kmemcheck: add DMA hooks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
06f22f13 23#include <linux/kmemleak.h>
81819f0f
CL
24#include <linux/mempolicy.h>
25#include <linux/ctype.h>
3ac7fe5a 26#include <linux/debugobjects.h>
81819f0f 27#include <linux/kallsyms.h>
b9049e23 28#include <linux/memory.h>
f8bd2258 29#include <linux/math64.h>
773ff60e 30#include <linux/fault-inject.h>
81819f0f
CL
31
32/*
33 * Lock order:
34 * 1. slab_lock(page)
35 * 2. slab->list_lock
36 *
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
43 *
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
49 *
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
54 * the list lock.
55 *
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
68 *
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
73 *
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
76 *
672bba3a
CL
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 79 * freed then the slab will show up again on the partial lists.
672bba3a
CL
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
81819f0f
CL
82 *
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
86 *
87 * Overloading of page flags that are otherwise used for LRU management.
88 *
4b6f0750
CL
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
97 *
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
dfb4f096 101 * freelist that allows lockless access to
894b8788
CL
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
81819f0f
CL
104 *
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
894b8788 107 * the fast path and disables lockless freelists.
81819f0f
CL
108 */
109
5577bd8a 110#ifdef CONFIG_SLUB_DEBUG
8a38082d 111#define SLABDEBUG 1
5577bd8a
CL
112#else
113#define SLABDEBUG 0
114#endif
115
81819f0f
CL
116/*
117 * Issues still to be resolved:
118 *
81819f0f
CL
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
120 *
81819f0f
CL
121 * - Variable sizing of the per node arrays
122 */
123
124/* Enable to test recovery from slab corruption on boot */
125#undef SLUB_RESILIENCY_TEST
126
2086d26a
CL
127/*
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
130 */
76be8950 131#define MIN_PARTIAL 5
e95eed57 132
2086d26a
CL
133/*
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
137 */
138#define MAX_PARTIAL 10
139
81819f0f
CL
140#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
672bba3a 142
81819f0f
CL
143/*
144 * Set of flags that will prevent slab merging
145 */
146#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 147 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
148
149#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
150 SLAB_CACHE_DMA)
151
152#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 153#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 157#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
158#endif
159
210b5c06
CG
160#define OO_SHIFT 16
161#define OO_MASK ((1 << OO_SHIFT) - 1)
162#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
163
81819f0f 164/* Internal SLUB flags */
1ceef402
CL
165#define __OBJECT_POISON 0x80000000 /* Poison object */
166#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
167
168static int kmem_size = sizeof(struct kmem_cache);
169
170#ifdef CONFIG_SMP
171static struct notifier_block slab_notifier;
172#endif
173
174static enum {
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 177 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
178 SYSFS /* Sysfs up */
179} slab_state = DOWN;
180
181/* A list of all slab caches on the system */
182static DECLARE_RWSEM(slub_lock);
5af328a5 183static LIST_HEAD(slab_caches);
81819f0f 184
02cbc874
CL
185/*
186 * Tracking user of a slab.
187 */
188struct track {
ce71e27c 189 unsigned long addr; /* Called from address */
02cbc874
CL
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
193};
194
195enum track_item { TRACK_ALLOC, TRACK_FREE };
196
f6acb635 197#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
198static int sysfs_slab_add(struct kmem_cache *);
199static int sysfs_slab_alias(struct kmem_cache *, const char *);
200static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 201
81819f0f 202#else
0c710013
CL
203static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
205 { return 0; }
151c602f
CL
206static inline void sysfs_slab_remove(struct kmem_cache *s)
207{
208 kfree(s);
209}
8ff12cfc 210
81819f0f
CL
211#endif
212
8ff12cfc
CL
213static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
214{
215#ifdef CONFIG_SLUB_STATS
216 c->stat[si]++;
217#endif
218}
219
81819f0f
CL
220/********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
223
224int slab_is_available(void)
225{
226 return slab_state >= UP;
227}
228
229static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
230{
231#ifdef CONFIG_NUMA
232 return s->node[node];
233#else
234 return &s->local_node;
235#endif
236}
237
dfb4f096
CL
238static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
239{
4c93c355
CL
240#ifdef CONFIG_SMP
241 return s->cpu_slab[cpu];
242#else
243 return &s->cpu_slab;
244#endif
dfb4f096
CL
245}
246
6446faa2 247/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
248static inline int check_valid_pointer(struct kmem_cache *s,
249 struct page *page, const void *object)
250{
251 void *base;
252
a973e9dd 253 if (!object)
02cbc874
CL
254 return 1;
255
a973e9dd 256 base = page_address(page);
39b26464 257 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
258 (object - base) % s->size) {
259 return 0;
260 }
261
262 return 1;
263}
264
7656c72b
CL
265/*
266 * Slow version of get and set free pointer.
267 *
268 * This version requires touching the cache lines of kmem_cache which
269 * we avoid to do in the fast alloc free paths. There we obtain the offset
270 * from the page struct.
271 */
272static inline void *get_freepointer(struct kmem_cache *s, void *object)
273{
274 return *(void **)(object + s->offset);
275}
276
277static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
278{
279 *(void **)(object + s->offset) = fp;
280}
281
282/* Loop over all objects in a slab */
224a88be
CL
283#define for_each_object(__p, __s, __addr, __objects) \
284 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
285 __p += (__s)->size)
286
287/* Scan freelist */
288#define for_each_free_object(__p, __s, __free) \
a973e9dd 289 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
290
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294 return (p - addr) / s->size;
295}
296
834f3d11
CL
297static inline struct kmem_cache_order_objects oo_make(int order,
298 unsigned long size)
299{
300 struct kmem_cache_order_objects x = {
210b5c06 301 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
302 };
303
304 return x;
305}
306
307static inline int oo_order(struct kmem_cache_order_objects x)
308{
210b5c06 309 return x.x >> OO_SHIFT;
834f3d11
CL
310}
311
312static inline int oo_objects(struct kmem_cache_order_objects x)
313{
210b5c06 314 return x.x & OO_MASK;
834f3d11
CL
315}
316
41ecc55b
CL
317#ifdef CONFIG_SLUB_DEBUG
318/*
319 * Debug settings:
320 */
f0630fff
CL
321#ifdef CONFIG_SLUB_DEBUG_ON
322static int slub_debug = DEBUG_DEFAULT_FLAGS;
323#else
41ecc55b 324static int slub_debug;
f0630fff 325#endif
41ecc55b
CL
326
327static char *slub_debug_slabs;
328
81819f0f
CL
329/*
330 * Object debugging
331 */
332static void print_section(char *text, u8 *addr, unsigned int length)
333{
334 int i, offset;
335 int newline = 1;
336 char ascii[17];
337
338 ascii[16] = 0;
339
340 for (i = 0; i < length; i++) {
341 if (newline) {
24922684 342 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
343 newline = 0;
344 }
06428780 345 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
346 offset = i % 16;
347 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
348 if (offset == 15) {
06428780 349 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
350 newline = 1;
351 }
352 }
353 if (!newline) {
354 i %= 16;
355 while (i < 16) {
06428780 356 printk(KERN_CONT " ");
81819f0f
CL
357 ascii[i] = ' ';
358 i++;
359 }
06428780 360 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
361 }
362}
363
81819f0f
CL
364static struct track *get_track(struct kmem_cache *s, void *object,
365 enum track_item alloc)
366{
367 struct track *p;
368
369 if (s->offset)
370 p = object + s->offset + sizeof(void *);
371 else
372 p = object + s->inuse;
373
374 return p + alloc;
375}
376
377static void set_track(struct kmem_cache *s, void *object,
ce71e27c 378 enum track_item alloc, unsigned long addr)
81819f0f 379{
1a00df4a 380 struct track *p = get_track(s, object, alloc);
81819f0f 381
81819f0f
CL
382 if (addr) {
383 p->addr = addr;
384 p->cpu = smp_processor_id();
88e4ccf2 385 p->pid = current->pid;
81819f0f
CL
386 p->when = jiffies;
387 } else
388 memset(p, 0, sizeof(struct track));
389}
390
81819f0f
CL
391static void init_tracking(struct kmem_cache *s, void *object)
392{
24922684
CL
393 if (!(s->flags & SLAB_STORE_USER))
394 return;
395
ce71e27c
EGM
396 set_track(s, object, TRACK_FREE, 0UL);
397 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
398}
399
400static void print_track(const char *s, struct track *t)
401{
402 if (!t->addr)
403 return;
404
7daf705f 405 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 406 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
407}
408
409static void print_tracking(struct kmem_cache *s, void *object)
410{
411 if (!(s->flags & SLAB_STORE_USER))
412 return;
413
414 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
415 print_track("Freed", get_track(s, object, TRACK_FREE));
416}
417
418static void print_page_info(struct page *page)
419{
39b26464
CL
420 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
421 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
422
423}
424
425static void slab_bug(struct kmem_cache *s, char *fmt, ...)
426{
427 va_list args;
428 char buf[100];
429
430 va_start(args, fmt);
431 vsnprintf(buf, sizeof(buf), fmt, args);
432 va_end(args);
433 printk(KERN_ERR "========================================"
434 "=====================================\n");
435 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
436 printk(KERN_ERR "----------------------------------------"
437 "-------------------------------------\n\n");
81819f0f
CL
438}
439
24922684
CL
440static void slab_fix(struct kmem_cache *s, char *fmt, ...)
441{
442 va_list args;
443 char buf[100];
444
445 va_start(args, fmt);
446 vsnprintf(buf, sizeof(buf), fmt, args);
447 va_end(args);
448 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
449}
450
451static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
452{
453 unsigned int off; /* Offset of last byte */
a973e9dd 454 u8 *addr = page_address(page);
24922684
CL
455
456 print_tracking(s, p);
457
458 print_page_info(page);
459
460 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
461 p, p - addr, get_freepointer(s, p));
462
463 if (p > addr + 16)
464 print_section("Bytes b4", p - 16, 16);
465
0ebd652b 466 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
467
468 if (s->flags & SLAB_RED_ZONE)
469 print_section("Redzone", p + s->objsize,
470 s->inuse - s->objsize);
471
81819f0f
CL
472 if (s->offset)
473 off = s->offset + sizeof(void *);
474 else
475 off = s->inuse;
476
24922684 477 if (s->flags & SLAB_STORE_USER)
81819f0f 478 off += 2 * sizeof(struct track);
81819f0f
CL
479
480 if (off != s->size)
481 /* Beginning of the filler is the free pointer */
24922684
CL
482 print_section("Padding", p + off, s->size - off);
483
484 dump_stack();
81819f0f
CL
485}
486
487static void object_err(struct kmem_cache *s, struct page *page,
488 u8 *object, char *reason)
489{
3dc50637 490 slab_bug(s, "%s", reason);
24922684 491 print_trailer(s, page, object);
81819f0f
CL
492}
493
24922684 494static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
495{
496 va_list args;
497 char buf[100];
498
24922684
CL
499 va_start(args, fmt);
500 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 501 va_end(args);
3dc50637 502 slab_bug(s, "%s", buf);
24922684 503 print_page_info(page);
81819f0f
CL
504 dump_stack();
505}
506
507static void init_object(struct kmem_cache *s, void *object, int active)
508{
509 u8 *p = object;
510
511 if (s->flags & __OBJECT_POISON) {
512 memset(p, POISON_FREE, s->objsize - 1);
06428780 513 p[s->objsize - 1] = POISON_END;
81819f0f
CL
514 }
515
516 if (s->flags & SLAB_RED_ZONE)
517 memset(p + s->objsize,
518 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
519 s->inuse - s->objsize);
520}
521
24922684 522static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
523{
524 while (bytes) {
525 if (*start != (u8)value)
24922684 526 return start;
81819f0f
CL
527 start++;
528 bytes--;
529 }
24922684
CL
530 return NULL;
531}
532
533static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
534 void *from, void *to)
535{
536 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
537 memset(from, data, to - from);
538}
539
540static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
541 u8 *object, char *what,
06428780 542 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
543{
544 u8 *fault;
545 u8 *end;
546
547 fault = check_bytes(start, value, bytes);
548 if (!fault)
549 return 1;
550
551 end = start + bytes;
552 while (end > fault && end[-1] == value)
553 end--;
554
555 slab_bug(s, "%s overwritten", what);
556 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
557 fault, end - 1, fault[0], value);
558 print_trailer(s, page, object);
559
560 restore_bytes(s, what, value, fault, end);
561 return 0;
81819f0f
CL
562}
563
81819f0f
CL
564/*
565 * Object layout:
566 *
567 * object address
568 * Bytes of the object to be managed.
569 * If the freepointer may overlay the object then the free
570 * pointer is the first word of the object.
672bba3a 571 *
81819f0f
CL
572 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
573 * 0xa5 (POISON_END)
574 *
575 * object + s->objsize
576 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
577 * Padding is extended by another word if Redzoning is enabled and
578 * objsize == inuse.
579 *
81819f0f
CL
580 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
581 * 0xcc (RED_ACTIVE) for objects in use.
582 *
583 * object + s->inuse
672bba3a
CL
584 * Meta data starts here.
585 *
81819f0f
CL
586 * A. Free pointer (if we cannot overwrite object on free)
587 * B. Tracking data for SLAB_STORE_USER
672bba3a 588 * C. Padding to reach required alignment boundary or at mininum
6446faa2 589 * one word if debugging is on to be able to detect writes
672bba3a
CL
590 * before the word boundary.
591 *
592 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
593 *
594 * object + s->size
672bba3a 595 * Nothing is used beyond s->size.
81819f0f 596 *
672bba3a
CL
597 * If slabcaches are merged then the objsize and inuse boundaries are mostly
598 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
599 * may be used with merged slabcaches.
600 */
601
81819f0f
CL
602static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
603{
604 unsigned long off = s->inuse; /* The end of info */
605
606 if (s->offset)
607 /* Freepointer is placed after the object. */
608 off += sizeof(void *);
609
610 if (s->flags & SLAB_STORE_USER)
611 /* We also have user information there */
612 off += 2 * sizeof(struct track);
613
614 if (s->size == off)
615 return 1;
616
24922684
CL
617 return check_bytes_and_report(s, page, p, "Object padding",
618 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
619}
620
39b26464 621/* Check the pad bytes at the end of a slab page */
81819f0f
CL
622static int slab_pad_check(struct kmem_cache *s, struct page *page)
623{
24922684
CL
624 u8 *start;
625 u8 *fault;
626 u8 *end;
627 int length;
628 int remainder;
81819f0f
CL
629
630 if (!(s->flags & SLAB_POISON))
631 return 1;
632
a973e9dd 633 start = page_address(page);
834f3d11 634 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
635 end = start + length;
636 remainder = length % s->size;
81819f0f
CL
637 if (!remainder)
638 return 1;
639
39b26464 640 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
641 if (!fault)
642 return 1;
643 while (end > fault && end[-1] == POISON_INUSE)
644 end--;
645
646 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 647 print_section("Padding", end - remainder, remainder);
24922684
CL
648
649 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
650 return 0;
81819f0f
CL
651}
652
653static int check_object(struct kmem_cache *s, struct page *page,
654 void *object, int active)
655{
656 u8 *p = object;
657 u8 *endobject = object + s->objsize;
658
659 if (s->flags & SLAB_RED_ZONE) {
660 unsigned int red =
661 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
662
24922684
CL
663 if (!check_bytes_and_report(s, page, object, "Redzone",
664 endobject, red, s->inuse - s->objsize))
81819f0f 665 return 0;
81819f0f 666 } else {
3adbefee
IM
667 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
668 check_bytes_and_report(s, page, p, "Alignment padding",
669 endobject, POISON_INUSE, s->inuse - s->objsize);
670 }
81819f0f
CL
671 }
672
673 if (s->flags & SLAB_POISON) {
674 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
675 (!check_bytes_and_report(s, page, p, "Poison", p,
676 POISON_FREE, s->objsize - 1) ||
677 !check_bytes_and_report(s, page, p, "Poison",
06428780 678 p + s->objsize - 1, POISON_END, 1)))
81819f0f 679 return 0;
81819f0f
CL
680 /*
681 * check_pad_bytes cleans up on its own.
682 */
683 check_pad_bytes(s, page, p);
684 }
685
686 if (!s->offset && active)
687 /*
688 * Object and freepointer overlap. Cannot check
689 * freepointer while object is allocated.
690 */
691 return 1;
692
693 /* Check free pointer validity */
694 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
695 object_err(s, page, p, "Freepointer corrupt");
696 /*
9f6c708e 697 * No choice but to zap it and thus lose the remainder
81819f0f 698 * of the free objects in this slab. May cause
672bba3a 699 * another error because the object count is now wrong.
