mm: filemap: move radix tree hole searching here
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
250297ed 28#include <linux/ramfs.h>
caefba17 29#include <linux/pagemap.h>
853ac43a
MM
30#include <linux/file.h>
31#include <linux/mm.h>
b95f1b31 32#include <linux/export.h>
853ac43a 33#include <linux/swap.h>
a27bb332 34#include <linux/aio.h>
853ac43a
MM
35
36static struct vfsmount *shm_mnt;
37
38#ifdef CONFIG_SHMEM
1da177e4
LT
39/*
40 * This virtual memory filesystem is heavily based on the ramfs. It
41 * extends ramfs by the ability to use swap and honor resource limits
42 * which makes it a completely usable filesystem.
43 */
44
39f0247d 45#include <linux/xattr.h>
a5694255 46#include <linux/exportfs.h>
1c7c474c 47#include <linux/posix_acl.h>
feda821e 48#include <linux/posix_acl_xattr.h>
1da177e4 49#include <linux/mman.h>
1da177e4
LT
50#include <linux/string.h>
51#include <linux/slab.h>
52#include <linux/backing-dev.h>
53#include <linux/shmem_fs.h>
1da177e4 54#include <linux/writeback.h>
1da177e4 55#include <linux/blkdev.h>
bda97eab 56#include <linux/pagevec.h>
41ffe5d5 57#include <linux/percpu_counter.h>
83e4fa9c 58#include <linux/falloc.h>
708e3508 59#include <linux/splice.h>
1da177e4
LT
60#include <linux/security.h>
61#include <linux/swapops.h>
62#include <linux/mempolicy.h>
63#include <linux/namei.h>
b00dc3ad 64#include <linux/ctype.h>
304dbdb7 65#include <linux/migrate.h>
c1f60a5a 66#include <linux/highmem.h>
680d794b 67#include <linux/seq_file.h>
92562927 68#include <linux/magic.h>
304dbdb7 69
1da177e4 70#include <asm/uaccess.h>
1da177e4
LT
71#include <asm/pgtable.h>
72
caefba17 73#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
74#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
1da177e4
LT
76/* Pretend that each entry is of this size in directory's i_size */
77#define BOGO_DIRENT_SIZE 20
78
69f07ec9
HD
79/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80#define SHORT_SYMLINK_LEN 128
81
1aac1400
HD
82/*
83 * shmem_fallocate and shmem_writepage communicate via inode->i_private
84 * (with i_mutex making sure that it has only one user at a time):
85 * we would prefer not to enlarge the shmem inode just for that.
86 */
87struct shmem_falloc {
88 pgoff_t start; /* start of range currently being fallocated */
89 pgoff_t next; /* the next page offset to be fallocated */
90 pgoff_t nr_falloced; /* how many new pages have been fallocated */
91 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
92};
93
285b2c4f 94/* Flag allocation requirements to shmem_getpage */
1da177e4 95enum sgp_type {
1da177e4
LT
96 SGP_READ, /* don't exceed i_size, don't allocate page */
97 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 98 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
99 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
100 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
101};
102
b76db735 103#ifdef CONFIG_TMPFS
680d794b
AM
104static unsigned long shmem_default_max_blocks(void)
105{
106 return totalram_pages / 2;
107}
108
109static unsigned long shmem_default_max_inodes(void)
110{
111 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112}
b76db735 113#endif
680d794b 114
bde05d1c
HD
115static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
118static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122 struct page **pagep, enum sgp_type sgp, int *fault_type)
123{
124 return shmem_getpage_gfp(inode, index, pagep, sgp,
125 mapping_gfp_mask(inode->i_mapping), fault_type);
126}
1da177e4 127
1da177e4
LT
128static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129{
130 return sb->s_fs_info;
131}
132
133/*
134 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135 * for shared memory and for shared anonymous (/dev/zero) mappings
136 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137 * consistent with the pre-accounting of private mappings ...
138 */
139static inline int shmem_acct_size(unsigned long flags, loff_t size)
140{
0b0a0806 141 return (flags & VM_NORESERVE) ?
191c5424 142 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
143}
144
145static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146{
0b0a0806 147 if (!(flags & VM_NORESERVE))
1da177e4
LT
148 vm_unacct_memory(VM_ACCT(size));
149}
150
151/*
152 * ... whereas tmpfs objects are accounted incrementally as
153 * pages are allocated, in order to allow huge sparse files.
154 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156 */
157static inline int shmem_acct_block(unsigned long flags)
158{
0b0a0806 159 return (flags & VM_NORESERVE) ?
191c5424 160 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
161}
162
163static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164{
0b0a0806 165 if (flags & VM_NORESERVE)
1da177e4
LT
166 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167}
168
759b9775 169static const struct super_operations shmem_ops;
f5e54d6e 170static const struct address_space_operations shmem_aops;
15ad7cdc 171static const struct file_operations shmem_file_operations;
92e1d5be
AV
172static const struct inode_operations shmem_inode_operations;
173static const struct inode_operations shmem_dir_inode_operations;
174static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 175static const struct vm_operations_struct shmem_vm_ops;
1da177e4 176
6c231b7b 177static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 178 .ra_pages = 0, /* No readahead */
4f98a2fe 179 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
180};
181
182static LIST_HEAD(shmem_swaplist);
cb5f7b9a 183static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 184
5b04c689
PE
185static int shmem_reserve_inode(struct super_block *sb)
186{
187 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188 if (sbinfo->max_inodes) {
189 spin_lock(&sbinfo->stat_lock);
190 if (!sbinfo->free_inodes) {
191 spin_unlock(&sbinfo->stat_lock);
192 return -ENOSPC;
193 }
194 sbinfo->free_inodes--;
195 spin_unlock(&sbinfo->stat_lock);
196 }
197 return 0;
198}
199
200static void shmem_free_inode(struct super_block *sb)
201{
202 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203 if (sbinfo->max_inodes) {
204 spin_lock(&sbinfo->stat_lock);
205 sbinfo->free_inodes++;
206 spin_unlock(&sbinfo->stat_lock);
207 }
208}
209
46711810 210/**
41ffe5d5 211 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
212 * @inode: inode to recalc
213 *
214 * We have to calculate the free blocks since the mm can drop
215 * undirtied hole pages behind our back.
216 *
217 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
218 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219 *
220 * It has to be called with the spinlock held.
221 */
222static void shmem_recalc_inode(struct inode *inode)
223{
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 long freed;
226
227 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228 if (freed > 0) {
54af6042
HD
229 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230 if (sbinfo->max_blocks)
231 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 232 info->alloced -= freed;
54af6042 233 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 234 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
235 }
236}
237
7a5d0fbb
HD
238/*
239 * Replace item expected in radix tree by a new item, while holding tree lock.
240 */
241static int shmem_radix_tree_replace(struct address_space *mapping,
242 pgoff_t index, void *expected, void *replacement)
243{
244 void **pslot;
6dbaf22c 245 void *item;
7a5d0fbb
HD
246
247 VM_BUG_ON(!expected);
6dbaf22c 248 VM_BUG_ON(!replacement);
7a5d0fbb 249 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
6dbaf22c
JW
250 if (!pslot)
251 return -ENOENT;
252 item = radix_tree_deref_slot_protected(pslot, &mapping->tree_lock);
7a5d0fbb
HD
253 if (item != expected)
254 return -ENOENT;
6dbaf22c 255 radix_tree_replace_slot(pslot, replacement);
7a5d0fbb
HD
256 return 0;
257}
258
d1899228
HD
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268{
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275}
276
46f65ec1
HD
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283{
b065b432 284 int error;
46f65ec1 285
309381fe
SL
286 VM_BUG_ON_PAGE(!PageLocked(page), page);
287 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
46f65ec1 288
b065b432
HD
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
46f65ec1 294 if (!expected)
b065b432
HD
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
46f65ec1 299 if (!error) {
b065b432
HD
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
46f65ec1 308 }
46f65ec1
HD
309 return error;
310}
311
6922c0c7
HD
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329}
330
7a5d0fbb
HD
331/*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 pgoff_t start, unsigned int nr_pages,
336 struct page **pages, pgoff_t *indices)
337{
860f2759
JW
338 void **slot;
339 unsigned int ret = 0;
340 struct radix_tree_iter iter;
341
342 if (!nr_pages)
343 return 0;
7a5d0fbb
HD
344
345 rcu_read_lock();
346restart:
860f2759 347 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
7a5d0fbb
HD
348 struct page *page;
349repeat:
860f2759 350 page = radix_tree_deref_slot(slot);
7a5d0fbb
HD
351 if (unlikely(!page))
352 continue;
353 if (radix_tree_exception(page)) {
8079b1c8
HD
354 if (radix_tree_deref_retry(page))
355 goto restart;
356 /*
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
360 */
361 goto export;
7a5d0fbb
HD
362 }
363 if (!page_cache_get_speculative(page))
364 goto repeat;
365
366 /* Has the page moved? */
860f2759 367 if (unlikely(page != *slot)) {
7a5d0fbb
HD
368 page_cache_release(page);
369 goto repeat;
370 }
371export:
860f2759 372 indices[ret] = iter.index;
7a5d0fbb 373 pages[ret] = page;
860f2759
JW
374 if (++ret == nr_pages)
375 break;
7a5d0fbb 376 }
7a5d0fbb
HD
377 rcu_read_unlock();
378 return ret;
379}
380
381/*
382 * Remove swap entry from radix tree, free the swap and its page cache.
