Merge branch 'usb-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb-2.6
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
5a896d9e 20#include <linux/kmemcheck.h>
81819f0f
CL
21#include <linux/cpu.h>
22#include <linux/cpuset.h>
23#include <linux/mempolicy.h>
24#include <linux/ctype.h>
3ac7fe5a 25#include <linux/debugobjects.h>
81819f0f 26#include <linux/kallsyms.h>
b9049e23 27#include <linux/memory.h>
f8bd2258 28#include <linux/math64.h>
773ff60e 29#include <linux/fault-inject.h>
bfa71457 30#include <linux/stacktrace.h>
81819f0f 31
4a92379b
RK
32#include <trace/events/kmem.h>
33
81819f0f
CL
34/*
35 * Lock order:
36 * 1. slab_lock(page)
37 * 2. slab->list_lock
38 *
39 * The slab_lock protects operations on the object of a particular
40 * slab and its metadata in the page struct. If the slab lock
41 * has been taken then no allocations nor frees can be performed
42 * on the objects in the slab nor can the slab be added or removed
43 * from the partial or full lists since this would mean modifying
44 * the page_struct of the slab.
45 *
46 * The list_lock protects the partial and full list on each node and
47 * the partial slab counter. If taken then no new slabs may be added or
48 * removed from the lists nor make the number of partial slabs be modified.
49 * (Note that the total number of slabs is an atomic value that may be
50 * modified without taking the list lock).
51 *
52 * The list_lock is a centralized lock and thus we avoid taking it as
53 * much as possible. As long as SLUB does not have to handle partial
54 * slabs, operations can continue without any centralized lock. F.e.
55 * allocating a long series of objects that fill up slabs does not require
56 * the list lock.
57 *
58 * The lock order is sometimes inverted when we are trying to get a slab
59 * off a list. We take the list_lock and then look for a page on the list
60 * to use. While we do that objects in the slabs may be freed. We can
61 * only operate on the slab if we have also taken the slab_lock. So we use
62 * a slab_trylock() on the slab. If trylock was successful then no frees
63 * can occur anymore and we can use the slab for allocations etc. If the
64 * slab_trylock() does not succeed then frees are in progress in the slab and
65 * we must stay away from it for a while since we may cause a bouncing
66 * cacheline if we try to acquire the lock. So go onto the next slab.
67 * If all pages are busy then we may allocate a new slab instead of reusing
25985edc 68 * a partial slab. A new slab has no one operating on it and thus there is
81819f0f
CL
69 * no danger of cacheline contention.
70 *
71 * Interrupts are disabled during allocation and deallocation in order to
72 * make the slab allocator safe to use in the context of an irq. In addition
73 * interrupts are disabled to ensure that the processor does not change
74 * while handling per_cpu slabs, due to kernel preemption.
75 *
76 * SLUB assigns one slab for allocation to each processor.
77 * Allocations only occur from these slabs called cpu slabs.
78 *
672bba3a
CL
79 * Slabs with free elements are kept on a partial list and during regular
80 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 81 * freed then the slab will show up again on the partial lists.
672bba3a
CL
82 * We track full slabs for debugging purposes though because otherwise we
83 * cannot scan all objects.
81819f0f
CL
84 *
85 * Slabs are freed when they become empty. Teardown and setup is
86 * minimal so we rely on the page allocators per cpu caches for
87 * fast frees and allocs.
88 *
89 * Overloading of page flags that are otherwise used for LRU management.
90 *
4b6f0750
CL
91 * PageActive The slab is frozen and exempt from list processing.
92 * This means that the slab is dedicated to a purpose
93 * such as satisfying allocations for a specific
94 * processor. Objects may be freed in the slab while
95 * it is frozen but slab_free will then skip the usual
96 * list operations. It is up to the processor holding
97 * the slab to integrate the slab into the slab lists
98 * when the slab is no longer needed.
99 *
100 * One use of this flag is to mark slabs that are
101 * used for allocations. Then such a slab becomes a cpu
102 * slab. The cpu slab may be equipped with an additional
dfb4f096 103 * freelist that allows lockless access to
894b8788
CL
104 * free objects in addition to the regular freelist
105 * that requires the slab lock.
81819f0f
CL
106 *
107 * PageError Slab requires special handling due to debug
108 * options set. This moves slab handling out of
894b8788 109 * the fast path and disables lockless freelists.
81819f0f
CL
110 */
111
af537b0a
CL
112#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
113 SLAB_TRACE | SLAB_DEBUG_FREE)
114
115static inline int kmem_cache_debug(struct kmem_cache *s)
116{
5577bd8a 117#ifdef CONFIG_SLUB_DEBUG
af537b0a 118 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 119#else
af537b0a 120 return 0;
5577bd8a 121#endif
af537b0a 122}
5577bd8a 123
81819f0f
CL
124/*
125 * Issues still to be resolved:
126 *
81819f0f
CL
127 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
128 *
81819f0f
CL
129 * - Variable sizing of the per node arrays
130 */
131
132/* Enable to test recovery from slab corruption on boot */
133#undef SLUB_RESILIENCY_TEST
134
2086d26a
CL
135/*
136 * Mininum number of partial slabs. These will be left on the partial
137 * lists even if they are empty. kmem_cache_shrink may reclaim them.
138 */
76be8950 139#define MIN_PARTIAL 5
e95eed57 140
2086d26a
CL
141/*
142 * Maximum number of desirable partial slabs.
143 * The existence of more partial slabs makes kmem_cache_shrink
144 * sort the partial list by the number of objects in the.
145 */
146#define MAX_PARTIAL 10
147
81819f0f
CL
148#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
149 SLAB_POISON | SLAB_STORE_USER)
672bba3a 150
fa5ec8a1 151/*
3de47213
DR
152 * Debugging flags that require metadata to be stored in the slab. These get
153 * disabled when slub_debug=O is used and a cache's min order increases with
154 * metadata.
fa5ec8a1 155 */
3de47213 156#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 157
81819f0f
CL
158/*
159 * Set of flags that will prevent slab merging
160 */
161#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
4c13dd3b
DM
162 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
163 SLAB_FAILSLAB)
81819f0f
CL
164
165#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 166 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f 167
210b5c06
CG
168#define OO_SHIFT 16
169#define OO_MASK ((1 << OO_SHIFT) - 1)
170#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
81819f0f 172/* Internal SLUB flags */
f90ec390 173#define __OBJECT_POISON 0x80000000UL /* Poison object */
81819f0f
CL
174
175static int kmem_size = sizeof(struct kmem_cache);
176
177#ifdef CONFIG_SMP
178static struct notifier_block slab_notifier;
179#endif
180
181static enum {
182 DOWN, /* No slab functionality available */
51df1142 183 PARTIAL, /* Kmem_cache_node works */
672bba3a 184 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
185 SYSFS /* Sysfs up */
186} slab_state = DOWN;
187
188/* A list of all slab caches on the system */
189static DECLARE_RWSEM(slub_lock);
5af328a5 190static LIST_HEAD(slab_caches);
81819f0f 191
02cbc874
CL
192/*
193 * Tracking user of a slab.
194 */
d6543e39 195#define TRACK_ADDRS_COUNT 16
02cbc874 196struct track {
ce71e27c 197 unsigned long addr; /* Called from address */
d6543e39
BG
198#ifdef CONFIG_STACKTRACE
199 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
200#endif
02cbc874
CL
201 int cpu; /* Was running on cpu */
202 int pid; /* Pid context */
203 unsigned long when; /* When did the operation occur */
204};
205
206enum track_item { TRACK_ALLOC, TRACK_FREE };
207
ab4d5ed5 208#ifdef CONFIG_SYSFS
81819f0f
CL
209static int sysfs_slab_add(struct kmem_cache *);
210static int sysfs_slab_alias(struct kmem_cache *, const char *);
211static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 212
81819f0f 213#else
0c710013
CL
214static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
215static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
216 { return 0; }
151c602f
CL
217static inline void sysfs_slab_remove(struct kmem_cache *s)
218{
84c1cf62 219 kfree(s->name);
151c602f
CL
220 kfree(s);
221}
8ff12cfc 222
81819f0f
CL
223#endif
224
4fdccdfb 225static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
226{
227#ifdef CONFIG_SLUB_STATS
84e554e6 228 __this_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
229#endif
230}
231
81819f0f
CL
232/********************************************************************
233 * Core slab cache functions
234 *******************************************************************/
235
236int slab_is_available(void)
237{
238 return slab_state >= UP;
239}
240
241static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
242{
81819f0f 243 return s->node[node];
81819f0f
CL
244}
245
6446faa2 246/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
247static inline int check_valid_pointer(struct kmem_cache *s,
248 struct page *page, const void *object)
249{
250 void *base;
251
a973e9dd 252 if (!object)
02cbc874
CL
253 return 1;
254
a973e9dd 255 base = page_address(page);
39b26464 256 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
257 (object - base) % s->size) {
258 return 0;
259 }
260
261 return 1;
262}
263
7656c72b
CL
264static inline void *get_freepointer(struct kmem_cache *s, void *object)
265{
266 return *(void **)(object + s->offset);
267}
268
1393d9a1
CL
269static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
270{
271 void *p;
272
273#ifdef CONFIG_DEBUG_PAGEALLOC
274 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
275#else
276 p = get_freepointer(s, object);
277#endif
278 return p;
279}
280
7656c72b
CL
281static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
282{
283 *(void **)(object + s->offset) = fp;
284}
285
286/* Loop over all objects in a slab */
224a88be
CL
287#define for_each_object(__p, __s, __addr, __objects) \
288 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
289 __p += (__s)->size)
290
7656c72b
CL
291/* Determine object index from a given position */
292static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
293{
294 return (p - addr) / s->size;
295}
296
d71f606f
MK
297static inline size_t slab_ksize(const struct kmem_cache *s)
298{
299#ifdef CONFIG_SLUB_DEBUG
300 /*
301 * Debugging requires use of the padding between object
302 * and whatever may come after it.
303 */
304 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
305 return s->objsize;
306
307#endif
308 /*
309 * If we have the need to store the freelist pointer
310 * back there or track user information then we can
311 * only use the space before that information.
312 */
313 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
314 return s->inuse;
315 /*
316 * Else we can use all the padding etc for the allocation
317 */
318 return s->size;
319}
320
ab9a0f19
LJ
321static inline int order_objects(int order, unsigned long size, int reserved)
322{
323 return ((PAGE_SIZE << order) - reserved) / size;
324}
325
834f3d11 326static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 327 unsigned long size, int reserved)
834f3d11
CL
328{
329 struct kmem_cache_order_objects x = {
ab9a0f19 330 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
331 };
332
333 return x;
334}
335
336static inline int oo_order(struct kmem_cache_order_objects x)
337{
210b5c06 338 return x.x >> OO_SHIFT;
834f3d11
CL
339}
340
341static inline int oo_objects(struct kmem_cache_order_objects x)
342{
210b5c06 343 return x.x & OO_MASK;
834f3d11
CL
344}
345
41ecc55b 346#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
347/*
348 * Determine a map of object in use on a page.
349 *
350 * Slab lock or node listlock must be held to guarantee that the page does
351 * not vanish from under us.
352 */
353static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
354{
355 void *p;
356 void *addr = page_address(page);
357
358 for (p = page->freelist; p; p = get_freepointer(s, p))
359 set_bit(slab_index(p, s, addr), map);
360}
361
41ecc55b
CL
362/*
363 * Debug settings:
364 */
f0630fff
CL
365#ifdef CONFIG_SLUB_DEBUG_ON
366static int slub_debug = DEBUG_DEFAULT_FLAGS;
367#else
41ecc55b 368static int slub_debug;
f0630fff 369#endif
41ecc55b
CL
370
371static char *slub_debug_slabs;
fa5ec8a1 372static int disable_higher_order_debug;
41ecc55b 373
81819f0f
CL
374/*
375 * Object debugging
376 */
377static void print_section(char *text, u8 *addr, unsigned int length)
378{
379 int i, offset;
380 int newline = 1;
381 char ascii[17];
382
383 ascii[16] = 0;
384
385 for (i = 0; i < length; i++) {
386 if (newline) {
24922684 387 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
388 newline = 0;
389 }
06428780 390 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
391 offset = i % 16;
392 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
393 if (offset == 15) {
06428780 394 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
395 newline = 1;
396 }
397 }
398 if (!newline) {
399 i %= 16;
400 while (i < 16) {
06428780 401 printk(KERN_CONT " ");
81819f0f
CL
402 ascii[i] = ' ';
403 i++;
404 }
06428780 405 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
406 }
407}
408
81819f0f
CL
409static struct track *get_track(struct kmem_cache *s, void *object,
410 enum track_item alloc)
411{
412 struct track *p;
413
414 if (s->offset)
415 p = object + s->offset + sizeof(void *);
416 else
417 p = object + s->inuse;
418
419 return p + alloc;
420}
421
422static void set_track(struct kmem_cache *s, void *object,
ce71e27c 423 enum track_item alloc, unsigned long addr)
81819f0f 424{
1a00df4a 425 struct track *p = get_track(s, object, alloc);
81819f0f 426
81819f0f 427 if (addr) {
d6543e39
BG
428#ifdef CONFIG_STACKTRACE
429 struct stack_trace trace;
430 int i;
431
432 trace.nr_entries = 0;
433 trace.max_entries = TRACK_ADDRS_COUNT;
434 trace.entries = p->addrs;
435 trace.skip = 3;
436 save_stack_trace(&trace);
437
438 /* See rant in lockdep.c */
439 if (trace.nr_entries != 0 &&
440 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
441 trace.nr_entries--;
442
443 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
444 p->addrs[i] = 0;
445#endif
81819f0f
CL
446 p->addr = addr;
447 p->cpu = smp_processor_id();
88e4ccf2 448 p->pid = current->pid;
81819f0f
CL
449 p->when = jiffies;
450 } else
451 memset(p, 0, sizeof(struct track));
452}
453
81819f0f
CL
454static void init_tracking(struct kmem_cache *s, void *object)
455{
24922684
CL
456 if (!(s->flags & SLAB_STORE_USER))
457 return;
458
ce71e27c
EGM
459 set_track(s, object, TRACK_FREE, 0UL);
460 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
461}
462
463static void print_track(const char *s, struct track *t)
464{
465 if (!t->addr)
466 return;
467
7daf705f 468 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 469 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
470#ifdef CONFIG_STACKTRACE
471 {
472 int i;
473 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
474 if (t->addrs[i])
475 printk(KERN_ERR "\t%pS\n", (void *)t->addrs[i]);
476 else
477 break;
478 }
479#endif
24922684
CL
480}
481
482static void print_tracking(struct kmem_cache *s, void *object)
483{
484 if (!(s->flags & SLAB_STORE_USER))
485 return;
486
487 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
488 print_track("Freed", get_track(s, object, TRACK_FREE));
489}
490
491static void print_page_info(struct page *page)
492{
39b26464
CL
493 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
494 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
495
496}
497
498static void slab_bug(struct kmem_cache *s, char *fmt, ...)
499{
500 va_list args;
501 char buf[100];
502
503 va_start(args, fmt);
504 vsnprintf(buf, sizeof(buf), fmt, args);
505 va_end(args);
506 printk(KERN_ERR "========================================"
507 "=====================================\n");
508 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
509 printk(KERN_ERR "----------------------------------------"
510 "-------------------------------------\n\n");
81819f0f
CL
511}
512
24922684
CL
513static void slab_fix(struct kmem_cache *s, char *fmt, ...)
514{
515 va_list args;
516 char buf[100];
517
518 va_start(args, fmt);
519 vsnprintf(buf, sizeof(buf), fmt, args);
520 va_end(args);
521 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
522}
523
524static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
525{
526 unsigned int off; /* Offset of last byte */
a973e9dd 527 u8 *addr = page_address(page);
24922684
CL
528
529 print_tracking(s, p);
530
531 print_page_info(page);
532
533 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
534 p, p - addr, get_freepointer(s, p));
535
536 if (p > addr + 16)
537 print_section("Bytes b4", p - 16, 16);
538
0ebd652b 539 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
540
541 if (s->flags & SLAB_RED_ZONE)
542 print_section("Redzone", p + s->objsize,
543 s->inuse - s->objsize);
544
81819f0f
CL
545 if (s->offset)
546 off = s->offset + sizeof(void *);
547 else
548 off = s->inuse;
549
24922684 550 if (s->flags & SLAB_STORE_USER)
81819f0f 551 off += 2 * sizeof(struct track);
81819f0f
CL
552
553 if (off != s->size)
554 /* Beginning of the filler is the free pointer */
24922684
CL
555 print_section("Padding", p + off, s->size - off);
556
557 dump_stack();
81819f0f
CL
558}
559
560static void object_err(struct kmem_cache *s, struct page *page,
561 u8 *object, char *reason)
562{
3dc50637 563 slab_bug(s, "%s", reason);
24922684 564 print_trailer(s, page, object);
81819f0f
CL
565}
566
24922684 567static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
568{
569 va_list args;
570 char buf[100];
571
24922684
CL
572 va_start(args, fmt);
573 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 574 va_end(args);
3dc50637 575 slab_bug(s, "%s", buf);
24922684 576 print_page_info(page);
81819f0f
CL
577 dump_stack();
578}
579
f7cb1933 580static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
581{
582 u8 *p = object;
583
584 if (s->flags & __OBJECT_POISON) {
585 memset(p, POISON_FREE, s->objsize - 1);
06428780 586 p[s->objsize - 1] = POISON_END;
81819f0f
CL
587 }
588
589 if (s->flags & SLAB_RED_ZONE)
f7cb1933 590 memset(p + s->objsize, val, s->inuse - s->objsize);
81819f0f
CL
591}
592
c4089f98 593static u8 *check_bytes8(u8 *start, u8 value, unsigned int bytes)
81819f0f
CL
594{
595 while (bytes) {
c4089f98 596 if (*start != value)
24922684 597 return start;
81819f0f
CL
598 start++;
599 bytes--;
600 }
24922684
CL
601 return NULL;
602}
603
c4089f98
MS
604static u8 *check_bytes(u8 *start, u8 value, unsigned int bytes)
605{
606 u64 value64;
607 unsigned int words, prefix;
608
609 if (bytes <= 16)
610 return check_bytes8(start, value, bytes);
611
612 value64 = value | value << 8 | value << 16 | value << 24;
613 value64 = value64 | value64 << 32;
614 prefix = 8 - ((unsigned long)start) % 8;
615
616 if (prefix) {
617 u8 *r = check_bytes8(start, value, prefix);
618 if (r)
619 return r;
620 start += prefix;
621 bytes -= prefix;
622 }
623
624 words = bytes / 8;
625
626 while (words) {
627 if (*(u64 *)start != value64)
628 return check_bytes8(start, value, 8);
629 start += 8;
630 words--;
631 }
632
633 return check_bytes8(start, value, bytes % 8);
634}
635
24922684
CL
636static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
637 void *from, void *to)
638{
639 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
640 memset(from, data, to - from);
641}
642
643static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
644 u8 *object, char *what,
06428780 645 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
646{
647 u8 *fault;
648 u8 *end;
649
650 fault = check_bytes(start, value, bytes);
651 if (!fault)
652 return 1;
653
654 end = start + bytes;
655 while (end > fault && end[-1] == value)
656 end--;
657
658 slab_bug(s, "%s overwritten", what);
659 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
660 fault, end - 1, fault[0], value);
661 print_trailer(s, page, object);
662
663 restore_bytes(s, what, value, fault, end);
664 return 0;
81819f0f
CL
665}
666
81819f0f
CL
667/*
668 * Object layout:
669 *
670 * object address
671 * Bytes of the object to be managed.
672 * If the freepointer may overlay the object then the free
673 * pointer is the first word of the object.