81819f0f 700 */
a973e9dd 701 set_freepointer(s, p, NULL);
81819f0f
CL
702 return 0;
703 }
704 return 1;
705}
706
707static int check_slab(struct kmem_cache *s, struct page *page)
708{
39b26464
CL
709 int maxobj;
710
81819f0f
CL
711 VM_BUG_ON(!irqs_disabled());
712
713 if (!PageSlab(page)) {
24922684 714 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
715 return 0;
716 }
39b26464
CL
717
718 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
719 if (page->objects > maxobj) {
720 slab_err(s, page, "objects %u > max %u",
721 s->name, page->objects, maxobj);
722 return 0;
723 }
724 if (page->inuse > page->objects) {
24922684 725 slab_err(s, page, "inuse %u > max %u",
39b26464 726 s->name, page->inuse, page->objects);
81819f0f
CL
727 return 0;
728 }
729 /* Slab_pad_check fixes things up after itself */
730 slab_pad_check(s, page);
731 return 1;
732}
733
734/*
672bba3a
CL
735 * Determine if a certain object on a page is on the freelist. Must hold the
736 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
737 */
738static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
739{
740 int nr = 0;
741 void *fp = page->freelist;
742 void *object = NULL;
224a88be 743 unsigned long max_objects;
81819f0f 744
39b26464 745 while (fp && nr <= page->objects) {
81819f0f
CL
746 if (fp == search)
747 return 1;
748 if (!check_valid_pointer(s, page, fp)) {
749 if (object) {
750 object_err(s, page, object,
751 "Freechain corrupt");
a973e9dd 752 set_freepointer(s, object, NULL);
81819f0f
CL
753 break;
754 } else {
24922684 755 slab_err(s, page, "Freepointer corrupt");
a973e9dd 756 page->freelist = NULL;
39b26464 757 page->inuse = page->objects;
24922684 758 slab_fix(s, "Freelist cleared");
81819f0f
CL
759 return 0;
760 }
761 break;
762 }
763 object = fp;
764 fp = get_freepointer(s, object);
765 nr++;
766 }
767
224a88be 768 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
769 if (max_objects > MAX_OBJS_PER_PAGE)
770 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
771
772 if (page->objects != max_objects) {
773 slab_err(s, page, "Wrong number of objects. Found %d but "
774 "should be %d", page->objects, max_objects);
775 page->objects = max_objects;
776 slab_fix(s, "Number of objects adjusted.");
777 }
39b26464 778 if (page->inuse != page->objects - nr) {
70d71228 779 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
780 "counted were %d", page->inuse, page->objects - nr);
781 page->inuse = page->objects - nr;
24922684 782 slab_fix(s, "Object count adjusted.");
81819f0f
CL
783 }
784 return search == NULL;
785}
786
0121c619
CL
787static void trace(struct kmem_cache *s, struct page *page, void *object,
788 int alloc)
3ec09742
CL
789{
790 if (s->flags & SLAB_TRACE) {
791 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
792 s->name,
793 alloc ? "alloc" : "free",
794 object, page->inuse,
795 page->freelist);
796
797 if (!alloc)
798 print_section("Object", (void *)object, s->objsize);
799
800 dump_stack();
801 }
802}
803
643b1138 804/*
672bba3a 805 * Tracking of fully allocated slabs for debugging purposes.
643b1138 806 */
e95eed57 807static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 808{
643b1138
CL
809 spin_lock(&n->list_lock);
810 list_add(&page->lru, &n->full);
811 spin_unlock(&n->list_lock);
812}
813
814static void remove_full(struct kmem_cache *s, struct page *page)
815{
816 struct kmem_cache_node *n;
817
818 if (!(s->flags & SLAB_STORE_USER))
819 return;
820
821 n = get_node(s, page_to_nid(page));
822
823 spin_lock(&n->list_lock);
824 list_del(&page->lru);
825 spin_unlock(&n->list_lock);
826}
827
0f389ec6
CL
828/* Tracking of the number of slabs for debugging purposes */
829static inline unsigned long slabs_node(struct kmem_cache *s, int node)
830{
831 struct kmem_cache_node *n = get_node(s, node);
832
833 return atomic_long_read(&n->nr_slabs);
834}
835
205ab99d 836static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
837{
838 struct kmem_cache_node *n = get_node(s, node);
839
840 /*
841 * May be called early in order to allocate a slab for the
842 * kmem_cache_node structure. Solve the chicken-egg
843 * dilemma by deferring the increment of the count during
844 * bootstrap (see early_kmem_cache_node_alloc).
845 */
205ab99d 846 if (!NUMA_BUILD || n) {
0f389ec6 847 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
848 atomic_long_add(objects, &n->total_objects);
849 }
0f389ec6 850}
205ab99d 851static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
852{
853 struct kmem_cache_node *n = get_node(s, node);
854
855 atomic_long_dec(&n->nr_slabs);
205ab99d 856 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
857}
858
859/* Object debug checks for alloc/free paths */
3ec09742
CL
860static void setup_object_debug(struct kmem_cache *s, struct page *page,
861 void *object)
862{
863 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
864 return;
865
866 init_object(s, object, 0);
867 init_tracking(s, object);
868}
869
870static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 871 void *object, unsigned long addr)
81819f0f
CL
872{
873 if (!check_slab(s, page))
874 goto bad;
875
d692ef6d 876 if (!on_freelist(s, page, object)) {
24922684 877 object_err(s, page, object, "Object already allocated");
70d71228 878 goto bad;
81819f0f
CL
879 }
880
881 if (!check_valid_pointer(s, page, object)) {
882 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 883 goto bad;
81819f0f
CL
884 }
885
d692ef6d 886 if (!check_object(s, page, object, 0))
81819f0f 887 goto bad;
81819f0f 888
3ec09742
CL
889 /* Success perform special debug activities for allocs */
890 if (s->flags & SLAB_STORE_USER)
891 set_track(s, object, TRACK_ALLOC, addr);
892 trace(s, page, object, 1);
893 init_object(s, object, 1);
81819f0f 894 return 1;
3ec09742 895
81819f0f
CL
896bad:
897 if (PageSlab(page)) {
898 /*
899 * If this is a slab page then lets do the best we can
900 * to avoid issues in the future. Marking all objects
672bba3a 901 * as used avoids touching the remaining objects.
81819f0f 902 */
24922684 903 slab_fix(s, "Marking all objects used");
39b26464 904 page->inuse = page->objects;
a973e9dd 905 page->freelist = NULL;
81819f0f
CL
906 }
907 return 0;
908}
909
3ec09742 910static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 911 void *object, unsigned long addr)
81819f0f
CL
912{
913 if (!check_slab(s, page))
914 goto fail;
915
916 if (!check_valid_pointer(s, page, object)) {
70d71228 917 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
918 goto fail;
919 }
920
921 if (on_freelist(s, page, object)) {
24922684 922 object_err(s, page, object, "Object already free");
81819f0f
CL
923 goto fail;
924 }
925
926 if (!check_object(s, page, object, 1))
927 return 0;
928
929 if (unlikely(s != page->slab)) {
3adbefee 930 if (!PageSlab(page)) {
70d71228
CL
931 slab_err(s, page, "Attempt to free object(0x%p) "
932 "outside of slab", object);
3adbefee 933 } else if (!page->slab) {
81819f0f 934 printk(KERN_ERR
70d71228 935 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 936 object);
70d71228 937 dump_stack();
06428780 938 } else
24922684
CL
939 object_err(s, page, object,
940 "page slab pointer corrupt.");
81819f0f
CL
941 goto fail;
942 }
3ec09742
CL
943
944 /* Special debug activities for freeing objects */
8a38082d 945 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
946 remove_full(s, page);
947 if (s->flags & SLAB_STORE_USER)
948 set_track(s, object, TRACK_FREE, addr);
949 trace(s, page, object, 0);
950 init_object(s, object, 0);
81819f0f 951 return 1;
3ec09742 952
81819f0f 953fail:
24922684 954 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
955 return 0;
956}
957
41ecc55b
CL
958static int __init setup_slub_debug(char *str)
959{
f0630fff
CL
960 slub_debug = DEBUG_DEFAULT_FLAGS;
961 if (*str++ != '=' || !*str)
962 /*
963 * No options specified. Switch on full debugging.
964 */
965 goto out;
966
967 if (*str == ',')
968 /*
969 * No options but restriction on slabs. This means full
970 * debugging for slabs matching a pattern.
971 */
972 goto check_slabs;
973
974 slub_debug = 0;
975 if (*str == '-')
976 /*
977 * Switch off all debugging measures.
978 */
979 goto out;
980
981 /*
982 * Determine which debug features should be switched on
983 */
06428780 984 for (; *str && *str != ','; str++) {
f0630fff
CL
985 switch (tolower(*str)) {
986 case 'f':
987 slub_debug |= SLAB_DEBUG_FREE;
988 break;
989 case 'z':
990 slub_debug |= SLAB_RED_ZONE;
991 break;
992 case 'p':
993 slub_debug |= SLAB_POISON;
994 break;
995 case 'u':
996 slub_debug |= SLAB_STORE_USER;
997 break;
998 case 't':
999 slub_debug |= SLAB_TRACE;
1000 break;
1001 default:
1002 printk(KERN_ERR "slub_debug option '%c' "
06428780 1003 "unknown. skipped\n", *str);
f0630fff 1004 }
41ecc55b
CL
1005 }
1006
f0630fff 1007check_slabs:
41ecc55b
CL
1008 if (*str == ',')
1009 slub_debug_slabs = str + 1;
f0630fff 1010out:
41ecc55b
CL
1011 return 1;
1012}
1013
1014__setup("slub_debug", setup_slub_debug);
1015
ba0268a8
CL
1016static unsigned long kmem_cache_flags(unsigned long objsize,
1017 unsigned long flags, const char *name,
51cc5068 1018 void (*ctor)(void *))
41ecc55b
CL
1019{
1020 /*
e153362a 1021 * Enable debugging if selected on the kernel commandline.
41ecc55b 1022 */
e153362a
CL
1023 if (slub_debug && (!slub_debug_slabs ||
1024 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1025 flags |= slub_debug;
ba0268a8
CL
1026
1027 return flags;
41ecc55b
CL
1028}
1029#else
3ec09742
CL
1030static inline void setup_object_debug(struct kmem_cache *s,
1031 struct page *page, void *object) {}
41ecc55b 1032
3ec09742 1033static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1034 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1035
3ec09742 1036static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1037 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1038
41ecc55b
CL
1039static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1040 { return 1; }
1041static inline int check_object(struct kmem_cache *s, struct page *page,
1042 void *object, int active) { return 1; }
3ec09742 1043static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1044static inline unsigned long kmem_cache_flags(unsigned long objsize,
1045 unsigned long flags, const char *name,
51cc5068 1046 void (*ctor)(void *))
ba0268a8
CL
1047{
1048 return flags;
1049}
41ecc55b 1050#define slub_debug 0
0f389ec6
CL
1051
1052static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1053 { return 0; }
205ab99d
CL
1054static inline void inc_slabs_node(struct kmem_cache *s, int node,
1055 int objects) {}
1056static inline void dec_slabs_node(struct kmem_cache *s, int node,
1057 int objects) {}
41ecc55b 1058#endif
205ab99d 1059
81819f0f
CL
1060/*
1061 * Slab allocation and freeing
1062 */
65c3376a
CL
1063static inline struct page *alloc_slab_page(gfp_t flags, int node,
1064 struct kmem_cache_order_objects oo)
1065{
1066 int order = oo_order(oo);
1067
1068 if (node == -1)
1069 return alloc_pages(flags, order);
1070 else
1071 return alloc_pages_node(node, flags, order);
1072}
1073
81819f0f
CL
1074static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1075{
06428780 1076 struct page *page;
834f3d11 1077 struct kmem_cache_order_objects oo = s->oo;
81819f0f 1078
b7a49f0d 1079 flags |= s->allocflags;
e12ba74d 1080
65c3376a
CL
1081 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1082 oo);
1083 if (unlikely(!page)) {
1084 oo = s->min;
1085 /*
1086 * Allocation may have failed due to fragmentation.
1087 * Try a lower order alloc if possible
1088 */
1089 page = alloc_slab_page(flags, node, oo);
1090 if (!page)
1091 return NULL;
81819f0f 1092
65c3376a
CL
1093 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1094 }
834f3d11 1095 page->objects = oo_objects(oo);
81819f0f
CL
1096 mod_zone_page_state(page_zone(page),
1097 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1098 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1099 1 << oo_order(oo));
81819f0f
CL
1100
1101 return page;
1102}
1103
1104static void setup_object(struct kmem_cache *s, struct page *page,
1105 void *object)
1106{
3ec09742 1107 setup_object_debug(s, page, object);
4f104934 1108 if (unlikely(s->ctor))
51cc5068 1109 s->ctor(object);
81819f0f
CL
1110}
1111
1112static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1113{
1114 struct page *page;
81819f0f 1115 void *start;
81819f0f
CL
1116 void *last;
1117 void *p;
1118
6cb06229 1119 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1120
6cb06229
CL
1121 page = allocate_slab(s,
1122 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1123 if (!page)
1124 goto out;
1125
205ab99d 1126 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1127 page->slab = s;
1128 page->flags |= 1 << PG_slab;
1129 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1130 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1131 __SetPageSlubDebug(page);
81819f0f
CL
1132
1133 start = page_address(page);
81819f0f
CL
1134
1135 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1136 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1137
1138 last = start;
224a88be 1139 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1140 setup_object(s, page, last);
1141 set_freepointer(s, last, p);
1142 last = p;
1143 }
1144 setup_object(s, page, last);
a973e9dd 1145 set_freepointer(s, last, NULL);
81819f0f
CL
1146
1147 page->freelist = start;
1148 page->inuse = 0;
1149out:
81819f0f
CL
1150 return page;
1151}
1152
1153static void __free_slab(struct kmem_cache *s, struct page *page)
1154{
834f3d11
CL
1155 int order = compound_order(page);
1156 int pages = 1 << order;
81819f0f 1157
8a38082d 1158 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1159 void *p;
1160
1161 slab_pad_check(s, page);
224a88be
CL
1162 for_each_object(p, s, page_address(page),
1163 page->objects)
81819f0f 1164 check_object(s, page, p, 0);
8a38082d 1165 __ClearPageSlubDebug(page);
81819f0f
CL
1166 }
1167
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1171 -pages);
81819f0f 1172
49bd5221
CL
1173 __ClearPageSlab(page);
1174 reset_page_mapcount(page);
1eb5ac64
NP
1175 if (current->reclaim_state)
1176 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1177 __free_pages(page, order);
81819f0f
CL
1178}
1179
1180static void rcu_free_slab(struct rcu_head *h)
1181{
1182 struct page *page;
1183
1184 page = container_of((struct list_head *)h, struct page, lru);
1185 __free_slab(page->slab, page);
1186}
1187
1188static void free_slab(struct kmem_cache *s, struct page *page)
1189{
1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1191 /*
1192 * RCU free overloads the RCU head over the LRU
1193 */
1194 struct rcu_head *head = (void *)&page->lru;
1195
1196 call_rcu(head, rcu_free_slab);
1197 } else
1198 __free_slab(s, page);
1199}
1200
1201static void discard_slab(struct kmem_cache *s, struct page *page)
1202{
205ab99d 1203 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1204 free_slab(s, page);
1205}
1206
1207/*
1208 * Per slab locking using the pagelock
1209 */
1210static __always_inline void slab_lock(struct page *page)
1211{
1212 bit_spin_lock(PG_locked, &page->flags);
1213}
1214
1215static __always_inline void slab_unlock(struct page *page)
1216{
a76d3546 1217 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1218}
1219
1220static __always_inline int slab_trylock(struct page *page)
1221{
1222 int rc = 1;
1223
1224 rc = bit_spin_trylock(PG_locked, &page->flags);
1225 return rc;
1226}
1227
1228/*
1229 * Management of partially allocated slabs
1230 */
7c2e132c
CL
1231static void add_partial(struct kmem_cache_node *n,
1232 struct page *page, int tail)
81819f0f 1233{
e95eed57
CL
1234 spin_lock(&n->list_lock);
1235 n->nr_partial++;
7c2e132c
CL
1236 if (tail)
1237 list_add_tail(&page->lru, &n->partial);
1238 else
1239 list_add(&page->lru, &n->partial);
81819f0f
CL
1240 spin_unlock(&n->list_lock);
1241}
1242
0121c619 1243static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1244{
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1246
1247 spin_lock(&n->list_lock);
1248 list_del(&page->lru);
1249 n->nr_partial--;
1250 spin_unlock(&n->list_lock);
1251}
1252
1253/*
672bba3a 1254 * Lock slab and remove from the partial list.
81819f0f 1255 *
672bba3a 1256 * Must hold list_lock.
