Merge tag 'omap-fixes-a2-for-v3.8-rc' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36 4#include <linux/mm.h>
5a0e3ad6 5#include <linux/slab.h>
d41dee36
AW
6#include <linux/mmzone.h>
7#include <linux/bootmem.h>
0b0acbec 8#include <linux/highmem.h>
b95f1b31 9#include <linux/export.h>
28ae55c9 10#include <linux/spinlock.h>
0b0acbec 11#include <linux/vmalloc.h>
0c0a4a51 12#include "internal.h"
d41dee36 13#include <asm/dma.h>
8f6aac41
CL
14#include <asm/pgalloc.h>
15#include <asm/pgtable.h>
d41dee36
AW
16
17/*
18 * Permanent SPARSEMEM data:
19 *
20 * 1) mem_section - memory sections, mem_map's for valid memory
21 */
3e347261 22#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 23struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 24 ____cacheline_internodealigned_in_smp;
3e347261
BP
25#else
26struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 27 ____cacheline_internodealigned_in_smp;
3e347261
BP
28#endif
29EXPORT_SYMBOL(mem_section);
30
89689ae7
CL
31#ifdef NODE_NOT_IN_PAGE_FLAGS
32/*
33 * If we did not store the node number in the page then we have to
34 * do a lookup in the section_to_node_table in order to find which
35 * node the page belongs to.
36 */
37#if MAX_NUMNODES <= 256
38static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39#else
40static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41#endif
42
33dd4e0e 43int page_to_nid(const struct page *page)
89689ae7
CL
44{
45 return section_to_node_table[page_to_section(page)];
46}
47EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
48
49static void set_section_nid(unsigned long section_nr, int nid)
50{
51 section_to_node_table[section_nr] = nid;
52}
53#else /* !NODE_NOT_IN_PAGE_FLAGS */
54static inline void set_section_nid(unsigned long section_nr, int nid)
55{
56}
89689ae7
CL
57#endif
58
3e347261 59#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 60static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
61{
62 struct mem_section *section = NULL;
63 unsigned long array_size = SECTIONS_PER_ROOT *
64 sizeof(struct mem_section);
65
f52407ce
SL
66 if (slab_is_available()) {
67 if (node_state(nid, N_HIGH_MEMORY))
5b760e64 68 section = kzalloc_node(array_size, GFP_KERNEL, nid);
f52407ce 69 else
5b760e64
GS
70 section = kzalloc(array_size, GFP_KERNEL);
71 } else {
46a66eec 72 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
5b760e64 73 }
28ae55c9
DH
74
75 return section;
3e347261 76}
802f192e 77
a3142c8e 78static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 79{
28ae55c9
DH
80 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81 struct mem_section *section;
82 int ret = 0;
802f192e
BP
83
84 if (mem_section[root])
28ae55c9 85 return -EEXIST;
3e347261 86
28ae55c9 87 section = sparse_index_alloc(nid);
af0cd5a7
WC
88 if (!section)
89 return -ENOMEM;
28ae55c9
DH
90
91 mem_section[root] = section;
c1c95183 92
28ae55c9
DH
93 return ret;
94}
95#else /* !SPARSEMEM_EXTREME */
96static inline int sparse_index_init(unsigned long section_nr, int nid)
97{
98 return 0;
802f192e 99}
28ae55c9
DH
100#endif
101
4ca644d9
DH
102/*
103 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 104 * to also work for the flat array case because
4ca644d9
DH
105 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
106 */
107int __section_nr(struct mem_section* ms)
108{
109 unsigned long root_nr;
110 struct mem_section* root;
111
12783b00
MK
112 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
113 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
114 if (!root)
115 continue;
116
117 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
118 break;
119 }
120
db36a461
GS
121 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
122
4ca644d9
DH
123 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
124}
125
30c253e6
AW
126/*
127 * During early boot, before section_mem_map is used for an actual
128 * mem_map, we use section_mem_map to store the section's NUMA
129 * node. This keeps us from having to use another data structure. The
130 * node information is cleared just before we store the real mem_map.
