memcg: remove unused code from kmem_cache_destroy_work_func
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4
LT
8#include <linux/mm.h>
9#include <linux/hugetlb.h>
10#include <linux/mman.h>
11#include <linux/slab.h>
12#include <linux/kernel_stat.h>
13#include <linux/swap.h>
14#include <linux/vmalloc.h>
15#include <linux/pagemap.h>
16#include <linux/namei.h>
072441e2 17#include <linux/shmem_fs.h>
1da177e4 18#include <linux/blkdev.h>
20137a49 19#include <linux/random.h>
1da177e4
LT
20#include <linux/writeback.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/init.h>
5ad64688 24#include <linux/ksm.h>
1da177e4
LT
25#include <linux/rmap.h>
26#include <linux/security.h>
27#include <linux/backing-dev.h>
fc0abb14 28#include <linux/mutex.h>
c59ede7b 29#include <linux/capability.h>
1da177e4 30#include <linux/syscalls.h>
8a9f3ccd 31#include <linux/memcontrol.h>
66d7dd51 32#include <linux/poll.h>
72788c38 33#include <linux/oom.h>
38b5faf4
DM
34#include <linux/frontswap.h>
35#include <linux/swapfile.h>
f981c595 36#include <linux/export.h>
1da177e4
LT
37
38#include <asm/pgtable.h>
39#include <asm/tlbflush.h>
40#include <linux/swapops.h>
27a7faa0 41#include <linux/page_cgroup.h>
1da177e4 42
570a335b
HD
43static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 46static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 47
38b5faf4 48DEFINE_SPINLOCK(swap_lock);
7c363b8c 49static unsigned int nr_swapfiles;
ec8acf20
SL
50atomic_long_t nr_swap_pages;
51/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 52long total_swap_pages;
78ecba08 53static int least_priority;
ec8acf20 54static atomic_t highest_priority_index = ATOMIC_INIT(-1);
1da177e4 55
1da177e4
LT
56static const char Bad_file[] = "Bad swap file entry ";
57static const char Unused_file[] = "Unused swap file entry ";
58static const char Bad_offset[] = "Bad swap offset entry ";
59static const char Unused_offset[] = "Unused swap offset entry ";
60
38b5faf4 61struct swap_list_t swap_list = {-1, -1};
1da177e4 62
38b5faf4 63struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 64
fc0abb14 65static DEFINE_MUTEX(swapon_mutex);
1da177e4 66
66d7dd51
KS
67static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68/* Activity counter to indicate that a swapon or swapoff has occurred */
69static atomic_t proc_poll_event = ATOMIC_INIT(0);
70
8d69aaee 71static inline unsigned char swap_count(unsigned char ent)
355cfa73 72{
570a335b 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
74}
75
efa90a98 76/* returns 1 if swap entry is freed */
c9e44410
KH
77static int
78__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79{
efa90a98 80 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
81 struct page *page;
82 int ret = 0;
83
33806f06 84 page = find_get_page(swap_address_space(entry), entry.val);
c9e44410
KH
85 if (!page)
86 return 0;
87 /*
88 * This function is called from scan_swap_map() and it's called
89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 * We have to use trylock for avoiding deadlock. This is a special
91 * case and you should use try_to_free_swap() with explicit lock_page()
92 * in usual operations.
93 */
94 if (trylock_page(page)) {
95 ret = try_to_free_swap(page);
96 unlock_page(page);
97 }
98 page_cache_release(page);
99 return ret;
100}
355cfa73 101
6a6ba831
HD
102/*
103 * swapon tell device that all the old swap contents can be discarded,
104 * to allow the swap device to optimize its wear-levelling.
105 */
106static int discard_swap(struct swap_info_struct *si)
107{
108 struct swap_extent *se;
9625a5f2
HD
109 sector_t start_block;
110 sector_t nr_blocks;
6a6ba831
HD
111 int err = 0;
112
9625a5f2
HD
113 /* Do not discard the swap header page! */
114 se = &si->first_swap_extent;
115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 if (nr_blocks) {
118 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 119 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
120 if (err)
121 return err;
122 cond_resched();
123 }
6a6ba831 124
9625a5f2
HD
125 list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 start_block = se->start_block << (PAGE_SHIFT - 9);
127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
128
129 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 130 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
131 if (err)
132 break;
133
134 cond_resched();
135 }
136 return err; /* That will often be -EOPNOTSUPP */
137}
138
7992fde7
HD
139/*
140 * swap allocation tell device that a cluster of swap can now be discarded,
141 * to allow the swap device to optimize its wear-levelling.
142 */
143static void discard_swap_cluster(struct swap_info_struct *si,
144 pgoff_t start_page, pgoff_t nr_pages)
145{
146 struct swap_extent *se = si->curr_swap_extent;
147 int found_extent = 0;
148
149 while (nr_pages) {
150 struct list_head *lh;
151
152 if (se->start_page <= start_page &&
153 start_page < se->start_page + se->nr_pages) {
154 pgoff_t offset = start_page - se->start_page;
155 sector_t start_block = se->start_block + offset;
858a2990 156 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
157
158 if (nr_blocks > nr_pages)
159 nr_blocks = nr_pages;
160 start_page += nr_blocks;
161 nr_pages -= nr_blocks;
162
163 if (!found_extent++)
164 si->curr_swap_extent = se;
165
166 start_block <<= PAGE_SHIFT - 9;
167 nr_blocks <<= PAGE_SHIFT - 9;
168 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 169 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
170 break;
171 }
172
173 lh = se->list.next;
7992fde7
HD
174 se = list_entry(lh, struct swap_extent, list);
175 }
176}
177
048c27fd
HD
178#define SWAPFILE_CLUSTER 256
179#define LATENCY_LIMIT 256
180
2a8f9449
SL
181static inline void cluster_set_flag(struct swap_cluster_info *info,
182 unsigned int flag)
183{
184 info->flags = flag;
185}
186
187static inline unsigned int cluster_count(struct swap_cluster_info *info)
188{
189 return info->data;
190}
191
192static inline void cluster_set_count(struct swap_cluster_info *info,
193 unsigned int c)
194{
195 info->data = c;
196}
197
198static inline void cluster_set_count_flag(struct swap_cluster_info *info,
199 unsigned int c, unsigned int f)
200{
201 info->flags = f;
202 info->data = c;
203}
204
205static inline unsigned int cluster_next(struct swap_cluster_info *info)
206{
207 return info->data;
208}
209
210static inline void cluster_set_next(struct swap_cluster_info *info,
211 unsigned int n)
212{
213 info->data = n;
214}
215
216static inline void cluster_set_next_flag(struct swap_cluster_info *info,
217 unsigned int n, unsigned int f)
218{
219 info->flags = f;
220 info->data = n;
221}
222
223static inline bool cluster_is_free(struct swap_cluster_info *info)
224{
225 return info->flags & CLUSTER_FLAG_FREE;
226}
227
228static inline bool cluster_is_null(struct swap_cluster_info *info)
229{
230 return info->flags & CLUSTER_FLAG_NEXT_NULL;
231}
232
233static inline void cluster_set_null(struct swap_cluster_info *info)
234{
235 info->flags = CLUSTER_FLAG_NEXT_NULL;
236 info->data = 0;
237}
238
815c2c54
SL
239/* Add a cluster to discard list and schedule it to do discard */
240static void swap_cluster_schedule_discard(struct swap_info_struct *si,
241 unsigned int idx)
242{
243 /*
244 * If scan_swap_map() can't find a free cluster, it will check
245 * si->swap_map directly. To make sure the discarding cluster isn't
246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
247 * will be cleared after discard
248 */
249 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
250 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
251
252 if (cluster_is_null(&si->discard_cluster_head)) {
253 cluster_set_next_flag(&si->discard_cluster_head,
254 idx, 0);
255 cluster_set_next_flag(&si->discard_cluster_tail,
256 idx, 0);
257 } else {
258 unsigned int tail = cluster_next(&si->discard_cluster_tail);
259 cluster_set_next(&si->cluster_info[tail], idx);
260 cluster_set_next_flag(&si->discard_cluster_tail,
261 idx, 0);
262 }
263
264 schedule_work(&si->discard_work);
265}
266
267/*
268 * Doing discard actually. After a cluster discard is finished, the cluster
269 * will be added to free cluster list. caller should hold si->lock.
270*/
271static void swap_do_scheduled_discard(struct swap_info_struct *si)
272{
273 struct swap_cluster_info *info;
274 unsigned int idx;
275
276 info = si->cluster_info;
277
278 while (!cluster_is_null(&si->discard_cluster_head)) {
279 idx = cluster_next(&si->discard_cluster_head);
280
281 cluster_set_next_flag(&si->discard_cluster_head,
282 cluster_next(&info[idx]), 0);
283 if (cluster_next(&si->discard_cluster_tail) == idx) {
284 cluster_set_null(&si->discard_cluster_head);
285 cluster_set_null(&si->discard_cluster_tail);
286 }
287 spin_unlock(&si->lock);
288
289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
290 SWAPFILE_CLUSTER);
291
292 spin_lock(&si->lock);
293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
294 if (cluster_is_null(&si->free_cluster_head)) {
295 cluster_set_next_flag(&si->free_cluster_head,
296 idx, 0);
297 cluster_set_next_flag(&si->free_cluster_tail,
298 idx, 0);
299 } else {
300 unsigned int tail;
301
302 tail = cluster_next(&si->free_cluster_tail);
303 cluster_set_next(&info[tail], idx);
304 cluster_set_next_flag(&si->free_cluster_tail,
305 idx, 0);
306 }
307 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
308 0, SWAPFILE_CLUSTER);
309 }
310}
311
312static void swap_discard_work(struct work_struct *work)
313{
314 struct swap_info_struct *si;
315
316 si = container_of(work, struct swap_info_struct, discard_work);
317
318 spin_lock(&si->lock);
319 swap_do_scheduled_discard(si);
320 spin_unlock(&si->lock);
321}
322
2a8f9449
SL
323/*
324 * The cluster corresponding to page_nr will be used. The cluster will be
325 * removed from free cluster list and its usage counter will be increased.
326 */
327static void inc_cluster_info_page(struct swap_info_struct *p,
328 struct swap_cluster_info *cluster_info, unsigned long page_nr)
329{
330 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
331
332 if (!cluster_info)
333 return;
334 if (cluster_is_free(&cluster_info[idx])) {
335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
336 cluster_set_next_flag(&p->free_cluster_head,
337 cluster_next(&cluster_info[idx]), 0);
338 if (cluster_next(&p->free_cluster_tail) == idx) {
339 cluster_set_null(&p->free_cluster_tail);
340 cluster_set_null(&p->free_cluster_head);
341 }
342 cluster_set_count_flag(&cluster_info[idx], 0, 0);
343 }
344
345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
346 cluster_set_count(&cluster_info[idx],
347 cluster_count(&cluster_info[idx]) + 1);
348}
349
350/*
351 * The cluster corresponding to page_nr decreases one usage. If the usage
352 * counter becomes 0, which means no page in the cluster is in using, we can
353 * optionally discard the cluster and add it to free cluster list.
354 */
355static void dec_cluster_info_page(struct swap_info_struct *p,
356 struct swap_cluster_info *cluster_info, unsigned long page_nr)
357{
358 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
359
360 if (!cluster_info)
361 return;
362
363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
364 cluster_set_count(&cluster_info[idx],
365 cluster_count(&cluster_info[idx]) - 1);
366
367 if (cluster_count(&cluster_info[idx]) == 0) {
815c2c54
SL
368 /*
369 * If the swap is discardable, prepare discard the cluster
370 * instead of free it immediately. The cluster will be freed
371 * after discard.
372 */
edfe23da
SL
373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
815c2c54
SL
375 swap_cluster_schedule_discard(p, idx);
376 return;
377 }
378
2a8f9449
SL
379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
380 if (cluster_is_null(&p->free_cluster_head)) {
381 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
383 } else {
384 unsigned int tail = cluster_next(&p->free_cluster_tail);
385 cluster_set_next(&cluster_info[tail], idx);
386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
387 }
388 }
389}
390
391/*
392 * It's possible scan_swap_map() uses a free cluster in the middle of free
393 * cluster list. Avoiding such abuse to avoid list corruption.
394 */
ebc2a1a6
SL
395static bool
396scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
397 unsigned long offset)
398{
ebc2a1a6
SL
399 struct percpu_cluster *percpu_cluster;
400 bool conflict;
401
2a8f9449 402 offset /= SWAPFILE_CLUSTER;
ebc2a1a6 403 conflict = !cluster_is_null(&si->free_cluster_head) &&
2a8f9449
SL
404 offset != cluster_next(&si->free_cluster_head) &&
405 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
406
407 if (!conflict)
408 return false;
409
410 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
411 cluster_set_null(&percpu_cluster->index);
412 return true;
413}
414
415/*
416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
417 * might involve allocating a new cluster for current CPU too.