383 */
384static int shmem_free_swap(struct address_space *mapping,
385 pgoff_t index, void *radswap)
386{
6dbaf22c 387 void *old;
7a5d0fbb
HD
388
389 spin_lock_irq(&mapping->tree_lock);
6dbaf22c 390 old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
7a5d0fbb 391 spin_unlock_irq(&mapping->tree_lock);
6dbaf22c
JW
392 if (old != radswap)
393 return -ENOENT;
394 free_swap_and_cache(radix_to_swp_entry(radswap));
395 return 0;
7a5d0fbb
HD
396}
397
398/*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
24513264 401static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
402{
403 int i, j;
404
405 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 struct page *page = pvec->pages[i];
407 if (!radix_tree_exceptional_entry(page))
408 pvec->pages[j++] = page;
409 }
410 pvec->nr = j;
24513264
HD
411}
412
413/*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416void shmem_unlock_mapping(struct address_space *mapping)
417{
418 struct pagevec pvec;
419 pgoff_t indices[PAGEVEC_SIZE];
420 pgoff_t index = 0;
421
422 pagevec_init(&pvec, 0);
423 /*
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 */
426 while (!mapping_unevictable(mapping)) {
427 /*
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 */
431 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 PAGEVEC_SIZE, pvec.pages, indices);
433 if (!pvec.nr)
434 break;
435 index = indices[pvec.nr - 1] + 1;
436 shmem_deswap_pagevec(&pvec);
437 check_move_unevictable_pages(pvec.pages, pvec.nr);
438 pagevec_release(&pvec);
439 cond_resched();
440 }
7a5d0fbb
HD
441}
442
443/*
444 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 446 */
1635f6a7
HD
447static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 bool unfalloc)
1da177e4 449{
285b2c4f 450 struct address_space *mapping = inode->i_mapping;
1da177e4 451 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 452 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
453 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 456 struct pagevec pvec;
7a5d0fbb
HD
457 pgoff_t indices[PAGEVEC_SIZE];
458 long nr_swaps_freed = 0;
285b2c4f 459 pgoff_t index;
bda97eab
HD
460 int i;
461
83e4fa9c
HD
462 if (lend == -1)
463 end = -1; /* unsigned, so actually very big */
bda97eab
HD
464
465 pagevec_init(&pvec, 0);
466 index = start;
83e4fa9c 467 while (index < end) {
7a5d0fbb 468 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 469 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
470 pvec.pages, indices);
471 if (!pvec.nr)
472 break;
bda97eab
HD
473 mem_cgroup_uncharge_start();
474 for (i = 0; i < pagevec_count(&pvec); i++) {
475 struct page *page = pvec.pages[i];
476
7a5d0fbb 477 index = indices[i];
83e4fa9c 478 if (index >= end)
bda97eab
HD
479 break;
480
7a5d0fbb 481 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
482 if (unfalloc)
483 continue;
7a5d0fbb
HD
484 nr_swaps_freed += !shmem_free_swap(mapping,
485 index, page);
bda97eab 486 continue;
7a5d0fbb
HD
487 }
488
489 if (!trylock_page(page))
bda97eab 490 continue;
1635f6a7
HD
491 if (!unfalloc || !PageUptodate(page)) {
492 if (page->mapping == mapping) {
309381fe 493 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
494 truncate_inode_page(mapping, page);
495 }
bda97eab 496 }
bda97eab
HD
497 unlock_page(page);
498 }
24513264
HD
499 shmem_deswap_pagevec(&pvec);
500 pagevec_release(&pvec);
bda97eab
HD
501 mem_cgroup_uncharge_end();
502 cond_resched();
503 index++;
504 }
1da177e4 505
83e4fa9c 506 if (partial_start) {
bda97eab
HD
507 struct page *page = NULL;
508 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 if (page) {
83e4fa9c
HD
510 unsigned int top = PAGE_CACHE_SIZE;
511 if (start > end) {
512 top = partial_end;
513 partial_end = 0;
514 }
515 zero_user_segment(page, partial_start, top);
516 set_page_dirty(page);
517 unlock_page(page);
518 page_cache_release(page);
519 }
520 }
521 if (partial_end) {
522 struct page *page = NULL;
523 shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 if (page) {
525 zero_user_segment(page, 0, partial_end);
bda97eab
HD
526 set_page_dirty(page);
527 unlock_page(page);
528 page_cache_release(page);
529 }
530 }
83e4fa9c
HD
531 if (start >= end)
532 return;
bda97eab
HD
533
534 index = start;
535 for ( ; ; ) {
536 cond_resched();
7a5d0fbb 537 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 538 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
539 pvec.pages, indices);
540 if (!pvec.nr) {
1635f6a7 541 if (index == start || unfalloc)
bda97eab
HD
542 break;
543 index = start;
544 continue;
545 }
1635f6a7 546 if ((index == start || unfalloc) && indices[0] >= end) {
24513264
HD
547 shmem_deswap_pagevec(&pvec);
548 pagevec_release(&pvec);
bda97eab
HD
549 break;
550 }
551 mem_cgroup_uncharge_start();
552 for (i = 0; i < pagevec_count(&pvec); i++) {
553 struct page *page = pvec.pages[i];
554
7a5d0fbb 555 index = indices[i];
83e4fa9c 556 if (index >= end)
bda97eab
HD
557 break;
558
7a5d0fbb 559 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
560 if (unfalloc)
561 continue;
7a5d0fbb
HD
562 nr_swaps_freed += !shmem_free_swap(mapping,
563 index, page);
564 continue;
565 }
566
bda97eab 567 lock_page(page);
1635f6a7
HD
568 if (!unfalloc || !PageUptodate(page)) {
569 if (page->mapping == mapping) {
309381fe 570 VM_BUG_ON_PAGE(PageWriteback(page), page);
1635f6a7
HD
571 truncate_inode_page(mapping, page);
572 }
7a5d0fbb 573 }
bda97eab
HD
574 unlock_page(page);
575 }
24513264
HD
576 shmem_deswap_pagevec(&pvec);
577 pagevec_release(&pvec);
bda97eab
HD
578 mem_cgroup_uncharge_end();
579 index++;
580 }
94c1e62d 581
1da177e4 582 spin_lock(&info->lock);
7a5d0fbb 583 info->swapped -= nr_swaps_freed;
1da177e4
LT
584 shmem_recalc_inode(inode);
585 spin_unlock(&info->lock);
1635f6a7 586}
1da177e4 587
1635f6a7
HD
588void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589{
590 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 591 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 592}
94c1e62d 593EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 594
94c1e62d 595static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
596{
597 struct inode *inode = dentry->d_inode;
1da177e4
LT
598 int error;
599
db78b877
CH
600 error = inode_change_ok(inode, attr);
601 if (error)
602 return error;
603
94c1e62d
HD
604 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 loff_t oldsize = inode->i_size;
606 loff_t newsize = attr->ia_size;
3889e6e7 607
94c1e62d
HD
608 if (newsize != oldsize) {
609 i_size_write(inode, newsize);
610 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611 }
612 if (newsize < oldsize) {
613 loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 shmem_truncate_range(inode, newsize, (loff_t)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618 }
1da177e4
LT
619 }
620
db78b877 621 setattr_copy(inode, attr);
db78b877 622 if (attr->ia_valid & ATTR_MODE)
feda821e 623 error = posix_acl_chmod(inode, inode->i_mode);
1da177e4
LT
624 return error;
625}
626
1f895f75 627static void shmem_evict_inode(struct inode *inode)
1da177e4 628{
1da177e4
LT
629 struct shmem_inode_info *info = SHMEM_I(inode);
630
3889e6e7 631 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
632 shmem_unacct_size(info->flags, inode->i_size);
633 inode->i_size = 0;
3889e6e7 634 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 635 if (!list_empty(&info->swaplist)) {
cb5f7b9a 636 mutex_lock(&shmem_swaplist_mutex);
1da177e4 637 list_del_init(&info->swaplist);
cb5f7b9a 638 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 639 }
69f07ec9
HD
640 } else
641 kfree(info->symlink);
b09e0fa4 642
38f38657 643 simple_xattrs_free(&info->xattrs);
0f3c42f5 644 WARN_ON(inode->i_blocks);
5b04c689 645 shmem_free_inode(inode->i_sb);
dbd5768f 646 clear_inode(inode);
1da177e4
LT
647}
648
46f65ec1
HD
649/*
650 * If swap found in inode, free it and move page from swapcache to filecache.
651 */
41ffe5d5 652static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 653 swp_entry_t swap, struct page **pagep)
1da177e4 654{
285b2c4f 655 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 656 void *radswap;
41ffe5d5 657 pgoff_t index;
bde05d1c
HD
658 gfp_t gfp;
659 int error = 0;
1da177e4 660
46f65ec1 661 radswap = swp_to_radix_entry(swap);
e504f3fd 662 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 663 if (index == -1)
285b2c4f 664 return 0;
2e0e26c7 665
1b1b32f2
HD
666 /*
667 * Move _head_ to start search for next from here.
1f895f75 668 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 669 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 670 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
671 */
672 if (shmem_swaplist.next != &info->swaplist)
673 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 674
bde05d1c
HD
675 gfp = mapping_gfp_mask(mapping);
676 if (shmem_should_replace_page(*pagep, gfp)) {
677 mutex_unlock(&shmem_swaplist_mutex);
678 error = shmem_replace_page(pagep, gfp, info, index);
679 mutex_lock(&shmem_swaplist_mutex);
680 /*
681 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
682 * allocation, but the inode might have been freed while we
683 * dropped it: although a racing shmem_evict_inode() cannot
684 * complete without emptying the radix_tree, our page lock
685 * on this swapcache page is not enough to prevent that -
686 * free_swap_and_cache() of our swap entry will only
687 * trylock_page(), removing swap from radix_tree whatever.
688 *
689 * We must not proceed to shmem_add_to_page_cache() if the
690 * inode has been freed, but of course we cannot rely on
691 * inode or mapping or info to check that. However, we can
692 * safely check if our swap entry is still in use (and here
693 * it can't have got reused for another page): if it's still
694 * in use, then the inode cannot have been freed yet, and we
695 * can safely proceed (if it's no longer in use, that tells
696 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
697 */
698 if (!page_swapcount(*pagep))
699 error = -ENOENT;
700 }
701
d13d1443 702 /*
778dd893
HD
703 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
704 * but also to hold up shmem_evict_inode(): so inode cannot be freed
705 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 706 */
bde05d1c
HD
707 if (!error)
708 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 709 GFP_NOWAIT, radswap);
48f170fb 710 if (error != -ENOMEM) {
46f65ec1
HD
711 /*
712 * Truncation and eviction use free_swap_and_cache(), which
713 * only does trylock page: if we raced, best clean up here.
714 */
bde05d1c
HD
715 delete_from_swap_cache(*pagep);
716 set_page_dirty(*pagep);
46f65ec1
HD
717 if (!error) {
718 spin_lock(&info->lock);
719 info->swapped--;
720 spin_unlock(&info->lock);
721 swap_free(swap);
722 }
2e0e26c7 723 error = 1; /* not an error, but entry was found */
1da177e4 724 }
2e0e26c7 725 return error;
1da177e4
LT
726}
727
728/*
46f65ec1 729 * Search through swapped inodes to find and replace swap by page.
1da177e4 730 */
41ffe5d5 731int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 732{
41ffe5d5 733 struct list_head *this, *next;
1da177e4
LT
734 struct shmem_inode_info *info;
735 int found = 0;
bde05d1c
HD
736 int error = 0;
737
738 /*
739 * There's a faint possibility that swap page was replaced before
0142ef6c 740 * caller locked it: caller will come back later with the right page.
bde05d1c 741 */
0142ef6c 742 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 743 goto out;
778dd893
HD
744
745 /*
746 * Charge page using GFP_KERNEL while we can wait, before taking
747 * the shmem_swaplist_mutex which might hold up shmem_writepage().
748 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
749 */
750 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
751 if (error)
752 goto out;
46f65ec1 753 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 754
cb5f7b9a 755 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
756 list_for_each_safe(this, next, &shmem_swaplist) {
757 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 758 if (info->swapped)
bde05d1c 759 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
760 else
761 list_del_init(&info->swaplist);
cb5f7b9a 762 cond_resched();
2e0e26c7 763 if (found)
778dd893 764 break;
1da177e4 765 }
cb5f7b9a 766 mutex_unlock(&shmem_swaplist_mutex);
778dd893 767
778dd893
HD
768 if (found < 0)
769 error = found;
770out:
aaa46865
HD
771 unlock_page(page);
772 page_cache_release(page);
778dd893 773 return error;
1da177e4
LT
774}
775
776/*
777 * Move the page from the page cache to the swap cache.
778 */
779static int shmem_writepage(struct page *page, struct writeback_control *wbc)
780{
781 struct shmem_inode_info *info;
1da177e4 782 struct address_space *mapping;
1da177e4 783 struct inode *inode;
6922c0c7
HD
784 swp_entry_t swap;
785 pgoff_t index;
1da177e4
LT
786
787 BUG_ON(!PageLocked(page));
1da177e4
LT
788 mapping = page->mapping;
789 index = page->index;
790 inode = mapping->host;
791 info = SHMEM_I(inode);
792 if (info->flags & VM_LOCKED)
793 goto redirty;
d9fe526a 794 if (!total_swap_pages)
1da177e4
LT
795 goto redirty;
796
d9fe526a
HD
797 /*
798 * shmem_backing_dev_info's capabilities prevent regular writeback or
799 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 800 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 801 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 802 * and not for the writeback threads or sync.