131 */
132static inline unsigned long sparse_encode_early_nid(int nid)
133{
134 return (nid << SECTION_NID_SHIFT);
135}
136
137static inline int sparse_early_nid(struct mem_section *section)
138{
139 return (section->section_mem_map >> SECTION_NID_SHIFT);
140}
141
2dbb51c4
MG
142/* Validate the physical addressing limitations of the model */
143void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144 unsigned long *end_pfn)
d41dee36 145{
2dbb51c4 146 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 147
bead9a3a
IM
148 /*
149 * Sanity checks - do not allow an architecture to pass
150 * in larger pfns than the maximum scope of sparsemem:
151 */
2dbb51c4
MG
152 if (*start_pfn > max_sparsemem_pfn) {
153 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155 *start_pfn, *end_pfn, max_sparsemem_pfn);
156 WARN_ON_ONCE(1);
157 *start_pfn = max_sparsemem_pfn;
158 *end_pfn = max_sparsemem_pfn;
ef161a98 159 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
160 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162 *start_pfn, *end_pfn, max_sparsemem_pfn);
163 WARN_ON_ONCE(1);
164 *end_pfn = max_sparsemem_pfn;
165 }
166}
167
168/* Record a memory area against a node. */
169void __init memory_present(int nid, unsigned long start, unsigned long end)
170{
171 unsigned long pfn;
bead9a3a 172
d41dee36 173 start &= PAGE_SECTION_MASK;
2dbb51c4 174 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
175 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
176 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
177 struct mem_section *ms;
178
179 sparse_index_init(section, nid);
85770ffe 180 set_section_nid(section, nid);
802f192e
BP
181
182 ms = __nr_to_section(section);
183 if (!ms->section_mem_map)
30c253e6
AW
184 ms->section_mem_map = sparse_encode_early_nid(nid) |
185 SECTION_MARKED_PRESENT;
d41dee36
AW
186 }
187}
188
189/*
190 * Only used by the i386 NUMA architecures, but relatively
191 * generic code.
192 */
193unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
194 unsigned long end_pfn)
195{
196 unsigned long pfn;
197 unsigned long nr_pages = 0;
198
2dbb51c4 199 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
200 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
201 if (nid != early_pfn_to_nid(pfn))
202 continue;
203
540557b9 204 if (pfn_present(pfn))
d41dee36
AW
205 nr_pages += PAGES_PER_SECTION;
206 }
207
208 return nr_pages * sizeof(struct page);
209}
210
29751f69
AW
211/*
212 * Subtle, we encode the real pfn into the mem_map such that
213 * the identity pfn - section_mem_map will return the actual
214 * physical page frame number.
215 */
216static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
217{
218 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
219}
220
221/*
ea01ea93 222 * Decode mem_map from the coded memmap
29751f69 223 */
29751f69
AW
224struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
225{
ea01ea93
BP
226 /* mask off the extra low bits of information */
227 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
228 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
229}
230
a3142c8e 231static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
232 unsigned long pnum, struct page *mem_map,
233 unsigned long *pageblock_bitmap)
29751f69 234{
540557b9 235 if (!present_section(ms))
29751f69
AW
236 return -EINVAL;
237
30c253e6 238 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
239 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
240 SECTION_HAS_MEM_MAP;
5c0e3066 241 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
242
243 return 1;
244}
245
04753278 246unsigned long usemap_size(void)
5c0e3066
MG
247{
248 unsigned long size_bytes;
249 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
250 size_bytes = roundup(size_bytes, sizeof(unsigned long));
251 return size_bytes;
252}
253
254#ifdef CONFIG_MEMORY_HOTPLUG
255static unsigned long *__kmalloc_section_usemap(void)
256{
257 return kmalloc(usemap_size(), GFP_KERNEL);
258}
259#endif /* CONFIG_MEMORY_HOTPLUG */
260
48c90682
YG
261#ifdef CONFIG_MEMORY_HOTREMOVE
262static unsigned long * __init
a4322e1b 263sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 264 unsigned long size)
48c90682 265{
99ab7b19
YL
266 unsigned long goal, limit;
267 unsigned long *p;
268 int nid;
48c90682
YG
269 /*
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
272 * other sections referencing the usemap retmain active. Similarly,
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
277 * this problem.
