vfs: drop lock/unlock super
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / shmem.c
CommitLineData
1da177e4
LT
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
6922c0c7
HD
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
0edd73b3 11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
1da177e4
LT
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
853ac43a
MM
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
1da177e4
LT
21 * This file is released under the GPL.
22 */
23
853ac43a
MM
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
caefba17 28#include <linux/pagemap.h>
853ac43a
MM
29#include <linux/file.h>
30#include <linux/mm.h>
b95f1b31 31#include <linux/export.h>
853ac43a
MM
32#include <linux/swap.h>
33
34static struct vfsmount *shm_mnt;
35
36#ifdef CONFIG_SHMEM
1da177e4
LT
37/*
38 * This virtual memory filesystem is heavily based on the ramfs. It
39 * extends ramfs by the ability to use swap and honor resource limits
40 * which makes it a completely usable filesystem.
41 */
42
39f0247d 43#include <linux/xattr.h>
a5694255 44#include <linux/exportfs.h>
1c7c474c 45#include <linux/posix_acl.h>
39f0247d 46#include <linux/generic_acl.h>
1da177e4 47#include <linux/mman.h>
1da177e4
LT
48#include <linux/string.h>
49#include <linux/slab.h>
50#include <linux/backing-dev.h>
51#include <linux/shmem_fs.h>
1da177e4 52#include <linux/writeback.h>
1da177e4 53#include <linux/blkdev.h>
bda97eab 54#include <linux/pagevec.h>
41ffe5d5 55#include <linux/percpu_counter.h>
83e4fa9c 56#include <linux/falloc.h>
708e3508 57#include <linux/splice.h>
1da177e4
LT
58#include <linux/security.h>
59#include <linux/swapops.h>
60#include <linux/mempolicy.h>
61#include <linux/namei.h>
b00dc3ad 62#include <linux/ctype.h>
304dbdb7 63#include <linux/migrate.h>
c1f60a5a 64#include <linux/highmem.h>
680d794b 65#include <linux/seq_file.h>
92562927 66#include <linux/magic.h>
304dbdb7 67
1da177e4 68#include <asm/uaccess.h>
1da177e4
LT
69#include <asm/pgtable.h>
70
caefba17 71#define BLOCKS_PER_PAGE (PAGE_CACHE_SIZE/512)
1da177e4
LT
72#define VM_ACCT(size) (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
73
1da177e4
LT
74/* Pretend that each entry is of this size in directory's i_size */
75#define BOGO_DIRENT_SIZE 20
76
69f07ec9
HD
77/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
78#define SHORT_SYMLINK_LEN 128
79
1aac1400
HD
80/*
81 * shmem_fallocate and shmem_writepage communicate via inode->i_private
82 * (with i_mutex making sure that it has only one user at a time):
83 * we would prefer not to enlarge the shmem inode just for that.
84 */
85struct shmem_falloc {
86 pgoff_t start; /* start of range currently being fallocated */
87 pgoff_t next; /* the next page offset to be fallocated */
88 pgoff_t nr_falloced; /* how many new pages have been fallocated */
89 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
90};
91
285b2c4f 92/* Flag allocation requirements to shmem_getpage */
1da177e4 93enum sgp_type {
1da177e4
LT
94 SGP_READ, /* don't exceed i_size, don't allocate page */
95 SGP_CACHE, /* don't exceed i_size, may allocate page */
a0ee5ec5 96 SGP_DIRTY, /* like SGP_CACHE, but set new page dirty */
1635f6a7
HD
97 SGP_WRITE, /* may exceed i_size, may allocate !Uptodate page */
98 SGP_FALLOC, /* like SGP_WRITE, but make existing page Uptodate */
1da177e4
LT
99};
100
b76db735 101#ifdef CONFIG_TMPFS
680d794b 102static unsigned long shmem_default_max_blocks(void)
103{
104 return totalram_pages / 2;
105}
106
107static unsigned long shmem_default_max_inodes(void)
108{
109 return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
110}
b76db735 111#endif
680d794b 112
bde05d1c
HD
113static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
114static int shmem_replace_page(struct page **pagep, gfp_t gfp,
115 struct shmem_inode_info *info, pgoff_t index);
68da9f05
HD
116static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
117 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
118
119static inline int shmem_getpage(struct inode *inode, pgoff_t index,
120 struct page **pagep, enum sgp_type sgp, int *fault_type)
121{
122 return shmem_getpage_gfp(inode, index, pagep, sgp,
123 mapping_gfp_mask(inode->i_mapping), fault_type);
124}
1da177e4 125
1da177e4
LT
126static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
127{
128 return sb->s_fs_info;
129}
130
131/*
132 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
133 * for shared memory and for shared anonymous (/dev/zero) mappings
134 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
135 * consistent with the pre-accounting of private mappings ...
136 */
137static inline int shmem_acct_size(unsigned long flags, loff_t size)
138{
0b0a0806 139 return (flags & VM_NORESERVE) ?
191c5424 140 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
1da177e4
LT
141}
142
143static inline void shmem_unacct_size(unsigned long flags, loff_t size)
144{
0b0a0806 145 if (!(flags & VM_NORESERVE))
1da177e4
LT
146 vm_unacct_memory(VM_ACCT(size));
147}
148
149/*
150 * ... whereas tmpfs objects are accounted incrementally as
151 * pages are allocated, in order to allow huge sparse files.
152 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
153 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
154 */
155static inline int shmem_acct_block(unsigned long flags)
156{
0b0a0806 157 return (flags & VM_NORESERVE) ?
191c5424 158 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
1da177e4
LT
159}
160
161static inline void shmem_unacct_blocks(unsigned long flags, long pages)
162{
0b0a0806 163 if (flags & VM_NORESERVE)
1da177e4
LT
164 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
165}
166
759b9775 167static const struct super_operations shmem_ops;
f5e54d6e 168static const struct address_space_operations shmem_aops;
15ad7cdc 169static const struct file_operations shmem_file_operations;
92e1d5be
AV
170static const struct inode_operations shmem_inode_operations;
171static const struct inode_operations shmem_dir_inode_operations;
172static const struct inode_operations shmem_special_inode_operations;
f0f37e2f 173static const struct vm_operations_struct shmem_vm_ops;
1da177e4 174
6c231b7b 175static struct backing_dev_info shmem_backing_dev_info __read_mostly = {
1da177e4 176 .ra_pages = 0, /* No readahead */
4f98a2fe 177 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
1da177e4
LT
178};
179
180static LIST_HEAD(shmem_swaplist);
cb5f7b9a 181static DEFINE_MUTEX(shmem_swaplist_mutex);
1da177e4 182
5b04c689
PE
183static int shmem_reserve_inode(struct super_block *sb)
184{
185 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
186 if (sbinfo->max_inodes) {
187 spin_lock(&sbinfo->stat_lock);
188 if (!sbinfo->free_inodes) {
189 spin_unlock(&sbinfo->stat_lock);
190 return -ENOSPC;
191 }
192 sbinfo->free_inodes--;
193 spin_unlock(&sbinfo->stat_lock);
194 }
195 return 0;
196}
197
198static void shmem_free_inode(struct super_block *sb)
199{
200 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
201 if (sbinfo->max_inodes) {
202 spin_lock(&sbinfo->stat_lock);
203 sbinfo->free_inodes++;
204 spin_unlock(&sbinfo->stat_lock);
205 }
206}
207
46711810 208/**
41ffe5d5 209 * shmem_recalc_inode - recalculate the block usage of an inode
1da177e4
LT
210 * @inode: inode to recalc
211 *
212 * We have to calculate the free blocks since the mm can drop
213 * undirtied hole pages behind our back.
214 *
215 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
216 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
217 *
218 * It has to be called with the spinlock held.
219 */
220static void shmem_recalc_inode(struct inode *inode)
221{
222 struct shmem_inode_info *info = SHMEM_I(inode);
223 long freed;
224
225 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
226 if (freed > 0) {
54af6042
HD
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228 if (sbinfo->max_blocks)
229 percpu_counter_add(&sbinfo->used_blocks, -freed);
1da177e4 230 info->alloced -= freed;
54af6042 231 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
1da177e4 232 shmem_unacct_blocks(info->flags, freed);
1da177e4
LT
233 }
234}
235
7a5d0fbb
HD
236/*
237 * Replace item expected in radix tree by a new item, while holding tree lock.
238 */
239static int shmem_radix_tree_replace(struct address_space *mapping,
240 pgoff_t index, void *expected, void *replacement)
241{
242 void **pslot;
243 void *item = NULL;
244
245 VM_BUG_ON(!expected);
246 pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
247 if (pslot)
248 item = radix_tree_deref_slot_protected(pslot,
249 &mapping->tree_lock);
250 if (item != expected)
251 return -ENOENT;
252 if (replacement)
253 radix_tree_replace_slot(pslot, replacement);
254 else
255 radix_tree_delete(&mapping->page_tree, index);
256 return 0;
257}
258
d1899228
HD
259/*
260 * Sometimes, before we decide whether to proceed or to fail, we must check
261 * that an entry was not already brought back from swap by a racing thread.
262 *
263 * Checking page is not enough: by the time a SwapCache page is locked, it
264 * might be reused, and again be SwapCache, using the same swap as before.
265 */
266static bool shmem_confirm_swap(struct address_space *mapping,
267 pgoff_t index, swp_entry_t swap)
268{
269 void *item;
270
271 rcu_read_lock();
272 item = radix_tree_lookup(&mapping->page_tree, index);
273 rcu_read_unlock();
274 return item == swp_to_radix_entry(swap);
275}
276
46f65ec1
HD
277/*
278 * Like add_to_page_cache_locked, but error if expected item has gone.
279 */
280static int shmem_add_to_page_cache(struct page *page,
281 struct address_space *mapping,
282 pgoff_t index, gfp_t gfp, void *expected)
283{
b065b432 284 int error;
46f65ec1
HD
285
286 VM_BUG_ON(!PageLocked(page));
287 VM_BUG_ON(!PageSwapBacked(page));
288
b065b432
HD
289 page_cache_get(page);
290 page->mapping = mapping;
291 page->index = index;
292
293 spin_lock_irq(&mapping->tree_lock);
46f65ec1 294 if (!expected)
b065b432
HD
295 error = radix_tree_insert(&mapping->page_tree, index, page);
296 else
297 error = shmem_radix_tree_replace(mapping, index, expected,
298 page);
46f65ec1 299 if (!error) {
b065b432
HD
300 mapping->nrpages++;
301 __inc_zone_page_state(page, NR_FILE_PAGES);
302 __inc_zone_page_state(page, NR_SHMEM);
303 spin_unlock_irq(&mapping->tree_lock);
304 } else {
305 page->mapping = NULL;
306 spin_unlock_irq(&mapping->tree_lock);
307 page_cache_release(page);
46f65ec1 308 }
46f65ec1
HD
309 return error;
310}
311
6922c0c7
HD
312/*
313 * Like delete_from_page_cache, but substitutes swap for page.
314 */
315static void shmem_delete_from_page_cache(struct page *page, void *radswap)
316{
317 struct address_space *mapping = page->mapping;
318 int error;
319
320 spin_lock_irq(&mapping->tree_lock);
321 error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
322 page->mapping = NULL;
323 mapping->nrpages--;
324 __dec_zone_page_state(page, NR_FILE_PAGES);
325 __dec_zone_page_state(page, NR_SHMEM);
326 spin_unlock_irq(&mapping->tree_lock);
327 page_cache_release(page);
328 BUG_ON(error);
329}
330
7a5d0fbb
HD
331/*
332 * Like find_get_pages, but collecting swap entries as well as pages.
333 */
334static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
335 pgoff_t start, unsigned int nr_pages,
336 struct page **pages, pgoff_t *indices)
337{
338 unsigned int i;
339 unsigned int ret;
340 unsigned int nr_found;
341
342 rcu_read_lock();
343restart:
344 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
345 (void ***)pages, indices, start, nr_pages);
346 ret = 0;
347 for (i = 0; i < nr_found; i++) {
348 struct page *page;
349repeat:
350 page = radix_tree_deref_slot((void **)pages[i]);
351 if (unlikely(!page))
352 continue;
353 if (radix_tree_exception(page)) {
8079b1c8
HD
354 if (radix_tree_deref_retry(page))
355 goto restart;
356 /*
357 * Otherwise, we must be storing a swap entry
358 * here as an exceptional entry: so return it
359 * without attempting to raise page count.
360 */
361 goto export;
7a5d0fbb
HD
362 }
363 if (!page_cache_get_speculative(page))
364 goto repeat;
365
366 /* Has the page moved? */
367 if (unlikely(page != *((void **)pages[i]))) {
368 page_cache_release(page);
369 goto repeat;
370 }
371export:
372 indices[ret] = indices[i];
373 pages[ret] = page;
374 ret++;
375 }
376 if (unlikely(!ret && nr_found))
377 goto restart;
378 rcu_read_unlock();
379 return ret;
380}
381
382/*
383 * Remove swap entry from radix tree, free the swap and its page cache.
384 */
385static int shmem_free_swap(struct address_space *mapping,
386 pgoff_t index, void *radswap)
387{
388 int error;
389
390 spin_lock_irq(&mapping->tree_lock);
391 error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
392 spin_unlock_irq(&mapping->tree_lock);
393 if (!error)
394 free_swap_and_cache(radix_to_swp_entry(radswap));
395 return error;
396}
397
398/*
399 * Pagevec may contain swap entries, so shuffle up pages before releasing.
