tmpfs: revert SEEK_DATA and SEEK_HOLE
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
caefba17 28#include <linux/pagemap.h>
853ac43a
MM
29#include <linux/file.h>
30#include <linux/mm.h>
b95f1b31 31#include <linux/export.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4 53#include <linux/blkdev.h>
bda97eab 54#include <linux/pagevec.h>
41ffe5d5 55#include <linux/percpu_counter.h>
83e4fa9c 56#include <linux/falloc.h>
708e3508 57#include <linux/splice.h>
1da177e4
LT
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
b00dc3ad 62#include <linux/ctype.h>
304dbdb7 63#include <linux/migrate.h>
c1f60a5a 64#include <linux/highmem.h>
680d794b 65#include <linux/seq_file.h>
92562927 66#include <linux/magic.h>
304dbdb7 67
1da177e4 68#include <asm/uaccess.h>
1da177e4
LT
69#include <asm/pgtable.h>
70
caefba17 71#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
72#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
1da177e4
LT
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
69f07ec9
HD
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
b09e0fa4
EP
80struct shmem_xattr {
81 struct list_head list; /* anchored by shmem_inode_info->xattr_list */
82 char *name; /* xattr name */
83 size_t size;
84 char value[0];
85};
86
1aac1400
HD
87/*
88 * shmem_fallocate and shmem_writepage communicate via inode->i_private
89 * (with i_mutex making sure that it has only one user at a time):
90 * we would prefer not to enlarge the shmem inode just for that.
91 */
92struct shmem_falloc {
93 pgoff_t start; /* start of range currently being fallocated */
94 pgoff_t next; /* the next page offset to be fallocated */
95 pgoff_t nr_falloced; /* how many new pages have been fallocated */
96 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
97};
98
285b2c4f 99/* Flag allocation requirements to shmem_getpage */
1da177e4 100enum sgp_type {
1da177e4
LT
101 SGP_READ, /* don't exceed i_size, don't allocate page */
102 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 103 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
104 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
105 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
106};
107
b76db735 108#ifdef CONFIG_TMPFS
680d794b
AM
109static unsigned long shmem_default_max_blocks(void)
110{
111 return totalram_pages / 2;
112}
113
114static unsigned long shmem_default_max_inodes(void)
115{
116 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
117}
b76db735 118#endif
680d794b 119
bde05d1c
HD
120static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
121static int shmem_replace_page(struct page **pagep, gfp_t gfp,
122 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
123static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
124 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
125
126static inline int shmem_getpage(struct inode *inode, pgoff_t index,
127 struct page **pagep, enum sgp_type sgp, int *fault_type)
128{
129 return shmem_getpage_gfp(inode, index, pagep, sgp,
130 mapping_gfp_mask(inode->i_mapping), fault_type);
131}
1da177e4 132
1da177e4
LT
133static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
134{
135 return sb->s_fs_info;
136}
137
138/*
139 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
140 * for shared memory and for shared anonymous (/dev/zero) mappings
141 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
142 * consistent with the pre-accounting of private mappings ...
143 */
144static inline int shmem_acct_size(unsigned long flags, loff_t size)
145{
0b0a0806 146 return (flags & VM_NORESERVE) ?
191c5424 147 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
148}
149
150static inline void shmem_unacct_size(unsigned long flags, loff_t size)
151{
0b0a0806 152 if (!(flags & VM_NORESERVE))
1da177e4
LT
153 vm_unacct_memory(VM_ACCT(size));
154}
155
156/*
157 * ... whereas tmpfs objects are accounted incrementally as
158 * pages are allocated, in order to allow huge sparse files.
159 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
160 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
161 */
162static inline int shmem_acct_block(unsigned long flags)
163{
0b0a0806 164 return (flags & VM_NORESERVE) ?
191c5424 165 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
166}
167
168static inline void shmem_unacct_blocks(unsigned long flags, long pages)
169{
0b0a0806 170 if (flags & VM_NORESERVE)
1da177e4
LT
171 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
172}
173
759b9775 174static const struct super_operations shmem_ops;
f5e54d6e 175static const struct address_space_operations shmem_aops;
15ad7cdc 176static const struct file_operations shmem_file_operations;
92e1d5be
AV
177static const struct inode_operations shmem_inode_operations;
178static const struct inode_operations shmem_dir_inode_operations;
179static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 180static const struct vm_operations_struct shmem_vm_ops;
1da177e4 181
6c231b7b 182static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 183 .ra_pages = 0, /* No readahead */
4f98a2fe 184 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
185};
186
187static LIST_HEAD(shmem_swaplist);
cb5f7b9a 188static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 189
5b04c689
PE
190static int shmem_reserve_inode(struct super_block *sb)
191{
192 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
193 if (sbinfo->max_inodes) {
194 spin_lock(&sbinfo->stat_lock);
195 if (!sbinfo->free_inodes) {
196 spin_unlock(&sbinfo->stat_lock);
197 return -ENOSPC;
198 }
199 sbinfo->free_inodes--;
200 spin_unlock(&sbinfo->stat_lock);
201 }
202 return 0;
203}
204
205static void shmem_free_inode(struct super_block *sb)
206{
207 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
208 if (sbinfo->max_inodes) {
209 spin_lock(&sbinfo->stat_lock);
210 sbinfo->free_inodes++;
211 spin_unlock(&sbinfo->stat_lock);
212 }
213}
214
46711810 215/**
41ffe5d5 216 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
217 * @inode: inode to recalc
218 *
219 * We have to calculate the free blocks since the mm can drop
220 * undirtied hole pages behind our back.
221 *
222 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
223 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
224 *
225 * It has to be called with the spinlock held.
226 */
227static void shmem_recalc_inode(struct inode *inode)
228{
229 struct shmem_inode_info *info = SHMEM_I(inode);
230 long freed;
231
232 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
233 if (freed > 0) {
54af6042
HD
234 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
235 if (sbinfo->max_blocks)
236 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 237 info->alloced -= freed;
54af6042 238 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 239 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
240 }
241}
242
7a5d0fbb
HD
243/*
244 * Replace item expected in radix tree by a new item, while holding tree lock.
245 */
246static int shmem_radix_tree_replace(struct address_space *mapping,
247 pgoff_t index, void *expected, void *replacement)
248{
249 void **pslot;
250 void *item = NULL;
251
252 VM_BUG_ON(!expected);
253 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
254 if (pslot)
255 item = radix_tree_deref_slot_protected(pslot,
256 &mapping->tree_lock);
257 if (item != expected)
258 return -ENOENT;
259 if (replacement)
260 radix_tree_replace_slot(pslot, replacement);
261 else
262 radix_tree_delete(&mapping->page_tree, index);
263 return 0;
264}
265
46f65ec1
HD
266/*
267 * Like add_to_page_cache_locked, but error if expected item has gone.
268 */
269static int shmem_add_to_page_cache(struct page *page,
270 struct address_space *mapping,
271 pgoff_t index, gfp_t gfp, void *expected)
272{
aa3b1895 273 int error = 0;
46f65ec1
HD
274
275 VM_BUG_ON(!PageLocked(page));
276 VM_BUG_ON(!PageSwapBacked(page));
277
46f65ec1
HD
278 if (!expected)
279 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
280 if (!error) {
281 page_cache_get(page);
282 page->mapping = mapping;
283 page->index = index;
284
285 spin_lock_irq(&mapping->tree_lock);
286 if (!expected)
287 error = radix_tree_insert(&mapping->page_tree,
288 index, page);
289 else
290 error = shmem_radix_tree_replace(mapping, index,
291 expected, page);
292 if (!error) {
293 mapping->nrpages++;
294 __inc_zone_page_state(page, NR_FILE_PAGES);
295 __inc_zone_page_state(page, NR_SHMEM);
296 spin_unlock_irq(&mapping->tree_lock);
297 } else {
298 page->mapping = NULL;
299 spin_unlock_irq(&mapping->tree_lock);
300 page_cache_release(page);
301 }
302 if (!expected)
303 radix_tree_preload_end();
304 }
305 if (error)
306 mem_cgroup_uncharge_cache_page(page);
46f65ec1
HD
307 return error;
308}
309
6922c0c7
HD
310/*
311 * Like delete_from_page_cache, but substitutes swap for page.
312 */
313static void shmem_delete_from_page_cache(struct page *page, void *radswap)
314{
315 struct address_space *mapping = page->mapping;
316 int error;
317
318 spin_lock_irq(&mapping->tree_lock);
319 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
320 page->mapping = NULL;
321 mapping->nrpages--;
322 __dec_zone_page_state(page, NR_FILE_PAGES);
323 __dec_zone_page_state(page, NR_SHMEM);
324 spin_unlock_irq(&mapping->tree_lock);
325 page_cache_release(page);
326 BUG_ON(error);
327}
328
7a5d0fbb
HD
329/*
330 * Like find_get_pages, but collecting swap entries as well as pages.
331 */
332static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
333 pgoff_t start, unsigned int nr_pages,
334 struct page **pages, pgoff_t *indices)
335{
336 unsigned int i;
337 unsigned int ret;
338 unsigned int nr_found;
339
340 rcu_read_lock();
341restart:
342 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
343 (void ***)pages, indices, start, nr_pages);
344 ret = 0;
345 for (i = 0; i < nr_found; i++) {
346 struct page *page;
347repeat:
348 page = radix_tree_deref_slot((void **)pages[i]);
349 if (unlikely(!page))
350 continue;
351 if (radix_tree_exception(page)) {
8079b1c8
HD
352 if (radix_tree_deref_retry(page))
353 goto restart;
354 /*
355 * Otherwise, we must be storing a swap entry
356 * here as an exceptional entry: so return it
357 * without attempting to raise page count.
358 */
359 goto export;
7a5d0fbb
HD
360 }
361 if (!page_cache_get_speculative(page))
362 goto repeat;
363
364 /* Has the page moved? */
365 if (unlikely(page != *((void **)pages[i]))) {
366 page_cache_release(page);
367 goto repeat;
368 }
369export:
370 indices[ret] = indices[i];
371 pages[ret] = page;
372 ret++;
373 }
374 if (unlikely(!ret && nr_found))
375 goto restart;
376 rcu_read_unlock();
377 return ret;
378}
379
380/*
381 * Remove swap entry from radix tree, free the swap and its page cache.
382 */
383static int shmem_free_swap(struct address_space *mapping,
384 pgoff_t index, void *radswap)
385{
386 int error;
387
388 spin_lock_irq(&mapping->tree_lock);
389 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
390 spin_unlock_irq(&mapping->tree_lock);
391 if (!error)
392 free_swap_and_cache(radix_to_swp_entry(radswap));
393 return error;
394}
395
396/*
397 * Pagevec may contain swap entries, so shuffle up pages before releasing.