278 */
07b4e2bc 279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
99ab7b19
YL
280 limit = goal + (1UL << PA_SECTION_SHIFT);
281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282again:
283 p = ___alloc_bootmem_node_nopanic(NODE_DATA(nid), size,
284 SMP_CACHE_BYTES, goal, limit);
285 if (!p && limit) {
286 limit = 0;
287 goto again;
288 }
289 return p;
48c90682
YG
290}
291
292static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
293{
294 unsigned long usemap_snr, pgdat_snr;
295 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
296 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
297 struct pglist_data *pgdat = NODE_DATA(nid);
298 int usemap_nid;
299
300 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
301 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
302 if (usemap_snr == pgdat_snr)
303 return;
304
305 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
306 /* skip redundant message */
307 return;
308
309 old_usemap_snr = usemap_snr;
310 old_pgdat_snr = pgdat_snr;
311
312 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
313 if (usemap_nid != nid) {
314 printk(KERN_INFO
315 "node %d must be removed before remove section %ld\n",
316 nid, usemap_snr);
317 return;
318 }
319 /*
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
324 */
325 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
326 pgdat_snr, nid);
327 printk(KERN_CONT
328 " have a circular dependency on usemap and pgdat allocations\n");
329}
330#else
331static unsigned long * __init
a4322e1b 332sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
238305bb 333 unsigned long size)
48c90682 334{
238305bb 335 return alloc_bootmem_node_nopanic(pgdat, size);
48c90682
YG
336}
337
338static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
339{
340}
341#endif /* CONFIG_MEMORY_HOTREMOVE */
342
a4322e1b
YL
343static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
344 unsigned long pnum_begin,
345 unsigned long pnum_end,
346 unsigned long usemap_count, int nodeid)
5c0e3066 347{
a4322e1b
YL
348 void *usemap;
349 unsigned long pnum;
350 int size = usemap_size();
5c0e3066 351
a4322e1b 352 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
238305bb 353 size * usemap_count);
f5bf18fa 354 if (!usemap) {
238305bb
JW
355 printk(KERN_WARNING "%s: allocation failed\n", __func__);
356 return;
48c90682
YG
357 }
358
f5bf18fa
NA
359 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360 if (!present_section_nr(pnum))
361 continue;
362 usemap_map[pnum] = usemap;
363 usemap += size;
364 check_usemap_section_nr(nodeid, usemap_map[pnum]);
a4322e1b 365 }
5c0e3066
MG
366}
367
8f6aac41 368#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 369struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
370{
371 struct page *map;
e48e67e0 372 unsigned long size;
29751f69
AW
373
374 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375 if (map)
376 return map;
377
e48e67e0
YL
378 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379 map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
380 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
8f6aac41
CL
381 return map;
382}
9bdac914
YL
383void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
387{
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
399 }
400 return;
401 }
402
403 size = PAGE_ALIGN(size);
e48e67e0
YL
404 map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
9bdac914
YL
406 if (map) {
407 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408 if (!present_section_nr(pnum))
409 continue;
410 map_map[pnum] = map;
411 map += size;
412 }
413 return;
414 }
415
416 /* fallback */
417 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418 struct mem_section *ms;
419
420 if (!present_section_nr(pnum))
421 continue;
422 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423 if (map_map[pnum])
424 continue;
425 ms = __nr_to_section(pnum);
426 printk(KERN_ERR "%s: sparsemem memory map backing failed "
427 "some memory will not be available.\n", __func__);
428 ms->section_mem_map = 0;
429 }
430}
8f6aac41
CL
431#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
432
81d0d950 433#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914
YL
434static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
435 unsigned long pnum_begin,
436 unsigned long pnum_end,
437 unsigned long map_count, int nodeid)
438{
439 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
440 map_count, nodeid);
441}
81d0d950 442#else
9e5c6da7 443static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
444{
445 struct page *map;
446 struct mem_section *ms = __nr_to_section(pnum);
447 int nid = sparse_early_nid(ms);
448
98f3cfc1 449 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
450 if (map)
451 return map;
452
8f6aac41 453 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 454 "some memory will not be available.\n", __func__);
802f192e 455 ms->section_mem_map = 0;
29751f69
AW
456 return NULL;
457}
9bdac914 458#endif
29751f69 459
c2b91e2e
YL
460void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
461{
462}
a4322e1b 463
193faea9
SR
464/*
465 * Allocate the accumulated non-linear sections, allocate a mem_map
466 * for each and record the physical to section mapping.
