mm: revert page_lock_anon_vma() lock annotation
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
3d48ae45 27 * mapping->i_mmap_mutex
82591e6e
NP
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
a66979ab 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
a66979ab 39 * within inode_wb_list_lock in __sync_single_inode)
6a46079c
AK
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->lock (memory_failure, collect_procs_anon)
44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
a48d07af 56#include <linux/module.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
63
b291f000
NP
64#include "internal.h"
65
fdd2e5f8 66static struct kmem_cache *anon_vma_cachep;
5beb4930 67static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
68
69static inline struct anon_vma *anon_vma_alloc(void)
70{
01d8b20d
PZ
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
fdd2e5f8
AB
84}
85
01d8b20d 86static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 87{
01d8b20d 88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
fdd2e5f8
AB
89 kmem_cache_free(anon_vma_cachep, anon_vma);
90}
1da177e4 91
5beb4930
RR
92static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93{
94 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95}
96
e574b5fd 97static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
98{
99 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100}
101
d9d332e0
LT
102/**
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
105 *
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
109 *
110 * The common case will be that we already have one, but if
23a0790a 111 * not we either need to find an adjacent mapping that we
d9d332e0
LT
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
115 *
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
121 *
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
126 *
127 * This must be called with the mmap_sem held for reading.
128 */
1da177e4
LT
129int anon_vma_prepare(struct vm_area_struct *vma)
130{
131 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 132 struct anon_vma_chain *avc;
1da177e4
LT
133
134 might_sleep();
135 if (unlikely(!anon_vma)) {
136 struct mm_struct *mm = vma->vm_mm;
d9d332e0 137 struct anon_vma *allocated;
1da177e4 138
5beb4930
RR
139 avc = anon_vma_chain_alloc();
140 if (!avc)
141 goto out_enomem;
142
1da177e4 143 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
144 allocated = NULL;
145 if (!anon_vma) {
1da177e4
LT
146 anon_vma = anon_vma_alloc();
147 if (unlikely(!anon_vma))
5beb4930 148 goto out_enomem_free_avc;
1da177e4 149 allocated = anon_vma;
1da177e4
LT
150 }
151
cba48b98 152 anon_vma_lock(anon_vma);
1da177e4
LT
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm->page_table_lock);
155 if (likely(!vma->anon_vma)) {
156 vma->anon_vma = anon_vma;
5beb4930
RR
157 avc->anon_vma = anon_vma;
158 avc->vma = vma;
159 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 160 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 161 allocated = NULL;
31f2b0eb 162 avc = NULL;
1da177e4
LT
163 }
164 spin_unlock(&mm->page_table_lock);
cba48b98 165 anon_vma_unlock(anon_vma);
31f2b0eb
ON
166
167 if (unlikely(allocated))
01d8b20d 168 put_anon_vma(allocated);
31f2b0eb 169 if (unlikely(avc))
5beb4930 170 anon_vma_chain_free(avc);
1da177e4
LT
171 }
172 return 0;
5beb4930
RR
173
174 out_enomem_free_avc:
175 anon_vma_chain_free(avc);
176 out_enomem:
177 return -ENOMEM;
1da177e4
LT
178}
179
5beb4930
RR
180static void anon_vma_chain_link(struct vm_area_struct *vma,
181 struct anon_vma_chain *avc,
182 struct anon_vma *anon_vma)
1da177e4 183{
5beb4930
RR
184 avc->vma = vma;
185 avc->anon_vma = anon_vma;
186 list_add(&avc->same_vma, &vma->anon_vma_chain);
187
cba48b98 188 anon_vma_lock(anon_vma);
05759d38
AA
189 /*
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
192 */
5beb4930 193 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 194 anon_vma_unlock(anon_vma);
1da177e4
LT
195}
196
5beb4930
RR
197/*
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
200 */
201int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 202{
5beb4930
RR
203 struct anon_vma_chain *avc, *pavc;
204
646d87b4 205 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
206 avc = anon_vma_chain_alloc();
207 if (!avc)
208 goto enomem_failure;
209 anon_vma_chain_link(dst, avc, pavc->anon_vma);
210 }
211 return 0;
1da177e4 212
5beb4930
RR
213 enomem_failure:
214 unlink_anon_vmas(dst);
215 return -ENOMEM;
1da177e4
LT
216}
217
5beb4930
RR
218/*
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
222 */
223int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 224{
5beb4930
RR
225 struct anon_vma_chain *avc;
226 struct anon_vma *anon_vma;
1da177e4 227
5beb4930
RR