672bba3a 674 *
81819f0f
CL
675 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
676 * 0xa5 (POISON_END)
677 *
678 * object + s->objsize
679 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
680 * Padding is extended by another word if Redzoning is enabled and
681 * objsize == inuse.
682 *
81819f0f
CL
683 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
684 * 0xcc (RED_ACTIVE) for objects in use.
685 *
686 * object + s->inuse
672bba3a
CL
687 * Meta data starts here.
688 *
81819f0f
CL
689 * A. Free pointer (if we cannot overwrite object on free)
690 * B. Tracking data for SLAB_STORE_USER
672bba3a 691 * C. Padding to reach required alignment boundary or at mininum
6446faa2 692 * one word if debugging is on to be able to detect writes
672bba3a
CL
693 * before the word boundary.
694 *
695 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
696 *
697 * object + s->size
672bba3a 698 * Nothing is used beyond s->size.
81819f0f 699 *
672bba3a
CL
700 * If slabcaches are merged then the objsize and inuse boundaries are mostly
701 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
702 * may be used with merged slabcaches.
703 */
704
81819f0f
CL
705static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
706{
707 unsigned long off = s->inuse; /* The end of info */
708
709 if (s->offset)
710 /* Freepointer is placed after the object. */
711 off += sizeof(void *);
712
713 if (s->flags & SLAB_STORE_USER)
714 /* We also have user information there */
715 off += 2 * sizeof(struct track);
716
717 if (s->size == off)
718 return 1;
719
24922684
CL
720 return check_bytes_and_report(s, page, p, "Object padding",
721 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
722}
723
39b26464 724/* Check the pad bytes at the end of a slab page */
81819f0f
CL
725static int slab_pad_check(struct kmem_cache *s, struct page *page)
726{
24922684
CL
727 u8 *start;
728 u8 *fault;
729 u8 *end;
730 int length;
731 int remainder;
81819f0f
CL
732
733 if (!(s->flags & SLAB_POISON))
734 return 1;
735
a973e9dd 736 start = page_address(page);
ab9a0f19 737 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
738 end = start + length;
739 remainder = length % s->size;
81819f0f
CL
740 if (!remainder)
741 return 1;
742
39b26464 743 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
744 if (!fault)
745 return 1;
746 while (end > fault && end[-1] == POISON_INUSE)
747 end--;
748
749 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 750 print_section("Padding", end - remainder, remainder);
24922684 751
8a3d271d 752 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 753 return 0;
81819f0f
CL
754}
755
756static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 757 void *object, u8 val)
81819f0f
CL
758{
759 u8 *p = object;
760 u8 *endobject = object + s->objsize;
761
762 if (s->flags & SLAB_RED_ZONE) {
24922684 763 if (!check_bytes_and_report(s, page, object, "Redzone",
f7cb1933 764 endobject, val, s->inuse - s->objsize))
81819f0f 765 return 0;
81819f0f 766 } else {
3adbefee
IM
767 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
768 check_bytes_and_report(s, page, p, "Alignment padding",
769 endobject, POISON_INUSE, s->inuse - s->objsize);
770 }
81819f0f
CL
771 }
772
773 if (s->flags & SLAB_POISON) {
f7cb1933 774 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684
CL
775 (!check_bytes_and_report(s, page, p, "Poison", p,
776 POISON_FREE, s->objsize - 1) ||
777 !check_bytes_and_report(s, page, p, "Poison",
06428780 778 p + s->objsize - 1, POISON_END, 1)))
81819f0f 779 return 0;
81819f0f
CL
780 /*
781 * check_pad_bytes cleans up on its own.
782 */
783 check_pad_bytes(s, page, p);
784 }
785
f7cb1933 786 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
787 /*
788 * Object and freepointer overlap. Cannot check
789 * freepointer while object is allocated.
790 */
791 return 1;
792
793 /* Check free pointer validity */
794 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
795 object_err(s, page, p, "Freepointer corrupt");
796 /*
9f6c708e 797 * No choice but to zap it and thus lose the remainder
81819f0f 798 * of the free objects in this slab. May cause
672bba3a 799 * another error because the object count is now wrong.
81819f0f 800 */
a973e9dd 801 set_freepointer(s, p, NULL);
81819f0f
CL
802 return 0;
803 }
804 return 1;
805}
806
807static int check_slab(struct kmem_cache *s, struct page *page)
808{
39b26464
CL
809 int maxobj;
810
81819f0f
CL
811 VM_BUG_ON(!irqs_disabled());
812
813 if (!PageSlab(page)) {
24922684 814 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
815 return 0;
816 }
39b26464 817
ab9a0f19 818 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
819 if (page->objects > maxobj) {
820 slab_err(s, page, "objects %u > max %u",
821 s->name, page->objects, maxobj);
822 return 0;
823 }
824 if (page->inuse > page->objects) {
24922684 825 slab_err(s, page, "inuse %u > max %u",
39b26464 826 s->name, page->inuse, page->objects);
81819f0f
CL
827 return 0;
828 }
829 /* Slab_pad_check fixes things up after itself */
830 slab_pad_check(s, page);
831 return 1;
832}
833
834/*
672bba3a
CL
835 * Determine if a certain object on a page is on the freelist. Must hold the
836 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
837 */
838static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
839{
840 int nr = 0;
841 void *fp = page->freelist;
842 void *object = NULL;
224a88be 843 unsigned long max_objects;
81819f0f 844
39b26464 845 while (fp && nr <= page->objects) {
81819f0f
CL
846 if (fp == search)
847 return 1;
848 if (!check_valid_pointer(s, page, fp)) {
849 if (object) {
850 object_err(s, page, object,
851 "Freechain corrupt");
a973e9dd 852 set_freepointer(s, object, NULL);
81819f0f
CL
853 break;
854 } else {
24922684 855 slab_err(s, page, "Freepointer corrupt");
a973e9dd 856 page->freelist = NULL;
39b26464 857 page->inuse = page->objects;
24922684 858 slab_fix(s, "Freelist cleared");
81819f0f
CL
859 return 0;
860 }
861 break;
862 }
863 object = fp;
864 fp = get_freepointer(s, object);
865 nr++;
866 }
867
ab9a0f19 868 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
869 if (max_objects > MAX_OBJS_PER_PAGE)
870 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
871
872 if (page->objects != max_objects) {
873 slab_err(s, page, "Wrong number of objects. Found %d but "
874 "should be %d", page->objects, max_objects);
875 page->objects = max_objects;
876 slab_fix(s, "Number of objects adjusted.");
877 }
39b26464 878 if (page->inuse != page->objects - nr) {
70d71228 879 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
880 "counted were %d", page->inuse, page->objects - nr);
881 page->inuse = page->objects - nr;
24922684 882 slab_fix(s, "Object count adjusted.");
81819f0f
CL
883 }
884 return search == NULL;
885}
886
0121c619
CL
887static void trace(struct kmem_cache *s, struct page *page, void *object,
888 int alloc)
3ec09742
CL
889{
890 if (s->flags & SLAB_TRACE) {
891 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
892 s->name,
893 alloc ? "alloc" : "free",
894 object, page->inuse,
895 page->freelist);
896
897 if (!alloc)
898 print_section("Object", (void *)object, s->objsize);
899
900 dump_stack();
901 }
902}
903
c016b0bd
CL
904/*
905 * Hooks for other subsystems that check memory allocations. In a typical
906 * production configuration these hooks all should produce no code at all.
907 */
908static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
909{
c1d50836 910 flags &= gfp_allowed_mask;
c016b0bd
CL
911 lockdep_trace_alloc(flags);
912 might_sleep_if(flags & __GFP_WAIT);
913
914 return should_failslab(s->objsize, flags, s->flags);
915}
916
917static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
918{
c1d50836 919 flags &= gfp_allowed_mask;
b3d41885 920 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
c016b0bd
CL
921 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
922}
923
924static inline void slab_free_hook(struct kmem_cache *s, void *x)
925{
926 kmemleak_free_recursive(x, s->flags);
c016b0bd 927
d3f661d6
CL
928 /*
929 * Trouble is that we may no longer disable interupts in the fast path
930 * So in order to make the debug calls that expect irqs to be
931 * disabled we need to disable interrupts temporarily.
932 */
933#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
934 {
935 unsigned long flags;
936
937 local_irq_save(flags);
938 kmemcheck_slab_free(s, x, s->objsize);
939 debug_check_no_locks_freed(x, s->objsize);
d3f661d6
CL
940 local_irq_restore(flags);
941 }
942#endif
f9b615de
TG
943 if (!(s->flags & SLAB_DEBUG_OBJECTS))
944 debug_check_no_obj_freed(x, s->objsize);
c016b0bd
CL
945}
946
643b1138 947/*
672bba3a 948 * Tracking of fully allocated slabs for debugging purposes.
643b1138 949 */
e95eed57 950static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 951{
643b1138
CL
952 spin_lock(&n->list_lock);
953 list_add(&page->lru, &n->full);
954 spin_unlock(&n->list_lock);
955}
956
957static void remove_full(struct kmem_cache *s, struct page *page)
958{
959 struct kmem_cache_node *n;
960
961 if (!(s->flags & SLAB_STORE_USER))
962 return;
963
964 n = get_node(s, page_to_nid(page));
965
966 spin_lock(&n->list_lock);
967 list_del(&page->lru);
968 spin_unlock(&n->list_lock);
969}
970
0f389ec6
CL
971/* Tracking of the number of slabs for debugging purposes */
972static inline unsigned long slabs_node(struct kmem_cache *s, int node)
973{
974 struct kmem_cache_node *n = get_node(s, node);
975
976 return atomic_long_read(&n->nr_slabs);
977}
978
26c02cf0
AB
979static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
980{
981 return atomic_long_read(&n->nr_slabs);
982}
983
205ab99d 984static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
985{
986 struct kmem_cache_node *n = get_node(s, node);
987
988 /*
989 * May be called early in order to allocate a slab for the
990 * kmem_cache_node structure. Solve the chicken-egg
991 * dilemma by deferring the increment of the count during
992 * bootstrap (see early_kmem_cache_node_alloc).
993 */
7340cc84 994 if (n) {
0f389ec6 995 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
996 atomic_long_add(objects, &n->total_objects);
997 }
0f389ec6 998}
205ab99d 999static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1000{
1001 struct kmem_cache_node *n = get_node(s, node);
1002
1003 atomic_long_dec(&n->nr_slabs);
205ab99d 1004 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1005}
1006
1007/* Object debug checks for alloc/free paths */
3ec09742
CL
1008static void setup_object_debug(struct kmem_cache *s, struct page *page,
1009 void *object)
1010{
1011 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1012 return;
1013
f7cb1933 1014 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1015 init_tracking(s, object);
1016}
1017
1537066c 1018static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 1019 void *object, unsigned long addr)
81819f0f
CL
1020{
1021 if (!check_slab(s, page))
1022 goto bad;
1023
d692ef6d 1024 if (!on_freelist(s, page, object)) {
24922684 1025 object_err(s, page, object, "Object already allocated");
70d71228 1026 goto bad;
81819f0f
CL
1027 }
1028
1029 if (!check_valid_pointer(s, page, object)) {
1030 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 1031 goto bad;
81819f0f
CL
1032 }
1033
f7cb1933 1034 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
81819f0f 1035 goto bad;
81819f0f 1036
3ec09742
CL
1037 /* Success perform special debug activities for allocs */
1038 if (s->flags & SLAB_STORE_USER)
1039 set_track(s, object, TRACK_ALLOC, addr);
1040 trace(s, page, object, 1);
f7cb1933 1041 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1042 return 1;
3ec09742 1043
81819f0f
CL
1044bad:
1045 if (PageSlab(page)) {
1046 /*
1047 * If this is a slab page then lets do the best we can
1048 * to avoid issues in the future. Marking all objects
672bba3a 1049 * as used avoids touching the remaining objects.
81819f0f 1050 */
24922684 1051 slab_fix(s, "Marking all objects used");
39b26464 1052 page->inuse = page->objects;
a973e9dd 1053 page->freelist = NULL;
81819f0f
CL
1054 }
1055 return 0;
1056}
1057
1537066c
CL
1058static noinline int free_debug_processing(struct kmem_cache *s,
1059 struct page *page, void *object, unsigned long addr)
81819f0f
CL
1060{
1061 if (!check_slab(s, page))
1062 goto fail;
1063
1064 if (!check_valid_pointer(s, page, object)) {
70d71228 1065 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
1066 goto fail;
1067 }
1068
1069 if (on_freelist(s, page, object)) {
24922684 1070 object_err(s, page, object, "Object already free");
81819f0f
CL
1071 goto fail;
1072 }
1073
f7cb1933 1074 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
81819f0f
CL
1075 return 0;
1076
1077 if (unlikely(s != page->slab)) {
3adbefee 1078 if (!PageSlab(page)) {
70d71228
CL
1079 slab_err(s, page, "Attempt to free object(0x%p) "
1080 "outside of slab", object);
3adbefee 1081 } else if (!page->slab) {
81819f0f 1082 printk(KERN_ERR
70d71228 1083 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 1084 object);
70d71228 1085 dump_stack();
06428780 1086 } else
24922684
CL
1087 object_err(s, page, object,
1088 "page slab pointer corrupt.");
81819f0f
CL
1089 goto fail;
1090 }
3ec09742
CL
1091
1092 /* Special debug activities for freeing objects */
8a38082d 1093 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
1094 remove_full(s, page);
1095 if (s->flags & SLAB_STORE_USER)
1096 set_track(s, object, TRACK_FREE, addr);
1097 trace(s, page, object, 0);
f7cb1933 1098 init_object(s, object, SLUB_RED_INACTIVE);
81819f0f 1099 return 1;
3ec09742 1100
81819f0f 1101fail:
24922684 1102 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
1103 return 0;
1104}
1105
41ecc55b
CL
1106static int __init setup_slub_debug(char *str)
1107{
f0630fff
CL
1108 slub_debug = DEBUG_DEFAULT_FLAGS;
1109 if (*str++ != '=' || !*str)
1110 /*
1111 * No options specified. Switch on full debugging.
1112 */
1113 goto out;
1114
1115 if (*str == ',')
1116 /*
1117 * No options but restriction on slabs. This means full
1118 * debugging for slabs matching a pattern.
1119 */
1120 goto check_slabs;
1121
fa5ec8a1
DR
1122 if (tolower(*str) == 'o') {
1123 /*
1124 * Avoid enabling debugging on caches if its minimum order
1125 * would increase as a result.
1126 */
1127 disable_higher_order_debug = 1;
1128 goto out;
1129 }
1130
f0630fff
CL
1131 slub_debug = 0;
1132 if (*str == '-')
1133 /*
1134 * Switch off all debugging measures.
1135 */
1136 goto out;
1137
1138 /*
1139 * Determine which debug features should be switched on
1140 */
06428780 1141 for (; *str && *str != ','; str++) {
f0630fff
CL
1142 switch (tolower(*str)) {
1143 case 'f':
1144 slub_debug |= SLAB_DEBUG_FREE;
1145 break;
1146 case 'z':
1147 slub_debug |= SLAB_RED_ZONE;
1148 break;
1149 case 'p':
1150 slub_debug |= SLAB_POISON;
1151 break;
1152 case 'u':
1153 slub_debug |= SLAB_STORE_USER;
1154 break;
1155 case 't':
1156 slub_debug |= SLAB_TRACE;
1157 break;
4c13dd3b
DM
1158 case 'a':
1159 slub_debug |= SLAB_FAILSLAB;
1160 break;
f0630fff
CL
1161 default:
1162 printk(KERN_ERR "slub_debug option '%c' "
06428780 1163 "unknown. skipped\n", *str);
f0630fff 1164 }
41ecc55b
CL
1165 }
1166
f0630fff 1167check_slabs:
41ecc55b
CL
1168 if (*str == ',')
1169 slub_debug_slabs = str + 1;
f0630fff 1170out:
41ecc55b
CL
1171 return 1;
1172}
1173
1174__setup("slub_debug", setup_slub_debug);
1175
ba0268a8
CL
1176static unsigned long kmem_cache_flags(unsigned long objsize,
1177 unsigned long flags, const char *name,
51cc5068 1178 void (*ctor)(void *))
41ecc55b
CL
1179{
1180 /*
e153362a 1181 * Enable debugging if selected on the kernel commandline.
41ecc55b 1182 */
e153362a 1183 if (slub_debug && (!slub_debug_slabs ||
3de47213
DR
1184 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1185 flags |= slub_debug;
ba0268a8
CL
1186
1187 return flags;
41ecc55b
CL
1188}
1189#else
3ec09742
CL
1190static inline void setup_object_debug(struct kmem_cache *s,
1191 struct page *page, void *object) {}
41ecc55b 1192
3ec09742 1193static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1194 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1195
3ec09742 1196static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1197 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1198
41ecc55b
CL
1199static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1200 { return 1; }
1201static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1202 void *object, u8 val) { return 1; }
3ec09742 1203static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1204static inline unsigned long kmem_cache_flags(unsigned long objsize,
1205 unsigned long flags, const char *name,
51cc5068 1206 void (*ctor)(void *))
ba0268a8
CL
1207{
1208 return flags;
1209}
41ecc55b 1210#define slub_debug 0
0f389ec6 1211
fdaa45e9
IM
1212#define disable_higher_order_debug 0
1213
0f389ec6
CL
1214static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1215 { return 0; }
26c02cf0
AB
1216static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1217 { return 0; }
205ab99d
CL
1218static inline void inc_slabs_node(struct kmem_cache *s, int node,
1219 int objects) {}
1220static inline void dec_slabs_node(struct kmem_cache *s, int node,
1221 int objects) {}
7d550c56
CL
1222
1223static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1224 { return 0; }
1225
1226static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1227 void *object) {}
1228
1229static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1230
ab4d5ed5 1231#endif /* CONFIG_SLUB_DEBUG */
205ab99d 1232
81819f0f
CL
1233/*
1234 * Slab allocation and freeing
1235 */
65c3376a
CL
1236static inline struct page *alloc_slab_page(gfp_t flags, int node,
1237 struct kmem_cache_order_objects oo)
1238{
1239 int order = oo_order(oo);
1240
b1eeab67
VN
1241 flags |= __GFP_NOTRACK;
1242
2154a336 1243 if (node == NUMA_NO_NODE)
65c3376a
CL
1244 return alloc_pages(flags, order);
1245 else
6b65aaf3 1246 return alloc_pages_exact_node(node, flags, order);
65c3376a
CL
1247}
1248
81819f0f
CL
1249static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1250{
06428780 1251 struct page *page;
834f3d11 1252 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1253 gfp_t alloc_gfp;
81819f0f 1254
b7a49f0d 1255 flags |= s->allocflags;
e12ba74d 1256
ba52270d
PE
1257 /*
1258 * Let the initial higher-order allocation fail under memory pressure
1259 * so we fall-back to the minimum order allocation.
1260 */
1261 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1262
1263 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1264 if (unlikely(!page)) {
1265 oo = s->min;
1266 /*
1267 * Allocation may have failed due to fragmentation.
1268 * Try a lower order alloc if possible
1269 */
1270 page = alloc_slab_page(flags, node, oo);
1271 if (!page)
1272 return NULL;
81819f0f 1273
84e554e6 1274 stat(s, ORDER_FALLBACK);
65c3376a 1275 }
5a896d9e
VN
1276
1277 if (kmemcheck_enabled
5086c389 1278 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1279 int pages = 1 << oo_order(oo);
1280
1281 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1282
1283 /*
1284 * Objects from caches that have a constructor don't get
1285 * cleared when they're allocated, so we need to do it here.