398 */
24513264 399static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
400{
401 int i, j;
402
403 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
404 struct page *page = pvec->pages[i];
405 if (!radix_tree_exceptional_entry(page))
406 pvec->pages[j++] = page;
407 }
408 pvec->nr = j;
24513264
HD
409}
410
411/*
412 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
413 */
414void shmem_unlock_mapping(struct address_space *mapping)
415{
416 struct pagevec pvec;
417 pgoff_t indices[PAGEVEC_SIZE];
418 pgoff_t index = 0;
419
420 pagevec_init(&pvec, 0);
421 /*
422 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
423 */
424 while (!mapping_unevictable(mapping)) {
425 /*
426 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
427 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
428 */
429 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
430 PAGEVEC_SIZE, pvec.pages, indices);
431 if (!pvec.nr)
432 break;
433 index = indices[pvec.nr - 1] + 1;
434 shmem_deswap_pagevec(&pvec);
435 check_move_unevictable_pages(pvec.pages, pvec.nr);
436 pagevec_release(&pvec);
437 cond_resched();
438 }
7a5d0fbb
HD
439}
440
441/*
442 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 443 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 444 */
1635f6a7
HD
445static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
446 bool unfalloc)
1da177e4 447{
285b2c4f 448 struct address_space *mapping = inode->i_mapping;
1da177e4 449 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 450 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
451 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
452 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
453 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 454 struct pagevec pvec;
7a5d0fbb
HD
455 pgoff_t indices[PAGEVEC_SIZE];
456 long nr_swaps_freed = 0;
285b2c4f 457 pgoff_t index;
bda97eab
HD
458 int i;
459
83e4fa9c
HD
460 if (lend == -1)
461 end = -1; /* unsigned, so actually very big */
bda97eab
HD
462
463 pagevec_init(&pvec, 0);
464 index = start;
83e4fa9c 465 while (index < end) {
7a5d0fbb 466 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 467 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
468 pvec.pages, indices);
469 if (!pvec.nr)
470 break;
bda97eab
HD
471 mem_cgroup_uncharge_start();
472 for (i = 0; i < pagevec_count(&pvec); i++) {
473 struct page *page = pvec.pages[i];
474
7a5d0fbb 475 index = indices[i];
83e4fa9c 476 if (index >= end)
bda97eab
HD
477 break;
478
7a5d0fbb 479 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
480 if (unfalloc)
481 continue;
7a5d0fbb
HD
482 nr_swaps_freed += !shmem_free_swap(mapping,
483 index, page);
bda97eab 484 continue;
7a5d0fbb
HD
485 }
486
487 if (!trylock_page(page))
bda97eab 488 continue;
1635f6a7
HD
489 if (!unfalloc || !PageUptodate(page)) {
490 if (page->mapping == mapping) {
491 VM_BUG_ON(PageWriteback(page));
492 truncate_inode_page(mapping, page);
493 }
bda97eab 494 }
bda97eab
HD
495 unlock_page(page);
496 }
24513264
HD
497 shmem_deswap_pagevec(&pvec);
498 pagevec_release(&pvec);
bda97eab
HD
499 mem_cgroup_uncharge_end();
500 cond_resched();
501 index++;
502 }
1da177e4 503
83e4fa9c 504 if (partial_start) {
bda97eab
HD
505 struct page *page = NULL;
506 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
507 if (page) {
83e4fa9c
HD
508 unsigned int top = PAGE_CACHE_SIZE;
509 if (start > end) {
510 top = partial_end;
511 partial_end = 0;
512 }
513 zero_user_segment(page, partial_start, top);
514 set_page_dirty(page);
515 unlock_page(page);
516 page_cache_release(page);
517 }
518 }
519 if (partial_end) {
520 struct page *page = NULL;
521 shmem_getpage(inode, end, &page, SGP_READ, NULL);
522 if (page) {
523 zero_user_segment(page, 0, partial_end);
bda97eab
HD
524 set_page_dirty(page);
525 unlock_page(page);
526 page_cache_release(page);
527 }
528 }
83e4fa9c
HD
529 if (start >= end)
530 return;
bda97eab
HD
531
532 index = start;
533 for ( ; ; ) {
534 cond_resched();
7a5d0fbb 535 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 536 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
537 pvec.pages, indices);
538 if (!pvec.nr) {
1635f6a7 539 if (index == start || unfalloc)
bda97eab
HD
540 break;
541 index = start;
542 continue;
543 }
1635f6a7 544 if ((index == start || unfalloc) && indices[0] >= end) {
24513264
HD
545 shmem_deswap_pagevec(&pvec);
546 pagevec_release(&pvec);
bda97eab
HD
547 break;
548 }
549 mem_cgroup_uncharge_start();
550 for (i = 0; i < pagevec_count(&pvec); i++) {
551 struct page *page = pvec.pages[i];
552
7a5d0fbb 553 index = indices[i];
83e4fa9c 554 if (index >= end)
bda97eab
HD
555 break;
556
7a5d0fbb 557 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
558 if (unfalloc)
559 continue;
7a5d0fbb
HD
560 nr_swaps_freed += !shmem_free_swap(mapping,
561 index, page);
562 continue;
563 }
564
bda97eab 565 lock_page(page);
1635f6a7
HD
566 if (!unfalloc || !PageUptodate(page)) {
567 if (page->mapping == mapping) {
568 VM_BUG_ON(PageWriteback(page));
569 truncate_inode_page(mapping, page);
570 }
7a5d0fbb 571 }
bda97eab
HD
572 unlock_page(page);
573 }
24513264
HD
574 shmem_deswap_pagevec(&pvec);
575 pagevec_release(&pvec);
bda97eab
HD
576 mem_cgroup_uncharge_end();
577 index++;
578 }
94c1e62d 579
1da177e4 580 spin_lock(&info->lock);
7a5d0fbb 581 info->swapped -= nr_swaps_freed;
1da177e4
LT
582 shmem_recalc_inode(inode);
583 spin_unlock(&info->lock);
1635f6a7 584}
1da177e4 585
1635f6a7
HD
586void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
587{
588 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 589 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 590}
94c1e62d 591EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 592
94c1e62d 593static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
594{
595 struct inode *inode = dentry->d_inode;
1da177e4
LT
596 int error;
597
db78b877
CH
598 error = inode_change_ok(inode, attr);
599 if (error)
600 return error;
601
94c1e62d
HD
602 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
603 loff_t oldsize = inode->i_size;
604 loff_t newsize = attr->ia_size;
3889e6e7 605
94c1e62d
HD
606 if (newsize != oldsize) {
607 i_size_write(inode, newsize);
608 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
609 }
610 if (newsize < oldsize) {
611 loff_t holebegin = round_up(newsize, PAGE_SIZE);
612 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
613 shmem_truncate_range(inode, newsize, (loff_t)-1);
614 /* unmap again to remove racily COWed private pages */
615 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616 }
1da177e4
LT
617 }
618
db78b877 619 setattr_copy(inode, attr);
39f0247d 620#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 621 if (attr->ia_valid & ATTR_MODE)
1c7c474c 622 error = generic_acl_chmod(inode);
39f0247d 623#endif
1da177e4
LT
624 return error;
625}
626
1f895f75 627static void shmem_evict_inode(struct inode *inode)
1da177e4 628{
1da177e4 629 struct shmem_inode_info *info = SHMEM_I(inode);
b09e0fa4 630 struct shmem_xattr *xattr, *nxattr;
1da177e4 631
3889e6e7 632 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
633 shmem_unacct_size(info->flags, inode->i_size);
634 inode->i_size = 0;
3889e6e7 635 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 636 if (!list_empty(&info->swaplist)) {
cb5f7b9a 637 mutex_lock(&shmem_swaplist_mutex);
1da177e4 638 list_del_init(&info->swaplist);
cb5f7b9a 639 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 640 }
69f07ec9
HD
641 } else
642 kfree(info->symlink);
b09e0fa4
EP
643
644 list_for_each_entry_safe(xattr, nxattr, &info->xattr_list, list) {
645 kfree(xattr->name);
646 kfree(xattr);
647 }
0edd73b3 648 BUG_ON(inode->i_blocks);
5b04c689 649 shmem_free_inode(inode->i_sb);
dbd5768f 650 clear_inode(inode);
1da177e4
LT
651}
652
46f65ec1
HD
653/*
654 * If swap found in inode, free it and move page from swapcache to filecache.
655 */
41ffe5d5 656static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 657 swp_entry_t swap, struct page **pagep)
1da177e4 658{
285b2c4f 659 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 660 void *radswap;
41ffe5d5 661 pgoff_t index;
bde05d1c
HD
662 gfp_t gfp;
663 int error = 0;
1da177e4 664
46f65ec1 665 radswap = swp_to_radix_entry(swap);
e504f3fd 666 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 667 if (index == -1)
285b2c4f 668 return 0;
2e0e26c7 669
1b1b32f2
HD
670 /*
671 * Move _head_ to start search for next from here.
1f895f75 672 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 673 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 674 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
675 */
676 if (shmem_swaplist.next != &info->swaplist)
677 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 678
bde05d1c
HD
679 gfp = mapping_gfp_mask(mapping);
680 if (shmem_should_replace_page(*pagep, gfp)) {
681 mutex_unlock(&shmem_swaplist_mutex);
682 error = shmem_replace_page(pagep, gfp, info, index);
683 mutex_lock(&shmem_swaplist_mutex);
684 /*
685 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
686 * allocation, but the inode might have been freed while we
687 * dropped it: although a racing shmem_evict_inode() cannot
688 * complete without emptying the radix_tree, our page lock
689 * on this swapcache page is not enough to prevent that -
690 * free_swap_and_cache() of our swap entry will only
691 * trylock_page(), removing swap from radix_tree whatever.
692 *
693 * We must not proceed to shmem_add_to_page_cache() if the
694 * inode has been freed, but of course we cannot rely on
695 * inode or mapping or info to check that. However, we can
696 * safely check if our swap entry is still in use (and here
697 * it can't have got reused for another page): if it's still
698 * in use, then the inode cannot have been freed yet, and we
699 * can safely proceed (if it's no longer in use, that tells
700 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
701 */
702 if (!page_swapcount(*pagep))
703 error = -ENOENT;
704 }
705
d13d1443 706 /*
778dd893
HD
707 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
708 * but also to hold up shmem_evict_inode(): so inode cannot be freed
709 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 710 */
bde05d1c
HD
711 if (!error)
712 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 713 GFP_NOWAIT, radswap);
48f170fb 714 if (error != -ENOMEM) {
46f65ec1
HD
715 /*
716 * Truncation and eviction use free_swap_and_cache(), which
717 * only does trylock page: if we raced, best clean up here.
718 */
bde05d1c
HD
719 delete_from_swap_cache(*pagep);
720 set_page_dirty(*pagep);
46f65ec1
HD
721 if (!error) {
722 spin_lock(&info->lock);
723 info->swapped--;
724 spin_unlock(&info->lock);
725 swap_free(swap);
726 }
2e0e26c7 727 error = 1; /* not an error, but entry was found */
1da177e4 728 }
2e0e26c7 729 return error;
1da177e4
LT
730}
731
732/*
46f65ec1 733 * Search through swapped inodes to find and replace swap by page.
1da177e4 734 */
41ffe5d5 735int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 736{
41ffe5d5 737 struct list_head *this, *next;
1da177e4
LT
738 struct shmem_inode_info *info;
739 int found = 0;
bde05d1c
HD
740 int error = 0;
741
742 /*
743 * There's a faint possibility that swap page was replaced before
0142ef6c 744 * caller locked it: caller will come back later with the right page.
bde05d1c 745 */
0142ef6c 746 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 747 goto out;
778dd893
HD
748
749 /*
750 * Charge page using GFP_KERNEL while we can wait, before taking
751 * the shmem_swaplist_mutex which might hold up shmem_writepage().
752 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
753 */
754 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
755 if (error)
756 goto out;
46f65ec1 757 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 758
cb5f7b9a 759 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
760 list_for_each_safe(this, next, &shmem_swaplist) {
761 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 762 if (info->swapped)
bde05d1c 763 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
764 else
765 list_del_init(&info->swaplist);
cb5f7b9a 766 cond_resched();
2e0e26c7 767 if (found)
778dd893 768 break;
1da177e4 769 }
cb5f7b9a 770 mutex_unlock(&shmem_swaplist_mutex);
778dd893 771
778dd893
HD
772 if (found < 0)
773 error = found;
774out:
aaa46865
HD
775 unlock_page(page);
776 page_cache_release(page);
778dd893 777 return error;
1da177e4
LT
778}
779
780/*
781 * Move the page from the page cache to the swap cache.
