINVAL;
5d337b91 2162 spin_unlock(&swap_lock);
1da177e4
LT
2163 goto out_dput;
2164 }
191c5424 2165 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2166 vm_unacct_memory(p->pages);
2167 else {
2168 err = -ENOMEM;
5d337b91 2169 spin_unlock(&swap_lock);
1da177e4
LT
2170 goto out_dput;
2171 }
18ab4d4c
DS
2172 spin_lock(&swap_avail_lock);
2173 plist_del(&p->avail_list, &swap_avail_head);
2174 spin_unlock(&swap_avail_lock);
ec8acf20 2175 spin_lock(&p->lock);
78ecba08 2176 if (p->prio < 0) {
adfab836
DS
2177 struct swap_info_struct *si = p;
2178
18ab4d4c 2179 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2180 si->prio++;
18ab4d4c
DS
2181 si->list.prio--;
2182 si->avail_list.prio--;
adfab836 2183 }
78ecba08
HD
2184 least_priority++;
2185 }
18ab4d4c 2186 plist_del(&p->list, &swap_active_head);
ec8acf20 2187 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2188 total_swap_pages -= p->pages;
2189 p->flags &= ~SWP_WRITEOK;
ec8acf20 2190 spin_unlock(&p->lock);
5d337b91 2191 spin_unlock(&swap_lock);
fb4f88dc 2192
039939a6
TC
2193 disable_swap_slots_cache_lock();
2194
e1e12d2f 2195 set_current_oom_origin();
adfab836 2196 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2197 clear_current_oom_origin();
1da177e4 2198
1da177e4
LT
2199 if (err) {
2200 /* re-insert swap space back into swap_list */
cf0cac0a 2201 reinsert_swap_info(p);
039939a6 2202 reenable_swap_slots_cache_unlock();
1da177e4
LT
2203 goto out_dput;
2204 }
52b7efdb 2205
039939a6
TC
2206 reenable_swap_slots_cache_unlock();
2207
815c2c54
SL
2208 flush_work(&p->discard_work);
2209
5d337b91 2210 destroy_swap_extents(p);
570a335b
HD
2211 if (p->flags & SWP_CONTINUED)
2212 free_swap_count_continuations(p);
2213
fc0abb14 2214 mutex_lock(&swapon_mutex);
5d337b91 2215 spin_lock(&swap_lock);
ec8acf20 2216 spin_lock(&p->lock);
5d337b91
HD
2217 drain_mmlist();
2218
52b7efdb 2219 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2220 p->highest_bit = 0; /* cuts scans short */
2221 while (p->flags >= SWP_SCANNING) {
ec8acf20 2222 spin_unlock(&p->lock);
5d337b91 2223 spin_unlock(&swap_lock);
13e4b57f 2224 schedule_timeout_uninterruptible(1);
5d337b91 2225 spin_lock(&swap_lock);
ec8acf20 2226 spin_lock(&p->lock);
52b7efdb 2227 }
52b7efdb 2228
1da177e4 2229 swap_file = p->swap_file;
5b808a23 2230 old_block_size = p->old_block_size;
1da177e4
LT
2231 p->swap_file = NULL;
2232 p->max = 0;
2233 swap_map = p->swap_map;
2234 p->swap_map = NULL;
2a8f9449
SL
2235 cluster_info = p->cluster_info;
2236 p->cluster_info = NULL;
4f89849d 2237 frontswap_map = frontswap_map_get(p);
ec8acf20 2238 spin_unlock(&p->lock);
5d337b91 2239 spin_unlock(&swap_lock);
adfab836 2240 frontswap_invalidate_area(p->type);
58e97ba6 2241 frontswap_map_set(p, NULL);
fc0abb14 2242 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2243 free_percpu(p->percpu_cluster);
2244 p->percpu_cluster = NULL;
1da177e4 2245 vfree(swap_map);
2a8f9449 2246 vfree(cluster_info);
4f89849d 2247 vfree(frontswap_map);
2de1a7e4 2248 /* Destroy swap account information */
adfab836 2249 swap_cgroup_swapoff(p->type);
4b3ef9da 2250 exit_swap_address_space(p->type);
27a7faa0 2251
1da177e4
LT
2252 inode = mapping->host;
2253 if (S_ISBLK(inode->i_mode)) {
2254 struct block_device *bdev = I_BDEV(inode);
5b808a23 2255 set_blocksize(bdev, old_block_size);
e525fd89 2256 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2257 } else {
5955102c 2258 inode_lock(inode);
1da177e4 2259 inode->i_flags &= ~S_SWAPFILE;
5955102c 2260 inode_unlock(inode);
1da177e4
LT
2261 }
2262 filp_close(swap_file, NULL);
f893ab41
WY
2263
2264 /*
2265 * Clear the SWP_USED flag after all resources are freed so that swapon
2266 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2267 * not hold p->lock after we cleared its SWP_WRITEOK.