d9fe526a 803 */
48f170fb
HD
804 if (!wbc->for_reclaim) {
805 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
806 goto redirty;
807 }
1635f6a7
HD
808
809 /*
810 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
811 * value into swapfile.c, the only way we can correctly account for a
812 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
813 *
814 * That's okay for a page already fallocated earlier, but if we have
815 * not yet completed the fallocation, then (a) we want to keep track
816 * of this page in case we have to undo it, and (b) it may not be a
817 * good idea to continue anyway, once we're pushing into swap. So
818 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
819 */
820 if (!PageUptodate(page)) {
1aac1400
HD
821 if (inode->i_private) {
822 struct shmem_falloc *shmem_falloc;
823 spin_lock(&inode->i_lock);
824 shmem_falloc = inode->i_private;
825 if (shmem_falloc &&
826 index >= shmem_falloc->start &&
827 index < shmem_falloc->next)
828 shmem_falloc->nr_unswapped++;
829 else
830 shmem_falloc = NULL;
831 spin_unlock(&inode->i_lock);
832 if (shmem_falloc)
833 goto redirty;
834 }
1635f6a7
HD
835 clear_highpage(page);
836 flush_dcache_page(page);
837 SetPageUptodate(page);
838 }
839
48f170fb
HD
840 swap = get_swap_page();
841 if (!swap.val)
842 goto redirty;
d9fe526a 843
b1dea800
HD
844 /*
845 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
846 * if it's not already there. Do it now before the page is
847 * moved to swap cache, when its pagelock no longer protects
b1dea800 848 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
849 * we've incremented swapped, because shmem_unuse_inode() will
850 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 851 */
48f170fb
HD
852 mutex_lock(&shmem_swaplist_mutex);
853 if (list_empty(&info->swaplist))
854 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 855
48f170fb 856 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 857 swap_shmem_alloc(swap);
6922c0c7
HD
858 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
859
860 spin_lock(&info->lock);
861 info->swapped++;
862 shmem_recalc_inode(inode);
826267cf 863 spin_unlock(&info->lock);
6922c0c7
HD
864
865 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 866 BUG_ON(page_mapped(page));
9fab5619 867 swap_writepage(page, wbc);
1da177e4
LT
868 return 0;
869 }
870
6922c0c7 871 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 872 swapcache_free(swap, NULL);
1da177e4
LT
873redirty:
874 set_page_dirty(page);
d9fe526a
HD
875 if (wbc->for_reclaim)
876 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
877 unlock_page(page);
878 return 0;
1da177e4
LT
879}
880
881#ifdef CONFIG_NUMA
680d794b 882#ifdef CONFIG_TMPFS
71fe804b 883static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 884{
095f1fc4 885 char buffer[64];
680d794b 886
71fe804b 887 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 888 return; /* show nothing */
680d794b 889
a7a88b23 890 mpol_to_str(buffer, sizeof(buffer), mpol);
095f1fc4
LS
891
892 seq_printf(seq, ",mpol=%s", buffer);
680d794b 893}
71fe804b
LS
894
895static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
896{
897 struct mempolicy *mpol = NULL;
898 if (sbinfo->mpol) {
899 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
900 mpol = sbinfo->mpol;
901 mpol_get(mpol);
902 spin_unlock(&sbinfo->stat_lock);
903 }
904 return mpol;
905}
680d794b
AM
906#endif /* CONFIG_TMPFS */
907
41ffe5d5
HD
908static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
909 struct shmem_inode_info *info, pgoff_t index)
1da177e4 910{
1da177e4 911 struct vm_area_struct pvma;
18a2f371 912 struct page *page;
52cd3b07 913
1da177e4 914 /* Create a pseudo vma that just contains the policy */
c4cc6d07 915 pvma.vm_start = 0;
09c231cb
NZ
916 /* Bias interleave by inode number to distribute better across nodes */
917 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 918 pvma.vm_ops = NULL;
18a2f371
MG
919 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
920
921 page = swapin_readahead(swap, gfp, &pvma, 0);
922
923 /* Drop reference taken by mpol_shared_policy_lookup() */
924 mpol_cond_put(pvma.vm_policy);
925
926 return page;
1da177e4
LT
927}
928
02098fea 929static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 930 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
931{
932 struct vm_area_struct pvma;
18a2f371 933 struct page *page;
1da177e4 934
c4cc6d07
HD
935 /* Create a pseudo vma that just contains the policy */
936 pvma.vm_start = 0;
09c231cb
NZ
937 /* Bias interleave by inode number to distribute better across nodes */
938 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 939 pvma.vm_ops = NULL;
41ffe5d5 940 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07 941
18a2f371
MG
942 page = alloc_page_vma(gfp, &pvma, 0);
943
944 /* Drop reference taken by mpol_shared_policy_lookup() */
945 mpol_cond_put(pvma.vm_policy);
946
947 return page;
1da177e4 948}
680d794b
AM
949#else /* !CONFIG_NUMA */
950#ifdef CONFIG_TMPFS
41ffe5d5 951static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b
AM
952{
953}
954#endif /* CONFIG_TMPFS */
955
41ffe5d5
HD
956static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
957 struct shmem_inode_info *info, pgoff_t index)
1da177e4 958{
41ffe5d5 959 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
960}
961
02098fea 962static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 963 struct shmem_inode_info *info, pgoff_t index)
1da177e4 964{
e84e2e13 965 return alloc_page(gfp);
1da177e4 966}
680d794b 967#endif /* CONFIG_NUMA */
1da177e4 968
71fe804b
LS
969#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
970static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
971{
972 return NULL;
973}
974#endif
975
bde05d1c
HD
976/*
977 * When a page is moved from swapcache to shmem filecache (either by the
978 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
979 * shmem_unuse_inode()), it may have been read in earlier from swap, in
980 * ignorance of the mapping it belongs to. If that mapping has special
981 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
982 * we may need to copy to a suitable page before moving to filecache.
983 *
984 * In a future release, this may well be extended to respect cpuset and
985 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
986 * but for now it is a simple matter of zone.
987 */
988static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
989{
990 return page_zonenum(page) > gfp_zone(gfp);
991}
992
993static int shmem_replace_page(struct page **pagep, gfp_t gfp,
994 struct shmem_inode_info *info, pgoff_t index)
995{
996 struct page *oldpage, *newpage;
997 struct address_space *swap_mapping;
998 pgoff_t swap_index;
999 int error;
1000
1001 oldpage = *pagep;
1002 swap_index = page_private(oldpage);
1003 swap_mapping = page_mapping(oldpage);
1004
1005 /*
1006 * We have arrived here because our zones are constrained, so don't
1007 * limit chance of success by further cpuset and node constraints.
1008 */
1009 gfp &= ~GFP_CONSTRAINT_MASK;
1010 newpage = shmem_alloc_page(gfp, info, index);
1011 if (!newpage)
1012 return -ENOMEM;
bde05d1c 1013
bde05d1c
HD
1014 page_cache_get(newpage);
1015 copy_highpage(newpage, oldpage);
0142ef6c 1016 flush_dcache_page(newpage);
bde05d1c 1017
bde05d1c 1018 __set_page_locked(newpage);
bde05d1c 1019 SetPageUptodate(newpage);
bde05d1c 1020 SetPageSwapBacked(newpage);
bde05d1c 1021 set_page_private(newpage, swap_index);
bde05d1c
HD
1022 SetPageSwapCache(newpage);
1023
1024 /*
1025 * Our caller will very soon move newpage out of swapcache, but it's
1026 * a nice clean interface for us to replace oldpage by newpage there.
1027 */
1028 spin_lock_irq(&swap_mapping->tree_lock);
1029 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1030 newpage);
0142ef6c
HD
1031 if (!error) {
1032 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1033 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1034 }
bde05d1c 1035 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1036
0142ef6c
HD
1037 if (unlikely(error)) {
1038 /*
1039 * Is this possible? I think not, now that our callers check
1040 * both PageSwapCache and page_private after getting page lock;
1041 * but be defensive. Reverse old to newpage for clear and free.
1042 */
1043 oldpage = newpage;
1044 } else {
1045 mem_cgroup_replace_page_cache(oldpage, newpage);
1046 lru_cache_add_anon(newpage);
1047 *pagep = newpage;
1048 }
bde05d1c
HD
1049
1050 ClearPageSwapCache(oldpage);
1051 set_page_private(oldpage, 0);
1052
1053 unlock_page(oldpage);
1054 page_cache_release(oldpage);
1055 page_cache_release(oldpage);
0142ef6c 1056 return error;
bde05d1c
HD
1057}
1058
1da177e4 1059/*
68da9f05 1060 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1061 *
1062 * If we allocate a new one we do not mark it dirty. That's up to the
1063 * vm. If we swap it in we mark it dirty since we also free the swap
1064 * entry since a page cannot live in both the swap and page cache
1065 */
41ffe5d5 1066static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1067 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1068{
1069 struct address_space *mapping = inode->i_mapping;
54af6042 1070 struct shmem_inode_info *info;
1da177e4 1071 struct shmem_sb_info *sbinfo;
27ab7006 1072 struct page *page;
1da177e4
LT
1073 swp_entry_t swap;
1074 int error;
54af6042 1075 int once = 0;
1635f6a7 1076 int alloced = 0;
1da177e4 1077
41ffe5d5 1078 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1079 return -EFBIG;
1da177e4 1080repeat:
54af6042 1081 swap.val = 0;
41ffe5d5 1082 page = find_lock_page(mapping, index);
54af6042
HD
1083 if (radix_tree_exceptional_entry(page)) {
1084 swap = radix_to_swp_entry(page);
1085 page = NULL;
1086 }
1087
1635f6a7 1088 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1089 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1090 error = -EINVAL;
1091 goto failed;
1092 }
1093
1635f6a7
HD
1094 /* fallocated page? */
1095 if (page && !PageUptodate(page)) {
1096 if (sgp != SGP_READ)
1097 goto clear;
1098 unlock_page(page);
1099 page_cache_release(page);
1100 page = NULL;
1101 }
54af6042 1102 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1103 *pagep = page;
1104 return 0;
27ab7006
HD
1105 }
1106
1107 /*
54af6042
HD
1108 * Fast cache lookup did not find it:
1109 * bring it back from swap or allocate.
27ab7006 1110 */
54af6042
HD
1111 info = SHMEM_I(inode);
1112 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1113
1da177e4
LT
1114 if (swap.val) {
1115 /* Look it up and read it in.. */
27ab7006
HD
1116 page = lookup_swap_cache(swap);
1117 if (!page) {
1da177e4 1118 /* here we actually do the io */
68da9f05
HD
1119 if (fault_type)
1120 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1121 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1122 if (!page) {
54af6042
HD
1123 error = -ENOMEM;
1124 goto failed;
1da177e4 1125 }
1da177e4
LT
1126 }
1127
1128 /* We have to do this with page locked to prevent races */
54af6042 1129 lock_page(page);
0142ef6c 1130 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1131 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1132 error = -EEXIST; /* try again */
d1899228 1133 goto unlock;
bde05d1c 1134 }
27ab7006 1135 if (!PageUptodate(page)) {
1da177e4 1136 error = -EIO;
54af6042 1137 goto failed;
1da177e4 1138 }
54af6042
HD
1139 wait_on_page_writeback(page);
1140
bde05d1c
HD
1141 if (shmem_should_replace_page(page, gfp)) {
1142 error = shmem_replace_page(&page, gfp, info, index);
1143 if (error)
1144 goto failed;
1da177e4 1145 }
27ab7006 1146
aa3b1895
HD
1147 error = mem_cgroup_cache_charge(page, current->mm,
1148 gfp & GFP_RECLAIM_MASK);
d1899228 1149 if (!error) {
aa3b1895
HD
1150 error = shmem_add_to_page_cache(page, mapping, index,
1151 gfp, swp_to_radix_entry(swap));
215c02bc
HD
1152 /*
1153 * We already confirmed swap under page lock, and make
1154 * no memory allocation here, so usually no possibility
1155 * of error; but free_swap_and_cache() only trylocks a
1156 * page, so it is just possible that the entry has been
1157 * truncated or holepunched since swap was confirmed.
1158 * shmem_undo_range() will have done some of the
1159 * unaccounting, now delete_from_swap_cache() will do
1160 * the rest (including mem_cgroup_uncharge_swapcache).
1161 * Reset swap.val? No, leave it so "failed" goes back to
1162 * "repeat": reading a hole and writing should succeed.