400 */
24513264 401static void shmem_deswap_pagevec(struct pagevec *pvec)
7a5d0fbb
HD
402{
403 int i, j;
404
405 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
406 struct page *page = pvec->pages[i];
407 if (!radix_tree_exceptional_entry(page))
408 pvec->pages[j++] = page;
409 }
410 pvec->nr = j;
24513264
HD
411}
412
413/*
414 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
415 */
416void shmem_unlock_mapping(struct address_space *mapping)
417{
418 struct pagevec pvec;
419 pgoff_t indices[PAGEVEC_SIZE];
420 pgoff_t index = 0;
421
422 pagevec_init(&pvec, 0);
423 /*
424 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
425 */
426 while (!mapping_unevictable(mapping)) {
427 /*
428 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
429 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
430 */
431 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
432 PAGEVEC_SIZE, pvec.pages, indices);
433 if (!pvec.nr)
434 break;
435 index = indices[pvec.nr - 1] + 1;
436 shmem_deswap_pagevec(&pvec);
437 check_move_unevictable_pages(pvec.pages, pvec.nr);
438 pagevec_release(&pvec);
439 cond_resched();
440 }
7a5d0fbb
HD
441}
442
443/*
444 * Remove range of pages and swap entries from radix tree, and free them.
1635f6a7 445 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
7a5d0fbb 446 */
1635f6a7
HD
447static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
448 bool unfalloc)
1da177e4 449{
285b2c4f 450 struct address_space *mapping = inode->i_mapping;
1da177e4 451 struct shmem_inode_info *info = SHMEM_I(inode);
285b2c4f 452 pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
83e4fa9c
HD
453 pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
454 unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
455 unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
bda97eab 456 struct pagevec pvec;
7a5d0fbb
HD
457 pgoff_t indices[PAGEVEC_SIZE];
458 long nr_swaps_freed = 0;
285b2c4f 459 pgoff_t index;
bda97eab
HD
460 int i;
461
83e4fa9c
HD
462 if (lend == -1)
463 end = -1; /* unsigned, so actually very big */
bda97eab
HD
464
465 pagevec_init(&pvec, 0);
466 index = start;
83e4fa9c 467 while (index < end) {
7a5d0fbb 468 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 469 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
470 pvec.pages, indices);
471 if (!pvec.nr)
472 break;
bda97eab
HD
473 mem_cgroup_uncharge_start();
474 for (i = 0; i < pagevec_count(&pvec); i++) {
475 struct page *page = pvec.pages[i];
476
7a5d0fbb 477 index = indices[i];
83e4fa9c 478 if (index >= end)
bda97eab
HD
479 break;
480
7a5d0fbb 481 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
482 if (unfalloc)
483 continue;
7a5d0fbb
HD
484 nr_swaps_freed += !shmem_free_swap(mapping,
485 index, page);
bda97eab 486 continue;
7a5d0fbb
HD
487 }
488
489 if (!trylock_page(page))
bda97eab 490 continue;
1635f6a7
HD
491 if (!unfalloc || !PageUptodate(page)) {
492 if (page->mapping == mapping) {
493 VM_BUG_ON(PageWriteback(page));
494 truncate_inode_page(mapping, page);
495 }
bda97eab 496 }
bda97eab
HD
497 unlock_page(page);
498 }
24513264
HD
499 shmem_deswap_pagevec(&pvec);
500 pagevec_release(&pvec);
bda97eab
HD
501 mem_cgroup_uncharge_end();
502 cond_resched();
503 index++;
504 }
1da177e4 505
83e4fa9c 506 if (partial_start) {
bda97eab
HD
507 struct page *page = NULL;
508 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
509 if (page) {
83e4fa9c
HD
510 unsigned int top = PAGE_CACHE_SIZE;
511 if (start > end) {
512 top = partial_end;
513 partial_end = 0;
514 }
515 zero_user_segment(page, partial_start, top);
516 set_page_dirty(page);
517 unlock_page(page);
518 page_cache_release(page);
519 }
520 }
521 if (partial_end) {
522 struct page *page = NULL;
523 shmem_getpage(inode, end, &page, SGP_READ, NULL);
524 if (page) {
525 zero_user_segment(page, 0, partial_end);
bda97eab
HD
526 set_page_dirty(page);
527 unlock_page(page);
528 page_cache_release(page);
529 }
530 }
83e4fa9c
HD
531 if (start >= end)
532 return;
bda97eab
HD
533
534 index = start;
535 for ( ; ; ) {
536 cond_resched();
7a5d0fbb 537 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
83e4fa9c 538 min(end - index, (pgoff_t)PAGEVEC_SIZE),
7a5d0fbb
HD
539 pvec.pages, indices);
540 if (!pvec.nr) {
1635f6a7 541 if (index == start || unfalloc)
bda97eab
HD
542 break;
543 index = start;
544 continue;
545 }
1635f6a7 546 if ((index == start || unfalloc) && indices[0] >= end) {
24513264
HD
547 shmem_deswap_pagevec(&pvec);
548 pagevec_release(&pvec);
bda97eab
HD
549 break;
550 }
551 mem_cgroup_uncharge_start();
552 for (i = 0; i < pagevec_count(&pvec); i++) {
553 struct page *page = pvec.pages[i];
554
7a5d0fbb 555 index = indices[i];
83e4fa9c 556 if (index >= end)
bda97eab
HD
557 break;
558
7a5d0fbb 559 if (radix_tree_exceptional_entry(page)) {
1635f6a7
HD
560 if (unfalloc)
561 continue;
7a5d0fbb
HD
562 nr_swaps_freed += !shmem_free_swap(mapping,
563 index, page);
564 continue;
565 }
566
bda97eab 567 lock_page(page);
1635f6a7
HD
568 if (!unfalloc || !PageUptodate(page)) {
569 if (page->mapping == mapping) {
570 VM_BUG_ON(PageWriteback(page));
571 truncate_inode_page(mapping, page);
572 }
7a5d0fbb 573 }
bda97eab
HD
574 unlock_page(page);
575 }
24513264
HD
576 shmem_deswap_pagevec(&pvec);
577 pagevec_release(&pvec);
bda97eab
HD
578 mem_cgroup_uncharge_end();
579 index++;
580 }
94c1e62d 581
1da177e4 582 spin_lock(&info->lock);
7a5d0fbb 583 info->swapped -= nr_swaps_freed;
1da177e4
LT
584 shmem_recalc_inode(inode);
585 spin_unlock(&info->lock);
1635f6a7 586}
1da177e4 587
1635f6a7
HD
588void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
589{
590 shmem_undo_range(inode, lstart, lend, false);
285b2c4f 591 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1da177e4 592}
94c1e62d 593EXPORT_SYMBOL_GPL(shmem_truncate_range);
1da177e4 594
94c1e62d 595static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1da177e4
LT
596{
597 struct inode *inode = dentry->d_inode;
1da177e4
LT
598 int error;
599
db78b877
CH
600 error = inode_change_ok(inode, attr);
601 if (error)
602 return error;
603
94c1e62d
HD
604 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
605 loff_t oldsize = inode->i_size;
606 loff_t newsize = attr->ia_size;
3889e6e7 607
94c1e62d
HD
608 if (newsize != oldsize) {
609 i_size_write(inode, newsize);
610 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
611 }
612 if (newsize < oldsize) {
613 loff_t holebegin = round_up(newsize, PAGE_SIZE);
614 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
615 shmem_truncate_range(inode, newsize, (loff_t)-1);
616 /* unmap again to remove racily COWed private pages */
617 unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
618 }
1da177e4
LT
619 }
620
db78b877 621 setattr_copy(inode, attr);
39f0247d 622#ifdef CONFIG_TMPFS_POSIX_ACL
db78b877 623 if (attr->ia_valid & ATTR_MODE)
1c7c474c 624 error = generic_acl_chmod(inode);
39f0247d 625#endif
1da177e4
LT
626 return error;
627}
628
1f895f75 629static void shmem_evict_inode(struct inode *inode)
1da177e4 630{
1da177e4
LT
631 struct shmem_inode_info *info = SHMEM_I(inode);
632
3889e6e7 633 if (inode->i_mapping->a_ops == &shmem_aops) {
1da177e4
LT
634 shmem_unacct_size(info->flags, inode->i_size);
635 inode->i_size = 0;
3889e6e7 636 shmem_truncate_range(inode, 0, (loff_t)-1);
1da177e4 637 if (!list_empty(&info->swaplist)) {
cb5f7b9a 638 mutex_lock(&shmem_swaplist_mutex);
1da177e4 639 list_del_init(&info->swaplist);
cb5f7b9a 640 mutex_unlock(&shmem_swaplist_mutex);
1da177e4 641 }
69f07ec9
HD
642 } else
643 kfree(info->symlink);
b09e0fa4 644
38f38657 645 simple_xattrs_free(&info->xattrs);
0edd73b3 646 BUG_ON(inode->i_blocks);
5b04c689 647 shmem_free_inode(inode->i_sb);
dbd5768f 648 clear_inode(inode);
1da177e4
LT
649}
650
46f65ec1
HD
651/*
652 * If swap found in inode, free it and move page from swapcache to filecache.
653 */
41ffe5d5 654static int shmem_unuse_inode(struct shmem_inode_info *info,
bde05d1c 655 swp_entry_t swap, struct page **pagep)
1da177e4 656{
285b2c4f 657 struct address_space *mapping = info->vfs_inode.i_mapping;
46f65ec1 658 void *radswap;
41ffe5d5 659 pgoff_t index;
bde05d1c
HD
660 gfp_t gfp;
661 int error = 0;
1da177e4 662
46f65ec1 663 radswap = swp_to_radix_entry(swap);
e504f3fd 664 index = radix_tree_locate_item(&mapping->page_tree, radswap);
46f65ec1 665 if (index == -1)
285b2c4f 666 return 0;
2e0e26c7 667
1b1b32f2
HD
668 /*
669 * Move _head_ to start search for next from here.
1f895f75 670 * But be careful: shmem_evict_inode checks list_empty without taking
1b1b32f2 671 * mutex, and there's an instant in list_move_tail when info->swaplist
285b2c4f 672 * would appear empty, if it were the only one on shmem_swaplist.
1b1b32f2
HD
673 */
674 if (shmem_swaplist.next != &info->swaplist)
675 list_move_tail(&shmem_swaplist, &info->swaplist);
2e0e26c7 676
bde05d1c
HD
677 gfp = mapping_gfp_mask(mapping);
678 if (shmem_should_replace_page(*pagep, gfp)) {
679 mutex_unlock(&shmem_swaplist_mutex);
680 error = shmem_replace_page(pagep, gfp, info, index);
681 mutex_lock(&shmem_swaplist_mutex);
682 /*
683 * We needed to drop mutex to make that restrictive page
0142ef6c
HD
684 * allocation, but the inode might have been freed while we
685 * dropped it: although a racing shmem_evict_inode() cannot
686 * complete without emptying the radix_tree, our page lock
687 * on this swapcache page is not enough to prevent that -
688 * free_swap_and_cache() of our swap entry will only
689 * trylock_page(), removing swap from radix_tree whatever.
690 *
691 * We must not proceed to shmem_add_to_page_cache() if the
692 * inode has been freed, but of course we cannot rely on
693 * inode or mapping or info to check that. However, we can
694 * safely check if our swap entry is still in use (and here
695 * it can't have got reused for another page): if it's still
696 * in use, then the inode cannot have been freed yet, and we
697 * can safely proceed (if it's no longer in use, that tells
698 * nothing about the inode, but we don't need to unuse swap).
bde05d1c
HD
699 */
700 if (!page_swapcount(*pagep))
701 error = -ENOENT;
702 }
703
d13d1443 704 /*
778dd893
HD
705 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
706 * but also to hold up shmem_evict_inode(): so inode cannot be freed
707 * beneath us (pagelock doesn't help until the page is in pagecache).
d13d1443 708 */
bde05d1c
HD
709 if (!error)
710 error = shmem_add_to_page_cache(*pagep, mapping, index,
46f65ec1 711 GFP_NOWAIT, radswap);
48f170fb 712 if (error != -ENOMEM) {
46f65ec1
HD
713 /*
714 * Truncation and eviction use free_swap_and_cache(), which
715 * only does trylock page: if we raced, best clean up here.
716 */
bde05d1c
HD
717 delete_from_swap_cache(*pagep);
718 set_page_dirty(*pagep);
46f65ec1
HD
719 if (!error) {
720 spin_lock(&info->lock);
721 info->swapped--;
722 spin_unlock(&info->lock);
723 swap_free(swap);
724 }
2e0e26c7 725 error = 1; /* not an error, but entry was found */
1da177e4 726 }
2e0e26c7 727 return error;
1da177e4
LT
728}
729
730/*
46f65ec1 731 * Search through swapped inodes to find and replace swap by page.
1da177e4 732 */
41ffe5d5 733int shmem_unuse(swp_entry_t swap, struct page *page)
1da177e4 734{
41ffe5d5 735 struct list_head *this, *next;
1da177e4
LT
736 struct shmem_inode_info *info;
737 int found = 0;
bde05d1c
HD
738 int error = 0;
739
740 /*
741 * There's a faint possibility that swap page was replaced before
0142ef6c 742 * caller locked it: caller will come back later with the right page.
bde05d1c 743 */
0142ef6c 744 if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
bde05d1c 745 goto out;
778dd893
HD
746
747 /*
748 * Charge page using GFP_KERNEL while we can wait, before taking
749 * the shmem_swaplist_mutex which might hold up shmem_writepage().