782 */
783static int shmem_writepage(struct page *page, struct writeback_control *wbc)
784{
785 struct shmem_inode_info *info;
1da177e4 786 struct address_space *mapping;
1da177e4 787 struct inode *inode;
6922c0c7
HD
788 swp_entry_t swap;
789 pgoff_t index;
1da177e4
LT
790
791 BUG_ON(!PageLocked(page));
1da177e4
LT
792 mapping = page->mapping;
793 index = page->index;
794 inode = mapping->host;
795 info = SHMEM_I(inode);
796 if (info->flags & VM_LOCKED)
797 goto redirty;
d9fe526a 798 if (!total_swap_pages)
1da177e4
LT
799 goto redirty;
800
d9fe526a
HD
801 /*
802 * shmem_backing_dev_info's capabilities prevent regular writeback or
803 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 804 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 805 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 806 * and not for the writeback threads or sync.
d9fe526a 807 */
48f170fb
HD
808 if (!wbc->for_reclaim) {
809 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
810 goto redirty;
811 }
1635f6a7
HD
812
813 /*
814 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
815 * value into swapfile.c, the only way we can correctly account for a
816 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
817 *
818 * That's okay for a page already fallocated earlier, but if we have
819 * not yet completed the fallocation, then (a) we want to keep track
820 * of this page in case we have to undo it, and (b) it may not be a
821 * good idea to continue anyway, once we're pushing into swap. So
822 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
823 */
824 if (!PageUptodate(page)) {
1aac1400
HD
825 if (inode->i_private) {
826 struct shmem_falloc *shmem_falloc;
827 spin_lock(&inode->i_lock);
828 shmem_falloc = inode->i_private;
829 if (shmem_falloc &&
830 index >= shmem_falloc->start &&
831 index < shmem_falloc->next)
832 shmem_falloc->nr_unswapped++;
833 else
834 shmem_falloc = NULL;
835 spin_unlock(&inode->i_lock);
836 if (shmem_falloc)
837 goto redirty;
838 }
1635f6a7
HD
839 clear_highpage(page);
840 flush_dcache_page(page);
841 SetPageUptodate(page);
842 }
843
48f170fb
HD
844 swap = get_swap_page();
845 if (!swap.val)
846 goto redirty;
d9fe526a 847
b1dea800
HD
848 /*
849 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
850 * if it's not already there. Do it now before the page is
851 * moved to swap cache, when its pagelock no longer protects
b1dea800 852 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
853 * we've incremented swapped, because shmem_unuse_inode() will
854 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 855 */
48f170fb
HD
856 mutex_lock(&shmem_swaplist_mutex);
857 if (list_empty(&info->swaplist))
858 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 859
48f170fb 860 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 861 swap_shmem_alloc(swap);
6922c0c7
HD
862 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
863
864 spin_lock(&info->lock);
865 info->swapped++;
866 shmem_recalc_inode(inode);
826267cf 867 spin_unlock(&info->lock);
6922c0c7
HD
868
869 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 870 BUG_ON(page_mapped(page));
9fab5619 871 swap_writepage(page, wbc);
1da177e4
LT
872 return 0;
873 }
874
6922c0c7 875 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 876 swapcache_free(swap, NULL);
1da177e4
LT
877redirty:
878 set_page_dirty(page);
d9fe526a
HD
879 if (wbc->for_reclaim)
880 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
881 unlock_page(page);
882 return 0;
1da177e4
LT
883}
884
885#ifdef CONFIG_NUMA
680d794b 886#ifdef CONFIG_TMPFS
71fe804b 887static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 888{
095f1fc4 889 char buffer[64];
680d794b 890
71fe804b 891 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 892 return; /* show nothing */
680d794b 893
71fe804b 894 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
895
896 seq_printf(seq, ",mpol=%s", buffer);
680d794b 897}
71fe804b
LS
898
899static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
900{
901 struct mempolicy *mpol = NULL;
902 if (sbinfo->mpol) {
903 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
904 mpol = sbinfo->mpol;
905 mpol_get(mpol);
906 spin_unlock(&sbinfo->stat_lock);
907 }
908 return mpol;
909}
680d794b
AM
910#endif /* CONFIG_TMPFS */
911
41ffe5d5
HD
912static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
913 struct shmem_inode_info *info, pgoff_t index)
1da177e4 914{
52cd3b07 915 struct mempolicy mpol, *spol;
1da177e4
LT
916 struct vm_area_struct pvma;
917
52cd3b07 918 spol = mpol_cond_copy(&mpol,
41ffe5d5 919 mpol_shared_policy_lookup(&info->policy, index));
52cd3b07 920
1da177e4 921 /* Create a pseudo vma that just contains the policy */
c4cc6d07 922 pvma.vm_start = 0;
41ffe5d5 923 pvma.vm_pgoff = index;
c4cc6d07 924 pvma.vm_ops = NULL;
52cd3b07 925 pvma.vm_policy = spol;
41ffe5d5 926 return swapin_readahead(swap, gfp, &pvma, 0);
1da177e4
LT
927}
928
02098fea 929static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 930 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
931{
932 struct vm_area_struct pvma;
1da177e4 933
c4cc6d07
HD
934 /* Create a pseudo vma that just contains the policy */
935 pvma.vm_start = 0;
41ffe5d5 936 pvma.vm_pgoff = index;
c4cc6d07 937 pvma.vm_ops = NULL;
41ffe5d5 938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07
LS
939
940 /*
941 * alloc_page_vma() will drop the shared policy reference
942 */
943 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 944}
680d794b
AM
945#else /* !CONFIG_NUMA */
946#ifdef CONFIG_TMPFS
41ffe5d5 947static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
948{
949}
950#endif /* CONFIG_TMPFS */
951
41ffe5d5
HD
952static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 struct shmem_inode_info *info, pgoff_t index)
1da177e4 954{
41ffe5d5 955 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
956}
957
02098fea 958static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 959 struct shmem_inode_info *info, pgoff_t index)
1da177e4 960{
e84e2e13 961 return alloc_page(gfp);
1da177e4 962}
680d794b 963#endif /* CONFIG_NUMA */
1da177e4 964
71fe804b
LS
965#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968 return NULL;
969}
970#endif
971
bde05d1c
HD
972/*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985{
986 return page_zonenum(page) > gfp_zone(gfp);
987}
988
989static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 struct shmem_inode_info *info, pgoff_t index)
991{
992 struct page *oldpage, *newpage;
993 struct address_space *swap_mapping;
994 pgoff_t swap_index;
995 int error;
996
997 oldpage = *pagep;
998 swap_index = page_private(oldpage);
999 swap_mapping = page_mapping(oldpage);
1000
1001 /*
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1004 */
1005 gfp &= ~GFP_CONSTRAINT_MASK;
1006 newpage = shmem_alloc_page(gfp, info, index);
1007 if (!newpage)
1008 return -ENOMEM;
bde05d1c 1009
bde05d1c
HD
1010 page_cache_get(newpage);
1011 copy_highpage(newpage, oldpage);
0142ef6c 1012 flush_dcache_page(newpage);
bde05d1c 1013
bde05d1c 1014 __set_page_locked(newpage);
bde05d1c 1015 SetPageUptodate(newpage);
bde05d1c 1016 SetPageSwapBacked(newpage);
bde05d1c 1017 set_page_private(newpage, swap_index);
bde05d1c
HD
1018 SetPageSwapCache(newpage);
1019
1020 /*
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1023 */
1024 spin_lock_irq(&swap_mapping->tree_lock);
1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 newpage);
0142ef6c
HD
1027 if (!error) {
1028 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 }
bde05d1c 1031 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1032
0142ef6c
HD
1033 if (unlikely(error)) {
1034 /*
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1038 */
1039 oldpage = newpage;
1040 } else {
1041 mem_cgroup_replace_page_cache(oldpage, newpage);
1042 lru_cache_add_anon(newpage);
1043 *pagep = newpage;
1044 }
bde05d1c
HD
1045
1046 ClearPageSwapCache(oldpage);
1047 set_page_private(oldpage, 0);
1048
1049 unlock_page(oldpage);
1050 page_cache_release(oldpage);
1051 page_cache_release(oldpage);
0142ef6c 1052 return error;
bde05d1c
HD
1053}
1054
1da177e4 1055/*
68da9f05 1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
41ffe5d5 1062static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1064{
1065 struct address_space *mapping = inode->i_mapping;
54af6042 1066 struct shmem_inode_info *info;
1da177e4 1067 struct shmem_sb_info *sbinfo;
27ab7006 1068 struct page *page;
1da177e4
LT
1069 swp_entry_t swap;
1070 int error;
54af6042 1071 int once = 0;
1635f6a7 1072 int alloced = 0;
1da177e4 1073
41ffe5d5 1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1075 return -EFBIG;
1da177e4 1076repeat:
54af6042 1077 swap.val = 0;
41ffe5d5 1078 page = find_lock_page(mapping, index);
54af6042
HD
1079 if (radix_tree_exceptional_entry(page)) {
1080 swap = radix_to_swp_entry(page);
1081 page = NULL;
1082 }
1083
1635f6a7 1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 error = -EINVAL;
1087 goto failed;
1088 }
1089
1635f6a7
HD
1090 /* fallocated page? */
1091 if (page && !PageUptodate(page)) {
1092 if (sgp != SGP_READ)
1093 goto clear;
1094 unlock_page(page);
1095 page_cache_release(page);
1096 page = NULL;
1097 }
54af6042 1098 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1099 *pagep = page;
1100 return 0;
27ab7006
HD
1101 }
1102
1103 /*
54af6042
HD
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
27ab7006 1106 */
54af6042
HD
1107 info = SHMEM_I(inode);
1108 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1109
1da177e4
LT
1110 if (swap.val) {
1111 /* Look it up and read it in.. */
27ab7006
HD
1112 page = lookup_swap_cache(swap);
1113 if (!page) {
1da177e4 1114 /* here we actually do the io */
68da9f05
HD
1115 if (fault_type)
1116 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1117 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1118 if (!page) {
54af6042
HD
1119 error = -ENOMEM;
1120 goto failed;
1da177e4 1121 }
1da177e4
LT
1122 }
1123
1124 /* We have to do this with page locked to prevent races */
54af6042 1125 lock_page(page);
0142ef6c
HD
1126 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1127 page->mapping) {
bde05d1c
HD
1128 error = -EEXIST; /* try again */
1129 goto failed;
1130 }
27ab7006 1131 if (!PageUptodate(page)) {
1da177e4 1132 error = -EIO;
54af6042 1133 goto failed;
1da177e4 1134 }
54af6042
HD
1135 wait_on_page_writeback(page);
1136
bde05d1c
HD
1137 if (shmem_should_replace_page(page, gfp)) {
1138 error = shmem_replace_page(&page, gfp, info, index);
1139 if (error)
1140 goto failed;
1da177e4 1141 }
27ab7006 1142
aa3b1895
HD
1143 error = mem_cgroup_cache_charge(page, current->mm,
1144 gfp & GFP_RECLAIM_MASK);
1145 if (!error)
1146 error = shmem_add_to_page_cache(page, mapping, index,
1147 gfp, swp_to_radix_entry(swap));
54af6042
HD
1148 if (error)
1149 goto failed;
1150
1151 spin_lock(&info->lock);
285b2c4f 1152 info->swapped--;
54af6042 1153 shmem_recalc_inode(inode);
27ab7006 1154 spin_unlock(&info->lock);
54af6042
HD
1155
1156 delete_from_swap_cache(page);
27ab7006
HD
1157 set_page_dirty(page);
1158 swap_free(swap);
1159
54af6042
HD
1160 } else {
1161 if (shmem_acct_block(info->flags)) {
1162 error = -ENOSPC;
1163 goto failed;
1da177e4 1164 }
0edd73b3 1165 if (sbinfo->max_blocks) {
fc5da22a 1166 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1167 sbinfo->max_blocks) >= 0) {
1168 error = -ENOSPC;
1169 goto unacct;
1170 }
7e496299 1171 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1172 }
1da177e4 1173
54af6042
HD
1174 page = shmem_alloc_page(gfp, info, index);
1175 if (!page) {
1176 error = -ENOMEM;
1177 goto decused;
1da177e4
LT
1178 }
1179
54af6042
HD
1180 SetPageSwapBacked(page);
1181 __set_page_locked(page);
aa3b1895
HD
1182 error = mem_cgroup_cache_charge(page, current->mm,
1183 gfp & GFP_RECLAIM_MASK);
1184 if (!error)
1185 error = shmem_add_to_page_cache(page, mapping, index,
1186 gfp, NULL);
54af6042
HD
1187 if (error)
1188 goto decused;
1189 lru_cache_add_anon(page);
1190
1191 spin_lock(&info->lock);
1da177e4 1192 info->alloced++;
54af6042
HD
1193 inode->i_blocks += BLOCKS_PER_PAGE;
1194 shmem_recalc_inode(inode);
1da177e4 1195 spin_unlock(&info->lock);
1635f6a7 1196 alloced = true;
54af6042 1197
ec9516fb 1198 /*
1635f6a7
HD
1199 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1200 */
1201 if (sgp == SGP_FALLOC)
1202 sgp = SGP_WRITE;
1203clear:
1204 /*
1205 * Let SGP_WRITE caller clear ends if write does not fill page;
1206 * but SGP_FALLOC on a page fallocated earlier must initialize
1207 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1208 */
1209 if (sgp != SGP_WRITE) {
1210 clear_highpage(page);
1211 flush_dcache_page(page);
1212 SetPageUptodate(page);
1213 }
a0ee5ec5 1214 if (sgp == SGP_DIRTY)
27ab7006 1215 set_page_dirty(page);
1da177e4 1216 }
bde05d1c 1217
54af6042 1218 /* Perhaps the file has been truncated since we checked */
1635f6a7 1219 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1220 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1221 error = -EINVAL;
1635f6a7
HD
1222 if (alloced)
1223 goto trunc;
1224 else
1225 goto failed;
e83c32e8 1226 }
54af6042
HD
1227 *pagep = page;
1228 return 0;
1da177e4 1229
59a16ead 1230 /*
54af6042 1231 * Error recovery.