81819f0f 1257 */
0121c619
CL
1258static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1259 struct page *page)
81819f0f
CL
1260{
1261 if (slab_trylock(page)) {
1262 list_del(&page->lru);
1263 n->nr_partial--;
8a38082d 1264 __SetPageSlubFrozen(page);
81819f0f
CL
1265 return 1;
1266 }
1267 return 0;
1268}
1269
1270/*
672bba3a 1271 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1272 */
1273static struct page *get_partial_node(struct kmem_cache_node *n)
1274{
1275 struct page *page;
1276
1277 /*
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1280 * partial slab and there is none available then get_partials()
1281 * will return NULL.
81819f0f
CL
1282 */
1283 if (!n || !n->nr_partial)
1284 return NULL;
1285
1286 spin_lock(&n->list_lock);
1287 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1288 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1289 goto out;
1290 page = NULL;
1291out:
1292 spin_unlock(&n->list_lock);
1293 return page;
1294}
1295
1296/*
672bba3a 1297 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1298 */
1299static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1300{
1301#ifdef CONFIG_NUMA
1302 struct zonelist *zonelist;
dd1a239f 1303 struct zoneref *z;
54a6eb5c
MG
1304 struct zone *zone;
1305 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1306 struct page *page;
1307
1308 /*
672bba3a
CL
1309 * The defrag ratio allows a configuration of the tradeoffs between
1310 * inter node defragmentation and node local allocations. A lower
1311 * defrag_ratio increases the tendency to do local allocations
1312 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1313 *
672bba3a
CL
1314 * If the defrag_ratio is set to 0 then kmalloc() always
1315 * returns node local objects. If the ratio is higher then kmalloc()
1316 * may return off node objects because partial slabs are obtained
1317 * from other nodes and filled up.
81819f0f 1318 *
6446faa2 1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1320 * defrag_ratio = 1000) then every (well almost) allocation will
1321 * first attempt to defrag slab caches on other nodes. This means
1322 * scanning over all nodes to look for partial slabs which may be
1323 * expensive if we do it every time we are trying to find a slab
1324 * with available objects.
81819f0f 1325 */
9824601e
CL
1326 if (!s->remote_node_defrag_ratio ||
1327 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1328 return NULL;
1329
0e88460d 1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1332 struct kmem_cache_node *n;
1333
54a6eb5c 1334 n = get_node(s, zone_to_nid(zone));
81819f0f 1335
54a6eb5c 1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1337 n->nr_partial > s->min_partial) {
81819f0f
CL
1338 page = get_partial_node(n);
1339 if (page)
1340 return page;
1341 }
1342 }
1343#endif
1344 return NULL;
1345}
1346
1347/*
1348 * Get a partial page, lock it and return it.
1349 */
1350static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1351{
1352 struct page *page;
1353 int searchnode = (node == -1) ? numa_node_id() : node;
1354
1355 page = get_partial_node(get_node(s, searchnode));
1356 if (page || (flags & __GFP_THISNODE))
1357 return page;
1358
1359 return get_any_partial(s, flags);
1360}
1361
1362/*
1363 * Move a page back to the lists.
1364 *
1365 * Must be called with the slab lock held.
1366 *
1367 * On exit the slab lock will have been dropped.
1368 */
7c2e132c 1369static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1370{
e95eed57 1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1373
8a38082d 1374 __ClearPageSlubFrozen(page);
81819f0f 1375 if (page->inuse) {
e95eed57 1376
a973e9dd 1377 if (page->freelist) {
7c2e132c 1378 add_partial(n, page, tail);
8ff12cfc
CL
1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1380 } else {
1381 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1382 if (SLABDEBUG && PageSlubDebug(page) &&
1383 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1384 add_full(n, page);
1385 }
81819f0f
CL
1386 slab_unlock(page);
1387 } else {
8ff12cfc 1388 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1389 if (n->nr_partial < s->min_partial) {
e95eed57 1390 /*
672bba3a
CL
1391 * Adding an empty slab to the partial slabs in order
1392 * to avoid page allocator overhead. This slab needs
1393 * to come after the other slabs with objects in
6446faa2
CL
1394 * so that the others get filled first. That way the
1395 * size of the partial list stays small.
1396 *
0121c619
CL
1397 * kmem_cache_shrink can reclaim any empty slabs from
1398 * the partial list.
e95eed57 1399 */
7c2e132c 1400 add_partial(n, page, 1);
e95eed57
CL
1401 slab_unlock(page);
1402 } else {
1403 slab_unlock(page);
8ff12cfc 1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1405 discard_slab(s, page);
1406 }
81819f0f
CL
1407 }
1408}
1409
1410/*
1411 * Remove the cpu slab
1412 */
dfb4f096 1413static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1414{
dfb4f096 1415 struct page *page = c->page;
7c2e132c 1416 int tail = 1;
8ff12cfc 1417
b773ad73 1418 if (page->freelist)
8ff12cfc 1419 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1420 /*
6446faa2 1421 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1422 * because both freelists are empty. So this is unlikely
1423 * to occur.
1424 */
a973e9dd 1425 while (unlikely(c->freelist)) {
894b8788
CL
1426 void **object;
1427
7c2e132c
CL
1428 tail = 0; /* Hot objects. Put the slab first */
1429
894b8788 1430 /* Retrieve object from cpu_freelist */
dfb4f096 1431 object = c->freelist;
b3fba8da 1432 c->freelist = c->freelist[c->offset];
894b8788
CL
1433
1434 /* And put onto the regular freelist */
b3fba8da 1435 object[c->offset] = page->freelist;
894b8788
CL
1436 page->freelist = object;
1437 page->inuse--;
1438 }
dfb4f096 1439 c->page = NULL;
7c2e132c 1440 unfreeze_slab(s, page, tail);
81819f0f
CL
1441}
1442
dfb4f096 1443static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1444{
8ff12cfc 1445 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1446 slab_lock(c->page);
1447 deactivate_slab(s, c);
81819f0f
CL
1448}
1449
1450/*
1451 * Flush cpu slab.
6446faa2 1452 *
81819f0f
CL
1453 * Called from IPI handler with interrupts disabled.
1454 */
0c710013 1455static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1456{
dfb4f096 1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1458
dfb4f096
CL
1459 if (likely(c && c->page))
1460 flush_slab(s, c);
81819f0f
CL
1461}
1462
1463static void flush_cpu_slab(void *d)
1464{
1465 struct kmem_cache *s = d;
81819f0f 1466
dfb4f096 1467 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1468}
1469
1470static void flush_all(struct kmem_cache *s)
1471{
15c8b6c1 1472 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1473}
1474
dfb4f096
CL
1475/*
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1478 */
1479static inline int node_match(struct kmem_cache_cpu *c, int node)
1480{
1481#ifdef CONFIG_NUMA
1482 if (node != -1 && c->node != node)
1483 return 0;
1484#endif
1485 return 1;
1486}
1487
81819f0f 1488/*
894b8788
CL
1489 * Slow path. The lockless freelist is empty or we need to perform
1490 * debugging duties.
1491 *
1492 * Interrupts are disabled.
81819f0f 1493 *
894b8788
CL
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
81819f0f 1497 *
894b8788
CL
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
81819f0f 1501 *
894b8788 1502 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
81819f0f 1505 */
ce71e27c
EGM
1506static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1508{
81819f0f 1509 void **object;
dfb4f096 1510 struct page *new;
81819f0f 1511
e72e9c23
LT
1512 /* We handle __GFP_ZERO in the caller */
1513 gfpflags &= ~__GFP_ZERO;
1514
dfb4f096 1515 if (!c->page)
81819f0f
CL
1516 goto new_slab;
1517
dfb4f096
CL
1518 slab_lock(c->page);
1519 if (unlikely(!node_match(c, node)))
81819f0f 1520 goto another_slab;
6446faa2 1521
8ff12cfc 1522 stat(c, ALLOC_REFILL);
6446faa2 1523
894b8788 1524load_freelist:
dfb4f096 1525 object = c->page->freelist;
a973e9dd 1526 if (unlikely(!object))
81819f0f 1527 goto another_slab;
8a38082d 1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1529 goto debug;
1530
b3fba8da 1531 c->freelist = object[c->offset];
39b26464 1532 c->page->inuse = c->page->objects;
a973e9dd 1533 c->page->freelist = NULL;
dfb4f096 1534 c->node = page_to_nid(c->page);
1f84260c 1535unlock_out:
dfb4f096 1536 slab_unlock(c->page);
8ff12cfc 1537 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1538 return object;
1539
1540another_slab:
dfb4f096 1541 deactivate_slab(s, c);
81819f0f
CL
1542
1543new_slab:
dfb4f096
CL
1544 new = get_partial(s, gfpflags, node);
1545 if (new) {
1546 c->page = new;
8ff12cfc 1547 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1548 goto load_freelist;
81819f0f
CL
1549 }
1550
b811c202
CL
1551 if (gfpflags & __GFP_WAIT)
1552 local_irq_enable();
1553
dfb4f096 1554 new = new_slab(s, gfpflags, node);
b811c202
CL
1555
1556 if (gfpflags & __GFP_WAIT)
1557 local_irq_disable();
1558
dfb4f096
CL
1559 if (new) {
1560 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1561 stat(c, ALLOC_SLAB);
05aa3450 1562 if (c->page)
dfb4f096 1563 flush_slab(s, c);
dfb4f096 1564 slab_lock(new);
8a38082d 1565 __SetPageSlubFrozen(new);
dfb4f096 1566 c->page = new;
4b6f0750 1567 goto load_freelist;
81819f0f 1568 }
71c7a06f 1569 return NULL;
81819f0f 1570debug:
dfb4f096 1571 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1572 goto another_slab;
894b8788 1573
dfb4f096 1574 c->page->inuse++;
b3fba8da 1575 c->page->freelist = object[c->offset];
ee3c72a1 1576 c->node = -1;
1f84260c 1577 goto unlock_out;
894b8788
CL
1578}
1579
1580/*
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1584 *
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1587 *
1588 * Otherwise we can simply pick the next object from the lockless free list.
1589 */
06428780 1590static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1591 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1592{
894b8788 1593 void **object;
dfb4f096 1594 struct kmem_cache_cpu *c;
1f84260c 1595 unsigned long flags;
bdb21928 1596 unsigned int objsize;
1f84260c 1597
cf40bd16 1598 lockdep_trace_alloc(gfpflags);
89124d70 1599 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1600
773ff60e
AM
1601 if (should_failslab(s->objsize, gfpflags))
1602 return NULL;
1f84260c 1603
894b8788 1604 local_irq_save(flags);
dfb4f096 1605 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1606 objsize = c->objsize;
a973e9dd 1607 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1608
dfb4f096 1609 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1610
1611 else {
dfb4f096 1612 object = c->freelist;
b3fba8da 1613 c->freelist = object[c->offset];
8ff12cfc 1614 stat(c, ALLOC_FASTPATH);
894b8788
CL
1615 }
1616 local_irq_restore(flags);
d07dbea4
CL
1617
1618 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1619 memset(object, 0, objsize);
d07dbea4 1620
06f22f13 1621 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
894b8788 1622 return object;
81819f0f
CL
1623}
1624
1625void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1626{
5b882be4
EGM
1627 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1628
ca2b84cb 1629 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1630
1631 return ret;
81819f0f
CL
1632}
1633EXPORT_SYMBOL(kmem_cache_alloc);
1634
5b882be4
EGM
1635#ifdef CONFIG_KMEMTRACE
1636void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1637{
1638 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1639}
1640EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1641#endif
1642
81819f0f
CL
1643#ifdef CONFIG_NUMA
1644void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1645{
5b882be4
EGM
1646 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1647
ca2b84cb
EGM
1648 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1649 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1650
1651 return ret;
81819f0f
CL
1652}
1653EXPORT_SYMBOL(kmem_cache_alloc_node);
1654#endif
1655
5b882be4
EGM
1656#ifdef CONFIG_KMEMTRACE
1657void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1658 gfp_t gfpflags,
1659 int node)
1660{
1661 return slab_alloc(s, gfpflags, node, _RET_IP_);
1662}
1663EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1664#endif
1665
81819f0f 1666/*
894b8788
CL
1667 * Slow patch handling. This may still be called frequently since objects
1668 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1669 *
894b8788
CL
1670 * So we still attempt to reduce cache line usage. Just take the slab
1671 * lock and free the item. If there is no additional partial page
1672 * handling required then we can return immediately.
81819f0f 1673 */
894b8788 1674static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1675 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1676{
1677 void *prior;
1678 void **object = (void *)x;
8ff12cfc 1679 struct kmem_cache_cpu *c;
81819f0f 1680
8ff12cfc
CL
1681 c = get_cpu_slab(s, raw_smp_processor_id());
1682 stat(c, FREE_SLOWPATH);
81819f0f
CL
1683 slab_lock(page);
1684
8a38082d 1685 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1686 goto debug;
6446faa2 1687
81819f0f 1688checks_ok:
b3fba8da 1689 prior = object[offset] = page->freelist;
81819f0f
CL
1690 page->freelist = object;
1691 page->inuse--;
1692
8a38082d 1693 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1694 stat(c, FREE_FROZEN);
81819f0f 1695 goto out_unlock;
8ff12cfc 1696 }
81819f0f
CL
1697
1698 if (unlikely(!page->inuse))
1699 goto slab_empty;
1700
1701 /*
6446faa2 1702 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1703 * then add it.
1704 */
a973e9dd 1705 if (unlikely(!prior)) {
7c2e132c 1706 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1707 stat(c, FREE_ADD_PARTIAL);
1708 }
81819f0f
CL
1709
1710out_unlock:
1711 slab_unlock(page);
81819f0f
CL
1712 return;
1713
1714slab_empty:
a973e9dd 1715 if (prior) {
81819f0f 1716 /*
672bba3a 1717 * Slab still on the partial list.
81819f0f
CL
1718 */
1719 remove_partial(s, page);
8ff12cfc
CL
1720 stat(c, FREE_REMOVE_PARTIAL);
1721 }
81819f0f 1722 slab_unlock(page);
8ff12cfc 1723 stat(c, FREE_SLAB);
81819f0f 1724 discard_slab(s, page);
81819f0f
CL
1725 return;
1726
1727debug:
3ec09742 1728 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1729 goto out_unlock;
77c5e2d0 1730 goto checks_ok;
81819f0f
CL
1731}
1732
894b8788
CL
1733/*
1734 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1735 * can perform fastpath freeing without additional function calls.
1736 *
1737 * The fastpath is only possible if we are freeing to the current cpu slab
1738 * of this processor. This typically the case if we have just allocated
1739 * the item before.
1740 *
1741 * If fastpath is not possible then fall back to __slab_free where we deal
1742 * with all sorts of special processing.
1743 */
06428780 1744static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1745 struct page *page, void *x, unsigned long addr)
894b8788
CL
1746{
1747 void **object = (void *)x;
dfb4f096 1748 struct kmem_cache_cpu *c;
1f84260c
CL
1749 unsigned long flags;
1750
06f22f13 1751 kmemleak_free_recursive(x, s->flags);
894b8788 1752 local_irq_save(flags);
dfb4f096 1753 c = get_cpu_slab(s, smp_processor_id());
27d9e4e9 1754 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1756 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1757 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1758 object[c->offset] = c->freelist;
dfb4f096 1759 c->freelist = object;
8ff12cfc 1760 stat(c, FREE_FASTPATH);
894b8788 1761 } else
b3fba8da 1762 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1763
1764 local_irq_restore(flags);
1765}
1766
81819f0f
CL
1767void kmem_cache_free(struct kmem_cache *s, void *x)
1768{
77c5e2d0 1769 struct page *page;
81819f0f 1770
b49af68f 1771 page = virt_to_head_page(x);
81819f0f 1772
ce71e27c 1773 slab_free(s, page, x, _RET_IP_);
5b882be4 1774
ca2b84cb 1775 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1776}
1777EXPORT_SYMBOL(kmem_cache_free);
1778
e9beef18 1779/* Figure out on which slab page the object resides */
81819f0f
CL
1780static struct page *get_object_page(const void *x)
1781{
b49af68f 1782 struct page *page = virt_to_head_page(x);
81819f0f
CL
1783
1784 if (!PageSlab(page))
1785 return NULL;
1786
1787 return page;
1788}
1789
1790/*
672bba3a
CL
1791 * Object placement in a slab is made very easy because we always start at
1792 * offset 0. If we tune the size of the object to the alignment then we can
1793 * get the required alignment by putting one properly sized object after
1794 * another.
81819f0f
CL
1795 *
1796 * Notice that the allocation order determines the sizes of the per cpu
1797 * caches. Each processor has always one slab available for allocations.
1798 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1799 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1800 * locking overhead.
81819f0f
CL
1801 */
1802
1803/*
1804 * Mininum / Maximum order of slab pages. This influences locking overhead
1805 * and slab fragmentation. A higher order reduces the number of partial slabs
1806 * and increases the number of allocations possible without having to
1807 * take the list_lock.