2268 */
2269 spin_lock(&swap_lock);
2270 p->flags = 0;
2271 spin_unlock(&swap_lock);
2272
1da177e4 2273 err = 0;
66d7dd51
KS
2274 atomic_inc(&proc_poll_event);
2275 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2276
2277out_dput:
2278 filp_close(victim, NULL);
2279out:
f58b59c1 2280 putname(pathname);
1da177e4
LT
2281 return err;
2282}
2283
2284#ifdef CONFIG_PROC_FS
66d7dd51
KS
2285static unsigned swaps_poll(struct file *file, poll_table *wait)
2286{
f1514638 2287 struct seq_file *seq = file->private_data;
66d7dd51
KS
2288
2289 poll_wait(file, &proc_poll_wait, wait);
2290
f1514638
KS
2291 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2292 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2293 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2294 }
2295
2296 return POLLIN | POLLRDNORM;
2297}
2298
1da177e4
LT
2299/* iterator */
2300static void *swap_start(struct seq_file *swap, loff_t *pos)
2301{
efa90a98
HD
2302 struct swap_info_struct *si;
2303 int type;
1da177e4
LT
2304 loff_t l = *pos;
2305
fc0abb14 2306 mutex_lock(&swapon_mutex);
1da177e4 2307
881e4aab
SS
2308 if (!l)
2309 return SEQ_START_TOKEN;
2310
efa90a98
HD
2311 for (type = 0; type < nr_swapfiles; type++) {
2312 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2313 si = swap_info[type];
2314 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2315 continue;
881e4aab 2316 if (!--l)
efa90a98 2317 return si;
1da177e4
LT
2318 }
2319
2320 return NULL;
2321}
2322
2323static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2324{
efa90a98
HD
2325 struct swap_info_struct *si = v;
2326 int type;
1da177e4 2327
881e4aab 2328 if (v == SEQ_START_TOKEN)
efa90a98
HD
2329 type = 0;
2330 else
2331 type = si->type + 1;
881e4aab 2332
efa90a98
HD
2333 for (; type < nr_swapfiles; type++) {
2334 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2335 si = swap_info[type];
2336 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2337 continue;
2338 ++*pos;
efa90a98 2339 return si;
1da177e4
LT
2340 }
2341
2342 return NULL;
2343}
2344
2345static void swap_stop(struct seq_file *swap, void *v)
2346{
fc0abb14 2347 mutex_unlock(&swapon_mutex);
1da177e4
LT
2348}
2349
2350static int swap_show(struct seq_file *swap, void *v)
2351{
efa90a98 2352 struct swap_info_struct *si = v;
1da177e4
LT
2353 struct file *file;
2354 int len;
2355
efa90a98 2356 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2357 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2358 return 0;
2359 }
1da177e4 2360
efa90a98 2361 file = si->swap_file;
2726d566 2362 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2363 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2364 len < 40 ? 40 - len : 1, " ",
496ad9aa 2365 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2366 "partition" : "file\t",
efa90a98
HD
2367 si->pages << (PAGE_SHIFT - 10),
2368 si->inuse_pages << (PAGE_SHIFT - 10),
2369 si->prio);
1da177e4
LT
2370 return 0;
2371}
2372
15ad7cdc 2373static const struct seq_operations swaps_op = {
1da177e4
LT
2374 .start = swap_start,
2375 .next = swap_next,
2376 .stop = swap_stop,
2377 .show = swap_show
2378};
2379
2380static int swaps_open(struct inode *inode, struct file *file)
2381{
f1514638 2382 struct seq_file *seq;
66d7dd51
KS
2383 int ret;
2384
66d7dd51 2385 ret = seq_open(file, &swaps_op);
f1514638 2386 if (ret)
66d7dd51 2387 return ret;
66d7dd51 2388
f1514638
KS
2389 seq = file->private_data;
2390 seq->poll_event = atomic_read(&proc_poll_event);
2391 return 0;
1da177e4
LT
2392}
2393
15ad7cdc 2394static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2395 .open = swaps_open,
2396 .read = seq_read,
2397 .llseek = seq_lseek,
2398 .release = seq_release,
66d7dd51 2399 .poll = swaps_poll,
1da177e4
LT
2400};
2401
2402static int __init procswaps_init(void)
2403{
3d71f86f 2404 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2405 return 0;
2406}
2407__initcall(procswaps_init);
2408#endif /* CONFIG_PROC_FS */
2409
1796316a
JB
2410#ifdef MAX_SWAPFILES_CHECK
2411static int __init max_swapfiles_check(void)
2412{
2413 MAX_SWAPFILES_CHECK();
2414 return 0;
2415}
2416late_initcall(max_swapfiles_check);
2417#endif
2418
53cbb243 2419static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2420{
73c34b6a 2421 struct swap_info_struct *p;
1da177e4 2422 unsigned int type;
efa90a98
HD
2423
2424 p = kzalloc(sizeof(*p), GFP_KERNEL);
2425 if (!p)
53cbb243 2426 return ERR_PTR(-ENOMEM);
efa90a98 2427
5d337b91 2428 spin_lock(&swap_lock);
efa90a98
HD
2429 for (type = 0; type < nr_swapfiles; type++) {
2430 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2431 break;
efa90a98 2432 }
0697212a 2433 if (type >= MAX_SWAPFILES) {
5d337b91 2434 spin_unlock(&swap_lock);
efa90a98 2435 kfree(p);
730c0581 2436 return ERR_PTR(-EPERM);
1da177e4 2437 }
efa90a98
HD
2438 if (type >= nr_swapfiles) {
2439 p->type = type;
2440 swap_info[type] = p;
2441 /*
2442 * Write swap_info[type] before nr_swapfiles, in case a
2443 * racing procfs swap_start() or swap_next() is reading them.