59a16ead 1232 */
54af6042 1233trunc:
1635f6a7 1234 info = SHMEM_I(inode);
54af6042
HD
1235 ClearPageDirty(page);
1236 delete_from_page_cache(page);
1237 spin_lock(&info->lock);
1238 info->alloced--;
1239 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1240 spin_unlock(&info->lock);
54af6042 1241decused:
1635f6a7 1242 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1243 if (sbinfo->max_blocks)
1244 percpu_counter_add(&sbinfo->used_blocks, -1);
1245unacct:
1246 shmem_unacct_blocks(info->flags, 1);
1247failed:
1248 if (swap.val && error != -EINVAL) {
1249 struct page *test = find_get_page(mapping, index);
1250 if (test && !radix_tree_exceptional_entry(test))
1251 page_cache_release(test);
1252 /* Have another try if the entry has changed */
1253 if (test != swp_to_radix_entry(swap))
1254 error = -EEXIST;
1255 }
27ab7006 1256 if (page) {
54af6042 1257 unlock_page(page);
27ab7006 1258 page_cache_release(page);
54af6042
HD
1259 }
1260 if (error == -ENOSPC && !once++) {
1261 info = SHMEM_I(inode);
1262 spin_lock(&info->lock);
1263 shmem_recalc_inode(inode);
1264 spin_unlock(&info->lock);
27ab7006 1265 goto repeat;
ff36b801 1266 }
54af6042
HD
1267 if (error == -EEXIST)
1268 goto repeat;
1269 return error;
1da177e4
LT
1270}
1271
d0217ac0 1272static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1273{
d3ac7f89 1274 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1275 int error;
68da9f05 1276 int ret = VM_FAULT_LOCKED;
1da177e4 1277
27d54b39 1278 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1279 if (error)
1280 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1281
456f998e
YH
1282 if (ret & VM_FAULT_MAJOR) {
1283 count_vm_event(PGMAJFAULT);
1284 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1285 }
68da9f05 1286 return ret;
1da177e4
LT
1287}
1288
1da177e4 1289#ifdef CONFIG_NUMA
41ffe5d5 1290static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1291{
41ffe5d5
HD
1292 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1293 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1294}
1295
d8dc74f2
AB
1296static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1297 unsigned long addr)
1da177e4 1298{
41ffe5d5
HD
1299 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1300 pgoff_t index;
1da177e4 1301
41ffe5d5
HD
1302 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1303 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1304}
1305#endif
1306
1307int shmem_lock(struct file *file, int lock, struct user_struct *user)
1308{
d3ac7f89 1309 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1310 struct shmem_inode_info *info = SHMEM_I(inode);
1311 int retval = -ENOMEM;
1312
1313 spin_lock(&info->lock);
1314 if (lock && !(info->flags & VM_LOCKED)) {
1315 if (!user_shm_lock(inode->i_size, user))
1316 goto out_nomem;
1317 info->flags |= VM_LOCKED;
89e004ea 1318 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1319 }
1320 if (!lock && (info->flags & VM_LOCKED) && user) {
1321 user_shm_unlock(inode->i_size, user);
1322 info->flags &= ~VM_LOCKED;
89e004ea 1323 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1324 }
1325 retval = 0;
89e004ea 1326
1da177e4
LT
1327out_nomem:
1328 spin_unlock(&info->lock);
1329 return retval;
1330}
1331
9b83a6a8 1332static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1333{
1334 file_accessed(file);
1335 vma->vm_ops = &shmem_vm_ops;
d0217ac0 1336 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1337 return 0;
1338}
1339
454abafe 1340static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1341 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1342{
1343 struct inode *inode;
1344 struct shmem_inode_info *info;
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1346
5b04c689
PE
1347 if (shmem_reserve_inode(sb))
1348 return NULL;
1da177e4
LT
1349
1350 inode = new_inode(sb);
1351 if (inode) {
85fe4025 1352 inode->i_ino = get_next_ino();
454abafe 1353 inode_init_owner(inode, dir, mode);
1da177e4 1354 inode->i_blocks = 0;
1da177e4
LT
1355 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1356 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1357 inode->i_generation = get_seconds();
1da177e4
LT
1358 info = SHMEM_I(inode);
1359 memset(info, 0, (char *)inode - (char *)info);
1360 spin_lock_init(&info->lock);
0b0a0806 1361 info->flags = flags & VM_NORESERVE;
1da177e4 1362 INIT_LIST_HEAD(&info->swaplist);
b09e0fa4 1363 INIT_LIST_HEAD(&info->xattr_list);
72c04902 1364 cache_no_acl(inode);
1da177e4
LT
1365
1366 switch (mode & S_IFMT) {
1367 default:
39f0247d 1368 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1369 init_special_inode(inode, mode, dev);
1370 break;
1371 case S_IFREG:
14fcc23f 1372 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1373 inode->i_op = &shmem_inode_operations;
1374 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1375 mpol_shared_policy_init(&info->policy,
1376 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1377 break;
1378 case S_IFDIR:
d8c76e6f 1379 inc_nlink(inode);
1da177e4
LT
1380 /* Some things misbehave if size == 0 on a directory */
1381 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1382 inode->i_op = &shmem_dir_inode_operations;
1383 inode->i_fop = &simple_dir_operations;
1384 break;
1385 case S_IFLNK:
1386 /*
1387 * Must not load anything in the rbtree,
1388 * mpol_free_shared_policy will not be called.
1389 */
71fe804b 1390 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1391 break;
1392 }
5b04c689
PE
1393 } else
1394 shmem_free_inode(sb);
1da177e4
LT
1395 return inode;
1396}
1397
1398#ifdef CONFIG_TMPFS
92e1d5be 1399static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1400static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1401
6d9d88d0
JS
1402#ifdef CONFIG_TMPFS_XATTR
1403static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1404#else
1405#define shmem_initxattrs NULL
1406#endif
1407
1da177e4 1408static int
800d15a5
NP
1409shmem_write_begin(struct file *file, struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned flags,
1411 struct page **pagep, void **fsdata)
1da177e4 1412{
800d15a5
NP
1413 struct inode *inode = mapping->host;
1414 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1415 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1416}
1417
1418static int
1419shmem_write_end(struct file *file, struct address_space *mapping,
1420 loff_t pos, unsigned len, unsigned copied,
1421 struct page *page, void *fsdata)
1422{
1423 struct inode *inode = mapping->host;
1424
d3602444
HD
1425 if (pos + copied > inode->i_size)
1426 i_size_write(inode, pos + copied);
1427
ec9516fb
HD
1428 if (!PageUptodate(page)) {
1429 if (copied < PAGE_CACHE_SIZE) {
1430 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1431 zero_user_segments(page, 0, from,
1432 from + copied, PAGE_CACHE_SIZE);
1433 }
1434 SetPageUptodate(page);
1435 }
800d15a5 1436 set_page_dirty(page);
6746aff7 1437 unlock_page(page);
800d15a5
NP
1438 page_cache_release(page);
1439
800d15a5 1440 return copied;
1da177e4
LT
1441}
1442
1da177e4
LT
1443static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1444{
d3ac7f89 1445 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4 1446 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1447 pgoff_t index;
1448 unsigned long offset;
a0ee5ec5
HD
1449 enum sgp_type sgp = SGP_READ;
1450
1451 /*
1452 * Might this read be for a stacking filesystem? Then when reading
1453 * holes of a sparse file, we actually need to allocate those pages,
1454 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1455 */
1456 if (segment_eq(get_fs(), KERNEL_DS))
1457 sgp = SGP_DIRTY;
1da177e4
LT
1458
1459 index = *ppos >> PAGE_CACHE_SHIFT;
1460 offset = *ppos & ~PAGE_CACHE_MASK;
1461
1462 for (;;) {
1463 struct page *page = NULL;
41ffe5d5
HD
1464 pgoff_t end_index;
1465 unsigned long nr, ret;
1da177e4
LT
1466 loff_t i_size = i_size_read(inode);
1467
1468 end_index = i_size >> PAGE_CACHE_SHIFT;
1469 if (index > end_index)
1470 break;
1471 if (index == end_index) {
1472 nr = i_size & ~PAGE_CACHE_MASK;
1473 if (nr <= offset)
1474 break;
1475 }
1476
a0ee5ec5 1477 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1478 if (desc->error) {
1479 if (desc->error == -EINVAL)
1480 desc->error = 0;
1481 break;
1482 }
d3602444
HD
1483 if (page)
1484 unlock_page(page);
1da177e4
LT
1485
1486 /*
1487 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1488 * are called without i_mutex protection against truncate
1da177e4
LT
1489 */
1490 nr = PAGE_CACHE_SIZE;
1491 i_size = i_size_read(inode);
1492 end_index = i_size >> PAGE_CACHE_SHIFT;
1493 if (index == end_index) {
1494 nr = i_size & ~PAGE_CACHE_MASK;
1495 if (nr <= offset) {
1496 if (page)
1497 page_cache_release(page);
1498 break;
1499 }
1500 }
1501 nr -= offset;
1502
1503 if (page) {
1504 /*
1505 * If users can be writing to this page using arbitrary
1506 * virtual addresses, take care about potential aliasing
1507 * before reading the page on the kernel side.
1508 */
1509 if (mapping_writably_mapped(mapping))
1510 flush_dcache_page(page);
1511 /*
1512 * Mark the page accessed if we read the beginning.
1513 */
1514 if (!offset)
1515 mark_page_accessed(page);
b5810039 1516 } else {
1da177e4 1517 page = ZERO_PAGE(0);
b5810039
NP
1518 page_cache_get(page);
1519 }
1da177e4
LT
1520
1521 /*
1522 * Ok, we have the page, and it's up-to-date, so
1523 * now we can copy it to user space...
1524 *
1525 * The actor routine returns how many bytes were actually used..
1526 * NOTE! This may not be the same as how much of a user buffer
1527 * we filled up (we may be padding etc), so we can only update
1528 * "pos" here (the actor routine has to update the user buffer
1529 * pointers and the remaining count).