1808 */
1809static int slub_min_order;
114e9e89 1810static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1811static int slub_min_objects;
81819f0f
CL
1812
1813/*
1814 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1815 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1816 */
1817static int slub_nomerge;
1818
81819f0f
CL
1819/*
1820 * Calculate the order of allocation given an slab object size.
1821 *
672bba3a
CL
1822 * The order of allocation has significant impact on performance and other
1823 * system components. Generally order 0 allocations should be preferred since
1824 * order 0 does not cause fragmentation in the page allocator. Larger objects
1825 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1826 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1827 * would be wasted.
1828 *
1829 * In order to reach satisfactory performance we must ensure that a minimum
1830 * number of objects is in one slab. Otherwise we may generate too much
1831 * activity on the partial lists which requires taking the list_lock. This is
1832 * less a concern for large slabs though which are rarely used.
81819f0f 1833 *
672bba3a
CL
1834 * slub_max_order specifies the order where we begin to stop considering the
1835 * number of objects in a slab as critical. If we reach slub_max_order then
1836 * we try to keep the page order as low as possible. So we accept more waste
1837 * of space in favor of a small page order.
81819f0f 1838 *
672bba3a
CL
1839 * Higher order allocations also allow the placement of more objects in a
1840 * slab and thereby reduce object handling overhead. If the user has
1841 * requested a higher mininum order then we start with that one instead of
1842 * the smallest order which will fit the object.
81819f0f 1843 */
5e6d444e
CL
1844static inline int slab_order(int size, int min_objects,
1845 int max_order, int fract_leftover)
81819f0f
CL
1846{
1847 int order;
1848 int rem;
6300ea75 1849 int min_order = slub_min_order;
81819f0f 1850
210b5c06
CG
1851 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1852 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1853
6300ea75 1854 for (order = max(min_order,
5e6d444e
CL
1855 fls(min_objects * size - 1) - PAGE_SHIFT);
1856 order <= max_order; order++) {
81819f0f 1857
5e6d444e 1858 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1859
5e6d444e 1860 if (slab_size < min_objects * size)
81819f0f
CL
1861 continue;
1862
1863 rem = slab_size % size;
1864
5e6d444e 1865 if (rem <= slab_size / fract_leftover)
81819f0f
CL
1866 break;
1867
1868 }
672bba3a 1869
81819f0f
CL
1870 return order;
1871}
1872
5e6d444e
CL
1873static inline int calculate_order(int size)
1874{
1875 int order;
1876 int min_objects;
1877 int fraction;
e8120ff1 1878 int max_objects;
5e6d444e
CL
1879
1880 /*
1881 * Attempt to find best configuration for a slab. This
1882 * works by first attempting to generate a layout with
1883 * the best configuration and backing off gradually.
1884 *
1885 * First we reduce the acceptable waste in a slab. Then
1886 * we reduce the minimum objects required in a slab.
1887 */
1888 min_objects = slub_min_objects;
9b2cd506
CL
1889 if (!min_objects)
1890 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
1891 max_objects = (PAGE_SIZE << slub_max_order)/size;
1892 min_objects = min(min_objects, max_objects);
1893
5e6d444e 1894 while (min_objects > 1) {
c124f5b5 1895 fraction = 16;
5e6d444e
CL
1896 while (fraction >= 4) {
1897 order = slab_order(size, min_objects,
1898 slub_max_order, fraction);
1899 if (order <= slub_max_order)
1900 return order;
1901 fraction /= 2;
1902 }
e8120ff1 1903 min_objects --;
5e6d444e
CL
1904 }
1905
1906 /*
1907 * We were unable to place multiple objects in a slab. Now
1908 * lets see if we can place a single object there.
1909 */
1910 order = slab_order(size, 1, slub_max_order, 1);
1911 if (order <= slub_max_order)
1912 return order;
1913
1914 /*
1915 * Doh this slab cannot be placed using slub_max_order.
1916 */
1917 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 1918 if (order < MAX_ORDER)
5e6d444e
CL
1919 return order;
1920 return -ENOSYS;
1921}
1922
81819f0f 1923/*
672bba3a 1924 * Figure out what the alignment of the objects will be.
81819f0f
CL
1925 */
1926static unsigned long calculate_alignment(unsigned long flags,
1927 unsigned long align, unsigned long size)
1928{
1929 /*
6446faa2
CL
1930 * If the user wants hardware cache aligned objects then follow that
1931 * suggestion if the object is sufficiently large.
81819f0f 1932 *
6446faa2
CL
1933 * The hardware cache alignment cannot override the specified
1934 * alignment though. If that is greater then use it.
81819f0f 1935 */
b6210386
NP
1936 if (flags & SLAB_HWCACHE_ALIGN) {
1937 unsigned long ralign = cache_line_size();
1938 while (size <= ralign / 2)
1939 ralign /= 2;
1940 align = max(align, ralign);
1941 }
81819f0f
CL
1942
1943 if (align < ARCH_SLAB_MINALIGN)
b6210386 1944 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
1945
1946 return ALIGN(align, sizeof(void *));
1947}
1948
dfb4f096
CL
1949static void init_kmem_cache_cpu(struct kmem_cache *s,
1950 struct kmem_cache_cpu *c)
1951{
1952 c->page = NULL;
a973e9dd 1953 c->freelist = NULL;
dfb4f096 1954 c->node = 0;
42a9fdbb
CL
1955 c->offset = s->offset / sizeof(void *);
1956 c->objsize = s->objsize;
62f75532
PE
1957#ifdef CONFIG_SLUB_STATS
1958 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1959#endif
dfb4f096
CL
1960}
1961
5595cffc
PE
1962static void
1963init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
1964{
1965 n->nr_partial = 0;
81819f0f
CL
1966 spin_lock_init(&n->list_lock);
1967 INIT_LIST_HEAD(&n->partial);
8ab1372f 1968#ifdef CONFIG_SLUB_DEBUG
0f389ec6 1969 atomic_long_set(&n->nr_slabs, 0);
02b71b70 1970 atomic_long_set(&n->total_objects, 0);
643b1138 1971 INIT_LIST_HEAD(&n->full);
8ab1372f 1972#endif
81819f0f
CL
1973}
1974
4c93c355
CL
1975#ifdef CONFIG_SMP
1976/*
1977 * Per cpu array for per cpu structures.
1978 *
1979 * The per cpu array places all kmem_cache_cpu structures from one processor
1980 * close together meaning that it becomes possible that multiple per cpu
1981 * structures are contained in one cacheline. This may be particularly
1982 * beneficial for the kmalloc caches.
1983 *
1984 * A desktop system typically has around 60-80 slabs. With 100 here we are
1985 * likely able to get per cpu structures for all caches from the array defined
1986 * here. We must be able to cover all kmalloc caches during bootstrap.
1987 *
1988 * If the per cpu array is exhausted then fall back to kmalloc
1989 * of individual cachelines. No sharing is possible then.
1990 */
1991#define NR_KMEM_CACHE_CPU 100
1992
1993static DEFINE_PER_CPU(struct kmem_cache_cpu,
1994 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1995
1996static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 1997static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
1998
1999static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2000 int cpu, gfp_t flags)
2001{
2002 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2003
2004 if (c)
2005 per_cpu(kmem_cache_cpu_free, cpu) =
2006 (void *)c->freelist;
2007 else {
2008 /* Table overflow: So allocate ourselves */
2009 c = kmalloc_node(
2010 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2011 flags, cpu_to_node(cpu));
2012 if (!c)
2013 return NULL;
2014 }
2015
2016 init_kmem_cache_cpu(s, c);
2017 return c;
2018}
2019
2020static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2021{
2022 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2023 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2024 kfree(c);
2025 return;
2026 }
2027 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2028 per_cpu(kmem_cache_cpu_free, cpu) = c;
2029}
2030
2031static void free_kmem_cache_cpus(struct kmem_cache *s)
2032{
2033 int cpu;
2034
2035 for_each_online_cpu(cpu) {
2036 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2037
2038 if (c) {
2039 s->cpu_slab[cpu] = NULL;
2040 free_kmem_cache_cpu(c, cpu);
2041 }
2042 }
2043}
2044
2045static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2046{
2047 int cpu;
2048
2049 for_each_online_cpu(cpu) {
2050 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2051
2052 if (c)
2053 continue;
2054
2055 c = alloc_kmem_cache_cpu(s, cpu, flags);
2056 if (!c) {
2057 free_kmem_cache_cpus(s);
2058 return 0;
2059 }
2060 s->cpu_slab[cpu] = c;
2061 }
2062 return 1;
2063}
2064
2065/*
2066 * Initialize the per cpu array.
2067 */
2068static void init_alloc_cpu_cpu(int cpu)
2069{
2070 int i;
2071
174596a0 2072 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2073 return;
2074
2075 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2076 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2077
174596a0 2078 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2079}
2080
2081static void __init init_alloc_cpu(void)
2082{
2083 int cpu;
2084
2085 for_each_online_cpu(cpu)
2086 init_alloc_cpu_cpu(cpu);
2087 }
2088
2089#else
2090static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2091static inline void init_alloc_cpu(void) {}
2092
2093static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2094{
2095 init_kmem_cache_cpu(s, &s->cpu_slab);
2096 return 1;
2097}
2098#endif
2099
81819f0f
CL
2100#ifdef CONFIG_NUMA
2101/*
2102 * No kmalloc_node yet so do it by hand. We know that this is the first
2103 * slab on the node for this slabcache. There are no concurrent accesses
2104 * possible.
2105 *
2106 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2107 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2108 * memory on a fresh node that has no slab structures yet.
81819f0f 2109 */
0094de92 2110static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2111{
2112 struct page *page;
2113 struct kmem_cache_node *n;
ba84c73c 2114 unsigned long flags;
81819f0f
CL
2115
2116 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2117
a2f92ee7 2118 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2119
2120 BUG_ON(!page);
a2f92ee7
CL
2121 if (page_to_nid(page) != node) {
2122 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2123 "node %d\n", node);
2124 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2125 "in order to be able to continue\n");
2126 }
2127
81819f0f
CL
2128 n = page->freelist;
2129 BUG_ON(!n);
2130 page->freelist = get_freepointer(kmalloc_caches, n);
2131 page->inuse++;
2132 kmalloc_caches->node[node] = n;
8ab1372f 2133#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2134 init_object(kmalloc_caches, n, 1);
2135 init_tracking(kmalloc_caches, n);
8ab1372f 2136#endif
5595cffc 2137 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2138 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2139
ba84c73c 2140 /*
2141 * lockdep requires consistent irq usage for each lock
2142 * so even though there cannot be a race this early in
2143 * the boot sequence, we still disable irqs.
2144 */
2145 local_irq_save(flags);
7c2e132c 2146 add_partial(n, page, 0);
ba84c73c 2147 local_irq_restore(flags);
81819f0f
CL
2148}
2149
2150static void free_kmem_cache_nodes(struct kmem_cache *s)
2151{
2152 int node;
2153
f64dc58c 2154 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2155 struct kmem_cache_node *n = s->node[node];
2156 if (n && n != &s->local_node)
2157 kmem_cache_free(kmalloc_caches, n);
2158 s->node[node] = NULL;
2159 }
2160}
2161
2162static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2163{
2164 int node;
2165 int local_node;
2166
2167 if (slab_state >= UP)
2168 local_node = page_to_nid(virt_to_page(s));
2169 else
2170 local_node = 0;
2171
f64dc58c 2172 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2173 struct kmem_cache_node *n;
2174
2175 if (local_node == node)
2176 n = &s->local_node;
2177 else {
2178 if (slab_state == DOWN) {
0094de92 2179 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2180 continue;
2181 }
2182 n = kmem_cache_alloc_node(kmalloc_caches,
2183 gfpflags, node);
2184
2185 if (!n) {
2186 free_kmem_cache_nodes(s);
2187 return 0;
2188 }
2189
2190 }
2191 s->node[node] = n;
5595cffc 2192 init_kmem_cache_node(n, s);
81819f0f
CL
2193 }
2194 return 1;
2195}
2196#else
2197static void free_kmem_cache_nodes(struct kmem_cache *s)
2198{
2199}
2200
2201static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2202{
5595cffc 2203 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2204 return 1;
2205}
2206#endif
2207
c0bdb232 2208static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2209{
2210 if (min < MIN_PARTIAL)
2211 min = MIN_PARTIAL;
2212 else if (min > MAX_PARTIAL)
2213 min = MAX_PARTIAL;
2214 s->min_partial = min;
2215}
2216
81819f0f
CL
2217/*
2218 * calculate_sizes() determines the order and the distribution of data within
2219 * a slab object.
2220 */
06b285dc 2221static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2222{
2223 unsigned long flags = s->flags;
2224 unsigned long size = s->objsize;
2225 unsigned long align = s->align;
834f3d11 2226 int order;
81819f0f 2227
d8b42bf5
CL
2228 /*
2229 * Round up object size to the next word boundary. We can only
2230 * place the free pointer at word boundaries and this determines
2231 * the possible location of the free pointer.
2232 */
2233 size = ALIGN(size, sizeof(void *));
2234
2235#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2236 /*
2237 * Determine if we can poison the object itself. If the user of
2238 * the slab may touch the object after free or before allocation
2239 * then we should never poison the object itself.
2240 */
2241 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2242 !s->ctor)
81819f0f
CL
2243 s->flags |= __OBJECT_POISON;
2244 else
2245 s->flags &= ~__OBJECT_POISON;
2246
81819f0f
CL
2247
2248 /*
672bba3a 2249 * If we are Redzoning then check if there is some space between the
81819f0f 2250 * end of the object and the free pointer. If not then add an
672bba3a 2251 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2252 */
2253 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2254 size += sizeof(void *);
41ecc55b 2255#endif
81819f0f
CL
2256
2257 /*
672bba3a
CL
2258 * With that we have determined the number of bytes in actual use
2259 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2260 */
2261 s->inuse = size;
2262
2263 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2264 s->ctor)) {
81819f0f
CL
2265 /*
2266 * Relocate free pointer after the object if it is not
2267 * permitted to overwrite the first word of the object on
2268 * kmem_cache_free.
2269 *
2270 * This is the case if we do RCU, have a constructor or
2271 * destructor or are poisoning the objects.
2272 */
2273 s->offset = size;
2274 size += sizeof(void *);
2275 }
2276
c12b3c62 2277#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2278 if (flags & SLAB_STORE_USER)
2279 /*
2280 * Need to store information about allocs and frees after
2281 * the object.
2282 */
2283 size += 2 * sizeof(struct track);
2284
be7b3fbc 2285 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2286 /*
2287 * Add some empty padding so that we can catch
2288 * overwrites from earlier objects rather than let
2289 * tracking information or the free pointer be
0211a9c8 2290 * corrupted if a user writes before the start
81819f0f
CL
2291 * of the object.
2292 */
2293 size += sizeof(void *);
41ecc55b 2294#endif
672bba3a 2295
81819f0f
CL
2296 /*
2297 * Determine the alignment based on various parameters that the
65c02d4c
CL
2298 * user specified and the dynamic determination of cache line size
2299 * on bootup.
81819f0f
CL
2300 */
2301 align = calculate_alignment(flags, align, s->objsize);
2302
2303 /*
2304 * SLUB stores one object immediately after another beginning from
2305 * offset 0. In order to align the objects we have to simply size
2306 * each object to conform to the alignment.
2307 */
2308 size = ALIGN(size, align);
2309 s->size = size;
06b285dc
CL
2310 if (forced_order >= 0)
2311 order = forced_order;
2312 else
2313 order = calculate_order(size);
81819f0f 2314
834f3d11 2315 if (order < 0)
81819f0f
CL
2316 return 0;
2317
b7a49f0d 2318 s->allocflags = 0;
834f3d11 2319 if (order)
b7a49f0d
CL
2320 s->allocflags |= __GFP_COMP;
2321
2322 if (s->flags & SLAB_CACHE_DMA)
2323 s->allocflags |= SLUB_DMA;
2324
2325 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2326 s->allocflags |= __GFP_RECLAIMABLE;
2327
81819f0f
CL
2328 /*
2329 * Determine the number of objects per slab
2330 */
834f3d11 2331 s->oo = oo_make(order, size);
65c3376a 2332 s->min = oo_make(get_order(size), size);
205ab99d
CL
2333 if (oo_objects(s->oo) > oo_objects(s->max))
2334 s->max = s->oo;
81819f0f 2335
834f3d11 2336 return !!oo_objects(s->oo);
81819f0f
CL
2337
2338}
2339
81819f0f
CL
2340static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2341 const char *name, size_t size,
2342 size_t align, unsigned long flags,
51cc5068 2343 void (*ctor)(void *))
81819f0f
CL
2344{
2345 memset(s, 0, kmem_size);
2346 s->name = name;
2347 s->ctor = ctor;
81819f0f 2348 s->objsize = size;
81819f0f 2349 s->align = align;
ba0268a8 2350 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2351
06b285dc 2352 if (!calculate_sizes(s, -1))
81819f0f
CL
2353 goto error;
2354
3b89d7d8
DR
2355 /*
2356 * The larger the object size is, the more pages we want on the partial
2357 * list to avoid pounding the page allocator excessively.