418 */
419static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
420 unsigned long *offset, unsigned long *scan_base)
421{
422 struct percpu_cluster *cluster;
423 bool found_free;
424 unsigned long tmp;
425
426new_cluster:
427 cluster = this_cpu_ptr(si->percpu_cluster);
428 if (cluster_is_null(&cluster->index)) {
429 if (!cluster_is_null(&si->free_cluster_head)) {
430 cluster->index = si->free_cluster_head;
431 cluster->next = cluster_next(&cluster->index) *
432 SWAPFILE_CLUSTER;
433 } else if (!cluster_is_null(&si->discard_cluster_head)) {
434 /*
435 * we don't have free cluster but have some clusters in
436 * discarding, do discard now and reclaim them
437 */
438 swap_do_scheduled_discard(si);
439 *scan_base = *offset = si->cluster_next;
440 goto new_cluster;
441 } else
442 return;
443 }
444
445 found_free = false;
446
447 /*
448 * Other CPUs can use our cluster if they can't find a free cluster,
449 * check if there is still free entry in the cluster
450 */
451 tmp = cluster->next;
452 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
453 SWAPFILE_CLUSTER) {
454 if (!si->swap_map[tmp]) {
455 found_free = true;
456 break;
457 }
458 tmp++;
459 }
460 if (!found_free) {
461 cluster_set_null(&cluster->index);
462 goto new_cluster;
463 }
464 cluster->next = tmp + 1;
465 *offset = tmp;
466 *scan_base = tmp;
2a8f9449
SL
467}
468
24b8ff7c
CEB
469static unsigned long scan_swap_map(struct swap_info_struct *si,
470 unsigned char usage)
1da177e4 471{
ebebbbe9 472 unsigned long offset;
c60aa176 473 unsigned long scan_base;
7992fde7 474 unsigned long last_in_cluster = 0;
048c27fd 475 int latency_ration = LATENCY_LIMIT;
7dfad418 476
886bb7e9 477 /*
7dfad418
HD
478 * We try to cluster swap pages by allocating them sequentially
479 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
480 * way, however, we resort to first-free allocation, starting
481 * a new cluster. This prevents us from scattering swap pages
482 * all over the entire swap partition, so that we reduce
483 * overall disk seek times between swap pages. -- sct
484 * But we do now try to find an empty cluster. -Andrea
c60aa176 485 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
486 */
487
52b7efdb 488 si->flags += SWP_SCANNING;
c60aa176 489 scan_base = offset = si->cluster_next;
ebebbbe9 490
ebc2a1a6
SL
491 /* SSD algorithm */
492 if (si->cluster_info) {
493 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
494 goto checks;
495 }
496
ebebbbe9
HD
497 if (unlikely(!si->cluster_nr--)) {
498 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
499 si->cluster_nr = SWAPFILE_CLUSTER - 1;
500 goto checks;
501 }
2a8f9449 502
ec8acf20 503 spin_unlock(&si->lock);
7dfad418 504
c60aa176
HD
505 /*
506 * If seek is expensive, start searching for new cluster from
507 * start of partition, to minimize the span of allocated swap.
508 * But if seek is cheap, search from our current position, so
509 * that swap is allocated from all over the partition: if the
510 * Flash Translation Layer only remaps within limited zones,
511 * we don't want to wear out the first zone too quickly.
512 */
513 if (!(si->flags & SWP_SOLIDSTATE))
514 scan_base = offset = si->lowest_bit;
7dfad418
HD
515 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
516
517 /* Locate the first empty (unaligned) cluster */
518 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 519 if (si->swap_map[offset])
7dfad418
HD
520 last_in_cluster = offset + SWAPFILE_CLUSTER;
521 else if (offset == last_in_cluster) {
ec8acf20 522 spin_lock(&si->lock);
ebebbbe9
HD
523 offset -= SWAPFILE_CLUSTER - 1;
524 si->cluster_next = offset;
525 si->cluster_nr = SWAPFILE_CLUSTER - 1;
526 goto checks;
1da177e4 527 }
048c27fd
HD
528 if (unlikely(--latency_ration < 0)) {
529 cond_resched();
530 latency_ration = LATENCY_LIMIT;
531 }
7dfad418 532 }
ebebbbe9
HD
533
534 offset = si->lowest_bit;
c60aa176
HD
535 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
536
537 /* Locate the first empty (unaligned) cluster */
538 for (; last_in_cluster < scan_base; offset++) {
539 if (si->swap_map[offset])
540 last_in_cluster = offset + SWAPFILE_CLUSTER;
541 else if (offset == last_in_cluster) {
ec8acf20 542 spin_lock(&si->lock);
c60aa176
HD
543 offset -= SWAPFILE_CLUSTER - 1;
544 si->cluster_next = offset;
545 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
546 goto checks;
547 }
548 if (unlikely(--latency_ration < 0)) {
549 cond_resched();
550 latency_ration = LATENCY_LIMIT;
551 }
552 }
553
554 offset = scan_base;
ec8acf20 555 spin_lock(&si->lock);
ebebbbe9 556 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 557 }
7dfad418 558
ebebbbe9 559checks:
ebc2a1a6
SL
560 if (si->cluster_info) {
561 while (scan_swap_map_ssd_cluster_conflict(si, offset))
562 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
563 }
ebebbbe9 564 if (!(si->flags & SWP_WRITEOK))
52b7efdb 565 goto no_page;
7dfad418
HD
566 if (!si->highest_bit)
567 goto no_page;
ebebbbe9 568 if (offset > si->highest_bit)
c60aa176 569 scan_base = offset = si->lowest_bit;
c9e44410 570
b73d7fce
HD
571 /* reuse swap entry of cache-only swap if not busy. */
572 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 573 int swap_was_freed;
ec8acf20 574 spin_unlock(&si->lock);
c9e44410 575 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 576 spin_lock(&si->lock);
c9e44410
KH
577 /* entry was freed successfully, try to use this again */
578 if (swap_was_freed)
579 goto checks;
580 goto scan; /* check next one */
581 }
582
ebebbbe9
HD
583 if (si->swap_map[offset])
584 goto scan;
585
586 if (offset == si->lowest_bit)
587 si->lowest_bit++;
588 if (offset == si->highest_bit)
589 si->highest_bit--;
590 si->inuse_pages++;
591 if (si->inuse_pages == si->pages) {
592 si->lowest_bit = si->max;
593 si->highest_bit = 0;
1da177e4 594 }
253d553b 595 si->swap_map[offset] = usage;
2a8f9449 596 inc_cluster_info_page(si, si->cluster_info, offset);
ebebbbe9
HD
597 si->cluster_next = offset + 1;
598 si->flags -= SWP_SCANNING;
7992fde7 599
ebebbbe9 600 return offset;
7dfad418 601
ebebbbe9 602scan:
ec8acf20 603 spin_unlock(&si->lock);
7dfad418 604 while (++offset <= si->highest_bit) {
52b7efdb 605 if (!si->swap_map[offset]) {
ec8acf20 606 spin_lock(&si->lock);
52b7efdb
HD
607 goto checks;
608 }
c9e44410 609 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 610 spin_lock(&si->lock);
c9e44410
KH
611 goto checks;
612 }
048c27fd
HD
613 if (unlikely(--latency_ration < 0)) {
614 cond_resched();
615 latency_ration = LATENCY_LIMIT;
616 }
7dfad418 617 }
c60aa176
HD
618 offset = si->lowest_bit;
619 while (++offset < scan_base) {
620 if (!si->swap_map[offset]) {
ec8acf20 621 spin_lock(&si->lock);
c60aa176
HD
622 goto checks;
623 }
c9e44410 624 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 625 spin_lock(&si->lock);
c9e44410
KH
626 goto checks;
627 }
c60aa176
HD
628 if (unlikely(--latency_ration < 0)) {
629 cond_resched();
630 latency_ration = LATENCY_LIMIT;
631 }
632 }
ec8acf20 633 spin_lock(&si->lock);
7dfad418
HD
634
635no_page:
52b7efdb 636 si->flags -= SWP_SCANNING;
1da177e4
LT
637 return 0;
638}
639
640swp_entry_t get_swap_page(void)
641{
fb4f88dc
HD
642 struct swap_info_struct *si;
643 pgoff_t offset;
644 int type, next;
645 int wrapped = 0;
ec8acf20 646 int hp_index;
1da177e4 647
5d337b91 648 spin_lock(&swap_lock);
ec8acf20 649 if (atomic_long_read(&nr_swap_pages) <= 0)
fb4f88dc 650 goto noswap;
ec8acf20 651 atomic_long_dec(&nr_swap_pages);
fb4f88dc
HD
652
653 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
ec8acf20
SL
654 hp_index = atomic_xchg(&highest_priority_index, -1);
655 /*
656 * highest_priority_index records current highest priority swap
657 * type which just frees swap entries. If its priority is
658 * higher than that of swap_list.next swap type, we use it. It
659 * isn't protected by swap_lock, so it can be an invalid value
660 * if the corresponding swap type is swapoff. We double check
661 * the flags here. It's even possible the swap type is swapoff
662 * and swapon again and its priority is changed. In such rare
663 * case, low prority swap type might be used, but eventually
664 * high priority swap will be used after several rounds of
665 * swap.
666 */
667 if (hp_index != -1 && hp_index != type &&
668 swap_info[type]->prio < swap_info[hp_index]->prio &&
669 (swap_info[hp_index]->flags & SWP_WRITEOK)) {
670 type = hp_index;
671 swap_list.next = type;
672 }
673
efa90a98 674 si = swap_info[type];
fb4f88dc
HD
675 next = si->next;
676 if (next < 0 ||
efa90a98 677 (!wrapped && si->prio != swap_info[next]->prio)) {
fb4f88dc
HD
678 next = swap_list.head;
679 wrapped++;
1da177e4 680 }
fb4f88dc 681
ec8acf20
SL
682 spin_lock(&si->lock);
683 if (!si->highest_bit) {
684 spin_unlock(&si->lock);
fb4f88dc 685 continue;
ec8acf20
SL
686 }
687 if (!(si->flags & SWP_WRITEOK)) {
688 spin_unlock(&si->lock);
fb4f88dc 689 continue;
ec8acf20 690 }
fb4f88dc
HD
691
692 swap_list.next = next;
ec8acf20
SL
693
694 spin_unlock(&swap_lock);
355cfa73 695 /* This is called for allocating swap entry for cache */
253d553b 696 offset = scan_swap_map(si, SWAP_HAS_CACHE);
ec8acf20
SL
697 spin_unlock(&si->lock);
698 if (offset)
fb4f88dc 699 return swp_entry(type, offset);
ec8acf20 700 spin_lock(&swap_lock);
fb4f88dc 701 next = swap_list.next;
1da177e4 702 }
fb4f88dc 703
ec8acf20 704 atomic_long_inc(&nr_swap_pages);
fb4f88dc 705noswap:
5d337b91 706 spin_unlock(&swap_lock);
fb4f88dc 707 return (swp_entry_t) {0};
1da177e4
LT
708}
709
2de1a7e4 710/* The only caller of this function is now suspend routine */
910321ea
HD
711swp_entry_t get_swap_page_of_type(int type)
712{
713 struct swap_info_struct *si;
714 pgoff_t offset;
715
910321ea 716 si = swap_info[type];
ec8acf20 717 spin_lock(&si->lock);
910321ea 718 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 719 atomic_long_dec(&nr_swap_pages);
910321ea
HD
720 /* This is called for allocating swap entry, not cache */
721 offset = scan_swap_map(si, 1);
722 if (offset) {
ec8acf20 723 spin_unlock(&si->lock);
910321ea
HD
724 return swp_entry(type, offset);
725 }
ec8acf20 726 atomic_long_inc(&nr_swap_pages);
910321ea 727 }
ec8acf20 728 spin_unlock(&si->lock);
910321ea
HD
729 return (swp_entry_t) {0};
730}
731
73c34b6a 732static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1da177e4 733{
73c34b6a 734 struct swap_info_struct *p;
1da177e4
LT
735 unsigned long offset, type;
736
737 if (!entry.val)
738 goto out;
739 type = swp_type(entry);
740 if (type >= nr_swapfiles)
741 goto bad_nofile;
efa90a98 742 p = swap_info[type];
1da177e4
LT
743 if (!(p->flags & SWP_USED))
744 goto bad_device;
745 offset = swp_offset(entry);
746 if (offset >= p->max)
747 goto bad_offset;
748 if (!p->swap_map[offset])
749 goto bad_free;
ec8acf20 750 spin_lock(&p->lock);
1da177e4
LT
751 return p;
752
753bad_free:
465c47fd 754 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
1da177e4
LT
755 goto out;
756bad_offset:
465c47fd 757 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
758 goto out;
759bad_device:
465c47fd 760 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
761 goto out;
762bad_nofile:
465c47fd 763 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
764out:
765 return NULL;
886bb7e9 766}
1da177e4 767
ec8acf20
SL
768/*
769 * This swap type frees swap entry, check if it is the highest priority swap
770 * type which just frees swap entry. get_swap_page() uses
771 * highest_priority_index to search highest priority swap type. The
772 * swap_info_struct.lock can't protect us if there are multiple swap types
773 * active, so we use atomic_cmpxchg.