2444 * (We never shrink nr_swapfiles, we never free this entry.)
2445 */
2446 smp_wmb();
2447 nr_swapfiles++;
2448 } else {
2449 kfree(p);
2450 p = swap_info[type];
2451 /*
2452 * Do not memset this entry: a racing procfs swap_next()
2453 * would be relying on p->type to remain valid.
2454 */
2455 }
9625a5f2 2456 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c
DS
2457 plist_node_init(&p->list, 0);
2458 plist_node_init(&p->avail_list, 0);
1da177e4 2459 p->flags = SWP_USED;
5d337b91 2460 spin_unlock(&swap_lock);
ec8acf20 2461 spin_lock_init(&p->lock);
efa90a98 2462
53cbb243 2463 return p;
53cbb243
CEB
2464}
2465
4d0e1e10
CEB
2466static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2467{
2468 int error;
2469
2470 if (S_ISBLK(inode->i_mode)) {
2471 p->bdev = bdgrab(I_BDEV(inode));
2472 error = blkdev_get(p->bdev,
6f179af8 2473 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2474 if (error < 0) {
2475 p->bdev = NULL;
6f179af8 2476 return error;
4d0e1e10
CEB
2477 }
2478 p->old_block_size = block_size(p->bdev);
2479 error = set_blocksize(p->bdev, PAGE_SIZE);
2480 if (error < 0)
87ade72a 2481 return error;
4d0e1e10
CEB
2482 p->flags |= SWP_BLKDEV;
2483 } else if (S_ISREG(inode->i_mode)) {
2484 p->bdev = inode->i_sb->s_bdev;
5955102c 2485 inode_lock(inode);
87ade72a
CEB
2486 if (IS_SWAPFILE(inode))
2487 return -EBUSY;
2488 } else
2489 return -EINVAL;
4d0e1e10
CEB
2490
2491 return 0;
4d0e1e10
CEB
2492}
2493
ca8bd38b
CEB
2494static unsigned long read_swap_header(struct swap_info_struct *p,
2495 union swap_header *swap_header,
2496 struct inode *inode)
2497{
2498 int i;
2499 unsigned long maxpages;
2500 unsigned long swapfilepages;
d6bbbd29 2501 unsigned long last_page;
ca8bd38b
CEB
2502
2503 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2504 pr_err("Unable to find swap-space signature\n");
38719025 2505 return 0;
ca8bd38b
CEB
2506 }
2507
2508 /* swap partition endianess hack... */
2509 if (swab32(swap_header->info.version) == 1) {
2510 swab32s(&swap_header->info.version);
2511 swab32s(&swap_header->info.last_page);
2512 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2513 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2514 return 0;
ca8bd38b
CEB
2515 for (i = 0; i < swap_header->info.nr_badpages; i++)
2516 swab32s(&swap_header->info.badpages[i]);
2517 }
2518 /* Check the swap header's sub-version */
2519 if (swap_header->info.version != 1) {
465c47fd
AM
2520 pr_warn("Unable to handle swap header version %d\n",
2521 swap_header->info.version);
38719025 2522 return 0;
ca8bd38b
CEB
2523 }
2524
2525 p->lowest_bit = 1;
2526 p->cluster_next = 1;
2527 p->cluster_nr = 0;
2528
2529 /*
2530 * Find out how many pages are allowed for a single swap
9b15b817 2531 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2532 * of bits for the swap offset in the swp_entry_t type, and
2533 * 2) the number of bits in the swap pte as defined by the
9b15b817 2534 * different architectures. In order to find the
a2c16d6c 2535 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2536 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2537 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2538 * offset is extracted. This will mask all the bits from
2539 * the initial ~0UL mask that can't be encoded in either
2540 * the swp_entry_t or the architecture definition of a
9b15b817 2541 * swap pte.