2358 */
c0bdb232 2359 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2360 s->refcount = 1;
2361#ifdef CONFIG_NUMA
e2cb96b7 2362 s->remote_node_defrag_ratio = 1000;
81819f0f 2363#endif
dfb4f096
CL
2364 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2365 goto error;
81819f0f 2366
dfb4f096 2367 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2368 return 1;
4c93c355 2369 free_kmem_cache_nodes(s);
81819f0f
CL
2370error:
2371 if (flags & SLAB_PANIC)
2372 panic("Cannot create slab %s size=%lu realsize=%u "
2373 "order=%u offset=%u flags=%lx\n",
834f3d11 2374 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2375 s->offset, flags);
2376 return 0;
2377}
81819f0f
CL
2378
2379/*
2380 * Check if a given pointer is valid
2381 */
2382int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2383{
06428780 2384 struct page *page;
81819f0f
CL
2385
2386 page = get_object_page(object);
2387
2388 if (!page || s != page->slab)
2389 /* No slab or wrong slab */
2390 return 0;
2391
abcd08a6 2392 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2393 return 0;
2394
2395 /*
2396 * We could also check if the object is on the slabs freelist.
2397 * But this would be too expensive and it seems that the main
6446faa2 2398 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2399 * to a certain slab.
2400 */
2401 return 1;
2402}
2403EXPORT_SYMBOL(kmem_ptr_validate);
2404
2405/*
2406 * Determine the size of a slab object
2407 */
2408unsigned int kmem_cache_size(struct kmem_cache *s)
2409{
2410 return s->objsize;
2411}
2412EXPORT_SYMBOL(kmem_cache_size);
2413
2414const char *kmem_cache_name(struct kmem_cache *s)
2415{
2416 return s->name;
2417}
2418EXPORT_SYMBOL(kmem_cache_name);
2419
33b12c38
CL
2420static void list_slab_objects(struct kmem_cache *s, struct page *page,
2421 const char *text)
2422{
2423#ifdef CONFIG_SLUB_DEBUG
2424 void *addr = page_address(page);
2425 void *p;
2426 DECLARE_BITMAP(map, page->objects);
2427
2428 bitmap_zero(map, page->objects);
2429 slab_err(s, page, "%s", text);
2430 slab_lock(page);
2431 for_each_free_object(p, s, page->freelist)
2432 set_bit(slab_index(p, s, addr), map);
2433
2434 for_each_object(p, s, addr, page->objects) {
2435
2436 if (!test_bit(slab_index(p, s, addr), map)) {
2437 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2438 p, p - addr);
2439 print_tracking(s, p);
2440 }
2441 }
2442 slab_unlock(page);
2443#endif
2444}
2445
81819f0f 2446/*
599870b1 2447 * Attempt to free all partial slabs on a node.
81819f0f 2448 */
599870b1 2449static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2450{
81819f0f
CL
2451 unsigned long flags;
2452 struct page *page, *h;
2453
2454 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2455 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2456 if (!page->inuse) {
2457 list_del(&page->lru);
2458 discard_slab(s, page);
599870b1 2459 n->nr_partial--;
33b12c38
CL
2460 } else {
2461 list_slab_objects(s, page,
2462 "Objects remaining on kmem_cache_close()");
599870b1 2463 }
33b12c38 2464 }
81819f0f 2465 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2466}
2467
2468/*
672bba3a 2469 * Release all resources used by a slab cache.
81819f0f 2470 */
0c710013 2471static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2472{
2473 int node;
2474
2475 flush_all(s);
2476
2477 /* Attempt to free all objects */
4c93c355 2478 free_kmem_cache_cpus(s);
f64dc58c 2479 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2480 struct kmem_cache_node *n = get_node(s, node);
2481
599870b1
CL
2482 free_partial(s, n);
2483 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2484 return 1;
2485 }
2486 free_kmem_cache_nodes(s);
2487 return 0;
2488}
2489
2490/*
2491 * Close a cache and release the kmem_cache structure
2492 * (must be used for caches created using kmem_cache_create)
2493 */
2494void kmem_cache_destroy(struct kmem_cache *s)
2495{
2496 down_write(&slub_lock);
2497 s->refcount--;
2498 if (!s->refcount) {
2499 list_del(&s->list);
a0e1d1be 2500 up_write(&slub_lock);
d629d819
PE
2501 if (kmem_cache_close(s)) {
2502 printk(KERN_ERR "SLUB %s: %s called for cache that "
2503 "still has objects.\n", s->name, __func__);
2504 dump_stack();
2505 }
81819f0f 2506 sysfs_slab_remove(s);
a0e1d1be
CL
2507 } else
2508 up_write(&slub_lock);
81819f0f
CL
2509}
2510EXPORT_SYMBOL(kmem_cache_destroy);
2511
2512/********************************************************************
2513 * Kmalloc subsystem
2514 *******************************************************************/
2515
ffadd4d0 2516struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2517EXPORT_SYMBOL(kmalloc_caches);
2518
81819f0f
CL
2519static int __init setup_slub_min_order(char *str)
2520{
06428780 2521 get_option(&str, &slub_min_order);
81819f0f
CL
2522
2523 return 1;
2524}
2525
2526__setup("slub_min_order=", setup_slub_min_order);
2527
2528static int __init setup_slub_max_order(char *str)
2529{
06428780 2530 get_option(&str, &slub_max_order);
818cf590 2531 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2532
2533 return 1;
2534}
2535
2536__setup("slub_max_order=", setup_slub_max_order);
2537
2538static int __init setup_slub_min_objects(char *str)
2539{
06428780 2540 get_option(&str, &slub_min_objects);
81819f0f
CL
2541
2542 return 1;
2543}
2544
2545__setup("slub_min_objects=", setup_slub_min_objects);
2546
2547static int __init setup_slub_nomerge(char *str)
2548{
2549 slub_nomerge = 1;
2550 return 1;
2551}
2552
2553__setup("slub_nomerge", setup_slub_nomerge);
2554
81819f0f
CL
2555static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2556 const char *name, int size, gfp_t gfp_flags)
2557{
2558 unsigned int flags = 0;
2559
2560 if (gfp_flags & SLUB_DMA)
2561 flags = SLAB_CACHE_DMA;
2562
83b519e8
PE
2563 /*
2564 * This function is called with IRQs disabled during early-boot on
2565 * single CPU so there's no need to take slub_lock here.
2566 */
81819f0f 2567 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2568 flags, NULL))
81819f0f
CL
2569 goto panic;
2570
2571 list_add(&s->list, &slab_caches);
83b519e8 2572
81819f0f
CL
2573 if (sysfs_slab_add(s))
2574 goto panic;
2575 return s;
2576
2577panic:
2578 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2579}
2580
2e443fd0 2581#ifdef CONFIG_ZONE_DMA
ffadd4d0 2582static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2583
2584static void sysfs_add_func(struct work_struct *w)
2585{
2586 struct kmem_cache *s;
2587
2588 down_write(&slub_lock);
2589 list_for_each_entry(s, &slab_caches, list) {
2590 if (s->flags & __SYSFS_ADD_DEFERRED) {
2591 s->flags &= ~__SYSFS_ADD_DEFERRED;
2592 sysfs_slab_add(s);
2593 }
2594 }
2595 up_write(&slub_lock);
2596}
2597
2598static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2599
2e443fd0
CL
2600static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2601{
2602 struct kmem_cache *s;
2e443fd0
CL
2603 char *text;
2604 size_t realsize;
2605
2606 s = kmalloc_caches_dma[index];
2607 if (s)
2608 return s;
2609
2610 /* Dynamically create dma cache */
1ceef402
CL
2611 if (flags & __GFP_WAIT)
2612 down_write(&slub_lock);
2613 else {
2614 if (!down_write_trylock(&slub_lock))
2615 goto out;
2616 }
2617
2618 if (kmalloc_caches_dma[index])
2619 goto unlock_out;
2e443fd0 2620
7b55f620 2621 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2622 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2623 (unsigned int)realsize);
1ceef402
CL
2624 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2625
2626 if (!s || !text || !kmem_cache_open(s, flags, text,
2627 realsize, ARCH_KMALLOC_MINALIGN,
2628 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2629 kfree(s);
2630 kfree(text);
2631 goto unlock_out;
dfce8648 2632 }
1ceef402
CL
2633
2634 list_add(&s->list, &slab_caches);
2635 kmalloc_caches_dma[index] = s;
2636
2637 schedule_work(&sysfs_add_work);
2638
2639unlock_out:
dfce8648 2640 up_write(&slub_lock);
1ceef402 2641out:
dfce8648 2642 return kmalloc_caches_dma[index];
2e443fd0
CL
2643}
2644#endif
2645
f1b26339
CL
2646/*
2647 * Conversion table for small slabs sizes / 8 to the index in the
2648 * kmalloc array. This is necessary for slabs < 192 since we have non power
2649 * of two cache sizes there. The size of larger slabs can be determined using
2650 * fls.
2651 */
2652static s8 size_index[24] = {
2653 3, /* 8 */
2654 4, /* 16 */
2655 5, /* 24 */
2656 5, /* 32 */
2657 6, /* 40 */
2658 6, /* 48 */
2659 6, /* 56 */
2660 6, /* 64 */
2661 1, /* 72 */
2662 1, /* 80 */
2663 1, /* 88 */
2664 1, /* 96 */
2665 7, /* 104 */
2666 7, /* 112 */
2667 7, /* 120 */
2668 7, /* 128 */
2669 2, /* 136 */
2670 2, /* 144 */
2671 2, /* 152 */
2672 2, /* 160 */
2673 2, /* 168 */
2674 2, /* 176 */
2675 2, /* 184 */
2676 2 /* 192 */
2677};
2678
81819f0f
CL
2679static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2680{
f1b26339 2681 int index;
81819f0f 2682
f1b26339
CL
2683 if (size <= 192) {
2684 if (!size)
2685 return ZERO_SIZE_PTR;
81819f0f 2686
f1b26339 2687 index = size_index[(size - 1) / 8];
aadb4bc4 2688 } else
f1b26339 2689 index = fls(size - 1);
81819f0f
CL
2690
2691#ifdef CONFIG_ZONE_DMA
f1b26339 2692 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2693 return dma_kmalloc_cache(index, flags);
f1b26339 2694
81819f0f
CL
2695#endif
2696 return &kmalloc_caches[index];
2697}
2698
2699void *__kmalloc(size_t size, gfp_t flags)
2700{
aadb4bc4 2701 struct kmem_cache *s;
5b882be4 2702 void *ret;
81819f0f 2703
ffadd4d0 2704 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2705 return kmalloc_large(size, flags);
aadb4bc4
CL
2706
2707 s = get_slab(size, flags);
2708
2709 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2710 return s;
2711
5b882be4
EGM
2712 ret = slab_alloc(s, flags, -1, _RET_IP_);
2713
ca2b84cb 2714 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2715
2716 return ret;
81819f0f
CL
2717}
2718EXPORT_SYMBOL(__kmalloc);
2719
f619cfe1
CL
2720static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2721{
2722 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2723 get_order(size));
2724
2725 if (page)
2726 return page_address(page);
2727 else
2728 return NULL;
2729}
2730
81819f0f
CL
2731#ifdef CONFIG_NUMA
2732void *__kmalloc_node(size_t size, gfp_t flags, int node)
2733{
aadb4bc4 2734 struct kmem_cache *s;
5b882be4 2735 void *ret;
81819f0f 2736
057685cf 2737 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2738 ret = kmalloc_large_node(size, flags, node);
2739
ca2b84cb
EGM
2740 trace_kmalloc_node(_RET_IP_, ret,
2741 size, PAGE_SIZE << get_order(size),
2742 flags, node);
5b882be4
EGM
2743
2744 return ret;
2745 }
aadb4bc4
CL
2746
2747 s = get_slab(size, flags);
2748
2749 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2750 return s;
2751
5b882be4
EGM
2752 ret = slab_alloc(s, flags, node, _RET_IP_);
2753
ca2b84cb 2754 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2755
2756 return ret;
81819f0f
CL
2757}
2758EXPORT_SYMBOL(__kmalloc_node);
2759#endif
2760
2761size_t ksize(const void *object)
2762{
272c1d21 2763 struct page *page;
81819f0f
CL
2764 struct kmem_cache *s;
2765
ef8b4520 2766 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2767 return 0;
2768
294a80a8 2769 page = virt_to_head_page(object);
294a80a8 2770
76994412
PE
2771 if (unlikely(!PageSlab(page))) {
2772 WARN_ON(!PageCompound(page));
294a80a8 2773 return PAGE_SIZE << compound_order(page);
76994412 2774 }
81819f0f 2775 s = page->slab;
81819f0f 2776
ae20bfda 2777#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2778 /*
2779 * Debugging requires use of the padding between object
2780 * and whatever may come after it.
2781 */
2782 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2783 return s->objsize;
2784
ae20bfda 2785#endif
81819f0f
CL
2786 /*
2787 * If we have the need to store the freelist pointer
2788 * back there or track user information then we can
2789 * only use the space before that information.
2790 */
2791 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2792 return s->inuse;
81819f0f
CL
2793 /*
2794 * Else we can use all the padding etc for the allocation
2795 */
2796 return s->size;
2797}
b1aabecd 2798EXPORT_SYMBOL(ksize);
81819f0f
CL
2799
2800void kfree(const void *x)
2801{
81819f0f 2802 struct page *page;
5bb983b0 2803 void *object = (void *)x;
81819f0f 2804
2121db74
PE
2805 trace_kfree(_RET_IP_, x);
2806
2408c550 2807 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2808 return;
2809
b49af68f 2810 page = virt_to_head_page(x);
aadb4bc4 2811 if (unlikely(!PageSlab(page))) {
0937502a 2812 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2813 put_page(page);
2814 return;
2815 }
ce71e27c 2816 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2817}
2818EXPORT_SYMBOL(kfree);
2819
2086d26a 2820/*
672bba3a
CL
2821 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2822 * the remaining slabs by the number of items in use. The slabs with the
2823 * most items in use come first. New allocations will then fill those up
2824 * and thus they can be removed from the partial lists.
2825 *
2826 * The slabs with the least items are placed last. This results in them
2827 * being allocated from last increasing the chance that the last objects
2828 * are freed in them.
2086d26a
CL
2829 */
2830int kmem_cache_shrink(struct kmem_cache *s)
2831{
2832 int node;
2833 int i;
2834 struct kmem_cache_node *n;
2835 struct page *page;
2836 struct page *t;
205ab99d 2837 int objects = oo_objects(s->max);
2086d26a 2838 struct list_head *slabs_by_inuse =
834f3d11 2839 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2840 unsigned long flags;
2841
2842 if (!slabs_by_inuse)
2843 return -ENOMEM;
2844
2845 flush_all(s);
f64dc58c 2846 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2847 n = get_node(s, node);
2848
2849 if (!n->nr_partial)
2850 continue;
2851
834f3d11 2852 for (i = 0; i < objects; i++)
2086d26a
CL
2853 INIT_LIST_HEAD(slabs_by_inuse + i);
2854
2855 spin_lock_irqsave(&n->list_lock, flags);
2856
2857 /*
672bba3a 2858 * Build lists indexed by the items in use in each slab.
2086d26a 2859 *
672bba3a
CL
2860 * Note that concurrent frees may occur while we hold the
2861 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
2862 */
2863 list_for_each_entry_safe(page, t, &n->partial, lru) {
2864 if (!page->inuse && slab_trylock(page)) {
2865 /*
2866 * Must hold slab lock here because slab_free
2867 * may have freed the last object and be
2868 * waiting to release the slab.
2869 */
2870 list_del(&page->lru);
2871 n->nr_partial--;
2872 slab_unlock(page);
2873 discard_slab(s, page);
2874 } else {
fcda3d89
CL
2875 list_move(&page->lru,
2876 slabs_by_inuse + page->inuse);
2086d26a
CL
2877 }
2878 }
2879
2086d26a 2880 /*
672bba3a
CL
2881 * Rebuild the partial list with the slabs filled up most
2882 * first and the least used slabs at the end.
2086d26a 2883 */
834f3d11 2884 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
2885 list_splice(slabs_by_inuse + i, n->partial.prev);
2886
2086d26a
CL
2887 spin_unlock_irqrestore(&n->list_lock, flags);
2888 }
2889
2890 kfree(slabs_by_inuse);
2891 return 0;
2892}
2893EXPORT_SYMBOL(kmem_cache_shrink);
2894
b9049e23
YG
2895#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2896static int slab_mem_going_offline_callback(void *arg)
2897{
2898 struct kmem_cache *s;
2899
2900 down_read(&slub_lock);
2901 list_for_each_entry(s, &slab_caches, list)
2902 kmem_cache_shrink(s);
2903 up_read(&slub_lock);
2904
2905 return 0;
2906}
2907
2908static void slab_mem_offline_callback(void *arg)
2909{
2910 struct kmem_cache_node *n;
2911 struct kmem_cache *s;
2912 struct memory_notify *marg = arg;
2913 int offline_node;
2914
2915 offline_node = marg->status_change_nid;
2916
2917 /*
2918 * If the node still has available memory. we need kmem_cache_node
2919 * for it yet.