467 */
468void __init sparse_init(void)
469{
470 unsigned long pnum;
471 struct page *map;
5c0e3066 472 unsigned long *usemap;
e123dd3f 473 unsigned long **usemap_map;
81d0d950 474 int size;
a4322e1b
YL
475 int nodeid_begin = 0;
476 unsigned long pnum_begin = 0;
477 unsigned long usemap_count;
81d0d950 478#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
9bdac914 479 unsigned long map_count;
81d0d950
YL
480 int size2;
481 struct page **map_map;
482#endif
e123dd3f 483
ca57df79
XQ
484 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
485 set_pageblock_order();
486
e123dd3f
YL
487 /*
488 * map is using big page (aka 2M in x86 64 bit)
489 * usemap is less one page (aka 24 bytes)
490 * so alloc 2M (with 2M align) and 24 bytes in turn will
491 * make next 2M slip to one more 2M later.
492 * then in big system, the memory will have a lot of holes...
25985edc 493 * here try to allocate 2M pages continuously.
e123dd3f
YL
494 *
495 * powerpc need to call sparse_init_one_section right after each
496 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
497 */
498 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
499 usemap_map = alloc_bootmem(size);
500 if (!usemap_map)
501 panic("can not allocate usemap_map\n");
193faea9
SR
502
503 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
a4322e1b
YL
504 struct mem_section *ms;
505
540557b9 506 if (!present_section_nr(pnum))
193faea9 507 continue;
a4322e1b
YL
508 ms = __nr_to_section(pnum);
509 nodeid_begin = sparse_early_nid(ms);
510 pnum_begin = pnum;
511 break;
512 }
513 usemap_count = 1;
514 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
515 struct mem_section *ms;
516 int nodeid;
517
518 if (!present_section_nr(pnum))
519 continue;
520 ms = __nr_to_section(pnum);
521 nodeid = sparse_early_nid(ms);
522 if (nodeid == nodeid_begin) {
523 usemap_count++;
524 continue;
525 }
526 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
527 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
528 usemap_count, nodeid_begin);
529 /* new start, update count etc*/
530 nodeid_begin = nodeid;
531 pnum_begin = pnum;
532 usemap_count = 1;
e123dd3f 533 }
a4322e1b
YL
534 /* ok, last chunk */
535 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
536 usemap_count, nodeid_begin);
193faea9 537
9bdac914
YL
538#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
539 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
540 map_map = alloc_bootmem(size2);
541 if (!map_map)
542 panic("can not allocate map_map\n");
543
544 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
545 struct mem_section *ms;
546
547 if (!present_section_nr(pnum))
548 continue;
549 ms = __nr_to_section(pnum);
550 nodeid_begin = sparse_early_nid(ms);
551 pnum_begin = pnum;
552 break;
553 }
554 map_count = 1;
555 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
556 struct mem_section *ms;
557 int nodeid;
558
559 if (!present_section_nr(pnum))
560 continue;
561 ms = __nr_to_section(pnum);
562 nodeid = sparse_early_nid(ms);
563 if (nodeid == nodeid_begin) {
564 map_count++;
565 continue;
566 }
567 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
568 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
569 map_count, nodeid_begin);
570 /* new start, update count etc*/
571 nodeid_begin = nodeid;