228 /* Don't bother if the parent process has no anon_vma here. */
229 if (!pvma->anon_vma)
230 return 0;
231
232 /*
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
235 */
236 if (anon_vma_clone(vma, pvma))
237 return -ENOMEM;
238
239 /* Then add our own anon_vma. */
240 anon_vma = anon_vma_alloc();
241 if (!anon_vma)
242 goto out_error;
243 avc = anon_vma_chain_alloc();
244 if (!avc)
245 goto out_error_free_anon_vma;
5c341ee1
RR
246
247 /*
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
250 */
251 anon_vma->root = pvma->anon_vma->root;
76545066 252 /*
01d8b20d
PZ
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
256 */
257 get_anon_vma(anon_vma->root);
5beb4930
RR
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma->anon_vma = anon_vma;
5c341ee1 260 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
261
262 return 0;
263
264 out_error_free_anon_vma:
01d8b20d 265 put_anon_vma(anon_vma);
5beb4930 266 out_error:
4946d54c 267 unlink_anon_vmas(vma);
5beb4930 268 return -ENOMEM;
1da177e4
LT
269}
270
5beb4930 271static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 272{
5beb4930 273 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
274 int empty;
275
5beb4930 276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
277 if (!anon_vma)
278 return;
279
cba48b98 280 anon_vma_lock(anon_vma);
5beb4930 281 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
282
283 /* We must garbage collect the anon_vma if it's empty */
01d8b20d 284 empty = list_empty(&anon_vma->head);
cba48b98 285 anon_vma_unlock(anon_vma);
1da177e4 286
01d8b20d
PZ
287 if (empty)
288 put_anon_vma(anon_vma);
1da177e4
LT
289}
290
5beb4930
RR
291void unlink_anon_vmas(struct vm_area_struct *vma)
292{
293 struct anon_vma_chain *avc, *next;
294
5c341ee1
RR
295 /*
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
298 */
5beb4930
RR
299 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 anon_vma_unlink(avc);
301 list_del(&avc->same_vma);
302 anon_vma_chain_free(avc);
303 }
304}
305
51cc5068 306static void anon_vma_ctor(void *data)
1da177e4 307{
a35afb83 308 struct anon_vma *anon_vma = data;
1da177e4 309
a35afb83 310 spin_lock_init(&anon_vma->lock);
83813267 311 atomic_set(&anon_vma->refcount, 0);
a35afb83 312 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
313}
314
315void __init anon_vma_init(void)
316{
317 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 318 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 319 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
320}
321
322/*
323 * Getting a lock on a stable anon_vma from a page off the LRU is
324 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
325 */
25aeeb04 326struct anon_vma *page_lock_anon_vma(struct page *page)
1da177e4 327{
f1819427 328 struct anon_vma *anon_vma, *root_anon_vma;
1da177e4
LT
329 unsigned long anon_mapping;
330
331 rcu_read_lock();
80e14822 332 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 333 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
334 goto out;
335 if (!page_mapped(page))
336 goto out;
337
338 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
f1819427
HD
339 root_anon_vma = ACCESS_ONCE(anon_vma->root);
340 spin_lock(&root_anon_vma->lock);
341
342 /*
343 * If this page is still mapped, then its anon_vma cannot have been
344 * freed. But if it has been unmapped, we have no security against
345 * the anon_vma structure being freed and reused (for another anon_vma:
346 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
349 */
350 if (page_mapped(page))
351 return anon_vma;
352
353 spin_unlock(&root_anon_vma->lock);
1da177e4
LT
354out:
355 rcu_read_unlock();
34bbd704
ON
356 return NULL;
357}
358
10be22df 359void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 360{
cba48b98 361 anon_vma_unlock(anon_vma);
34bbd704 362 rcu_read_unlock();
1da177e4
LT
363}
364
365/*
3ad33b24
LS
366 * At what user virtual address is page expected in @vma?
367 * Returns virtual address or -EFAULT if page's index/offset is not
368 * within the range mapped the @vma.
1da177e4 369 */
71e3aac0 370inline unsigned long
1da177e4
LT
371vma_address(struct page *page, struct vm_area_struct *vma)
372{
373 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
374 unsigned long address;
375
0fe6e20b
NH
376 if (unlikely(is_vm_hugetlb_page(vma)))
377 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
378 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
379 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 380 /* page should be within @vma mapping range */
1da177e4
LT
381 return -EFAULT;
382 }
383 return address;
384}
385
386/*
bf89c8c8 387 * At what user virtual address is page expected in vma?
ab941e0f 388 * Caller should check the page is actually part of the vma.