ca8bd38b
CEB
2542 */
2543 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2544 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2545 last_page = swap_header->info.last_page;
2546 if (last_page > maxpages) {
465c47fd 2547 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2548 maxpages << (PAGE_SHIFT - 10),
2549 last_page << (PAGE_SHIFT - 10));
2550 }
2551 if (maxpages > last_page) {
2552 maxpages = last_page + 1;
ca8bd38b
CEB
2553 /* p->max is an unsigned int: don't overflow it */
2554 if ((unsigned int)maxpages == 0)
2555 maxpages = UINT_MAX;
2556 }
2557 p->highest_bit = maxpages - 1;
2558
2559 if (!maxpages)
38719025 2560 return 0;
ca8bd38b
CEB
2561 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2562 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2563 pr_warn("Swap area shorter than signature indicates\n");
38719025 2564 return 0;
ca8bd38b
CEB
2565 }
2566 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2567 return 0;
ca8bd38b 2568 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2569 return 0;
ca8bd38b
CEB
2570
2571 return maxpages;
ca8bd38b
CEB
2572}
2573
4b3ef9da 2574#define SWAP_CLUSTER_INFO_COLS \
235b6217 2575 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
2576#define SWAP_CLUSTER_SPACE_COLS \
2577 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2578#define SWAP_CLUSTER_COLS \
2579 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 2580
915d4d7b
CEB
2581static int setup_swap_map_and_extents(struct swap_info_struct *p,
2582 union swap_header *swap_header,
2583 unsigned char *swap_map,
2a8f9449 2584 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2585 unsigned long maxpages,
2586 sector_t *span)
2587{
235b6217 2588 unsigned int j, k;
915d4d7b
CEB
2589 unsigned int nr_good_pages;
2590 int nr_extents;
2a8f9449 2591 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
2592 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2593 unsigned long i, idx;
915d4d7b
CEB
2594
2595 nr_good_pages = maxpages - 1; /* omit header page */
2596
6b534915
HY
2597 cluster_list_init(&p->free_clusters);
2598 cluster_list_init(&p->discard_clusters);
2a8f9449 2599
915d4d7b
CEB
2600 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2601 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2602 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2603 return -EINVAL;
915d4d7b
CEB
2604 if (page_nr < maxpages) {
2605 swap_map[page_nr] = SWAP_MAP_BAD;
2606 nr_good_pages--;
2a8f9449
SL
2607 /*
2608 * Haven't marked the cluster free yet, no list
2609 * operation involved
2610 */
2611 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2612 }
2613 }
2614
2a8f9449
SL
2615 /* Haven't marked the cluster free yet, no list operation involved */
2616 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2617 inc_cluster_info_page(p, cluster_info, i);
2618
915d4d7b
CEB
2619 if (nr_good_pages) {
2620 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2621 /*
2622 * Not mark the cluster free yet, no list
2623 * operation involved
2624 */
2625 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2626 p->max = maxpages;
2627 p->pages = nr_good_pages;
2628 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2629 if (nr_extents < 0)
2630 return nr_extents;
915d4d7b
CEB
2631 nr_good_pages = p->pages;
2632 }
2633 if (!nr_good_pages) {
465c47fd 2634 pr_warn("Empty swap-file\n");
bdb8e3f6 2635 return -EINVAL;
915d4d7b
CEB
2636 }
2637
2a8f9449
SL
2638 if (!cluster_info)
2639 return nr_extents;
2640
235b6217 2641
4b3ef9da
HY
2642 /*
2643 * Reduce false cache line sharing between cluster_info and
2644 * sharing same address space.
2645 */
235b6217
HY
2646 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2647 j = (k + col) % SWAP_CLUSTER_COLS;
2648 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2649 idx = i * SWAP_CLUSTER_COLS + j;
2650 if (idx >= nr_clusters)
2651 continue;
2652 if (cluster_count(&cluster_info[idx]))
2653 continue;
2a8f9449 2654 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
2655 cluster_list_add_tail(&p->free_clusters, cluster_info,
2656 idx);
2a8f9449 2657 }
2a8f9449 2658 }
915d4d7b 2659 return nr_extents;
915d4d7b
CEB
2660}
2661
dcf6b7dd
RA
2662/*
2663 * Helper to sys_swapon determining if a given swap
2664 * backing device queue supports DISCARD operations.
2665 */
2666static bool swap_discardable(struct swap_info_struct *si)
2667{
2668 struct request_queue *q = bdev_get_queue(si->bdev);
2669
2670 if (!q || !blk_queue_discard(q))
2671 return false;
2672
2673 return true;
2674}
2675
53cbb243
CEB
2676SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2677{
2678 struct swap_info_struct *p;
91a27b2a 2679 struct filename *name;
53cbb243
CEB
2680 struct file *swap_file = NULL;
2681 struct address_space *mapping;
40531542 2682 int prio;
53cbb243
CEB
2683 int error;
2684 union swap_header *swap_header;
915d4d7b 2685 int nr_extents;
53cbb243
CEB
2686 sector_t span;
2687 unsigned long maxpages;
53cbb243 2688 unsigned char *swap_map = NULL;
2a8f9449 2689 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2690 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2691 struct page *page = NULL;
2692 struct inode *inode = NULL;
53cbb243 2693
d15cab97
HD
2694 if (swap_flags & ~SWAP_FLAGS_VALID)
2695 return -EINVAL;
2696
53cbb243
CEB
2697 if (!capable(CAP_SYS_ADMIN))
2698 return -EPERM;
2699
2700 p = alloc_swap_info();
2542e513
CEB
2701 if (IS_ERR(p))
2702 return PTR_ERR(p);
53cbb243 2703
815c2c54
SL
2704 INIT_WORK(&p->discard_work, swap_discard_work);
2705
1da177e4 2706 name = getname(specialfile);
1da177e4 2707 if (IS_ERR(name)) {
7de7fb6b 2708 error = PTR_ERR(name);
1da177e4 2709 name = NULL;
bd69010b 2710 goto bad_swap;
1da177e4 2711 }
669abf4e 2712 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2713 if (IS_ERR(swap_file)) {
7de7fb6b 2714 error = PTR_ERR(swap_file);
1da177e4 2715 swap_file = NULL;
bd69010b 2716 goto bad_swap;
1da177e4
LT
2717 }
2718
2719 p->swap_file = swap_file;
2720 mapping = swap_file->f_mapping;
2130781e 2721 inode = mapping->host;
6f179af8 2722
5955102c 2723 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
2724 error = claim_swapfile(p, inode);
2725 if (unlikely(error))
1da177e4 2726 goto bad_swap;
1da177e4 2727
1da177e4
LT
2728 /*
2729 * Read the swap header.