1286 */
1287 if (s->ctor)
1288 kmemcheck_mark_uninitialized_pages(page, pages);
1289 else
1290 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1291 }
1292
834f3d11 1293 page->objects = oo_objects(oo);
81819f0f
CL
1294 mod_zone_page_state(page_zone(page),
1295 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1296 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1297 1 << oo_order(oo));
81819f0f
CL
1298
1299 return page;
1300}
1301
1302static void setup_object(struct kmem_cache *s, struct page *page,
1303 void *object)
1304{
3ec09742 1305 setup_object_debug(s, page, object);
4f104934 1306 if (unlikely(s->ctor))
51cc5068 1307 s->ctor(object);
81819f0f
CL
1308}
1309
1310static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1311{
1312 struct page *page;
81819f0f 1313 void *start;
81819f0f
CL
1314 void *last;
1315 void *p;
1316
6cb06229 1317 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1318
6cb06229
CL
1319 page = allocate_slab(s,
1320 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1321 if (!page)
1322 goto out;
1323
205ab99d 1324 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1325 page->slab = s;
1326 page->flags |= 1 << PG_slab;
81819f0f
CL
1327
1328 start = page_address(page);
81819f0f
CL
1329
1330 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1331 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1332
1333 last = start;
224a88be 1334 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1335 setup_object(s, page, last);
1336 set_freepointer(s, last, p);
1337 last = p;
1338 }
1339 setup_object(s, page, last);
a973e9dd 1340 set_freepointer(s, last, NULL);
81819f0f
CL
1341
1342 page->freelist = start;
1343 page->inuse = 0;
1344out:
81819f0f
CL
1345 return page;
1346}
1347
1348static void __free_slab(struct kmem_cache *s, struct page *page)
1349{
834f3d11
CL
1350 int order = compound_order(page);
1351 int pages = 1 << order;
81819f0f 1352
af537b0a 1353 if (kmem_cache_debug(s)) {
81819f0f
CL
1354 void *p;
1355
1356 slab_pad_check(s, page);
224a88be
CL
1357 for_each_object(p, s, page_address(page),
1358 page->objects)
f7cb1933 1359 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1360 }
1361
b1eeab67 1362 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1363
81819f0f
CL
1364 mod_zone_page_state(page_zone(page),
1365 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1366 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1367 -pages);
81819f0f 1368
49bd5221
CL
1369 __ClearPageSlab(page);
1370 reset_page_mapcount(page);
1eb5ac64
NP
1371 if (current->reclaim_state)
1372 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1373 __free_pages(page, order);
81819f0f
CL
1374}
1375
da9a638c
LJ
1376#define need_reserve_slab_rcu \
1377 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1378
81819f0f
CL
1379static void rcu_free_slab(struct rcu_head *h)
1380{
1381 struct page *page;
1382
da9a638c
LJ
1383 if (need_reserve_slab_rcu)
1384 page = virt_to_head_page(h);
1385 else
1386 page = container_of((struct list_head *)h, struct page, lru);
1387
81819f0f
CL
1388 __free_slab(page->slab, page);
1389}
1390
1391static void free_slab(struct kmem_cache *s, struct page *page)
1392{
1393 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
da9a638c
LJ
1394 struct rcu_head *head;
1395
1396 if (need_reserve_slab_rcu) {
1397 int order = compound_order(page);
1398 int offset = (PAGE_SIZE << order) - s->reserved;
1399
1400 VM_BUG_ON(s->reserved != sizeof(*head));
1401 head = page_address(page) + offset;
1402 } else {
1403 /*
1404 * RCU free overloads the RCU head over the LRU
1405 */
1406 head = (void *)&page->lru;
1407 }
81819f0f
CL
1408
1409 call_rcu(head, rcu_free_slab);
1410 } else
1411 __free_slab(s, page);
1412}
1413
1414static void discard_slab(struct kmem_cache *s, struct page *page)
1415{
205ab99d 1416 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1417 free_slab(s, page);
1418}
1419
1420/*
1421 * Per slab locking using the pagelock
1422 */
1423static __always_inline void slab_lock(struct page *page)
1424{
1425 bit_spin_lock(PG_locked, &page->flags);
1426}
1427
1428static __always_inline void slab_unlock(struct page *page)
1429{
a76d3546 1430 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1431}
1432
1433static __always_inline int slab_trylock(struct page *page)
1434{
1435 int rc = 1;
1436
1437 rc = bit_spin_trylock(PG_locked, &page->flags);
1438 return rc;
1439}
1440
1441/*
1442 * Management of partially allocated slabs
1443 */
7c2e132c
CL
1444static void add_partial(struct kmem_cache_node *n,
1445 struct page *page, int tail)
81819f0f 1446{
e95eed57
CL
1447 spin_lock(&n->list_lock);
1448 n->nr_partial++;
7c2e132c
CL
1449 if (tail)
1450 list_add_tail(&page->lru, &n->partial);
1451 else
1452 list_add(&page->lru, &n->partial);
81819f0f
CL
1453 spin_unlock(&n->list_lock);
1454}
1455
62e346a8
CL
1456static inline void __remove_partial(struct kmem_cache_node *n,
1457 struct page *page)
1458{
1459 list_del(&page->lru);
1460 n->nr_partial--;
1461}
1462
0121c619 1463static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1464{
1465 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1466
1467 spin_lock(&n->list_lock);
62e346a8 1468 __remove_partial(n, page);
81819f0f
CL
1469 spin_unlock(&n->list_lock);
1470}
1471
1472/*
672bba3a 1473 * Lock slab and remove from the partial list.
81819f0f 1474 *
672bba3a 1475 * Must hold list_lock.
81819f0f 1476 */
0121c619
CL
1477static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1478 struct page *page)
81819f0f
CL
1479{
1480 if (slab_trylock(page)) {
62e346a8 1481 __remove_partial(n, page);
8a38082d 1482 __SetPageSlubFrozen(page);
81819f0f
CL
1483 return 1;
1484 }
1485 return 0;
1486}
1487
1488/*
672bba3a 1489 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1490 */
1491static struct page *get_partial_node(struct kmem_cache_node *n)
1492{
1493 struct page *page;
1494
1495 /*
1496 * Racy check. If we mistakenly see no partial slabs then we
1497 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1498 * partial slab and there is none available then get_partials()
1499 * will return NULL.
81819f0f
CL
1500 */
1501 if (!n || !n->nr_partial)
1502 return NULL;
1503
1504 spin_lock(&n->list_lock);
1505 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1506 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1507 goto out;
1508 page = NULL;
1509out:
1510 spin_unlock(&n->list_lock);
1511 return page;
1512}
1513
1514/*
672bba3a 1515 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1516 */
1517static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1518{
1519#ifdef CONFIG_NUMA
1520 struct zonelist *zonelist;
dd1a239f 1521 struct zoneref *z;
54a6eb5c
MG
1522 struct zone *zone;
1523 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1524 struct page *page;
1525
1526 /*
672bba3a
CL
1527 * The defrag ratio allows a configuration of the tradeoffs between
1528 * inter node defragmentation and node local allocations. A lower
1529 * defrag_ratio increases the tendency to do local allocations
1530 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1531 *
672bba3a
CL
1532 * If the defrag_ratio is set to 0 then kmalloc() always
1533 * returns node local objects. If the ratio is higher then kmalloc()
1534 * may return off node objects because partial slabs are obtained
1535 * from other nodes and filled up.
81819f0f 1536 *
6446faa2 1537 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1538 * defrag_ratio = 1000) then every (well almost) allocation will
1539 * first attempt to defrag slab caches on other nodes. This means
1540 * scanning over all nodes to look for partial slabs which may be
1541 * expensive if we do it every time we are trying to find a slab
1542 * with available objects.
81819f0f 1543 */
9824601e
CL
1544 if (!s->remote_node_defrag_ratio ||
1545 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1546 return NULL;
1547
c0ff7453 1548 get_mems_allowed();
0e88460d 1549 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1550 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1551 struct kmem_cache_node *n;
1552
54a6eb5c 1553 n = get_node(s, zone_to_nid(zone));
81819f0f 1554
54a6eb5c 1555 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1556 n->nr_partial > s->min_partial) {
81819f0f 1557 page = get_partial_node(n);
c0ff7453
MX
1558 if (page) {
1559 put_mems_allowed();
81819f0f 1560 return page;
c0ff7453 1561 }
81819f0f
CL
1562 }
1563 }
c0ff7453 1564 put_mems_allowed();
81819f0f
CL
1565#endif
1566 return NULL;
1567}
1568
1569/*
1570 * Get a partial page, lock it and return it.
1571 */
1572static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1573{
1574 struct page *page;
2154a336 1575 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
81819f0f
CL
1576
1577 page = get_partial_node(get_node(s, searchnode));
33de04ec 1578 if (page || node != NUMA_NO_NODE)
81819f0f
CL
1579 return page;
1580
1581 return get_any_partial(s, flags);
1582}
1583
1584/*
1585 * Move a page back to the lists.
1586 *
1587 * Must be called with the slab lock held.
1588 *
1589 * On exit the slab lock will have been dropped.
1590 */
7c2e132c 1591static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
3478973d 1592 __releases(bitlock)
81819f0f 1593{
e95eed57
CL
1594 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1595
8a38082d 1596 __ClearPageSlubFrozen(page);
81819f0f 1597 if (page->inuse) {
e95eed57 1598
a973e9dd 1599 if (page->freelist) {
7c2e132c 1600 add_partial(n, page, tail);
84e554e6 1601 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
8ff12cfc 1602 } else {
84e554e6 1603 stat(s, DEACTIVATE_FULL);
af537b0a 1604 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1605 add_full(n, page);
1606 }
81819f0f
CL
1607 slab_unlock(page);
1608 } else {
84e554e6 1609 stat(s, DEACTIVATE_EMPTY);
3b89d7d8 1610 if (n->nr_partial < s->min_partial) {
e95eed57 1611 /*
672bba3a
CL
1612 * Adding an empty slab to the partial slabs in order
1613 * to avoid page allocator overhead. This slab needs
1614 * to come after the other slabs with objects in
6446faa2
CL
1615 * so that the others get filled first. That way the
1616 * size of the partial list stays small.
1617 *
0121c619
CL
1618 * kmem_cache_shrink can reclaim any empty slabs from
1619 * the partial list.
e95eed57 1620 */
7c2e132c 1621 add_partial(n, page, 1);
e95eed57
CL
1622 slab_unlock(page);
1623 } else {
1624 slab_unlock(page);
84e554e6 1625 stat(s, FREE_SLAB);
e95eed57
CL
1626 discard_slab(s, page);
1627 }
81819f0f
CL
1628 }
1629}
1630
8a5ec0ba
CL
1631#ifdef CONFIG_PREEMPT
1632/*
1633 * Calculate the next globally unique transaction for disambiguiation
1634 * during cmpxchg. The transactions start with the cpu number and are then
1635 * incremented by CONFIG_NR_CPUS.
1636 */
1637#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1638#else
1639/*
1640 * No preemption supported therefore also no need to check for
1641 * different cpus.
1642 */
1643#define TID_STEP 1
1644#endif
1645
1646static inline unsigned long next_tid(unsigned long tid)
1647{
1648 return tid + TID_STEP;
1649}
1650
1651static inline unsigned int tid_to_cpu(unsigned long tid)
1652{
1653 return tid % TID_STEP;
1654}
1655
1656static inline unsigned long tid_to_event(unsigned long tid)
1657{
1658 return tid / TID_STEP;
1659}
1660
1661static inline unsigned int init_tid(int cpu)
1662{
1663 return cpu;
1664}
1665
1666static inline void note_cmpxchg_failure(const char *n,
1667 const struct kmem_cache *s, unsigned long tid)
1668{
1669#ifdef SLUB_DEBUG_CMPXCHG
1670 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1671
1672 printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);
1673
1674#ifdef CONFIG_PREEMPT
1675 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1676 printk("due to cpu change %d -> %d\n",
1677 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1678 else
1679#endif
1680 if (tid_to_event(tid) != tid_to_event(actual_tid))
1681 printk("due to cpu running other code. Event %ld->%ld\n",
1682 tid_to_event(tid), tid_to_event(actual_tid));
1683 else
1684 printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
1685 actual_tid, tid, next_tid(tid));
1686#endif
4fdccdfb 1687 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1688}
1689
8a5ec0ba
CL
1690void init_kmem_cache_cpus(struct kmem_cache *s)
1691{
8a5ec0ba
CL
1692 int cpu;
1693
1694 for_each_possible_cpu(cpu)
1695 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1696}
81819f0f
CL
1697/*
1698 * Remove the cpu slab
1699 */
dfb4f096 1700static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3478973d 1701 __releases(bitlock)
81819f0f 1702{
dfb4f096 1703 struct page *page = c->page;
7c2e132c 1704 int tail = 1;
8ff12cfc 1705
b773ad73 1706 if (page->freelist)
84e554e6 1707 stat(s, DEACTIVATE_REMOTE_FREES);
894b8788 1708 /*
6446faa2 1709 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1710 * because both freelists are empty. So this is unlikely
1711 * to occur.
1712 */
a973e9dd 1713 while (unlikely(c->freelist)) {
894b8788
CL
1714 void **object;
1715
7c2e132c
CL
1716 tail = 0; /* Hot objects. Put the slab first */
1717
894b8788 1718 /* Retrieve object from cpu_freelist */
dfb4f096 1719 object = c->freelist;
ff12059e 1720 c->freelist = get_freepointer(s, c->freelist);
894b8788
CL
1721
1722 /* And put onto the regular freelist */
ff12059e 1723 set_freepointer(s, object, page->freelist);
894b8788
CL
1724 page->freelist = object;
1725 page->inuse--;
1726 }
dfb4f096 1727 c->page = NULL;
8a5ec0ba 1728 c->tid = next_tid(c->tid);
7c2e132c 1729 unfreeze_slab(s, page, tail);
81819f0f
CL
1730}
1731
dfb4f096 1732static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1733{
84e554e6 1734 stat(s, CPUSLAB_FLUSH);
dfb4f096
CL
1735 slab_lock(c->page);
1736 deactivate_slab(s, c);
81819f0f
CL
1737}
1738
1739/*
1740 * Flush cpu slab.
6446faa2 1741 *
81819f0f
CL
1742 * Called from IPI handler with interrupts disabled.
1743 */
0c710013 1744static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1745{
9dfc6e68 1746 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 1747
dfb4f096
CL
1748 if (likely(c && c->page))
1749 flush_slab(s, c);
81819f0f
CL
1750}
1751
1752static void flush_cpu_slab(void *d)
1753{
1754 struct kmem_cache *s = d;
81819f0f 1755
dfb4f096 1756 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1757}
1758
1759static void flush_all(struct kmem_cache *s)
1760{
15c8b6c1 1761 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1762}
1763
dfb4f096
CL
1764/*
1765 * Check if the objects in a per cpu structure fit numa
1766 * locality expectations.
1767 */
1768static inline int node_match(struct kmem_cache_cpu *c, int node)
1769{
1770#ifdef CONFIG_NUMA
2154a336 1771 if (node != NUMA_NO_NODE && c->node != node)
dfb4f096
CL
1772 return 0;
1773#endif
1774 return 1;
1775}
1776
781b2ba6
PE
1777static int count_free(struct page *page)
1778{
1779 return page->objects - page->inuse;
1780}
1781
1782static unsigned long count_partial(struct kmem_cache_node *n,
1783 int (*get_count)(struct page *))
1784{
1785 unsigned long flags;
1786 unsigned long x = 0;
1787 struct page *page;
1788
1789 spin_lock_irqsave(&n->list_lock, flags);
1790 list_for_each_entry(page, &n->partial, lru)
1791 x += get_count(page);
1792 spin_unlock_irqrestore(&n->list_lock, flags);
1793 return x;
1794}
1795
26c02cf0
AB
1796static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1797{
1798#ifdef CONFIG_SLUB_DEBUG
1799 return atomic_long_read(&n->total_objects);
1800#else
1801 return 0;
1802#endif
1803}
1804
781b2ba6
PE
1805static noinline void
1806slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1807{
1808 int node;
1809
1810 printk(KERN_WARNING
1811 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1812 nid, gfpflags);
1813 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1814 "default order: %d, min order: %d\n", s->name, s->objsize,
1815 s->size, oo_order(s->oo), oo_order(s->min));
1816
fa5ec8a1
DR
1817 if (oo_order(s->min) > get_order(s->objsize))
1818 printk(KERN_WARNING " %s debugging increased min order, use "
1819 "slub_debug=O to disable.\n", s->name);
1820
781b2ba6
PE
1821 for_each_online_node(node) {
1822 struct kmem_cache_node *n = get_node(s, node);
1823 unsigned long nr_slabs;
1824 unsigned long nr_objs;
1825 unsigned long nr_free;
1826
1827 if (!n)
1828 continue;
1829
26c02cf0
AB
1830 nr_free = count_partial(n, count_free);
1831 nr_slabs = node_nr_slabs(n);
1832 nr_objs = node_nr_objs(n);
781b2ba6
PE
1833
1834 printk(KERN_WARNING
1835 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1836 node, nr_slabs, nr_objs, nr_free);
1837 }
1838}
1839
81819f0f 1840/*
894b8788
CL
1841 * Slow path. The lockless freelist is empty or we need to perform
1842 * debugging duties.
1843 *
1844 * Interrupts are disabled.
81819f0f 1845 *
894b8788
CL
1846 * Processing is still very fast if new objects have been freed to the
1847 * regular freelist. In that case we simply take over the regular freelist
1848 * as the lockless freelist and zap the regular freelist.
81819f0f 1849 *
894b8788
CL
1850 * If that is not working then we fall back to the partial lists. We take the
1851 * first element of the freelist as the object to allocate now and move the
1852 * rest of the freelist to the lockless freelist.
81819f0f 1853 *
894b8788 1854 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1855 * we need to allocate a new slab. This is the slowest path since it involves
1856 * a call to the page allocator and the setup of a new slab.
81819f0f 1857 */
ce71e27c
EGM
1858static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1859 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1860{
81819f0f 1861 void **object;
01ad8a7b 1862 struct page *page;
8a5ec0ba
CL
1863 unsigned long flags;
1864
1865 local_irq_save(flags);
1866#ifdef CONFIG_PREEMPT
1867 /*
1868 * We may have been preempted and rescheduled on a different
1869 * cpu before disabling interrupts. Need to reload cpu area
1870 * pointer.