774 */
775static void set_highest_priority_index(int type)
776{
777 int old_hp_index, new_hp_index;
778
779 do {
780 old_hp_index = atomic_read(&highest_priority_index);
781 if (old_hp_index != -1 &&
782 swap_info[old_hp_index]->prio >= swap_info[type]->prio)
783 break;
784 new_hp_index = type;
785 } while (atomic_cmpxchg(&highest_priority_index,
786 old_hp_index, new_hp_index) != old_hp_index);
787}
788
8d69aaee
HD
789static unsigned char swap_entry_free(struct swap_info_struct *p,
790 swp_entry_t entry, unsigned char usage)
1da177e4 791{
253d553b 792 unsigned long offset = swp_offset(entry);
8d69aaee
HD
793 unsigned char count;
794 unsigned char has_cache;
355cfa73 795
253d553b
HD
796 count = p->swap_map[offset];
797 has_cache = count & SWAP_HAS_CACHE;
798 count &= ~SWAP_HAS_CACHE;
355cfa73 799
253d553b 800 if (usage == SWAP_HAS_CACHE) {
355cfa73 801 VM_BUG_ON(!has_cache);
253d553b 802 has_cache = 0;
aaa46865
HD
803 } else if (count == SWAP_MAP_SHMEM) {
804 /*
805 * Or we could insist on shmem.c using a special
806 * swap_shmem_free() and free_shmem_swap_and_cache()...
807 */
808 count = 0;
570a335b
HD
809 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
810 if (count == COUNT_CONTINUED) {
811 if (swap_count_continued(p, offset, count))
812 count = SWAP_MAP_MAX | COUNT_CONTINUED;
813 else
814 count = SWAP_MAP_MAX;
815 } else
816 count--;
817 }
253d553b
HD
818
819 if (!count)
820 mem_cgroup_uncharge_swap(entry);
821
822 usage = count | has_cache;
823 p->swap_map[offset] = usage;
355cfa73 824
355cfa73 825 /* free if no reference */
253d553b 826 if (!usage) {
2a8f9449 827 dec_cluster_info_page(p, p->cluster_info, offset);
355cfa73
KH
828 if (offset < p->lowest_bit)
829 p->lowest_bit = offset;
830 if (offset > p->highest_bit)
831 p->highest_bit = offset;
ec8acf20
SL
832 set_highest_priority_index(p->type);
833 atomic_long_inc(&nr_swap_pages);
355cfa73 834 p->inuse_pages--;
38b5faf4 835 frontswap_invalidate_page(p->type, offset);
73744923
MG
836 if (p->flags & SWP_BLKDEV) {
837 struct gendisk *disk = p->bdev->bd_disk;
838 if (disk->fops->swap_slot_free_notify)
839 disk->fops->swap_slot_free_notify(p->bdev,
840 offset);
841 }
1da177e4 842 }
253d553b
HD
843
844 return usage;
1da177e4
LT
845}
846
847/*
2de1a7e4 848 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
849 * is still around or has not been recycled.
850 */
851void swap_free(swp_entry_t entry)
852{
73c34b6a 853 struct swap_info_struct *p;
1da177e4
LT
854
855 p = swap_info_get(entry);
856 if (p) {
253d553b 857 swap_entry_free(p, entry, 1);
ec8acf20 858 spin_unlock(&p->lock);
1da177e4
LT
859 }
860}
861
cb4b86ba
KH
862/*
863 * Called after dropping swapcache to decrease refcnt to swap entries.
864 */
865void swapcache_free(swp_entry_t entry, struct page *page)
866{
355cfa73 867 struct swap_info_struct *p;
8d69aaee 868 unsigned char count;
355cfa73 869
355cfa73
KH
870 p = swap_info_get(entry);
871 if (p) {
253d553b
HD
872 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
873 if (page)
874 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
ec8acf20 875 spin_unlock(&p->lock);
355cfa73 876 }
cb4b86ba
KH
877}
878
1da177e4 879/*
c475a8ab 880 * How many references to page are currently swapped out?
570a335b
HD
881 * This does not give an exact answer when swap count is continued,
882 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 883 */
bde05d1c 884int page_swapcount(struct page *page)
1da177e4 885{
c475a8ab
HD
886 int count = 0;
887 struct swap_info_struct *p;
1da177e4
LT
888 swp_entry_t entry;
889
4c21e2f2 890 entry.val = page_private(page);
1da177e4
LT
891 p = swap_info_get(entry);
892 if (p) {
355cfa73 893 count = swap_count(p->swap_map[swp_offset(entry)]);
ec8acf20 894 spin_unlock(&p->lock);
1da177e4 895 }
c475a8ab 896 return count;
1da177e4
LT
897}
898
899/*
7b1fe597
HD
900 * We can write to an anon page without COW if there are no other references
901 * to it. And as a side-effect, free up its swap: because the old content
902 * on disk will never be read, and seeking back there to write new content
903 * later would only waste time away from clustering.
1da177e4 904 */
7b1fe597 905int reuse_swap_page(struct page *page)
1da177e4 906{
c475a8ab
HD
907 int count;
908
309381fe 909 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688
HD
910 if (unlikely(PageKsm(page)))
911 return 0;
c475a8ab 912 count = page_mapcount(page);
7b1fe597 913 if (count <= 1 && PageSwapCache(page)) {
c475a8ab 914 count += page_swapcount(page);
7b1fe597
HD
915 if (count == 1 && !PageWriteback(page)) {
916 delete_from_swap_cache(page);
917 SetPageDirty(page);
918 }
919 }
5ad64688 920 return count <= 1;
1da177e4
LT
921}
922
923/*
a2c43eed
HD
924 * If swap is getting full, or if there are no more mappings of this page,
925 * then try_to_free_swap is called to free its swap space.
1da177e4 926 */
a2c43eed 927int try_to_free_swap(struct page *page)
1da177e4 928{
309381fe 929 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
930
931 if (!PageSwapCache(page))
932 return 0;
933 if (PageWriteback(page))
934 return 0;
a2c43eed 935 if (page_swapcount(page))
1da177e4
LT
936 return 0;
937
b73d7fce
HD
938 /*
939 * Once hibernation has begun to create its image of memory,
940 * there's a danger that one of the calls to try_to_free_swap()
941 * - most probably a call from __try_to_reclaim_swap() while
942 * hibernation is allocating its own swap pages for the image,
943 * but conceivably even a call from memory reclaim - will free
944 * the swap from a page which has already been recorded in the
945 * image as a clean swapcache page, and then reuse its swap for
946 * another page of the image. On waking from hibernation, the
947 * original page might be freed under memory pressure, then
948 * later read back in from swap, now with the wrong data.
949 *
2de1a7e4 950 * Hibernation suspends storage while it is writing the image
f90ac398 951 * to disk so check that here.
b73d7fce 952 */
f90ac398 953 if (pm_suspended_storage())
b73d7fce
HD
954 return 0;
955
a2c43eed
HD
956 delete_from_swap_cache(page);
957 SetPageDirty(page);
958 return 1;
68a22394
RR
959}
960
1da177e4
LT
961/*
962 * Free the swap entry like above, but also try to
963 * free the page cache entry if it is the last user.
964 */
2509ef26 965int free_swap_and_cache(swp_entry_t entry)
1da177e4 966{
2509ef26 967 struct swap_info_struct *p;
1da177e4
LT
968 struct page *page = NULL;
969
a7420aa5 970 if (non_swap_entry(entry))
2509ef26 971 return 1;
0697212a 972
1da177e4
LT
973 p = swap_info_get(entry);
974 if (p) {
253d553b 975 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
33806f06
SL
976 page = find_get_page(swap_address_space(entry),
977 entry.val);
8413ac9d 978 if (page && !trylock_page(page)) {
93fac704
NP
979 page_cache_release(page);
980 page = NULL;
981 }
982 }
ec8acf20 983 spin_unlock(&p->lock);
1da177e4
LT
984 }
985 if (page) {
a2c43eed
HD
986 /*
987 * Not mapped elsewhere, or swap space full? Free it!
988 * Also recheck PageSwapCache now page is locked (above).
989 */
93fac704 990 if (PageSwapCache(page) && !PageWriteback(page) &&
a2c43eed 991 (!page_mapped(page) || vm_swap_full())) {
1da177e4
LT
992 delete_from_swap_cache(page);
993 SetPageDirty(page);
994 }
995 unlock_page(page);
996 page_cache_release(page);
997 }
2509ef26 998 return p != NULL;
1da177e4
LT
999}
1000
b0cb1a19 1001#ifdef CONFIG_HIBERNATION
f577eb30 1002/*
915bae9e 1003 * Find the swap type that corresponds to given device (if any).
f577eb30 1004 *
915bae9e
RW
1005 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1006 * from 0, in which the swap header is expected to be located.
1007 *
1008 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1009 */
7bf23687 1010int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1011{
915bae9e 1012 struct block_device *bdev = NULL;
efa90a98 1013 int type;
f577eb30 1014
915bae9e
RW
1015 if (device)
1016 bdev = bdget(device);
1017
f577eb30 1018 spin_lock(&swap_lock);
efa90a98
HD
1019 for (type = 0; type < nr_swapfiles; type++) {
1020 struct swap_info_struct *sis = swap_info[type];
f577eb30 1021
915bae9e 1022 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1023 continue;
b6b5bce3 1024
915bae9e 1025 if (!bdev) {
7bf23687 1026 if (bdev_p)
dddac6a7 1027 *bdev_p = bdgrab(sis->bdev);
7bf23687 1028
6e1819d6 1029 spin_unlock(&swap_lock);
efa90a98 1030 return type;
6e1819d6 1031 }
915bae9e 1032 if (bdev == sis->bdev) {
9625a5f2 1033 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1034
915bae9e 1035 if (se->start_block == offset) {
7bf23687 1036 if (bdev_p)
dddac6a7 1037 *bdev_p = bdgrab(sis->bdev);
7bf23687 1038
915bae9e
RW
1039 spin_unlock(&swap_lock);
1040 bdput(bdev);
efa90a98 1041 return type;
915bae9e 1042 }
f577eb30
RW
1043 }
1044 }
1045 spin_unlock(&swap_lock);
915bae9e
RW
1046 if (bdev)
1047 bdput(bdev);
1048
f577eb30
RW
1049 return -ENODEV;
1050}
1051
73c34b6a
HD
1052/*
1053 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1054 * corresponding to given index in swap_info (swap type).
1055 */
1056sector_t swapdev_block(int type, pgoff_t offset)
1057{
1058 struct block_device *bdev;
1059
1060 if ((unsigned int)type >= nr_swapfiles)
1061 return 0;
1062 if (!(swap_info[type]->flags & SWP_WRITEOK))
1063 return 0;
d4906e1a 1064 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1065}
1066
f577eb30
RW
1067/*
1068 * Return either the total number of swap pages of given type, or the number
1069 * of free pages of that type (depending on @free)
1070 *
1071 * This is needed for software suspend
1072 */
1073unsigned int count_swap_pages(int type, int free)
1074{
1075 unsigned int n = 0;
1076
efa90a98
HD
1077 spin_lock(&swap_lock);
1078 if ((unsigned int)type < nr_swapfiles) {
1079 struct swap_info_struct *sis = swap_info[type];
1080
ec8acf20 1081 spin_lock(&sis->lock);
efa90a98
HD
1082 if (sis->flags & SWP_WRITEOK) {
1083 n = sis->pages;
f577eb30 1084 if (free)
efa90a98 1085 n -= sis->inuse_pages;
f577eb30 1086 }
ec8acf20 1087 spin_unlock(&sis->lock);
f577eb30 1088 }
efa90a98 1089 spin_unlock(&swap_lock);
f577eb30
RW
1090 return n;
1091}
73c34b6a 1092#endif /* CONFIG_HIBERNATION */
f577eb30 1093
179ef71c
CG
1094static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1095{
1096#ifdef CONFIG_MEM_SOFT_DIRTY
1097 /*
1098 * When pte keeps soft dirty bit the pte generated
1099 * from swap entry does not has it, still it's same
1100 * pte from logical point of view.