1530 */
1531 ret = actor(desc, page, offset, nr);
1532 offset += ret;
1533 index += offset >> PAGE_CACHE_SHIFT;
1534 offset &= ~PAGE_CACHE_MASK;
1535
1536 page_cache_release(page);
1537 if (ret != nr || !desc->count)
1538 break;
1539
1540 cond_resched();
1541 }
1542
1543 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1544 file_accessed(filp);
1545}
1546
bcd78e49
HD
1547static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1548 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1549{
1550 struct file *filp = iocb->ki_filp;
1551 ssize_t retval;
1552 unsigned long seg;
1553 size_t count;
1554 loff_t *ppos = &iocb->ki_pos;
1555
1556 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1557 if (retval)
1558 return retval;
1559
1560 for (seg = 0; seg < nr_segs; seg++) {
1561 read_descriptor_t desc;
1562
1563 desc.written = 0;
1564 desc.arg.buf = iov[seg].iov_base;
1565 desc.count = iov[seg].iov_len;
1566 if (desc.count == 0)
1567 continue;
1568 desc.error = 0;
1569 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1570 retval += desc.written;
1571 if (desc.error) {
1572 retval = retval ?: desc.error;
1573 break;
1574 }
1575 if (desc.count > 0)
1576 break;
1577 }
1578 return retval;
1da177e4
LT
1579}
1580
708e3508
HD
1581static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1582 struct pipe_inode_info *pipe, size_t len,
1583 unsigned int flags)
1584{
1585 struct address_space *mapping = in->f_mapping;
71f0e07a 1586 struct inode *inode = mapping->host;
708e3508
HD
1587 unsigned int loff, nr_pages, req_pages;
1588 struct page *pages[PIPE_DEF_BUFFERS];
1589 struct partial_page partial[PIPE_DEF_BUFFERS];
1590 struct page *page;
1591 pgoff_t index, end_index;
1592 loff_t isize, left;
1593 int error, page_nr;
1594 struct splice_pipe_desc spd = {
1595 .pages = pages,
1596 .partial = partial,
047fe360 1597 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1598 .flags = flags,
1599 .ops = &page_cache_pipe_buf_ops,
1600 .spd_release = spd_release_page,
1601 };
1602
71f0e07a 1603 isize = i_size_read(inode);
708e3508
HD
1604 if (unlikely(*ppos >= isize))
1605 return 0;
1606
1607 left = isize - *ppos;
1608 if (unlikely(left < len))
1609 len = left;
1610
1611 if (splice_grow_spd(pipe, &spd))
1612 return -ENOMEM;
1613
1614 index = *ppos >> PAGE_CACHE_SHIFT;
1615 loff = *ppos & ~PAGE_CACHE_MASK;
1616 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1617 nr_pages = min(req_pages, pipe->buffers);
1618
708e3508
HD
1619 spd.nr_pages = find_get_pages_contig(mapping, index,
1620 nr_pages, spd.pages);
1621 index += spd.nr_pages;
708e3508 1622 error = 0;
708e3508 1623
71f0e07a 1624 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1625 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1626 if (error)
1627 break;
1628 unlock_page(page);
708e3508
HD
1629 spd.pages[spd.nr_pages++] = page;
1630 index++;
1631 }
1632
708e3508
HD
1633 index = *ppos >> PAGE_CACHE_SHIFT;
1634 nr_pages = spd.nr_pages;
1635 spd.nr_pages = 0;
71f0e07a 1636
708e3508
HD
1637 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1638 unsigned int this_len;
1639
1640 if (!len)
1641 break;
1642
708e3508
HD
1643 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1644 page = spd.pages[page_nr];
1645
71f0e07a 1646 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1647 error = shmem_getpage(inode, index, &page,
1648 SGP_CACHE, NULL);
1649 if (error)
708e3508 1650 break;
71f0e07a
HD
1651 unlock_page(page);
1652 page_cache_release(spd.pages[page_nr]);
1653 spd.pages[page_nr] = page;
708e3508 1654 }
71f0e07a
HD
1655
1656 isize = i_size_read(inode);
708e3508
HD
1657 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1658 if (unlikely(!isize || index > end_index))
1659 break;
1660
708e3508
HD
1661 if (end_index == index) {
1662 unsigned int plen;
1663
708e3508
HD
1664 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1665 if (plen <= loff)
1666 break;
1667
708e3508
HD
1668 this_len = min(this_len, plen - loff);
1669 len = this_len;
1670 }
1671
1672 spd.partial[page_nr].offset = loff;
1673 spd.partial[page_nr].len = this_len;
1674 len -= this_len;
1675 loff = 0;
1676 spd.nr_pages++;
1677 index++;
1678 }
1679
708e3508
HD
1680 while (page_nr < nr_pages)
1681 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1682
1683 if (spd.nr_pages)
1684 error = splice_to_pipe(pipe, &spd);
1685
047fe360 1686 splice_shrink_spd(&spd);
708e3508
HD
1687
1688 if (error > 0) {
1689 *ppos += error;
1690 file_accessed(in);
1691 }
1692 return error;
1693}
1694
83e4fa9c
HD
1695static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1696 loff_t len)
1697{
1698 struct inode *inode = file->f_path.dentry->d_inode;
e2d12e22 1699 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1700 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1701 pgoff_t start, index, end;
1702 int error;
83e4fa9c
HD
1703
1704 mutex_lock(&inode->i_mutex);
1705
1706 if (mode & FALLOC_FL_PUNCH_HOLE) {
1707 struct address_space *mapping = file->f_mapping;
1708 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1709 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1710
1711 if ((u64)unmap_end > (u64)unmap_start)
1712 unmap_mapping_range(mapping, unmap_start,
1713 1 + unmap_end - unmap_start, 0);
1714 shmem_truncate_range(inode, offset, offset + len - 1);
1715 /* No need to unmap again: hole-punching leaves COWed pages */
1716 error = 0;
e2d12e22
HD
1717 goto out;
1718 }
1719
1720 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1721 error = inode_newsize_ok(inode, offset + len);
1722 if (error)
1723 goto out;
1724
1725 start = offset >> PAGE_CACHE_SHIFT;
1726 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1727 /* Try to avoid a swapstorm if len is impossible to satisfy */
1728 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1729 error = -ENOSPC;
1730 goto out;
83e4fa9c
HD
1731 }
1732
1aac1400
HD
1733 shmem_falloc.start = start;
1734 shmem_falloc.next = start;
1735 shmem_falloc.nr_falloced = 0;
1736 shmem_falloc.nr_unswapped = 0;
1737 spin_lock(&inode->i_lock);
1738 inode->i_private = &shmem_falloc;
1739 spin_unlock(&inode->i_lock);
1740
e2d12e22
HD
1741 for (index = start; index < end; index++) {
1742 struct page *page;
1743
1744 /*
1745 * Good, the fallocate(2) manpage permits EINTR: we may have
1746 * been interrupted because we are using up too much memory.
1747 */
1748 if (signal_pending(current))
1749 error = -EINTR;
1aac1400
HD
1750 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1751 error = -ENOMEM;
e2d12e22 1752 else
1635f6a7 1753 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1754 NULL);
1755 if (error) {
1635f6a7
HD
1756 /* Remove the !PageUptodate pages we added */
1757 shmem_undo_range(inode,
1758 (loff_t)start << PAGE_CACHE_SHIFT,
1759 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1760 goto undone;
e2d12e22
HD
1761 }
1762
1aac1400
HD
1763 /*
1764 * Inform shmem_writepage() how far we have reached.
1765 * No need for lock or barrier: we have the page lock.
1766 */
1767 shmem_falloc.next++;
1768 if (!PageUptodate(page))
1769 shmem_falloc.nr_falloced++;
1770
e2d12e22 1771 /*
1635f6a7
HD
1772 * If !PageUptodate, leave it that way so that freeable pages
1773 * can be recognized if we need to rollback on error later.
1774 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1775 * than free the pages we are allocating (and SGP_CACHE pages
1776 * might still be clean: we now need to mark those dirty too).
1777 */
1778 set_page_dirty(page);
1779 unlock_page(page);
1780 page_cache_release(page);
1781 cond_resched();
1782 }
1783
1784 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1785 i_size_write(inode, offset + len);
e2d12e22 1786 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1787undone:
1788 spin_lock(&inode->i_lock);
1789 inode->i_private = NULL;
1790 spin_unlock(&inode->i_lock);
e2d12e22 1791out:
83e4fa9c
HD
1792 mutex_unlock(&inode->i_mutex);
1793 return error;
1794}
1795
726c3342 1796static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1797{
726c3342 1798 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1799
1800 buf->f_type = TMPFS_MAGIC;
1801 buf->f_bsize = PAGE_CACHE_SIZE;
1802 buf->f_namelen = NAME_MAX;
0edd73b3 1803 if (sbinfo->max_blocks) {
1da177e4 1804 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1805 buf->f_bavail =
1806 buf->f_bfree = sbinfo->max_blocks -
1807 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1808 }
1809 if (sbinfo->max_inodes) {
1da177e4
LT
1810 buf->f_files = sbinfo->max_inodes;
1811 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1812 }
1813 /* else leave those fields 0 like simple_statfs */
1814 return 0;
1815}
1816
1817/*
1818 * File creation. Allocate an inode, and we're done..
1819 */
1820static int
1a67aafb 1821shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1822{
0b0a0806 1823 struct inode *inode;
1da177e4
LT
1824 int error = -ENOSPC;
1825
454abafe 1826 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1827 if (inode) {
2a7dba39 1828 error = security_inode_init_security(inode, dir,
9d8f13ba 1829 &dentry->d_name,
6d9d88d0 1830 shmem_initxattrs, NULL);
570bc1c2
SS
1831 if (error) {
1832 if (error != -EOPNOTSUPP) {
1833 iput(inode);
1834 return error;
1835 }
39f0247d 1836 }
1c7c474c
CH
1837#ifdef CONFIG_TMPFS_POSIX_ACL
1838 error = generic_acl_init(inode, dir);
39f0247d
AG
1839 if (error) {
1840 iput(inode);
1841 return error;
570bc1c2 1842 }
718deb6b
AV
1843#else
1844 error = 0;
1c7c474c 1845#endif
1da177e4
LT
1846 dir->i_size += BOGO_DIRENT_SIZE;
1847 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1848 d_instantiate(dentry, inode);
1849 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1850 }
1851 return error;
1852}
1853
18bb1db3 1854static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1855{
1856 int error;
1857
1858 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1859 return error;
d8c76e6f 1860 inc_nlink(dir);
1da177e4
LT
1861 return 0;
1862}
1863
4acdaf27 1864static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1da177e4
LT
1865 struct nameidata *nd)
1866{
1867 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1868}
1869
1870/*
1871 * Link a file..
1872 */
1873static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1874{
1875 struct inode *inode = old_dentry->d_inode;
5b04c689 1876 int ret;
1da177e4
LT
1877
1878 /*
1879 * No ordinary (disk based) filesystem counts links as inodes;
1880 * but each new link needs a new dentry, pinning lowmem, and
1881 * tmpfs dentries cannot be pruned until they are unlinked.
1882 */
5b04c689
PE
1883 ret = shmem_reserve_inode(inode->i_sb);
1884 if (ret)
1885 goto out;
1da177e4
LT
1886
1887 dir->i_size += BOGO_DIRENT_SIZE;
1888 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1889 inc_nlink(inode);
7de9c6ee 1890 ihold(inode); /* New dentry reference */
1da177e4
LT
1891 dget(dentry); /* Extra pinning count for the created dentry */
1892 d_instantiate(dentry, inode);
5b04c689
PE
1893out:
1894 return ret;
1da177e4
LT
1895}
1896
1897static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1898{
1899 struct inode *inode = dentry->d_inode;
1900
5b04c689
PE
1901 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1902 shmem_free_inode(inode->i_sb);
1da177e4
LT
1903
1904 dir->i_size -= BOGO_DIRENT_SIZE;
1905 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1906 drop_nlink(inode);
1da177e4
LT
1907 dput(dentry); /* Undo the count from "create" - this does all the work */
1908 return 0;
1909}
1910
1911static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1912{
1913 if (!simple_empty(dentry))
1914 return -ENOTEMPTY;
1915
9a53c3a7
DH
1916 drop_nlink(dentry->d_inode);
1917 drop_nlink(dir);
1da177e4
LT
1918 return shmem_unlink(dir, dentry);
1919}
1920
1921/*
1922 * The VFS layer already does all the dentry stuff for rename,
1923 * we just have to decrement the usage count for the target if
1924 * it exists so that the VFS layer correctly free's it when it
1925 * gets overwritten.