572 pnum_begin = pnum;
573 map_count = 1;
574 }
575 /* ok, last chunk */
576 sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
577 map_count, nodeid_begin);
578#endif
579
e123dd3f
YL
580 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
581 if (!present_section_nr(pnum))
193faea9 582 continue;
5c0e3066 583
e123dd3f 584 usemap = usemap_map[pnum];
5c0e3066
MG
585 if (!usemap)
586 continue;
587
9bdac914
YL
588#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589 map = map_map[pnum];
590#else
e123dd3f 591 map = sparse_early_mem_map_alloc(pnum);
9bdac914 592#endif
e123dd3f
YL
593 if (!map)
594 continue;
595
5c0e3066
MG
596 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
597 usemap);
193faea9 598 }
e123dd3f 599
c2b91e2e
YL
600 vmemmap_populate_print_last();
601
9bdac914
YL
602#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603 free_bootmem(__pa(map_map), size2);
604#endif
e123dd3f 605 free_bootmem(__pa(usemap_map), size);
193faea9
SR
606}
607
608#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
609#ifdef CONFIG_SPARSEMEM_VMEMMAP
610static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
611 unsigned long nr_pages)
612{
613 /* This will make the necessary allocations eventually. */
614 return sparse_mem_map_populate(pnum, nid);
615}
616static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
617{
618 return; /* XXX: Not implemented yet */
619}
ae64ffca 620static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
0c0a4a51
YG
621{
622}
98f3cfc1 623#else
0b0acbec
DH
624static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
625{
626 struct page *page, *ret;
627 unsigned long memmap_size = sizeof(struct page) * nr_pages;
628
f2d0aa5b 629 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
630 if (page)
631 goto got_map_page;
632
633 ret = vmalloc(memmap_size);
634 if (ret)
635 goto got_map_ptr;
636
637 return NULL;
638got_map_page:
639 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
640got_map_ptr:
0b0acbec
DH
641
642 return ret;
643}
644
98f3cfc1
YG
645static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
646 unsigned long nr_pages)
647{
648 return __kmalloc_section_memmap(nr_pages);
649}
650
0b0acbec
DH
651static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
652{
9e2779fa 653 if (is_vmalloc_addr(memmap))
0b0acbec
DH
654 vfree(memmap);
655 else
656 free_pages((unsigned long)memmap,
657 get_order(sizeof(struct page) * nr_pages));
658}
0c0a4a51 659
ae64ffca 660static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
0c0a4a51
YG
661{
662 unsigned long maps_section_nr, removing_section_nr, i;
5f24ce5f 663 unsigned long magic;
ae64ffca 664 struct page *page = virt_to_page(memmap);
0c0a4a51
YG
665
666 for (i = 0; i < nr_pages; i++, page++) {
5f24ce5f 667 magic = (unsigned long) page->lru.next;
0c0a4a51
YG
668
669 BUG_ON(magic == NODE_INFO);
670
671 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
672 removing_section_nr = page->private;
673
674 /*
675 * When this function is called, the removing section is
676 * logical offlined state. This means all pages are isolated
677 * from page allocator. If removing section's memmap is placed
678 * on the same section, it must not be freed.
679 * If it is freed, page allocator may allocate it which will
680 * be removed physically soon.