1101 */
1102 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1103 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1104#else
1105 return pte_same(pte, swp_pte);
1106#endif
1107}
1108
1da177e4 1109/*
72866f6f
HD
1110 * No need to decide whether this PTE shares the swap entry with others,
1111 * just let do_wp_page work it out if a write is requested later - to
1112 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1113 */
044d66c1 1114static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1115 unsigned long addr, swp_entry_t entry, struct page *page)
1116{
9e16b7fb 1117 struct page *swapcache;
72835c86 1118 struct mem_cgroup *memcg;
044d66c1
HD
1119 spinlock_t *ptl;
1120 pte_t *pte;
1121 int ret = 1;
1122
9e16b7fb
HD
1123 swapcache = page;
1124 page = ksm_might_need_to_copy(page, vma, addr);
1125 if (unlikely(!page))
1126 return -ENOMEM;
1127
72835c86
JW
1128 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1129 GFP_KERNEL, &memcg)) {
044d66c1 1130 ret = -ENOMEM;
85d9fc89
KH
1131 goto out_nolock;
1132 }
044d66c1
HD
1133
1134 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
179ef71c 1135 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
5d84c776 1136 mem_cgroup_cancel_charge_swapin(memcg);
044d66c1
HD
1137 ret = 0;
1138 goto out;
1139 }
8a9f3ccd 1140
b084d435 1141 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1142 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1143 get_page(page);
1144 set_pte_at(vma->vm_mm, addr, pte,
1145 pte_mkold(mk_pte(page, vma->vm_page_prot)));
9e16b7fb
HD
1146 if (page == swapcache)
1147 page_add_anon_rmap(page, vma, addr);
1148 else /* ksm created a completely new copy */
1149 page_add_new_anon_rmap(page, vma, addr);
72835c86 1150 mem_cgroup_commit_charge_swapin(page, memcg);
1da177e4
LT
1151 swap_free(entry);
1152 /*
1153 * Move the page to the active list so it is not
1154 * immediately swapped out again after swapon.
1155 */
1156 activate_page(page);
044d66c1
HD
1157out:
1158 pte_unmap_unlock(pte, ptl);
85d9fc89 1159out_nolock:
9e16b7fb
HD
1160 if (page != swapcache) {
1161 unlock_page(page);
1162 put_page(page);
1163 }
044d66c1 1164 return ret;
1da177e4
LT
1165}
1166
1167static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1168 unsigned long addr, unsigned long end,
1169 swp_entry_t entry, struct page *page)
1170{
1da177e4 1171 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1172 pte_t *pte;
8a9f3ccd 1173 int ret = 0;
1da177e4 1174
044d66c1
HD
1175 /*
1176 * We don't actually need pte lock while scanning for swp_pte: since
1177 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1178 * page table while we're scanning; though it could get zapped, and on
1179 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1180 * of unmatched parts which look like swp_pte, so unuse_pte must
1181 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1182 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1183 */
1184 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1185 do {
1186 /*
1187 * swapoff spends a _lot_ of time in this loop!
1188 * Test inline before going to call unuse_pte.
1189 */
179ef71c 1190 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
044d66c1
HD
1191 pte_unmap(pte);
1192 ret = unuse_pte(vma, pmd, addr, entry, page);
1193 if (ret)
1194 goto out;
1195 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1196 }
1197 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1198 pte_unmap(pte - 1);
1199out:
8a9f3ccd 1200 return ret;
1da177e4
LT
1201}
1202
1203static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1204 unsigned long addr, unsigned long end,
1205 swp_entry_t entry, struct page *page)
1206{
1207 pmd_t *pmd;
1208 unsigned long next;
8a9f3ccd 1209 int ret;
1da177e4
LT
1210
1211 pmd = pmd_offset(pud, addr);
1212 do {
1213 next = pmd_addr_end(addr, end);
1a5a9906 1214 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1215 continue;
8a9f3ccd
BS
1216 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1217 if (ret)
1218 return ret;
1da177e4
LT
1219 } while (pmd++, addr = next, addr != end);
1220 return 0;
1221}
1222
1223static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1224 unsigned long addr, unsigned long end,
1225 swp_entry_t entry, struct page *page)
1226{
1227 pud_t *pud;
1228 unsigned long next;
8a9f3ccd 1229 int ret;
1da177e4
LT
1230
1231 pud = pud_offset(pgd, addr);
1232 do {
1233 next = pud_addr_end(addr, end);
1234 if (pud_none_or_clear_bad(pud))
1235 continue;
8a9f3ccd
BS
1236 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1237 if (ret)
1238 return ret;
1da177e4
LT
1239 } while (pud++, addr = next, addr != end);
1240 return 0;
1241}
1242
1243static int unuse_vma(struct vm_area_struct *vma,
1244 swp_entry_t entry, struct page *page)
1245{
1246 pgd_t *pgd;
1247 unsigned long addr, end, next;
8a9f3ccd 1248 int ret;
1da177e4 1249
3ca7b3c5 1250 if (page_anon_vma(page)) {
1da177e4
LT
1251 addr = page_address_in_vma(page, vma);
1252 if (addr == -EFAULT)
1253 return 0;
1254 else
1255 end = addr + PAGE_SIZE;
1256 } else {
1257 addr = vma->vm_start;
1258 end = vma->vm_end;
1259 }
1260
1261 pgd = pgd_offset(vma->vm_mm, addr);
1262 do {
1263 next = pgd_addr_end(addr, end);
1264 if (pgd_none_or_clear_bad(pgd))
1265 continue;
8a9f3ccd
BS
1266 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1267 if (ret)
1268 return ret;
1da177e4
LT
1269 } while (pgd++, addr = next, addr != end);
1270 return 0;
1271}
1272
1273static int unuse_mm(struct mm_struct *mm,
1274 swp_entry_t entry, struct page *page)
1275{
1276 struct vm_area_struct *vma;
8a9f3ccd 1277 int ret = 0;
1da177e4
LT
1278
1279 if (!down_read_trylock(&mm->mmap_sem)) {
1280 /*
7d03431c
FLVC
1281 * Activate page so shrink_inactive_list is unlikely to unmap
1282 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1283 */
c475a8ab 1284 activate_page(page);
1da177e4
LT
1285 unlock_page(page);
1286 down_read(&mm->mmap_sem);
1287 lock_page(page);
1288 }
1da177e4 1289 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1290 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4
LT
1291 break;
1292 }
1da177e4 1293 up_read(&mm->mmap_sem);
8a9f3ccd 1294 return (ret < 0)? ret: 0;
1da177e4
LT
1295}
1296
1297/*
38b5faf4
DM
1298 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1299 * from current position to next entry still in use.
1da177e4
LT
1300 * Recycle to start on reaching the end, returning 0 when empty.
1301 */
6eb396dc 1302static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1303 unsigned int prev, bool frontswap)
1da177e4 1304{
6eb396dc
HD
1305 unsigned int max = si->max;
1306 unsigned int i = prev;
8d69aaee 1307 unsigned char count;
1da177e4
LT
1308
1309 /*
5d337b91 1310 * No need for swap_lock here: we're just looking
1da177e4
LT
1311 * for whether an entry is in use, not modifying it; false
1312 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1313 * allocations from this area (while holding swap_lock).
1da177e4
LT
1314 */
1315 for (;;) {
1316 if (++i >= max) {
1317 if (!prev) {
1318 i = 0;
1319 break;
1320 }
1321 /*
1322 * No entries in use at top of swap_map,
1323 * loop back to start and recheck there.
1324 */
1325 max = prev + 1;
1326 prev = 0;
1327 i = 1;
1328 }
38b5faf4
DM
1329 if (frontswap) {
1330 if (frontswap_test(si, i))
1331 break;
1332 else
1333 continue;
1334 }
edfe23da 1335 count = ACCESS_ONCE(si->swap_map[i]);
355cfa73 1336 if (count && swap_count(count) != SWAP_MAP_BAD)
1da177e4
LT
1337 break;
1338 }
1339 return i;
1340}
1341
1342/*
1343 * We completely avoid races by reading each swap page in advance,
1344 * and then search for the process using it. All the necessary
1345 * page table adjustments can then be made atomically.
38b5faf4
DM
1346 *
1347 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1348 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 1349 */
38b5faf4
DM
1350int try_to_unuse(unsigned int type, bool frontswap,
1351 unsigned long pages_to_unuse)
1da177e4 1352{
efa90a98 1353 struct swap_info_struct *si = swap_info[type];
1da177e4 1354 struct mm_struct *start_mm;
edfe23da
SL
1355 volatile unsigned char *swap_map; /* swap_map is accessed without
1356 * locking. Mark it as volatile
1357 * to prevent compiler doing
1358 * something odd.
1359 */
8d69aaee 1360 unsigned char swcount;
1da177e4
LT
1361 struct page *page;
1362 swp_entry_t entry;
6eb396dc 1363 unsigned int i = 0;
1da177e4 1364 int retval = 0;
1da177e4
LT
1365
1366 /*
1367 * When searching mms for an entry, a good strategy is to
1368 * start at the first mm we freed the previous entry from
1369 * (though actually we don't notice whether we or coincidence
1370 * freed the entry). Initialize this start_mm with a hold.
1371 *
1372 * A simpler strategy would be to start at the last mm we
1373 * freed the previous entry from; but that would take less
1374 * advantage of mmlist ordering, which clusters forked mms
1375 * together, child after parent. If we race with dup_mmap(), we
1376 * prefer to resolve parent before child, lest we miss entries
1377 * duplicated after we scanned child: using last mm would invert
570a335b 1378 * that.
1da177e4
LT
1379 */
1380 start_mm = &init_mm;
1381 atomic_inc(&init_mm.mm_users);
1382
1383 /*
1384 * Keep on scanning until all entries have gone. Usually,
1385 * one pass through swap_map is enough, but not necessarily:
1386 * there are races when an instance of an entry might be missed.
1387 */
38b5faf4 1388 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
1389 if (signal_pending(current)) {
1390 retval = -EINTR;
1391 break;
1392 }
1393
886bb7e9 1394 /*
1da177e4
LT
1395 * Get a page for the entry, using the existing swap
1396 * cache page if there is one. Otherwise, get a clean
886bb7e9 1397 * page and read the swap into it.
1da177e4
LT
1398 */
1399 swap_map = &si->swap_map[i];
1400 entry = swp_entry(type, i);
02098fea
HD
1401 page = read_swap_cache_async(entry,
1402 GFP_HIGHUSER_MOVABLE, NULL, 0);
1da177e4
LT
1403 if (!page) {
1404 /*
1405 * Either swap_duplicate() failed because entry
1406 * has been freed independently, and will not be
1407 * reused since sys_swapoff() already disabled
1408 * allocation from here, or alloc_page() failed.
1409 */
edfe23da
SL
1410 swcount = *swap_map;
1411 /*
1412 * We don't hold lock here, so the swap entry could be
1413 * SWAP_MAP_BAD (when the cluster is discarding).
1414 * Instead of fail out, We can just skip the swap
1415 * entry because swapoff will wait for discarding
1416 * finish anyway.
1417 */
1418 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
1419 continue;
1420 retval = -ENOMEM;
1421 break;
1422 }
1423
1424 /*
1425 * Don't hold on to start_mm if it looks like exiting.
1426 */
1427 if (atomic_read(&start_mm->mm_users) == 1) {
1428 mmput(start_mm);
1429 start_mm = &init_mm;
1430 atomic_inc(&init_mm.mm_users);
1431 }
1432
1433 /*
1434 * Wait for and lock page. When do_swap_page races with
1435 * try_to_unuse, do_swap_page can handle the fault much
1436 * faster than try_to_unuse can locate the entry. This
1437 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1438 * defer to do_swap_page in such a case - in some tests,
1439 * do_swap_page and try_to_unuse repeatedly compete.
1440 */
1441 wait_on_page_locked(page);
1442 wait_on_page_writeback(page);
1443 lock_page(page);
1444 wait_on_page_writeback(page);
1445
1446 /*
1447 * Remove all references to entry.
1da177e4 1448 */
1da177e4 1449 swcount = *swap_map;
aaa46865
HD
1450 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1451 retval = shmem_unuse(entry, page);
1452 /* page has already been unlocked and released */
1453 if (retval < 0)
1454 break;
1455 continue;
1da177e4 1456 }
aaa46865
HD
1457 if (swap_count(swcount) && start_mm != &init_mm)
1458 retval = unuse_mm(start_mm, entry, page);
1459
355cfa73 1460 if (swap_count(*swap_map)) {
1da177e4
LT
1461 int set_start_mm = (*swap_map >= swcount);
1462 struct list_head *p = &start_mm->mmlist;
1463 struct mm_struct *new_start_mm = start_mm;
1464 struct mm_struct *prev_mm = start_mm;
1465 struct mm_struct *mm;
1466
1467 atomic_inc(&new_start_mm->mm_users);
1468 atomic_inc(&prev_mm->mm_users);
1469 spin_lock(&mmlist_lock);
aaa46865 1470 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
1471 (p = p->next) != &start_mm->mmlist) {
1472 mm = list_entry(p, struct mm_struct, mmlist);
70af7c5c 1473 if (!atomic_inc_not_zero(&mm->mm_users))
1da177e4 1474 continue;
1da177e4
LT
1475 spin_unlock(&mmlist_lock);
1476 mmput(prev_mm);
1477 prev_mm = mm;
1478
1479 cond_resched();
1480
1481 swcount = *swap_map;
355cfa73 1482 if (!swap_count(swcount)) /* any usage ? */
1da177e4 1483 ;
aaa46865 1484 else if (mm == &init_mm)
1da177e4 1485 set_start_mm = 1;
aaa46865 1486 else
1da177e4 1487 retval = unuse_mm(mm, entry, page);
355cfa73 1488
32c5fc10 1489 if (set_start_mm && *swap_map < swcount) {
1da177e4
LT
1490 mmput(new_start_mm);
1491 atomic_inc(&mm->mm_users);
1492 new_start_mm = mm;
1493 set_start_mm = 0;
1494 }
1495 spin_lock(&mmlist_lock);
1496 }
1497 spin_unlock(&mmlist_lock);
1498 mmput(prev_mm);
1499 mmput(start_mm);
1500 start_mm = new_start_mm;
1501 }
1502 if (retval) {
1503 unlock_page(page);
1504 page_cache_release(page);
1505 break;
1506 }
1507
1da177e4
LT
1508 /*
1509 * If a reference remains (rare), we would like to leave
1510 * the page in the swap cache; but try_to_unmap could
1511 * then re-duplicate the entry once we drop page lock,
1512 * so we might loop indefinitely; also, that page could
1513 * not be swapped out to other storage meanwhile. So:
1514 * delete from cache even if there's another reference,
1515 * after ensuring that the data has been saved to disk -
1516 * since if the reference remains (rarer), it will be
1517 * read from disk into another page. Splitting into two
1518 * pages would be incorrect if swap supported "shared
1519 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
1520 *
1521 * Given how unuse_vma() targets one particular offset
1522 * in an anon_vma, once the anon_vma has been determined,
1523 * this splitting happens to be just what is needed to
1524 * handle where KSM pages have been swapped out: re-reading
1525 * is unnecessarily slow, but we can fix that later on.