1871 */
1872 c = this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1873#endif
81819f0f 1874
e72e9c23
LT
1875 /* We handle __GFP_ZERO in the caller */
1876 gfpflags &= ~__GFP_ZERO;
1877
01ad8a7b
CL
1878 page = c->page;
1879 if (!page)
81819f0f
CL
1880 goto new_slab;
1881
01ad8a7b 1882 slab_lock(page);
dfb4f096 1883 if (unlikely(!node_match(c, node)))
81819f0f 1884 goto another_slab;
6446faa2 1885
84e554e6 1886 stat(s, ALLOC_REFILL);
6446faa2 1887
894b8788 1888load_freelist:
01ad8a7b 1889 object = page->freelist;
a973e9dd 1890 if (unlikely(!object))
81819f0f 1891 goto another_slab;
af537b0a 1892 if (kmem_cache_debug(s))
81819f0f
CL
1893 goto debug;
1894
ff12059e 1895 c->freelist = get_freepointer(s, object);
01ad8a7b
CL
1896 page->inuse = page->objects;
1897 page->freelist = NULL;
01ad8a7b 1898
01ad8a7b 1899 slab_unlock(page);
8a5ec0ba
CL
1900 c->tid = next_tid(c->tid);
1901 local_irq_restore(flags);
84e554e6 1902 stat(s, ALLOC_SLOWPATH);
81819f0f
CL
1903 return object;
1904
1905another_slab:
dfb4f096 1906 deactivate_slab(s, c);
81819f0f
CL
1907
1908new_slab:
01ad8a7b
CL
1909 page = get_partial(s, gfpflags, node);
1910 if (page) {
84e554e6 1911 stat(s, ALLOC_FROM_PARTIAL);
dc1fb7f4
CL
1912 c->node = page_to_nid(page);
1913 c->page = page;
894b8788 1914 goto load_freelist;
81819f0f
CL
1915 }
1916
c1d50836 1917 gfpflags &= gfp_allowed_mask;
b811c202
CL
1918 if (gfpflags & __GFP_WAIT)
1919 local_irq_enable();
1920
01ad8a7b 1921 page = new_slab(s, gfpflags, node);
b811c202
CL
1922
1923 if (gfpflags & __GFP_WAIT)
1924 local_irq_disable();
1925
01ad8a7b 1926 if (page) {
9dfc6e68 1927 c = __this_cpu_ptr(s->cpu_slab);
84e554e6 1928 stat(s, ALLOC_SLAB);
05aa3450 1929 if (c->page)
dfb4f096 1930 flush_slab(s, c);
01ad8a7b
CL
1931
1932 slab_lock(page);
1933 __SetPageSlubFrozen(page);
bd07d87f
DR
1934 c->node = page_to_nid(page);
1935 c->page = page;
4b6f0750 1936 goto load_freelist;
81819f0f 1937 }
95f85989
PE
1938 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1939 slab_out_of_memory(s, gfpflags, node);
2fd66c51 1940 local_irq_restore(flags);
71c7a06f 1941 return NULL;
81819f0f 1942debug:
01ad8a7b 1943 if (!alloc_debug_processing(s, page, object, addr))
81819f0f 1944 goto another_slab;
894b8788 1945
01ad8a7b
CL
1946 page->inuse++;
1947 page->freelist = get_freepointer(s, object);
442b06bc
CL
1948 deactivate_slab(s, c);
1949 c->page = NULL;
15b7c514 1950 c->node = NUMA_NO_NODE;
a71ae47a
CL
1951 local_irq_restore(flags);
1952 return object;
894b8788
CL
1953}
1954
1955/*
1956 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1957 * have the fastpath folded into their functions. So no function call
1958 * overhead for requests that can be satisfied on the fastpath.
1959 *
1960 * The fastpath works by first checking if the lockless freelist can be used.
1961 * If not then __slab_alloc is called for slow processing.
1962 *
1963 * Otherwise we can simply pick the next object from the lockless free list.
1964 */
06428780 1965static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1966 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1967{
894b8788 1968 void **object;
dfb4f096 1969 struct kmem_cache_cpu *c;
8a5ec0ba 1970 unsigned long tid;
1f84260c 1971
c016b0bd 1972 if (slab_pre_alloc_hook(s, gfpflags))
773ff60e 1973 return NULL;
1f84260c 1974
8a5ec0ba 1975redo:
8a5ec0ba
CL
1976
1977 /*
1978 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
1979 * enabled. We may switch back and forth between cpus while
1980 * reading from one cpu area. That does not matter as long
1981 * as we end up on the original cpu again when doing the cmpxchg.
1982 */
9dfc6e68 1983 c = __this_cpu_ptr(s->cpu_slab);
8a5ec0ba 1984
8a5ec0ba
CL
1985 /*
1986 * The transaction ids are globally unique per cpu and per operation on
1987 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
1988 * occurs on the right processor and that there was no operation on the
1989 * linked list in between.
1990 */
1991 tid = c->tid;
1992 barrier();
8a5ec0ba 1993
9dfc6e68 1994 object = c->freelist;
9dfc6e68 1995 if (unlikely(!object || !node_match(c, node)))
894b8788 1996
dfb4f096 1997 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1998
1999 else {
8a5ec0ba 2000 /*
25985edc 2001 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2002 * operation and if we are on the right processor.
2003 *
2004 * The cmpxchg does the following atomically (without lock semantics!)
2005 * 1. Relocate first pointer to the current per cpu area.
2006 * 2. Verify that tid and freelist have not been changed
2007 * 3. If they were not changed replace tid and freelist
2008 *
2009 * Since this is without lock semantics the protection is only against
2010 * code executing on this cpu *not* from access by other cpus.
2011 */
30106b8c 2012 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2013 s->cpu_slab->freelist, s->cpu_slab->tid,
2014 object, tid,
1393d9a1 2015 get_freepointer_safe(s, object), next_tid(tid)))) {
8a5ec0ba
CL
2016
2017 note_cmpxchg_failure("slab_alloc", s, tid);
2018 goto redo;
2019 }
84e554e6 2020 stat(s, ALLOC_FASTPATH);
894b8788 2021 }
8a5ec0ba 2022
74e2134f 2023 if (unlikely(gfpflags & __GFP_ZERO) && object)
ff12059e 2024 memset(object, 0, s->objsize);
d07dbea4 2025
c016b0bd 2026 slab_post_alloc_hook(s, gfpflags, object);
5a896d9e 2027
894b8788 2028 return object;
81819f0f
CL
2029}
2030
2031void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2032{
2154a336 2033 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2034
ca2b84cb 2035 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
2036
2037 return ret;
81819f0f
CL
2038}
2039EXPORT_SYMBOL(kmem_cache_alloc);
2040
0f24f128 2041#ifdef CONFIG_TRACING
4a92379b
RK
2042void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2043{
2044 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
2045 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2046 return ret;
2047}
2048EXPORT_SYMBOL(kmem_cache_alloc_trace);
2049
2050void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
5b882be4 2051{
4a92379b
RK
2052 void *ret = kmalloc_order(size, flags, order);
2053 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
2054 return ret;
5b882be4 2055}
4a92379b 2056EXPORT_SYMBOL(kmalloc_order_trace);
5b882be4
EGM
2057#endif
2058
81819f0f
CL
2059#ifdef CONFIG_NUMA
2060void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2061{
5b882be4
EGM
2062 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2063
ca2b84cb
EGM
2064 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2065 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
2066
2067 return ret;
81819f0f
CL
2068}
2069EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2070
0f24f128 2071#ifdef CONFIG_TRACING
4a92379b 2072void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2073 gfp_t gfpflags,
4a92379b 2074 int node, size_t size)
5b882be4 2075{
4a92379b
RK
2076 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
2077
2078 trace_kmalloc_node(_RET_IP_, ret,
2079 size, s->size, gfpflags, node);
2080 return ret;
5b882be4 2081}
4a92379b 2082EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2083#endif
5d1f57e4 2084#endif
5b882be4 2085
81819f0f 2086/*
894b8788
CL
2087 * Slow patch handling. This may still be called frequently since objects
2088 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2089 *
894b8788
CL
2090 * So we still attempt to reduce cache line usage. Just take the slab
2091 * lock and free the item. If there is no additional partial page
2092 * handling required then we can return immediately.
81819f0f 2093 */
894b8788 2094static void __slab_free(struct kmem_cache *s, struct page *page,
ff12059e 2095 void *x, unsigned long addr)
81819f0f
CL
2096{
2097 void *prior;
2098 void **object = (void *)x;
8a5ec0ba 2099 unsigned long flags;
81819f0f 2100
8a5ec0ba 2101 local_irq_save(flags);
81819f0f 2102 slab_lock(page);
8a5ec0ba 2103 stat(s, FREE_SLOWPATH);
81819f0f 2104
8dc16c6c
CL
2105 if (kmem_cache_debug(s) && !free_debug_processing(s, page, x, addr))
2106 goto out_unlock;
6446faa2 2107
ff12059e
CL
2108 prior = page->freelist;
2109 set_freepointer(s, object, prior);
81819f0f
CL
2110 page->freelist = object;
2111 page->inuse--;
2112
8a38082d 2113 if (unlikely(PageSlubFrozen(page))) {
84e554e6 2114 stat(s, FREE_FROZEN);
81819f0f 2115 goto out_unlock;
8ff12cfc 2116 }
81819f0f
CL
2117
2118 if (unlikely(!page->inuse))
2119 goto slab_empty;
2120
2121 /*
6446faa2 2122 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
2123 * then add it.
2124 */
a973e9dd 2125 if (unlikely(!prior)) {
7c2e132c 2126 add_partial(get_node(s, page_to_nid(page)), page, 1);
84e554e6 2127 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2128 }
81819f0f
CL
2129
2130out_unlock:
2131 slab_unlock(page);
8a5ec0ba 2132 local_irq_restore(flags);
81819f0f
CL
2133 return;
2134
2135slab_empty:
a973e9dd 2136 if (prior) {
81819f0f 2137 /*
672bba3a 2138 * Slab still on the partial list.
81819f0f
CL
2139 */
2140 remove_partial(s, page);
84e554e6 2141 stat(s, FREE_REMOVE_PARTIAL);
8ff12cfc 2142 }
81819f0f 2143 slab_unlock(page);
8a5ec0ba 2144 local_irq_restore(flags);
84e554e6 2145 stat(s, FREE_SLAB);
81819f0f 2146 discard_slab(s, page);
81819f0f
CL
2147}
2148
894b8788
CL
2149/*
2150 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2151 * can perform fastpath freeing without additional function calls.
2152 *
2153 * The fastpath is only possible if we are freeing to the current cpu slab
2154 * of this processor. This typically the case if we have just allocated
2155 * the item before.
2156 *
2157 * If fastpath is not possible then fall back to __slab_free where we deal
2158 * with all sorts of special processing.
2159 */
06428780 2160static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 2161 struct page *page, void *x, unsigned long addr)
894b8788
CL
2162{
2163 void **object = (void *)x;
dfb4f096 2164 struct kmem_cache_cpu *c;
8a5ec0ba 2165 unsigned long tid;
1f84260c 2166
c016b0bd
CL
2167 slab_free_hook(s, x);
2168
8a5ec0ba 2169redo:
a24c5a0e 2170
8a5ec0ba
CL
2171 /*
2172 * Determine the currently cpus per cpu slab.
2173 * The cpu may change afterward. However that does not matter since
2174 * data is retrieved via this pointer. If we are on the same cpu
2175 * during the cmpxchg then the free will succedd.
2176 */
9dfc6e68 2177 c = __this_cpu_ptr(s->cpu_slab);
c016b0bd 2178
8a5ec0ba
CL
2179 tid = c->tid;
2180 barrier();
c016b0bd 2181
442b06bc 2182 if (likely(page == c->page)) {
ff12059e 2183 set_freepointer(s, object, c->freelist);
8a5ec0ba 2184
30106b8c 2185 if (unlikely(!irqsafe_cpu_cmpxchg_double(
8a5ec0ba
CL
2186 s->cpu_slab->freelist, s->cpu_slab->tid,
2187 c->freelist, tid,
2188 object, next_tid(tid)))) {
2189
2190 note_cmpxchg_failure("slab_free", s, tid);
2191 goto redo;
2192 }
84e554e6 2193 stat(s, FREE_FASTPATH);
894b8788 2194 } else
ff12059e 2195 __slab_free(s, page, x, addr);
894b8788 2196
894b8788
CL
2197}
2198
81819f0f
CL
2199void kmem_cache_free(struct kmem_cache *s, void *x)
2200{
77c5e2d0 2201 struct page *page;
81819f0f 2202
b49af68f 2203 page = virt_to_head_page(x);
81819f0f 2204
ce71e27c 2205 slab_free(s, page, x, _RET_IP_);
5b882be4 2206
ca2b84cb 2207 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2208}
2209EXPORT_SYMBOL(kmem_cache_free);
2210
81819f0f 2211/*
672bba3a
CL
2212 * Object placement in a slab is made very easy because we always start at
2213 * offset 0. If we tune the size of the object to the alignment then we can
2214 * get the required alignment by putting one properly sized object after
2215 * another.
81819f0f
CL
2216 *
2217 * Notice that the allocation order determines the sizes of the per cpu
2218 * caches. Each processor has always one slab available for allocations.
2219 * Increasing the allocation order reduces the number of times that slabs
672bba3a 2220 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 2221 * locking overhead.
81819f0f
CL
2222 */
2223
2224/*
2225 * Mininum / Maximum order of slab pages. This influences locking overhead
2226 * and slab fragmentation. A higher order reduces the number of partial slabs
2227 * and increases the number of allocations possible without having to
2228 * take the list_lock.
2229 */
2230static int slub_min_order;
114e9e89 2231static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 2232static int slub_min_objects;
81819f0f
CL
2233
2234/*
2235 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 2236 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
2237 */
2238static int slub_nomerge;
2239
81819f0f
CL
2240/*
2241 * Calculate the order of allocation given an slab object size.
2242 *
672bba3a
CL
2243 * The order of allocation has significant impact on performance and other
2244 * system components. Generally order 0 allocations should be preferred since
2245 * order 0 does not cause fragmentation in the page allocator. Larger objects
2246 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 2247 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
2248 * would be wasted.
2249 *
2250 * In order to reach satisfactory performance we must ensure that a minimum
2251 * number of objects is in one slab. Otherwise we may generate too much
2252 * activity on the partial lists which requires taking the list_lock. This is
2253 * less a concern for large slabs though which are rarely used.
81819f0f 2254 *
672bba3a
CL
2255 * slub_max_order specifies the order where we begin to stop considering the
2256 * number of objects in a slab as critical. If we reach slub_max_order then
2257 * we try to keep the page order as low as possible. So we accept more waste
2258 * of space in favor of a small page order.
81819f0f 2259 *
672bba3a
CL
2260 * Higher order allocations also allow the placement of more objects in a
2261 * slab and thereby reduce object handling overhead. If the user has
2262 * requested a higher mininum order then we start with that one instead of
2263 * the smallest order which will fit the object.
81819f0f 2264 */
5e6d444e 2265static inline int slab_order(int size, int min_objects,
ab9a0f19 2266 int max_order, int fract_leftover, int reserved)
81819f0f
CL
2267{
2268 int order;
2269 int rem;
6300ea75 2270 int min_order = slub_min_order;
81819f0f 2271
ab9a0f19 2272 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 2273 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 2274
6300ea75 2275 for (order = max(min_order,
5e6d444e
CL
2276 fls(min_objects * size - 1) - PAGE_SHIFT);
2277 order <= max_order; order++) {
81819f0f 2278
5e6d444e 2279 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 2280
ab9a0f19 2281 if (slab_size < min_objects * size + reserved)
81819f0f
CL
2282 continue;
2283
ab9a0f19 2284 rem = (slab_size - reserved) % size;
81819f0f 2285
5e6d444e 2286 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2287 break;
2288
2289 }
672bba3a 2290
81819f0f
CL
2291 return order;
2292}
2293
ab9a0f19 2294static inline int calculate_order(int size, int reserved)
5e6d444e
CL
2295{
2296 int order;
2297 int min_objects;
2298 int fraction;
e8120ff1 2299 int max_objects;
5e6d444e
CL
2300
2301 /*
2302 * Attempt to find best configuration for a slab. This
2303 * works by first attempting to generate a layout with
2304 * the best configuration and backing off gradually.
2305 *
2306 * First we reduce the acceptable waste in a slab. Then
2307 * we reduce the minimum objects required in a slab.
2308 */
2309 min_objects = slub_min_objects;
9b2cd506
CL
2310 if (!min_objects)
2311 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 2312 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
2313 min_objects = min(min_objects, max_objects);
2314
5e6d444e 2315 while (min_objects > 1) {
c124f5b5 2316 fraction = 16;
5e6d444e
CL
2317 while (fraction >= 4) {
2318 order = slab_order(size, min_objects,
ab9a0f19 2319 slub_max_order, fraction, reserved);
5e6d444e
CL
2320 if (order <= slub_max_order)
2321 return order;
2322 fraction /= 2;
2323 }
5086c389 2324 min_objects--;
5e6d444e
CL
2325 }
2326
2327 /*
2328 * We were unable to place multiple objects in a slab. Now
2329 * lets see if we can place a single object there.
2330 */
ab9a0f19 2331 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
2332 if (order <= slub_max_order)
2333 return order;
2334
2335 /*
2336 * Doh this slab cannot be placed using slub_max_order.
2337 */
ab9a0f19 2338 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 2339 if (order < MAX_ORDER)
5e6d444e
CL
2340 return order;
2341 return -ENOSYS;
2342}
2343
81819f0f 2344/*
672bba3a 2345 * Figure out what the alignment of the objects will be.
81819f0f
CL
2346 */
2347static unsigned long calculate_alignment(unsigned long flags,
2348 unsigned long align, unsigned long size)
2349{
2350 /*
6446faa2
CL
2351 * If the user wants hardware cache aligned objects then follow that
2352 * suggestion if the object is sufficiently large.
81819f0f 2353 *
6446faa2
CL
2354 * The hardware cache alignment cannot override the specified
2355 * alignment though. If that is greater then use it.
81819f0f 2356 */
b6210386
NP
2357 if (flags & SLAB_HWCACHE_ALIGN) {
2358 unsigned long ralign = cache_line_size();
2359 while (size <= ralign / 2)
2360 ralign /= 2;
2361 align = max(align, ralign);
2362 }
81819f0f
CL
2363
2364 if (align < ARCH_SLAB_MINALIGN)
b6210386 2365 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2366
2367 return ALIGN(align, sizeof(void *));
2368}
2369
5595cffc
PE
2370static void
2371init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2372{
2373 n->nr_partial = 0;
81819f0f
CL
2374 spin_lock_init(&n->list_lock);
2375 INIT_LIST_HEAD(&n->partial);
8ab1372f 2376#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2377 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2378 atomic_long_set(&n->total_objects, 0);
643b1138 2379 INIT_LIST_HEAD(&n->full);
8ab1372f 2380#endif
81819f0f
CL
2381}
2382
55136592 2383static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 2384{
6c182dc0
CL
2385 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2386 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
4c93c355 2387
8a5ec0ba 2388 /*
d4d84fef
CM
2389 * Must align to double word boundary for the double cmpxchg
2390 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 2391 */
d4d84fef
CM
2392 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
2393 2 * sizeof(void *));
8a5ec0ba
CL
2394
2395 if (!s->cpu_slab)
2396 return 0;
2397
2398 init_kmem_cache_cpus(s);
4c93c355 2399
8a5ec0ba 2400 return 1;
4c93c355 2401}
4c93c355 2402
51df1142
CL
2403static struct kmem_cache *kmem_cache_node;
2404
81819f0f
CL
2405/*
2406 * No kmalloc_node yet so do it by hand. We know that this is the first
2407 * slab on the node for this slabcache. There are no concurrent accesses
2408 * possible.
2409 *
2410 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2411 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2412 * memory on a fresh node that has no slab structures yet.
81819f0f 2413 */
55136592 2414static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
2415{
2416 struct page *page;
2417 struct kmem_cache_node *n;
ba84c73c 2418 unsigned long flags;
81819f0f 2419
51df1142 2420 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 2421
51df1142 2422 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
2423
2424 BUG_ON(!page);
a2f92ee7
CL
2425 if (page_to_nid(page) != node) {
2426 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2427 "node %d\n", node);
2428 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2429 "in order to be able to continue\n");
2430 }
2431
81819f0f
CL
2432 n = page->freelist;
2433 BUG_ON(!n);
51df1142 2434 page->freelist = get_freepointer(kmem_cache_node, n);
81819f0f 2435 page->inuse++;
51df1142 2436 kmem_cache_node->node[node] = n;
8ab1372f 2437#ifdef CONFIG_SLUB_DEBUG
f7cb1933 2438 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 2439 init_tracking(kmem_cache_node, n);
8ab1372f 2440#endif
51df1142
CL
2441 init_kmem_cache_node(n, kmem_cache_node);
2442 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 2443
ba84c73c 2444 /*
2445 * lockdep requires consistent irq usage for each lock
2446 * so even though there cannot be a race this early in
2447 * the boot sequence, we still disable irqs.