750 * Charged back to the user (not to caller) when swap account is used.
778dd893
HD
751 */
752 error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
753 if (error)
754 goto out;
46f65ec1 755 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1da177e4 756
cb5f7b9a 757 mutex_lock(&shmem_swaplist_mutex);
41ffe5d5
HD
758 list_for_each_safe(this, next, &shmem_swaplist) {
759 info = list_entry(this, struct shmem_inode_info, swaplist);
285b2c4f 760 if (info->swapped)
bde05d1c 761 found = shmem_unuse_inode(info, swap, &page);
6922c0c7
HD
762 else
763 list_del_init(&info->swaplist);
cb5f7b9a 764 cond_resched();
2e0e26c7 765 if (found)
778dd893 766 break;
1da177e4 767 }
cb5f7b9a 768 mutex_unlock(&shmem_swaplist_mutex);
778dd893 769
778dd893
HD
770 if (found < 0)
771 error = found;
772out:
aaa46865
HD
773 unlock_page(page);
774 page_cache_release(page);
778dd893 775 return error;
1da177e4
LT
776}
777
778/*
779 * Move the page from the page cache to the swap cache.
780 */
781static int shmem_writepage(struct page *page, struct writeback_control *wbc)
782{
783 struct shmem_inode_info *info;
1da177e4 784 struct address_space *mapping;
1da177e4 785 struct inode *inode;
6922c0c7
HD
786 swp_entry_t swap;
787 pgoff_t index;
1da177e4
LT
788
789 BUG_ON(!PageLocked(page));
1da177e4
LT
790 mapping = page->mapping;
791 index = page->index;
792 inode = mapping->host;
793 info = SHMEM_I(inode);
794 if (info->flags & VM_LOCKED)
795 goto redirty;
d9fe526a 796 if (!total_swap_pages)
1da177e4
LT
797 goto redirty;
798
d9fe526a
HD
799 /*
800 * shmem_backing_dev_info's capabilities prevent regular writeback or
801 * sync from ever calling shmem_writepage; but a stacking filesystem
48f170fb 802 * might use ->writepage of its underlying filesystem, in which case
d9fe526a 803 * tmpfs should write out to swap only in response to memory pressure,
48f170fb 804 * and not for the writeback threads or sync.
d9fe526a 805 */
48f170fb
HD
806 if (!wbc->for_reclaim) {
807 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
808 goto redirty;
809 }
1635f6a7
HD
810
811 /*
812 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
813 * value into swapfile.c, the only way we can correctly account for a
814 * fallocated page arriving here is now to initialize it and write it.
1aac1400
HD
815 *
816 * That's okay for a page already fallocated earlier, but if we have
817 * not yet completed the fallocation, then (a) we want to keep track
818 * of this page in case we have to undo it, and (b) it may not be a
819 * good idea to continue anyway, once we're pushing into swap. So
820 * reactivate the page, and let shmem_fallocate() quit when too many.
1635f6a7
HD
821 */
822 if (!PageUptodate(page)) {
1aac1400
HD
823 if (inode->i_private) {
824 struct shmem_falloc *shmem_falloc;
825 spin_lock(&inode->i_lock);
826 shmem_falloc = inode->i_private;
827 if (shmem_falloc &&
828 index >= shmem_falloc->start &&
829 index < shmem_falloc->next)
830 shmem_falloc->nr_unswapped++;
831 else
832 shmem_falloc = NULL;
833 spin_unlock(&inode->i_lock);
834 if (shmem_falloc)
835 goto redirty;
836 }
1635f6a7
HD
837 clear_highpage(page);
838 flush_dcache_page(page);
839 SetPageUptodate(page);
840 }
841
48f170fb
HD
842 swap = get_swap_page();
843 if (!swap.val)
844 goto redirty;
d9fe526a 845
b1dea800
HD
846 /*
847 * Add inode to shmem_unuse()'s list of swapped-out inodes,
6922c0c7
HD
848 * if it's not already there. Do it now before the page is
849 * moved to swap cache, when its pagelock no longer protects
b1dea800 850 * the inode from eviction. But don't unlock the mutex until
6922c0c7
HD
851 * we've incremented swapped, because shmem_unuse_inode() will
852 * prune a !swapped inode from the swaplist under this mutex.
b1dea800 853 */
48f170fb
HD
854 mutex_lock(&shmem_swaplist_mutex);
855 if (list_empty(&info->swaplist))
856 list_add_tail(&info->swaplist, &shmem_swaplist);
b1dea800 857
48f170fb 858 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
aaa46865 859 swap_shmem_alloc(swap);
6922c0c7
HD
860 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
861
862 spin_lock(&info->lock);
863 info->swapped++;
864 shmem_recalc_inode(inode);
826267cf 865 spin_unlock(&info->lock);
6922c0c7
HD
866
867 mutex_unlock(&shmem_swaplist_mutex);
d9fe526a 868 BUG_ON(page_mapped(page));
9fab5619 869 swap_writepage(page, wbc);
1da177e4
LT
870 return 0;
871 }
872
6922c0c7 873 mutex_unlock(&shmem_swaplist_mutex);
cb4b86ba 874 swapcache_free(swap, NULL);
1da177e4
LT
875redirty:
876 set_page_dirty(page);
d9fe526a
HD
877 if (wbc->for_reclaim)
878 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
879 unlock_page(page);
880 return 0;
1da177e4
LT
881}
882
883#ifdef CONFIG_NUMA
680d794b 884#ifdef CONFIG_TMPFS
71fe804b 885static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 886{
095f1fc4 887 char buffer[64];
680d794b 888
71fe804b 889 if (!mpol || mpol->mode == MPOL_DEFAULT)
095f1fc4 890 return; /* show nothing */
680d794b 891
71fe804b 892 mpol_to_str(buffer, sizeof(buffer), mpol, 1);
095f1fc4
LS
893
894 seq_printf(seq, ",mpol=%s", buffer);
680d794b 895}
71fe804b
LS
896
897static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
898{
899 struct mempolicy *mpol = NULL;
900 if (sbinfo->mpol) {
901 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
902 mpol = sbinfo->mpol;
903 mpol_get(mpol);
904 spin_unlock(&sbinfo->stat_lock);
905 }
906 return mpol;
907}
680d794b 908#endif /* CONFIG_TMPFS */
909
41ffe5d5
HD
910static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
911 struct shmem_inode_info *info, pgoff_t index)
1da177e4 912{
52cd3b07 913 struct mempolicy mpol, *spol;
1da177e4
LT
914 struct vm_area_struct pvma;
915
52cd3b07 916 spol = mpol_cond_copy(&mpol,
41ffe5d5 917 mpol_shared_policy_lookup(&info->policy, index));
52cd3b07 918
1da177e4 919 /* Create a pseudo vma that just contains the policy */
c4cc6d07 920 pvma.vm_start = 0;
09c231cb
NZ
921 /* Bias interleave by inode number to distribute better across nodes */
922 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 923 pvma.vm_ops = NULL;
52cd3b07 924 pvma.vm_policy = spol;
41ffe5d5 925 return swapin_readahead(swap, gfp, &pvma, 0);
1da177e4
LT
926}
927
02098fea 928static struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 929 struct shmem_inode_info *info, pgoff_t index)
1da177e4
LT
930{
931 struct vm_area_struct pvma;
1da177e4 932
c4cc6d07
HD
933 /* Create a pseudo vma that just contains the policy */
934 pvma.vm_start = 0;
09c231cb
NZ
935 /* Bias interleave by inode number to distribute better across nodes */
936 pvma.vm_pgoff = index + info->vfs_inode.i_ino;
c4cc6d07 937 pvma.vm_ops = NULL;
41ffe5d5 938 pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
52cd3b07
LS
939
940 /*
941 * alloc_page_vma() will drop the shared policy reference
942 */
943 return alloc_page_vma(gfp, &pvma, 0);
1da177e4 944}
680d794b 945#else /* !CONFIG_NUMA */
946#ifdef CONFIG_TMPFS
41ffe5d5 947static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
680d794b 948{
949}
950#endif /* CONFIG_TMPFS */
951
41ffe5d5
HD
952static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
953 struct shmem_inode_info *info, pgoff_t index)
1da177e4 954{
41ffe5d5 955 return swapin_readahead(swap, gfp, NULL, 0);
1da177e4
LT
956}
957
02098fea 958static inline struct page *shmem_alloc_page(gfp_t gfp,
41ffe5d5 959 struct shmem_inode_info *info, pgoff_t index)
1da177e4 960{
e84e2e13 961 return alloc_page(gfp);
1da177e4 962}
680d794b 963#endif /* CONFIG_NUMA */
1da177e4 964
71fe804b
LS
965#if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
966static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
967{
968 return NULL;
969}
970#endif
971
bde05d1c
HD
972/*
973 * When a page is moved from swapcache to shmem filecache (either by the
974 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
975 * shmem_unuse_inode()), it may have been read in earlier from swap, in
976 * ignorance of the mapping it belongs to. If that mapping has special
977 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
978 * we may need to copy to a suitable page before moving to filecache.
979 *
980 * In a future release, this may well be extended to respect cpuset and
981 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
982 * but for now it is a simple matter of zone.
983 */
984static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
985{
986 return page_zonenum(page) > gfp_zone(gfp);
987}
988
989static int shmem_replace_page(struct page **pagep, gfp_t gfp,
990 struct shmem_inode_info *info, pgoff_t index)
991{
992 struct page *oldpage, *newpage;
993 struct address_space *swap_mapping;
994 pgoff_t swap_index;
995 int error;
996
997 oldpage = *pagep;
998 swap_index = page_private(oldpage);
999 swap_mapping = page_mapping(oldpage);
1000
1001 /*
1002 * We have arrived here because our zones are constrained, so don't
1003 * limit chance of success by further cpuset and node constraints.
1004 */
1005 gfp &= ~GFP_CONSTRAINT_MASK;
1006 newpage = shmem_alloc_page(gfp, info, index);
1007 if (!newpage)
1008 return -ENOMEM;
bde05d1c 1009
bde05d1c
HD
1010 page_cache_get(newpage);
1011 copy_highpage(newpage, oldpage);
0142ef6c 1012 flush_dcache_page(newpage);
bde05d1c 1013
bde05d1c 1014 __set_page_locked(newpage);
bde05d1c 1015 SetPageUptodate(newpage);
bde05d1c 1016 SetPageSwapBacked(newpage);
bde05d1c 1017 set_page_private(newpage, swap_index);
bde05d1c
HD
1018 SetPageSwapCache(newpage);
1019
1020 /*
1021 * Our caller will very soon move newpage out of swapcache, but it's
1022 * a nice clean interface for us to replace oldpage by newpage there.
1023 */
1024 spin_lock_irq(&swap_mapping->tree_lock);
1025 error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1026 newpage);
0142ef6c
HD
1027 if (!error) {
1028 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1029 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1030 }
bde05d1c 1031 spin_unlock_irq(&swap_mapping->tree_lock);
bde05d1c 1032
0142ef6c
HD
1033 if (unlikely(error)) {
1034 /*
1035 * Is this possible? I think not, now that our callers check
1036 * both PageSwapCache and page_private after getting page lock;
1037 * but be defensive. Reverse old to newpage for clear and free.
1038 */
1039 oldpage = newpage;
1040 } else {
1041 mem_cgroup_replace_page_cache(oldpage, newpage);
1042 lru_cache_add_anon(newpage);
1043 *pagep = newpage;
1044 }
bde05d1c
HD
1045
1046 ClearPageSwapCache(oldpage);
1047 set_page_private(oldpage, 0);
1048
1049 unlock_page(oldpage);
1050 page_cache_release(oldpage);
1051 page_cache_release(oldpage);
0142ef6c 1052 return error;
bde05d1c
HD
1053}
1054
1da177e4 1055/*
68da9f05 1056 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1da177e4
LT
1057 *
1058 * If we allocate a new one we do not mark it dirty. That's up to the
1059 * vm. If we swap it in we mark it dirty since we also free the swap
1060 * entry since a page cannot live in both the swap and page cache
1061 */
41ffe5d5 1062static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
68da9f05 1063 struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1da177e4
LT
1064{
1065 struct address_space *mapping = inode->i_mapping;
54af6042 1066 struct shmem_inode_info *info;
1da177e4 1067 struct shmem_sb_info *sbinfo;
27ab7006 1068 struct page *page;
1da177e4
LT
1069 swp_entry_t swap;
1070 int error;
54af6042 1071 int once = 0;
1635f6a7 1072 int alloced = 0;
1da177e4 1073
41ffe5d5 1074 if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1da177e4 1075 return -EFBIG;
1da177e4 1076repeat:
54af6042 1077 swap.val = 0;
41ffe5d5 1078 page = find_lock_page(mapping, index);
54af6042
HD
1079 if (radix_tree_exceptional_entry(page)) {
1080 swap = radix_to_swp_entry(page);
1081 page = NULL;
1082 }
1083
1635f6a7 1084 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1085 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1086 error = -EINVAL;
1087 goto failed;
1088 }
1089
1635f6a7
HD
1090 /* fallocated page? */
1091 if (page && !PageUptodate(page)) {
1092 if (sgp != SGP_READ)
1093 goto clear;
1094 unlock_page(page);
1095 page_cache_release(page);
1096 page = NULL;
1097 }
54af6042 1098 if (page || (sgp == SGP_READ && !swap.val)) {
54af6042
HD
1099 *pagep = page;
1100 return 0;
27ab7006
HD
1101 }
1102
1103 /*
54af6042
HD
1104 * Fast cache lookup did not find it:
1105 * bring it back from swap or allocate.