2920 */
2921 if (offline_node < 0)
2922 return;
2923
2924 down_read(&slub_lock);
2925 list_for_each_entry(s, &slab_caches, list) {
2926 n = get_node(s, offline_node);
2927 if (n) {
2928 /*
2929 * if n->nr_slabs > 0, slabs still exist on the node
2930 * that is going down. We were unable to free them,
2931 * and offline_pages() function shoudn't call this
2932 * callback. So, we must fail.
2933 */
0f389ec6 2934 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
2935
2936 s->node[offline_node] = NULL;
2937 kmem_cache_free(kmalloc_caches, n);
2938 }
2939 }
2940 up_read(&slub_lock);
2941}
2942
2943static int slab_mem_going_online_callback(void *arg)
2944{
2945 struct kmem_cache_node *n;
2946 struct kmem_cache *s;
2947 struct memory_notify *marg = arg;
2948 int nid = marg->status_change_nid;
2949 int ret = 0;
2950
2951 /*
2952 * If the node's memory is already available, then kmem_cache_node is
2953 * already created. Nothing to do.
2954 */
2955 if (nid < 0)
2956 return 0;
2957
2958 /*
0121c619 2959 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
2960 * allocate a kmem_cache_node structure in order to bring the node
2961 * online.
2962 */
2963 down_read(&slub_lock);
2964 list_for_each_entry(s, &slab_caches, list) {
2965 /*
2966 * XXX: kmem_cache_alloc_node will fallback to other nodes
2967 * since memory is not yet available from the node that
2968 * is brought up.
2969 */
2970 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2971 if (!n) {
2972 ret = -ENOMEM;
2973 goto out;
2974 }
5595cffc 2975 init_kmem_cache_node(n, s);
b9049e23
YG
2976 s->node[nid] = n;
2977 }
2978out:
2979 up_read(&slub_lock);
2980 return ret;
2981}
2982
2983static int slab_memory_callback(struct notifier_block *self,
2984 unsigned long action, void *arg)
2985{
2986 int ret = 0;
2987
2988 switch (action) {
2989 case MEM_GOING_ONLINE:
2990 ret = slab_mem_going_online_callback(arg);
2991 break;
2992 case MEM_GOING_OFFLINE:
2993 ret = slab_mem_going_offline_callback(arg);
2994 break;
2995 case MEM_OFFLINE:
2996 case MEM_CANCEL_ONLINE:
2997 slab_mem_offline_callback(arg);
2998 break;
2999 case MEM_ONLINE:
3000 case MEM_CANCEL_OFFLINE:
3001 break;
3002 }
dc19f9db
KH
3003 if (ret)
3004 ret = notifier_from_errno(ret);
3005 else
3006 ret = NOTIFY_OK;
b9049e23
YG
3007 return ret;
3008}
3009
3010#endif /* CONFIG_MEMORY_HOTPLUG */
3011
81819f0f
CL
3012/********************************************************************
3013 * Basic setup of slabs
3014 *******************************************************************/
3015
3016void __init kmem_cache_init(void)
3017{
3018 int i;
4b356be0 3019 int caches = 0;
81819f0f 3020
4c93c355
CL
3021 init_alloc_cpu();
3022
81819f0f
CL
3023#ifdef CONFIG_NUMA
3024 /*
3025 * Must first have the slab cache available for the allocations of the
672bba3a 3026 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3027 * kmem_cache_open for slab_state == DOWN.
3028 */
3029 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3030 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3031 kmalloc_caches[0].refcount = -1;
4b356be0 3032 caches++;
b9049e23 3033
0c40ba4f 3034 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3035#endif
3036
3037 /* Able to allocate the per node structures */
3038 slab_state = PARTIAL;
3039
3040 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3041 if (KMALLOC_MIN_SIZE <= 64) {
3042 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3043 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3044 caches++;
4b356be0 3045 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3046 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3047 caches++;
3048 }
81819f0f 3049
ffadd4d0 3050 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3051 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3052 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3053 caches++;
3054 }
81819f0f 3055
f1b26339
CL
3056
3057 /*
3058 * Patch up the size_index table if we have strange large alignment
3059 * requirements for the kmalloc array. This is only the case for
6446faa2 3060 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3061 *
3062 * Largest permitted alignment is 256 bytes due to the way we
3063 * handle the index determination for the smaller caches.
3064 *
3065 * Make sure that nothing crazy happens if someone starts tinkering
3066 * around with ARCH_KMALLOC_MINALIGN
3067 */
3068 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3069 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3070
12ad6843 3071 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3072 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3073
41d54d3b
CL
3074 if (KMALLOC_MIN_SIZE == 128) {
3075 /*
3076 * The 192 byte sized cache is not used if the alignment
3077 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3078 * instead.
3079 */
3080 for (i = 128 + 8; i <= 192; i += 8)
3081 size_index[(i - 1) / 8] = 8;
3082 }
3083
81819f0f
CL
3084 slab_state = UP;
3085
3086 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3087 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3088 kmalloc_caches[i]. name =
83b519e8 3089 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3090
3091#ifdef CONFIG_SMP
3092 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3093 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3094 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3095#else
3096 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3097#endif
3098
3adbefee
IM
3099 printk(KERN_INFO
3100 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3101 " CPUs=%d, Nodes=%d\n",
3102 caches, cache_line_size(),
81819f0f
CL
3103 slub_min_order, slub_max_order, slub_min_objects,
3104 nr_cpu_ids, nr_node_ids);
3105}
3106
3107/*
3108 * Find a mergeable slab cache
3109 */
3110static int slab_unmergeable(struct kmem_cache *s)
3111{
3112 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3113 return 1;
3114
c59def9f 3115 if (s->ctor)
81819f0f
CL
3116 return 1;
3117
8ffa6875
CL
3118 /*
3119 * We may have set a slab to be unmergeable during bootstrap.
3120 */
3121 if (s->refcount < 0)
3122 return 1;
3123
81819f0f
CL
3124 return 0;
3125}
3126
3127static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3128 size_t align, unsigned long flags, const char *name,
51cc5068 3129 void (*ctor)(void *))
81819f0f 3130{
5b95a4ac 3131 struct kmem_cache *s;
81819f0f
CL
3132
3133 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3134 return NULL;
3135
c59def9f 3136 if (ctor)
81819f0f
CL
3137 return NULL;
3138
3139 size = ALIGN(size, sizeof(void *));
3140 align = calculate_alignment(flags, align, size);
3141 size = ALIGN(size, align);
ba0268a8 3142 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3143
5b95a4ac 3144 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3145 if (slab_unmergeable(s))
3146 continue;
3147
3148 if (size > s->size)
3149 continue;
3150
ba0268a8 3151 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3152 continue;
3153 /*
3154 * Check if alignment is compatible.
3155 * Courtesy of Adrian Drzewiecki
3156 */
06428780 3157 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3158 continue;
3159
3160 if (s->size - size >= sizeof(void *))
3161 continue;
3162
3163 return s;
3164 }
3165 return NULL;
3166}
3167
3168struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3169 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3170{
3171 struct kmem_cache *s;
3172
3173 down_write(&slub_lock);
ba0268a8 3174 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3175 if (s) {
42a9fdbb
CL
3176 int cpu;
3177
81819f0f
CL
3178 s->refcount++;
3179 /*
3180 * Adjust the object sizes so that we clear
3181 * the complete object on kzalloc.
3182 */
3183 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3184
3185 /*
3186 * And then we need to update the object size in the
3187 * per cpu structures
3188 */
3189 for_each_online_cpu(cpu)
3190 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3191
81819f0f 3192 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3193 up_write(&slub_lock);
6446faa2 3194
7b8f3b66
DR
3195 if (sysfs_slab_alias(s, name)) {
3196 down_write(&slub_lock);
3197 s->refcount--;
3198 up_write(&slub_lock);
81819f0f 3199 goto err;
7b8f3b66 3200 }
a0e1d1be
CL
3201 return s;
3202 }
6446faa2 3203
a0e1d1be
CL
3204 s = kmalloc(kmem_size, GFP_KERNEL);
3205 if (s) {
3206 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3207 size, align, flags, ctor)) {
81819f0f 3208 list_add(&s->list, &slab_caches);
a0e1d1be 3209 up_write(&slub_lock);
7b8f3b66
DR
3210 if (sysfs_slab_add(s)) {
3211 down_write(&slub_lock);
3212 list_del(&s->list);
3213 up_write(&slub_lock);
3214 kfree(s);
a0e1d1be 3215 goto err;
7b8f3b66 3216 }
a0e1d1be
CL
3217 return s;
3218 }
3219 kfree(s);
81819f0f
CL
3220 }
3221 up_write(&slub_lock);
81819f0f
CL
3222
3223err:
81819f0f
CL
3224 if (flags & SLAB_PANIC)
3225 panic("Cannot create slabcache %s\n", name);
3226 else
3227 s = NULL;
3228 return s;
3229}
3230EXPORT_SYMBOL(kmem_cache_create);
3231
81819f0f 3232#ifdef CONFIG_SMP
81819f0f 3233/*
672bba3a
CL
3234 * Use the cpu notifier to insure that the cpu slabs are flushed when
3235 * necessary.
81819f0f
CL
3236 */
3237static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3238 unsigned long action, void *hcpu)
3239{
3240 long cpu = (long)hcpu;
5b95a4ac
CL
3241 struct kmem_cache *s;
3242 unsigned long flags;
81819f0f
CL
3243
3244 switch (action) {
4c93c355
CL
3245 case CPU_UP_PREPARE:
3246 case CPU_UP_PREPARE_FROZEN:
3247 init_alloc_cpu_cpu(cpu);
3248 down_read(&slub_lock);
3249 list_for_each_entry(s, &slab_caches, list)
3250 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3251 GFP_KERNEL);
3252 up_read(&slub_lock);
3253 break;
3254
81819f0f 3255 case CPU_UP_CANCELED:
8bb78442 3256 case CPU_UP_CANCELED_FROZEN:
81819f0f 3257 case CPU_DEAD:
8bb78442 3258 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3259 down_read(&slub_lock);
3260 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3261 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3262
5b95a4ac
CL
3263 local_irq_save(flags);
3264 __flush_cpu_slab(s, cpu);
3265 local_irq_restore(flags);
4c93c355
CL
3266 free_kmem_cache_cpu(c, cpu);
3267 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3268 }
3269 up_read(&slub_lock);
81819f0f
CL
3270 break;
3271 default:
3272 break;
3273 }
3274 return NOTIFY_OK;
3275}
3276
06428780 3277static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3278 .notifier_call = slab_cpuup_callback
06428780 3279};
81819f0f
CL
3280
3281#endif
3282
ce71e27c 3283void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3284{
aadb4bc4 3285 struct kmem_cache *s;
94b528d0 3286 void *ret;
aadb4bc4 3287
ffadd4d0 3288 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3289 return kmalloc_large(size, gfpflags);
3290
aadb4bc4 3291 s = get_slab(size, gfpflags);
81819f0f 3292
2408c550 3293 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3294 return s;
81819f0f 3295
94b528d0
EGM
3296 ret = slab_alloc(s, gfpflags, -1, caller);
3297
3298 /* Honor the call site pointer we recieved. */
ca2b84cb 3299 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3300
3301 return ret;
81819f0f
CL
3302}
3303
3304void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3305 int node, unsigned long caller)
81819f0f 3306{
aadb4bc4 3307 struct kmem_cache *s;
94b528d0 3308 void *ret;
aadb4bc4 3309
ffadd4d0 3310 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3311 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3312
aadb4bc4 3313 s = get_slab(size, gfpflags);
81819f0f 3314
2408c550 3315 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3316 return s;
81819f0f 3317
94b528d0
EGM
3318 ret = slab_alloc(s, gfpflags, node, caller);
3319
3320 /* Honor the call site pointer we recieved. */
ca2b84cb 3321 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3322
3323 return ret;
81819f0f
CL
3324}
3325
f6acb635 3326#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3327static unsigned long count_partial(struct kmem_cache_node *n,
3328 int (*get_count)(struct page *))
5b06c853
CL
3329{
3330 unsigned long flags;
3331 unsigned long x = 0;
3332 struct page *page;
3333
3334 spin_lock_irqsave(&n->list_lock, flags);
3335 list_for_each_entry(page, &n->partial, lru)
205ab99d 3336 x += get_count(page);
5b06c853
CL
3337 spin_unlock_irqrestore(&n->list_lock, flags);
3338 return x;
3339}
205ab99d
CL
3340
3341static int count_inuse(struct page *page)
3342{
3343 return page->inuse;
3344}
3345
3346static int count_total(struct page *page)
3347{
3348 return page->objects;
3349}
3350
3351static int count_free(struct page *page)
3352{
3353 return page->objects - page->inuse;
3354}
5b06c853 3355
434e245d
CL
3356static int validate_slab(struct kmem_cache *s, struct page *page,
3357 unsigned long *map)
53e15af0
CL
3358{
3359 void *p;
a973e9dd 3360 void *addr = page_address(page);
53e15af0
CL
3361
3362 if (!check_slab(s, page) ||
3363 !on_freelist(s, page, NULL))
3364 return 0;
3365
3366 /* Now we know that a valid freelist exists */
39b26464 3367 bitmap_zero(map, page->objects);
53e15af0 3368
7656c72b
CL
3369 for_each_free_object(p, s, page->freelist) {
3370 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3371 if (!check_object(s, page, p, 0))
3372 return 0;
3373 }
3374
224a88be 3375 for_each_object(p, s, addr, page->objects)
7656c72b 3376 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3377 if (!check_object(s, page, p, 1))
3378 return 0;
3379 return 1;
3380}
3381
434e245d
CL
3382static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3383 unsigned long *map)
53e15af0
CL
3384{
3385 if (slab_trylock(page)) {
434e245d 3386 validate_slab(s, page, map);
53e15af0
CL
3387 slab_unlock(page);
3388 } else
3389 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3390 s->name, page);
3391
3392 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3393 if (!PageSlubDebug(page))
3394 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3395 "on slab 0x%p\n", s->name, page);
3396 } else {
8a38082d
AW
3397 if (PageSlubDebug(page))
3398 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3399 "slab 0x%p\n", s->name, page);
3400 }
3401}
3402
434e245d
CL
3403static int validate_slab_node(struct kmem_cache *s,
3404 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3405{
3406 unsigned long count = 0;
3407 struct page *page;
3408 unsigned long flags;
3409
3410 spin_lock_irqsave(&n->list_lock, flags);
3411
3412 list_for_each_entry(page, &n->partial, lru) {
434e245d 3413 validate_slab_slab(s, page, map);
53e15af0
CL
3414 count++;
3415 }
3416 if (count != n->nr_partial)
3417 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3418 "counter=%ld\n", s->name, count, n->nr_partial);
3419
3420 if (!(s->flags & SLAB_STORE_USER))
3421 goto out;
3422
3423 list_for_each_entry(page, &n->full, lru) {
434e245d 3424 validate_slab_slab(s, page, map);
53e15af0
CL
3425 count++;
3426 }
3427 if (count != atomic_long_read(&n->nr_slabs))
3428 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3429 "counter=%ld\n", s->name, count,
3430 atomic_long_read(&n->nr_slabs));
3431
3432out:
3433 spin_unlock_irqrestore(&n->list_lock, flags);
3434 return count;
3435}
3436
434e245d 3437static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3438{
3439 int node;
3440 unsigned long count = 0;
205ab99d 3441 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3442 sizeof(unsigned long), GFP_KERNEL);
3443
3444 if (!map)
3445 return -ENOMEM;
53e15af0
CL
3446
3447 flush_all(s);
f64dc58c 3448 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3449 struct kmem_cache_node *n = get_node(s, node);
3450
434e245d 3451 count += validate_slab_node(s, n, map);
53e15af0 3452 }
434e245d 3453 kfree(map);
53e15af0
CL
3454 return count;
3455}
3456
b3459709
CL
3457#ifdef SLUB_RESILIENCY_TEST
3458static void resiliency_test(void)
3459{
3460 u8 *p;
3461
3462 printk(KERN_ERR "SLUB resiliency testing\n");
3463 printk(KERN_ERR "-----------------------\n");
3464 printk(KERN_ERR "A. Corruption after allocation\n");
3465
3466 p = kzalloc(16, GFP_KERNEL);
3467 p[16] = 0x12;
3468 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3469 " 0x12->0x%p\n\n", p + 16);
3470
3471 validate_slab_cache(kmalloc_caches + 4);
3472
3473 /* Hmmm... The next two are dangerous */
3474 p = kzalloc(32, GFP_KERNEL);
3475 p[32 + sizeof(void *)] = 0x34;
3476 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3477 " 0x34 -> -0x%p\n", p);
3478 printk(KERN_ERR
3479 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3480
3481 validate_slab_cache(kmalloc_caches + 5);
3482 p = kzalloc(64, GFP_KERNEL);
3483 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3484 *p = 0x56;
3485 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3486 p);
3adbefee
IM
3487 printk(KERN_ERR
3488 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3489 validate_slab_cache(kmalloc_caches + 6);
3490
3491 printk(KERN_ERR "\nB. Corruption after free\n");
3492 p = kzalloc(128, GFP_KERNEL);
3493 kfree(p);
3494 *p = 0x78;
3495 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3496 validate_slab_cache(kmalloc_caches + 7);
3497
3498 p = kzalloc(256, GFP_KERNEL);
3499 kfree(p);
3500 p[50] = 0x9a;
3adbefee
IM
3501 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3502 p);
b3459709
CL
3503 validate_slab_cache(kmalloc_caches + 8);
3504
3505 p = kzalloc(512, GFP_KERNEL);
3506 kfree(p);
3507 p[512] = 0xab;
3508 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3509 validate_slab_cache(kmalloc_caches + 9);
3510}
3511#else
3512static void resiliency_test(void) {};
3513#endif
3514
88a420e4 3515/*
672bba3a 3516 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3517 * and freed.