2448 */
2449 local_irq_save(flags);
7c2e132c 2450 add_partial(n, page, 0);
ba84c73c 2451 local_irq_restore(flags);
81819f0f
CL
2452}
2453
2454static void free_kmem_cache_nodes(struct kmem_cache *s)
2455{
2456 int node;
2457
f64dc58c 2458 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f 2459 struct kmem_cache_node *n = s->node[node];
51df1142 2460
73367bd8 2461 if (n)
51df1142
CL
2462 kmem_cache_free(kmem_cache_node, n);
2463
81819f0f
CL
2464 s->node[node] = NULL;
2465 }
2466}
2467
55136592 2468static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
2469{
2470 int node;
81819f0f 2471
f64dc58c 2472 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2473 struct kmem_cache_node *n;
2474
73367bd8 2475 if (slab_state == DOWN) {
55136592 2476 early_kmem_cache_node_alloc(node);
73367bd8
AD
2477 continue;
2478 }
51df1142 2479 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 2480 GFP_KERNEL, node);
81819f0f 2481
73367bd8
AD
2482 if (!n) {
2483 free_kmem_cache_nodes(s);
2484 return 0;
81819f0f 2485 }
73367bd8 2486
81819f0f 2487 s->node[node] = n;
5595cffc 2488 init_kmem_cache_node(n, s);
81819f0f
CL
2489 }
2490 return 1;
2491}
81819f0f 2492
c0bdb232 2493static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2494{
2495 if (min < MIN_PARTIAL)
2496 min = MIN_PARTIAL;
2497 else if (min > MAX_PARTIAL)
2498 min = MAX_PARTIAL;
2499 s->min_partial = min;
2500}
2501
81819f0f
CL
2502/*
2503 * calculate_sizes() determines the order and the distribution of data within
2504 * a slab object.
2505 */
06b285dc 2506static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2507{
2508 unsigned long flags = s->flags;
2509 unsigned long size = s->objsize;
2510 unsigned long align = s->align;
834f3d11 2511 int order;
81819f0f 2512
d8b42bf5
CL
2513 /*
2514 * Round up object size to the next word boundary. We can only
2515 * place the free pointer at word boundaries and this determines
2516 * the possible location of the free pointer.
2517 */
2518 size = ALIGN(size, sizeof(void *));
2519
2520#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2521 /*
2522 * Determine if we can poison the object itself. If the user of
2523 * the slab may touch the object after free or before allocation
2524 * then we should never poison the object itself.
2525 */
2526 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2527 !s->ctor)
81819f0f
CL
2528 s->flags |= __OBJECT_POISON;
2529 else
2530 s->flags &= ~__OBJECT_POISON;
2531
81819f0f
CL
2532
2533 /*
672bba3a 2534 * If we are Redzoning then check if there is some space between the
81819f0f 2535 * end of the object and the free pointer. If not then add an
672bba3a 2536 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2537 */
2538 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2539 size += sizeof(void *);
41ecc55b 2540#endif
81819f0f
CL
2541
2542 /*
672bba3a
CL
2543 * With that we have determined the number of bytes in actual use
2544 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2545 */
2546 s->inuse = size;
2547
2548 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2549 s->ctor)) {
81819f0f
CL
2550 /*
2551 * Relocate free pointer after the object if it is not
2552 * permitted to overwrite the first word of the object on
2553 * kmem_cache_free.
2554 *
2555 * This is the case if we do RCU, have a constructor or
2556 * destructor or are poisoning the objects.
2557 */
2558 s->offset = size;
2559 size += sizeof(void *);
2560 }
2561
c12b3c62 2562#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2563 if (flags & SLAB_STORE_USER)
2564 /*
2565 * Need to store information about allocs and frees after
2566 * the object.
2567 */
2568 size += 2 * sizeof(struct track);
2569
be7b3fbc 2570 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2571 /*
2572 * Add some empty padding so that we can catch
2573 * overwrites from earlier objects rather than let
2574 * tracking information or the free pointer be
0211a9c8 2575 * corrupted if a user writes before the start
81819f0f
CL
2576 * of the object.
2577 */
2578 size += sizeof(void *);
41ecc55b 2579#endif
672bba3a 2580
81819f0f
CL
2581 /*
2582 * Determine the alignment based on various parameters that the
65c02d4c
CL
2583 * user specified and the dynamic determination of cache line size
2584 * on bootup.
81819f0f
CL
2585 */
2586 align = calculate_alignment(flags, align, s->objsize);
dcb0ce1b 2587 s->align = align;
81819f0f
CL
2588
2589 /*
2590 * SLUB stores one object immediately after another beginning from
2591 * offset 0. In order to align the objects we have to simply size
2592 * each object to conform to the alignment.
2593 */
2594 size = ALIGN(size, align);
2595 s->size = size;
06b285dc
CL
2596 if (forced_order >= 0)
2597 order = forced_order;
2598 else
ab9a0f19 2599 order = calculate_order(size, s->reserved);
81819f0f 2600
834f3d11 2601 if (order < 0)
81819f0f
CL
2602 return 0;
2603
b7a49f0d 2604 s->allocflags = 0;
834f3d11 2605 if (order)
b7a49f0d
CL
2606 s->allocflags |= __GFP_COMP;
2607
2608 if (s->flags & SLAB_CACHE_DMA)
2609 s->allocflags |= SLUB_DMA;
2610
2611 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2612 s->allocflags |= __GFP_RECLAIMABLE;
2613
81819f0f
CL
2614 /*
2615 * Determine the number of objects per slab
2616 */
ab9a0f19
LJ
2617 s->oo = oo_make(order, size, s->reserved);
2618 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
2619 if (oo_objects(s->oo) > oo_objects(s->max))
2620 s->max = s->oo;
81819f0f 2621
834f3d11 2622 return !!oo_objects(s->oo);
81819f0f
CL
2623
2624}
2625
55136592 2626static int kmem_cache_open(struct kmem_cache *s,
81819f0f
CL
2627 const char *name, size_t size,
2628 size_t align, unsigned long flags,
51cc5068 2629 void (*ctor)(void *))
81819f0f
CL
2630{
2631 memset(s, 0, kmem_size);
2632 s->name = name;
2633 s->ctor = ctor;
81819f0f 2634 s->objsize = size;
81819f0f 2635 s->align = align;
ba0268a8 2636 s->flags = kmem_cache_flags(size, flags, name, ctor);
ab9a0f19 2637 s->reserved = 0;
81819f0f 2638
da9a638c
LJ
2639 if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
2640 s->reserved = sizeof(struct rcu_head);
81819f0f 2641
06b285dc 2642 if (!calculate_sizes(s, -1))
81819f0f 2643 goto error;
3de47213
DR
2644 if (disable_higher_order_debug) {
2645 /*
2646 * Disable debugging flags that store metadata if the min slab
2647 * order increased.
2648 */
2649 if (get_order(s->size) > get_order(s->objsize)) {
2650 s->flags &= ~DEBUG_METADATA_FLAGS;
2651 s->offset = 0;
2652 if (!calculate_sizes(s, -1))
2653 goto error;
2654 }
2655 }
81819f0f 2656
3b89d7d8
DR
2657 /*
2658 * The larger the object size is, the more pages we want on the partial
2659 * list to avoid pounding the page allocator excessively.
2660 */
c0bdb232 2661 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2662 s->refcount = 1;
2663#ifdef CONFIG_NUMA
e2cb96b7 2664 s->remote_node_defrag_ratio = 1000;
81819f0f 2665#endif
55136592 2666 if (!init_kmem_cache_nodes(s))
dfb4f096 2667 goto error;
81819f0f 2668
55136592 2669 if (alloc_kmem_cache_cpus(s))
81819f0f 2670 return 1;
ff12059e 2671
4c93c355 2672 free_kmem_cache_nodes(s);
81819f0f
CL
2673error:
2674 if (flags & SLAB_PANIC)
2675 panic("Cannot create slab %s size=%lu realsize=%u "
2676 "order=%u offset=%u flags=%lx\n",
834f3d11 2677 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2678 s->offset, flags);
2679 return 0;
2680}
81819f0f 2681
81819f0f
CL
2682/*
2683 * Determine the size of a slab object
2684 */
2685unsigned int kmem_cache_size(struct kmem_cache *s)
2686{
2687 return s->objsize;
2688}
2689EXPORT_SYMBOL(kmem_cache_size);
2690
33b12c38
CL
2691static void list_slab_objects(struct kmem_cache *s, struct page *page,
2692 const char *text)
2693{
2694#ifdef CONFIG_SLUB_DEBUG
2695 void *addr = page_address(page);
2696 void *p;
a5dd5c11
NK
2697 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2698 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
2699 if (!map)
2700 return;
33b12c38
CL
2701 slab_err(s, page, "%s", text);
2702 slab_lock(page);
33b12c38 2703
5f80b13a 2704 get_map(s, page, map);
33b12c38
CL
2705 for_each_object(p, s, addr, page->objects) {
2706
2707 if (!test_bit(slab_index(p, s, addr), map)) {
2708 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2709 p, p - addr);
2710 print_tracking(s, p);
2711 }
2712 }
2713 slab_unlock(page);
bbd7d57b 2714 kfree(map);
33b12c38
CL
2715#endif
2716}
2717
81819f0f 2718/*
599870b1 2719 * Attempt to free all partial slabs on a node.
81819f0f 2720 */
599870b1 2721static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2722{
81819f0f
CL
2723 unsigned long flags;
2724 struct page *page, *h;
2725
2726 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2727 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 2728 if (!page->inuse) {
62e346a8 2729 __remove_partial(n, page);
81819f0f 2730 discard_slab(s, page);
33b12c38
CL
2731 } else {
2732 list_slab_objects(s, page,
2733 "Objects remaining on kmem_cache_close()");
599870b1 2734 }
33b12c38 2735 }
81819f0f 2736 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2737}
2738
2739/*
672bba3a 2740 * Release all resources used by a slab cache.
81819f0f 2741 */
0c710013 2742static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2743{
2744 int node;
2745
2746 flush_all(s);
9dfc6e68 2747 free_percpu(s->cpu_slab);
81819f0f 2748 /* Attempt to free all objects */
f64dc58c 2749 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2750 struct kmem_cache_node *n = get_node(s, node);
2751
599870b1
CL
2752 free_partial(s, n);
2753 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2754 return 1;
2755 }
2756 free_kmem_cache_nodes(s);
2757 return 0;
2758}
2759
2760/*
2761 * Close a cache and release the kmem_cache structure
2762 * (must be used for caches created using kmem_cache_create)
2763 */
2764void kmem_cache_destroy(struct kmem_cache *s)
2765{
2766 down_write(&slub_lock);
2767 s->refcount--;
2768 if (!s->refcount) {
2769 list_del(&s->list);
d629d819
PE
2770 if (kmem_cache_close(s)) {
2771 printk(KERN_ERR "SLUB %s: %s called for cache that "
2772 "still has objects.\n", s->name, __func__);
2773 dump_stack();
2774 }
d76b1590
ED
2775 if (s->flags & SLAB_DESTROY_BY_RCU)
2776 rcu_barrier();
81819f0f 2777 sysfs_slab_remove(s);
2bce6485
CL
2778 }
2779 up_write(&slub_lock);
81819f0f
CL
2780}
2781EXPORT_SYMBOL(kmem_cache_destroy);
2782
2783/********************************************************************
2784 * Kmalloc subsystem
2785 *******************************************************************/
2786
51df1142 2787struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
81819f0f
CL
2788EXPORT_SYMBOL(kmalloc_caches);
2789
51df1142
CL
2790static struct kmem_cache *kmem_cache;
2791
55136592 2792#ifdef CONFIG_ZONE_DMA
51df1142 2793static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
55136592
CL
2794#endif
2795
81819f0f
CL
2796static int __init setup_slub_min_order(char *str)
2797{
06428780 2798 get_option(&str, &slub_min_order);
81819f0f
CL
2799
2800 return 1;
2801}
2802
2803__setup("slub_min_order=", setup_slub_min_order);
2804
2805static int __init setup_slub_max_order(char *str)
2806{
06428780 2807 get_option(&str, &slub_max_order);
818cf590 2808 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2809
2810 return 1;
2811}
2812
2813__setup("slub_max_order=", setup_slub_max_order);
2814
2815static int __init setup_slub_min_objects(char *str)
2816{
06428780 2817 get_option(&str, &slub_min_objects);
81819f0f
CL
2818
2819 return 1;
2820}
2821
2822__setup("slub_min_objects=", setup_slub_min_objects);
2823
2824static int __init setup_slub_nomerge(char *str)
2825{
2826 slub_nomerge = 1;
2827 return 1;
2828}
2829
2830__setup("slub_nomerge", setup_slub_nomerge);
2831
51df1142
CL
2832static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2833 int size, unsigned int flags)
81819f0f 2834{
51df1142
CL
2835 struct kmem_cache *s;
2836
2837 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2838
83b519e8
PE
2839 /*
2840 * This function is called with IRQs disabled during early-boot on
2841 * single CPU so there's no need to take slub_lock here.
2842 */
55136592 2843 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2844 flags, NULL))
81819f0f
CL
2845 goto panic;
2846
2847 list_add(&s->list, &slab_caches);
51df1142 2848 return s;
81819f0f
CL
2849
2850panic:
2851 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
51df1142 2852 return NULL;
81819f0f
CL
2853}
2854
f1b26339
CL
2855/*
2856 * Conversion table for small slabs sizes / 8 to the index in the
2857 * kmalloc array. This is necessary for slabs < 192 since we have non power
2858 * of two cache sizes there. The size of larger slabs can be determined using
2859 * fls.
2860 */
2861static s8 size_index[24] = {
2862 3, /* 8 */
2863 4, /* 16 */
2864 5, /* 24 */
2865 5, /* 32 */
2866 6, /* 40 */
2867 6, /* 48 */
2868 6, /* 56 */
2869 6, /* 64 */
2870 1, /* 72 */
2871 1, /* 80 */
2872 1, /* 88 */
2873 1, /* 96 */
2874 7, /* 104 */
2875 7, /* 112 */
2876 7, /* 120 */
2877 7, /* 128 */
2878 2, /* 136 */
2879 2, /* 144 */
2880 2, /* 152 */
2881 2, /* 160 */
2882 2, /* 168 */
2883 2, /* 176 */
2884 2, /* 184 */
2885 2 /* 192 */
2886};
2887
acdfcd04
AK
2888static inline int size_index_elem(size_t bytes)
2889{
2890 return (bytes - 1) / 8;
2891}
2892
81819f0f
CL
2893static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2894{
f1b26339 2895 int index;
81819f0f 2896
f1b26339
CL
2897 if (size <= 192) {
2898 if (!size)
2899 return ZERO_SIZE_PTR;
81819f0f 2900
acdfcd04 2901 index = size_index[size_index_elem(size)];
aadb4bc4 2902 } else
f1b26339 2903 index = fls(size - 1);
81819f0f
CL
2904
2905#ifdef CONFIG_ZONE_DMA
f1b26339 2906 if (unlikely((flags & SLUB_DMA)))
51df1142 2907 return kmalloc_dma_caches[index];
f1b26339 2908
81819f0f 2909#endif
51df1142 2910 return kmalloc_caches[index];
81819f0f
CL
2911}
2912
2913void *__kmalloc(size_t size, gfp_t flags)
2914{
aadb4bc4 2915 struct kmem_cache *s;
5b882be4 2916 void *ret;
81819f0f 2917
ffadd4d0 2918 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2919 return kmalloc_large(size, flags);
aadb4bc4
CL
2920
2921 s = get_slab(size, flags);
2922
2923 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2924 return s;
2925
2154a336 2926 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
5b882be4 2927
ca2b84cb 2928 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2929
2930 return ret;
81819f0f
CL
2931}
2932EXPORT_SYMBOL(__kmalloc);
2933
5d1f57e4 2934#ifdef CONFIG_NUMA
f619cfe1
CL
2935static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2936{
b1eeab67 2937 struct page *page;
e4f7c0b4 2938 void *ptr = NULL;
f619cfe1 2939
b1eeab67
VN
2940 flags |= __GFP_COMP | __GFP_NOTRACK;
2941 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 2942 if (page)
e4f7c0b4
CM
2943 ptr = page_address(page);
2944
2945 kmemleak_alloc(ptr, size, 1, flags);
2946 return ptr;
f619cfe1
CL
2947}
2948
81819f0f
CL
2949void *__kmalloc_node(size_t size, gfp_t flags, int node)
2950{
aadb4bc4 2951 struct kmem_cache *s;
5b882be4 2952 void *ret;
81819f0f 2953
057685cf 2954 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2955 ret = kmalloc_large_node(size, flags, node);
2956
ca2b84cb
EGM
2957 trace_kmalloc_node(_RET_IP_, ret,
2958 size, PAGE_SIZE << get_order(size),
2959 flags, node);
5b882be4
EGM
2960
2961 return ret;
2962 }
aadb4bc4
CL
2963
2964 s = get_slab(size, flags);
2965
2966 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2967 return s;
2968
5b882be4
EGM
2969 ret = slab_alloc(s, flags, node, _RET_IP_);
2970
ca2b84cb 2971 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2972
2973 return ret;
81819f0f
CL
2974}
2975EXPORT_SYMBOL(__kmalloc_node);
2976#endif
2977
2978size_t ksize(const void *object)
2979{
272c1d21 2980 struct page *page;
81819f0f 2981
ef8b4520 2982 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2983 return 0;
2984
294a80a8 2985 page = virt_to_head_page(object);
294a80a8 2986
76994412
PE
2987 if (unlikely(!PageSlab(page))) {
2988 WARN_ON(!PageCompound(page));
294a80a8 2989 return PAGE_SIZE << compound_order(page);
76994412 2990 }
81819f0f 2991
b3d41885 2992 return slab_ksize(page->slab);
81819f0f 2993}
b1aabecd 2994EXPORT_SYMBOL(ksize);
81819f0f 2995
d18a90dd
BG
2996#ifdef CONFIG_SLUB_DEBUG
2997bool verify_mem_not_deleted(const void *x)
2998{
2999 struct page *page;
3000 void *object = (void *)x;
3001 unsigned long flags;
3002 bool rv;
3003
3004 if (unlikely(ZERO_OR_NULL_PTR(x)))
3005 return false;
3006
3007 local_irq_save(flags);
3008
3009 page = virt_to_head_page(x);
3010 if (unlikely(!PageSlab(page))) {
3011 /* maybe it was from stack? */
3012 rv = true;
3013 goto out_unlock;
3014 }
3015
3016 slab_lock(page);
3017 if (on_freelist(page->slab, page, object)) {
3018 object_err(page->slab, page, object, "Object is on free-list");
3019 rv = false;
3020 } else {
3021 rv = true;
3022 }
3023 slab_unlock(page);
3024
3025out_unlock:
3026 local_irq_restore(flags);
3027 return rv;
3028}
3029EXPORT_SYMBOL(verify_mem_not_deleted);
3030#endif
3031
81819f0f
CL
3032void kfree(const void *x)
3033{
81819f0f 3034 struct page *page;
5bb983b0 3035 void *object = (void *)x;
81819f0f 3036
2121db74
PE
3037 trace_kfree(_RET_IP_, x);
3038
2408c550 3039 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3040 return;
3041
b49af68f 3042 page = virt_to_head_page(x);
aadb4bc4 3043 if (unlikely(!PageSlab(page))) {
0937502a 3044 BUG_ON(!PageCompound(page));
e4f7c0b4 3045 kmemleak_free(x);
aadb4bc4
CL
3046 put_page(page);
3047 return;
3048 }
ce71e27c 3049 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
3050}
3051EXPORT_SYMBOL(kfree);
3052
2086d26a 3053/*
672bba3a
CL
3054 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
3055 * the remaining slabs by the number of items in use. The slabs with the
3056 * most items in use come first. New allocations will then fill those up
3057 * and thus they can be removed from the partial lists.
3058 *
3059 * The slabs with the least items are placed last. This results in them
3060 * being allocated from last increasing the chance that the last objects
3061 * are freed in them.