27ab7006 1106 */
54af6042
HD
1107 info = SHMEM_I(inode);
1108 sbinfo = SHMEM_SB(inode->i_sb);
1da177e4 1109
1da177e4
LT
1110 if (swap.val) {
1111 /* Look it up and read it in.. */
27ab7006
HD
1112 page = lookup_swap_cache(swap);
1113 if (!page) {
1da177e4 1114 /* here we actually do the io */
68da9f05
HD
1115 if (fault_type)
1116 *fault_type |= VM_FAULT_MAJOR;
41ffe5d5 1117 page = shmem_swapin(swap, gfp, info, index);
27ab7006 1118 if (!page) {
54af6042
HD
1119 error = -ENOMEM;
1120 goto failed;
1da177e4 1121 }
1da177e4
LT
1122 }
1123
1124 /* We have to do this with page locked to prevent races */
54af6042 1125 lock_page(page);
0142ef6c 1126 if (!PageSwapCache(page) || page_private(page) != swap.val ||
d1899228 1127 !shmem_confirm_swap(mapping, index, swap)) {
bde05d1c 1128 error = -EEXIST; /* try again */
d1899228 1129 goto unlock;
bde05d1c 1130 }
27ab7006 1131 if (!PageUptodate(page)) {
1da177e4 1132 error = -EIO;
54af6042 1133 goto failed;
1da177e4 1134 }
54af6042
HD
1135 wait_on_page_writeback(page);
1136
bde05d1c
HD
1137 if (shmem_should_replace_page(page, gfp)) {
1138 error = shmem_replace_page(&page, gfp, info, index);
1139 if (error)
1140 goto failed;
1da177e4 1141 }
27ab7006 1142
aa3b1895
HD
1143 error = mem_cgroup_cache_charge(page, current->mm,
1144 gfp & GFP_RECLAIM_MASK);
d1899228 1145 if (!error) {
aa3b1895
HD
1146 error = shmem_add_to_page_cache(page, mapping, index,
1147 gfp, swp_to_radix_entry(swap));
d1899228
HD
1148 /* We already confirmed swap, and make no allocation */
1149 VM_BUG_ON(error);
1150 }
54af6042
HD
1151 if (error)
1152 goto failed;
1153
1154 spin_lock(&info->lock);
285b2c4f 1155 info->swapped--;
54af6042 1156 shmem_recalc_inode(inode);
27ab7006 1157 spin_unlock(&info->lock);
54af6042
HD
1158
1159 delete_from_swap_cache(page);
27ab7006
HD
1160 set_page_dirty(page);
1161 swap_free(swap);
1162
54af6042
HD
1163 } else {
1164 if (shmem_acct_block(info->flags)) {
1165 error = -ENOSPC;
1166 goto failed;
1da177e4 1167 }
0edd73b3 1168 if (sbinfo->max_blocks) {
fc5da22a 1169 if (percpu_counter_compare(&sbinfo->used_blocks,
54af6042
HD
1170 sbinfo->max_blocks) >= 0) {
1171 error = -ENOSPC;
1172 goto unacct;
1173 }
7e496299 1174 percpu_counter_inc(&sbinfo->used_blocks);
54af6042 1175 }
1da177e4 1176
54af6042
HD
1177 page = shmem_alloc_page(gfp, info, index);
1178 if (!page) {
1179 error = -ENOMEM;
1180 goto decused;
1da177e4
LT
1181 }
1182
54af6042
HD
1183 SetPageSwapBacked(page);
1184 __set_page_locked(page);
aa3b1895
HD
1185 error = mem_cgroup_cache_charge(page, current->mm,
1186 gfp & GFP_RECLAIM_MASK);
54af6042
HD
1187 if (error)
1188 goto decused;
b065b432
HD
1189 error = radix_tree_preload(gfp & GFP_RECLAIM_MASK);
1190 if (!error) {
1191 error = shmem_add_to_page_cache(page, mapping, index,
1192 gfp, NULL);
1193 radix_tree_preload_end();
1194 }
1195 if (error) {
1196 mem_cgroup_uncharge_cache_page(page);
1197 goto decused;
1198 }
54af6042
HD
1199 lru_cache_add_anon(page);
1200
1201 spin_lock(&info->lock);
1da177e4 1202 info->alloced++;
54af6042
HD
1203 inode->i_blocks += BLOCKS_PER_PAGE;
1204 shmem_recalc_inode(inode);
1da177e4 1205 spin_unlock(&info->lock);
1635f6a7 1206 alloced = true;
54af6042 1207
ec9516fb 1208 /*
1635f6a7
HD
1209 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1210 */
1211 if (sgp == SGP_FALLOC)
1212 sgp = SGP_WRITE;
1213clear:
1214 /*
1215 * Let SGP_WRITE caller clear ends if write does not fill page;
1216 * but SGP_FALLOC on a page fallocated earlier must initialize
1217 * it now, lest undo on failure cancel our earlier guarantee.
ec9516fb
HD
1218 */
1219 if (sgp != SGP_WRITE) {
1220 clear_highpage(page);
1221 flush_dcache_page(page);
1222 SetPageUptodate(page);
1223 }
a0ee5ec5 1224 if (sgp == SGP_DIRTY)
27ab7006 1225 set_page_dirty(page);
1da177e4 1226 }
bde05d1c 1227
54af6042 1228 /* Perhaps the file has been truncated since we checked */
1635f6a7 1229 if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
54af6042
HD
1230 ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1231 error = -EINVAL;
1635f6a7
HD
1232 if (alloced)
1233 goto trunc;
1234 else
1235 goto failed;
e83c32e8 1236 }
54af6042
HD
1237 *pagep = page;
1238 return 0;
1da177e4 1239
59a16ead 1240 /*
54af6042 1241 * Error recovery.
59a16ead 1242 */
54af6042 1243trunc:
1635f6a7 1244 info = SHMEM_I(inode);
54af6042
HD
1245 ClearPageDirty(page);
1246 delete_from_page_cache(page);
1247 spin_lock(&info->lock);
1248 info->alloced--;
1249 inode->i_blocks -= BLOCKS_PER_PAGE;
59a16ead 1250 spin_unlock(&info->lock);
54af6042 1251decused:
1635f6a7 1252 sbinfo = SHMEM_SB(inode->i_sb);
54af6042
HD
1253 if (sbinfo->max_blocks)
1254 percpu_counter_add(&sbinfo->used_blocks, -1);
1255unacct:
1256 shmem_unacct_blocks(info->flags, 1);
1257failed:
d1899228
HD
1258 if (swap.val && error != -EINVAL &&
1259 !shmem_confirm_swap(mapping, index, swap))
1260 error = -EEXIST;
1261unlock:
27ab7006 1262 if (page) {
54af6042 1263 unlock_page(page);
27ab7006 1264 page_cache_release(page);
54af6042
HD
1265 }
1266 if (error == -ENOSPC && !once++) {
1267 info = SHMEM_I(inode);
1268 spin_lock(&info->lock);
1269 shmem_recalc_inode(inode);
1270 spin_unlock(&info->lock);
27ab7006 1271 goto repeat;
ff36b801 1272 }
d1899228 1273 if (error == -EEXIST) /* from above or from radix_tree_insert */
54af6042
HD
1274 goto repeat;
1275 return error;
1da177e4
LT
1276}
1277
d0217ac0 1278static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4 1279{
d3ac7f89 1280 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1da177e4 1281 int error;
68da9f05 1282 int ret = VM_FAULT_LOCKED;
1da177e4 1283
27d54b39 1284 error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
d0217ac0
NP
1285 if (error)
1286 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
68da9f05 1287
456f998e
YH
1288 if (ret & VM_FAULT_MAJOR) {
1289 count_vm_event(PGMAJFAULT);
1290 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1291 }
68da9f05 1292 return ret;
1da177e4
LT
1293}
1294
1da177e4 1295#ifdef CONFIG_NUMA
41ffe5d5 1296static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1da177e4 1297{
41ffe5d5
HD
1298 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1299 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1da177e4
LT
1300}
1301
d8dc74f2
AB
1302static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1303 unsigned long addr)
1da177e4 1304{
41ffe5d5
HD
1305 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1306 pgoff_t index;
1da177e4 1307
41ffe5d5
HD
1308 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1309 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1da177e4
LT
1310}
1311#endif
1312
1313int shmem_lock(struct file *file, int lock, struct user_struct *user)
1314{
d3ac7f89 1315 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1316 struct shmem_inode_info *info = SHMEM_I(inode);
1317 int retval = -ENOMEM;
1318
1319 spin_lock(&info->lock);
1320 if (lock && !(info->flags & VM_LOCKED)) {
1321 if (!user_shm_lock(inode->i_size, user))
1322 goto out_nomem;
1323 info->flags |= VM_LOCKED;
89e004ea 1324 mapping_set_unevictable(file->f_mapping);
1da177e4
LT
1325 }
1326 if (!lock && (info->flags & VM_LOCKED) && user) {
1327 user_shm_unlock(inode->i_size, user);
1328 info->flags &= ~VM_LOCKED;
89e004ea 1329 mapping_clear_unevictable(file->f_mapping);
1da177e4
LT
1330 }
1331 retval = 0;
89e004ea 1332
1da177e4
LT
1333out_nomem:
1334 spin_unlock(&info->lock);
1335 return retval;
1336}
1337
9b83a6a8 1338static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1da177e4
LT
1339{
1340 file_accessed(file);
1341 vma->vm_ops = &shmem_vm_ops;
1342 return 0;
1343}
1344
454abafe 1345static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
09208d15 1346 umode_t mode, dev_t dev, unsigned long flags)
1da177e4
LT
1347{
1348 struct inode *inode;
1349 struct shmem_inode_info *info;
1350 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1351
5b04c689
PE
1352 if (shmem_reserve_inode(sb))
1353 return NULL;
1da177e4
LT
1354
1355 inode = new_inode(sb);
1356 if (inode) {
85fe4025 1357 inode->i_ino = get_next_ino();
454abafe 1358 inode_init_owner(inode, dir, mode);
1da177e4 1359 inode->i_blocks = 0;
1da177e4
LT
1360 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1361 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
91828a40 1362 inode->i_generation = get_seconds();
1da177e4
LT
1363 info = SHMEM_I(inode);
1364 memset(info, 0, (char *)inode - (char *)info);
1365 spin_lock_init(&info->lock);
0b0a0806 1366 info->flags = flags & VM_NORESERVE;
1da177e4 1367 INIT_LIST_HEAD(&info->swaplist);
38f38657 1368 simple_xattrs_init(&info->xattrs);
72c04902 1369 cache_no_acl(inode);
1da177e4
LT
1370
1371 switch (mode & S_IFMT) {
1372 default:
39f0247d 1373 inode->i_op = &shmem_special_inode_operations;
1da177e4
LT
1374 init_special_inode(inode, mode, dev);
1375 break;
1376 case S_IFREG:
14fcc23f 1377 inode->i_mapping->a_ops = &shmem_aops;
1da177e4
LT
1378 inode->i_op = &shmem_inode_operations;
1379 inode->i_fop = &shmem_file_operations;
71fe804b
LS
1380 mpol_shared_policy_init(&info->policy,
1381 shmem_get_sbmpol(sbinfo));
1da177e4
LT
1382 break;
1383 case S_IFDIR:
d8c76e6f 1384 inc_nlink(inode);
1da177e4
LT
1385 /* Some things misbehave if size == 0 on a directory */
1386 inode->i_size = 2 * BOGO_DIRENT_SIZE;
1387 inode->i_op = &shmem_dir_inode_operations;
1388 inode->i_fop = &simple_dir_operations;
1389 break;
1390 case S_IFLNK:
1391 /*
1392 * Must not load anything in the rbtree,
1393 * mpol_free_shared_policy will not be called.
1394 */
71fe804b 1395 mpol_shared_policy_init(&info->policy, NULL);
1da177e4
LT
1396 break;
1397 }
5b04c689
PE
1398 } else
1399 shmem_free_inode(sb);
1da177e4
LT
1400 return inode;
1401}
1402
1403#ifdef CONFIG_TMPFS
92e1d5be 1404static const struct inode_operations shmem_symlink_inode_operations;
69f07ec9 1405static const struct inode_operations shmem_short_symlink_operations;
1da177e4 1406
6d9d88d0
JS
1407#ifdef CONFIG_TMPFS_XATTR
1408static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1409#else
1410#define shmem_initxattrs NULL
1411#endif
1412
1da177e4 1413static int
800d15a5
NP
1414shmem_write_begin(struct file *file, struct address_space *mapping,
1415 loff_t pos, unsigned len, unsigned flags,
1416 struct page **pagep, void **fsdata)
1da177e4 1417{
800d15a5
NP
1418 struct inode *inode = mapping->host;
1419 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
800d15a5
NP
1420 return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1421}
1422
1423static int
1424shmem_write_end(struct file *file, struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
1427{
1428 struct inode *inode = mapping->host;
1429
d3602444
HD
1430 if (pos + copied > inode->i_size)
1431 i_size_write(inode, pos + copied);
1432
ec9516fb
HD
1433 if (!PageUptodate(page)) {
1434 if (copied < PAGE_CACHE_SIZE) {
1435 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1436 zero_user_segments(page, 0, from,
1437 from + copied, PAGE_CACHE_SIZE);
1438 }
1439 SetPageUptodate(page);
1440 }
800d15a5 1441 set_page_dirty(page);
6746aff7 1442 unlock_page(page);
800d15a5
NP
1443 page_cache_release(page);
1444
800d15a5 1445 return copied;
1da177e4
LT
1446}
1447
1da177e4
LT
1448static void do_shmem_file_read(struct file *filp, loff_t *ppos, read_descriptor_t *desc, read_actor_t actor)
1449{
d3ac7f89 1450 struct inode *inode = filp->f_path.dentry->d_inode;
1da177e4 1451 struct address_space *mapping = inode->i_mapping;
41ffe5d5
HD
1452 pgoff_t index;
1453 unsigned long offset;
a0ee5ec5
HD
1454 enum sgp_type sgp = SGP_READ;
1455
1456 /*
1457 * Might this read be for a stacking filesystem? Then when reading
1458 * holes of a sparse file, we actually need to allocate those pages,
1459 * and even mark them dirty, so it cannot exceed the max_blocks limit.