3518 */
3519
3520struct location {
3521 unsigned long count;
ce71e27c 3522 unsigned long addr;
45edfa58
CL
3523 long long sum_time;
3524 long min_time;
3525 long max_time;
3526 long min_pid;
3527 long max_pid;
174596a0 3528 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3529 nodemask_t nodes;
88a420e4
CL
3530};
3531
3532struct loc_track {
3533 unsigned long max;
3534 unsigned long count;
3535 struct location *loc;
3536};
3537
3538static void free_loc_track(struct loc_track *t)
3539{
3540 if (t->max)
3541 free_pages((unsigned long)t->loc,
3542 get_order(sizeof(struct location) * t->max));
3543}
3544
68dff6a9 3545static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3546{
3547 struct location *l;
3548 int order;
3549
88a420e4
CL
3550 order = get_order(sizeof(struct location) * max);
3551
68dff6a9 3552 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3553 if (!l)
3554 return 0;
3555
3556 if (t->count) {
3557 memcpy(l, t->loc, sizeof(struct location) * t->count);
3558 free_loc_track(t);
3559 }
3560 t->max = max;
3561 t->loc = l;
3562 return 1;
3563}
3564
3565static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3566 const struct track *track)
88a420e4
CL
3567{
3568 long start, end, pos;
3569 struct location *l;
ce71e27c 3570 unsigned long caddr;
45edfa58 3571 unsigned long age = jiffies - track->when;
88a420e4
CL
3572
3573 start = -1;
3574 end = t->count;
3575
3576 for ( ; ; ) {
3577 pos = start + (end - start + 1) / 2;
3578
3579 /*
3580 * There is nothing at "end". If we end up there
3581 * we need to add something to before end.
3582 */
3583 if (pos == end)
3584 break;
3585
3586 caddr = t->loc[pos].addr;
45edfa58
CL
3587 if (track->addr == caddr) {
3588
3589 l = &t->loc[pos];
3590 l->count++;
3591 if (track->when) {
3592 l->sum_time += age;
3593 if (age < l->min_time)
3594 l->min_time = age;
3595 if (age > l->max_time)
3596 l->max_time = age;
3597
3598 if (track->pid < l->min_pid)
3599 l->min_pid = track->pid;
3600 if (track->pid > l->max_pid)
3601 l->max_pid = track->pid;
3602
174596a0
RR
3603 cpumask_set_cpu(track->cpu,
3604 to_cpumask(l->cpus));
45edfa58
CL
3605 }
3606 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3607 return 1;
3608 }
3609
45edfa58 3610 if (track->addr < caddr)
88a420e4
CL
3611 end = pos;
3612 else
3613 start = pos;
3614 }
3615
3616 /*
672bba3a 3617 * Not found. Insert new tracking element.
88a420e4 3618 */
68dff6a9 3619 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3620 return 0;
3621
3622 l = t->loc + pos;
3623 if (pos < t->count)
3624 memmove(l + 1, l,
3625 (t->count - pos) * sizeof(struct location));
3626 t->count++;
3627 l->count = 1;
45edfa58
CL
3628 l->addr = track->addr;
3629 l->sum_time = age;
3630 l->min_time = age;
3631 l->max_time = age;
3632 l->min_pid = track->pid;
3633 l->max_pid = track->pid;
174596a0
RR
3634 cpumask_clear(to_cpumask(l->cpus));
3635 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3636 nodes_clear(l->nodes);
3637 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3638 return 1;
3639}
3640
3641static void process_slab(struct loc_track *t, struct kmem_cache *s,
3642 struct page *page, enum track_item alloc)
3643{
a973e9dd 3644 void *addr = page_address(page);
39b26464 3645 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3646 void *p;
3647
39b26464 3648 bitmap_zero(map, page->objects);
7656c72b
CL
3649 for_each_free_object(p, s, page->freelist)
3650 set_bit(slab_index(p, s, addr), map);
88a420e4 3651
224a88be 3652 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3653 if (!test_bit(slab_index(p, s, addr), map))
3654 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3655}
3656
3657static int list_locations(struct kmem_cache *s, char *buf,
3658 enum track_item alloc)
3659{
e374d483 3660 int len = 0;
88a420e4 3661 unsigned long i;
68dff6a9 3662 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3663 int node;
3664
68dff6a9 3665 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3666 GFP_TEMPORARY))
68dff6a9 3667 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3668
3669 /* Push back cpu slabs */
3670 flush_all(s);
3671
f64dc58c 3672 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3673 struct kmem_cache_node *n = get_node(s, node);
3674 unsigned long flags;
3675 struct page *page;
3676
9e86943b 3677 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3678 continue;
3679
3680 spin_lock_irqsave(&n->list_lock, flags);
3681 list_for_each_entry(page, &n->partial, lru)
3682 process_slab(&t, s, page, alloc);
3683 list_for_each_entry(page, &n->full, lru)
3684 process_slab(&t, s, page, alloc);
3685 spin_unlock_irqrestore(&n->list_lock, flags);
3686 }
3687
3688 for (i = 0; i < t.count; i++) {
45edfa58 3689 struct location *l = &t.loc[i];
88a420e4 3690
9c246247 3691 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3692 break;
e374d483 3693 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3694
3695 if (l->addr)
e374d483 3696 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3697 else
e374d483 3698 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3699
3700 if (l->sum_time != l->min_time) {
e374d483 3701 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3702 l->min_time,
3703 (long)div_u64(l->sum_time, l->count),
3704 l->max_time);
45edfa58 3705 } else
e374d483 3706 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3707 l->min_time);
3708
3709 if (l->min_pid != l->max_pid)
e374d483 3710 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3711 l->min_pid, l->max_pid);
3712 else
e374d483 3713 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3714 l->min_pid);
3715
174596a0
RR
3716 if (num_online_cpus() > 1 &&
3717 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3718 len < PAGE_SIZE - 60) {
3719 len += sprintf(buf + len, " cpus=");
3720 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3721 to_cpumask(l->cpus));
45edfa58
CL
3722 }
3723
84966343 3724 if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3725 len < PAGE_SIZE - 60) {
3726 len += sprintf(buf + len, " nodes=");
3727 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3728 l->nodes);
3729 }
3730
e374d483 3731 len += sprintf(buf + len, "\n");
88a420e4
CL
3732 }
3733
3734 free_loc_track(&t);
3735 if (!t.count)
e374d483
HH
3736 len += sprintf(buf, "No data\n");
3737 return len;
88a420e4
CL
3738}
3739
81819f0f 3740enum slab_stat_type {
205ab99d
CL
3741 SL_ALL, /* All slabs */
3742 SL_PARTIAL, /* Only partially allocated slabs */
3743 SL_CPU, /* Only slabs used for cpu caches */
3744 SL_OBJECTS, /* Determine allocated objects not slabs */
3745 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3746};
3747
205ab99d 3748#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3749#define SO_PARTIAL (1 << SL_PARTIAL)
3750#define SO_CPU (1 << SL_CPU)
3751#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3752#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3753
62e5c4b4
CG
3754static ssize_t show_slab_objects(struct kmem_cache *s,
3755 char *buf, unsigned long flags)
81819f0f
CL
3756{
3757 unsigned long total = 0;
81819f0f
CL
3758 int node;
3759 int x;
3760 unsigned long *nodes;
3761 unsigned long *per_cpu;
3762
3763 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3764 if (!nodes)
3765 return -ENOMEM;
81819f0f
CL
3766 per_cpu = nodes + nr_node_ids;
3767
205ab99d
CL
3768 if (flags & SO_CPU) {
3769 int cpu;
81819f0f 3770
205ab99d
CL
3771 for_each_possible_cpu(cpu) {
3772 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3773
205ab99d
CL
3774 if (!c || c->node < 0)
3775 continue;
3776
3777 if (c->page) {
3778 if (flags & SO_TOTAL)
3779 x = c->page->objects;
3780 else if (flags & SO_OBJECTS)
3781 x = c->page->inuse;
81819f0f
CL
3782 else
3783 x = 1;
205ab99d 3784
81819f0f 3785 total += x;
205ab99d 3786 nodes[c->node] += x;
81819f0f 3787 }
205ab99d 3788 per_cpu[c->node]++;
81819f0f
CL
3789 }
3790 }
3791
205ab99d
CL
3792 if (flags & SO_ALL) {
3793 for_each_node_state(node, N_NORMAL_MEMORY) {
3794 struct kmem_cache_node *n = get_node(s, node);
3795
3796 if (flags & SO_TOTAL)
3797 x = atomic_long_read(&n->total_objects);
3798 else if (flags & SO_OBJECTS)
3799 x = atomic_long_read(&n->total_objects) -
3800 count_partial(n, count_free);
81819f0f 3801
81819f0f 3802 else
205ab99d 3803 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3804 total += x;
3805 nodes[node] += x;
3806 }
3807
205ab99d
CL
3808 } else if (flags & SO_PARTIAL) {
3809 for_each_node_state(node, N_NORMAL_MEMORY) {
3810 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3811
205ab99d
CL
3812 if (flags & SO_TOTAL)
3813 x = count_partial(n, count_total);
3814 else if (flags & SO_OBJECTS)
3815 x = count_partial(n, count_inuse);
81819f0f 3816 else
205ab99d 3817 x = n->nr_partial;
81819f0f
CL
3818 total += x;
3819 nodes[node] += x;
3820 }
3821 }
81819f0f
CL
3822 x = sprintf(buf, "%lu", total);
3823#ifdef CONFIG_NUMA
f64dc58c 3824 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3825 if (nodes[node])
3826 x += sprintf(buf + x, " N%d=%lu",
3827 node, nodes[node]);
3828#endif
3829 kfree(nodes);
3830 return x + sprintf(buf + x, "\n");
3831}
3832
3833static int any_slab_objects(struct kmem_cache *s)
3834{
3835 int node;
81819f0f 3836
dfb4f096 3837 for_each_online_node(node) {
81819f0f
CL
3838 struct kmem_cache_node *n = get_node(s, node);
3839
dfb4f096
CL
3840 if (!n)
3841 continue;
3842
4ea33e2d 3843 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3844 return 1;
3845 }
3846 return 0;
3847}
3848
3849#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3850#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3851
3852struct slab_attribute {
3853 struct attribute attr;
3854 ssize_t (*show)(struct kmem_cache *s, char *buf);
3855 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3856};
3857
3858#define SLAB_ATTR_RO(_name) \
3859 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3860
3861#define SLAB_ATTR(_name) \
3862 static struct slab_attribute _name##_attr = \
3863 __ATTR(_name, 0644, _name##_show, _name##_store)
3864
81819f0f
CL
3865static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3866{
3867 return sprintf(buf, "%d\n", s->size);
3868}
3869SLAB_ATTR_RO(slab_size);
3870
3871static ssize_t align_show(struct kmem_cache *s, char *buf)
3872{
3873 return sprintf(buf, "%d\n", s->align);
3874}
3875SLAB_ATTR_RO(align);
3876
3877static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3878{
3879 return sprintf(buf, "%d\n", s->objsize);
3880}
3881SLAB_ATTR_RO(object_size);
3882
3883static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3884{
834f3d11 3885 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
3886}
3887SLAB_ATTR_RO(objs_per_slab);
3888
06b285dc
CL
3889static ssize_t order_store(struct kmem_cache *s,
3890 const char *buf, size_t length)
3891{
0121c619
CL
3892 unsigned long order;
3893 int err;
3894
3895 err = strict_strtoul(buf, 10, &order);
3896 if (err)
3897 return err;
06b285dc
CL
3898
3899 if (order > slub_max_order || order < slub_min_order)
3900 return -EINVAL;
3901
3902 calculate_sizes(s, order);
3903 return length;
3904}
3905
81819f0f
CL
3906static ssize_t order_show(struct kmem_cache *s, char *buf)
3907{
834f3d11 3908 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 3909}
06b285dc 3910SLAB_ATTR(order);
81819f0f 3911
73d342b1
DR
3912static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3913{
3914 return sprintf(buf, "%lu\n", s->min_partial);
3915}
3916
3917static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3918 size_t length)
3919{
3920 unsigned long min;
3921 int err;
3922
3923 err = strict_strtoul(buf, 10, &min);
3924 if (err)
3925 return err;
3926
c0bdb232 3927 set_min_partial(s, min);
73d342b1
DR
3928 return length;
3929}
3930SLAB_ATTR(min_partial);
3931
81819f0f
CL
3932static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3933{
3934 if (s->ctor) {
3935 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3936
3937 return n + sprintf(buf + n, "\n");
3938 }
3939 return 0;
3940}
3941SLAB_ATTR_RO(ctor);
3942
81819f0f
CL
3943static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3944{
3945 return sprintf(buf, "%d\n", s->refcount - 1);
3946}
3947SLAB_ATTR_RO(aliases);
3948
3949static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3950{
205ab99d 3951 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
3952}
3953SLAB_ATTR_RO(slabs);
3954
3955static ssize_t partial_show(struct kmem_cache *s, char *buf)
3956{
d9acf4b7 3957 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
3958}
3959SLAB_ATTR_RO(partial);
3960
3961static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3962{
d9acf4b7 3963 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
3964}
3965SLAB_ATTR_RO(cpu_slabs);
3966
3967static ssize_t objects_show(struct kmem_cache *s, char *buf)
3968{
205ab99d 3969 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
3970}
3971SLAB_ATTR_RO(objects);
3972
205ab99d
CL
3973static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3974{
3975 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3976}
3977SLAB_ATTR_RO(objects_partial);
3978
3979static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3980{
3981 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3982}
3983SLAB_ATTR_RO(total_objects);
3984
81819f0f
CL
3985static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3986{
3987 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3988}
3989
3990static ssize_t sanity_checks_store(struct kmem_cache *s,
3991 const char *buf, size_t length)
3992{
3993 s->flags &= ~SLAB_DEBUG_FREE;
3994 if (buf[0] == '1')
3995 s->flags |= SLAB_DEBUG_FREE;
3996 return length;
3997}
3998SLAB_ATTR(sanity_checks);
3999
4000static ssize_t trace_show(struct kmem_cache *s, char *buf)
4001{
4002 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4003}
4004
4005static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4006 size_t length)
4007{
4008 s->flags &= ~SLAB_TRACE;
4009 if (buf[0] == '1')
4010 s->flags |= SLAB_TRACE;
4011 return length;
4012}
4013SLAB_ATTR(trace);
4014
4015static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4016{
4017 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4018}
4019
4020static ssize_t reclaim_account_store(struct kmem_cache *s,
4021 const char *buf, size_t length)
4022{
4023 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4024 if (buf[0] == '1')
4025 s->flags |= SLAB_RECLAIM_ACCOUNT;
4026 return length;
4027}
4028SLAB_ATTR(reclaim_account);
4029
4030static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4031{
5af60839 4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4033}
4034SLAB_ATTR_RO(hwcache_align);
4035
4036#ifdef CONFIG_ZONE_DMA
4037static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4038{
4039 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4040}
4041SLAB_ATTR_RO(cache_dma);
4042#endif
4043
4044static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4045{
4046 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4047}
4048SLAB_ATTR_RO(destroy_by_rcu);
4049
4050static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4051{
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4053}
4054
4055static ssize_t red_zone_store(struct kmem_cache *s,
4056 const char *buf, size_t length)
4057{
4058 if (any_slab_objects(s))
4059 return -EBUSY;
4060
4061 s->flags &= ~SLAB_RED_ZONE;
4062 if (buf[0] == '1')
