hugetlbfs: common code update for s390
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36
AW
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
0b0acbec 7#include <linux/highmem.h>
d41dee36 8#include <linux/module.h>
28ae55c9 9#include <linux/spinlock.h>
0b0acbec 10#include <linux/vmalloc.h>
d41dee36 11#include <asm/dma.h>
8f6aac41
CL
12#include <asm/pgalloc.h>
13#include <asm/pgtable.h>
d41dee36
AW
14
15/*
16 * Permanent SPARSEMEM data:
17 *
18 * 1) mem_section - memory sections, mem_map's for valid memory
19 */
3e347261 20#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 21struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 22 ____cacheline_internodealigned_in_smp;
3e347261
BP
23#else
24struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 25 ____cacheline_internodealigned_in_smp;
3e347261
BP
26#endif
27EXPORT_SYMBOL(mem_section);
28
89689ae7
CL
29#ifdef NODE_NOT_IN_PAGE_FLAGS
30/*
31 * If we did not store the node number in the page then we have to
32 * do a lookup in the section_to_node_table in order to find which
33 * node the page belongs to.
34 */
35#if MAX_NUMNODES <= 256
36static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
37#else
38static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#endif
40
25ba77c1 41int page_to_nid(struct page *page)
89689ae7
CL
42{
43 return section_to_node_table[page_to_section(page)];
44}
45EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
46
47static void set_section_nid(unsigned long section_nr, int nid)
48{
49 section_to_node_table[section_nr] = nid;
50}
51#else /* !NODE_NOT_IN_PAGE_FLAGS */
52static inline void set_section_nid(unsigned long section_nr, int nid)
53{
54}
89689ae7
CL
55#endif
56
3e347261 57#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 58static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
59{
60 struct mem_section *section = NULL;
61 unsigned long array_size = SECTIONS_PER_ROOT *
62 sizeof(struct mem_section);
63
39d24e64 64 if (slab_is_available())
46a66eec
MK
65 section = kmalloc_node(array_size, GFP_KERNEL, nid);
66 else
67 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
68
69 if (section)
70 memset(section, 0, array_size);
71
72 return section;
3e347261 73}
802f192e 74
a3142c8e 75static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 76{
34af946a 77 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80 int ret = 0;
802f192e
BP
81
82 if (mem_section[root])
28ae55c9 83 return -EEXIST;
3e347261 84
28ae55c9 85 section = sparse_index_alloc(nid);
af0cd5a7
WC
86 if (!section)
87 return -ENOMEM;
28ae55c9
DH
88 /*
89 * This lock keeps two different sections from
90 * reallocating for the same index
91 */
92 spin_lock(&index_init_lock);
3e347261 93
28ae55c9
DH
94 if (mem_section[root]) {
95 ret = -EEXIST;
96 goto out;
97 }
98
99 mem_section[root] = section;
100out:
101 spin_unlock(&index_init_lock);
102 return ret;
103}
104#else /* !SPARSEMEM_EXTREME */
105static inline int sparse_index_init(unsigned long section_nr, int nid)
106{
107 return 0;
802f192e 108}
28ae55c9
DH
109#endif
110
4ca644d9
DH
111/*
112 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 113 * to also work for the flat array case because
4ca644d9
DH
114 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
115 */
116int __section_nr(struct mem_section* ms)
117{
118 unsigned long root_nr;
119 struct mem_section* root;
120
12783b00
MK
121 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
122 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
123 if (!root)
124 continue;
125
126 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
127 break;
128 }
129
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131}
132
30c253e6
AW
133/*
134 * During early boot, before section_mem_map is used for an actual
135 * mem_map, we use section_mem_map to store the section's NUMA
136 * node. This keeps us from having to use another data structure. The
137 * node information is cleared just before we store the real mem_map.
138 */
139static inline unsigned long sparse_encode_early_nid(int nid)
140{
141 return (nid << SECTION_NID_SHIFT);
142}
143
144static inline int sparse_early_nid(struct mem_section *section)
145{
146 return (section->section_mem_map >> SECTION_NID_SHIFT);
147}
148
d41dee36 149/* Record a memory area against a node. */
a3142c8e 150void __init memory_present(int nid, unsigned long start, unsigned long end)
d41dee36 151{
bead9a3a 152 unsigned long max_arch_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36
AW
153 unsigned long pfn;
154
bead9a3a
IM
155 /*
156 * Sanity checks - do not allow an architecture to pass
157 * in larger pfns than the maximum scope of sparsemem:
158 */
159 if (start >= max_arch_pfn)
160 return;
161 if (end >= max_arch_pfn)
162 end = max_arch_pfn;
163
d41dee36
AW
164 start &= PAGE_SECTION_MASK;
165 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
166 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
167 struct mem_section *ms;
168
169 sparse_index_init(section, nid);
85770ffe 170 set_section_nid(section, nid);
802f192e
BP
171
172 ms = __nr_to_section(section);
173 if (!ms->section_mem_map)
30c253e6
AW
174 ms->section_mem_map = sparse_encode_early_nid(nid) |
175 SECTION_MARKED_PRESENT;
d41dee36
AW
176 }
177}
178
179/*
180 * Only used by the i386 NUMA architecures, but relatively
181 * generic code.