2086d26a
CL
3062 */
3063int kmem_cache_shrink(struct kmem_cache *s)
3064{
3065 int node;
3066 int i;
3067 struct kmem_cache_node *n;
3068 struct page *page;
3069 struct page *t;
205ab99d 3070 int objects = oo_objects(s->max);
2086d26a 3071 struct list_head *slabs_by_inuse =
834f3d11 3072 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
3073 unsigned long flags;
3074
3075 if (!slabs_by_inuse)
3076 return -ENOMEM;
3077
3078 flush_all(s);
f64dc58c 3079 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
3080 n = get_node(s, node);
3081
3082 if (!n->nr_partial)
3083 continue;
3084
834f3d11 3085 for (i = 0; i < objects; i++)
2086d26a
CL
3086 INIT_LIST_HEAD(slabs_by_inuse + i);
3087
3088 spin_lock_irqsave(&n->list_lock, flags);
3089
3090 /*
672bba3a 3091 * Build lists indexed by the items in use in each slab.
2086d26a 3092 *
672bba3a
CL
3093 * Note that concurrent frees may occur while we hold the
3094 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3095 */
3096 list_for_each_entry_safe(page, t, &n->partial, lru) {
3097 if (!page->inuse && slab_trylock(page)) {
3098 /*
3099 * Must hold slab lock here because slab_free
3100 * may have freed the last object and be
3101 * waiting to release the slab.
3102 */
62e346a8 3103 __remove_partial(n, page);
2086d26a
CL
3104 slab_unlock(page);
3105 discard_slab(s, page);
3106 } else {
fcda3d89
CL
3107 list_move(&page->lru,
3108 slabs_by_inuse + page->inuse);
2086d26a
CL
3109 }
3110 }
3111
2086d26a 3112 /*
672bba3a
CL
3113 * Rebuild the partial list with the slabs filled up most
3114 * first and the least used slabs at the end.
2086d26a 3115 */
834f3d11 3116 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3117 list_splice(slabs_by_inuse + i, n->partial.prev);
3118
2086d26a
CL
3119 spin_unlock_irqrestore(&n->list_lock, flags);
3120 }
3121
3122 kfree(slabs_by_inuse);
3123 return 0;
3124}
3125EXPORT_SYMBOL(kmem_cache_shrink);
3126
92a5bbc1 3127#if defined(CONFIG_MEMORY_HOTPLUG)
b9049e23
YG
3128static int slab_mem_going_offline_callback(void *arg)
3129{
3130 struct kmem_cache *s;
3131
3132 down_read(&slub_lock);
3133 list_for_each_entry(s, &slab_caches, list)
3134 kmem_cache_shrink(s);
3135 up_read(&slub_lock);
3136
3137 return 0;
3138}
3139
3140static void slab_mem_offline_callback(void *arg)
3141{
3142 struct kmem_cache_node *n;
3143 struct kmem_cache *s;
3144 struct memory_notify *marg = arg;
3145 int offline_node;
3146
3147 offline_node = marg->status_change_nid;
3148
3149 /*
3150 * If the node still has available memory. we need kmem_cache_node
3151 * for it yet.
3152 */
3153 if (offline_node < 0)
3154 return;
3155
3156 down_read(&slub_lock);
3157 list_for_each_entry(s, &slab_caches, list) {
3158 n = get_node(s, offline_node);
3159 if (n) {
3160 /*
3161 * if n->nr_slabs > 0, slabs still exist on the node
3162 * that is going down. We were unable to free them,
c9404c9c 3163 * and offline_pages() function shouldn't call this
b9049e23
YG
3164 * callback. So, we must fail.
3165 */
0f389ec6 3166 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3167
3168 s->node[offline_node] = NULL;
8de66a0c 3169 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
3170 }
3171 }
3172 up_read(&slub_lock);
3173}
3174
3175static int slab_mem_going_online_callback(void *arg)
3176{
3177 struct kmem_cache_node *n;
3178 struct kmem_cache *s;
3179 struct memory_notify *marg = arg;
3180 int nid = marg->status_change_nid;
3181 int ret = 0;
3182
3183 /*
3184 * If the node's memory is already available, then kmem_cache_node is
3185 * already created. Nothing to do.
3186 */
3187 if (nid < 0)
3188 return 0;
3189
3190 /*
0121c619 3191 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3192 * allocate a kmem_cache_node structure in order to bring the node
3193 * online.
3194 */
3195 down_read(&slub_lock);
3196 list_for_each_entry(s, &slab_caches, list) {
3197 /*
3198 * XXX: kmem_cache_alloc_node will fallback to other nodes
3199 * since memory is not yet available from the node that
3200 * is brought up.
3201 */
8de66a0c 3202 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
3203 if (!n) {
3204 ret = -ENOMEM;
3205 goto out;
3206 }
5595cffc 3207 init_kmem_cache_node(n, s);
b9049e23
YG
3208 s->node[nid] = n;
3209 }
3210out:
3211 up_read(&slub_lock);
3212 return ret;
3213}
3214
3215static int slab_memory_callback(struct notifier_block *self,
3216 unsigned long action, void *arg)
3217{
3218 int ret = 0;
3219
3220 switch (action) {
3221 case MEM_GOING_ONLINE:
3222 ret = slab_mem_going_online_callback(arg);
3223 break;
3224 case MEM_GOING_OFFLINE:
3225 ret = slab_mem_going_offline_callback(arg);
3226 break;
3227 case MEM_OFFLINE:
3228 case MEM_CANCEL_ONLINE:
3229 slab_mem_offline_callback(arg);
3230 break;
3231 case MEM_ONLINE:
3232 case MEM_CANCEL_OFFLINE:
3233 break;
3234 }
dc19f9db
KH
3235 if (ret)
3236 ret = notifier_from_errno(ret);
3237 else
3238 ret = NOTIFY_OK;
b9049e23
YG
3239 return ret;
3240}
3241
3242#endif /* CONFIG_MEMORY_HOTPLUG */
3243
81819f0f
CL
3244/********************************************************************
3245 * Basic setup of slabs
3246 *******************************************************************/
3247
51df1142
CL
3248/*
3249 * Used for early kmem_cache structures that were allocated using
3250 * the page allocator
3251 */
3252
3253static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
3254{
3255 int node;
3256
3257 list_add(&s->list, &slab_caches);
3258 s->refcount = -1;
3259
3260 for_each_node_state(node, N_NORMAL_MEMORY) {
3261 struct kmem_cache_node *n = get_node(s, node);
3262 struct page *p;
3263
3264 if (n) {
3265 list_for_each_entry(p, &n->partial, lru)
3266 p->slab = s;
3267
607bf324 3268#ifdef CONFIG_SLUB_DEBUG
51df1142
CL
3269 list_for_each_entry(p, &n->full, lru)
3270 p->slab = s;
3271#endif
3272 }
3273 }
3274}
3275
81819f0f
CL
3276void __init kmem_cache_init(void)
3277{
3278 int i;
4b356be0 3279 int caches = 0;
51df1142
CL
3280 struct kmem_cache *temp_kmem_cache;
3281 int order;
51df1142
CL
3282 struct kmem_cache *temp_kmem_cache_node;
3283 unsigned long kmalloc_size;
3284
3285 kmem_size = offsetof(struct kmem_cache, node) +
3286 nr_node_ids * sizeof(struct kmem_cache_node *);
3287
3288 /* Allocate two kmem_caches from the page allocator */
3289 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3290 order = get_order(2 * kmalloc_size);
3291 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3292
81819f0f
CL
3293 /*
3294 * Must first have the slab cache available for the allocations of the
672bba3a 3295 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3296 * kmem_cache_open for slab_state == DOWN.
3297 */
51df1142
CL
3298 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3299
3300 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3301 sizeof(struct kmem_cache_node),
3302 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
b9049e23 3303
0c40ba4f 3304 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3305
3306 /* Able to allocate the per node structures */
3307 slab_state = PARTIAL;
3308
51df1142
CL
3309 temp_kmem_cache = kmem_cache;
3310 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3311 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3312 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3313 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
81819f0f 3314
51df1142
CL
3315 /*
3316 * Allocate kmem_cache_node properly from the kmem_cache slab.
3317 * kmem_cache_node is separately allocated so no need to
3318 * update any list pointers.
3319 */
3320 temp_kmem_cache_node = kmem_cache_node;
81819f0f 3321
51df1142
CL
3322 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3323 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3324
3325 kmem_cache_bootstrap_fixup(kmem_cache_node);
3326
3327 caches++;
51df1142
CL
3328 kmem_cache_bootstrap_fixup(kmem_cache);
3329 caches++;
3330 /* Free temporary boot structure */
3331 free_pages((unsigned long)temp_kmem_cache, order);
3332
3333 /* Now we can use the kmem_cache to allocate kmalloc slabs */
f1b26339
CL
3334
3335 /*
3336 * Patch up the size_index table if we have strange large alignment
3337 * requirements for the kmalloc array. This is only the case for
6446faa2 3338 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3339 *
3340 * Largest permitted alignment is 256 bytes due to the way we
3341 * handle the index determination for the smaller caches.
3342 *
3343 * Make sure that nothing crazy happens if someone starts tinkering
3344 * around with ARCH_KMALLOC_MINALIGN
3345 */
3346 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3347 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3348
acdfcd04
AK
3349 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3350 int elem = size_index_elem(i);
3351 if (elem >= ARRAY_SIZE(size_index))
3352 break;
3353 size_index[elem] = KMALLOC_SHIFT_LOW;
3354 }
f1b26339 3355
acdfcd04
AK
3356 if (KMALLOC_MIN_SIZE == 64) {
3357 /*
3358 * The 96 byte size cache is not used if the alignment
3359 * is 64 byte.
3360 */
3361 for (i = 64 + 8; i <= 96; i += 8)
3362 size_index[size_index_elem(i)] = 7;
3363 } else if (KMALLOC_MIN_SIZE == 128) {
41d54d3b
CL
3364 /*
3365 * The 192 byte sized cache is not used if the alignment
3366 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3367 * instead.
3368 */
3369 for (i = 128 + 8; i <= 192; i += 8)
acdfcd04 3370 size_index[size_index_elem(i)] = 8;
41d54d3b
CL
3371 }
3372
51df1142
CL
3373 /* Caches that are not of the two-to-the-power-of size */
3374 if (KMALLOC_MIN_SIZE <= 32) {
3375 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3376 caches++;
3377 }
3378
3379 if (KMALLOC_MIN_SIZE <= 64) {
3380 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3381 caches++;
3382 }
3383
3384 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3385 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3386 caches++;
3387 }
3388
81819f0f
CL
3389 slab_state = UP;
3390
3391 /* Provide the correct kmalloc names now that the caches are up */
84c1cf62
PE
3392 if (KMALLOC_MIN_SIZE <= 32) {
3393 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3394 BUG_ON(!kmalloc_caches[1]->name);
3395 }
3396
3397 if (KMALLOC_MIN_SIZE <= 64) {
3398 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3399 BUG_ON(!kmalloc_caches[2]->name);
3400 }
3401
d7278bd7
CL
3402 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3403 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3404
3405 BUG_ON(!s);
51df1142 3406 kmalloc_caches[i]->name = s;
d7278bd7 3407 }
81819f0f
CL
3408
3409#ifdef CONFIG_SMP
3410 register_cpu_notifier(&slab_notifier);
9dfc6e68 3411#endif
81819f0f 3412
55136592 3413#ifdef CONFIG_ZONE_DMA
51df1142
CL
3414 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3415 struct kmem_cache *s = kmalloc_caches[i];
55136592 3416
51df1142 3417 if (s && s->size) {
55136592
CL
3418 char *name = kasprintf(GFP_NOWAIT,
3419 "dma-kmalloc-%d", s->objsize);
3420
3421 BUG_ON(!name);
51df1142
CL
3422 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3423 s->objsize, SLAB_CACHE_DMA);
55136592
CL
3424 }
3425 }
3426#endif
3adbefee
IM
3427 printk(KERN_INFO
3428 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3429 " CPUs=%d, Nodes=%d\n",
3430 caches, cache_line_size(),
81819f0f
CL
3431 slub_min_order, slub_max_order, slub_min_objects,
3432 nr_cpu_ids, nr_node_ids);
3433}
3434
7e85ee0c
PE
3435void __init kmem_cache_init_late(void)
3436{
7e85ee0c
PE
3437}
3438
81819f0f
CL
3439/*
3440 * Find a mergeable slab cache
3441 */
3442static int slab_unmergeable(struct kmem_cache *s)
3443{
3444 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3445 return 1;
3446
c59def9f 3447 if (s->ctor)
81819f0f
CL
3448 return 1;
3449
8ffa6875
CL
3450 /*
3451 * We may have set a slab to be unmergeable during bootstrap.
3452 */
3453 if (s->refcount < 0)
3454 return 1;
3455
81819f0f
CL
3456 return 0;
3457}
3458
3459static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3460 size_t align, unsigned long flags, const char *name,
51cc5068 3461 void (*ctor)(void *))
81819f0f 3462{
5b95a4ac 3463 struct kmem_cache *s;
81819f0f
CL
3464
3465 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3466 return NULL;
3467
c59def9f 3468 if (ctor)
81819f0f
CL
3469 return NULL;
3470
3471 size = ALIGN(size, sizeof(void *));
3472 align = calculate_alignment(flags, align, size);
3473 size = ALIGN(size, align);
ba0268a8 3474 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3475
5b95a4ac 3476 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3477 if (slab_unmergeable(s))
3478 continue;
3479
3480 if (size > s->size)
3481 continue;
3482
ba0268a8 3483 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3484 continue;
3485 /*
3486 * Check if alignment is compatible.
3487 * Courtesy of Adrian Drzewiecki
3488 */
06428780 3489 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3490 continue;
3491
3492 if (s->size - size >= sizeof(void *))
3493 continue;
3494
3495 return s;
3496 }
3497 return NULL;
3498}
3499
3500struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3501 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3502{
3503 struct kmem_cache *s;
84c1cf62 3504 char *n;
81819f0f 3505
fe1ff49d
BH
3506 if (WARN_ON(!name))
3507 return NULL;
3508
81819f0f 3509 down_write(&slub_lock);
ba0268a8 3510 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
3511 if (s) {
3512 s->refcount++;
3513 /*
3514 * Adjust the object sizes so that we clear
3515 * the complete object on kzalloc.
3516 */
3517 s->objsize = max(s->objsize, (int)size);
3518 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 3519
7b8f3b66 3520 if (sysfs_slab_alias(s, name)) {
7b8f3b66 3521 s->refcount--;
81819f0f 3522 goto err;
7b8f3b66 3523 }
2bce6485 3524 up_write(&slub_lock);
a0e1d1be
CL
3525 return s;
3526 }
6446faa2 3527
84c1cf62
PE
3528 n = kstrdup(name, GFP_KERNEL);
3529 if (!n)
3530 goto err;
3531
a0e1d1be
CL
3532 s = kmalloc(kmem_size, GFP_KERNEL);
3533 if (s) {
84c1cf62 3534 if (kmem_cache_open(s, n,
c59def9f 3535 size, align, flags, ctor)) {
81819f0f 3536 list_add(&s->list, &slab_caches);
7b8f3b66 3537 if (sysfs_slab_add(s)) {
7b8f3b66 3538 list_del(&s->list);
84c1cf62 3539 kfree(n);
7b8f3b66 3540 kfree(s);
a0e1d1be 3541 goto err;
7b8f3b66 3542 }
2bce6485 3543 up_write(&slub_lock);
a0e1d1be
CL
3544 return s;
3545 }
84c1cf62 3546 kfree(n);
a0e1d1be 3547 kfree(s);
81819f0f 3548 }
68cee4f1 3549err:
81819f0f 3550 up_write(&slub_lock);
81819f0f 3551
81819f0f
CL
3552 if (flags & SLAB_PANIC)
3553 panic("Cannot create slabcache %s\n", name);
3554 else
3555 s = NULL;
3556 return s;
3557}
3558EXPORT_SYMBOL(kmem_cache_create);
3559
81819f0f 3560#ifdef CONFIG_SMP
81819f0f 3561/*
672bba3a
CL
3562 * Use the cpu notifier to insure that the cpu slabs are flushed when
3563 * necessary.
81819f0f
CL
3564 */
3565static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3566 unsigned long action, void *hcpu)
3567{
3568 long cpu = (long)hcpu;
5b95a4ac
CL
3569 struct kmem_cache *s;
3570 unsigned long flags;
81819f0f
CL
3571
3572 switch (action) {
3573 case CPU_UP_CANCELED:
8bb78442 3574 case CPU_UP_CANCELED_FROZEN:
81819f0f 3575 case CPU_DEAD:
8bb78442 3576 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3577 down_read(&slub_lock);
3578 list_for_each_entry(s, &slab_caches, list) {
3579 local_irq_save(flags);
3580 __flush_cpu_slab(s, cpu);
3581 local_irq_restore(flags);
3582 }
3583 up_read(&slub_lock);
81819f0f
CL
3584 break;
3585 default:
3586 break;
3587 }
3588 return NOTIFY_OK;
3589}
3590
06428780 3591static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3592 .notifier_call = slab_cpuup_callback
06428780 3593};
81819f0f
CL
3594
3595#endif
3596
ce71e27c 3597void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3598{
aadb4bc4 3599 struct kmem_cache *s;
94b528d0 3600 void *ret;
aadb4bc4 3601
ffadd4d0 3602 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3603 return kmalloc_large(size, gfpflags);
3604
aadb4bc4 3605 s = get_slab(size, gfpflags);
81819f0f 3606
2408c550 3607 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3608 return s;
81819f0f 3609
2154a336 3610 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
94b528d0 3611
25985edc 3612 /* Honor the call site pointer we received. */
ca2b84cb 3613 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3614
3615 return ret;
81819f0f
CL
3616}
3617
5d1f57e4 3618#ifdef CONFIG_NUMA
81819f0f 3619void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3620 int node, unsigned long caller)
81819f0f 3621{
aadb4bc4 3622 struct kmem_cache *s;
94b528d0 3623 void *ret;
aadb4bc4 3624
d3e14aa3
XF
3625 if (unlikely(size > SLUB_MAX_SIZE)) {
3626 ret = kmalloc_large_node(size, gfpflags, node);
3627
3628 trace_kmalloc_node(caller, ret,
3629 size, PAGE_SIZE << get_order(size),
3630 gfpflags, node);
3631
3632 return ret;
3633 }
eada35ef 3634
aadb4bc4 3635 s = get_slab(size, gfpflags);
81819f0f 3636
2408c550 3637 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3638 return s;
81819f0f 3639
94b528d0
EGM
3640 ret = slab_alloc(s, gfpflags, node, caller);
3641
25985edc 3642 /* Honor the call site pointer we received. */
ca2b84cb 3643 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3644
3645 return ret;
81819f0f 3646}
5d1f57e4 3647#endif
81819f0f 3648
ab4d5ed5 3649#ifdef CONFIG_SYSFS
205ab99d
CL
3650static int count_inuse(struct page *page)
3651{
3652 return page->inuse;
3653}
3654
3655static int count_total(struct page *page)
3656{
3657 return page->objects;
3658}
ab4d5ed5 3659#endif
205ab99d 3660
ab4d5ed5 3661#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
3662static int validate_slab(struct kmem_cache *s, struct page *page,
3663 unsigned long *map)
53e15af0
CL
3664{
3665 void *p;
a973e9dd 3666 void *addr = page_address(page);
53e15af0
CL
3667
3668 if (!check_slab(s, page) ||
3669 !on_freelist(s, page, NULL))
3670 return 0;
3671
3672 /* Now we know that a valid freelist exists */
39b26464 3673 bitmap_zero(map, page->objects);
53e15af0 3674
5f80b13a
CL
3675 get_map(s, page, map);
3676 for_each_object(p, s, addr, page->objects) {
3677 if (test_bit(slab_index(p, s, addr), map))
3678 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
3679 return 0;
53e15af0
CL
3680 }
3681
224a88be 3682 for_each_object(p, s, addr, page->objects)
7656c72b 3683 if (!test_bit(slab_index(p, s, addr), map))
37d57443 3684 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
3685 return 0;
3686 return 1;
3687}
3688
434e245d
CL
3689static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3690 unsigned long *map)
53e15af0
CL
3691{
3692 if (slab_trylock(page)) {
434e245d 3693 validate_slab(s, page, map);
53e15af0
CL
3694 slab_unlock(page);
3695 } else
3696 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3697 s->name, page);
53e15af0
CL
3698}
3699
434e245d
CL
3700static int validate_slab_node(struct kmem_cache *s,
3701 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3702{
3703 unsigned long count = 0;
3704 struct page *page;
3705 unsigned long flags;
3706
3707 spin_lock_irqsave(&n->list_lock, flags);
3708
3709 list_for_each_entry(page, &n->partial, lru) {
434e245d 3710 validate_slab_slab(s, page, map);
53e15af0
CL
3711 count++;
3712 }
3713 if (count != n->nr_partial)
3714 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3715 "counter=%ld\n", s->name, count, n->nr_partial);
3716
3717 if (!(s->flags & SLAB_STORE_USER))
3718 goto out;
3719
3720 list_for_each_entry(page, &n->full, lru) {
434e245d 3721 validate_slab_slab(s, page, map);
53e15af0
CL
3722 count++;
3723 }
3724 if (count != atomic_long_read(&n->nr_slabs))
3725 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3726 "counter=%ld\n", s->name, count,
3727 atomic_long_read(&n->nr_slabs));
3728
3729out:
3730 spin_unlock_irqrestore(&n->list_lock, flags);
3731 return count;
3732}
3733
434e245d 3734static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3735{
3736 int node;
3737 unsigned long count = 0;
205ab99d 3738 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3739 sizeof(unsigned long), GFP_KERNEL);
3740
3741 if (!map)
3742 return -ENOMEM;
53e15af0
CL
3743
3744 flush_all(s);
f64dc58c 3745 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3746 struct kmem_cache_node *n = get_node(s, node);
3747
434e245d 3748 count += validate_slab_node(s, n, map);
53e15af0 3749 }
434e245d 3750 kfree(map);
53e15af0
CL
3751 return count;
3752}
88a420e4 3753/*
672bba3a 3754 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3755 * and freed.