1163 */
1164 if (error)
1165 delete_from_swap_cache(page);
d1899228 1166 }
54af6042
HD
1167 if (error)
1168 goto failed;
1169
1170 spin_lock(&info->lock);
285b2c4f 1171 info->swapped--;
54af6042 1172 shmem_recalc_inode(inode);
27ab7006 1173 spin_unlock(&info->lock);
54af6042
HD
1174
1175 delete_from_swap_cache(page);
27ab7006
HD
1176 set_page_dirty(page);
1177 swap_free(swap);
1178
54af6042
HD
1179 } else {
1180 if (shmem_acct_block(info->flags)) {
1181 error = -ENOSPC;
1182 goto failed;
1da177e4 1183 }
0edd73b3 1184 if (sbinfo->max_blocks) {
fc5da22a 1185 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1186 sbinfo->max_blocks) >= 0) {
1187 error = -ENOSPC;
1188 goto unacct;
1189 }
7e496299 1190 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1191 }
1da177e4 1192
54af6042
HD
1193 page = shmem_alloc_page(gfp, info, index);
1194 if (!page) {
1195 error = -ENOMEM;
1196 goto decused;
1da177e4
LT
1197 }
1198
54af6042
HD
1199 SetPageSwapBacked(page);
1200 __set_page_locked(page);
aa3b1895
HD
1201 error = mem_cgroup_cache_charge(page, current->mm,
1202 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1203 if (error)
1204 goto decused;
5e4c0d97 1205 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
b065b432
HD
1206 if (!error) {
1207 error = shmem_add_to_page_cache(page, mapping, index,
1208 gfp, NULL);
1209 radix_tree_preload_end();
1210 }
1211 if (error) {
1212 mem_cgroup_uncharge_cache_page(page);
1213 goto decused;
1214 }
54af6042
HD
1215 lru_cache_add_anon(page);
1216
1217 spin_lock(&info->lock);
1da177e4 1218 info->alloced++;
54af6042
HD
1219 inode->i_blocks += BLOCKS_PER_PAGE;
1220 shmem_recalc_inode(inode);
1da177e4 1221 spin_unlock(&info->lock);
1635f6a7 1222 alloced = true;
54af6042 1223
ec9516fb 1224 /*
1635f6a7
HD
1225 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1226 */
1227 if (sgp == SGP_FALLOC)
1228 sgp = SGP_WRITE;
1229clear:
1230 /*
1231 * Let SGP_WRITE caller clear ends if write does not fill page;
1232 * but SGP_FALLOC on a page fallocated earlier must initialize
1233 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1234 */
1235 if (sgp != SGP_WRITE) {
1236 clear_highpage(page);
1237 flush_dcache_page(page);
1238 SetPageUptodate(page);
1239 }
a0ee5ec5 1240 if (sgp == SGP_DIRTY)
27ab7006 1241 set_page_dirty(page);
1da177e4 1242 }
bde05d1c 1243
54af6042 1244 /* Perhaps the file has been truncated since we checked */
1635f6a7 1245 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1246 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1247 error = -EINVAL;
1635f6a7
HD
1248 if (alloced)
1249 goto trunc;
1250 else
1251 goto failed;
e83c32e8 1252 }
54af6042
HD
1253 *pagep = page;
1254 return 0;
1da177e4 1255
59a16ead 1256 /*
54af6042 1257 * Error recovery.
59a16ead 1258 */
54af6042 1259trunc:
1635f6a7 1260 info = SHMEM_I(inode);
54af6042
HD
1261 ClearPageDirty(page);
1262 delete_from_page_cache(page);
1263 spin_lock(&info->lock);
1264 info->alloced--;
1265 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1266 spin_unlock(&info->lock);
54af6042 1267decused:
1635f6a7 1268 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1269 if (sbinfo->max_blocks)
1270 percpu_counter_add(&sbinfo->used_blocks, -1);
1271unacct:
1272 shmem_unacct_blocks(info->flags, 1);
1273failed:
d1899228
HD
1274 if (swap.val && error != -EINVAL &&
1275 !shmem_confirm_swap(mapping, index, swap))
1276 error = -EEXIST;
1277unlock:
27ab7006 1278 if (page) {
54af6042 1279 unlock_page(page);
27ab7006 1280 page_cache_release(page);
54af6042
HD
1281 }
1282 if (error == -ENOSPC && !once++) {
1283 info = SHMEM_I(inode);
1284 spin_lock(&info->lock);
1285 shmem_recalc_inode(inode);
1286 spin_unlock(&info->lock);
27ab7006 1287 goto repeat;
ff36b801 1288 }
d1899228 1289 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1290 goto repeat;
1291 return error;
1da177e4
LT
1292}
1293
d0217ac0 1294static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1295{
496ad9aa 1296 struct inode *inode = file_inode(vma->vm_file);
1da177e4 1297 int error;
68da9f05 1298 int ret = VM_FAULT_LOCKED;
1da177e4 1299
27d54b39 1300 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1301 if (error)
1302 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1303
456f998e
YH
1304 if (ret & VM_FAULT_MAJOR) {
1305 count_vm_event(PGMAJFAULT);
1306 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1307 }
68da9f05 1308 return ret;
1da177e4
LT
1309}
1310
1da177e4 1311#ifdef CONFIG_NUMA
41ffe5d5 1312static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1313{
496ad9aa 1314 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1315 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1316}
1317
d8dc74f2
AB
1318static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1319 unsigned long addr)
1da177e4 1320{
496ad9aa 1321 struct inode *inode = file_inode(vma->vm_file);
41ffe5d5 1322 pgoff_t index;
1da177e4 1323
41ffe5d5
HD
1324 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1325 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1326}
1327#endif
1328
1329int shmem_lock(struct file *file, int lock, struct user_struct *user)
1330{
496ad9aa 1331 struct inode *inode = file_inode(file);
1da177e4
LT
1332 struct shmem_inode_info *info = SHMEM_I(inode);
1333 int retval = -ENOMEM;
1334
1335 spin_lock(&info->lock);
1336 if (lock && !(info->flags & VM_LOCKED)) {
1337 if (!user_shm_lock(inode->i_size, user))
1338 goto out_nomem;
1339 info->flags |= VM_LOCKED;
89e004ea 1340 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1341 }
1342 if (!lock && (info->flags & VM_LOCKED) && user) {
1343 user_shm_unlock(inode->i_size, user);
1344 info->flags &= ~VM_LOCKED;
89e004ea 1345 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1346 }
1347 retval = 0;
89e004ea 1348
1da177e4
LT
1349out_nomem:
1350 spin_unlock(&info->lock);
1351 return retval;
1352}
1353
9b83a6a8 1354static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1355{
1356 file_accessed(file);
1357 vma->vm_ops = &shmem_vm_ops;
1358 return 0;
1359}
1360
454abafe 1361static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1362 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1363{
1364 struct inode *inode;
1365 struct shmem_inode_info *info;
1366 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1367
5b04c689
PE
1368 if (shmem_reserve_inode(sb))
1369 return NULL;
1da177e4
LT
1370
1371 inode = new_inode(sb);
1372 if (inode) {
85fe4025 1373 inode->i_ino = get_next_ino();
454abafe 1374 inode_init_owner(inode, dir, mode);
1da177e4 1375 inode->i_blocks = 0;
1da177e4
LT
1376 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1377 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1378 inode->i_generation = get_seconds();
1da177e4
LT
1379 info = SHMEM_I(inode);
1380 memset(info, 0, (char *)inode - (char *)info);
1381 spin_lock_init(&info->lock);
0b0a0806 1382 info->flags = flags & VM_NORESERVE;
1da177e4 1383 INIT_LIST_HEAD(&info->swaplist);
38f38657 1384 simple_xattrs_init(&info->xattrs);
72c04902 1385 cache_no_acl(inode);
1da177e4
LT
1386
1387 switch (mode & S_IFMT) {
1388 default:
39f0247d 1389 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1390 init_special_inode(inode, mode, dev);
1391 break;
1392 case S_IFREG:
14fcc23f 1393 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1394 inode->i_op = &shmem_inode_operations;
1395 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1396 mpol_shared_policy_init(&info->policy,
1397 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1398 break;
1399 case S_IFDIR:
d8c76e6f 1400 inc_nlink(inode);
1da177e4
LT
1401 /* Some things misbehave if size == 0 on a directory */
1402 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1403 inode->i_op = &shmem_dir_inode_operations;
1404 inode->i_fop = &simple_dir_operations;
1405 break;
1406 case S_IFLNK:
1407 /*
1408 * Must not load anything in the rbtree,
1409 * mpol_free_shared_policy will not be called.
1410 */
71fe804b 1411 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1412 break;
1413 }
5b04c689
PE
1414 } else
1415 shmem_free_inode(sb);
1da177e4
LT
1416 return inode;
1417}
1418
1419#ifdef CONFIG_TMPFS
92e1d5be 1420static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1421static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1422
6d9d88d0
JS
1423#ifdef CONFIG_TMPFS_XATTR
1424static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1425#else
1426#define shmem_initxattrs NULL
1427#endif
1428
1da177e4 1429static int
800d15a5
NP
1430shmem_write_begin(struct file *file, struct address_space *mapping,
1431 loff_t pos, unsigned len, unsigned flags,
1432 struct page **pagep, void **fsdata)
1da177e4 1433{
800d15a5
NP
1434 struct inode *inode = mapping->host;
1435 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1436 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1437}
1438
1439static int
1440shmem_write_end(struct file *file, struct address_space *mapping,
1441 loff_t pos, unsigned len, unsigned copied,
1442 struct page *page, void *fsdata)
1443{
1444 struct inode *inode = mapping->host;
1445
d3602444
HD
1446 if (pos + copied > inode->i_size)
1447 i_size_write(inode, pos + copied);
1448
ec9516fb
HD
1449 if (!PageUptodate(page)) {
1450 if (copied < PAGE_CACHE_SIZE) {
1451 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1452 zero_user_segments(page, 0, from,
1453 from + copied, PAGE_CACHE_SIZE);
1454 }
1455 SetPageUptodate(page);
1456 }
800d15a5 1457 set_page_dirty(page);
6746aff7 1458 unlock_page(page);
800d15a5
NP
1459 page_cache_release(page);
1460
800d15a5 1461 return copied;
1da177e4
LT
1462}
1463
1da177e4
LT
1464static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1465{
496ad9aa 1466 struct inode *inode = file_inode(filp);
1da177e4 1467 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1468 pgoff_t index;
1469 unsigned long offset;
a0ee5ec5
HD
1470 enum sgp_type sgp = SGP_READ;
1471
1472 /*
1473 * Might this read be for a stacking filesystem? Then when reading
1474 * holes of a sparse file, we actually need to allocate those pages,
1475 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1476 */
1477 if (segment_eq(get_fs(), KERNEL_DS))
1478 sgp = SGP_DIRTY;
1da177e4
LT
1479
1480 index = *ppos >> PAGE_CACHE_SHIFT;
1481 offset = *ppos & ~PAGE_CACHE_MASK;
1482
1483 for (;;) {
1484 struct page *page = NULL;
41ffe5d5
HD
1485 pgoff_t end_index;
1486 unsigned long nr, ret;
1da177e4
LT
1487 loff_t i_size = i_size_read(inode);
1488
1489 end_index = i_size >> PAGE_CACHE_SHIFT;
1490 if (index > end_index)
1491 break;
1492 if (index == end_index) {
1493 nr = i_size & ~PAGE_CACHE_MASK;
1494 if (nr <= offset)
1495 break;
1496 }
1497
a0ee5ec5 1498 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1499 if (desc->error) {
1500 if (desc->error == -EINVAL)
1501 desc->error = 0;
1502 break;
1503 }
d3602444
HD
1504 if (page)
1505 unlock_page(page);
1da177e4
LT
1506
1507 /*
1508 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1509 * are called without i_mutex protection against truncate
1da177e4
LT
1510 */
1511 nr = PAGE_CACHE_SIZE;
1512 i_size = i_size_read(inode);
1513 end_index = i_size >> PAGE_CACHE_SHIFT;
1514 if (index == end_index) {
1515 nr = i_size & ~PAGE_CACHE_MASK;
1516 if (nr <= offset) {
1517 if (page)
1518 page_cache_release(page);
1519 break;
1520 }
1521 }
1522 nr -= offset;
1523
1524 if (page) {
1525 /*
1526 * If users can be writing to this page using arbitrary
1527 * virtual addresses, take care about potential aliasing
1528 * before reading the page on the kernel side.
1529 */
1530 if (mapping_writably_mapped(mapping))
1531 flush_dcache_page(page);
1532 /*
1533 * Mark the page accessed if we read the beginning.
1534 */
1535 if (!offset)
1536 mark_page_accessed(page);
b5810039 1537 } else {
1da177e4 1538 page = ZERO_PAGE(0);
b5810039
NP
1539 page_cache_get(page);
1540 }
1da177e4
LT
1541
1542 /*
1543 * Ok, we have the page, and it's up-to-date, so
1544 * now we can copy it to user space...
1545 *
1546 * The actor routine returns how many bytes were actually used..
1547 * NOTE! This may not be the same as how much of a user buffer
1548 * we filled up (we may be padding etc), so we can only update
1549 * "pos" here (the actor routine has to update the user buffer
1550 * pointers and the remaining count).