2730 */
2731 if (!mapping->a_ops->readpage) {
2732 error = -EINVAL;
2733 goto bad_swap;
2734 }
090d2b18 2735 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2736 if (IS_ERR(page)) {
2737 error = PTR_ERR(page);
2738 goto bad_swap;
2739 }
81e33971 2740 swap_header = kmap(page);
1da177e4 2741
ca8bd38b
CEB
2742 maxpages = read_swap_header(p, swap_header, inode);
2743 if (unlikely(!maxpages)) {
1da177e4
LT
2744 error = -EINVAL;
2745 goto bad_swap;
2746 }
886bb7e9 2747
81e33971 2748 /* OK, set up the swap map and apply the bad block list */
803d0c83 2749 swap_map = vzalloc(maxpages);
81e33971
HD
2750 if (!swap_map) {
2751 error = -ENOMEM;
2752 goto bad_swap;
2753 }
f0571429
MK
2754
2755 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2756 p->flags |= SWP_STABLE_WRITES;
2757
2a8f9449 2758 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 2759 int cpu;
235b6217 2760 unsigned long ci, nr_cluster;
6f179af8 2761
2a8f9449
SL
2762 p->flags |= SWP_SOLIDSTATE;
2763 /*
2764 * select a random position to start with to help wear leveling
2765 * SSD
2766 */
2767 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 2768 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 2769
235b6217 2770 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2a8f9449
SL
2771 if (!cluster_info) {
2772 error = -ENOMEM;
2773 goto bad_swap;
2774 }
235b6217
HY
2775
2776 for (ci = 0; ci < nr_cluster; ci++)
2777 spin_lock_init(&((cluster_info + ci)->lock));
2778
ebc2a1a6
SL
2779 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2780 if (!p->percpu_cluster) {
2781 error = -ENOMEM;
2782 goto bad_swap;
2783 }
6f179af8 2784 for_each_possible_cpu(cpu) {
ebc2a1a6 2785 struct percpu_cluster *cluster;
6f179af8 2786 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
2787 cluster_set_null(&cluster->index);
2788 }
2a8f9449 2789 }
1da177e4 2790
1421ef3c
CEB
2791 error = swap_cgroup_swapon(p->type, maxpages);
2792 if (error)
2793 goto bad_swap;
2794
915d4d7b 2795 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2796 cluster_info, maxpages, &span);
915d4d7b
CEB
2797 if (unlikely(nr_extents < 0)) {
2798 error = nr_extents;
1da177e4
LT
2799 goto bad_swap;
2800 }
38b5faf4 2801 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 2802 if (IS_ENABLED(CONFIG_FRONTSWAP))
7b57976d 2803 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2804
2a8f9449
SL
2805 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2806 /*
2807 * When discard is enabled for swap with no particular
2808 * policy flagged, we set all swap discard flags here in
2809 * order to sustain backward compatibility with older
2810 * swapon(8) releases.
2811 */
2812 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2813 SWP_PAGE_DISCARD);
dcf6b7dd 2814
2a8f9449
SL
2815 /*
2816 * By flagging sys_swapon, a sysadmin can tell us to
2817 * either do single-time area discards only, or to just
2818 * perform discards for released swap page-clusters.
2819 * Now it's time to adjust the p->flags accordingly.