1926 */
1927static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1928{
1929 struct inode *inode = old_dentry->d_inode;
1930 int they_are_dirs = S_ISDIR(inode->i_mode);
1931
1932 if (!simple_empty(new_dentry))
1933 return -ENOTEMPTY;
1934
1935 if (new_dentry->d_inode) {
1936 (void) shmem_unlink(new_dir, new_dentry);
1937 if (they_are_dirs)
9a53c3a7 1938 drop_nlink(old_dir);
1da177e4 1939 } else if (they_are_dirs) {
9a53c3a7 1940 drop_nlink(old_dir);
d8c76e6f 1941 inc_nlink(new_dir);
1da177e4
LT
1942 }
1943
1944 old_dir->i_size -= BOGO_DIRENT_SIZE;
1945 new_dir->i_size += BOGO_DIRENT_SIZE;
1946 old_dir->i_ctime = old_dir->i_mtime =
1947 new_dir->i_ctime = new_dir->i_mtime =
1948 inode->i_ctime = CURRENT_TIME;
1949 return 0;
1950}
1951
1952static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1953{
1954 int error;
1955 int len;
1956 struct inode *inode;
9276aad6 1957 struct page *page;
1da177e4
LT
1958 char *kaddr;
1959 struct shmem_inode_info *info;
1960
1961 len = strlen(symname) + 1;
1962 if (len > PAGE_CACHE_SIZE)
1963 return -ENAMETOOLONG;
1964
454abafe 1965 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
1966 if (!inode)
1967 return -ENOSPC;
1968
9d8f13ba 1969 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 1970 shmem_initxattrs, NULL);
570bc1c2
SS
1971 if (error) {
1972 if (error != -EOPNOTSUPP) {
1973 iput(inode);
1974 return error;
1975 }
1976 error = 0;
1977 }
1978
1da177e4
LT
1979 info = SHMEM_I(inode);
1980 inode->i_size = len-1;
69f07ec9
HD
1981 if (len <= SHORT_SYMLINK_LEN) {
1982 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1983 if (!info->symlink) {
1984 iput(inode);
1985 return -ENOMEM;
1986 }
1987 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
1988 } else {
1989 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1990 if (error) {
1991 iput(inode);
1992 return error;
1993 }
14fcc23f 1994 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 1995 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 1996 kaddr = kmap_atomic(page);
1da177e4 1997 memcpy(kaddr, symname, len);
9b04c5fe 1998 kunmap_atomic(kaddr);
ec9516fb 1999 SetPageUptodate(page);
1da177e4 2000 set_page_dirty(page);
6746aff7 2001 unlock_page(page);
1da177e4
LT
2002 page_cache_release(page);
2003 }
1da177e4
LT
2004 dir->i_size += BOGO_DIRENT_SIZE;
2005 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2006 d_instantiate(dentry, inode);
2007 dget(dentry);
2008 return 0;
2009}
2010
69f07ec9 2011static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2012{
69f07ec9 2013 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2014 return NULL;
1da177e4
LT
2015}
2016
cc314eef 2017static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2018{
2019 struct page *page = NULL;
41ffe5d5
HD
2020 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2021 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2022 if (page)
2023 unlock_page(page);
cc314eef 2024 return page;
1da177e4
LT
2025}
2026
cc314eef 2027static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2028{
2029 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2030 struct page *page = cookie;
1da177e4
LT
2031 kunmap(page);
2032 mark_page_accessed(page);
2033 page_cache_release(page);
1da177e4
LT
2034 }
2035}
2036
b09e0fa4 2037#ifdef CONFIG_TMPFS_XATTR
46711810 2038/*
b09e0fa4
EP
2039 * Superblocks without xattr inode operations may get some security.* xattr
2040 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2041 * like ACLs, we also need to implement the security.* handlers at
2042 * filesystem level, though.
2043 */
2044
6d9d88d0
JS
2045/*
2046 * Allocate new xattr and copy in the value; but leave the name to callers.
2047 */
2048static struct shmem_xattr *shmem_xattr_alloc(const void *value, size_t size)
2049{
2050 struct shmem_xattr *new_xattr;
2051 size_t len;
2052
2053 /* wrap around? */
2054 len = sizeof(*new_xattr) + size;
2055 if (len <= sizeof(*new_xattr))
2056 return NULL;
2057
2058 new_xattr = kmalloc(len, GFP_KERNEL);
2059 if (!new_xattr)
2060 return NULL;
2061
2062 new_xattr->size = size;
2063 memcpy(new_xattr->value, value, size);
2064 return new_xattr;
2065}
2066
2067/*
2068 * Callback for security_inode_init_security() for acquiring xattrs.
2069 */
2070static int shmem_initxattrs(struct inode *inode,
2071 const struct xattr *xattr_array,
2072 void *fs_info)
2073{
2074 struct shmem_inode_info *info = SHMEM_I(inode);
2075 const struct xattr *xattr;
2076 struct shmem_xattr *new_xattr;
2077 size_t len;
2078
2079 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2080 new_xattr = shmem_xattr_alloc(xattr->value, xattr->value_len);
2081 if (!new_xattr)
2082 return -ENOMEM;
2083
2084 len = strlen(xattr->name) + 1;
2085 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2086 GFP_KERNEL);
2087 if (!new_xattr->name) {
2088 kfree(new_xattr);
2089 return -ENOMEM;
2090 }
2091
2092 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2093 XATTR_SECURITY_PREFIX_LEN);
2094 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2095 xattr->name, len);
2096
2097 spin_lock(&info->lock);
2098 list_add(&new_xattr->list, &info->xattr_list);
2099 spin_unlock(&info->lock);
2100 }
2101
2102 return 0;
2103}
2104
b09e0fa4
EP
2105static int shmem_xattr_get(struct dentry *dentry, const char *name,
2106 void *buffer, size_t size)
39f0247d 2107{
b09e0fa4
EP
2108 struct shmem_inode_info *info;
2109 struct shmem_xattr *xattr;
2110 int ret = -ENODATA;
39f0247d 2111
b09e0fa4
EP
2112 info = SHMEM_I(dentry->d_inode);
2113
2114 spin_lock(&info->lock);
2115 list_for_each_entry(xattr, &info->xattr_list, list) {
2116 if (strcmp(name, xattr->name))
2117 continue;
2118
2119 ret = xattr->size;
2120 if (buffer) {
2121 if (size < xattr->size)
2122 ret = -ERANGE;
2123 else
2124 memcpy(buffer, xattr->value, xattr->size);
2125 }
2126 break;
2127 }
2128 spin_unlock(&info->lock);
2129 return ret;
39f0247d
AG
2130}
2131
6d9d88d0 2132static int shmem_xattr_set(struct inode *inode, const char *name,
b09e0fa4 2133 const void *value, size_t size, int flags)
39f0247d 2134{
b09e0fa4
EP
2135 struct shmem_inode_info *info = SHMEM_I(inode);
2136 struct shmem_xattr *xattr;
2137 struct shmem_xattr *new_xattr = NULL;
b09e0fa4
EP
2138 int err = 0;
2139
2140 /* value == NULL means remove */
2141 if (value) {
6d9d88d0 2142 new_xattr = shmem_xattr_alloc(value, size);
b09e0fa4
EP
2143 if (!new_xattr)
2144 return -ENOMEM;
2145
2146 new_xattr->name = kstrdup(name, GFP_KERNEL);
2147 if (!new_xattr->name) {
2148 kfree(new_xattr);
2149 return -ENOMEM;
2150 }
b09e0fa4
EP
2151 }
2152
2153 spin_lock(&info->lock);
2154 list_for_each_entry(xattr, &info->xattr_list, list) {
2155 if (!strcmp(name, xattr->name)) {
2156 if (flags & XATTR_CREATE) {
2157 xattr = new_xattr;
2158 err = -EEXIST;
2159 } else if (new_xattr) {
2160 list_replace(&xattr->list, &new_xattr->list);
2161 } else {
2162 list_del(&xattr->list);
2163 }
2164 goto out;
2165 }
2166 }
2167 if (flags & XATTR_REPLACE) {
2168 xattr = new_xattr;
2169 err = -ENODATA;
2170 } else {
2171 list_add(&new_xattr->list, &info->xattr_list);
2172 xattr = NULL;
2173 }
2174out:
2175 spin_unlock(&info->lock);
2176 if (xattr)
2177 kfree(xattr->name);
2178 kfree(xattr);
2179 return err;
39f0247d
AG
2180}
2181
bb435453 2182static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2183#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2184 &generic_acl_access_handler,
2185 &generic_acl_default_handler,
b09e0fa4 2186#endif
39f0247d
AG
2187 NULL
2188};
b09e0fa4
EP
2189
2190static int shmem_xattr_validate(const char *name)
2191{
2192 struct { const char *prefix; size_t len; } arr[] = {
2193 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2194 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2195 };
2196 int i;
2197
2198 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2199 size_t preflen = arr[i].len;
2200 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2201 if (!name[preflen])
2202 return -EINVAL;
2203 return 0;
2204 }
2205 }
2206 return -EOPNOTSUPP;
2207}
2208
2209static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2210 void *buffer, size_t size)
2211{
2212 int err;
2213
2214 /*
2215 * If this is a request for a synthetic attribute in the system.*
2216 * namespace use the generic infrastructure to resolve a handler
2217 * for it via sb->s_xattr.
2218 */
2219 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2220 return generic_getxattr(dentry, name, buffer, size);
2221
2222 err = shmem_xattr_validate(name);
2223 if (err)
2224 return err;
2225
2226 return shmem_xattr_get(dentry, name, buffer, size);
2227}
2228
2229static int shmem_setxattr(struct dentry *dentry, const char *name,
2230 const void *value, size_t size, int flags)
2231{
2232 int err;
2233
2234 /*
2235 * If this is a request for a synthetic attribute in the system.*
2236 * namespace use the generic infrastructure to resolve a handler
2237 * for it via sb->s_xattr.
2238 */
2239 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2240 return generic_setxattr(dentry, name, value, size, flags);
2241
2242 err = shmem_xattr_validate(name);
2243 if (err)
2244 return err;
2245
2246 if (size == 0)
2247 value = ""; /* empty EA, do not remove */
2248
6d9d88d0 2249 return shmem_xattr_set(dentry->d_inode, name, value, size, flags);
b09e0fa4
EP
2250
2251}
2252
2253static int shmem_removexattr(struct dentry *dentry, const char *name)
2254{
2255 int err;
2256
2257 /*
2258 * If this is a request for a synthetic attribute in the system.*
2259 * namespace use the generic infrastructure to resolve a handler
2260 * for it via sb->s_xattr.