3756 */
3757
3758struct location {
3759 unsigned long count;
ce71e27c 3760 unsigned long addr;
45edfa58
CL
3761 long long sum_time;
3762 long min_time;
3763 long max_time;
3764 long min_pid;
3765 long max_pid;
174596a0 3766 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3767 nodemask_t nodes;
88a420e4
CL
3768};
3769
3770struct loc_track {
3771 unsigned long max;
3772 unsigned long count;
3773 struct location *loc;
3774};
3775
3776static void free_loc_track(struct loc_track *t)
3777{
3778 if (t->max)
3779 free_pages((unsigned long)t->loc,
3780 get_order(sizeof(struct location) * t->max));
3781}
3782
68dff6a9 3783static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3784{
3785 struct location *l;
3786 int order;
3787
88a420e4
CL
3788 order = get_order(sizeof(struct location) * max);
3789
68dff6a9 3790 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3791 if (!l)
3792 return 0;
3793
3794 if (t->count) {
3795 memcpy(l, t->loc, sizeof(struct location) * t->count);
3796 free_loc_track(t);
3797 }
3798 t->max = max;
3799 t->loc = l;
3800 return 1;
3801}
3802
3803static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3804 const struct track *track)
88a420e4
CL
3805{
3806 long start, end, pos;
3807 struct location *l;
ce71e27c 3808 unsigned long caddr;
45edfa58 3809 unsigned long age = jiffies - track->when;
88a420e4
CL
3810
3811 start = -1;
3812 end = t->count;
3813
3814 for ( ; ; ) {
3815 pos = start + (end - start + 1) / 2;
3816
3817 /*
3818 * There is nothing at "end". If we end up there
3819 * we need to add something to before end.
3820 */
3821 if (pos == end)
3822 break;
3823
3824 caddr = t->loc[pos].addr;
45edfa58
CL
3825 if (track->addr == caddr) {
3826
3827 l = &t->loc[pos];
3828 l->count++;
3829 if (track->when) {
3830 l->sum_time += age;
3831 if (age < l->min_time)
3832 l->min_time = age;
3833 if (age > l->max_time)
3834 l->max_time = age;
3835
3836 if (track->pid < l->min_pid)
3837 l->min_pid = track->pid;
3838 if (track->pid > l->max_pid)
3839 l->max_pid = track->pid;
3840
174596a0
RR
3841 cpumask_set_cpu(track->cpu,
3842 to_cpumask(l->cpus));
45edfa58
CL
3843 }
3844 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3845 return 1;
3846 }
3847
45edfa58 3848 if (track->addr < caddr)
88a420e4
CL
3849 end = pos;
3850 else
3851 start = pos;
3852 }
3853
3854 /*
672bba3a 3855 * Not found. Insert new tracking element.
88a420e4 3856 */
68dff6a9 3857 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3858 return 0;
3859
3860 l = t->loc + pos;
3861 if (pos < t->count)
3862 memmove(l + 1, l,
3863 (t->count - pos) * sizeof(struct location));
3864 t->count++;
3865 l->count = 1;
45edfa58
CL
3866 l->addr = track->addr;
3867 l->sum_time = age;
3868 l->min_time = age;
3869 l->max_time = age;
3870 l->min_pid = track->pid;
3871 l->max_pid = track->pid;
174596a0
RR
3872 cpumask_clear(to_cpumask(l->cpus));
3873 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3874 nodes_clear(l->nodes);
3875 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3876 return 1;
3877}
3878
3879static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 3880 struct page *page, enum track_item alloc,
a5dd5c11 3881 unsigned long *map)
88a420e4 3882{
a973e9dd 3883 void *addr = page_address(page);
88a420e4
CL
3884 void *p;
3885
39b26464 3886 bitmap_zero(map, page->objects);
5f80b13a 3887 get_map(s, page, map);
88a420e4 3888
224a88be 3889 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3890 if (!test_bit(slab_index(p, s, addr), map))
3891 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3892}
3893
3894static int list_locations(struct kmem_cache *s, char *buf,
3895 enum track_item alloc)
3896{
e374d483 3897 int len = 0;
88a420e4 3898 unsigned long i;
68dff6a9 3899 struct loc_track t = { 0, 0, NULL };
88a420e4 3900 int node;
bbd7d57b
ED
3901 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3902 sizeof(unsigned long), GFP_KERNEL);
88a420e4 3903
bbd7d57b
ED
3904 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3905 GFP_TEMPORARY)) {
3906 kfree(map);
68dff6a9 3907 return sprintf(buf, "Out of memory\n");
bbd7d57b 3908 }
88a420e4
CL
3909 /* Push back cpu slabs */
3910 flush_all(s);
3911
f64dc58c 3912 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3913 struct kmem_cache_node *n = get_node(s, node);
3914 unsigned long flags;
3915 struct page *page;
3916
9e86943b 3917 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3918 continue;
3919
3920 spin_lock_irqsave(&n->list_lock, flags);
3921 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 3922 process_slab(&t, s, page, alloc, map);
88a420e4 3923 list_for_each_entry(page, &n->full, lru)
bbd7d57b 3924 process_slab(&t, s, page, alloc, map);
88a420e4
CL
3925 spin_unlock_irqrestore(&n->list_lock, flags);
3926 }
3927
3928 for (i = 0; i < t.count; i++) {
45edfa58 3929 struct location *l = &t.loc[i];
88a420e4 3930
9c246247 3931 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3932 break;
e374d483 3933 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3934
3935 if (l->addr)
62c70bce 3936 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 3937 else
e374d483 3938 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3939
3940 if (l->sum_time != l->min_time) {
e374d483 3941 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3942 l->min_time,
3943 (long)div_u64(l->sum_time, l->count),
3944 l->max_time);
45edfa58 3945 } else
e374d483 3946 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3947 l->min_time);
3948
3949 if (l->min_pid != l->max_pid)
e374d483 3950 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3951 l->min_pid, l->max_pid);
3952 else
e374d483 3953 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3954 l->min_pid);
3955
174596a0
RR
3956 if (num_online_cpus() > 1 &&
3957 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3958 len < PAGE_SIZE - 60) {
3959 len += sprintf(buf + len, " cpus=");
3960 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3961 to_cpumask(l->cpus));
45edfa58
CL
3962 }
3963
62bc62a8 3964 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3965 len < PAGE_SIZE - 60) {
3966 len += sprintf(buf + len, " nodes=");
3967 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3968 l->nodes);
3969 }
3970
e374d483 3971 len += sprintf(buf + len, "\n");
88a420e4
CL
3972 }
3973
3974 free_loc_track(&t);
bbd7d57b 3975 kfree(map);
88a420e4 3976 if (!t.count)
e374d483
HH
3977 len += sprintf(buf, "No data\n");
3978 return len;
88a420e4 3979}
ab4d5ed5 3980#endif
88a420e4 3981
a5a84755
CL
3982#ifdef SLUB_RESILIENCY_TEST
3983static void resiliency_test(void)
3984{
3985 u8 *p;
3986
3987 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3988
3989 printk(KERN_ERR "SLUB resiliency testing\n");
3990 printk(KERN_ERR "-----------------------\n");
3991 printk(KERN_ERR "A. Corruption after allocation\n");
3992
3993 p = kzalloc(16, GFP_KERNEL);
3994 p[16] = 0x12;
3995 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3996 " 0x12->0x%p\n\n", p + 16);
3997
3998 validate_slab_cache(kmalloc_caches[4]);
3999
4000 /* Hmmm... The next two are dangerous */
4001 p = kzalloc(32, GFP_KERNEL);
4002 p[32 + sizeof(void *)] = 0x34;
4003 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
4004 " 0x34 -> -0x%p\n", p);
4005 printk(KERN_ERR
4006 "If allocated object is overwritten then not detectable\n\n");
4007
4008 validate_slab_cache(kmalloc_caches[5]);
4009 p = kzalloc(64, GFP_KERNEL);
4010 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4011 *p = 0x56;
4012 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4013 p);
4014 printk(KERN_ERR
4015 "If allocated object is overwritten then not detectable\n\n");
4016 validate_slab_cache(kmalloc_caches[6]);
4017
4018 printk(KERN_ERR "\nB. Corruption after free\n");
4019 p = kzalloc(128, GFP_KERNEL);
4020 kfree(p);
4021 *p = 0x78;
4022 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4023 validate_slab_cache(kmalloc_caches[7]);
4024
4025 p = kzalloc(256, GFP_KERNEL);
4026 kfree(p);
4027 p[50] = 0x9a;
4028 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
4029 p);
4030 validate_slab_cache(kmalloc_caches[8]);
4031
4032 p = kzalloc(512, GFP_KERNEL);
4033 kfree(p);
4034 p[512] = 0xab;
4035 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4036 validate_slab_cache(kmalloc_caches[9]);
4037}
4038#else
4039#ifdef CONFIG_SYSFS
4040static void resiliency_test(void) {};
4041#endif
4042#endif
4043
ab4d5ed5 4044#ifdef CONFIG_SYSFS
81819f0f 4045enum slab_stat_type {
205ab99d
CL
4046 SL_ALL, /* All slabs */
4047 SL_PARTIAL, /* Only partially allocated slabs */
4048 SL_CPU, /* Only slabs used for cpu caches */
4049 SL_OBJECTS, /* Determine allocated objects not slabs */
4050 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4051};
4052
205ab99d 4053#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4054#define SO_PARTIAL (1 << SL_PARTIAL)
4055#define SO_CPU (1 << SL_CPU)
4056#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4057#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4058
62e5c4b4
CG
4059static ssize_t show_slab_objects(struct kmem_cache *s,
4060 char *buf, unsigned long flags)
81819f0f
CL
4061{
4062 unsigned long total = 0;
81819f0f
CL
4063 int node;
4064 int x;
4065 unsigned long *nodes;
4066 unsigned long *per_cpu;
4067
4068 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4069 if (!nodes)
4070 return -ENOMEM;
81819f0f
CL
4071 per_cpu = nodes + nr_node_ids;
4072
205ab99d
CL
4073 if (flags & SO_CPU) {
4074 int cpu;
81819f0f 4075
205ab99d 4076 for_each_possible_cpu(cpu) {
9dfc6e68 4077 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
dfb4f096 4078
205ab99d
CL
4079 if (!c || c->node < 0)
4080 continue;
4081
4082 if (c->page) {
4083 if (flags & SO_TOTAL)
4084 x = c->page->objects;
4085 else if (flags & SO_OBJECTS)
4086 x = c->page->inuse;
81819f0f
CL
4087 else
4088 x = 1;
205ab99d 4089
81819f0f 4090 total += x;
205ab99d 4091 nodes[c->node] += x;
81819f0f 4092 }
205ab99d 4093 per_cpu[c->node]++;
81819f0f
CL
4094 }
4095 }
4096
04d94879 4097 lock_memory_hotplug();
ab4d5ed5 4098#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
4099 if (flags & SO_ALL) {
4100 for_each_node_state(node, N_NORMAL_MEMORY) {
4101 struct kmem_cache_node *n = get_node(s, node);
4102
4103 if (flags & SO_TOTAL)
4104 x = atomic_long_read(&n->total_objects);
4105 else if (flags & SO_OBJECTS)
4106 x = atomic_long_read(&n->total_objects) -
4107 count_partial(n, count_free);
81819f0f 4108
81819f0f 4109 else
205ab99d 4110 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4111 total += x;
4112 nodes[node] += x;
4113 }
4114
ab4d5ed5
CL
4115 } else
4116#endif
4117 if (flags & SO_PARTIAL) {
205ab99d
CL
4118 for_each_node_state(node, N_NORMAL_MEMORY) {
4119 struct kmem_cache_node *n = get_node(s, node);
81819f0f 4120
205ab99d
CL
4121 if (flags & SO_TOTAL)
4122 x = count_partial(n, count_total);
4123 else if (flags & SO_OBJECTS)
4124 x = count_partial(n, count_inuse);
81819f0f 4125 else
205ab99d 4126 x = n->nr_partial;
81819f0f
CL
4127 total += x;
4128 nodes[node] += x;
4129 }
4130 }
81819f0f
CL
4131 x = sprintf(buf, "%lu", total);
4132#ifdef CONFIG_NUMA
f64dc58c 4133 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
4134 if (nodes[node])
4135 x += sprintf(buf + x, " N%d=%lu",
4136 node, nodes[node]);
4137#endif
04d94879 4138 unlock_memory_hotplug();
81819f0f
CL
4139 kfree(nodes);
4140 return x + sprintf(buf + x, "\n");
4141}
4142
ab4d5ed5 4143#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4144static int any_slab_objects(struct kmem_cache *s)
4145{
4146 int node;
81819f0f 4147
dfb4f096 4148 for_each_online_node(node) {
81819f0f
CL
4149 struct kmem_cache_node *n = get_node(s, node);
4150
dfb4f096
CL
4151 if (!n)
4152 continue;
4153
4ea33e2d 4154 if (atomic_long_read(&n->total_objects))
81819f0f
CL
4155 return 1;
4156 }
4157 return 0;
4158}
ab4d5ed5 4159#endif
81819f0f
CL
4160
4161#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4162#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4163
4164struct slab_attribute {
4165 struct attribute attr;
4166 ssize_t (*show)(struct kmem_cache *s, char *buf);
4167 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4168};
4169
4170#define SLAB_ATTR_RO(_name) \
4171 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
4172
4173#define SLAB_ATTR(_name) \
4174 static struct slab_attribute _name##_attr = \
4175 __ATTR(_name, 0644, _name##_show, _name##_store)
4176
81819f0f
CL
4177static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4178{
4179 return sprintf(buf, "%d\n", s->size);
4180}
4181SLAB_ATTR_RO(slab_size);
4182
4183static ssize_t align_show(struct kmem_cache *s, char *buf)
4184{
4185 return sprintf(buf, "%d\n", s->align);
4186}
4187SLAB_ATTR_RO(align);
4188
4189static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4190{
4191 return sprintf(buf, "%d\n", s->objsize);
4192}
4193SLAB_ATTR_RO(object_size);
4194
4195static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4196{
834f3d11 4197 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4198}
4199SLAB_ATTR_RO(objs_per_slab);
4200
06b285dc
CL
4201static ssize_t order_store(struct kmem_cache *s,
4202 const char *buf, size_t length)
4203{
0121c619
CL
4204 unsigned long order;
4205 int err;
4206
4207 err = strict_strtoul(buf, 10, &order);
4208 if (err)
4209 return err;
06b285dc
CL
4210
4211 if (order > slub_max_order || order < slub_min_order)
4212 return -EINVAL;
4213
4214 calculate_sizes(s, order);
4215 return length;
4216}
4217
81819f0f
CL
4218static ssize_t order_show(struct kmem_cache *s, char *buf)
4219{
834f3d11 4220 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4221}
06b285dc 4222SLAB_ATTR(order);
81819f0f 4223
73d342b1
DR
4224static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4225{
4226 return sprintf(buf, "%lu\n", s->min_partial);
4227}
4228
4229static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4230 size_t length)
4231{
4232 unsigned long min;
4233 int err;
4234
4235 err = strict_strtoul(buf, 10, &min);
4236 if (err)
4237 return err;
4238
c0bdb232 4239 set_min_partial(s, min);
73d342b1
DR
4240 return length;
4241}
4242SLAB_ATTR(min_partial);
4243
81819f0f
CL
4244static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4245{
62c70bce
JP
4246 if (!s->ctor)
4247 return 0;
4248 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4249}
4250SLAB_ATTR_RO(ctor);
4251
81819f0f
CL
4252static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4253{
4254 return sprintf(buf, "%d\n", s->refcount - 1);
4255}
4256SLAB_ATTR_RO(aliases);
4257
81819f0f
CL
4258static ssize_t partial_show(struct kmem_cache *s, char *buf)
4259{
d9acf4b7 4260 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4261}
4262SLAB_ATTR_RO(partial);
4263
4264static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4265{
d9acf4b7 4266 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4267}
4268SLAB_ATTR_RO(cpu_slabs);
4269
4270static ssize_t objects_show(struct kmem_cache *s, char *buf)
4271{
205ab99d 4272 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4273}
4274SLAB_ATTR_RO(objects);
4275
205ab99d
CL
4276static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4277{
4278 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4279}
4280SLAB_ATTR_RO(objects_partial);
4281
a5a84755
CL
4282static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4283{
4284 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4285}
4286
4287static ssize_t reclaim_account_store(struct kmem_cache *s,
4288 const char *buf, size_t length)
4289{
4290 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4291 if (buf[0] == '1')
4292 s->flags |= SLAB_RECLAIM_ACCOUNT;
4293 return length;
4294}
4295SLAB_ATTR(reclaim_account);
4296
4297static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4298{
4299 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4300}
4301SLAB_ATTR_RO(hwcache_align);
4302
4303#ifdef CONFIG_ZONE_DMA
4304static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4305{
4306 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4307}
4308SLAB_ATTR_RO(cache_dma);
4309#endif
4310
4311static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4312{
4313 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4314}
4315SLAB_ATTR_RO(destroy_by_rcu);
4316
ab9a0f19
LJ
4317static ssize_t reserved_show(struct kmem_cache *s, char *buf)
4318{
4319 return sprintf(buf, "%d\n", s->reserved);
4320}
4321SLAB_ATTR_RO(reserved);
4322
ab4d5ed5 4323#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4324static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4325{
4326 return show_slab_objects(s, buf, SO_ALL);
4327}
4328SLAB_ATTR_RO(slabs);
4329
205ab99d
CL
4330static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4331{
4332 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4333}
4334SLAB_ATTR_RO(total_objects);
4335
81819f0f
CL
4336static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4337{
4338 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4339}
4340
4341static ssize_t sanity_checks_store(struct kmem_cache *s,
4342 const char *buf, size_t length)
4343{
4344 s->flags &= ~SLAB_DEBUG_FREE;
4345 if (buf[0] == '1')
4346 s->flags |= SLAB_DEBUG_FREE;
4347 return length;
4348}
4349SLAB_ATTR(sanity_checks);
4350
4351static ssize_t trace_show(struct kmem_cache *s, char *buf)
4352{
4353 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4354}
4355
4356static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4357 size_t length)
4358{
4359 s->flags &= ~SLAB_TRACE;
4360 if (buf[0] == '1')
4361 s->flags |= SLAB_TRACE;