2820 */
2821 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2822 p->flags &= ~SWP_PAGE_DISCARD;
2823 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2824 p->flags &= ~SWP_AREA_DISCARD;
2825
2826 /* issue a swapon-time discard if it's still required */
2827 if (p->flags & SWP_AREA_DISCARD) {
2828 int err = discard_swap(p);
2829 if (unlikely(err))
2830 pr_err("swapon: discard_swap(%p): %d\n",
2831 p, err);
dcf6b7dd 2832 }
20137a49 2833 }
6a6ba831 2834
4b3ef9da
HY
2835 error = init_swap_address_space(p->type, maxpages);
2836 if (error)
2837 goto bad_swap;
2838
fc0abb14 2839 mutex_lock(&swapon_mutex);
40531542 2840 prio = -1;
78ecba08 2841 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2842 prio =
78ecba08 2843 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2844 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2845
756a025f 2846 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2847 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2848 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2849 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2850 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2851 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2852 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2853 (frontswap_map) ? "FS" : "");
c69dbfb8 2854
fc0abb14 2855 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2856 atomic_inc(&proc_poll_event);
2857 wake_up_interruptible(&proc_poll_wait);
2858
9b01c350
CEB
2859 if (S_ISREG(inode->i_mode))
2860 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2861 error = 0;
2862 goto out;
2863bad_swap:
ebc2a1a6
SL
2864 free_percpu(p->percpu_cluster);
2865 p->percpu_cluster = NULL;
bd69010b 2866 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2867 set_blocksize(p->bdev, p->old_block_size);
2868 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2869 }
4cd3bb10 2870 destroy_swap_extents(p);
e8e6c2ec 2871 swap_cgroup_swapoff(p->type);
5d337b91 2872 spin_lock(&swap_lock);
1da177e4 2873 p->swap_file = NULL;
1da177e4 2874 p->flags = 0;
5d337b91 2875 spin_unlock(&swap_lock);
1da177e4 2876 vfree(swap_map);
2a8f9449 2877 vfree(cluster_info);
52c50567 2878 if (swap_file) {
2130781e 2879 if (inode && S_ISREG(inode->i_mode)) {
5955102c 2880 inode_unlock(inode);
2130781e
CEB
2881 inode = NULL;
2882 }
1da177e4 2883 filp_close(swap_file, NULL);
52c50567 2884 }
1da177e4
LT
2885out:
2886 if (page && !IS_ERR(page)) {
2887 kunmap(page);
09cbfeaf 2888 put_page(page);
1da177e4
LT
2889 }
2890 if (name)
2891 putname(name);
9b01c350 2892 if (inode && S_ISREG(inode->i_mode))
5955102c 2893 inode_unlock(inode);
039939a6
TC
2894 if (!error)
2895 enable_swap_slots_cache();
1da177e4
LT
2896 return error;
2897}
2898
2899void si_swapinfo(struct sysinfo *val)
2900{
efa90a98 2901 unsigned int type;
1da177e4
LT
2902 unsigned long nr_to_be_unused = 0;
2903
5d337b91 2904 spin_lock(&swap_lock);
efa90a98
HD
2905 for (type = 0; type < nr_swapfiles; type++) {
2906 struct swap_info_struct *si = swap_info[type];
2907
2908 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2909 nr_to_be_unused += si->inuse_pages;
1da177e4 2910 }
ec8acf20 2911 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2912 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2913 spin_unlock(&swap_lock);
1da177e4
LT
2914}
2915
2916/*
2917 * Verify that a swap entry is valid and increment its swap map count.
2918 *
355cfa73
KH
2919 * Returns error code in following case.
2920 * - success -> 0
2921 * - swp_entry is invalid -> EINVAL
2922 * - swp_entry is migration entry -> EINVAL
2923 * - swap-cache reference is requested but there is already one. -> EEXIST
2924 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2925 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2926 */
8d69aaee 2927static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2928{
73c34b6a 2929 struct swap_info_struct *p;
235b6217 2930 struct swap_cluster_info *ci;
1da177e4 2931 unsigned long offset, type;
8d69aaee
HD
2932 unsigned char count;
2933 unsigned char has_cache;
253d553b 2934 int err = -EINVAL;
1da177e4 2935
a7420aa5 2936 if (non_swap_entry(entry))
253d553b 2937 goto out;
0697212a 2938
1da177e4
LT
2939 type = swp_type(entry);
2940 if (type >= nr_swapfiles)
2941 goto bad_file;
efa90a98 2942 p = swap_info[type];
1da177e4 2943 offset = swp_offset(entry);
355cfa73 2944 if (unlikely(offset >= p->max))
235b6217
HY
2945 goto out;
2946
2947 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 2948
253d553b 2949 count = p->swap_map[offset];
edfe23da
SL
2950
2951 /*
2952 * swapin_readahead() doesn't check if a swap entry is valid, so the
2953 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2954 */
2955 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2956 err = -ENOENT;
2957 goto unlock_out;
2958 }
2959
253d553b
HD
2960 has_cache = count & SWAP_HAS_CACHE;
2961 count &= ~SWAP_HAS_CACHE;
2962 err = 0;
355cfa73 2963
253d553b 2964 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2965
2966 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2967 if (!has_cache && count)
2968 has_cache = SWAP_HAS_CACHE;
2969 else if (has_cache) /* someone else added cache */
2970 err = -EEXIST;
2971 else /* no users remaining */
2972 err = -ENOENT;
355cfa73
KH
2973
2974 } else if (count || has_cache) {
253d553b 2975
570a335b
HD
2976 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2977 count += usage;
2978 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2979 err = -EINVAL;
570a335b
HD
2980 else if (swap_count_continued(p, offset, count))
2981 count = COUNT_CONTINUED;
2982 else
2983 err = -ENOMEM;
355cfa73 2984 } else
253d553b
HD
2985 err = -ENOENT; /* unused swap entry */
2986
2987 p->swap_map[offset] = count | has_cache;
2988
355cfa73 2989unlock_out:
235b6217 2990 unlock_cluster_or_swap_info(p, ci);
1da177e4 2991out:
253d553b 2992 return err;
1da177e4
LT
2993
2994bad_file:
465c47fd 2995 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2996 goto out;
2997}
253d553b 2998
aaa46865
HD
2999/*
3000 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3001 * (in which case its reference count is never incremented).