4063 s->flags |= SLAB_RED_ZONE;
06b285dc 4064 calculate_sizes(s, -1);
81819f0f
CL
4065 return length;
4066}
4067SLAB_ATTR(red_zone);
4068
4069static ssize_t poison_show(struct kmem_cache *s, char *buf)
4070{
4071 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4072}
4073
4074static ssize_t poison_store(struct kmem_cache *s,
4075 const char *buf, size_t length)
4076{
4077 if (any_slab_objects(s))
4078 return -EBUSY;
4079
4080 s->flags &= ~SLAB_POISON;
4081 if (buf[0] == '1')
4082 s->flags |= SLAB_POISON;
06b285dc 4083 calculate_sizes(s, -1);
81819f0f
CL
4084 return length;
4085}
4086SLAB_ATTR(poison);
4087
4088static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4089{
4090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4091}
4092
4093static ssize_t store_user_store(struct kmem_cache *s,
4094 const char *buf, size_t length)
4095{
4096 if (any_slab_objects(s))
4097 return -EBUSY;
4098
4099 s->flags &= ~SLAB_STORE_USER;
4100 if (buf[0] == '1')
4101 s->flags |= SLAB_STORE_USER;
06b285dc 4102 calculate_sizes(s, -1);
81819f0f
CL
4103 return length;
4104}
4105SLAB_ATTR(store_user);
4106
53e15af0
CL
4107static ssize_t validate_show(struct kmem_cache *s, char *buf)
4108{
4109 return 0;
4110}
4111
4112static ssize_t validate_store(struct kmem_cache *s,
4113 const char *buf, size_t length)
4114{
434e245d
CL
4115 int ret = -EINVAL;
4116
4117 if (buf[0] == '1') {
4118 ret = validate_slab_cache(s);
4119 if (ret >= 0)
4120 ret = length;
4121 }
4122 return ret;
53e15af0
CL
4123}
4124SLAB_ATTR(validate);
4125
2086d26a
CL
4126static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4127{
4128 return 0;
4129}
4130
4131static ssize_t shrink_store(struct kmem_cache *s,
4132 const char *buf, size_t length)
4133{
4134 if (buf[0] == '1') {
4135 int rc = kmem_cache_shrink(s);
4136
4137 if (rc)
4138 return rc;
4139 } else
4140 return -EINVAL;
4141 return length;
4142}
4143SLAB_ATTR(shrink);
4144
88a420e4
CL
4145static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4146{
4147 if (!(s->flags & SLAB_STORE_USER))
4148 return -ENOSYS;
4149 return list_locations(s, buf, TRACK_ALLOC);
4150}
4151SLAB_ATTR_RO(alloc_calls);
4152
4153static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4154{
4155 if (!(s->flags & SLAB_STORE_USER))
4156 return -ENOSYS;
4157 return list_locations(s, buf, TRACK_FREE);
4158}
4159SLAB_ATTR_RO(free_calls);
4160
81819f0f 4161#ifdef CONFIG_NUMA
9824601e 4162static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4163{
9824601e 4164 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4165}
4166
9824601e 4167static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4168 const char *buf, size_t length)
4169{
0121c619
CL
4170 unsigned long ratio;
4171 int err;
4172
4173 err = strict_strtoul(buf, 10, &ratio);
4174 if (err)
4175 return err;
4176
e2cb96b7 4177 if (ratio <= 100)
0121c619 4178 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4179
81819f0f
CL
4180 return length;
4181}
9824601e 4182SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4183#endif
4184
8ff12cfc 4185#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4186static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4187{
4188 unsigned long sum = 0;
4189 int cpu;
4190 int len;
4191 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4192
4193 if (!data)
4194 return -ENOMEM;
4195
4196 for_each_online_cpu(cpu) {
4197 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4198
4199 data[cpu] = x;
4200 sum += x;
4201 }
4202
4203 len = sprintf(buf, "%lu", sum);
4204
50ef37b9 4205#ifdef CONFIG_SMP
8ff12cfc
CL
4206 for_each_online_cpu(cpu) {
4207 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4208 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4209 }
50ef37b9 4210#endif
8ff12cfc
CL
4211 kfree(data);
4212 return len + sprintf(buf + len, "\n");
4213}
4214
4215#define STAT_ATTR(si, text) \
4216static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4217{ \
4218 return show_stat(s, buf, si); \
4219} \
4220SLAB_ATTR_RO(text); \
4221
4222STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4223STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4224STAT_ATTR(FREE_FASTPATH, free_fastpath);
4225STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4226STAT_ATTR(FREE_FROZEN, free_frozen);
4227STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4228STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4229STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4230STAT_ATTR(ALLOC_SLAB, alloc_slab);
4231STAT_ATTR(ALLOC_REFILL, alloc_refill);
4232STAT_ATTR(FREE_SLAB, free_slab);
4233STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4234STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4235STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4236STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4237STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4238STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4239STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4240#endif
4241
06428780 4242static struct attribute *slab_attrs[] = {
81819f0f
CL
4243 &slab_size_attr.attr,
4244 &object_size_attr.attr,
4245 &objs_per_slab_attr.attr,
4246 &order_attr.attr,
73d342b1 4247 &min_partial_attr.attr,
81819f0f 4248 &objects_attr.attr,
205ab99d
CL
4249 &objects_partial_attr.attr,
4250 &total_objects_attr.attr,
81819f0f
CL
4251 &slabs_attr.attr,
4252 &partial_attr.attr,
4253 &cpu_slabs_attr.attr,
4254 &ctor_attr.attr,
81819f0f
CL
4255 &aliases_attr.attr,
4256 &align_attr.attr,
4257 &sanity_checks_attr.attr,
4258 &trace_attr.attr,
4259 &hwcache_align_attr.attr,
4260 &reclaim_account_attr.attr,
4261 &destroy_by_rcu_attr.attr,
4262 &red_zone_attr.attr,
4263 &poison_attr.attr,
4264 &store_user_attr.attr,
53e15af0 4265 &validate_attr.attr,
2086d26a 4266 &shrink_attr.attr,
88a420e4
CL
4267 &alloc_calls_attr.attr,
4268 &free_calls_attr.attr,
81819f0f
CL
4269#ifdef CONFIG_ZONE_DMA
4270 &cache_dma_attr.attr,
4271#endif
4272#ifdef CONFIG_NUMA
9824601e 4273 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4274#endif
4275#ifdef CONFIG_SLUB_STATS
4276 &alloc_fastpath_attr.attr,
4277 &alloc_slowpath_attr.attr,
4278 &free_fastpath_attr.attr,
4279 &free_slowpath_attr.attr,
4280 &free_frozen_attr.attr,
4281 &free_add_partial_attr.attr,
4282 &free_remove_partial_attr.attr,
4283 &alloc_from_partial_attr.attr,
4284 &alloc_slab_attr.attr,
4285 &alloc_refill_attr.attr,
4286 &free_slab_attr.attr,
4287 &cpuslab_flush_attr.attr,
4288 &deactivate_full_attr.attr,
4289 &deactivate_empty_attr.attr,
4290 &deactivate_to_head_attr.attr,
4291 &deactivate_to_tail_attr.attr,
4292 &deactivate_remote_frees_attr.attr,
65c3376a 4293 &order_fallback_attr.attr,
81819f0f
CL
4294#endif
4295 NULL
4296};
4297
4298static struct attribute_group slab_attr_group = {
4299 .attrs = slab_attrs,
4300};
4301
4302static ssize_t slab_attr_show(struct kobject *kobj,
4303 struct attribute *attr,
4304 char *buf)
4305{
4306 struct slab_attribute *attribute;
4307 struct kmem_cache *s;
4308 int err;
4309
4310 attribute = to_slab_attr(attr);
4311 s = to_slab(kobj);
4312
4313 if (!attribute->show)
4314 return -EIO;
4315
4316 err = attribute->show(s, buf);
4317
4318 return err;
4319}
4320
4321static ssize_t slab_attr_store(struct kobject *kobj,
4322 struct attribute *attr,
4323 const char *buf, size_t len)
4324{
4325 struct slab_attribute *attribute;
4326 struct kmem_cache *s;
4327 int err;
4328
4329 attribute = to_slab_attr(attr);
4330 s = to_slab(kobj);
4331
4332 if (!attribute->store)
4333 return -EIO;
4334
4335 err = attribute->store(s, buf, len);
4336
4337 return err;
4338}
4339
151c602f
CL
4340static void kmem_cache_release(struct kobject *kobj)
4341{
4342 struct kmem_cache *s = to_slab(kobj);
4343
4344 kfree(s);
4345}
4346
81819f0f
CL
4347static struct sysfs_ops slab_sysfs_ops = {
4348 .show = slab_attr_show,
4349 .store = slab_attr_store,
4350};
4351
4352static struct kobj_type slab_ktype = {
4353 .sysfs_ops = &slab_sysfs_ops,
151c602f 4354 .release = kmem_cache_release
81819f0f
CL
4355};
4356
4357static int uevent_filter(struct kset *kset, struct kobject *kobj)
4358{
4359 struct kobj_type *ktype = get_ktype(kobj);
4360
4361 if (ktype == &slab_ktype)
4362 return 1;
4363 return 0;
4364}
4365
4366static struct kset_uevent_ops slab_uevent_ops = {
4367 .filter = uevent_filter,
4368};
4369
27c3a314 4370static struct kset *slab_kset;
81819f0f
CL
4371
4372#define ID_STR_LENGTH 64
4373
4374/* Create a unique string id for a slab cache:
6446faa2
CL
4375 *
4376 * Format :[flags-]size
81819f0f
CL
4377 */
4378static char *create_unique_id(struct kmem_cache *s)
4379{
4380 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4381 char *p = name;
4382
4383 BUG_ON(!name);
4384
4385 *p++ = ':';
4386 /*
4387 * First flags affecting slabcache operations. We will only
4388 * get here for aliasable slabs so we do not need to support
4389 * too many flags. The flags here must cover all flags that
4390 * are matched during merging to guarantee that the id is
4391 * unique.
4392 */
4393 if (s->flags & SLAB_CACHE_DMA)
4394 *p++ = 'd';
4395 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4396 *p++ = 'a';
4397 if (s->flags & SLAB_DEBUG_FREE)
4398 *p++ = 'F';
4399 if (p != name + 1)
4400 *p++ = '-';
4401 p += sprintf(p, "%07d", s->size);
4402 BUG_ON(p > name + ID_STR_LENGTH - 1);
4403 return name;
4404}
4405
4406static int sysfs_slab_add(struct kmem_cache *s)
4407{
4408 int err;
4409 const char *name;
4410 int unmergeable;
4411
4412 if (slab_state < SYSFS)
4413 /* Defer until later */
4414 return 0;
4415
4416 unmergeable = slab_unmergeable(s);
4417 if (unmergeable) {
4418 /*
4419 * Slabcache can never be merged so we can use the name proper.
4420 * This is typically the case for debug situations. In that
4421 * case we can catch duplicate names easily.
4422 */
27c3a314 4423 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4424 name = s->name;
4425 } else {
4426 /*
4427 * Create a unique name for the slab as a target
4428 * for the symlinks.
4429 */
4430 name = create_unique_id(s);
4431 }
4432
27c3a314 4433 s->kobj.kset = slab_kset;
1eada11c
GKH
4434 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4435 if (err) {
4436 kobject_put(&s->kobj);
81819f0f 4437 return err;
1eada11c 4438 }
81819f0f
CL
4439
4440 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4441 if (err)
4442 return err;
4443 kobject_uevent(&s->kobj, KOBJ_ADD);
4444 if (!unmergeable) {
4445 /* Setup first alias */
4446 sysfs_slab_alias(s, s->name);
4447 kfree(name);
4448 }
4449 return 0;
4450}
4451
4452static void sysfs_slab_remove(struct kmem_cache *s)
4453{
4454 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4455 kobject_del(&s->kobj);
151c602f 4456 kobject_put(&s->kobj);
81819f0f
CL
4457}
4458
4459/*
4460 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4461 * available lest we lose that information.
81819f0f
CL
4462 */
4463struct saved_alias {
4464 struct kmem_cache *s;
4465 const char *name;
4466 struct saved_alias *next;
4467};
4468
5af328a5 4469static struct saved_alias *alias_list;
81819f0f
CL
4470
4471static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4472{
4473 struct saved_alias *al;
4474
4475 if (slab_state == SYSFS) {
4476 /*
4477 * If we have a leftover link then remove it.
4478 */
27c3a314
GKH
4479 sysfs_remove_link(&slab_kset->kobj, name);
4480 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4481 }
4482
4483 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4484 if (!al)
4485 return -ENOMEM;
4486
4487 al->s = s;
4488 al->name = name;
4489 al->next = alias_list;
4490 alias_list = al;
4491 return 0;
4492}
4493
4494static int __init slab_sysfs_init(void)
4495{
5b95a4ac 4496 struct kmem_cache *s;
81819f0f
CL
4497 int err;
4498
0ff21e46 4499 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4500 if (!slab_kset) {
81819f0f
CL
4501 printk(KERN_ERR "Cannot register slab subsystem.\n");
4502 return -ENOSYS;
4503 }
4504
26a7bd03
CL
4505 slab_state = SYSFS;
4506
5b95a4ac 4507 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4508 err = sysfs_slab_add(s);
5d540fb7
CL
4509 if (err)
4510 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4511 " to sysfs\n", s->name);
26a7bd03 4512 }
81819f0f
CL
4513
4514 while (alias_list) {
4515 struct saved_alias *al = alias_list;
4516
4517 alias_list = alias_list->next;
4518 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4519 if (err)
4520 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4521 " %s to sysfs\n", s->name);
81819f0f
CL
4522 kfree(al);
4523 }
4524
4525 resiliency_test();
4526 return 0;
4527}
4528
4529__initcall(slab_sysfs_init);
81819f0f 4530#endif
57ed3eda
PE
4531
4532/*
4533 * The /proc/slabinfo ABI
4534 */
158a9624 4535#ifdef CONFIG_SLABINFO
57ed3eda
PE
4536static void print_slabinfo_header(struct seq_file *m)
4537{
4538 seq_puts(m, "slabinfo - version: 2.1\n");
4539 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4540 "<objperslab> <pagesperslab>");
4541 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4542 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4543 seq_putc(m, '\n');
4544}
4545
4546static void *s_start(struct seq_file *m, loff_t *pos)
4547{
4548 loff_t n = *pos;
4549
4550 down_read(&slub_lock);
4551 if (!n)
4552 print_slabinfo_header(m);
4553
4554 return seq_list_start(&slab_caches, *pos);
4555}
4556
4557static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4558{
4559 return seq_list_next(p, &slab_caches, pos);
4560}
4561
4562static void s_stop(struct seq_file *m, void *p)
4563{
4564 up_read(&slub_lock);
4565}
4566
4567static int s_show(struct seq_file *m, void *p)
4568{
4569 unsigned long nr_partials = 0;
4570 unsigned long nr_slabs = 0;
4571 unsigned long nr_inuse = 0;
205ab99d
CL
4572 unsigned long nr_objs = 0;
4573 unsigned long nr_free = 0;
57ed3eda
PE
4574 struct kmem_cache *s;
4575 int node;
4576
4577 s = list_entry(p, struct kmem_cache, list);
4578
4579 for_each_online_node(node) {
4580 struct kmem_cache_node *n = get_node(s, node);
4581
4582 if (!n)
4583 continue;
4584
4585 nr_partials += n->nr_partial;
4586 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4587 nr_objs += atomic_long_read(&n->total_objects);
4588 nr_free += count_partial(n, count_free);
57ed3eda
PE
4589 }
4590
205ab99d 4591 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4592
4593 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4594 nr_objs, s->size, oo_objects(s->oo),
4595 (1 << oo_order(s->oo)));
57ed3eda
PE
4596 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4597 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4598 0UL);
4599 seq_putc(m, '\n');
4600 return 0;
4601}
4602
7b3c3a50 4603static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4604 .start = s_start,
4605 .next = s_next,
4606 .stop = s_stop,
4607 .show = s_show,
4608};
4609
7b3c3a50
AD
4610static int slabinfo_open(struct inode *inode, struct file *file)
4611{
4612 return seq_open(file, &slabinfo_op);
4613}
4614
4615static const struct file_operations proc_slabinfo_operations = {
4616 .open = slabinfo_open,
4617 .read = seq_read,
4618 .llseek = seq_lseek,
4619 .release = seq_release,
4620};
4621
4622static int __init slab_proc_init(void)
4623{
4624 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4625 return 0;
4626}
4627module_init(slab_proc_init);
158a9624 4628#endif /* CONFIG_SLABINFO */