1460 */
1461 if (segment_eq(get_fs(), KERNEL_DS))
1462 sgp = SGP_DIRTY;
1da177e4
LT
1463
1464 index = *ppos >> PAGE_CACHE_SHIFT;
1465 offset = *ppos & ~PAGE_CACHE_MASK;
1466
1467 for (;;) {
1468 struct page *page = NULL;
41ffe5d5
HD
1469 pgoff_t end_index;
1470 unsigned long nr, ret;
1da177e4
LT
1471 loff_t i_size = i_size_read(inode);
1472
1473 end_index = i_size >> PAGE_CACHE_SHIFT;
1474 if (index > end_index)
1475 break;
1476 if (index == end_index) {
1477 nr = i_size & ~PAGE_CACHE_MASK;
1478 if (nr <= offset)
1479 break;
1480 }
1481
a0ee5ec5 1482 desc->error = shmem_getpage(inode, index, &page, sgp, NULL);
1da177e4
LT
1483 if (desc->error) {
1484 if (desc->error == -EINVAL)
1485 desc->error = 0;
1486 break;
1487 }
d3602444
HD
1488 if (page)
1489 unlock_page(page);
1da177e4
LT
1490
1491 /*
1492 * We must evaluate after, since reads (unlike writes)
1b1dcc1b 1493 * are called without i_mutex protection against truncate
1da177e4
LT
1494 */
1495 nr = PAGE_CACHE_SIZE;
1496 i_size = i_size_read(inode);
1497 end_index = i_size >> PAGE_CACHE_SHIFT;
1498 if (index == end_index) {
1499 nr = i_size & ~PAGE_CACHE_MASK;
1500 if (nr <= offset) {
1501 if (page)
1502 page_cache_release(page);
1503 break;
1504 }
1505 }
1506 nr -= offset;
1507
1508 if (page) {
1509 /*
1510 * If users can be writing to this page using arbitrary
1511 * virtual addresses, take care about potential aliasing
1512 * before reading the page on the kernel side.
1513 */
1514 if (mapping_writably_mapped(mapping))
1515 flush_dcache_page(page);
1516 /*
1517 * Mark the page accessed if we read the beginning.
1518 */
1519 if (!offset)
1520 mark_page_accessed(page);
b5810039 1521 } else {
1da177e4 1522 page = ZERO_PAGE(0);
b5810039
NP
1523 page_cache_get(page);
1524 }
1da177e4
LT
1525
1526 /*
1527 * Ok, we have the page, and it's up-to-date, so
1528 * now we can copy it to user space...
1529 *
1530 * The actor routine returns how many bytes were actually used..
1531 * NOTE! This may not be the same as how much of a user buffer
1532 * we filled up (we may be padding etc), so we can only update
1533 * "pos" here (the actor routine has to update the user buffer
1534 * pointers and the remaining count).
1535 */
1536 ret = actor(desc, page, offset, nr);
1537 offset += ret;
1538 index += offset >> PAGE_CACHE_SHIFT;
1539 offset &= ~PAGE_CACHE_MASK;
1540
1541 page_cache_release(page);
1542 if (ret != nr || !desc->count)
1543 break;
1544
1545 cond_resched();
1546 }
1547
1548 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1549 file_accessed(filp);
1550}
1551
bcd78e49
HD
1552static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1553 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1554{
1555 struct file *filp = iocb->ki_filp;
1556 ssize_t retval;
1557 unsigned long seg;
1558 size_t count;
1559 loff_t *ppos = &iocb->ki_pos;
1560
1561 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1562 if (retval)
1563 return retval;
1564
1565 for (seg = 0; seg < nr_segs; seg++) {
1566 read_descriptor_t desc;
1567
1568 desc.written = 0;
1569 desc.arg.buf = iov[seg].iov_base;
1570 desc.count = iov[seg].iov_len;
1571 if (desc.count == 0)
1572 continue;
1573 desc.error = 0;
1574 do_shmem_file_read(filp, ppos, &desc, file_read_actor);
1575 retval += desc.written;
1576 if (desc.error) {
1577 retval = retval ?: desc.error;
1578 break;
1579 }
1580 if (desc.count > 0)
1581 break;
1582 }
1583 return retval;
1da177e4
LT
1584}
1585
708e3508
HD
1586static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1587 struct pipe_inode_info *pipe, size_t len,
1588 unsigned int flags)
1589{
1590 struct address_space *mapping = in->f_mapping;
71f0e07a 1591 struct inode *inode = mapping->host;
708e3508
HD
1592 unsigned int loff, nr_pages, req_pages;
1593 struct page *pages[PIPE_DEF_BUFFERS];
1594 struct partial_page partial[PIPE_DEF_BUFFERS];
1595 struct page *page;
1596 pgoff_t index, end_index;
1597 loff_t isize, left;
1598 int error, page_nr;
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
047fe360 1602 .nr_pages_max = PIPE_DEF_BUFFERS,
708e3508
HD
1603 .flags = flags,
1604 .ops = &page_cache_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607
71f0e07a 1608 isize = i_size_read(inode);
708e3508
HD
1609 if (unlikely(*ppos >= isize))
1610 return 0;
1611
1612 left = isize - *ppos;
1613 if (unlikely(left < len))
1614 len = left;
1615
1616 if (splice_grow_spd(pipe, &spd))
1617 return -ENOMEM;
1618
1619 index = *ppos >> PAGE_CACHE_SHIFT;
1620 loff = *ppos & ~PAGE_CACHE_MASK;
1621 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1622 nr_pages = min(req_pages, pipe->buffers);
1623
708e3508
HD
1624 spd.nr_pages = find_get_pages_contig(mapping, index,
1625 nr_pages, spd.pages);
1626 index += spd.nr_pages;
708e3508 1627 error = 0;
708e3508 1628
71f0e07a 1629 while (spd.nr_pages < nr_pages) {
71f0e07a
HD
1630 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1631 if (error)
1632 break;
1633 unlock_page(page);
708e3508
HD
1634 spd.pages[spd.nr_pages++] = page;
1635 index++;
1636 }
1637
708e3508
HD
1638 index = *ppos >> PAGE_CACHE_SHIFT;
1639 nr_pages = spd.nr_pages;
1640 spd.nr_pages = 0;
71f0e07a 1641
708e3508
HD
1642 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1643 unsigned int this_len;
1644
1645 if (!len)
1646 break;
1647
708e3508
HD
1648 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1649 page = spd.pages[page_nr];
1650
71f0e07a 1651 if (!PageUptodate(page) || page->mapping != mapping) {
71f0e07a
HD
1652 error = shmem_getpage(inode, index, &page,
1653 SGP_CACHE, NULL);
1654 if (error)
708e3508 1655 break;
71f0e07a
HD
1656 unlock_page(page);
1657 page_cache_release(spd.pages[page_nr]);
1658 spd.pages[page_nr] = page;
708e3508 1659 }
71f0e07a
HD
1660
1661 isize = i_size_read(inode);
708e3508
HD
1662 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1663 if (unlikely(!isize || index > end_index))
1664 break;
1665
708e3508
HD
1666 if (end_index == index) {
1667 unsigned int plen;
1668
708e3508
HD
1669 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1670 if (plen <= loff)
1671 break;
1672
708e3508
HD
1673 this_len = min(this_len, plen - loff);
1674 len = this_len;
1675 }
1676
1677 spd.partial[page_nr].offset = loff;
1678 spd.partial[page_nr].len = this_len;
1679 len -= this_len;
1680 loff = 0;
1681 spd.nr_pages++;
1682 index++;
1683 }
1684
708e3508
HD
1685 while (page_nr < nr_pages)
1686 page_cache_release(spd.pages[page_nr++]);
708e3508
HD
1687
1688 if (spd.nr_pages)
1689 error = splice_to_pipe(pipe, &spd);
1690
047fe360 1691 splice_shrink_spd(&spd);
708e3508
HD
1692
1693 if (error > 0) {
1694 *ppos += error;
1695 file_accessed(in);
1696 }
1697 return error;
1698}
1699
83e4fa9c
HD
1700static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1701 loff_t len)
1702{
1703 struct inode *inode = file->f_path.dentry->d_inode;
e2d12e22 1704 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1aac1400 1705 struct shmem_falloc shmem_falloc;
e2d12e22
HD
1706 pgoff_t start, index, end;
1707 int error;
83e4fa9c
HD
1708
1709 mutex_lock(&inode->i_mutex);
1710
1711 if (mode & FALLOC_FL_PUNCH_HOLE) {
1712 struct address_space *mapping = file->f_mapping;
1713 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1714 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1715
1716 if ((u64)unmap_end > (u64)unmap_start)
1717 unmap_mapping_range(mapping, unmap_start,
1718 1 + unmap_end - unmap_start, 0);
1719 shmem_truncate_range(inode, offset, offset + len - 1);
1720 /* No need to unmap again: hole-punching leaves COWed pages */
1721 error = 0;
e2d12e22
HD
1722 goto out;
1723 }
1724
1725 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1726 error = inode_newsize_ok(inode, offset + len);
1727 if (error)
1728 goto out;
1729
1730 start = offset >> PAGE_CACHE_SHIFT;
1731 end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1732 /* Try to avoid a swapstorm if len is impossible to satisfy */
1733 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1734 error = -ENOSPC;
1735 goto out;
83e4fa9c
HD
1736 }
1737
1aac1400
HD
1738 shmem_falloc.start = start;
1739 shmem_falloc.next = start;
1740 shmem_falloc.nr_falloced = 0;
1741 shmem_falloc.nr_unswapped = 0;
1742 spin_lock(&inode->i_lock);
1743 inode->i_private = &shmem_falloc;
1744 spin_unlock(&inode->i_lock);
1745
e2d12e22
HD
1746 for (index = start; index < end; index++) {
1747 struct page *page;
1748
1749 /*
1750 * Good, the fallocate(2) manpage permits EINTR: we may have
1751 * been interrupted because we are using up too much memory.
1752 */
1753 if (signal_pending(current))
1754 error = -EINTR;
1aac1400
HD
1755 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1756 error = -ENOMEM;
e2d12e22 1757 else
1635f6a7 1758 error = shmem_getpage(inode, index, &page, SGP_FALLOC,
e2d12e22
HD
1759 NULL);
1760 if (error) {
1635f6a7
HD
1761 /* Remove the !PageUptodate pages we added */
1762 shmem_undo_range(inode,
1763 (loff_t)start << PAGE_CACHE_SHIFT,
1764 (loff_t)index << PAGE_CACHE_SHIFT, true);
1aac1400 1765 goto undone;
e2d12e22
HD
1766 }
1767
1aac1400
HD
1768 /*
1769 * Inform shmem_writepage() how far we have reached.
1770 * No need for lock or barrier: we have the page lock.
1771 */
1772 shmem_falloc.next++;
1773 if (!PageUptodate(page))
1774 shmem_falloc.nr_falloced++;
1775
e2d12e22 1776 /*
1635f6a7
HD
1777 * If !PageUptodate, leave it that way so that freeable pages
1778 * can be recognized if we need to rollback on error later.
1779 * But set_page_dirty so that memory pressure will swap rather
e2d12e22
HD
1780 * than free the pages we are allocating (and SGP_CACHE pages
1781 * might still be clean: we now need to mark those dirty too).
1782 */
1783 set_page_dirty(page);
1784 unlock_page(page);
1785 page_cache_release(page);
1786 cond_resched();
1787 }
1788
1789 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1790 i_size_write(inode, offset + len);
e2d12e22 1791 inode->i_ctime = CURRENT_TIME;
1aac1400
HD
1792undone:
1793 spin_lock(&inode->i_lock);
1794 inode->i_private = NULL;
1795 spin_unlock(&inode->i_lock);
e2d12e22 1796out:
83e4fa9c
HD
1797 mutex_unlock(&inode->i_mutex);
1798 return error;
1799}
1800
726c3342 1801static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1da177e4 1802{
726c3342 1803 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1da177e4
LT
1804
1805 buf->f_type = TMPFS_MAGIC;
1806 buf->f_bsize = PAGE_CACHE_SIZE;
1807 buf->f_namelen = NAME_MAX;
0edd73b3 1808 if (sbinfo->max_blocks) {
1da177e4 1809 buf->f_blocks = sbinfo->max_blocks;
41ffe5d5
HD
1810 buf->f_bavail =
1811 buf->f_bfree = sbinfo->max_blocks -
1812 percpu_counter_sum(&sbinfo->used_blocks);
0edd73b3
HD
1813 }
1814 if (sbinfo->max_inodes) {
1da177e4
LT
1815 buf->f_files = sbinfo->max_inodes;
1816 buf->f_ffree = sbinfo->free_inodes;
1da177e4
LT
1817 }
1818 /* else leave those fields 0 like simple_statfs */
1819 return 0;
1820}
1821
1822/*
1823 * File creation. Allocate an inode, and we're done..