1da177e4
LT
389 */
390unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
391{
21d0d443 392 if (PageAnon(page)) {
4829b906
HD
393 struct anon_vma *page__anon_vma = page_anon_vma(page);
394 /*
395 * Note: swapoff's unuse_vma() is more efficient with this
396 * check, and needs it to match anon_vma when KSM is active.
397 */
398 if (!vma->anon_vma || !page__anon_vma ||
399 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
400 return -EFAULT;
401 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
402 if (!vma->vm_file ||
403 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
404 return -EFAULT;
405 } else
406 return -EFAULT;
407 return vma_address(page, vma);
408}
409
81b4082d
ND
410/*
411 * Check that @page is mapped at @address into @mm.
412 *
479db0bf
NP
413 * If @sync is false, page_check_address may perform a racy check to avoid
414 * the page table lock when the pte is not present (helpful when reclaiming
415 * highly shared pages).
416 *
b8072f09 417 * On success returns with pte mapped and locked.
81b4082d 418 */
e9a81a82 419pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 420 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
421{
422 pgd_t *pgd;
423 pud_t *pud;
424 pmd_t *pmd;
425 pte_t *pte;
c0718806 426 spinlock_t *ptl;
81b4082d 427
0fe6e20b
NH
428 if (unlikely(PageHuge(page))) {
429 pte = huge_pte_offset(mm, address);
430 ptl = &mm->page_table_lock;
431 goto check;
432 }
433
81b4082d 434 pgd = pgd_offset(mm, address);
c0718806
HD
435 if (!pgd_present(*pgd))
436 return NULL;
437
438 pud = pud_offset(pgd, address);
439 if (!pud_present(*pud))
440 return NULL;
441
442 pmd = pmd_offset(pud, address);
443 if (!pmd_present(*pmd))
444 return NULL;
71e3aac0
AA
445 if (pmd_trans_huge(*pmd))
446 return NULL;
c0718806
HD
447
448 pte = pte_offset_map(pmd, address);
449 /* Make a quick check before getting the lock */
479db0bf 450 if (!sync && !pte_present(*pte)) {
c0718806
HD
451 pte_unmap(pte);
452 return NULL;
453 }
454
4c21e2f2 455 ptl = pte_lockptr(mm, pmd);
0fe6e20b 456check:
c0718806
HD
457 spin_lock(ptl);
458 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
459 *ptlp = ptl;
460 return pte;
81b4082d 461 }
c0718806
HD
462 pte_unmap_unlock(pte, ptl);
463 return NULL;
81b4082d
ND
464}
465
b291f000
NP
466/**
467 * page_mapped_in_vma - check whether a page is really mapped in a VMA
468 * @page: the page to test
469 * @vma: the VMA to test
470 *
471 * Returns 1 if the page is mapped into the page tables of the VMA, 0
472 * if the page is not mapped into the page tables of this VMA. Only
473 * valid for normal file or anonymous VMAs.
474 */
6a46079c 475int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
476{
477 unsigned long address;
478 pte_t *pte;
479 spinlock_t *ptl;
480
481 address = vma_address(page, vma);
482 if (address == -EFAULT) /* out of vma range */
483 return 0;
484 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
485 if (!pte) /* the page is not in this mm */
486 return 0;
487 pte_unmap_unlock(pte, ptl);
488
489 return 1;
490}
491
1da177e4
LT
492/*
493 * Subfunctions of page_referenced: page_referenced_one called
494 * repeatedly from either page_referenced_anon or page_referenced_file.
495 */
5ad64688
HD
496int page_referenced_one(struct page *page, struct vm_area_struct *vma,
497 unsigned long address, unsigned int *mapcount,
498 unsigned long *vm_flags)
1da177e4
LT
499{
500 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
501 int referenced = 0;
502
71e3aac0
AA
503 if (unlikely(PageTransHuge(page))) {
504 pmd_t *pmd;
505
506 spin_lock(&mm->page_table_lock);
2da28bfd
AA
507 /*
508 * rmap might return false positives; we must filter
509 * these out using page_check_address_pmd().
510 */
71e3aac0
AA
511 pmd = page_check_address_pmd(page, mm, address,
512 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
513 if (!pmd) {
514 spin_unlock(&mm->page_table_lock);
515 goto out;
516 }
517
518 if (vma->vm_flags & VM_LOCKED) {
519 spin_unlock(&mm->page_table_lock);
520 *mapcount = 0; /* break early from loop */
521 *vm_flags |= VM_LOCKED;
522 goto out;
523 }
524
525 /* go ahead even if the pmd is pmd_trans_splitting() */
526 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
527 referenced++;
528 spin_unlock(&mm->page_table_lock);
529 } else {
530 pte_t *pte;
531 spinlock_t *ptl;
532
2da28bfd
AA
533 /*
534 * rmap might return false positives; we must filter
535 * these out using page_check_address().