2261 */
2262 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2263 return generic_removexattr(dentry, name);
2264
2265 err = shmem_xattr_validate(name);
2266 if (err)
2267 return err;
2268
6d9d88d0 2269 return shmem_xattr_set(dentry->d_inode, name, NULL, 0, XATTR_REPLACE);
b09e0fa4
EP
2270}
2271
2272static bool xattr_is_trusted(const char *name)
2273{
2274 return !strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN);
2275}
2276
2277static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2278{
2279 bool trusted = capable(CAP_SYS_ADMIN);
2280 struct shmem_xattr *xattr;
2281 struct shmem_inode_info *info;
2282 size_t used = 0;
2283
2284 info = SHMEM_I(dentry->d_inode);
2285
2286 spin_lock(&info->lock);
2287 list_for_each_entry(xattr, &info->xattr_list, list) {
2288 size_t len;
2289
2290 /* skip "trusted." attributes for unprivileged callers */
2291 if (!trusted && xattr_is_trusted(xattr->name))
2292 continue;
2293
2294 len = strlen(xattr->name) + 1;
2295 used += len;
2296 if (buffer) {
2297 if (size < used) {
2298 used = -ERANGE;
2299 break;
2300 }
2301 memcpy(buffer, xattr->name, len);
2302 buffer += len;
2303 }
2304 }
2305 spin_unlock(&info->lock);
2306
2307 return used;
2308}
2309#endif /* CONFIG_TMPFS_XATTR */
2310
69f07ec9 2311static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2312 .readlink = generic_readlink,
69f07ec9 2313 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2314#ifdef CONFIG_TMPFS_XATTR
2315 .setxattr = shmem_setxattr,
2316 .getxattr = shmem_getxattr,
2317 .listxattr = shmem_listxattr,
2318 .removexattr = shmem_removexattr,
2319#endif
2320};
2321
2322static const struct inode_operations shmem_symlink_inode_operations = {
2323 .readlink = generic_readlink,
2324 .follow_link = shmem_follow_link,
2325 .put_link = shmem_put_link,
2326#ifdef CONFIG_TMPFS_XATTR
2327 .setxattr = shmem_setxattr,
2328 .getxattr = shmem_getxattr,
2329 .listxattr = shmem_listxattr,
2330 .removexattr = shmem_removexattr,
39f0247d 2331#endif
b09e0fa4 2332};
39f0247d 2333
91828a40
DG
2334static struct dentry *shmem_get_parent(struct dentry *child)
2335{
2336 return ERR_PTR(-ESTALE);
2337}
2338
2339static int shmem_match(struct inode *ino, void *vfh)
2340{
2341 __u32 *fh = vfh;
2342 __u64 inum = fh[2];
2343 inum = (inum << 32) | fh[1];
2344 return ino->i_ino == inum && fh[0] == ino->i_generation;
2345}
2346
480b116c
CH
2347static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2348 struct fid *fid, int fh_len, int fh_type)
91828a40 2349{
91828a40 2350 struct inode *inode;
480b116c
CH
2351 struct dentry *dentry = NULL;
2352 u64 inum = fid->raw[2];
2353 inum = (inum << 32) | fid->raw[1];
2354
2355 if (fh_len < 3)
2356 return NULL;
91828a40 2357
480b116c
CH
2358 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2359 shmem_match, fid->raw);
91828a40 2360 if (inode) {
480b116c 2361 dentry = d_find_alias(inode);
91828a40
DG
2362 iput(inode);
2363 }
2364
480b116c 2365 return dentry;
91828a40
DG
2366}
2367
b0b0382b
AV
2368static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2369 struct inode *parent)
91828a40 2370{
5fe0c237
AK
2371 if (*len < 3) {
2372 *len = 3;
91828a40 2373 return 255;
5fe0c237 2374 }
91828a40 2375
1d3382cb 2376 if (inode_unhashed(inode)) {
91828a40
DG
2377 /* Unfortunately insert_inode_hash is not idempotent,
2378 * so as we hash inodes here rather than at creation
2379 * time, we need a lock to ensure we only try
2380 * to do it once
2381 */
2382 static DEFINE_SPINLOCK(lock);
2383 spin_lock(&lock);
1d3382cb 2384 if (inode_unhashed(inode))
91828a40
DG
2385 __insert_inode_hash(inode,
2386 inode->i_ino + inode->i_generation);
2387 spin_unlock(&lock);
2388 }
2389
2390 fh[0] = inode->i_generation;
2391 fh[1] = inode->i_ino;
2392 fh[2] = ((__u64)inode->i_ino) >> 32;
2393
2394 *len = 3;
2395 return 1;
2396}
2397
39655164 2398static const struct export_operations shmem_export_ops = {
91828a40 2399 .get_parent = shmem_get_parent,
91828a40 2400 .encode_fh = shmem_encode_fh,
480b116c 2401 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2402};
2403
680d794b
AM
2404static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2405 bool remount)
1da177e4
LT
2406{
2407 char *this_char, *value, *rest;
8751e039
EB
2408 uid_t uid;
2409 gid_t gid;
1da177e4 2410
b00dc3ad
HD
2411 while (options != NULL) {
2412 this_char = options;
2413 for (;;) {
2414 /*
2415 * NUL-terminate this option: unfortunately,
2416 * mount options form a comma-separated list,
2417 * but mpol's nodelist may also contain commas.
2418 */
2419 options = strchr(options, ',');
2420 if (options == NULL)
2421 break;
2422 options++;
2423 if (!isdigit(*options)) {
2424 options[-1] = '\0';
2425 break;
2426 }
2427 }
1da177e4
LT
2428 if (!*this_char)
2429 continue;
2430 if ((value = strchr(this_char,'=')) != NULL) {
2431 *value++ = 0;
2432 } else {
2433 printk(KERN_ERR
2434 "tmpfs: No value for mount option '%s'\n",
2435 this_char);
2436 return 1;
2437 }
2438
2439 if (!strcmp(this_char,"size")) {
2440 unsigned long long size;
2441 size = memparse(value,&rest);
2442 if (*rest == '%') {
2443 size <<= PAGE_SHIFT;
2444 size *= totalram_pages;
2445 do_div(size, 100);
2446 rest++;
2447 }
2448 if (*rest)
2449 goto bad_val;
680d794b
AM
2450 sbinfo->max_blocks =
2451 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2452 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2453 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2454 if (*rest)
2455 goto bad_val;
2456 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2457 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2458 if (*rest)
2459 goto bad_val;
2460 } else if (!strcmp(this_char,"mode")) {
680d794b 2461 if (remount)
1da177e4 2462 continue;
680d794b 2463 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2464 if (*rest)
2465 goto bad_val;
2466 } else if (!strcmp(this_char,"uid")) {
680d794b 2467 if (remount)
1da177e4 2468 continue;
8751e039 2469 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2470 if (*rest)
2471 goto bad_val;
8751e039
EB
2472 sbinfo->uid = make_kuid(current_user_ns(), uid);
2473 if (!uid_valid(sbinfo->uid))
2474 goto bad_val;
1da177e4 2475 } else if (!strcmp(this_char,"gid")) {
680d794b 2476 if (remount)
1da177e4 2477 continue;
8751e039 2478 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2479 if (*rest)
2480 goto bad_val;
8751e039
EB
2481 sbinfo->gid = make_kgid(current_user_ns(), gid);
2482 if (!gid_valid(sbinfo->gid))
2483 goto bad_val;
7339ff83 2484 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2485 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2486 goto bad_val;
1da177e4
LT
2487 } else {
2488 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2489 this_char);
2490 return 1;
2491 }
2492 }
2493 return 0;
2494
2495bad_val:
2496 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2497 value, this_char);
2498 return 1;
2499
2500}
2501
2502static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2503{
2504 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2505 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2506 unsigned long inodes;
2507 int error = -EINVAL;
2508
680d794b 2509 if (shmem_parse_options(data, &config, true))
0edd73b3 2510 return error;
1da177e4 2511
0edd73b3 2512 spin_lock(&sbinfo->stat_lock);
0edd73b3 2513 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2514 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2515 goto out;
680d794b 2516 if (config.max_inodes < inodes)
0edd73b3
HD
2517 goto out;
2518 /*
54af6042 2519 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2520 * but we must separately disallow unlimited->limited, because
2521 * in that case we have no record of how much is already in use.
2522 */
680d794b 2523 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2524 goto out;
680d794b 2525 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2526 goto out;
2527
2528 error = 0;
680d794b 2529 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2530 sbinfo->max_inodes = config.max_inodes;
2531 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2532
2533 mpol_put(sbinfo->mpol);
2534 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2535out:
2536 spin_unlock(&sbinfo->stat_lock);
2537 return error;
1da177e4 2538}
680d794b 2539
34c80b1d 2540static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2541{
34c80b1d 2542 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2543
2544 if (sbinfo->max_blocks != shmem_default_max_blocks())
2545 seq_printf(seq, ",size=%luk",
2546 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2547 if (sbinfo->max_inodes != shmem_default_max_inodes())
2548 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2549 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2550 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2551 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2552 seq_printf(seq, ",uid=%u",
2553 from_kuid_munged(&init_user_ns, sbinfo->uid));
2554 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2555 seq_printf(seq, ",gid=%u",
2556 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2557 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2558 return 0;
2559}
2560#endif /* CONFIG_TMPFS */
1da177e4
LT
2561
2562static void shmem_put_super(struct super_block *sb)
2563{
602586a8
HD
2564 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2565
2566 percpu_counter_destroy(&sbinfo->used_blocks);
2567 kfree(sbinfo);
1da177e4
LT
2568 sb->s_fs_info = NULL;
2569}
2570
2b2af54a 2571int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2572{
2573 struct inode *inode;
0edd73b3 2574 struct shmem_sb_info *sbinfo;
680d794b
AM
2575 int err = -ENOMEM;
2576
2577 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2578 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2579 L1_CACHE_BYTES), GFP_KERNEL);
2580 if (!sbinfo)
2581 return -ENOMEM;
2582
680d794b 2583 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2584 sbinfo->uid = current_fsuid();
2585 sbinfo->gid = current_fsgid();
680d794b 2586 sb->s_fs_info = sbinfo;
1da177e4 2587
0edd73b3 2588#ifdef CONFIG_TMPFS
1da177e4
LT
2589 /*
2590 * Per default we only allow half of the physical ram per
2591 * tmpfs instance, limiting inodes to one per page of lowmem;
2592 * but the internal instance is left unlimited.