182 */
183unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
184 unsigned long end_pfn)
185{
186 unsigned long pfn;
187 unsigned long nr_pages = 0;
188
189 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
190 if (nid != early_pfn_to_nid(pfn))
191 continue;
192
540557b9 193 if (pfn_present(pfn))
d41dee36
AW
194 nr_pages += PAGES_PER_SECTION;
195 }
196
197 return nr_pages * sizeof(struct page);
198}
199
29751f69
AW
200/*
201 * Subtle, we encode the real pfn into the mem_map such that
202 * the identity pfn - section_mem_map will return the actual
203 * physical page frame number.
204 */
205static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
206{
207 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
208}
209
210/*
ea01ea93 211 * Decode mem_map from the coded memmap
29751f69 212 */
ea01ea93 213static
29751f69
AW
214struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
215{
ea01ea93
BP
216 /* mask off the extra low bits of information */
217 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
218 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
219}
220
a3142c8e 221static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
222 unsigned long pnum, struct page *mem_map,
223 unsigned long *pageblock_bitmap)
29751f69 224{
540557b9 225 if (!present_section(ms))
29751f69
AW
226 return -EINVAL;
227
30c253e6 228 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
229 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
230 SECTION_HAS_MEM_MAP;
5c0e3066 231 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
232
233 return 1;
234}
235
5c0e3066
MG
236static unsigned long usemap_size(void)
237{
238 unsigned long size_bytes;
239 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
240 size_bytes = roundup(size_bytes, sizeof(unsigned long));
241 return size_bytes;
242}
243
244#ifdef CONFIG_MEMORY_HOTPLUG
245static unsigned long *__kmalloc_section_usemap(void)
246{
247 return kmalloc(usemap_size(), GFP_KERNEL);
248}
249#endif /* CONFIG_MEMORY_HOTPLUG */
250
a322f8ab 251static unsigned long *__init sparse_early_usemap_alloc(unsigned long pnum)
5c0e3066
MG
252{
253 unsigned long *usemap;
254 struct mem_section *ms = __nr_to_section(pnum);
255 int nid = sparse_early_nid(ms);
256
257 usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
258 if (usemap)
259 return usemap;
260
261 /* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
262 nid = 0;
263
264 printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
265 return NULL;
266}
267
8f6aac41 268#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 269struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
270{
271 struct page *map;
29751f69
AW
272
273 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
274 if (map)
275 return map;
276
277 map = alloc_bootmem_node(NODE_DATA(nid),
278 sizeof(struct page) * PAGES_PER_SECTION);
8f6aac41
CL
279 return map;
280}
281#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
282
283struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
284{
285 struct page *map;
286 struct mem_section *ms = __nr_to_section(pnum);
287 int nid = sparse_early_nid(ms);
288
98f3cfc1 289 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
290 if (map)
291 return map;
292
8f6aac41
CL
293 printk(KERN_ERR "%s: sparsemem memory map backing failed "
294 "some memory will not be available.\n", __FUNCTION__);
802f192e 295 ms->section_mem_map = 0;
29751f69
AW
296 return NULL;
297}
298
c2b91e2e
YL
299void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
300{
301}
193faea9
SR
302/*
303 * Allocate the accumulated non-linear sections, allocate a mem_map
304 * for each and record the physical to section mapping.
305 */
306void __init sparse_init(void)
307{
308 unsigned long pnum;
309 struct page *map;
5c0e3066 310 unsigned long *usemap;
e123dd3f
YL
311 unsigned long **usemap_map;
312 int size;
313
314 /*
315 * map is using big page (aka 2M in x86 64 bit)
316 * usemap is less one page (aka 24 bytes)
317 * so alloc 2M (with 2M align) and 24 bytes in turn will
318 * make next 2M slip to one more 2M later.
319 * then in big system, the memory will have a lot of holes...
320 * here try to allocate 2M pages continously.