1551 */
1552 ret = actor(desc, page, offset, nr);
1553 offset += ret;
1554 index += offset >> PAGE_CACHE_SHIFT;
1555 offset &= ~PAGE_CACHE_MASK;
1556
1557 page_cache_release(page);
1558 if (ret != nr || !desc->count)
1559 break;
1560
1561 cond_resched();
1562 }
1563
1564 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1565 file_accessed(filp);
1566}
1567
bcd78e49
HD
1568static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1569 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1570{
1571 struct file *filp = iocb->ki_filp;
1572 ssize_t retval;
1573 unsigned long seg;
1574 size_t count;
1575 loff_t *ppos = &iocb->ki_pos;
1576
1577 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1578 if (retval)
1579 return retval;
1580
1581 for (seg = 0; seg < nr_segs; seg++) {
1582 read_descriptor_t desc;
1583
1584 desc.written = 0;
1585 desc.arg.buf = iov[seg].iov_base;
1586 desc.count = iov[seg].iov_len;
1587 if (desc.count == 0)
1588 continue;
1589 desc.error = 0;
1590 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1591 retval += desc.written;
1592 if (desc.error) {
1593 retval = retval ?: desc.error;
1594 break;
1595 }
1596 if (desc.count > 0)
1597 break;
1598 }
1599 return retval;
1da177e4
LT
1600}
1601
708e3508
HD
1602static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1603 struct pipe_inode_info *pipe, size_t len,
1604 unsigned int flags)
1605{
1606 struct address_space *mapping = in->f_mapping;
71f0e07a 1607 struct inode *inode = mapping->host;
708e3508
HD
1608 unsigned int loff, nr_pages, req_pages;
1609 struct page *pages[PIPE_DEF_BUFFERS];
1610 struct partial_page partial[PIPE_DEF_BUFFERS];
1611 struct page *page;
1612 pgoff_t index, end_index;
1613 loff_t isize, left;
1614 int error, page_nr;
1615 struct splice_pipe_desc spd = {
1616 .pages = pages,
1617 .partial = partial,
047fe360 1618 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1619 .flags = flags,
1620 .ops = &page_cache_pipe_buf_ops,
1621 .spd_release = spd_release_page,
1622 };
1623
71f0e07a 1624 isize = i_size_read(inode);
708e3508
HD
1625 if (unlikely(*ppos >= isize))
1626 return 0;
1627
1628 left = isize - *ppos;
1629 if (unlikely(left < len))
1630 len = left;
1631
1632 if (splice_grow_spd(pipe, &spd))
1633 return -ENOMEM;
1634
1635 index = *ppos >> PAGE_CACHE_SHIFT;
1636 loff = *ppos & ~PAGE_CACHE_MASK;
1637 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1638 nr_pages = min(req_pages, pipe->buffers);
1639
708e3508
HD
1640 spd.nr_pages = find_get_pages_contig(mapping, index,
1641 nr_pages, spd.pages);
1642 index += spd.nr_pages;
708e3508 1643 error = 0;
708e3508 1644
71f0e07a 1645 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1646 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1647 if (error)
1648 break;
1649 unlock_page(page);
708e3508
HD
1650 spd.pages[spd.nr_pages++] = page;
1651 index++;
1652 }
1653
708e3508
HD
1654 index = *ppos >> PAGE_CACHE_SHIFT;
1655 nr_pages = spd.nr_pages;
1656 spd.nr_pages = 0;
71f0e07a 1657
708e3508
HD
1658 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1659 unsigned int this_len;
1660
1661 if (!len)
1662 break;
1663
708e3508
HD
1664 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1665 page = spd.pages[page_nr];
1666
71f0e07a 1667 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1668 error = shmem_getpage(inode, index, &page,
1669 SGP_CACHE, NULL);
1670 if (error)
708e3508 1671 break;
71f0e07a
HD
1672 unlock_page(page);
1673 page_cache_release(spd.pages[page_nr]);
1674 spd.pages[page_nr] = page;
708e3508 1675 }
71f0e07a
HD
1676
1677 isize = i_size_read(inode);
708e3508
HD
1678 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1679 if (unlikely(!isize || index > end_index))
1680 break;
1681
708e3508
HD
1682 if (end_index == index) {
1683 unsigned int plen;
1684
708e3508
HD
1685 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1686 if (plen <= loff)
1687 break;
1688
708e3508
HD
1689 this_len = min(this_len, plen - loff);
1690 len = this_len;
1691 }
1692
1693 spd.partial[page_nr].offset = loff;
1694 spd.partial[page_nr].len = this_len;
1695 len -= this_len;
1696 loff = 0;
1697 spd.nr_pages++;
1698 index++;
1699 }
1700
708e3508
HD
1701 while (page_nr < nr_pages)
1702 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1703
1704 if (spd.nr_pages)
1705 error = splice_to_pipe(pipe, &spd);
1706
047fe360 1707 splice_shrink_spd(&spd);
708e3508
HD
1708
1709 if (error > 0) {
1710 *ppos += error;
1711 file_accessed(in);
1712 }
1713 return error;
1714}
1715
220f2ac9
HD
1716/*
1717 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1718 */
1719static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
965c8e59 1720 pgoff_t index, pgoff_t end, int whence)
220f2ac9
HD
1721{
1722 struct page *page;
1723 struct pagevec pvec;
1724 pgoff_t indices[PAGEVEC_SIZE];
1725 bool done = false;
1726 int i;
1727
1728 pagevec_init(&pvec, 0);
1729 pvec.nr = 1; /* start small: we may be there already */
1730 while (!done) {
1731 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1732 pvec.nr, pvec.pages, indices);
1733 if (!pvec.nr) {
965c8e59 1734 if (whence == SEEK_DATA)
220f2ac9
HD
1735 index = end;
1736 break;
1737 }
1738 for (i = 0; i < pvec.nr; i++, index++) {
1739 if (index < indices[i]) {
965c8e59 1740 if (whence == SEEK_HOLE) {
220f2ac9
HD
1741 done = true;
1742 break;
1743 }
1744 index = indices[i];
1745 }
1746 page = pvec.pages[i];
1747 if (page && !radix_tree_exceptional_entry(page)) {
1748 if (!PageUptodate(page))
1749 page = NULL;
1750 }
1751 if (index >= end ||
965c8e59
AM
1752 (page && whence == SEEK_DATA) ||
1753 (!page && whence == SEEK_HOLE)) {
220f2ac9
HD
1754 done = true;
1755 break;
1756 }
1757 }
1758 shmem_deswap_pagevec(&pvec);
1759 pagevec_release(&pvec);
1760 pvec.nr = PAGEVEC_SIZE;
1761 cond_resched();
1762 }
1763 return index;
1764}
1765
965c8e59 1766static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
220f2ac9
HD
1767{
1768 struct address_space *mapping = file->f_mapping;
1769 struct inode *inode = mapping->host;
1770 pgoff_t start, end;
1771 loff_t new_offset;
1772
965c8e59
AM
1773 if (whence != SEEK_DATA && whence != SEEK_HOLE)
1774 return generic_file_llseek_size(file, offset, whence,
220f2ac9
HD
1775 MAX_LFS_FILESIZE, i_size_read(inode));
1776 mutex_lock(&inode->i_mutex);
1777 /* We're holding i_mutex so we can access i_size directly */
1778
1779 if (offset < 0)
1780 offset = -EINVAL;
1781 else if (offset >= inode->i_size)
1782 offset = -ENXIO;
1783 else {
1784 start = offset >> PAGE_CACHE_SHIFT;
1785 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
965c8e59 1786 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
220f2ac9
HD
1787 new_offset <<= PAGE_CACHE_SHIFT;
1788 if (new_offset > offset) {
1789 if (new_offset < inode->i_size)
1790 offset = new_offset;
965c8e59 1791 else if (whence == SEEK_DATA)
220f2ac9
HD
1792 offset = -ENXIO;
1793 else
1794 offset = inode->i_size;
1795 }
1796 }
1797
387aae6f
HD
1798 if (offset >= 0)
1799 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
220f2ac9
HD
1800 mutex_unlock(&inode->i_mutex);
1801 return offset;
1802}
1803
83e4fa9c
HD
1804static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1805 loff_t len)
1806{
496ad9aa 1807 struct inode *inode = file_inode(file);
e2d12e22 1808 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1809 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1810 pgoff_t start, index, end;
1811 int error;
83e4fa9c
HD
1812
1813 mutex_lock(&inode->i_mutex);
1814
1815 if (mode & FALLOC_FL_PUNCH_HOLE) {
1816 struct address_space *mapping = file->f_mapping;
1817 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1818 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1819
1820 if ((u64)unmap_end > (u64)unmap_start)
1821 unmap_mapping_range(mapping, unmap_start,
1822 1 + unmap_end - unmap_start, 0);
1823 shmem_truncate_range(inode, offset, offset + len - 1);
1824 /* No need to unmap again: hole-punching leaves COWed pages */
1825 error = 0;
e2d12e22
HD
1826 goto out;
1827 }
1828
1829 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1830 error = inode_newsize_ok(inode, offset + len);
1831 if (error)
1832 goto out;
1833
1834 start = offset >> PAGE_CACHE_SHIFT;
1835 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1836 /* Try to avoid a swapstorm if len is impossible to satisfy */
1837 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1838 error = -ENOSPC;
1839 goto out;
83e4fa9c
HD
1840 }
1841
1aac1400
HD
1842 shmem_falloc.start = start;
1843 shmem_falloc.next = start;
1844 shmem_falloc.nr_falloced = 0;
1845 shmem_falloc.nr_unswapped = 0;
1846 spin_lock(&inode->i_lock);
1847 inode->i_private = &shmem_falloc;
1848 spin_unlock(&inode->i_lock);
1849
e2d12e22
HD
1850 for (index = start; index < end; index++) {
1851 struct page *page;
1852
1853 /*
1854 * Good, the fallocate(2) manpage permits EINTR: we may have
1855 * been interrupted because we are using up too much memory.
1856 */
1857 if (signal_pending(current))
1858 error = -EINTR;
1aac1400
HD
1859 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1860 error = -ENOMEM;
e2d12e22 1861 else
1635f6a7 1862 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1863 NULL);
1864 if (error) {
1635f6a7
HD
1865 /* Remove the !PageUptodate pages we added */
1866 shmem_undo_range(inode,
1867 (loff_t)start << PAGE_CACHE_SHIFT,
1868 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1869 goto undone;
e2d12e22
HD
1870 }
1871
1aac1400
HD
1872 /*
1873 * Inform shmem_writepage() how far we have reached.
1874 * No need for lock or barrier: we have the page lock.
1875 */
1876 shmem_falloc.next++;
1877 if (!PageUptodate(page))
1878 shmem_falloc.nr_falloced++;
1879
e2d12e22 1880 /*
1635f6a7
HD
1881 * If !PageUptodate, leave it that way so that freeable pages
1882 * can be recognized if we need to rollback on error later.
1883 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1884 * than free the pages we are allocating (and SGP_CACHE pages
1885 * might still be clean: we now need to mark those dirty too).
1886 */
1887 set_page_dirty(page);
1888 unlock_page(page);
1889 page_cache_release(page);
1890 cond_resched();
1891 }
1892
1893 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1894 i_size_write(inode, offset + len);
e2d12e22 1895 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1896undone:
1897 spin_lock(&inode->i_lock);
1898 inode->i_private = NULL;
1899 spin_unlock(&inode->i_lock);
e2d12e22 1900out:
83e4fa9c
HD
1901 mutex_unlock(&inode->i_mutex);
1902 return error;
1903}
1904
726c3342 1905static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1906{
726c3342 1907 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1908
1909 buf->f_type = TMPFS_MAGIC;
1910 buf->f_bsize = PAGE_CACHE_SIZE;
1911 buf->f_namelen = NAME_MAX;
0edd73b3 1912 if (sbinfo->max_blocks) {
1da177e4 1913 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1914 buf->f_bavail =
1915 buf->f_bfree = sbinfo->max_blocks -
1916 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1917 }
1918 if (sbinfo->max_inodes) {
1da177e4
LT
1919 buf->f_files = sbinfo->max_inodes;
1920 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1921 }
1922 /* else leave those fields 0 like simple_statfs */
1923 return 0;
1924}
1925
1926/*
1927 * File creation. Allocate an inode, and we're done..