1da177e4 1526 */
355cfa73
KH
1527 if (swap_count(*swap_map) &&
1528 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
1529 struct writeback_control wbc = {
1530 .sync_mode = WB_SYNC_NONE,
1531 };
1532
1533 swap_writepage(page, &wbc);
1534 lock_page(page);
1535 wait_on_page_writeback(page);
1536 }
68bdc8d6
HD
1537
1538 /*
1539 * It is conceivable that a racing task removed this page from
1540 * swap cache just before we acquired the page lock at the top,
1541 * or while we dropped it in unuse_mm(). The page might even
1542 * be back in swap cache on another swap area: that we must not
1543 * delete, since it may not have been written out to swap yet.
1544 */
1545 if (PageSwapCache(page) &&
1546 likely(page_private(page) == entry.val))
2e0e26c7 1547 delete_from_swap_cache(page);
1da177e4
LT
1548
1549 /*
1550 * So we could skip searching mms once swap count went
1551 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 1552 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
1553 */
1554 SetPageDirty(page);
1555 unlock_page(page);
1556 page_cache_release(page);
1557
1558 /*
1559 * Make sure that we aren't completely killing
1560 * interactive performance.
1561 */
1562 cond_resched();
38b5faf4
DM
1563 if (frontswap && pages_to_unuse > 0) {
1564 if (!--pages_to_unuse)
1565 break;
1566 }
1da177e4
LT
1567 }
1568
1569 mmput(start_mm);
1da177e4
LT
1570 return retval;
1571}
1572
1573/*
5d337b91
HD
1574 * After a successful try_to_unuse, if no swap is now in use, we know
1575 * we can empty the mmlist. swap_lock must be held on entry and exit.
1576 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
1577 * added to the mmlist just after page_duplicate - before would be racy.
1578 */
1579static void drain_mmlist(void)
1580{
1581 struct list_head *p, *next;
efa90a98 1582 unsigned int type;
1da177e4 1583
efa90a98
HD
1584 for (type = 0; type < nr_swapfiles; type++)
1585 if (swap_info[type]->inuse_pages)
1da177e4
LT
1586 return;
1587 spin_lock(&mmlist_lock);
1588 list_for_each_safe(p, next, &init_mm.mmlist)
1589 list_del_init(p);
1590 spin_unlock(&mmlist_lock);
1591}
1592
1593/*
1594 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
1595 * corresponds to page offset for the specified swap entry.
1596 * Note that the type of this function is sector_t, but it returns page offset
1597 * into the bdev, not sector offset.
1da177e4 1598 */
d4906e1a 1599static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 1600{
f29ad6a9
HD
1601 struct swap_info_struct *sis;
1602 struct swap_extent *start_se;
1603 struct swap_extent *se;
1604 pgoff_t offset;
1605
efa90a98 1606 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
1607 *bdev = sis->bdev;
1608
1609 offset = swp_offset(entry);
1610 start_se = sis->curr_swap_extent;
1611 se = start_se;
1da177e4
LT
1612
1613 for ( ; ; ) {
1614 struct list_head *lh;
1615
1616 if (se->start_page <= offset &&
1617 offset < (se->start_page + se->nr_pages)) {
1618 return se->start_block + (offset - se->start_page);
1619 }
11d31886 1620 lh = se->list.next;
1da177e4
LT
1621 se = list_entry(lh, struct swap_extent, list);
1622 sis->curr_swap_extent = se;
1623 BUG_ON(se == start_se); /* It *must* be present */
1624 }
1625}
1626
d4906e1a
LS
1627/*
1628 * Returns the page offset into bdev for the specified page's swap entry.
1629 */
1630sector_t map_swap_page(struct page *page, struct block_device **bdev)
1631{
1632 swp_entry_t entry;
1633 entry.val = page_private(page);
1634 return map_swap_entry(entry, bdev);
1635}
1636
1da177e4
LT
1637/*
1638 * Free all of a swapdev's extent information
1639 */
1640static void destroy_swap_extents(struct swap_info_struct *sis)
1641{
9625a5f2 1642 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
1643 struct swap_extent *se;
1644
9625a5f2 1645 se = list_entry(sis->first_swap_extent.list.next,
1da177e4
LT
1646 struct swap_extent, list);
1647 list_del(&se->list);
1648 kfree(se);
1649 }
62c230bc
MG
1650
1651 if (sis->flags & SWP_FILE) {
1652 struct file *swap_file = sis->swap_file;
1653 struct address_space *mapping = swap_file->f_mapping;
1654
1655 sis->flags &= ~SWP_FILE;
1656 mapping->a_ops->swap_deactivate(swap_file);
1657 }
1da177e4
LT
1658}
1659
1660/*
1661 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 1662 * extent list. The extent list is kept sorted in page order.
1da177e4 1663 *
11d31886 1664 * This function rather assumes that it is called in ascending page order.
1da177e4 1665 */
a509bc1a 1666int
1da177e4
LT
1667add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1668 unsigned long nr_pages, sector_t start_block)
1669{
1670 struct swap_extent *se;
1671 struct swap_extent *new_se;
1672 struct list_head *lh;
1673
9625a5f2
HD
1674 if (start_page == 0) {
1675 se = &sis->first_swap_extent;
1676 sis->curr_swap_extent = se;
1677 se->start_page = 0;
1678 se->nr_pages = nr_pages;
1679 se->start_block = start_block;
1680 return 1;
1681 } else {
1682 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 1683 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
1684 BUG_ON(se->start_page + se->nr_pages != start_page);
1685 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
1686 /* Merge it */
1687 se->nr_pages += nr_pages;
1688 return 0;
1689 }
1da177e4
LT
1690 }
1691
1692 /*
1693 * No merge. Insert a new extent, preserving ordering.
1694 */
1695 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1696 if (new_se == NULL)
1697 return -ENOMEM;
1698 new_se->start_page = start_page;
1699 new_se->nr_pages = nr_pages;
1700 new_se->start_block = start_block;
1701
9625a5f2 1702 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 1703 return 1;
1da177e4
LT
1704}
1705
1706/*
1707 * A `swap extent' is a simple thing which maps a contiguous range of pages
1708 * onto a contiguous range of disk blocks. An ordered list of swap extents
1709 * is built at swapon time and is then used at swap_writepage/swap_readpage
1710 * time for locating where on disk a page belongs.
1711 *
1712 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1713 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1714 * swap files identically.
1715 *
1716 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1717 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1718 * swapfiles are handled *identically* after swapon time.
1719 *
1720 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1721 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1722 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1723 * requirements, they are simply tossed out - we will never use those blocks
1724 * for swapping.
1725 *
b0d9bcd4 1726 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
1727 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1728 * which will scribble on the fs.
1729 *
1730 * The amount of disk space which a single swap extent represents varies.
1731 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1732 * extents in the list. To avoid much list walking, we cache the previous
1733 * search location in `curr_swap_extent', and start new searches from there.
1734 * This is extremely effective. The average number of iterations in
1735 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1736 */
53092a74 1737static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 1738{
62c230bc
MG
1739 struct file *swap_file = sis->swap_file;
1740 struct address_space *mapping = swap_file->f_mapping;
1741 struct inode *inode = mapping->host;
1da177e4
LT
1742 int ret;
1743
1da177e4
LT
1744 if (S_ISBLK(inode->i_mode)) {
1745 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 1746 *span = sis->pages;
a509bc1a 1747 return ret;
1da177e4
LT
1748 }
1749
62c230bc 1750 if (mapping->a_ops->swap_activate) {
a509bc1a 1751 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
1752 if (!ret) {
1753 sis->flags |= SWP_FILE;
1754 ret = add_swap_extent(sis, 0, sis->max, 0);
1755 *span = sis->pages;
1756 }
a509bc1a 1757 return ret;
62c230bc
MG
1758 }
1759
a509bc1a 1760 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
1761}
1762
cf0cac0a 1763static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
1764 unsigned char *swap_map,
1765 struct swap_cluster_info *cluster_info)
40531542
CEB
1766{
1767 int i, prev;
1768
40531542
CEB
1769 if (prio >= 0)
1770 p->prio = prio;
1771 else
1772 p->prio = --least_priority;
1773 p->swap_map = swap_map;
2a8f9449 1774 p->cluster_info = cluster_info;
40531542 1775 p->flags |= SWP_WRITEOK;
ec8acf20 1776 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
1777 total_swap_pages += p->pages;
1778
1779 /* insert swap space into swap_list: */
1780 prev = -1;
1781 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1782 if (p->prio >= swap_info[i]->prio)
1783 break;
1784 prev = i;
1785 }
1786 p->next = i;
1787 if (prev < 0)
1788 swap_list.head = swap_list.next = p->type;
1789 else
1790 swap_info[prev]->next = p->type;
cf0cac0a
CEB
1791}
1792
1793static void enable_swap_info(struct swap_info_struct *p, int prio,
1794 unsigned char *swap_map,
2a8f9449 1795 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
1796 unsigned long *frontswap_map)
1797{
4f89849d 1798 frontswap_init(p->type, frontswap_map);
cf0cac0a 1799 spin_lock(&swap_lock);
ec8acf20 1800 spin_lock(&p->lock);
2a8f9449 1801 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 1802 spin_unlock(&p->lock);
cf0cac0a
CEB
1803 spin_unlock(&swap_lock);
1804}
1805
1806static void reinsert_swap_info(struct swap_info_struct *p)
1807{
1808 spin_lock(&swap_lock);
ec8acf20 1809 spin_lock(&p->lock);
2a8f9449 1810 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 1811 spin_unlock(&p->lock);
40531542
CEB
1812 spin_unlock(&swap_lock);
1813}
1814
c4ea37c2 1815SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 1816{
73c34b6a 1817 struct swap_info_struct *p = NULL;
8d69aaee 1818 unsigned char *swap_map;
2a8f9449 1819 struct swap_cluster_info *cluster_info;
4f89849d 1820 unsigned long *frontswap_map;
1da177e4
LT
1821 struct file *swap_file, *victim;
1822 struct address_space *mapping;
1823 struct inode *inode;
91a27b2a 1824 struct filename *pathname;
1da177e4
LT
1825 int i, type, prev;
1826 int err;
5b808a23 1827 unsigned int old_block_size;
886bb7e9 1828
1da177e4
LT
1829 if (!capable(CAP_SYS_ADMIN))
1830 return -EPERM;
1831
191c5424
AV
1832 BUG_ON(!current->mm);
1833
1da177e4 1834 pathname = getname(specialfile);
1da177e4 1835 if (IS_ERR(pathname))
f58b59c1 1836 return PTR_ERR(pathname);
1da177e4 1837
669abf4e 1838 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
1839 err = PTR_ERR(victim);
1840 if (IS_ERR(victim))
1841 goto out;
1842
1843 mapping = victim->f_mapping;
1844 prev = -1;
5d337b91 1845 spin_lock(&swap_lock);
efa90a98
HD
1846 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1847 p = swap_info[type];
22c6f8fd 1848 if (p->flags & SWP_WRITEOK) {
1da177e4
LT
1849 if (p->swap_file->f_mapping == mapping)
1850 break;
1851 }
1852 prev = type;
1853 }
1854 if (type < 0) {
1855 err = -EINVAL;
5d337b91 1856 spin_unlock(&swap_lock);
1da177e4
LT
1857 goto out_dput;
1858 }
191c5424 1859 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
1860 vm_unacct_memory(p->pages);
1861 else {
1862 err = -ENOMEM;
5d337b91 1863 spin_unlock(&swap_lock);
1da177e4
LT
1864 goto out_dput;
1865 }
efa90a98 1866 if (prev < 0)