681 */
682 if (maps_section_nr != removing_section_nr)
683 put_page_bootmem(page);
684 }
685}
98f3cfc1 686#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 687
ea01ea93
BP
688static void free_section_usemap(struct page *memmap, unsigned long *usemap)
689{
0c0a4a51
YG
690 struct page *usemap_page;
691 unsigned long nr_pages;
692
ea01ea93
BP
693 if (!usemap)
694 return;
695
0c0a4a51 696 usemap_page = virt_to_page(usemap);
ea01ea93
BP
697 /*
698 * Check to see if allocation came from hot-plug-add
699 */
0c0a4a51 700 if (PageSlab(usemap_page)) {
ea01ea93
BP
701 kfree(usemap);
702 if (memmap)
703 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
704 return;
705 }
706
707 /*
0c0a4a51
YG
708 * The usemap came from bootmem. This is packed with other usemaps
709 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 710 */
0c0a4a51
YG
711
712 if (memmap) {
0c0a4a51
YG
713 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
714 >> PAGE_SHIFT;
715
ae64ffca 716 free_map_bootmem(memmap, nr_pages);
0c0a4a51 717 }
ea01ea93
BP
718}
719
29751f69
AW
720/*
721 * returns the number of sections whose mem_maps were properly
722 * set. If this is <=0, then that means that the passed-in
723 * map was not consumed and must be freed.
724 */
31168481 725int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 726 int nr_pages)
29751f69 727{
0b0acbec
DH
728 unsigned long section_nr = pfn_to_section_nr(start_pfn);
729 struct pglist_data *pgdat = zone->zone_pgdat;
730 struct mem_section *ms;
731 struct page *memmap;
5c0e3066 732 unsigned long *usemap;
0b0acbec
DH
733 unsigned long flags;
734 int ret;
29751f69 735
0b0acbec
DH
736 /*
737 * no locking for this, because it does its own
738 * plus, it does a kmalloc
739 */
bbd06825
WC
740 ret = sparse_index_init(section_nr, pgdat->node_id);
741 if (ret < 0 && ret != -EEXIST)
742 return ret;
98f3cfc1 743 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
744 if (!memmap)
745 return -ENOMEM;
5c0e3066 746 usemap = __kmalloc_section_usemap();
bbd06825
WC
747 if (!usemap) {
748 __kfree_section_memmap(memmap, nr_pages);
749 return -ENOMEM;
750 }
0b0acbec
DH
751
752 pgdat_resize_lock(pgdat, &flags);
29751f69 753
0b0acbec
DH
754 ms = __pfn_to_section(start_pfn);
755 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
756 ret = -EEXIST;
757 goto out;
758 }
5c0e3066 759
3ac19f8e
WC
760 memset(memmap, 0, sizeof(struct page) * nr_pages);
761
29751f69
AW
762 ms->section_mem_map |= SECTION_MARKED_PRESENT;
763
5c0e3066 764 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 765
0b0acbec
DH
766out:
767 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
768 if (ret <= 0) {
769 kfree(usemap);
46a66eec 770 __kfree_section_memmap(memmap, nr_pages);
bbd06825 771 }
0b0acbec 772 return ret;
29751f69 773}
ea01ea93 774
95a4774d
WC
775#ifdef CONFIG_MEMORY_FAILURE
776static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
777{
778 int i;
779
780 if (!memmap)
781 return;
782
783 for (i = 0; i < PAGES_PER_SECTION; i++) {
784 if (PageHWPoison(&memmap[i])) {
785 atomic_long_sub(1, &mce_bad_pages);
786 ClearPageHWPoison(&memmap[i]);
787 }
788 }
789}
790#else
791static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
792{
793}
794#endif
795
ea01ea93
BP
796void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
797{
798 struct page *memmap = NULL;
799 unsigned long *usemap = NULL;
800
801 if (ms->section_mem_map) {
802 usemap = ms->pageblock_flags;
803 memmap = sparse_decode_mem_map(ms->section_mem_map,
804 __section_nr(ms));
805 ms->section_mem_map = 0;
806 ms->pageblock_flags = NULL;
807 }
808
95a4774d 809 clear_hwpoisoned_pages(memmap, PAGES_PER_SECTION);
ea01ea93
BP
810 free_section_usemap(memmap, usemap);
811}
a3142c8e 812#endif