1928 */
1929static int
1a67aafb 1930shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1931{
0b0a0806 1932 struct inode *inode;
1da177e4
LT
1933 int error = -ENOSPC;
1934
454abafe 1935 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1936 if (inode) {
feda821e
CH
1937 error = simple_acl_create(dir, inode);
1938 if (error)
1939 goto out_iput;
2a7dba39 1940 error = security_inode_init_security(inode, dir,
9d8f13ba 1941 &dentry->d_name,
6d9d88d0 1942 shmem_initxattrs, NULL);
feda821e
CH
1943 if (error && error != -EOPNOTSUPP)
1944 goto out_iput;
37ec43cd 1945
718deb6b 1946 error = 0;
1da177e4
LT
1947 dir->i_size += BOGO_DIRENT_SIZE;
1948 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1949 d_instantiate(dentry, inode);
1950 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1951 }
1952 return error;
feda821e
CH
1953out_iput:
1954 iput(inode);
1955 return error;
1da177e4
LT
1956}
1957
60545d0d
AV
1958static int
1959shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1960{
1961 struct inode *inode;
1962 int error = -ENOSPC;
1963
1964 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1965 if (inode) {
1966 error = security_inode_init_security(inode, dir,
1967 NULL,
1968 shmem_initxattrs, NULL);
feda821e
CH
1969 if (error && error != -EOPNOTSUPP)
1970 goto out_iput;
1971 error = simple_acl_create(dir, inode);
1972 if (error)
1973 goto out_iput;
60545d0d
AV
1974 d_tmpfile(dentry, inode);
1975 }
1976 return error;
feda821e
CH
1977out_iput:
1978 iput(inode);
1979 return error;
60545d0d
AV
1980}
1981
18bb1db3 1982static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1983{
1984 int error;
1985
1986 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1987 return error;
d8c76e6f 1988 inc_nlink(dir);
1da177e4
LT
1989 return 0;
1990}
1991
4acdaf27 1992static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 1993 bool excl)
1da177e4
LT
1994{
1995 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1996}
1997
1998/*
1999 * Link a file..
2000 */
2001static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2002{
2003 struct inode *inode = old_dentry->d_inode;
5b04c689 2004 int ret;
1da177e4
LT
2005
2006 /*
2007 * No ordinary (disk based) filesystem counts links as inodes;
2008 * but each new link needs a new dentry, pinning lowmem, and
2009 * tmpfs dentries cannot be pruned until they are unlinked.
2010 */
5b04c689
PE
2011 ret = shmem_reserve_inode(inode->i_sb);
2012 if (ret)
2013 goto out;
1da177e4
LT
2014
2015 dir->i_size += BOGO_DIRENT_SIZE;
2016 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 2017 inc_nlink(inode);
7de9c6ee 2018 ihold(inode); /* New dentry reference */
1da177e4
LT
2019 dget(dentry); /* Extra pinning count for the created dentry */
2020 d_instantiate(dentry, inode);
5b04c689
PE
2021out:
2022 return ret;
1da177e4
LT
2023}
2024
2025static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2026{
2027 struct inode *inode = dentry->d_inode;
2028
5b04c689
PE
2029 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2030 shmem_free_inode(inode->i_sb);
1da177e4
LT
2031
2032 dir->i_size -= BOGO_DIRENT_SIZE;
2033 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 2034 drop_nlink(inode);
1da177e4
LT
2035 dput(dentry); /* Undo the count from "create" - this does all the work */
2036 return 0;
2037}
2038
2039static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2040{
2041 if (!simple_empty(dentry))
2042 return -ENOTEMPTY;
2043
9a53c3a7
DH
2044 drop_nlink(dentry->d_inode);
2045 drop_nlink(dir);
1da177e4
LT
2046 return shmem_unlink(dir, dentry);
2047}
2048
2049/*
2050 * The VFS layer already does all the dentry stuff for rename,
2051 * we just have to decrement the usage count for the target if
2052 * it exists so that the VFS layer correctly free's it when it
2053 * gets overwritten.
2054 */
2055static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2056{
2057 struct inode *inode = old_dentry->d_inode;
2058 int they_are_dirs = S_ISDIR(inode->i_mode);
2059
2060 if (!simple_empty(new_dentry))
2061 return -ENOTEMPTY;
2062
2063 if (new_dentry->d_inode) {
2064 (void) shmem_unlink(new_dir, new_dentry);
2065 if (they_are_dirs)
9a53c3a7 2066 drop_nlink(old_dir);
1da177e4 2067 } else if (they_are_dirs) {
9a53c3a7 2068 drop_nlink(old_dir);
d8c76e6f 2069 inc_nlink(new_dir);
1da177e4
LT
2070 }
2071
2072 old_dir->i_size -= BOGO_DIRENT_SIZE;
2073 new_dir->i_size += BOGO_DIRENT_SIZE;
2074 old_dir->i_ctime = old_dir->i_mtime =
2075 new_dir->i_ctime = new_dir->i_mtime =
2076 inode->i_ctime = CURRENT_TIME;
2077 return 0;
2078}
2079
2080static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2081{
2082 int error;
2083 int len;
2084 struct inode *inode;
9276aad6 2085 struct page *page;
1da177e4
LT
2086 char *kaddr;
2087 struct shmem_inode_info *info;
2088
2089 len = strlen(symname) + 1;
2090 if (len > PAGE_CACHE_SIZE)
2091 return -ENAMETOOLONG;
2092
454abafe 2093 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
2094 if (!inode)
2095 return -ENOSPC;
2096
9d8f13ba 2097 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 2098 shmem_initxattrs, NULL);
570bc1c2
SS
2099 if (error) {
2100 if (error != -EOPNOTSUPP) {
2101 iput(inode);
2102 return error;
2103 }
2104 error = 0;
2105 }
2106
1da177e4
LT
2107 info = SHMEM_I(inode);
2108 inode->i_size = len-1;
69f07ec9
HD
2109 if (len <= SHORT_SYMLINK_LEN) {
2110 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2111 if (!info->symlink) {
2112 iput(inode);
2113 return -ENOMEM;
2114 }
2115 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
2116 } else {
2117 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2118 if (error) {
2119 iput(inode);
2120 return error;
2121 }
14fcc23f 2122 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2123 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2124 kaddr = kmap_atomic(page);
1da177e4 2125 memcpy(kaddr, symname, len);
9b04c5fe 2126 kunmap_atomic(kaddr);
ec9516fb 2127 SetPageUptodate(page);
1da177e4 2128 set_page_dirty(page);
6746aff7 2129 unlock_page(page);
1da177e4
LT
2130 page_cache_release(page);
2131 }
1da177e4
LT
2132 dir->i_size += BOGO_DIRENT_SIZE;
2133 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2134 d_instantiate(dentry, inode);
2135 dget(dentry);
2136 return 0;
2137}
2138
69f07ec9 2139static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2140{
69f07ec9 2141 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2142 return NULL;
1da177e4
LT
2143}
2144
cc314eef 2145static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2146{
2147 struct page *page = NULL;
41ffe5d5
HD
2148 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2149 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2150 if (page)
2151 unlock_page(page);
cc314eef 2152 return page;
1da177e4
LT
2153}
2154
cc314eef 2155static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2156{
2157 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2158 struct page *page = cookie;
1da177e4
LT
2159 kunmap(page);
2160 mark_page_accessed(page);
2161 page_cache_release(page);
1da177e4
LT
2162 }
2163}
2164
b09e0fa4 2165#ifdef CONFIG_TMPFS_XATTR
46711810 2166/*
b09e0fa4
EP
2167 * Superblocks without xattr inode operations may get some security.* xattr
2168 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2169 * like ACLs, we also need to implement the security.* handlers at
2170 * filesystem level, though.
2171 */
2172
6d9d88d0
JS
2173/*
2174 * Callback for security_inode_init_security() for acquiring xattrs.
2175 */
2176static int shmem_initxattrs(struct inode *inode,
2177 const struct xattr *xattr_array,
2178 void *fs_info)
2179{
2180 struct shmem_inode_info *info = SHMEM_I(inode);
2181 const struct xattr *xattr;
38f38657 2182 struct simple_xattr *new_xattr;
6d9d88d0
JS
2183 size_t len;
2184
2185 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2186 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2187 if (!new_xattr)
2188 return -ENOMEM;
2189
2190 len = strlen(xattr->name) + 1;
2191 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2192 GFP_KERNEL);
2193 if (!new_xattr->name) {
2194 kfree(new_xattr);
2195 return -ENOMEM;
2196 }
2197
2198 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2199 XATTR_SECURITY_PREFIX_LEN);
2200 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2201 xattr->name, len);
2202
38f38657 2203 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2204 }
2205
2206 return 0;
2207}
2208
bb435453 2209static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2210#ifdef CONFIG_TMPFS_POSIX_ACL
feda821e
CH
2211 &posix_acl_access_xattr_handler,
2212 &posix_acl_default_xattr_handler,
b09e0fa4 2213#endif
39f0247d
AG
2214 NULL
2215};
b09e0fa4
EP
2216
2217static int shmem_xattr_validate(const char *name)
2218{
2219 struct { const char *prefix; size_t len; } arr[] = {
2220 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2221 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2222 };
2223 int i;
2224
2225 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2226 size_t preflen = arr[i].len;
2227 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2228 if (!name[preflen])
2229 return -EINVAL;
2230 return 0;
2231 }
2232 }
2233 return -EOPNOTSUPP;
2234}
2235
2236static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2237 void *buffer, size_t size)
2238{
38f38657 2239 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2240 int err;
2241
2242 /*
2243 * If this is a request for a synthetic attribute in the system.*
2244 * namespace use the generic infrastructure to resolve a handler
2245 * for it via sb->s_xattr.
2246 */
2247 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2248 return generic_getxattr(dentry, name, buffer, size);
2249
2250 err = shmem_xattr_validate(name);
2251 if (err)
2252 return err;
2253
38f38657 2254 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2255}
2256
2257static int shmem_setxattr(struct dentry *dentry, const char *name,
2258 const void *value, size_t size, int flags)
2259{
38f38657 2260 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2261 int err;
2262
2263 /*
2264 * If this is a request for a synthetic attribute in the system.*
2265 * namespace use the generic infrastructure to resolve a handler
2266 * for it via sb->s_xattr.
2267 */
2268 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2269 return generic_setxattr(dentry, name, value, size, flags);
2270
2271 err = shmem_xattr_validate(name);
2272 if (err)
2273 return err;
2274
38f38657 2275 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2276}
2277
2278static int shmem_removexattr(struct dentry *dentry, const char *name)
2279{
38f38657 2280 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2281 int err;
2282
2283 /*
2284 * If this is a request for a synthetic attribute in the system.*
2285 * namespace use the generic infrastructure to resolve a handler
2286 * for it via sb->s_xattr.