4362 return length;
4363}
4364SLAB_ATTR(trace);
4365
81819f0f
CL
4366static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4367{
4368 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4369}
4370
4371static ssize_t red_zone_store(struct kmem_cache *s,
4372 const char *buf, size_t length)
4373{
4374 if (any_slab_objects(s))
4375 return -EBUSY;
4376
4377 s->flags &= ~SLAB_RED_ZONE;
4378 if (buf[0] == '1')
4379 s->flags |= SLAB_RED_ZONE;
06b285dc 4380 calculate_sizes(s, -1);
81819f0f
CL
4381 return length;
4382}
4383SLAB_ATTR(red_zone);
4384
4385static ssize_t poison_show(struct kmem_cache *s, char *buf)
4386{
4387 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4388}
4389
4390static ssize_t poison_store(struct kmem_cache *s,
4391 const char *buf, size_t length)
4392{
4393 if (any_slab_objects(s))
4394 return -EBUSY;
4395
4396 s->flags &= ~SLAB_POISON;
4397 if (buf[0] == '1')
4398 s->flags |= SLAB_POISON;
06b285dc 4399 calculate_sizes(s, -1);
81819f0f
CL
4400 return length;
4401}
4402SLAB_ATTR(poison);
4403
4404static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4405{
4406 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4407}
4408
4409static ssize_t store_user_store(struct kmem_cache *s,
4410 const char *buf, size_t length)
4411{
4412 if (any_slab_objects(s))
4413 return -EBUSY;
4414
4415 s->flags &= ~SLAB_STORE_USER;
4416 if (buf[0] == '1')
4417 s->flags |= SLAB_STORE_USER;
06b285dc 4418 calculate_sizes(s, -1);
81819f0f
CL
4419 return length;
4420}
4421SLAB_ATTR(store_user);
4422
53e15af0
CL
4423static ssize_t validate_show(struct kmem_cache *s, char *buf)
4424{
4425 return 0;
4426}
4427
4428static ssize_t validate_store(struct kmem_cache *s,
4429 const char *buf, size_t length)
4430{
434e245d
CL
4431 int ret = -EINVAL;
4432
4433 if (buf[0] == '1') {
4434 ret = validate_slab_cache(s);
4435 if (ret >= 0)
4436 ret = length;
4437 }
4438 return ret;
53e15af0
CL
4439}
4440SLAB_ATTR(validate);
a5a84755
CL
4441
4442static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4443{
4444 if (!(s->flags & SLAB_STORE_USER))
4445 return -ENOSYS;
4446 return list_locations(s, buf, TRACK_ALLOC);
4447}
4448SLAB_ATTR_RO(alloc_calls);
4449
4450static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4451{
4452 if (!(s->flags & SLAB_STORE_USER))
4453 return -ENOSYS;
4454 return list_locations(s, buf, TRACK_FREE);
4455}
4456SLAB_ATTR_RO(free_calls);
4457#endif /* CONFIG_SLUB_DEBUG */
4458
4459#ifdef CONFIG_FAILSLAB
4460static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4461{
4462 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4463}
4464
4465static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4466 size_t length)
4467{
4468 s->flags &= ~SLAB_FAILSLAB;
4469 if (buf[0] == '1')
4470 s->flags |= SLAB_FAILSLAB;
4471 return length;
4472}
4473SLAB_ATTR(failslab);
ab4d5ed5 4474#endif
53e15af0 4475
2086d26a
CL
4476static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4477{
4478 return 0;
4479}
4480
4481static ssize_t shrink_store(struct kmem_cache *s,
4482 const char *buf, size_t length)
4483{
4484 if (buf[0] == '1') {
4485 int rc = kmem_cache_shrink(s);
4486
4487 if (rc)
4488 return rc;
4489 } else
4490 return -EINVAL;
4491 return length;
4492}
4493SLAB_ATTR(shrink);
4494
81819f0f 4495#ifdef CONFIG_NUMA
9824601e 4496static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4497{
9824601e 4498 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4499}
4500
9824601e 4501static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4502 const char *buf, size_t length)
4503{
0121c619
CL
4504 unsigned long ratio;
4505 int err;
4506
4507 err = strict_strtoul(buf, 10, &ratio);
4508 if (err)
4509 return err;
4510
e2cb96b7 4511 if (ratio <= 100)
0121c619 4512 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4513
81819f0f
CL
4514 return length;
4515}
9824601e 4516SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4517#endif
4518
8ff12cfc 4519#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4520static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4521{
4522 unsigned long sum = 0;
4523 int cpu;
4524 int len;
4525 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4526
4527 if (!data)
4528 return -ENOMEM;
4529
4530 for_each_online_cpu(cpu) {
9dfc6e68 4531 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
4532
4533 data[cpu] = x;
4534 sum += x;
4535 }
4536
4537 len = sprintf(buf, "%lu", sum);
4538
50ef37b9 4539#ifdef CONFIG_SMP
8ff12cfc
CL
4540 for_each_online_cpu(cpu) {
4541 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4542 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4543 }
50ef37b9 4544#endif
8ff12cfc
CL
4545 kfree(data);
4546 return len + sprintf(buf + len, "\n");
4547}
4548
78eb00cc
DR
4549static void clear_stat(struct kmem_cache *s, enum stat_item si)
4550{
4551 int cpu;
4552
4553 for_each_online_cpu(cpu)
9dfc6e68 4554 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
4555}
4556
8ff12cfc
CL
4557#define STAT_ATTR(si, text) \
4558static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4559{ \
4560 return show_stat(s, buf, si); \
4561} \
78eb00cc
DR
4562static ssize_t text##_store(struct kmem_cache *s, \
4563 const char *buf, size_t length) \
4564{ \
4565 if (buf[0] != '0') \
4566 return -EINVAL; \
4567 clear_stat(s, si); \
4568 return length; \
4569} \
4570SLAB_ATTR(text); \
8ff12cfc
CL
4571
4572STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4573STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4574STAT_ATTR(FREE_FASTPATH, free_fastpath);
4575STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4576STAT_ATTR(FREE_FROZEN, free_frozen);
4577STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4578STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4579STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4580STAT_ATTR(ALLOC_SLAB, alloc_slab);
4581STAT_ATTR(ALLOC_REFILL, alloc_refill);
4582STAT_ATTR(FREE_SLAB, free_slab);
4583STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4584STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4585STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4586STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4587STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4588STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4589STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4590#endif
4591
06428780 4592static struct attribute *slab_attrs[] = {
81819f0f
CL
4593 &slab_size_attr.attr,
4594 &object_size_attr.attr,
4595 &objs_per_slab_attr.attr,
4596 &order_attr.attr,
73d342b1 4597 &min_partial_attr.attr,
81819f0f 4598 &objects_attr.attr,
205ab99d 4599 &objects_partial_attr.attr,
81819f0f
CL
4600 &partial_attr.attr,
4601 &cpu_slabs_attr.attr,
4602 &ctor_attr.attr,
81819f0f
CL
4603 &aliases_attr.attr,
4604 &align_attr.attr,
81819f0f
CL
4605 &hwcache_align_attr.attr,
4606 &reclaim_account_attr.attr,
4607 &destroy_by_rcu_attr.attr,
a5a84755 4608 &shrink_attr.attr,
ab9a0f19 4609 &reserved_attr.attr,
ab4d5ed5 4610#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
4611 &total_objects_attr.attr,
4612 &slabs_attr.attr,
4613 &sanity_checks_attr.attr,
4614 &trace_attr.attr,
81819f0f
CL
4615 &red_zone_attr.attr,
4616 &poison_attr.attr,
4617 &store_user_attr.attr,
53e15af0 4618 &validate_attr.attr,
88a420e4
CL
4619 &alloc_calls_attr.attr,
4620 &free_calls_attr.attr,
ab4d5ed5 4621#endif
81819f0f
CL
4622#ifdef CONFIG_ZONE_DMA
4623 &cache_dma_attr.attr,
4624#endif
4625#ifdef CONFIG_NUMA
9824601e 4626 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4627#endif
4628#ifdef CONFIG_SLUB_STATS
4629 &alloc_fastpath_attr.attr,
4630 &alloc_slowpath_attr.attr,
4631 &free_fastpath_attr.attr,
4632 &free_slowpath_attr.attr,
4633 &free_frozen_attr.attr,
4634 &free_add_partial_attr.attr,
4635 &free_remove_partial_attr.attr,
4636 &alloc_from_partial_attr.attr,
4637 &alloc_slab_attr.attr,
4638 &alloc_refill_attr.attr,
4639 &free_slab_attr.attr,
4640 &cpuslab_flush_attr.attr,
4641 &deactivate_full_attr.attr,
4642 &deactivate_empty_attr.attr,
4643 &deactivate_to_head_attr.attr,
4644 &deactivate_to_tail_attr.attr,
4645 &deactivate_remote_frees_attr.attr,
65c3376a 4646 &order_fallback_attr.attr,
81819f0f 4647#endif
4c13dd3b
DM
4648#ifdef CONFIG_FAILSLAB
4649 &failslab_attr.attr,
4650#endif
4651
81819f0f
CL
4652 NULL
4653};
4654
4655static struct attribute_group slab_attr_group = {
4656 .attrs = slab_attrs,
4657};
4658
4659static ssize_t slab_attr_show(struct kobject *kobj,
4660 struct attribute *attr,
4661 char *buf)
4662{
4663 struct slab_attribute *attribute;
4664 struct kmem_cache *s;
4665 int err;
4666
4667 attribute = to_slab_attr(attr);
4668 s = to_slab(kobj);
4669
4670 if (!attribute->show)
4671 return -EIO;
4672
4673 err = attribute->show(s, buf);
4674
4675 return err;
4676}
4677
4678static ssize_t slab_attr_store(struct kobject *kobj,
4679 struct attribute *attr,
4680 const char *buf, size_t len)
4681{
4682 struct slab_attribute *attribute;
4683 struct kmem_cache *s;
4684 int err;
4685
4686 attribute = to_slab_attr(attr);
4687 s = to_slab(kobj);
4688
4689 if (!attribute->store)
4690 return -EIO;
4691
4692 err = attribute->store(s, buf, len);
4693
4694 return err;
4695}
4696
151c602f
CL
4697static void kmem_cache_release(struct kobject *kobj)
4698{
4699 struct kmem_cache *s = to_slab(kobj);
4700
84c1cf62 4701 kfree(s->name);
151c602f
CL
4702 kfree(s);
4703}
4704
52cf25d0 4705static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
4706 .show = slab_attr_show,
4707 .store = slab_attr_store,
4708};
4709
4710static struct kobj_type slab_ktype = {
4711 .sysfs_ops = &slab_sysfs_ops,
151c602f 4712 .release = kmem_cache_release
81819f0f
CL
4713};
4714
4715static int uevent_filter(struct kset *kset, struct kobject *kobj)
4716{
4717 struct kobj_type *ktype = get_ktype(kobj);
4718
4719 if (ktype == &slab_ktype)
4720 return 1;
4721 return 0;
4722}
4723
9cd43611 4724static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
4725 .filter = uevent_filter,
4726};
4727
27c3a314 4728static struct kset *slab_kset;
81819f0f
CL
4729
4730#define ID_STR_LENGTH 64
4731
4732/* Create a unique string id for a slab cache:
6446faa2
CL
4733 *
4734 * Format :[flags-]size
81819f0f
CL
4735 */
4736static char *create_unique_id(struct kmem_cache *s)
4737{
4738 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4739 char *p = name;
4740
4741 BUG_ON(!name);
4742
4743 *p++ = ':';
4744 /*
4745 * First flags affecting slabcache operations. We will only
4746 * get here for aliasable slabs so we do not need to support
4747 * too many flags. The flags here must cover all flags that
4748 * are matched during merging to guarantee that the id is
4749 * unique.
4750 */
4751 if (s->flags & SLAB_CACHE_DMA)
4752 *p++ = 'd';
4753 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4754 *p++ = 'a';
4755 if (s->flags & SLAB_DEBUG_FREE)
4756 *p++ = 'F';
5a896d9e
VN
4757 if (!(s->flags & SLAB_NOTRACK))
4758 *p++ = 't';
81819f0f
CL
4759 if (p != name + 1)
4760 *p++ = '-';
4761 p += sprintf(p, "%07d", s->size);
4762 BUG_ON(p > name + ID_STR_LENGTH - 1);
4763 return name;
4764}
4765
4766static int sysfs_slab_add(struct kmem_cache *s)
4767{
4768 int err;
4769 const char *name;
4770 int unmergeable;
4771
4772 if (slab_state < SYSFS)
4773 /* Defer until later */
4774 return 0;
4775
4776 unmergeable = slab_unmergeable(s);
4777 if (unmergeable) {
4778 /*
4779 * Slabcache can never be merged so we can use the name proper.
4780 * This is typically the case for debug situations. In that
4781 * case we can catch duplicate names easily.
4782 */
27c3a314 4783 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4784 name = s->name;
4785 } else {
4786 /*
4787 * Create a unique name for the slab as a target
4788 * for the symlinks.
4789 */
4790 name = create_unique_id(s);
4791 }
4792
27c3a314 4793 s->kobj.kset = slab_kset;
1eada11c
GKH
4794 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4795 if (err) {
4796 kobject_put(&s->kobj);
81819f0f 4797 return err;
1eada11c 4798 }
81819f0f
CL
4799
4800 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5788d8ad
XF
4801 if (err) {
4802 kobject_del(&s->kobj);
4803 kobject_put(&s->kobj);
81819f0f 4804 return err;
5788d8ad 4805 }
81819f0f
CL
4806 kobject_uevent(&s->kobj, KOBJ_ADD);
4807 if (!unmergeable) {
4808 /* Setup first alias */
4809 sysfs_slab_alias(s, s->name);
4810 kfree(name);
4811 }
4812 return 0;
4813}
4814
4815static void sysfs_slab_remove(struct kmem_cache *s)
4816{
2bce6485
CL
4817 if (slab_state < SYSFS)
4818 /*
4819 * Sysfs has not been setup yet so no need to remove the
4820 * cache from sysfs.
4821 */
4822 return;
4823
81819f0f
CL
4824 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4825 kobject_del(&s->kobj);
151c602f 4826 kobject_put(&s->kobj);
81819f0f
CL
4827}
4828
4829/*
4830 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4831 * available lest we lose that information.
81819f0f
CL
4832 */
4833struct saved_alias {
4834 struct kmem_cache *s;
4835 const char *name;
4836 struct saved_alias *next;
4837};
4838
5af328a5 4839static struct saved_alias *alias_list;
81819f0f
CL
4840
4841static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4842{
4843 struct saved_alias *al;
4844
4845 if (slab_state == SYSFS) {
4846 /*
4847 * If we have a leftover link then remove it.
4848 */
27c3a314
GKH
4849 sysfs_remove_link(&slab_kset->kobj, name);
4850 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4851 }
4852
4853 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4854 if (!al)
4855 return -ENOMEM;
4856
4857 al->s = s;
4858 al->name = name;
4859 al->next = alias_list;
4860 alias_list = al;
4861 return 0;
4862}
4863
4864static int __init slab_sysfs_init(void)
4865{
5b95a4ac 4866 struct kmem_cache *s;
81819f0f
CL
4867 int err;
4868
2bce6485
CL
4869 down_write(&slub_lock);
4870
0ff21e46 4871 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4872 if (!slab_kset) {
2bce6485 4873 up_write(&slub_lock);
81819f0f
CL
4874 printk(KERN_ERR "Cannot register slab subsystem.\n");
4875 return -ENOSYS;
4876 }
4877
26a7bd03
CL
4878 slab_state = SYSFS;
4879
5b95a4ac 4880 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4881 err = sysfs_slab_add(s);
5d540fb7
CL
4882 if (err)
4883 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4884 " to sysfs\n", s->name);
26a7bd03 4885 }
81819f0f
CL
4886
4887 while (alias_list) {
4888 struct saved_alias *al = alias_list;
4889
4890 alias_list = alias_list->next;
4891 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4892 if (err)
4893 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4894 " %s to sysfs\n", s->name);
81819f0f
CL
4895 kfree(al);
4896 }
4897
2bce6485 4898 up_write(&slub_lock);
81819f0f
CL
4899 resiliency_test();
4900 return 0;
4901}
4902
4903__initcall(slab_sysfs_init);
ab4d5ed5 4904#endif /* CONFIG_SYSFS */
57ed3eda
PE
4905
4906/*
4907 * The /proc/slabinfo ABI
4908 */
158a9624 4909#ifdef CONFIG_SLABINFO
57ed3eda
PE
4910static void print_slabinfo_header(struct seq_file *m)
4911{
4912 seq_puts(m, "slabinfo - version: 2.1\n");
4913 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4914 "<objperslab> <pagesperslab>");
4915 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4916 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4917 seq_putc(m, '\n');
4918}
4919
4920static void *s_start(struct seq_file *m, loff_t *pos)
4921{
4922 loff_t n = *pos;
4923
4924 down_read(&slub_lock);
4925 if (!n)
4926 print_slabinfo_header(m);
4927
4928 return seq_list_start(&slab_caches, *pos);
4929}
4930
4931static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4932{
4933 return seq_list_next(p, &slab_caches, pos);
4934}
4935
4936static void s_stop(struct seq_file *m, void *p)
4937{
4938 up_read(&slub_lock);
4939}
4940
4941static int s_show(struct seq_file *m, void *p)
4942{
4943 unsigned long nr_partials = 0;
4944 unsigned long nr_slabs = 0;
4945 unsigned long nr_inuse = 0;
205ab99d
CL
4946 unsigned long nr_objs = 0;
4947 unsigned long nr_free = 0;
57ed3eda
PE
4948 struct kmem_cache *s;
4949 int node;
4950
4951 s = list_entry(p, struct kmem_cache, list);
4952
4953 for_each_online_node(node) {
4954 struct kmem_cache_node *n = get_node(s, node);
4955
4956 if (!n)
4957 continue;
4958
4959 nr_partials += n->nr_partial;
4960 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4961 nr_objs += atomic_long_read(&n->total_objects);
4962 nr_free += count_partial(n, count_free);
57ed3eda
PE
4963 }
4964
205ab99d 4965 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4966
4967 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4968 nr_objs, s->size, oo_objects(s->oo),
4969 (1 << oo_order(s->oo)));
57ed3eda
PE
4970 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4971 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4972 0UL);
4973 seq_putc(m, '\n');
4974 return 0;
4975}
4976
7b3c3a50 4977static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4978 .start = s_start,
4979 .next = s_next,
4980 .stop = s_stop,
4981 .show = s_show,
4982};
4983
7b3c3a50
AD
4984static int slabinfo_open(struct inode *inode, struct file *file)
4985{
4986 return seq_open(file, &slabinfo_op);
4987}
4988
4989static const struct file_operations proc_slabinfo_operations = {
4990 .open = slabinfo_open,
4991 .read = seq_read,
4992 .llseek = seq_lseek,
4993 .release = seq_release,
4994};
4995
4996static int __init slab_proc_init(void)
4997{
cf5d1131 4998 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
7b3c3a50
AD
4999 return 0;
5000}
5001module_init(slab_proc_init);
158a9624 5002#endif /* CONFIG_SLABINFO */