321 *
322 * powerpc need to call sparse_init_one_section right after each
323 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
324 */
325 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
326 usemap_map = alloc_bootmem(size);
327 if (!usemap_map)
328 panic("can not allocate usemap_map\n");
193faea9
SR
329
330 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
540557b9 331 if (!present_section_nr(pnum))
193faea9 332 continue;
e123dd3f
YL
333 usemap_map[pnum] = sparse_early_usemap_alloc(pnum);
334 }
193faea9 335
e123dd3f
YL
336 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
337 if (!present_section_nr(pnum))
193faea9 338 continue;
5c0e3066 339
e123dd3f 340 usemap = usemap_map[pnum];
5c0e3066
MG
341 if (!usemap)
342 continue;
343
e123dd3f
YL
344 map = sparse_early_mem_map_alloc(pnum);
345 if (!map)
346 continue;
347
5c0e3066
MG
348 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
349 usemap);
193faea9 350 }
e123dd3f 351
c2b91e2e
YL
352 vmemmap_populate_print_last();
353
e123dd3f 354 free_bootmem(__pa(usemap_map), size);
193faea9
SR
355}
356
357#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
358#ifdef CONFIG_SPARSEMEM_VMEMMAP
359static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
360 unsigned long nr_pages)
361{
362 /* This will make the necessary allocations eventually. */
363 return sparse_mem_map_populate(pnum, nid);
364}
365static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
366{
367 return; /* XXX: Not implemented yet */
368}
369#else
0b0acbec
DH
370static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
371{
372 struct page *page, *ret;
373 unsigned long memmap_size = sizeof(struct page) * nr_pages;
374
f2d0aa5b 375 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
376 if (page)
377 goto got_map_page;
378
379 ret = vmalloc(memmap_size);
380 if (ret)
381 goto got_map_ptr;
382
383 return NULL;
384got_map_page:
385 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
386got_map_ptr:
387 memset(ret, 0, memmap_size);
388
389 return ret;
390}
391
98f3cfc1
YG
392static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
393 unsigned long nr_pages)
394{
395 return __kmalloc_section_memmap(nr_pages);
396}
397
0b0acbec
DH
398static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
399{
9e2779fa 400 if (is_vmalloc_addr(memmap))
0b0acbec
DH
401 vfree(memmap);
402 else
403 free_pages((unsigned long)memmap,
404 get_order(sizeof(struct page) * nr_pages));
405}
98f3cfc1 406#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 407
ea01ea93
BP
408static void free_section_usemap(struct page *memmap, unsigned long *usemap)
409{
410 if (!usemap)
411 return;
412
413 /*
414 * Check to see if allocation came from hot-plug-add
415 */
416 if (PageSlab(virt_to_page(usemap))) {
417 kfree(usemap);
418 if (memmap)
419 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
420 return;
421 }
422
423 /*
424 * TODO: Allocations came from bootmem - how do I free up ?
425 */
426 printk(KERN_WARNING "Not freeing up allocations from bootmem "
427 "- leaking memory\n");
428}
429
29751f69
AW
430/*
431 * returns the number of sections whose mem_maps were properly
432 * set. If this is <=0, then that means that the passed-in
433 * map was not consumed and must be freed.
434 */
0b0acbec
DH
435int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
436 int nr_pages)
29751f69 437{
0b0acbec
DH
438 unsigned long section_nr = pfn_to_section_nr(start_pfn);
439 struct pglist_data *pgdat = zone->zone_pgdat;
440 struct mem_section *ms;
441 struct page *memmap;
5c0e3066 442 unsigned long *usemap;
0b0acbec
DH
443 unsigned long flags;
444 int ret;
29751f69 445
0b0acbec
DH
446 /*
447 * no locking for this, because it does its own
448 * plus, it does a kmalloc
449 */
bbd06825
WC
450 ret = sparse_index_init(section_nr, pgdat->node_id);
451 if (ret < 0 && ret != -EEXIST)
452 return ret;
98f3cfc1 453 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
454 if (!memmap)
455 return -ENOMEM;
5c0e3066 456 usemap = __kmalloc_section_usemap();
bbd06825
WC
457 if (!usemap) {
458 __kfree_section_memmap(memmap, nr_pages);
459 return -ENOMEM;
460 }
0b0acbec
DH
461
462 pgdat_resize_lock(pgdat, &flags);
29751f69 463
0b0acbec
DH
464 ms = __pfn_to_section(start_pfn);
465 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
466 ret = -EEXIST;
467 goto out;
468 }
5c0e3066 469
29751f69
AW
470 ms->section_mem_map |= SECTION_MARKED_PRESENT;
471
5c0e3066 472 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 473
0b0acbec
DH
474out:
475 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
476 if (ret <= 0) {
477 kfree(usemap);
46a66eec 478 __kfree_section_memmap(memmap, nr_pages);
bbd06825 479 }
0b0acbec 480 return ret;
29751f69 481}
ea01ea93
BP
482
483void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
484{
485 struct page *memmap = NULL;
486 unsigned long *usemap = NULL;
487
488 if (ms->section_mem_map) {
489 usemap = ms->pageblock_flags;
490 memmap = sparse_decode_mem_map(ms->section_mem_map,
491 __section_nr(ms));
492 ms->section_mem_map = 0;
493 ms->pageblock_flags = NULL;
494 }
495
496 free_section_usemap(memmap, usemap);
497}
a3142c8e 498#endif