2593 */
2594 if (!(sb->s_flags & MS_NOUSER)) {
680d794b
AM
2595 sbinfo->max_blocks = shmem_default_max_blocks();
2596 sbinfo->max_inodes = shmem_default_max_inodes();
2597 if (shmem_parse_options(data, sbinfo, false)) {
2598 err = -EINVAL;
2599 goto failed;
2600 }
1da177e4 2601 }
91828a40 2602 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2603 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2604#else
2605 sb->s_flags |= MS_NOUSER;
2606#endif
2607
0edd73b3 2608 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2609 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2610 goto failed;
680d794b 2611 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2612
285b2c4f 2613 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2614 sb->s_blocksize = PAGE_CACHE_SIZE;
2615 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2616 sb->s_magic = TMPFS_MAGIC;
2617 sb->s_op = &shmem_ops;
cfd95a9c 2618 sb->s_time_gran = 1;
b09e0fa4 2619#ifdef CONFIG_TMPFS_XATTR
39f0247d 2620 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2621#endif
2622#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2623 sb->s_flags |= MS_POSIXACL;
2624#endif
0edd73b3 2625
454abafe 2626 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2627 if (!inode)
2628 goto failed;
680d794b
AM
2629 inode->i_uid = sbinfo->uid;
2630 inode->i_gid = sbinfo->gid;
318ceed0
AV
2631 sb->s_root = d_make_root(inode);
2632 if (!sb->s_root)
48fde701 2633 goto failed;
1da177e4
LT
2634 return 0;
2635
1da177e4
LT
2636failed:
2637 shmem_put_super(sb);
2638 return err;
2639}
2640
fcc234f8 2641static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2642
2643static struct inode *shmem_alloc_inode(struct super_block *sb)
2644{
41ffe5d5
HD
2645 struct shmem_inode_info *info;
2646 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2647 if (!info)
1da177e4 2648 return NULL;
41ffe5d5 2649 return &info->vfs_inode;
1da177e4
LT
2650}
2651
41ffe5d5 2652static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2653{
2654 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2655 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2656}
2657
1da177e4
LT
2658static void shmem_destroy_inode(struct inode *inode)
2659{
09208d15 2660 if (S_ISREG(inode->i_mode))
1da177e4 2661 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2662 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2663}
2664
41ffe5d5 2665static void shmem_init_inode(void *foo)
1da177e4 2666{
41ffe5d5
HD
2667 struct shmem_inode_info *info = foo;
2668 inode_init_once(&info->vfs_inode);
1da177e4
LT
2669}
2670
41ffe5d5 2671static int shmem_init_inodecache(void)
1da177e4
LT
2672{
2673 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2674 sizeof(struct shmem_inode_info),
41ffe5d5 2675 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2676 return 0;
2677}
2678
41ffe5d5 2679static void shmem_destroy_inodecache(void)
1da177e4 2680{
1a1d92c1 2681 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2682}
2683
f5e54d6e 2684static const struct address_space_operations shmem_aops = {
1da177e4 2685 .writepage = shmem_writepage,
76719325 2686 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2687#ifdef CONFIG_TMPFS
800d15a5
NP
2688 .write_begin = shmem_write_begin,
2689 .write_end = shmem_write_end,
1da177e4 2690#endif
304dbdb7 2691 .migratepage = migrate_page,
aa261f54 2692 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2693};
2694
15ad7cdc 2695static const struct file_operations shmem_file_operations = {
1da177e4
LT
2696 .mmap = shmem_mmap,
2697#ifdef CONFIG_TMPFS
f21f8062 2698 .llseek = generic_file_llseek,
bcd78e49 2699 .read = do_sync_read,
5402b976 2700 .write = do_sync_write,
bcd78e49 2701 .aio_read = shmem_file_aio_read,
5402b976 2702 .aio_write = generic_file_aio_write,
1b061d92 2703 .fsync = noop_fsync,
708e3508 2704 .splice_read = shmem_file_splice_read,
ae976416 2705 .splice_write = generic_file_splice_write,
83e4fa9c 2706 .fallocate = shmem_fallocate,
1da177e4
LT
2707#endif
2708};
2709
92e1d5be 2710static const struct inode_operations shmem_inode_operations = {
94c1e62d 2711 .setattr = shmem_setattr,
b09e0fa4
EP
2712#ifdef CONFIG_TMPFS_XATTR
2713 .setxattr = shmem_setxattr,
2714 .getxattr = shmem_getxattr,
2715 .listxattr = shmem_listxattr,
2716 .removexattr = shmem_removexattr,
2717#endif
1da177e4
LT
2718};
2719
92e1d5be 2720static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2721#ifdef CONFIG_TMPFS
2722 .create = shmem_create,
2723 .lookup = simple_lookup,
2724 .link = shmem_link,
2725 .unlink = shmem_unlink,
2726 .symlink = shmem_symlink,
2727 .mkdir = shmem_mkdir,
2728 .rmdir = shmem_rmdir,
2729 .mknod = shmem_mknod,
2730 .rename = shmem_rename,
1da177e4 2731#endif
b09e0fa4
EP
2732#ifdef CONFIG_TMPFS_XATTR
2733 .setxattr = shmem_setxattr,
2734 .getxattr = shmem_getxattr,
2735 .listxattr = shmem_listxattr,
2736 .removexattr = shmem_removexattr,
2737#endif
39f0247d 2738#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2739 .setattr = shmem_setattr,
39f0247d
AG
2740#endif
2741};
2742
92e1d5be 2743static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2744#ifdef CONFIG_TMPFS_XATTR
2745 .setxattr = shmem_setxattr,
2746 .getxattr = shmem_getxattr,
2747 .listxattr = shmem_listxattr,
2748 .removexattr = shmem_removexattr,
2749#endif
39f0247d 2750#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2751 .setattr = shmem_setattr,
39f0247d 2752#endif
1da177e4
LT
2753};
2754
759b9775 2755static const struct super_operations shmem_ops = {
1da177e4
LT
2756 .alloc_inode = shmem_alloc_inode,
2757 .destroy_inode = shmem_destroy_inode,
2758#ifdef CONFIG_TMPFS
2759 .statfs = shmem_statfs,
2760 .remount_fs = shmem_remount_fs,
680d794b 2761 .show_options = shmem_show_options,
1da177e4 2762#endif
1f895f75 2763 .evict_inode = shmem_evict_inode,
1da177e4
LT
2764 .drop_inode = generic_delete_inode,
2765 .put_super = shmem_put_super,
2766};
2767
f0f37e2f 2768static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2769 .fault = shmem_fault,
1da177e4
LT
2770#ifdef CONFIG_NUMA
2771 .set_policy = shmem_set_policy,
2772 .get_policy = shmem_get_policy,
2773#endif
2774};
2775
3c26ff6e
AV
2776static struct dentry *shmem_mount(struct file_system_type *fs_type,
2777 int flags, const char *dev_name, void *data)
1da177e4 2778{
3c26ff6e 2779 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2780}
2781
41ffe5d5 2782static struct file_system_type shmem_fs_type = {
1da177e4
LT
2783 .owner = THIS_MODULE,
2784 .name = "tmpfs",
3c26ff6e 2785 .mount = shmem_mount,
1da177e4
LT
2786 .kill_sb = kill_litter_super,
2787};
1da177e4 2788
41ffe5d5 2789int __init shmem_init(void)
1da177e4
LT
2790{
2791 int error;
2792
e0bf68dd
PZ
2793 error = bdi_init(&shmem_backing_dev_info);
2794 if (error)
2795 goto out4;
2796
41ffe5d5 2797 error = shmem_init_inodecache();
1da177e4
LT
2798 if (error)
2799 goto out3;
2800
41ffe5d5 2801 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2802 if (error) {
2803 printk(KERN_ERR "Could not register tmpfs\n");
2804 goto out2;
2805 }
95dc112a 2806
41ffe5d5
HD
2807 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2808 shmem_fs_type.name, NULL);
1da177e4
LT
2809 if (IS_ERR(shm_mnt)) {
2810 error = PTR_ERR(shm_mnt);
2811 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2812 goto out1;
2813 }
2814 return 0;
2815
2816out1:
41ffe5d5 2817 unregister_filesystem(&shmem_fs_type);
1da177e4 2818out2:
41ffe5d5 2819 shmem_destroy_inodecache();
1da177e4 2820out3:
e0bf68dd
PZ
2821 bdi_destroy(&shmem_backing_dev_info);
2822out4:
1da177e4
LT
2823 shm_mnt = ERR_PTR(error);
2824 return error;
2825}
853ac43a
MM
2826
2827#else /* !CONFIG_SHMEM */
2828
2829/*
2830 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2831 *
2832 * This is intended for small system where the benefits of the full
2833 * shmem code (swap-backed and resource-limited) are outweighed by
2834 * their complexity. On systems without swap this code should be
2835 * effectively equivalent, but much lighter weight.
2836 */
2837
2838#include <linux/ramfs.h>
2839
41ffe5d5 2840static struct file_system_type shmem_fs_type = {
853ac43a 2841 .name = "tmpfs",
3c26ff6e 2842 .mount = ramfs_mount,
853ac43a
MM
2843 .kill_sb = kill_litter_super,
2844};
2845
41ffe5d5 2846int __init shmem_init(void)
853ac43a 2847{
41ffe5d5 2848 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2849
41ffe5d5 2850 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2851 BUG_ON(IS_ERR(shm_mnt));
2852
2853 return 0;
2854}
2855
41ffe5d5 2856int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2857{
2858 return 0;
2859}
2860
3f96b79a
HD
2861int shmem_lock(struct file *file, int lock, struct user_struct *user)
2862{
2863 return 0;
2864}
2865
24513264
HD
2866void shmem_unlock_mapping(struct address_space *mapping)
2867{
2868}
2869
41ffe5d5 2870void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2871{
41ffe5d5 2872 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2873}
2874EXPORT_SYMBOL_GPL(shmem_truncate_range);
2875
0b0a0806
HD
2876#define shmem_vm_ops generic_file_vm_ops
2877#define shmem_file_operations ramfs_file_operations
454abafe 2878#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2879#define shmem_acct_size(flags, size) 0
2880#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2881
2882#endif /* CONFIG_SHMEM */
2883
2884/* common code */
1da177e4 2885
46711810 2886/**
1da177e4 2887 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2888 * @name: name for dentry (to be seen in /proc/<pid>/maps
2889 * @size: size to be set for the file
0b0a0806 2890 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2891 */
168f5ac6 2892struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2893{
2894 int error;
2895 struct file *file;
2896 struct inode *inode;
2c48b9c4
AV
2897 struct path path;
2898 struct dentry *root;
1da177e4
LT
2899 struct qstr this;
2900
2901 if (IS_ERR(shm_mnt))
2902 return (void *)shm_mnt;
2903
285b2c4f 2904 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2905 return ERR_PTR(-EINVAL);
2906
2907 if (shmem_acct_size(flags, size))
2908 return ERR_PTR(-ENOMEM);
2909
2910 error = -ENOMEM;
2911 this.name = name;
2912 this.len = strlen(name);
2913 this.hash = 0; /* will go */
2914 root = shm_mnt->mnt_root;
2c48b9c4
AV
2915 path.dentry = d_alloc(root, &this);
2916 if (!path.dentry)
1da177e4 2917 goto put_memory;
2c48b9c4 2918 path.mnt = mntget(shm_mnt);
1da177e4 2919
1da177e4 2920 error = -ENOSPC;
454abafe 2921 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2922 if (!inode)
4b42af81 2923 goto put_dentry;
1da177e4 2924
2c48b9c4 2925 d_instantiate(path.dentry, inode);
1da177e4 2926 inode->i_size = size;
6d6b77f1 2927 clear_nlink(inode); /* It is unlinked */
853ac43a
MM
2928#ifndef CONFIG_MMU
2929 error = ramfs_nommu_expand_for_mapping(inode, size);
2930 if (error)
4b42af81 2931 goto put_dentry;
853ac43a 2932#endif
4b42af81
AV
2933
2934 error = -ENFILE;
2c48b9c4 2935 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
2936 &shmem_file_operations);
2937 if (!file)
2938 goto put_dentry;
2939
1da177e4
LT
2940 return file;
2941
1da177e4 2942put_dentry:
2c48b9c4 2943 path_put(&path);
1da177e4
LT
2944put_memory:
2945 shmem_unacct_size(flags, size);
2946 return ERR_PTR(error);
2947}
395e0ddc 2948EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2949
46711810 2950/**
1da177e4 2951 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2952 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2953 */
2954int shmem_zero_setup(struct vm_area_struct *vma)
2955{
2956 struct file *file;
2957 loff_t size = vma->vm_end - vma->vm_start;
2958
2959 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2960 if (IS_ERR(file))
2961 return PTR_ERR(file);
2962
2963 if (vma->vm_file)
2964 fput(vma->vm_file);
2965 vma->vm_file = file;
2966 vma->vm_ops = &shmem_vm_ops;
bee4c36a 2967 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
2968 return 0;
2969}
d9d90e5e
HD
2970
2971/**
2972 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2973 * @mapping: the page's address_space
2974 * @index: the page index
2975 * @gfp: the page allocator flags to use if allocating
2976 *
2977 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2978 * with any new page allocations done using the specified allocation flags.
2979 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2980 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2981 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2982 *
68da9f05
HD
2983 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2984 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
2985 */
2986struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2987 pgoff_t index, gfp_t gfp)
2988{
68da9f05
HD
2989#ifdef CONFIG_SHMEM
2990 struct inode *inode = mapping->host;
9276aad6 2991 struct page *page;
68da9f05
HD
2992 int error;
2993
2994 BUG_ON(mapping->a_ops != &shmem_aops);
2995 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2996 if (error)
2997 page = ERR_PTR(error);
2998 else
2999 unlock_page(page);
3000 return page;
3001#else
3002 /*
3003 * The tiny !SHMEM case uses ramfs without swap
3004 */
d9d90e5e 3005 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3006#endif
d9d90e5e
HD
3007}
3008EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);