3002 */
3003void swap_shmem_alloc(swp_entry_t entry)
3004{
3005 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3006}
3007
355cfa73 3008/*
08259d58
HD
3009 * Increase reference count of swap entry by 1.
3010 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3011 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3012 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3013 * might occur if a page table entry has got corrupted.
355cfa73 3014 */
570a335b 3015int swap_duplicate(swp_entry_t entry)
355cfa73 3016{
570a335b
HD
3017 int err = 0;
3018
3019 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3020 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3021 return err;
355cfa73 3022}
1da177e4 3023
cb4b86ba 3024/*
355cfa73
KH
3025 * @entry: swap entry for which we allocate swap cache.
3026 *
73c34b6a 3027 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3028 * This can return error codes. Returns 0 at success.
3029 * -EBUSY means there is a swap cache.
3030 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3031 */
3032int swapcache_prepare(swp_entry_t entry)
3033{
253d553b 3034 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3035}
3036
f981c595
MG
3037struct swap_info_struct *page_swap_info(struct page *page)
3038{
3039 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3040 return swap_info[swp_type(swap)];
3041}
3042
3043/*
3044 * out-of-line __page_file_ methods to avoid include hell.
3045 */
3046struct address_space *__page_file_mapping(struct page *page)
3047{
309381fe 3048 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3049 return page_swap_info(page)->swap_file->f_mapping;
3050}
3051EXPORT_SYMBOL_GPL(__page_file_mapping);
3052
3053pgoff_t __page_file_index(struct page *page)
3054{
3055 swp_entry_t swap = { .val = page_private(page) };
309381fe 3056 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
3057 return swp_offset(swap);
3058}
3059EXPORT_SYMBOL_GPL(__page_file_index);
3060
570a335b
HD
3061/*
3062 * add_swap_count_continuation - called when a swap count is duplicated
3063 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3064 * page of the original vmalloc'ed swap_map, to hold the continuation count
3065 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3066 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3067 *
3068 * These continuation pages are seldom referenced: the common paths all work
3069 * on the original swap_map, only referring to a continuation page when the
3070 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3071 *
3072 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3073 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3074 * can be called after dropping locks.
3075 */
3076int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3077{
3078 struct swap_info_struct *si;
235b6217 3079 struct swap_cluster_info *ci;
570a335b
HD
3080 struct page *head;
3081 struct page *page;
3082 struct page *list_page;
3083 pgoff_t offset;
3084 unsigned char count;
3085
3086 /*
3087 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3088 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3089 */
3090 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3091
3092 si = swap_info_get(entry);
3093 if (!si) {
3094 /*
3095 * An acceptable race has occurred since the failing
3096 * __swap_duplicate(): the swap entry has been freed,
3097 * perhaps even the whole swap_map cleared for swapoff.
3098 */
3099 goto outer;
3100 }
3101
3102 offset = swp_offset(entry);
235b6217
HY
3103
3104 ci = lock_cluster(si, offset);
3105
570a335b
HD
3106 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3107
3108 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3109 /*
3110 * The higher the swap count, the more likely it is that tasks
3111 * will race to add swap count continuation: we need to avoid
3112 * over-provisioning.
3113 */
3114 goto out;
3115 }
3116
3117 if (!page) {
235b6217 3118 unlock_cluster(ci);
ec8acf20 3119 spin_unlock(&si->lock);
570a335b
HD
3120 return -ENOMEM;
3121 }
3122
3123 /*
3124 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3125 * no architecture is using highmem pages for kernel page tables: so it
3126 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3127 */
3128 head = vmalloc_to_page(si->swap_map + offset);
3129 offset &= ~PAGE_MASK;
3130
3131 /*
3132 * Page allocation does not initialize the page's lru field,
3133 * but it does always reset its private field.
3134 */
3135 if (!page_private(head)) {
3136 BUG_ON(count & COUNT_CONTINUED);
3137 INIT_LIST_HEAD(&head->lru);
3138 set_page_private(head, SWP_CONTINUED);
3139 si->flags |= SWP_CONTINUED;
3140 }
3141
3142 list_for_each_entry(list_page, &head->lru, lru) {
3143 unsigned char *map;
3144
3145 /*
3146 * If the previous map said no continuation, but we've found
3147 * a continuation page, free our allocation and use this one.