1da177e4 1867 swap_list.head = p->next;
efa90a98
HD
1868 else
1869 swap_info[prev]->next = p->next;
1da177e4
LT
1870 if (type == swap_list.next) {
1871 /* just pick something that's safe... */
1872 swap_list.next = swap_list.head;
1873 }
ec8acf20 1874 spin_lock(&p->lock);
78ecba08 1875 if (p->prio < 0) {
efa90a98
HD
1876 for (i = p->next; i >= 0; i = swap_info[i]->next)
1877 swap_info[i]->prio = p->prio--;
78ecba08
HD
1878 least_priority++;
1879 }
ec8acf20 1880 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
1881 total_swap_pages -= p->pages;
1882 p->flags &= ~SWP_WRITEOK;
ec8acf20 1883 spin_unlock(&p->lock);
5d337b91 1884 spin_unlock(&swap_lock);
fb4f88dc 1885
e1e12d2f 1886 set_current_oom_origin();
38b5faf4 1887 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
e1e12d2f 1888 clear_current_oom_origin();
1da177e4 1889
1da177e4
LT
1890 if (err) {
1891 /* re-insert swap space back into swap_list */
cf0cac0a 1892 reinsert_swap_info(p);
1da177e4
LT
1893 goto out_dput;
1894 }
52b7efdb 1895
815c2c54
SL
1896 flush_work(&p->discard_work);
1897
5d337b91 1898 destroy_swap_extents(p);
570a335b
HD
1899 if (p->flags & SWP_CONTINUED)
1900 free_swap_count_continuations(p);
1901
fc0abb14 1902 mutex_lock(&swapon_mutex);
5d337b91 1903 spin_lock(&swap_lock);
ec8acf20 1904 spin_lock(&p->lock);
5d337b91
HD
1905 drain_mmlist();
1906
52b7efdb 1907 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
1908 p->highest_bit = 0; /* cuts scans short */
1909 while (p->flags >= SWP_SCANNING) {
ec8acf20 1910 spin_unlock(&p->lock);
5d337b91 1911 spin_unlock(&swap_lock);
13e4b57f 1912 schedule_timeout_uninterruptible(1);
5d337b91 1913 spin_lock(&swap_lock);
ec8acf20 1914 spin_lock(&p->lock);
52b7efdb 1915 }
52b7efdb 1916
1da177e4 1917 swap_file = p->swap_file;
5b808a23 1918 old_block_size = p->old_block_size;
1da177e4
LT
1919 p->swap_file = NULL;
1920 p->max = 0;
1921 swap_map = p->swap_map;
1922 p->swap_map = NULL;
2a8f9449
SL
1923 cluster_info = p->cluster_info;
1924 p->cluster_info = NULL;
1da177e4 1925 p->flags = 0;
4f89849d 1926 frontswap_map = frontswap_map_get(p);
ec8acf20 1927 spin_unlock(&p->lock);
5d337b91 1928 spin_unlock(&swap_lock);
4f89849d 1929 frontswap_invalidate_area(type);
58e97ba6 1930 frontswap_map_set(p, NULL);
fc0abb14 1931 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
1932 free_percpu(p->percpu_cluster);
1933 p->percpu_cluster = NULL;
1da177e4 1934 vfree(swap_map);
2a8f9449 1935 vfree(cluster_info);
4f89849d 1936 vfree(frontswap_map);
2de1a7e4 1937 /* Destroy swap account information */
27a7faa0
KH
1938 swap_cgroup_swapoff(type);
1939
1da177e4
LT
1940 inode = mapping->host;
1941 if (S_ISBLK(inode->i_mode)) {
1942 struct block_device *bdev = I_BDEV(inode);
5b808a23 1943 set_blocksize(bdev, old_block_size);
e525fd89 1944 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 1945 } else {
1b1dcc1b 1946 mutex_lock(&inode->i_mutex);
1da177e4 1947 inode->i_flags &= ~S_SWAPFILE;
1b1dcc1b 1948 mutex_unlock(&inode->i_mutex);
1da177e4
LT
1949 }
1950 filp_close(swap_file, NULL);
1951 err = 0;
66d7dd51
KS
1952 atomic_inc(&proc_poll_event);
1953 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
1954
1955out_dput:
1956 filp_close(victim, NULL);
1957out:
f58b59c1 1958 putname(pathname);
1da177e4
LT
1959 return err;
1960}
1961
1962#ifdef CONFIG_PROC_FS
66d7dd51
KS
1963static unsigned swaps_poll(struct file *file, poll_table *wait)
1964{
f1514638 1965 struct seq_file *seq = file->private_data;
66d7dd51
KS
1966
1967 poll_wait(file, &proc_poll_wait, wait);
1968
f1514638
KS
1969 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1970 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
1971 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1972 }
1973
1974 return POLLIN | POLLRDNORM;
1975}
1976
1da177e4
LT
1977/* iterator */
1978static void *swap_start(struct seq_file *swap, loff_t *pos)
1979{
efa90a98
HD
1980 struct swap_info_struct *si;
1981 int type;
1da177e4
LT
1982 loff_t l = *pos;
1983
fc0abb14 1984 mutex_lock(&swapon_mutex);
1da177e4 1985
881e4aab
SS
1986 if (!l)
1987 return SEQ_START_TOKEN;
1988
efa90a98
HD
1989 for (type = 0; type < nr_swapfiles; type++) {
1990 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1991 si = swap_info[type];
1992 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 1993 continue;
881e4aab 1994 if (!--l)
efa90a98 1995 return si;
1da177e4
LT
1996 }
1997
1998 return NULL;
1999}
2000
2001static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2002{
efa90a98
HD
2003 struct swap_info_struct *si = v;
2004 int type;
1da177e4 2005
881e4aab 2006 if (v == SEQ_START_TOKEN)
efa90a98
HD
2007 type = 0;
2008 else
2009 type = si->type + 1;
881e4aab 2010
efa90a98
HD
2011 for (; type < nr_swapfiles; type++) {
2012 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2013 si = swap_info[type];
2014 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2015 continue;
2016 ++*pos;
efa90a98 2017 return si;
1da177e4
LT
2018 }
2019
2020 return NULL;
2021}
2022
2023static void swap_stop(struct seq_file *swap, void *v)
2024{
fc0abb14 2025 mutex_unlock(&swapon_mutex);
1da177e4
LT
2026}
2027
2028static int swap_show(struct seq_file *swap, void *v)
2029{
efa90a98 2030 struct swap_info_struct *si = v;
1da177e4
LT
2031 struct file *file;
2032 int len;
2033
efa90a98 2034 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2035 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2036 return 0;
2037 }
1da177e4 2038
efa90a98 2039 file = si->swap_file;
c32c2f63 2040 len = seq_path(swap, &file->f_path, " \t\n\\");
6eb396dc 2041 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2042 len < 40 ? 40 - len : 1, " ",
496ad9aa 2043 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2044 "partition" : "file\t",
efa90a98
HD
2045 si->pages << (PAGE_SHIFT - 10),
2046 si->inuse_pages << (PAGE_SHIFT - 10),
2047 si->prio);
1da177e4
LT
2048 return 0;
2049}
2050
15ad7cdc 2051static const struct seq_operations swaps_op = {
1da177e4
LT
2052 .start = swap_start,
2053 .next = swap_next,
2054 .stop = swap_stop,
2055 .show = swap_show
2056};
2057
2058static int swaps_open(struct inode *inode, struct file *file)
2059{
f1514638 2060 struct seq_file *seq;
66d7dd51
KS
2061 int ret;
2062
66d7dd51 2063 ret = seq_open(file, &swaps_op);
f1514638 2064 if (ret)
66d7dd51 2065 return ret;
66d7dd51 2066
f1514638
KS
2067 seq = file->private_data;
2068 seq->poll_event = atomic_read(&proc_poll_event);
2069 return 0;
1da177e4
LT
2070}
2071
15ad7cdc 2072static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2073 .open = swaps_open,
2074 .read = seq_read,
2075 .llseek = seq_lseek,
2076 .release = seq_release,
66d7dd51 2077 .poll = swaps_poll,
1da177e4
LT
2078};
2079
2080static int __init procswaps_init(void)
2081{
3d71f86f 2082 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2083 return 0;
2084}
2085__initcall(procswaps_init);
2086#endif /* CONFIG_PROC_FS */
2087
1796316a
JB
2088#ifdef MAX_SWAPFILES_CHECK
2089static int __init max_swapfiles_check(void)
2090{
2091 MAX_SWAPFILES_CHECK();
2092 return 0;
2093}
2094late_initcall(max_swapfiles_check);
2095#endif
2096
53cbb243 2097static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2098{
73c34b6a 2099 struct swap_info_struct *p;
1da177e4 2100 unsigned int type;
efa90a98
HD
2101
2102 p = kzalloc(sizeof(*p), GFP_KERNEL);
2103 if (!p)
53cbb243 2104 return ERR_PTR(-ENOMEM);
efa90a98 2105
5d337b91 2106 spin_lock(&swap_lock);
efa90a98
HD
2107 for (type = 0; type < nr_swapfiles; type++) {
2108 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2109 break;
efa90a98 2110 }
0697212a 2111 if (type >= MAX_SWAPFILES) {
5d337b91 2112 spin_unlock(&swap_lock);
efa90a98 2113 kfree(p);
730c0581 2114 return ERR_PTR(-EPERM);
1da177e4 2115 }
efa90a98
HD
2116 if (type >= nr_swapfiles) {
2117 p->type = type;
2118 swap_info[type] = p;
2119 /*
2120 * Write swap_info[type] before nr_swapfiles, in case a
2121 * racing procfs swap_start() or swap_next() is reading them.
2122 * (We never shrink nr_swapfiles, we never free this entry.)
2123 */
2124 smp_wmb();
2125 nr_swapfiles++;
2126 } else {
2127 kfree(p);
2128 p = swap_info[type];
2129 /*
2130 * Do not memset this entry: a racing procfs swap_next()
2131 * would be relying on p->type to remain valid.
2132 */
2133 }
9625a5f2 2134 INIT_LIST_HEAD(&p->first_swap_extent.list);
1da177e4 2135 p->flags = SWP_USED;
1da177e4 2136 p->next = -1;
5d337b91 2137 spin_unlock(&swap_lock);
ec8acf20 2138 spin_lock_init(&p->lock);
efa90a98 2139
53cbb243 2140 return p;
53cbb243
CEB
2141}
2142
4d0e1e10
CEB
2143static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2144{
2145 int error;
2146
2147 if (S_ISBLK(inode->i_mode)) {
2148 p->bdev = bdgrab(I_BDEV(inode));
2149 error = blkdev_get(p->bdev,
2150 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2151 sys_swapon);
2152 if (error < 0) {
2153 p->bdev = NULL;
87ade72a 2154 return -EINVAL;
4d0e1e10
CEB
2155 }
2156 p->old_block_size = block_size(p->bdev);
2157 error = set_blocksize(p->bdev, PAGE_SIZE);
2158 if (error < 0)
87ade72a 2159 return error;
4d0e1e10
CEB
2160 p->flags |= SWP_BLKDEV;
2161 } else if (S_ISREG(inode->i_mode)) {
2162 p->bdev = inode->i_sb->s_bdev;
2163 mutex_lock(&inode->i_mutex);
87ade72a
CEB
2164 if (IS_SWAPFILE(inode))
2165 return -EBUSY;
2166 } else
2167 return -EINVAL;
4d0e1e10
CEB
2168
2169 return 0;
4d0e1e10
CEB
2170}
2171
ca8bd38b
CEB
2172static unsigned long read_swap_header(struct swap_info_struct *p,
2173 union swap_header *swap_header,
2174 struct inode *inode)
2175{
2176 int i;
2177 unsigned long maxpages;
2178 unsigned long swapfilepages;
d6bbbd29 2179 unsigned long last_page;
ca8bd38b
CEB
2180
2181 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2182 pr_err("Unable to find swap-space signature\n");
38719025 2183 return 0;
ca8bd38b
CEB
2184 }
2185
2186 /* swap partition endianess hack... */
2187 if (swab32(swap_header->info.version) == 1) {
2188 swab32s(&swap_header->info.version);
2189 swab32s(&swap_header->info.last_page);
2190 swab32s(&swap_header->info.nr_badpages);
2191 for (i = 0; i < swap_header->info.nr_badpages; i++)
2192 swab32s(&swap_header->info.badpages[i]);
2193 }
2194 /* Check the swap header's sub-version */
2195 if (swap_header->info.version != 1) {
465c47fd
AM
2196 pr_warn("Unable to handle swap header version %d\n",
2197 swap_header->info.version);
38719025 2198 return 0;
ca8bd38b
CEB
2199 }
2200
2201 p->lowest_bit = 1;
2202 p->cluster_next = 1;
2203 p->cluster_nr = 0;
2204
2205 /*
2206 * Find out how many pages are allowed for a single swap
9b15b817 2207 * device. There are two limiting factors: 1) the number
a2c16d6c
HD
2208 * of bits for the swap offset in the swp_entry_t type, and
2209 * 2) the number of bits in the swap pte as defined by the
9b15b817 2210 * different architectures. In order to find the
a2c16d6c 2211 * largest possible bit mask, a swap entry with swap type 0
ca8bd38b 2212 * and swap offset ~0UL is created, encoded to a swap pte,
a2c16d6c 2213 * decoded to a swp_entry_t again, and finally the swap
ca8bd38b
CEB
2214 * offset is extracted. This will mask all the bits from
2215 * the initial ~0UL mask that can't be encoded in either
2216 * the swp_entry_t or the architecture definition of a
9b15b817 2217 * swap pte.