2287 */
2288 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2289 return generic_removexattr(dentry, name);
2290
2291 err = shmem_xattr_validate(name);
2292 if (err)
2293 return err;
2294
38f38657 2295 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2296}
2297
2298static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2299{
38f38657
AR
2300 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2301 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2302}
2303#endif /* CONFIG_TMPFS_XATTR */
2304
69f07ec9 2305static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2306 .readlink = generic_readlink,
69f07ec9 2307 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2308#ifdef CONFIG_TMPFS_XATTR
2309 .setxattr = shmem_setxattr,
2310 .getxattr = shmem_getxattr,
2311 .listxattr = shmem_listxattr,
2312 .removexattr = shmem_removexattr,
2313#endif
2314};
2315
2316static const struct inode_operations shmem_symlink_inode_operations = {
2317 .readlink = generic_readlink,
2318 .follow_link = shmem_follow_link,
2319 .put_link = shmem_put_link,
2320#ifdef CONFIG_TMPFS_XATTR
2321 .setxattr = shmem_setxattr,
2322 .getxattr = shmem_getxattr,
2323 .listxattr = shmem_listxattr,
2324 .removexattr = shmem_removexattr,
39f0247d 2325#endif
b09e0fa4 2326};
39f0247d 2327
91828a40
DG
2328static struct dentry *shmem_get_parent(struct dentry *child)
2329{
2330 return ERR_PTR(-ESTALE);
2331}
2332
2333static int shmem_match(struct inode *ino, void *vfh)
2334{
2335 __u32 *fh = vfh;
2336 __u64 inum = fh[2];
2337 inum = (inum << 32) | fh[1];
2338 return ino->i_ino == inum && fh[0] == ino->i_generation;
2339}
2340
480b116c
CH
2341static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2342 struct fid *fid, int fh_len, int fh_type)
91828a40 2343{
91828a40 2344 struct inode *inode;
480b116c 2345 struct dentry *dentry = NULL;
35c2a7f4 2346 u64 inum;
480b116c
CH
2347
2348 if (fh_len < 3)
2349 return NULL;
91828a40 2350
35c2a7f4
HD
2351 inum = fid->raw[2];
2352 inum = (inum << 32) | fid->raw[1];
2353
480b116c
CH
2354 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2355 shmem_match, fid->raw);
91828a40 2356 if (inode) {
480b116c 2357 dentry = d_find_alias(inode);
91828a40
DG
2358 iput(inode);
2359 }
2360
480b116c 2361 return dentry;
91828a40
DG
2362}
2363
b0b0382b
AV
2364static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2365 struct inode *parent)
91828a40 2366{
5fe0c237
AK
2367 if (*len < 3) {
2368 *len = 3;
94e07a75 2369 return FILEID_INVALID;
5fe0c237 2370 }
91828a40 2371
1d3382cb 2372 if (inode_unhashed(inode)) {
91828a40
DG
2373 /* Unfortunately insert_inode_hash is not idempotent,
2374 * so as we hash inodes here rather than at creation
2375 * time, we need a lock to ensure we only try
2376 * to do it once
2377 */
2378 static DEFINE_SPINLOCK(lock);
2379 spin_lock(&lock);
1d3382cb 2380 if (inode_unhashed(inode))
91828a40
DG
2381 __insert_inode_hash(inode,
2382 inode->i_ino + inode->i_generation);
2383 spin_unlock(&lock);
2384 }
2385
2386 fh[0] = inode->i_generation;
2387 fh[1] = inode->i_ino;
2388 fh[2] = ((__u64)inode->i_ino) >> 32;
2389
2390 *len = 3;
2391 return 1;
2392}
2393
39655164 2394static const struct export_operations shmem_export_ops = {
91828a40 2395 .get_parent = shmem_get_parent,
91828a40 2396 .encode_fh = shmem_encode_fh,
480b116c 2397 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2398};
2399
680d794b
AM
2400static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2401 bool remount)
1da177e4
LT
2402{
2403 char *this_char, *value, *rest;
49cd0a5c 2404 struct mempolicy *mpol = NULL;
8751e039
EB
2405 uid_t uid;
2406 gid_t gid;
1da177e4 2407
b00dc3ad
HD
2408 while (options != NULL) {
2409 this_char = options;
2410 for (;;) {
2411 /*
2412 * NUL-terminate this option: unfortunately,
2413 * mount options form a comma-separated list,
2414 * but mpol's nodelist may also contain commas.
2415 */
2416 options = strchr(options, ',');
2417 if (options == NULL)
2418 break;
2419 options++;
2420 if (!isdigit(*options)) {
2421 options[-1] = '\0';
2422 break;
2423 }
2424 }
1da177e4
LT
2425 if (!*this_char)
2426 continue;
2427 if ((value = strchr(this_char,'=')) != NULL) {
2428 *value++ = 0;
2429 } else {
2430 printk(KERN_ERR
2431 "tmpfs: No value for mount option '%s'\n",
2432 this_char);
49cd0a5c 2433 goto error;
1da177e4
LT
2434 }
2435
2436 if (!strcmp(this_char,"size")) {
2437 unsigned long long size;
2438 size = memparse(value,&rest);
2439 if (*rest == '%') {
2440 size <<= PAGE_SHIFT;
2441 size *= totalram_pages;
2442 do_div(size, 100);
2443 rest++;
2444 }
2445 if (*rest)
2446 goto bad_val;
680d794b
AM
2447 sbinfo->max_blocks =
2448 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2449 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2450 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2451 if (*rest)
2452 goto bad_val;
2453 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2454 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2455 if (*rest)
2456 goto bad_val;
2457 } else if (!strcmp(this_char,"mode")) {
680d794b 2458 if (remount)
1da177e4 2459 continue;
680d794b 2460 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2461 if (*rest)
2462 goto bad_val;
2463 } else if (!strcmp(this_char,"uid")) {
680d794b 2464 if (remount)
1da177e4 2465 continue;
8751e039 2466 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2467 if (*rest)
2468 goto bad_val;
8751e039
EB
2469 sbinfo->uid = make_kuid(current_user_ns(), uid);
2470 if (!uid_valid(sbinfo->uid))
2471 goto bad_val;
1da177e4 2472 } else if (!strcmp(this_char,"gid")) {
680d794b 2473 if (remount)
1da177e4 2474 continue;
8751e039 2475 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2476 if (*rest)
2477 goto bad_val;
8751e039
EB
2478 sbinfo->gid = make_kgid(current_user_ns(), gid);
2479 if (!gid_valid(sbinfo->gid))
2480 goto bad_val;
7339ff83 2481 } else if (!strcmp(this_char,"mpol")) {
49cd0a5c
GT
2482 mpol_put(mpol);
2483 mpol = NULL;
2484 if (mpol_parse_str(value, &mpol))
7339ff83 2485 goto bad_val;
1da177e4
LT
2486 } else {
2487 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2488 this_char);
49cd0a5c 2489 goto error;
1da177e4
LT
2490 }
2491 }
49cd0a5c 2492 sbinfo->mpol = mpol;
1da177e4
LT
2493 return 0;
2494
2495bad_val:
2496 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2497 value, this_char);
49cd0a5c
GT
2498error:
2499 mpol_put(mpol);
1da177e4
LT
2500 return 1;
2501
2502}
2503
2504static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2505{
2506 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2507 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2508 unsigned long inodes;
2509 int error = -EINVAL;
2510
5f00110f 2511 config.mpol = NULL;
680d794b 2512 if (shmem_parse_options(data, &config, true))
0edd73b3 2513 return error;
1da177e4 2514
0edd73b3 2515 spin_lock(&sbinfo->stat_lock);
0edd73b3 2516 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2517 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2518 goto out;
680d794b 2519 if (config.max_inodes < inodes)
0edd73b3
HD
2520 goto out;
2521 /*
54af6042 2522 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2523 * but we must separately disallow unlimited->limited, because
2524 * in that case we have no record of how much is already in use.
2525 */
680d794b 2526 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2527 goto out;
680d794b 2528 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2529 goto out;
2530
2531 error = 0;
680d794b 2532 sbinfo->max_blocks = config.max_blocks;
680d794b
AM
2533 sbinfo->max_inodes = config.max_inodes;
2534 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b 2535
5f00110f
GT
2536 /*
2537 * Preserve previous mempolicy unless mpol remount option was specified.
2538 */
2539 if (config.mpol) {
2540 mpol_put(sbinfo->mpol);
2541 sbinfo->mpol = config.mpol; /* transfers initial ref */
2542 }
0edd73b3
HD
2543out:
2544 spin_unlock(&sbinfo->stat_lock);
2545 return error;
1da177e4 2546}
680d794b 2547
34c80b1d 2548static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2549{
34c80b1d 2550 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b
AM
2551
2552 if (sbinfo->max_blocks != shmem_default_max_blocks())
2553 seq_printf(seq, ",size=%luk",
2554 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2555 if (sbinfo->max_inodes != shmem_default_max_inodes())
2556 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2557 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2558 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2559 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2560 seq_printf(seq, ",uid=%u",
2561 from_kuid_munged(&init_user_ns, sbinfo->uid));
2562 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2563 seq_printf(seq, ",gid=%u",
2564 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2565 shmem_show_mpol(seq, sbinfo->mpol);
680d794b
AM
2566 return 0;
2567}
2568#endif /* CONFIG_TMPFS */
1da177e4
LT
2569
2570static void shmem_put_super(struct super_block *sb)
2571{
602586a8
HD
2572 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2573
2574 percpu_counter_destroy(&sbinfo->used_blocks);
49cd0a5c 2575 mpol_put(sbinfo->mpol);
602586a8 2576 kfree(sbinfo);
1da177e4
LT
2577 sb->s_fs_info = NULL;
2578}
2579
2b2af54a 2580int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2581{
2582 struct inode *inode;
0edd73b3 2583 struct shmem_sb_info *sbinfo;
680d794b
AM
2584 int err = -ENOMEM;
2585
2586 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2587 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b
AM
2588 L1_CACHE_BYTES), GFP_KERNEL);
2589 if (!sbinfo)
2590 return -ENOMEM;
2591
680d794b 2592 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2593 sbinfo->uid = current_fsuid();
2594 sbinfo->gid = current_fsgid();
680d794b 2595 sb->s_fs_info = sbinfo;
1da177e4 2596
0edd73b3 2597#ifdef CONFIG_TMPFS
1da177e4
LT
2598 /*
2599 * Per default we only allow half of the physical ram per
2600 * tmpfs instance, limiting inodes to one per page of lowmem;
2601 * but the internal instance is left unlimited.
2602 */
ca4e0519 2603 if (!(sb->s_flags & MS_KERNMOUNT)) {
680d794b
AM
2604 sbinfo->max_blocks = shmem_default_max_blocks();
2605 sbinfo->max_inodes = shmem_default_max_inodes();
2606 if (shmem_parse_options(data, sbinfo, false)) {
2607 err = -EINVAL;
2608 goto failed;
2609 }
ca4e0519
AV
2610 } else {
2611 sb->s_flags |= MS_NOUSER;
1da177e4 2612 }
91828a40 2613 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2614 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2615#else
2616 sb->s_flags |= MS_NOUSER;
2617#endif
2618
0edd73b3 2619 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2620 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2621 goto failed;
680d794b 2622 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2623
285b2c4f 2624 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2625 sb->s_blocksize = PAGE_CACHE_SIZE;
2626 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2627 sb->s_magic = TMPFS_MAGIC;
2628 sb->s_op = &shmem_ops;
cfd95a9c 2629 sb->s_time_gran = 1;
b09e0fa4 2630#ifdef CONFIG_TMPFS_XATTR
39f0247d 2631 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2632#endif
2633#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2634 sb->s_flags |= MS_POSIXACL;
2635#endif
0edd73b3 2636
454abafe 2637 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2638 if (!inode)
2639 goto failed;
680d794b
AM
2640 inode->i_uid = sbinfo->uid;
2641 inode->i_gid = sbinfo->gid;
318ceed0
AV
2642 sb->s_root = d_make_root(inode);
2643 if (!sb->s_root)
48fde701 2644 goto failed;
1da177e4
LT
2645 return 0;
2646
1da177e4
LT
2647failed:
2648 shmem_put_super(sb);
2649 return err;
2650}
2651
fcc234f8 2652static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2653
2654static struct inode *shmem_alloc_inode(struct super_block *sb)
2655{
41ffe5d5
HD
2656 struct shmem_inode_info *info;
2657 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2658 if (!info)
1da177e4 2659 return NULL;
41ffe5d5 2660 return &info->vfs_inode;
1da177e4
LT
2661}
2662
41ffe5d5 2663static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2664{
2665 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2666 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2667}
2668
1da177e4
LT
2669static void shmem_destroy_inode(struct inode *inode)
2670{
09208d15 2671 if (S_ISREG(inode->i_mode))