3148 */
3149 if (!(count & COUNT_CONTINUED))
3150 goto out;
3151
9b04c5fe 3152 map = kmap_atomic(list_page) + offset;
570a335b 3153 count = *map;
9b04c5fe 3154 kunmap_atomic(map);
570a335b
HD
3155
3156 /*
3157 * If this continuation count now has some space in it,
3158 * free our allocation and use this one.
3159 */
3160 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3161 goto out;
3162 }
3163
3164 list_add_tail(&page->lru, &head->lru);
3165 page = NULL; /* now it's attached, don't free it */
3166out:
235b6217 3167 unlock_cluster(ci);
ec8acf20 3168 spin_unlock(&si->lock);
570a335b
HD
3169outer:
3170 if (page)
3171 __free_page(page);
3172 return 0;
3173}
3174
3175/*
3176 * swap_count_continued - when the original swap_map count is incremented
3177 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3178 * into, carry if so, or else fail until a new continuation page is allocated;
3179 * when the original swap_map count is decremented from 0 with continuation,
3180 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3181 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3182 * lock.
570a335b
HD
3183 */
3184static bool swap_count_continued(struct swap_info_struct *si,
3185 pgoff_t offset, unsigned char count)
3186{
3187 struct page *head;
3188 struct page *page;
3189 unsigned char *map;
3190
3191 head = vmalloc_to_page(si->swap_map + offset);
3192 if (page_private(head) != SWP_CONTINUED) {
3193 BUG_ON(count & COUNT_CONTINUED);
3194 return false; /* need to add count continuation */
3195 }
3196
3197 offset &= ~PAGE_MASK;
3198 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3199 map = kmap_atomic(page) + offset;
570a335b
HD
3200
3201 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3202 goto init_map; /* jump over SWAP_CONT_MAX checks */
3203
3204 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3205 /*
3206 * Think of how you add 1 to 999
3207 */
3208 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3209 kunmap_atomic(map);
570a335b
HD
3210 page = list_entry(page->lru.next, struct page, lru);
3211 BUG_ON(page == head);
9b04c5fe 3212 map = kmap_atomic(page) + offset;
570a335b
HD
3213 }
3214 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3215 kunmap_atomic(map);
570a335b
HD
3216 page = list_entry(page->lru.next, struct page, lru);
3217 if (page == head)
3218 return false; /* add count continuation */
9b04c5fe 3219 map = kmap_atomic(page) + offset;
570a335b
HD
3220init_map: *map = 0; /* we didn't zero the page */
3221 }
3222 *map += 1;
9b04c5fe 3223 kunmap_atomic(map);
570a335b
HD
3224 page = list_entry(page->lru.prev, struct page, lru);
3225 while (page != head) {
9b04c5fe 3226 map = kmap_atomic(page) + offset;
570a335b 3227 *map = COUNT_CONTINUED;
9b04c5fe 3228 kunmap_atomic(map);
570a335b
HD
3229 page = list_entry(page->lru.prev, struct page, lru);
3230 }
3231 return true; /* incremented */
3232
3233 } else { /* decrementing */
3234 /*
3235 * Think of how you subtract 1 from 1000
3236 */
3237 BUG_ON(count != COUNT_CONTINUED);
3238 while (*map == COUNT_CONTINUED) {
9b04c5fe 3239 kunmap_atomic(map);
570a335b
HD
3240 page = list_entry(page->lru.next, struct page, lru);
3241 BUG_ON(page == head);
9b04c5fe 3242 map = kmap_atomic(page) + offset;
570a335b
HD
3243 }
3244 BUG_ON(*map == 0);
3245 *map -= 1;
3246 if (*map == 0)
3247 count = 0;
9b04c5fe 3248 kunmap_atomic(map);
570a335b
HD
3249 page = list_entry(page->lru.prev, struct page, lru);
3250 while (page != head) {
9b04c5fe 3251 map = kmap_atomic(page) + offset;
570a335b
HD
3252 *map = SWAP_CONT_MAX | count;
3253 count = COUNT_CONTINUED;
9b04c5fe 3254 kunmap_atomic(map);
570a335b
HD
3255 page = list_entry(page->lru.prev, struct page, lru);
3256 }
3257 return count == COUNT_CONTINUED;
3258 }
3259}
3260
3261/*
3262 * free_swap_count_continuations - swapoff free all the continuation pages
3263 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3264 */
3265static void free_swap_count_continuations(struct swap_info_struct *si)
3266{
3267 pgoff_t offset;
3268
3269 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3270 struct page *head;
3271 head = vmalloc_to_page(si->swap_map + offset);
3272 if (page_private(head)) {
0d576d20
GT
3273 struct page *page, *next;
3274
3275 list_for_each_entry_safe(page, next, &head->lru, lru) {
3276 list_del(&page->lru);
570a335b
HD
3277 __free_page(page);
3278 }
3279 }
3280 }
3281}