ca8bd38b
CEB
2218 */
2219 maxpages = swp_offset(pte_to_swp_entry(
9b15b817 2220 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
d6bbbd29
RJ
2221 last_page = swap_header->info.last_page;
2222 if (last_page > maxpages) {
465c47fd 2223 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2224 maxpages << (PAGE_SHIFT - 10),
2225 last_page << (PAGE_SHIFT - 10));
2226 }
2227 if (maxpages > last_page) {
2228 maxpages = last_page + 1;
ca8bd38b
CEB
2229 /* p->max is an unsigned int: don't overflow it */
2230 if ((unsigned int)maxpages == 0)
2231 maxpages = UINT_MAX;
2232 }
2233 p->highest_bit = maxpages - 1;
2234
2235 if (!maxpages)
38719025 2236 return 0;
ca8bd38b
CEB
2237 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2238 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2239 pr_warn("Swap area shorter than signature indicates\n");
38719025 2240 return 0;
ca8bd38b
CEB
2241 }
2242 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 2243 return 0;
ca8bd38b 2244 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 2245 return 0;
ca8bd38b
CEB
2246
2247 return maxpages;
ca8bd38b
CEB
2248}
2249
915d4d7b
CEB
2250static int setup_swap_map_and_extents(struct swap_info_struct *p,
2251 union swap_header *swap_header,
2252 unsigned char *swap_map,
2a8f9449 2253 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
2254 unsigned long maxpages,
2255 sector_t *span)
2256{
2257 int i;
915d4d7b
CEB
2258 unsigned int nr_good_pages;
2259 int nr_extents;
2a8f9449
SL
2260 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2261 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
915d4d7b
CEB
2262
2263 nr_good_pages = maxpages - 1; /* omit header page */
2264
2a8f9449
SL
2265 cluster_set_null(&p->free_cluster_head);
2266 cluster_set_null(&p->free_cluster_tail);
815c2c54
SL
2267 cluster_set_null(&p->discard_cluster_head);
2268 cluster_set_null(&p->discard_cluster_tail);
2a8f9449 2269
915d4d7b
CEB
2270 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2271 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
2272 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2273 return -EINVAL;
915d4d7b
CEB
2274 if (page_nr < maxpages) {
2275 swap_map[page_nr] = SWAP_MAP_BAD;
2276 nr_good_pages--;
2a8f9449
SL
2277 /*
2278 * Haven't marked the cluster free yet, no list
2279 * operation involved
2280 */
2281 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
2282 }
2283 }
2284
2a8f9449
SL
2285 /* Haven't marked the cluster free yet, no list operation involved */
2286 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2287 inc_cluster_info_page(p, cluster_info, i);
2288
915d4d7b
CEB
2289 if (nr_good_pages) {
2290 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
2291 /*
2292 * Not mark the cluster free yet, no list
2293 * operation involved
2294 */
2295 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
2296 p->max = maxpages;
2297 p->pages = nr_good_pages;
2298 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
2299 if (nr_extents < 0)
2300 return nr_extents;
915d4d7b
CEB
2301 nr_good_pages = p->pages;
2302 }
2303 if (!nr_good_pages) {
465c47fd 2304 pr_warn("Empty swap-file\n");
bdb8e3f6 2305 return -EINVAL;
915d4d7b
CEB
2306 }
2307
2a8f9449
SL
2308 if (!cluster_info)
2309 return nr_extents;
2310
2311 for (i = 0; i < nr_clusters; i++) {
2312 if (!cluster_count(&cluster_info[idx])) {
2313 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2314 if (cluster_is_null(&p->free_cluster_head)) {
2315 cluster_set_next_flag(&p->free_cluster_head,
2316 idx, 0);
2317 cluster_set_next_flag(&p->free_cluster_tail,
2318 idx, 0);
2319 } else {
2320 unsigned int tail;
2321
2322 tail = cluster_next(&p->free_cluster_tail);
2323 cluster_set_next(&cluster_info[tail], idx);
2324 cluster_set_next_flag(&p->free_cluster_tail,
2325 idx, 0);
2326 }
2327 }
2328 idx++;
2329 if (idx == nr_clusters)
2330 idx = 0;
2331 }
915d4d7b 2332 return nr_extents;
915d4d7b
CEB
2333}
2334
dcf6b7dd
RA
2335/*
2336 * Helper to sys_swapon determining if a given swap
2337 * backing device queue supports DISCARD operations.
2338 */
2339static bool swap_discardable(struct swap_info_struct *si)
2340{
2341 struct request_queue *q = bdev_get_queue(si->bdev);
2342
2343 if (!q || !blk_queue_discard(q))
2344 return false;
2345
2346 return true;
2347}
2348
53cbb243
CEB
2349SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2350{
2351 struct swap_info_struct *p;
91a27b2a 2352 struct filename *name;
53cbb243
CEB
2353 struct file *swap_file = NULL;
2354 struct address_space *mapping;
40531542
CEB
2355 int i;
2356 int prio;
53cbb243
CEB
2357 int error;
2358 union swap_header *swap_header;
915d4d7b 2359 int nr_extents;
53cbb243
CEB
2360 sector_t span;
2361 unsigned long maxpages;
53cbb243 2362 unsigned char *swap_map = NULL;
2a8f9449 2363 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 2364 unsigned long *frontswap_map = NULL;
53cbb243
CEB
2365 struct page *page = NULL;
2366 struct inode *inode = NULL;
53cbb243 2367
d15cab97
HD
2368 if (swap_flags & ~SWAP_FLAGS_VALID)
2369 return -EINVAL;
2370
53cbb243
CEB
2371 if (!capable(CAP_SYS_ADMIN))
2372 return -EPERM;
2373
2374 p = alloc_swap_info();
2542e513
CEB
2375 if (IS_ERR(p))
2376 return PTR_ERR(p);
53cbb243 2377
815c2c54
SL
2378 INIT_WORK(&p->discard_work, swap_discard_work);
2379
1da177e4 2380 name = getname(specialfile);
1da177e4 2381 if (IS_ERR(name)) {
7de7fb6b 2382 error = PTR_ERR(name);
1da177e4 2383 name = NULL;
bd69010b 2384 goto bad_swap;
1da177e4 2385 }
669abf4e 2386 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 2387 if (IS_ERR(swap_file)) {
7de7fb6b 2388 error = PTR_ERR(swap_file);
1da177e4 2389 swap_file = NULL;
bd69010b 2390 goto bad_swap;
1da177e4
LT
2391 }
2392
2393 p->swap_file = swap_file;
2394 mapping = swap_file->f_mapping;
1da177e4 2395
1da177e4 2396 for (i = 0; i < nr_swapfiles; i++) {
efa90a98 2397 struct swap_info_struct *q = swap_info[i];
1da177e4 2398
e8e6c2ec 2399 if (q == p || !q->swap_file)
1da177e4 2400 continue;
7de7fb6b
CEB
2401 if (mapping == q->swap_file->f_mapping) {
2402 error = -EBUSY;
1da177e4 2403 goto bad_swap;
7de7fb6b 2404 }
1da177e4
LT
2405 }
2406
2130781e
CEB
2407 inode = mapping->host;
2408 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
4d0e1e10
CEB
2409 error = claim_swapfile(p, inode);
2410 if (unlikely(error))
1da177e4 2411 goto bad_swap;
1da177e4 2412
1da177e4
LT
2413 /*
2414 * Read the swap header.
2415 */
2416 if (!mapping->a_ops->readpage) {
2417 error = -EINVAL;
2418 goto bad_swap;
2419 }
090d2b18 2420 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
2421 if (IS_ERR(page)) {
2422 error = PTR_ERR(page);
2423 goto bad_swap;
2424 }
81e33971 2425 swap_header = kmap(page);
1da177e4 2426
ca8bd38b
CEB
2427 maxpages = read_swap_header(p, swap_header, inode);
2428 if (unlikely(!maxpages)) {
1da177e4
LT
2429 error = -EINVAL;
2430 goto bad_swap;
2431 }
886bb7e9 2432
81e33971 2433 /* OK, set up the swap map and apply the bad block list */
803d0c83 2434 swap_map = vzalloc(maxpages);
81e33971
HD
2435 if (!swap_map) {
2436 error = -ENOMEM;
2437 goto bad_swap;
2438 }
2a8f9449
SL
2439 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2440 p->flags |= SWP_SOLIDSTATE;
2441 /*
2442 * select a random position to start with to help wear leveling
2443 * SSD
2444 */
2445 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2446
2447 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2448 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2449 if (!cluster_info) {
2450 error = -ENOMEM;
2451 goto bad_swap;
2452 }
ebc2a1a6
SL
2453 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2454 if (!p->percpu_cluster) {
2455 error = -ENOMEM;
2456 goto bad_swap;
2457 }
2458 for_each_possible_cpu(i) {
2459 struct percpu_cluster *cluster;
2460 cluster = per_cpu_ptr(p->percpu_cluster, i);
2461 cluster_set_null(&cluster->index);
2462 }
2a8f9449 2463 }
1da177e4 2464
1421ef3c
CEB
2465 error = swap_cgroup_swapon(p->type, maxpages);
2466 if (error)
2467 goto bad_swap;
2468
915d4d7b 2469 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 2470 cluster_info, maxpages, &span);
915d4d7b
CEB
2471 if (unlikely(nr_extents < 0)) {
2472 error = nr_extents;
1da177e4
LT
2473 goto bad_swap;
2474 }
38b5faf4
DM
2475 /* frontswap enabled? set up bit-per-page map for frontswap */
2476 if (frontswap_enabled)
7b57976d 2477 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
1da177e4 2478
2a8f9449
SL
2479 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2480 /*
2481 * When discard is enabled for swap with no particular
2482 * policy flagged, we set all swap discard flags here in
2483 * order to sustain backward compatibility with older
2484 * swapon(8) releases.
2485 */
2486 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2487 SWP_PAGE_DISCARD);
dcf6b7dd 2488
2a8f9449
SL
2489 /*
2490 * By flagging sys_swapon, a sysadmin can tell us to
2491 * either do single-time area discards only, or to just
2492 * perform discards for released swap page-clusters.
2493 * Now it's time to adjust the p->flags accordingly.
2494 */
2495 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2496 p->flags &= ~SWP_PAGE_DISCARD;
2497 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2498 p->flags &= ~SWP_AREA_DISCARD;
2499
2500 /* issue a swapon-time discard if it's still required */
2501 if (p->flags & SWP_AREA_DISCARD) {
2502 int err = discard_swap(p);
2503 if (unlikely(err))
2504 pr_err("swapon: discard_swap(%p): %d\n",
2505 p, err);
dcf6b7dd 2506 }
20137a49 2507 }
6a6ba831 2508
fc0abb14 2509 mutex_lock(&swapon_mutex);
40531542 2510 prio = -1;
78ecba08 2511 if (swap_flags & SWAP_FLAG_PREFER)
40531542 2512 prio =
78ecba08 2513 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 2514 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 2515
465c47fd 2516 pr_info("Adding %uk swap on %s. "
dcf6b7dd 2517 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 2518 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
2519 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2520 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 2521 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
2522 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2523 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 2524 (frontswap_map) ? "FS" : "");
c69dbfb8 2525
fc0abb14 2526 mutex_unlock(&swapon_mutex);
66d7dd51
KS
2527 atomic_inc(&proc_poll_event);
2528 wake_up_interruptible(&proc_poll_wait);
2529
9b01c350
CEB
2530 if (S_ISREG(inode->i_mode))
2531 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
2532 error = 0;
2533 goto out;
2534bad_swap:
ebc2a1a6
SL
2535 free_percpu(p->percpu_cluster);
2536 p->percpu_cluster = NULL;
bd69010b 2537 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
2538 set_blocksize(p->bdev, p->old_block_size);
2539 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2540 }
4cd3bb10 2541 destroy_swap_extents(p);
e8e6c2ec 2542 swap_cgroup_swapoff(p->type);
5d337b91 2543 spin_lock(&swap_lock);
1da177e4 2544 p->swap_file = NULL;
1da177e4 2545 p->flags = 0;
5d337b91 2546 spin_unlock(&swap_lock);
1da177e4 2547 vfree(swap_map);
2a8f9449 2548 vfree(cluster_info);
52c50567 2549 if (swap_file) {
2130781e 2550 if (inode && S_ISREG(inode->i_mode)) {
52c50567 2551 mutex_unlock(&inode->i_mutex);
2130781e
CEB
2552 inode = NULL;
2553 }
1da177e4 2554 filp_close(swap_file, NULL);
52c50567 2555 }
1da177e4
LT
2556out:
2557 if (page && !IS_ERR(page)) {
2558 kunmap(page);
2559 page_cache_release(page);
2560 }
2561 if (name)
2562 putname(name);
9b01c350 2563 if (inode && S_ISREG(inode->i_mode))
1b1dcc1b 2564 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2565 return error;
2566}
2567
2568void si_swapinfo(struct sysinfo *val)
2569{
efa90a98 2570 unsigned int type;
1da177e4
LT
2571 unsigned long nr_to_be_unused = 0;
2572
5d337b91 2573 spin_lock(&swap_lock);
efa90a98
HD
2574 for (type = 0; type < nr_swapfiles; type++) {
2575 struct swap_info_struct *si = swap_info[type];
2576
2577 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2578 nr_to_be_unused += si->inuse_pages;
1da177e4 2579 }
ec8acf20 2580 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 2581 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 2582 spin_unlock(&swap_lock);
1da177e4
LT
2583}
2584
2585/*
2586 * Verify that a swap entry is valid and increment its swap map count.