1da177e4 2672 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2673 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2674}
2675
41ffe5d5 2676static void shmem_init_inode(void *foo)
1da177e4 2677{
41ffe5d5
HD
2678 struct shmem_inode_info *info = foo;
2679 inode_init_once(&info->vfs_inode);
1da177e4
LT
2680}
2681
41ffe5d5 2682static int shmem_init_inodecache(void)
1da177e4
LT
2683{
2684 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2685 sizeof(struct shmem_inode_info),
41ffe5d5 2686 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2687 return 0;
2688}
2689
41ffe5d5 2690static void shmem_destroy_inodecache(void)
1da177e4 2691{
1a1d92c1 2692 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2693}
2694
f5e54d6e 2695static const struct address_space_operations shmem_aops = {
1da177e4 2696 .writepage = shmem_writepage,
76719325 2697 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2698#ifdef CONFIG_TMPFS
800d15a5
NP
2699 .write_begin = shmem_write_begin,
2700 .write_end = shmem_write_end,
1da177e4 2701#endif
304dbdb7 2702 .migratepage = migrate_page,
aa261f54 2703 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2704};
2705
15ad7cdc 2706static const struct file_operations shmem_file_operations = {
1da177e4
LT
2707 .mmap = shmem_mmap,
2708#ifdef CONFIG_TMPFS
220f2ac9 2709 .llseek = shmem_file_llseek,
bcd78e49 2710 .read = do_sync_read,
5402b976 2711 .write = do_sync_write,
bcd78e49 2712 .aio_read = shmem_file_aio_read,
5402b976 2713 .aio_write = generic_file_aio_write,
1b061d92 2714 .fsync = noop_fsync,
708e3508 2715 .splice_read = shmem_file_splice_read,
ae976416 2716 .splice_write = generic_file_splice_write,
83e4fa9c 2717 .fallocate = shmem_fallocate,
1da177e4
LT
2718#endif
2719};
2720
92e1d5be 2721static const struct inode_operations shmem_inode_operations = {
94c1e62d 2722 .setattr = shmem_setattr,
b09e0fa4
EP
2723#ifdef CONFIG_TMPFS_XATTR
2724 .setxattr = shmem_setxattr,
2725 .getxattr = shmem_getxattr,
2726 .listxattr = shmem_listxattr,
2727 .removexattr = shmem_removexattr,
feda821e 2728 .set_acl = simple_set_acl,
b09e0fa4 2729#endif
1da177e4
LT
2730};
2731
92e1d5be 2732static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2733#ifdef CONFIG_TMPFS
2734 .create = shmem_create,
2735 .lookup = simple_lookup,
2736 .link = shmem_link,
2737 .unlink = shmem_unlink,
2738 .symlink = shmem_symlink,
2739 .mkdir = shmem_mkdir,
2740 .rmdir = shmem_rmdir,
2741 .mknod = shmem_mknod,
2742 .rename = shmem_rename,
60545d0d 2743 .tmpfile = shmem_tmpfile,
1da177e4 2744#endif
b09e0fa4
EP
2745#ifdef CONFIG_TMPFS_XATTR
2746 .setxattr = shmem_setxattr,
2747 .getxattr = shmem_getxattr,
2748 .listxattr = shmem_listxattr,
2749 .removexattr = shmem_removexattr,
2750#endif
39f0247d 2751#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2752 .setattr = shmem_setattr,
feda821e 2753 .set_acl = simple_set_acl,
39f0247d
AG
2754#endif
2755};
2756
92e1d5be 2757static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2758#ifdef CONFIG_TMPFS_XATTR
2759 .setxattr = shmem_setxattr,
2760 .getxattr = shmem_getxattr,
2761 .listxattr = shmem_listxattr,
2762 .removexattr = shmem_removexattr,
2763#endif
39f0247d 2764#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2765 .setattr = shmem_setattr,
feda821e 2766 .set_acl = simple_set_acl,
39f0247d 2767#endif
1da177e4
LT
2768};
2769
759b9775 2770static const struct super_operations shmem_ops = {
1da177e4
LT
2771 .alloc_inode = shmem_alloc_inode,
2772 .destroy_inode = shmem_destroy_inode,
2773#ifdef CONFIG_TMPFS
2774 .statfs = shmem_statfs,
2775 .remount_fs = shmem_remount_fs,
680d794b 2776 .show_options = shmem_show_options,
1da177e4 2777#endif
1f895f75 2778 .evict_inode = shmem_evict_inode,
1da177e4
LT
2779 .drop_inode = generic_delete_inode,
2780 .put_super = shmem_put_super,
2781};
2782
f0f37e2f 2783static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2784 .fault = shmem_fault,
1da177e4
LT
2785#ifdef CONFIG_NUMA
2786 .set_policy = shmem_set_policy,
2787 .get_policy = shmem_get_policy,
2788#endif
0b173bc4 2789 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2790};
2791
3c26ff6e
AV
2792static struct dentry *shmem_mount(struct file_system_type *fs_type,
2793 int flags, const char *dev_name, void *data)
1da177e4 2794{
3c26ff6e 2795 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2796}
2797
41ffe5d5 2798static struct file_system_type shmem_fs_type = {
1da177e4
LT
2799 .owner = THIS_MODULE,
2800 .name = "tmpfs",
3c26ff6e 2801 .mount = shmem_mount,
1da177e4 2802 .kill_sb = kill_litter_super,
2b8576cb 2803 .fs_flags = FS_USERNS_MOUNT,
1da177e4 2804};
1da177e4 2805
41ffe5d5 2806int __init shmem_init(void)
1da177e4
LT
2807{
2808 int error;
2809
16203a7a
RL
2810 /* If rootfs called this, don't re-init */
2811 if (shmem_inode_cachep)
2812 return 0;
2813
e0bf68dd
PZ
2814 error = bdi_init(&shmem_backing_dev_info);
2815 if (error)
2816 goto out4;
2817
41ffe5d5 2818 error = shmem_init_inodecache();
1da177e4
LT
2819 if (error)
2820 goto out3;
2821
41ffe5d5 2822 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2823 if (error) {
2824 printk(KERN_ERR "Could not register tmpfs\n");
2825 goto out2;
2826 }
95dc112a 2827
ca4e0519 2828 shm_mnt = kern_mount(&shmem_fs_type);
1da177e4
LT
2829 if (IS_ERR(shm_mnt)) {
2830 error = PTR_ERR(shm_mnt);
2831 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2832 goto out1;
2833 }
2834 return 0;
2835
2836out1:
41ffe5d5 2837 unregister_filesystem(&shmem_fs_type);
1da177e4 2838out2:
41ffe5d5 2839 shmem_destroy_inodecache();
1da177e4 2840out3:
e0bf68dd
PZ
2841 bdi_destroy(&shmem_backing_dev_info);
2842out4:
1da177e4
LT
2843 shm_mnt = ERR_PTR(error);
2844 return error;
2845}
853ac43a
MM
2846
2847#else /* !CONFIG_SHMEM */
2848
2849/*
2850 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2851 *
2852 * This is intended for small system where the benefits of the full
2853 * shmem code (swap-backed and resource-limited) are outweighed by
2854 * their complexity. On systems without swap this code should be
2855 * effectively equivalent, but much lighter weight.
2856 */
2857
41ffe5d5 2858static struct file_system_type shmem_fs_type = {
853ac43a 2859 .name = "tmpfs",
3c26ff6e 2860 .mount = ramfs_mount,
853ac43a 2861 .kill_sb = kill_litter_super,
2b8576cb 2862 .fs_flags = FS_USERNS_MOUNT,
853ac43a
MM
2863};
2864
41ffe5d5 2865int __init shmem_init(void)
853ac43a 2866{
41ffe5d5 2867 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2868
41ffe5d5 2869 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2870 BUG_ON(IS_ERR(shm_mnt));
2871
2872 return 0;
2873}
2874
41ffe5d5 2875int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2876{
2877 return 0;
2878}
2879
3f96b79a
HD
2880int shmem_lock(struct file *file, int lock, struct user_struct *user)
2881{
2882 return 0;
2883}
2884
24513264
HD
2885void shmem_unlock_mapping(struct address_space *mapping)
2886{
2887}
2888
41ffe5d5 2889void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2890{
41ffe5d5 2891 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2892}
2893EXPORT_SYMBOL_GPL(shmem_truncate_range);
2894
0b0a0806
HD
2895#define shmem_vm_ops generic_file_vm_ops
2896#define shmem_file_operations ramfs_file_operations
454abafe 2897#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2898#define shmem_acct_size(flags, size) 0
2899#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2900
2901#endif /* CONFIG_SHMEM */
2902
2903/* common code */
1da177e4 2904
3451538a 2905static struct dentry_operations anon_ops = {
118b2302 2906 .d_dname = simple_dname
3451538a
AV
2907};
2908
c7277090
EP
2909static struct file *__shmem_file_setup(const char *name, loff_t size,
2910 unsigned long flags, unsigned int i_flags)
1da177e4 2911{
6b4d0b27 2912 struct file *res;
1da177e4 2913 struct inode *inode;
2c48b9c4 2914 struct path path;
3451538a 2915 struct super_block *sb;
1da177e4
LT
2916 struct qstr this;
2917
2918 if (IS_ERR(shm_mnt))
6b4d0b27 2919 return ERR_CAST(shm_mnt);
1da177e4 2920
285b2c4f 2921 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2922 return ERR_PTR(-EINVAL);
2923
2924 if (shmem_acct_size(flags, size))
2925 return ERR_PTR(-ENOMEM);
2926
6b4d0b27 2927 res = ERR_PTR(-ENOMEM);
1da177e4
LT
2928 this.name = name;
2929 this.len = strlen(name);
2930 this.hash = 0; /* will go */
3451538a
AV
2931 sb = shm_mnt->mnt_sb;
2932 path.dentry = d_alloc_pseudo(sb, &this);
2c48b9c4 2933 if (!path.dentry)
1da177e4 2934 goto put_memory;
3451538a 2935 d_set_d_op(path.dentry, &anon_ops);
2c48b9c4 2936 path.mnt = mntget(shm_mnt);
1da177e4 2937
6b4d0b27 2938 res = ERR_PTR(-ENOSPC);
3451538a 2939 inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2940 if (!inode)
4b42af81 2941 goto put_dentry;
1da177e4 2942
c7277090 2943 inode->i_flags |= i_flags;
2c48b9c4 2944 d_instantiate(path.dentry, inode);
1da177e4 2945 inode->i_size = size;
6d6b77f1 2946 clear_nlink(inode); /* It is unlinked */
26567cdb
AV
2947 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2948 if (IS_ERR(res))
4b42af81 2949 goto put_dentry;
4b42af81 2950
6b4d0b27 2951 res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81 2952 &shmem_file_operations);
6b4d0b27 2953 if (IS_ERR(res))
4b42af81
AV
2954 goto put_dentry;
2955
6b4d0b27 2956 return res;
1da177e4 2957
1da177e4 2958put_dentry:
2c48b9c4 2959 path_put(&path);
1da177e4
LT
2960put_memory:
2961 shmem_unacct_size(flags, size);
6b4d0b27 2962 return res;
1da177e4 2963}
c7277090
EP
2964
2965/**
2966 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2967 * kernel internal. There will be NO LSM permission checks against the
2968 * underlying inode. So users of this interface must do LSM checks at a
2969 * higher layer. The one user is the big_key implementation. LSM checks
2970 * are provided at the key level rather than the inode level.
2971 * @name: name for dentry (to be seen in /proc/<pid>/maps
2972 * @size: size to be set for the file
2973 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2974 */
2975struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2976{
2977 return __shmem_file_setup(name, size, flags, S_PRIVATE);
2978}
2979
2980/**
2981 * shmem_file_setup - get an unlinked file living in tmpfs
2982 * @name: name for dentry (to be seen in /proc/<pid>/maps
2983 * @size: size to be set for the file
2984 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2985 */
2986struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2987{
2988 return __shmem_file_setup(name, size, flags, 0);
2989}
395e0ddc 2990EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2991
46711810 2992/**
1da177e4 2993 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2994 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2995 */
2996int shmem_zero_setup(struct vm_area_struct *vma)
2997{
2998 struct file *file;
2999 loff_t size = vma->vm_end - vma->vm_start;
3000
3001 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
3002 if (IS_ERR(file))
3003 return PTR_ERR(file);
3004
3005 if (vma->vm_file)
3006 fput(vma->vm_file);
3007 vma->vm_file = file;
3008 vma->vm_ops = &shmem_vm_ops;
3009 return 0;
3010}
d9d90e5e
HD
3011
3012/**
3013 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
3014 * @mapping: the page's address_space
3015 * @index: the page index
3016 * @gfp: the page allocator flags to use if allocating
3017 *
3018 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
3019 * with any new page allocations done using the specified allocation flags.
3020 * But read_cache_page_gfp() uses the ->readpage() method: which does not
3021 * suit tmpfs, since it may have pages in swapcache, and needs to find those
3022 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3023 *
68da9f05
HD
3024 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3025 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
3026 */
3027struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3028 pgoff_t index, gfp_t gfp)
3029{
68da9f05
HD
3030#ifdef CONFIG_SHMEM
3031 struct inode *inode = mapping->host;
9276aad6 3032 struct page *page;
68da9f05
HD
3033 int error;
3034
3035 BUG_ON(mapping->a_ops != &shmem_aops);
3036 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3037 if (error)
3038 page = ERR_PTR(error);
3039 else
3040 unlock_page(page);
3041 return page;
3042#else
3043 /*
3044 * The tiny !SHMEM case uses ramfs without swap
3045 */
d9d90e5e 3046 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 3047#endif
d9d90e5e
HD
3048}
3049EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);