1824 */
1825static int
1a67aafb 1826shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1da177e4 1827{
0b0a0806 1828 struct inode *inode;
1da177e4
LT
1829 int error = -ENOSPC;
1830
454abafe 1831 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1da177e4 1832 if (inode) {
2a7dba39 1833 error = security_inode_init_security(inode, dir,
9d8f13ba 1834 &dentry->d_name,
6d9d88d0 1835 shmem_initxattrs, NULL);
570bc1c2
SS
1836 if (error) {
1837 if (error != -EOPNOTSUPP) {
1838 iput(inode);
1839 return error;
1840 }
39f0247d 1841 }
1c7c474c
CH
1842#ifdef CONFIG_TMPFS_POSIX_ACL
1843 error = generic_acl_init(inode, dir);
39f0247d
AG
1844 if (error) {
1845 iput(inode);
1846 return error;
570bc1c2 1847 }
718deb6b
AV
1848#else
1849 error = 0;
1c7c474c 1850#endif
1da177e4
LT
1851 dir->i_size += BOGO_DIRENT_SIZE;
1852 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1853 d_instantiate(dentry, inode);
1854 dget(dentry); /* Extra count - pin the dentry in core */
1da177e4
LT
1855 }
1856 return error;
1857}
1858
18bb1db3 1859static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1da177e4
LT
1860{
1861 int error;
1862
1863 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1864 return error;
d8c76e6f 1865 inc_nlink(dir);
1da177e4
LT
1866 return 0;
1867}
1868
4acdaf27 1869static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
ebfc3b49 1870 bool excl)
1da177e4
LT
1871{
1872 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1873}
1874
1875/*
1876 * Link a file..
1877 */
1878static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1879{
1880 struct inode *inode = old_dentry->d_inode;
5b04c689 1881 int ret;
1da177e4
LT
1882
1883 /*
1884 * No ordinary (disk based) filesystem counts links as inodes;
1885 * but each new link needs a new dentry, pinning lowmem, and
1886 * tmpfs dentries cannot be pruned until they are unlinked.
1887 */
5b04c689
PE
1888 ret = shmem_reserve_inode(inode->i_sb);
1889 if (ret)
1890 goto out;
1da177e4
LT
1891
1892 dir->i_size += BOGO_DIRENT_SIZE;
1893 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
d8c76e6f 1894 inc_nlink(inode);
7de9c6ee 1895 ihold(inode); /* New dentry reference */
1da177e4
LT
1896 dget(dentry); /* Extra pinning count for the created dentry */
1897 d_instantiate(dentry, inode);
5b04c689
PE
1898out:
1899 return ret;
1da177e4
LT
1900}
1901
1902static int shmem_unlink(struct inode *dir, struct dentry *dentry)
1903{
1904 struct inode *inode = dentry->d_inode;
1905
5b04c689
PE
1906 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
1907 shmem_free_inode(inode->i_sb);
1da177e4
LT
1908
1909 dir->i_size -= BOGO_DIRENT_SIZE;
1910 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
9a53c3a7 1911 drop_nlink(inode);
1da177e4
LT
1912 dput(dentry); /* Undo the count from "create" - this does all the work */
1913 return 0;
1914}
1915
1916static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
1917{
1918 if (!simple_empty(dentry))
1919 return -ENOTEMPTY;
1920
9a53c3a7
DH
1921 drop_nlink(dentry->d_inode);
1922 drop_nlink(dir);
1da177e4
LT
1923 return shmem_unlink(dir, dentry);
1924}
1925
1926/*
1927 * The VFS layer already does all the dentry stuff for rename,
1928 * we just have to decrement the usage count for the target if
1929 * it exists so that the VFS layer correctly free's it when it
1930 * gets overwritten.
1931 */
1932static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
1933{
1934 struct inode *inode = old_dentry->d_inode;
1935 int they_are_dirs = S_ISDIR(inode->i_mode);
1936
1937 if (!simple_empty(new_dentry))
1938 return -ENOTEMPTY;
1939
1940 if (new_dentry->d_inode) {
1941 (void) shmem_unlink(new_dir, new_dentry);
1942 if (they_are_dirs)
9a53c3a7 1943 drop_nlink(old_dir);
1da177e4 1944 } else if (they_are_dirs) {
9a53c3a7 1945 drop_nlink(old_dir);
d8c76e6f 1946 inc_nlink(new_dir);
1da177e4
LT
1947 }
1948
1949 old_dir->i_size -= BOGO_DIRENT_SIZE;
1950 new_dir->i_size += BOGO_DIRENT_SIZE;
1951 old_dir->i_ctime = old_dir->i_mtime =
1952 new_dir->i_ctime = new_dir->i_mtime =
1953 inode->i_ctime = CURRENT_TIME;
1954 return 0;
1955}
1956
1957static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1958{
1959 int error;
1960 int len;
1961 struct inode *inode;
9276aad6 1962 struct page *page;
1da177e4
LT
1963 char *kaddr;
1964 struct shmem_inode_info *info;
1965
1966 len = strlen(symname) + 1;
1967 if (len > PAGE_CACHE_SIZE)
1968 return -ENAMETOOLONG;
1969
454abafe 1970 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
1da177e4
LT
1971 if (!inode)
1972 return -ENOSPC;
1973
9d8f13ba 1974 error = security_inode_init_security(inode, dir, &dentry->d_name,
6d9d88d0 1975 shmem_initxattrs, NULL);
570bc1c2
SS
1976 if (error) {
1977 if (error != -EOPNOTSUPP) {
1978 iput(inode);
1979 return error;
1980 }
1981 error = 0;
1982 }
1983
1da177e4
LT
1984 info = SHMEM_I(inode);
1985 inode->i_size = len-1;
69f07ec9
HD
1986 if (len <= SHORT_SYMLINK_LEN) {
1987 info->symlink = kmemdup(symname, len, GFP_KERNEL);
1988 if (!info->symlink) {
1989 iput(inode);
1990 return -ENOMEM;
1991 }
1992 inode->i_op = &shmem_short_symlink_operations;
1da177e4
LT
1993 } else {
1994 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
1995 if (error) {
1996 iput(inode);
1997 return error;
1998 }
14fcc23f 1999 inode->i_mapping->a_ops = &shmem_aops;
1da177e4 2000 inode->i_op = &shmem_symlink_inode_operations;
9b04c5fe 2001 kaddr = kmap_atomic(page);
1da177e4 2002 memcpy(kaddr, symname, len);
9b04c5fe 2003 kunmap_atomic(kaddr);
ec9516fb 2004 SetPageUptodate(page);
1da177e4 2005 set_page_dirty(page);
6746aff7 2006 unlock_page(page);
1da177e4
LT
2007 page_cache_release(page);
2008 }
1da177e4
LT
2009 dir->i_size += BOGO_DIRENT_SIZE;
2010 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2011 d_instantiate(dentry, inode);
2012 dget(dentry);
2013 return 0;
2014}
2015
69f07ec9 2016static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
1da177e4 2017{
69f07ec9 2018 nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
cc314eef 2019 return NULL;
1da177e4
LT
2020}
2021
cc314eef 2022static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
1da177e4
LT
2023{
2024 struct page *page = NULL;
41ffe5d5
HD
2025 int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2026 nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
d3602444
HD
2027 if (page)
2028 unlock_page(page);
cc314eef 2029 return page;
1da177e4
LT
2030}
2031
cc314eef 2032static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
1da177e4
LT
2033{
2034 if (!IS_ERR(nd_get_link(nd))) {
cc314eef 2035 struct page *page = cookie;
1da177e4
LT
2036 kunmap(page);
2037 mark_page_accessed(page);
2038 page_cache_release(page);
1da177e4
LT
2039 }
2040}
2041
b09e0fa4 2042#ifdef CONFIG_TMPFS_XATTR
46711810 2043/*
b09e0fa4
EP
2044 * Superblocks without xattr inode operations may get some security.* xattr
2045 * support from the LSM "for free". As soon as we have any other xattrs
39f0247d
AG
2046 * like ACLs, we also need to implement the security.* handlers at
2047 * filesystem level, though.
2048 */
2049
6d9d88d0
JS
2050/*
2051 * Callback for security_inode_init_security() for acquiring xattrs.
2052 */
2053static int shmem_initxattrs(struct inode *inode,
2054 const struct xattr *xattr_array,
2055 void *fs_info)
2056{
2057 struct shmem_inode_info *info = SHMEM_I(inode);
2058 const struct xattr *xattr;
38f38657 2059 struct simple_xattr *new_xattr;
6d9d88d0
JS
2060 size_t len;
2061
2062 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
38f38657 2063 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
6d9d88d0
JS
2064 if (!new_xattr)
2065 return -ENOMEM;
2066
2067 len = strlen(xattr->name) + 1;
2068 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2069 GFP_KERNEL);
2070 if (!new_xattr->name) {
2071 kfree(new_xattr);
2072 return -ENOMEM;
2073 }
2074
2075 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2076 XATTR_SECURITY_PREFIX_LEN);
2077 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2078 xattr->name, len);
2079
38f38657 2080 simple_xattr_list_add(&info->xattrs, new_xattr);
6d9d88d0
JS
2081 }
2082
2083 return 0;
2084}
2085
bb435453 2086static const struct xattr_handler *shmem_xattr_handlers[] = {
b09e0fa4 2087#ifdef CONFIG_TMPFS_POSIX_ACL
1c7c474c
CH
2088 &generic_acl_access_handler,
2089 &generic_acl_default_handler,
b09e0fa4 2090#endif
39f0247d
AG
2091 NULL
2092};
b09e0fa4
EP
2093
2094static int shmem_xattr_validate(const char *name)
2095{
2096 struct { const char *prefix; size_t len; } arr[] = {
2097 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2098 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2099 };
2100 int i;
2101
2102 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2103 size_t preflen = arr[i].len;
2104 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2105 if (!name[preflen])
2106 return -EINVAL;
2107 return 0;
2108 }
2109 }
2110 return -EOPNOTSUPP;
2111}
2112
2113static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2114 void *buffer, size_t size)
2115{
38f38657 2116 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2117 int err;
2118
2119 /*
2120 * If this is a request for a synthetic attribute in the system.*
2121 * namespace use the generic infrastructure to resolve a handler
2122 * for it via sb->s_xattr.
2123 */
2124 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2125 return generic_getxattr(dentry, name, buffer, size);
2126
2127 err = shmem_xattr_validate(name);
2128 if (err)
2129 return err;
2130
38f38657 2131 return simple_xattr_get(&info->xattrs, name, buffer, size);
b09e0fa4
EP
2132}
2133
2134static int shmem_setxattr(struct dentry *dentry, const char *name,
2135 const void *value, size_t size, int flags)
2136{
38f38657 2137 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2138 int err;
2139
2140 /*
2141 * If this is a request for a synthetic attribute in the system.*
2142 * namespace use the generic infrastructure to resolve a handler
2143 * for it via sb->s_xattr.
2144 */
2145 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2146 return generic_setxattr(dentry, name, value, size, flags);
2147
2148 err = shmem_xattr_validate(name);
2149 if (err)
2150 return err;
2151
38f38657 2152 return simple_xattr_set(&info->xattrs, name, value, size, flags);
b09e0fa4
EP
2153}
2154
2155static int shmem_removexattr(struct dentry *dentry, const char *name)
2156{
38f38657 2157 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
b09e0fa4
EP
2158 int err;
2159
2160 /*
2161 * If this is a request for a synthetic attribute in the system.*
2162 * namespace use the generic infrastructure to resolve a handler
2163 * for it via sb->s_xattr.