2587 *
355cfa73
KH
2588 * Returns error code in following case.
2589 * - success -> 0
2590 * - swp_entry is invalid -> EINVAL
2591 * - swp_entry is migration entry -> EINVAL
2592 * - swap-cache reference is requested but there is already one. -> EEXIST
2593 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 2594 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 2595 */
8d69aaee 2596static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 2597{
73c34b6a 2598 struct swap_info_struct *p;
1da177e4 2599 unsigned long offset, type;
8d69aaee
HD
2600 unsigned char count;
2601 unsigned char has_cache;
253d553b 2602 int err = -EINVAL;
1da177e4 2603
a7420aa5 2604 if (non_swap_entry(entry))
253d553b 2605 goto out;
0697212a 2606
1da177e4
LT
2607 type = swp_type(entry);
2608 if (type >= nr_swapfiles)
2609 goto bad_file;
efa90a98 2610 p = swap_info[type];
1da177e4
LT
2611 offset = swp_offset(entry);
2612
ec8acf20 2613 spin_lock(&p->lock);
355cfa73
KH
2614 if (unlikely(offset >= p->max))
2615 goto unlock_out;
2616
253d553b 2617 count = p->swap_map[offset];
edfe23da
SL
2618
2619 /*
2620 * swapin_readahead() doesn't check if a swap entry is valid, so the
2621 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2622 */
2623 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2624 err = -ENOENT;
2625 goto unlock_out;
2626 }
2627
253d553b
HD
2628 has_cache = count & SWAP_HAS_CACHE;
2629 count &= ~SWAP_HAS_CACHE;
2630 err = 0;
355cfa73 2631
253d553b 2632 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
2633
2634 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
2635 if (!has_cache && count)
2636 has_cache = SWAP_HAS_CACHE;
2637 else if (has_cache) /* someone else added cache */
2638 err = -EEXIST;
2639 else /* no users remaining */
2640 err = -ENOENT;
355cfa73
KH
2641
2642 } else if (count || has_cache) {
253d553b 2643
570a335b
HD
2644 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2645 count += usage;
2646 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 2647 err = -EINVAL;
570a335b
HD
2648 else if (swap_count_continued(p, offset, count))
2649 count = COUNT_CONTINUED;
2650 else
2651 err = -ENOMEM;
355cfa73 2652 } else
253d553b
HD
2653 err = -ENOENT; /* unused swap entry */
2654
2655 p->swap_map[offset] = count | has_cache;
2656
355cfa73 2657unlock_out:
ec8acf20 2658 spin_unlock(&p->lock);
1da177e4 2659out:
253d553b 2660 return err;
1da177e4
LT
2661
2662bad_file:
465c47fd 2663 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
2664 goto out;
2665}
253d553b 2666
aaa46865
HD
2667/*
2668 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2669 * (in which case its reference count is never incremented).
2670 */
2671void swap_shmem_alloc(swp_entry_t entry)
2672{
2673 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2674}
2675
355cfa73 2676/*
08259d58
HD
2677 * Increase reference count of swap entry by 1.
2678 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2679 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2680 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2681 * might occur if a page table entry has got corrupted.
355cfa73 2682 */
570a335b 2683int swap_duplicate(swp_entry_t entry)
355cfa73 2684{
570a335b
HD
2685 int err = 0;
2686
2687 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2688 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2689 return err;
355cfa73 2690}
1da177e4 2691
cb4b86ba 2692/*
355cfa73
KH
2693 * @entry: swap entry for which we allocate swap cache.
2694 *
73c34b6a 2695 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
2696 * This can return error codes. Returns 0 at success.
2697 * -EBUSY means there is a swap cache.
2698 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
2699 */
2700int swapcache_prepare(swp_entry_t entry)
2701{
253d553b 2702 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
2703}
2704
f981c595
MG
2705struct swap_info_struct *page_swap_info(struct page *page)
2706{
2707 swp_entry_t swap = { .val = page_private(page) };
2708 BUG_ON(!PageSwapCache(page));
2709 return swap_info[swp_type(swap)];
2710}
2711
2712/*
2713 * out-of-line __page_file_ methods to avoid include hell.
2714 */
2715struct address_space *__page_file_mapping(struct page *page)
2716{
309381fe 2717 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2718 return page_swap_info(page)->swap_file->f_mapping;
2719}
2720EXPORT_SYMBOL_GPL(__page_file_mapping);
2721
2722pgoff_t __page_file_index(struct page *page)
2723{
2724 swp_entry_t swap = { .val = page_private(page) };
309381fe 2725 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
f981c595
MG
2726 return swp_offset(swap);
2727}
2728EXPORT_SYMBOL_GPL(__page_file_index);
2729
570a335b
HD
2730/*
2731 * add_swap_count_continuation - called when a swap count is duplicated
2732 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2733 * page of the original vmalloc'ed swap_map, to hold the continuation count
2734 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2735 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2736 *
2737 * These continuation pages are seldom referenced: the common paths all work
2738 * on the original swap_map, only referring to a continuation page when the
2739 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2740 *
2741 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2742 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2743 * can be called after dropping locks.
2744 */
2745int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2746{
2747 struct swap_info_struct *si;
2748 struct page *head;
2749 struct page *page;
2750 struct page *list_page;
2751 pgoff_t offset;
2752 unsigned char count;
2753
2754 /*
2755 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2756 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2757 */
2758 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2759
2760 si = swap_info_get(entry);
2761 if (!si) {
2762 /*
2763 * An acceptable race has occurred since the failing
2764 * __swap_duplicate(): the swap entry has been freed,
2765 * perhaps even the whole swap_map cleared for swapoff.
2766 */
2767 goto outer;
2768 }
2769
2770 offset = swp_offset(entry);
2771 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2772
2773 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2774 /*
2775 * The higher the swap count, the more likely it is that tasks
2776 * will race to add swap count continuation: we need to avoid
2777 * over-provisioning.
2778 */
2779 goto out;
2780 }
2781
2782 if (!page) {
ec8acf20 2783 spin_unlock(&si->lock);
570a335b
HD
2784 return -ENOMEM;
2785 }
2786
2787 /*
2788 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
2789 * no architecture is using highmem pages for kernel page tables: so it
2790 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
2791 */
2792 head = vmalloc_to_page(si->swap_map + offset);
2793 offset &= ~PAGE_MASK;
2794
2795 /*
2796 * Page allocation does not initialize the page's lru field,
2797 * but it does always reset its private field.
2798 */
2799 if (!page_private(head)) {
2800 BUG_ON(count & COUNT_CONTINUED);
2801 INIT_LIST_HEAD(&head->lru);
2802 set_page_private(head, SWP_CONTINUED);
2803 si->flags |= SWP_CONTINUED;
2804 }
2805
2806 list_for_each_entry(list_page, &head->lru, lru) {
2807 unsigned char *map;
2808
2809 /*
2810 * If the previous map said no continuation, but we've found
2811 * a continuation page, free our allocation and use this one.
2812 */
2813 if (!(count & COUNT_CONTINUED))
2814 goto out;
2815
9b04c5fe 2816 map = kmap_atomic(list_page) + offset;
570a335b 2817 count = *map;
9b04c5fe 2818 kunmap_atomic(map);
570a335b
HD
2819
2820 /*
2821 * If this continuation count now has some space in it,
2822 * free our allocation and use this one.
2823 */
2824 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2825 goto out;
2826 }
2827
2828 list_add_tail(&page->lru, &head->lru);
2829 page = NULL; /* now it's attached, don't free it */
2830out:
ec8acf20 2831 spin_unlock(&si->lock);
570a335b
HD
2832outer:
2833 if (page)
2834 __free_page(page);
2835 return 0;
2836}
2837
2838/*
2839 * swap_count_continued - when the original swap_map count is incremented
2840 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2841 * into, carry if so, or else fail until a new continuation page is allocated;
2842 * when the original swap_map count is decremented from 0 with continuation,
2843 * borrow from the continuation and report whether it still holds more.
2844 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2845 */
2846static bool swap_count_continued(struct swap_info_struct *si,
2847 pgoff_t offset, unsigned char count)
2848{
2849 struct page *head;
2850 struct page *page;
2851 unsigned char *map;
2852
2853 head = vmalloc_to_page(si->swap_map + offset);
2854 if (page_private(head) != SWP_CONTINUED) {
2855 BUG_ON(count & COUNT_CONTINUED);
2856 return false; /* need to add count continuation */
2857 }
2858
2859 offset &= ~PAGE_MASK;
2860 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 2861 map = kmap_atomic(page) + offset;
570a335b
HD
2862
2863 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2864 goto init_map; /* jump over SWAP_CONT_MAX checks */
2865
2866 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2867 /*
2868 * Think of how you add 1 to 999
2869 */
2870 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 2871 kunmap_atomic(map);
570a335b
HD
2872 page = list_entry(page->lru.next, struct page, lru);
2873 BUG_ON(page == head);
9b04c5fe 2874 map = kmap_atomic(page) + offset;
570a335b
HD
2875 }
2876 if (*map == SWAP_CONT_MAX) {
9b04c5fe 2877 kunmap_atomic(map);
570a335b
HD
2878 page = list_entry(page->lru.next, struct page, lru);
2879 if (page == head)
2880 return false; /* add count continuation */
9b04c5fe 2881 map = kmap_atomic(page) + offset;
570a335b
HD
2882init_map: *map = 0; /* we didn't zero the page */
2883 }
2884 *map += 1;
9b04c5fe 2885 kunmap_atomic(map);
570a335b
HD
2886 page = list_entry(page->lru.prev, struct page, lru);
2887 while (page != head) {
9b04c5fe 2888 map = kmap_atomic(page) + offset;
570a335b 2889 *map = COUNT_CONTINUED;
9b04c5fe 2890 kunmap_atomic(map);
570a335b
HD
2891 page = list_entry(page->lru.prev, struct page, lru);
2892 }
2893 return true; /* incremented */
2894
2895 } else { /* decrementing */
2896 /*
2897 * Think of how you subtract 1 from 1000
2898 */
2899 BUG_ON(count != COUNT_CONTINUED);
2900 while (*map == COUNT_CONTINUED) {
9b04c5fe 2901 kunmap_atomic(map);
570a335b
HD
2902 page = list_entry(page->lru.next, struct page, lru);
2903 BUG_ON(page == head);
9b04c5fe 2904 map = kmap_atomic(page) + offset;
570a335b
HD
2905 }
2906 BUG_ON(*map == 0);
2907 *map -= 1;
2908 if (*map == 0)
2909 count = 0;
9b04c5fe 2910 kunmap_atomic(map);
570a335b
HD
2911 page = list_entry(page->lru.prev, struct page, lru);
2912 while (page != head) {
9b04c5fe 2913 map = kmap_atomic(page) + offset;
570a335b
HD
2914 *map = SWAP_CONT_MAX | count;
2915 count = COUNT_CONTINUED;
9b04c5fe 2916 kunmap_atomic(map);
570a335b
HD
2917 page = list_entry(page->lru.prev, struct page, lru);
2918 }
2919 return count == COUNT_CONTINUED;
2920 }
2921}
2922
2923/*
2924 * free_swap_count_continuations - swapoff free all the continuation pages
2925 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2926 */
2927static void free_swap_count_continuations(struct swap_info_struct *si)
2928{
2929 pgoff_t offset;
2930
2931 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2932 struct page *head;
2933 head = vmalloc_to_page(si->swap_map + offset);
2934 if (page_private(head)) {
2935 struct list_head *this, *next;
2936 list_for_each_safe(this, next, &head->lru) {
2937 struct page *page;
2938 page = list_entry(this, struct page, lru);
2939 list_del(this);
2940 __free_page(page);
2941 }
2942 }
2943 }
2944}