2164 */
2165 if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2166 return generic_removexattr(dentry, name);
2167
2168 err = shmem_xattr_validate(name);
2169 if (err)
2170 return err;
2171
38f38657 2172 return simple_xattr_remove(&info->xattrs, name);
b09e0fa4
EP
2173}
2174
2175static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2176{
38f38657
AR
2177 struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2178 return simple_xattr_list(&info->xattrs, buffer, size);
b09e0fa4
EP
2179}
2180#endif /* CONFIG_TMPFS_XATTR */
2181
69f07ec9 2182static const struct inode_operations shmem_short_symlink_operations = {
b09e0fa4 2183 .readlink = generic_readlink,
69f07ec9 2184 .follow_link = shmem_follow_short_symlink,
b09e0fa4
EP
2185#ifdef CONFIG_TMPFS_XATTR
2186 .setxattr = shmem_setxattr,
2187 .getxattr = shmem_getxattr,
2188 .listxattr = shmem_listxattr,
2189 .removexattr = shmem_removexattr,
2190#endif
2191};
2192
2193static const struct inode_operations shmem_symlink_inode_operations = {
2194 .readlink = generic_readlink,
2195 .follow_link = shmem_follow_link,
2196 .put_link = shmem_put_link,
2197#ifdef CONFIG_TMPFS_XATTR
2198 .setxattr = shmem_setxattr,
2199 .getxattr = shmem_getxattr,
2200 .listxattr = shmem_listxattr,
2201 .removexattr = shmem_removexattr,
39f0247d 2202#endif
b09e0fa4 2203};
39f0247d 2204
91828a40
DG
2205static struct dentry *shmem_get_parent(struct dentry *child)
2206{
2207 return ERR_PTR(-ESTALE);
2208}
2209
2210static int shmem_match(struct inode *ino, void *vfh)
2211{
2212 __u32 *fh = vfh;
2213 __u64 inum = fh[2];
2214 inum = (inum << 32) | fh[1];
2215 return ino->i_ino == inum && fh[0] == ino->i_generation;
2216}
2217
480b116c
CH
2218static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2219 struct fid *fid, int fh_len, int fh_type)
91828a40 2220{
91828a40 2221 struct inode *inode;
480b116c
CH
2222 struct dentry *dentry = NULL;
2223 u64 inum = fid->raw[2];
2224 inum = (inum << 32) | fid->raw[1];
2225
2226 if (fh_len < 3)
2227 return NULL;
91828a40 2228
480b116c
CH
2229 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2230 shmem_match, fid->raw);
91828a40 2231 if (inode) {
480b116c 2232 dentry = d_find_alias(inode);
91828a40
DG
2233 iput(inode);
2234 }
2235
480b116c 2236 return dentry;
91828a40
DG
2237}
2238
b0b0382b
AV
2239static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2240 struct inode *parent)
91828a40 2241{
5fe0c237
AK
2242 if (*len < 3) {
2243 *len = 3;
91828a40 2244 return 255;
5fe0c237 2245 }
91828a40 2246
1d3382cb 2247 if (inode_unhashed(inode)) {
91828a40
DG
2248 /* Unfortunately insert_inode_hash is not idempotent,
2249 * so as we hash inodes here rather than at creation
2250 * time, we need a lock to ensure we only try
2251 * to do it once
2252 */
2253 static DEFINE_SPINLOCK(lock);
2254 spin_lock(&lock);
1d3382cb 2255 if (inode_unhashed(inode))
91828a40
DG
2256 __insert_inode_hash(inode,
2257 inode->i_ino + inode->i_generation);
2258 spin_unlock(&lock);
2259 }
2260
2261 fh[0] = inode->i_generation;
2262 fh[1] = inode->i_ino;
2263 fh[2] = ((__u64)inode->i_ino) >> 32;
2264
2265 *len = 3;
2266 return 1;
2267}
2268
39655164 2269static const struct export_operations shmem_export_ops = {
91828a40 2270 .get_parent = shmem_get_parent,
91828a40 2271 .encode_fh = shmem_encode_fh,
480b116c 2272 .fh_to_dentry = shmem_fh_to_dentry,
91828a40
DG
2273};
2274
680d794b 2275static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2276 bool remount)
1da177e4
LT
2277{
2278 char *this_char, *value, *rest;
8751e039
EB
2279 uid_t uid;
2280 gid_t gid;
1da177e4 2281
b00dc3ad
HD
2282 while (options != NULL) {
2283 this_char = options;
2284 for (;;) {
2285 /*
2286 * NUL-terminate this option: unfortunately,
2287 * mount options form a comma-separated list,
2288 * but mpol's nodelist may also contain commas.
2289 */
2290 options = strchr(options, ',');
2291 if (options == NULL)
2292 break;
2293 options++;
2294 if (!isdigit(*options)) {
2295 options[-1] = '\0';
2296 break;
2297 }
2298 }
1da177e4
LT
2299 if (!*this_char)
2300 continue;
2301 if ((value = strchr(this_char,'=')) != NULL) {
2302 *value++ = 0;
2303 } else {
2304 printk(KERN_ERR
2305 "tmpfs: No value for mount option '%s'\n",
2306 this_char);
2307 return 1;
2308 }
2309
2310 if (!strcmp(this_char,"size")) {
2311 unsigned long long size;
2312 size = memparse(value,&rest);
2313 if (*rest == '%') {
2314 size <<= PAGE_SHIFT;
2315 size *= totalram_pages;
2316 do_div(size, 100);
2317 rest++;
2318 }
2319 if (*rest)
2320 goto bad_val;
680d794b 2321 sbinfo->max_blocks =
2322 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
1da177e4 2323 } else if (!strcmp(this_char,"nr_blocks")) {
680d794b 2324 sbinfo->max_blocks = memparse(value, &rest);
1da177e4
LT
2325 if (*rest)
2326 goto bad_val;
2327 } else if (!strcmp(this_char,"nr_inodes")) {
680d794b 2328 sbinfo->max_inodes = memparse(value, &rest);
1da177e4
LT
2329 if (*rest)
2330 goto bad_val;
2331 } else if (!strcmp(this_char,"mode")) {
680d794b 2332 if (remount)
1da177e4 2333 continue;
680d794b 2334 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
1da177e4
LT
2335 if (*rest)
2336 goto bad_val;
2337 } else if (!strcmp(this_char,"uid")) {
680d794b 2338 if (remount)
1da177e4 2339 continue;
8751e039 2340 uid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2341 if (*rest)
2342 goto bad_val;
8751e039
EB
2343 sbinfo->uid = make_kuid(current_user_ns(), uid);
2344 if (!uid_valid(sbinfo->uid))
2345 goto bad_val;
1da177e4 2346 } else if (!strcmp(this_char,"gid")) {
680d794b 2347 if (remount)
1da177e4 2348 continue;
8751e039 2349 gid = simple_strtoul(value, &rest, 0);
1da177e4
LT
2350 if (*rest)
2351 goto bad_val;
8751e039
EB
2352 sbinfo->gid = make_kgid(current_user_ns(), gid);
2353 if (!gid_valid(sbinfo->gid))
2354 goto bad_val;
7339ff83 2355 } else if (!strcmp(this_char,"mpol")) {
71fe804b 2356 if (mpol_parse_str(value, &sbinfo->mpol, 1))
7339ff83 2357 goto bad_val;
1da177e4
LT
2358 } else {
2359 printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2360 this_char);
2361 return 1;
2362 }
2363 }
2364 return 0;
2365
2366bad_val:
2367 printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2368 value, this_char);
2369 return 1;
2370
2371}
2372
2373static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2374{
2375 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
680d794b 2376 struct shmem_sb_info config = *sbinfo;
0edd73b3
HD
2377 unsigned long inodes;
2378 int error = -EINVAL;
2379
680d794b 2380 if (shmem_parse_options(data, &config, true))
0edd73b3 2381 return error;
1da177e4 2382
0edd73b3 2383 spin_lock(&sbinfo->stat_lock);
0edd73b3 2384 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
7e496299 2385 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
0edd73b3 2386 goto out;
680d794b 2387 if (config.max_inodes < inodes)
0edd73b3
HD
2388 goto out;
2389 /*
54af6042 2390 * Those tests disallow limited->unlimited while any are in use;
0edd73b3
HD
2391 * but we must separately disallow unlimited->limited, because
2392 * in that case we have no record of how much is already in use.
2393 */
680d794b 2394 if (config.max_blocks && !sbinfo->max_blocks)
0edd73b3 2395 goto out;
680d794b 2396 if (config.max_inodes && !sbinfo->max_inodes)
0edd73b3
HD
2397 goto out;
2398
2399 error = 0;
680d794b 2400 sbinfo->max_blocks = config.max_blocks;
680d794b 2401 sbinfo->max_inodes = config.max_inodes;
2402 sbinfo->free_inodes = config.max_inodes - inodes;
71fe804b
LS
2403
2404 mpol_put(sbinfo->mpol);
2405 sbinfo->mpol = config.mpol; /* transfers initial ref */
0edd73b3
HD
2406out:
2407 spin_unlock(&sbinfo->stat_lock);
2408 return error;
1da177e4 2409}
680d794b 2410
34c80b1d 2411static int shmem_show_options(struct seq_file *seq, struct dentry *root)
680d794b 2412{
34c80b1d 2413 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
680d794b 2414
2415 if (sbinfo->max_blocks != shmem_default_max_blocks())
2416 seq_printf(seq, ",size=%luk",
2417 sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2418 if (sbinfo->max_inodes != shmem_default_max_inodes())
2419 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2420 if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
09208d15 2421 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
8751e039
EB
2422 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2423 seq_printf(seq, ",uid=%u",
2424 from_kuid_munged(&init_user_ns, sbinfo->uid));
2425 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2426 seq_printf(seq, ",gid=%u",
2427 from_kgid_munged(&init_user_ns, sbinfo->gid));
71fe804b 2428 shmem_show_mpol(seq, sbinfo->mpol);
680d794b 2429 return 0;
2430}
2431#endif /* CONFIG_TMPFS */
1da177e4
LT
2432
2433static void shmem_put_super(struct super_block *sb)
2434{
602586a8
HD
2435 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2436
2437 percpu_counter_destroy(&sbinfo->used_blocks);
2438 kfree(sbinfo);
1da177e4
LT
2439 sb->s_fs_info = NULL;
2440}
2441
2b2af54a 2442int shmem_fill_super(struct super_block *sb, void *data, int silent)
1da177e4
LT
2443{
2444 struct inode *inode;
0edd73b3 2445 struct shmem_sb_info *sbinfo;
680d794b 2446 int err = -ENOMEM;
2447
2448 /* Round up to L1_CACHE_BYTES to resist false sharing */
425fbf04 2449 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
680d794b 2450 L1_CACHE_BYTES), GFP_KERNEL);
2451 if (!sbinfo)
2452 return -ENOMEM;
2453
680d794b 2454 sbinfo->mode = S_IRWXUGO | S_ISVTX;
76aac0e9
DH
2455 sbinfo->uid = current_fsuid();
2456 sbinfo->gid = current_fsgid();
680d794b 2457 sb->s_fs_info = sbinfo;
1da177e4 2458
0edd73b3 2459#ifdef CONFIG_TMPFS
1da177e4
LT
2460 /*
2461 * Per default we only allow half of the physical ram per
2462 * tmpfs instance, limiting inodes to one per page of lowmem;
2463 * but the internal instance is left unlimited.
2464 */
2465 if (!(sb->s_flags & MS_NOUSER)) {
680d794b 2466 sbinfo->max_blocks = shmem_default_max_blocks();
2467 sbinfo->max_inodes = shmem_default_max_inodes();
2468 if (shmem_parse_options(data, sbinfo, false)) {
2469 err = -EINVAL;
2470 goto failed;
2471 }
1da177e4 2472 }
91828a40 2473 sb->s_export_op = &shmem_export_ops;
2f6e38f3 2474 sb->s_flags |= MS_NOSEC;
1da177e4
LT
2475#else
2476 sb->s_flags |= MS_NOUSER;
2477#endif
2478
0edd73b3 2479 spin_lock_init(&sbinfo->stat_lock);
602586a8
HD
2480 if (percpu_counter_init(&sbinfo->used_blocks, 0))
2481 goto failed;
680d794b 2482 sbinfo->free_inodes = sbinfo->max_inodes;
0edd73b3 2483
285b2c4f 2484 sb->s_maxbytes = MAX_LFS_FILESIZE;
1da177e4
LT
2485 sb->s_blocksize = PAGE_CACHE_SIZE;
2486 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2487 sb->s_magic = TMPFS_MAGIC;
2488 sb->s_op = &shmem_ops;
cfd95a9c 2489 sb->s_time_gran = 1;
b09e0fa4 2490#ifdef CONFIG_TMPFS_XATTR
39f0247d 2491 sb->s_xattr = shmem_xattr_handlers;
b09e0fa4
EP
2492#endif
2493#ifdef CONFIG_TMPFS_POSIX_ACL
39f0247d
AG
2494 sb->s_flags |= MS_POSIXACL;
2495#endif
0edd73b3 2496
454abafe 2497 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
1da177e4
LT
2498 if (!inode)
2499 goto failed;
680d794b 2500 inode->i_uid = sbinfo->uid;
2501 inode->i_gid = sbinfo->gid;
318ceed0
AV
2502 sb->s_root = d_make_root(inode);
2503 if (!sb->s_root)
48fde701 2504 goto failed;
1da177e4
LT
2505 return 0;
2506
1da177e4
LT
2507failed:
2508 shmem_put_super(sb);
2509 return err;
2510}
2511
fcc234f8 2512static struct kmem_cache *shmem_inode_cachep;
1da177e4
LT
2513
2514static struct inode *shmem_alloc_inode(struct super_block *sb)
2515{
41ffe5d5
HD
2516 struct shmem_inode_info *info;
2517 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2518 if (!info)
1da177e4 2519 return NULL;
41ffe5d5 2520 return &info->vfs_inode;
1da177e4
LT
2521}
2522
41ffe5d5 2523static void shmem_destroy_callback(struct rcu_head *head)
fa0d7e3d
NP
2524{
2525 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
2526 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2527}
2528
1da177e4
LT
2529static void shmem_destroy_inode(struct inode *inode)
2530{
09208d15 2531 if (S_ISREG(inode->i_mode))
1da177e4 2532 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
41ffe5d5 2533 call_rcu(&inode->i_rcu, shmem_destroy_callback);
1da177e4
LT
2534}
2535
41ffe5d5 2536static void shmem_init_inode(void *foo)
1da177e4 2537{
41ffe5d5
HD
2538 struct shmem_inode_info *info = foo;
2539 inode_init_once(&info->vfs_inode);
1da177e4
LT
2540}
2541
41ffe5d5 2542static int shmem_init_inodecache(void)
1da177e4
LT
2543{
2544 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2545 sizeof(struct shmem_inode_info),
41ffe5d5 2546 0, SLAB_PANIC, shmem_init_inode);
1da177e4
LT
2547 return 0;
2548}
2549
41ffe5d5 2550static void shmem_destroy_inodecache(void)
1da177e4 2551{
1a1d92c1 2552 kmem_cache_destroy(shmem_inode_cachep);
1da177e4
LT
2553}
2554
f5e54d6e 2555static const struct address_space_operations shmem_aops = {
1da177e4 2556 .writepage = shmem_writepage,
76719325 2557 .set_page_dirty = __set_page_dirty_no_writeback,
1da177e4 2558#ifdef CONFIG_TMPFS
800d15a5
NP
2559 .write_begin = shmem_write_begin,
2560 .write_end = shmem_write_end,
1da177e4 2561#endif
304dbdb7 2562 .migratepage = migrate_page,
aa261f54 2563 .error_remove_page = generic_error_remove_page,
1da177e4
LT
2564};
2565
15ad7cdc 2566static const struct file_operations shmem_file_operations = {
1da177e4
LT
2567 .mmap = shmem_mmap,
2568#ifdef CONFIG_TMPFS
f21f8062 2569 .llseek = generic_file_llseek,
bcd78e49 2570 .read = do_sync_read,
5402b976 2571 .write = do_sync_write,
bcd78e49 2572 .aio_read = shmem_file_aio_read,
5402b976 2573 .aio_write = generic_file_aio_write,
1b061d92 2574 .fsync = noop_fsync,
708e3508 2575 .splice_read = shmem_file_splice_read,
ae976416 2576 .splice_write = generic_file_splice_write,
83e4fa9c 2577 .fallocate = shmem_fallocate,
1da177e4
LT
2578#endif
2579};
2580
92e1d5be 2581static const struct inode_operations shmem_inode_operations = {
94c1e62d 2582 .setattr = shmem_setattr,
b09e0fa4
EP
2583#ifdef CONFIG_TMPFS_XATTR
2584 .setxattr = shmem_setxattr,
2585 .getxattr = shmem_getxattr,
2586 .listxattr = shmem_listxattr,
2587 .removexattr = shmem_removexattr,
2588#endif
1da177e4
LT
2589};
2590
92e1d5be 2591static const struct inode_operations shmem_dir_inode_operations = {
1da177e4
LT
2592#ifdef CONFIG_TMPFS
2593 .create = shmem_create,
2594 .lookup = simple_lookup,
2595 .link = shmem_link,
2596 .unlink = shmem_unlink,
2597 .symlink = shmem_symlink,
2598 .mkdir = shmem_mkdir,
2599 .rmdir = shmem_rmdir,
2600 .mknod = shmem_mknod,
2601 .rename = shmem_rename,
1da177e4 2602#endif
b09e0fa4
EP
2603#ifdef CONFIG_TMPFS_XATTR
2604 .setxattr = shmem_setxattr,
2605 .getxattr = shmem_getxattr,
2606 .listxattr = shmem_listxattr,
2607 .removexattr = shmem_removexattr,
2608#endif
39f0247d 2609#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2610 .setattr = shmem_setattr,
39f0247d
AG
2611#endif
2612};
2613
92e1d5be 2614static const struct inode_operations shmem_special_inode_operations = {
b09e0fa4
EP
2615#ifdef CONFIG_TMPFS_XATTR
2616 .setxattr = shmem_setxattr,
2617 .getxattr = shmem_getxattr,
2618 .listxattr = shmem_listxattr,
2619 .removexattr = shmem_removexattr,
2620#endif
39f0247d 2621#ifdef CONFIG_TMPFS_POSIX_ACL
94c1e62d 2622 .setattr = shmem_setattr,
39f0247d 2623#endif
1da177e4
LT
2624};
2625
759b9775 2626static const struct super_operations shmem_ops = {
1da177e4
LT
2627 .alloc_inode = shmem_alloc_inode,
2628 .destroy_inode = shmem_destroy_inode,
2629#ifdef CONFIG_TMPFS
2630 .statfs = shmem_statfs,
2631 .remount_fs = shmem_remount_fs,
680d794b 2632 .show_options = shmem_show_options,
1da177e4 2633#endif
1f895f75 2634 .evict_inode = shmem_evict_inode,
1da177e4
LT
2635 .drop_inode = generic_delete_inode,
2636 .put_super = shmem_put_super,
2637};
2638
f0f37e2f 2639static const struct vm_operations_struct shmem_vm_ops = {
54cb8821 2640 .fault = shmem_fault,
1da177e4
LT
2641#ifdef CONFIG_NUMA
2642 .set_policy = shmem_set_policy,
2643 .get_policy = shmem_get_policy,
2644#endif
0b173bc4 2645 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2646};
2647
3c26ff6e
AV
2648static struct dentry *shmem_mount(struct file_system_type *fs_type,
2649 int flags, const char *dev_name, void *data)
1da177e4 2650{
3c26ff6e 2651 return mount_nodev(fs_type, flags, data, shmem_fill_super);
1da177e4
LT
2652}
2653
41ffe5d5 2654static struct file_system_type shmem_fs_type = {
1da177e4
LT
2655 .owner = THIS_MODULE,
2656 .name = "tmpfs",
3c26ff6e 2657 .mount = shmem_mount,
1da177e4
LT
2658 .kill_sb = kill_litter_super,
2659};
1da177e4 2660
41ffe5d5 2661int __init shmem_init(void)
1da177e4
LT
2662{
2663 int error;
2664
e0bf68dd
PZ
2665 error = bdi_init(&shmem_backing_dev_info);
2666 if (error)
2667 goto out4;
2668
41ffe5d5 2669 error = shmem_init_inodecache();
1da177e4
LT
2670 if (error)
2671 goto out3;
2672
41ffe5d5 2673 error = register_filesystem(&shmem_fs_type);
1da177e4
LT
2674 if (error) {
2675 printk(KERN_ERR "Could not register tmpfs\n");
2676 goto out2;
2677 }
95dc112a 2678
41ffe5d5
HD
2679 shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER,
2680 shmem_fs_type.name, NULL);
1da177e4
LT
2681 if (IS_ERR(shm_mnt)) {
2682 error = PTR_ERR(shm_mnt);
2683 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2684 goto out1;
2685 }
2686 return 0;
2687
2688out1:
41ffe5d5 2689 unregister_filesystem(&shmem_fs_type);
1da177e4 2690out2:
41ffe5d5 2691 shmem_destroy_inodecache();
1da177e4 2692out3:
e0bf68dd
PZ
2693 bdi_destroy(&shmem_backing_dev_info);
2694out4:
1da177e4
LT
2695 shm_mnt = ERR_PTR(error);
2696 return error;
2697}
853ac43a
MM
2698
2699#else /* !CONFIG_SHMEM */
2700
2701/*
2702 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2703 *
2704 * This is intended for small system where the benefits of the full
2705 * shmem code (swap-backed and resource-limited) are outweighed by
2706 * their complexity. On systems without swap this code should be
2707 * effectively equivalent, but much lighter weight.
2708 */
2709
2710#include <linux/ramfs.h>
2711
41ffe5d5 2712static struct file_system_type shmem_fs_type = {
853ac43a 2713 .name = "tmpfs",
3c26ff6e 2714 .mount = ramfs_mount,
853ac43a
MM
2715 .kill_sb = kill_litter_super,
2716};
2717
41ffe5d5 2718int __init shmem_init(void)
853ac43a 2719{
41ffe5d5 2720 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
853ac43a 2721
41ffe5d5 2722 shm_mnt = kern_mount(&shmem_fs_type);
853ac43a
MM
2723 BUG_ON(IS_ERR(shm_mnt));
2724
2725 return 0;
2726}
2727
41ffe5d5 2728int shmem_unuse(swp_entry_t swap, struct page *page)
853ac43a
MM
2729{
2730 return 0;
2731}
2732
3f96b79a
HD
2733int shmem_lock(struct file *file, int lock, struct user_struct *user)
2734{
2735 return 0;
2736}
2737
24513264
HD
2738void shmem_unlock_mapping(struct address_space *mapping)
2739{
2740}
2741
41ffe5d5 2742void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
94c1e62d 2743{
41ffe5d5 2744 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
94c1e62d
HD
2745}
2746EXPORT_SYMBOL_GPL(shmem_truncate_range);
2747
0b0a0806
HD
2748#define shmem_vm_ops generic_file_vm_ops
2749#define shmem_file_operations ramfs_file_operations
454abafe 2750#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
0b0a0806
HD
2751#define shmem_acct_size(flags, size) 0
2752#define shmem_unacct_size(flags, size) do {} while (0)
853ac43a
MM
2753
2754#endif /* CONFIG_SHMEM */
2755
2756/* common code */
1da177e4 2757
46711810 2758/**
1da177e4 2759 * shmem_file_setup - get an unlinked file living in tmpfs
1da177e4
LT
2760 * @name: name for dentry (to be seen in /proc/<pid>/maps
2761 * @size: size to be set for the file
0b0a0806 2762 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
1da177e4 2763 */
168f5ac6 2764struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
1da177e4
LT
2765{
2766 int error;
2767 struct file *file;
2768 struct inode *inode;
2c48b9c4
AV
2769 struct path path;
2770 struct dentry *root;
1da177e4
LT
2771 struct qstr this;
2772
2773 if (IS_ERR(shm_mnt))
2774 return (void *)shm_mnt;
2775
285b2c4f 2776 if (size < 0 || size > MAX_LFS_FILESIZE)
1da177e4
LT
2777 return ERR_PTR(-EINVAL);
2778
2779 if (shmem_acct_size(flags, size))
2780 return ERR_PTR(-ENOMEM);
2781
2782 error = -ENOMEM;
2783 this.name = name;
2784 this.len = strlen(name);
2785 this.hash = 0; /* will go */
2786 root = shm_mnt->mnt_root;
2c48b9c4
AV
2787 path.dentry = d_alloc(root, &this);
2788 if (!path.dentry)
1da177e4 2789 goto put_memory;
2c48b9c4 2790 path.mnt = mntget(shm_mnt);
1da177e4 2791
1da177e4 2792 error = -ENOSPC;
454abafe 2793 inode = shmem_get_inode(root->d_sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
1da177e4 2794 if (!inode)
4b42af81 2795 goto put_dentry;
1da177e4 2796
2c48b9c4 2797 d_instantiate(path.dentry, inode);
1da177e4 2798 inode->i_size = size;
6d6b77f1 2799 clear_nlink(inode); /* It is unlinked */
853ac43a
MM
2800#ifndef CONFIG_MMU
2801 error = ramfs_nommu_expand_for_mapping(inode, size);
2802 if (error)
4b42af81 2803 goto put_dentry;
853ac43a 2804#endif
4b42af81
AV
2805
2806 error = -ENFILE;
2c48b9c4 2807 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4b42af81
AV
2808 &shmem_file_operations);
2809 if (!file)
2810 goto put_dentry;
2811
1da177e4
LT
2812 return file;
2813
1da177e4 2814put_dentry:
2c48b9c4 2815 path_put(&path);
1da177e4
LT
2816put_memory:
2817 shmem_unacct_size(flags, size);
2818 return ERR_PTR(error);
2819}
395e0ddc 2820EXPORT_SYMBOL_GPL(shmem_file_setup);
1da177e4 2821
46711810 2822/**
1da177e4 2823 * shmem_zero_setup - setup a shared anonymous mapping
1da177e4
LT
2824 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2825 */
2826int shmem_zero_setup(struct vm_area_struct *vma)
2827{
2828 struct file *file;
2829 loff_t size = vma->vm_end - vma->vm_start;
2830
2831 file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2832 if (IS_ERR(file))
2833 return PTR_ERR(file);
2834
2835 if (vma->vm_file)
2836 fput(vma->vm_file);
2837 vma->vm_file = file;
2838 vma->vm_ops = &shmem_vm_ops;
2839 return 0;
2840}
d9d90e5e
HD
2841
2842/**
2843 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2844 * @mapping: the page's address_space
2845 * @index: the page index
2846 * @gfp: the page allocator flags to use if allocating
2847 *
2848 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2849 * with any new page allocations done using the specified allocation flags.
2850 * But read_cache_page_gfp() uses the ->readpage() method: which does not
2851 * suit tmpfs, since it may have pages in swapcache, and needs to find those
2852 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
2853 *
68da9f05
HD
2854 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
2855 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
d9d90e5e
HD
2856 */
2857struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
2858 pgoff_t index, gfp_t gfp)
2859{
68da9f05
HD
2860#ifdef CONFIG_SHMEM
2861 struct inode *inode = mapping->host;
9276aad6 2862 struct page *page;
68da9f05
HD
2863 int error;
2864
2865 BUG_ON(mapping->a_ops != &shmem_aops);
2866 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
2867 if (error)
2868 page = ERR_PTR(error);
2869 else
2870 unlock_page(page);
2871 return page;
2872#else
2873 /*
2874 * The tiny !SHMEM case uses ramfs without swap
2875 */
d9d90e5e 2876 return read_cache_page_gfp(mapping, index, gfp);
68da9f05 2877#endif
d9d90e5e
HD
2878}
2879EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);