536 */
71e3aac0
AA
537 pte = page_check_address(page, mm, address, &ptl, 0);
538 if (!pte)
539 goto out;
540
2da28bfd
AA
541 if (vma->vm_flags & VM_LOCKED) {
542 pte_unmap_unlock(pte, ptl);
543 *mapcount = 0; /* break early from loop */
544 *vm_flags |= VM_LOCKED;
545 goto out;
546 }
547
71e3aac0
AA
548 if (ptep_clear_flush_young_notify(vma, address, pte)) {
549 /*
550 * Don't treat a reference through a sequentially read
551 * mapping as such. If the page has been used in
552 * another mapping, we will catch it; if this other
553 * mapping is already gone, the unmap path will have
554 * set PG_referenced or activated the page.
555 */
556 if (likely(!VM_SequentialReadHint(vma)))
557 referenced++;
558 }
559 pte_unmap_unlock(pte, ptl);
560 }
561
2da28bfd
AA
562 /* Pretend the page is referenced if the task has the
563 swap token and is in the middle of a page fault. */
564 if (mm != current->mm && has_swap_token(mm) &&
565 rwsem_is_locked(&mm->mmap_sem))
566 referenced++;
567
c0718806 568 (*mapcount)--;
273f047e 569
6fe6b7e3
WF
570 if (referenced)
571 *vm_flags |= vma->vm_flags;
273f047e 572out:
1da177e4
LT
573 return referenced;
574}
575
bed7161a 576static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
577 struct mem_cgroup *mem_cont,
578 unsigned long *vm_flags)
1da177e4
LT
579{
580 unsigned int mapcount;
581 struct anon_vma *anon_vma;
5beb4930 582 struct anon_vma_chain *avc;
1da177e4
LT
583 int referenced = 0;
584
585 anon_vma = page_lock_anon_vma(page);
586 if (!anon_vma)
587 return referenced;
588
589 mapcount = page_mapcount(page);
5beb4930
RR
590 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
591 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
592 unsigned long address = vma_address(page, vma);
593 if (address == -EFAULT)
594 continue;
bed7161a
BS
595 /*
596 * If we are reclaiming on behalf of a cgroup, skip
597 * counting on behalf of references from different
598 * cgroups
599 */
bd845e38 600 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 601 continue;
1cb1729b 602 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 603 &mapcount, vm_flags);
1da177e4
LT
604 if (!mapcount)
605 break;
606 }
34bbd704
ON
607
608 page_unlock_anon_vma(anon_vma);
1da177e4
LT
609 return referenced;
610}
611
612/**
613 * page_referenced_file - referenced check for object-based rmap
614 * @page: the page we're checking references on.
43d8eac4 615 * @mem_cont: target memory controller
6fe6b7e3 616 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
617 *
618 * For an object-based mapped page, find all the places it is mapped and
619 * check/clear the referenced flag. This is done by following the page->mapping
620 * pointer, then walking the chain of vmas it holds. It returns the number
621 * of references it found.
622 *
623 * This function is only called from page_referenced for object-based pages.
624 */
bed7161a 625static int page_referenced_file(struct page *page,
6fe6b7e3
WF
626 struct mem_cgroup *mem_cont,
627 unsigned long *vm_flags)
1da177e4
LT
628{
629 unsigned int mapcount;
630 struct address_space *mapping = page->mapping;
631 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
632 struct vm_area_struct *vma;
633 struct prio_tree_iter iter;
634 int referenced = 0;
635
636 /*
637 * The caller's checks on page->mapping and !PageAnon have made
638 * sure that this is a file page: the check for page->mapping
639 * excludes the case just before it gets set on an anon page.
640 */
641 BUG_ON(PageAnon(page));
642
643 /*
644 * The page lock not only makes sure that page->mapping cannot
645 * suddenly be NULLified by truncation, it makes sure that the
646 * structure at mapping cannot be freed and reused yet,
3d48ae45 647 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
648 */
649 BUG_ON(!PageLocked(page));
650
3d48ae45 651 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
652
653 /*
3d48ae45 654 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
655 * is more likely to be accurate if we note it after spinning.
656 */
657 mapcount = page_mapcount(page);
658
659 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
660 unsigned long address = vma_address(page, vma);
661 if (address == -EFAULT)
662 continue;
bed7161a
BS
663 /*
664 * If we are reclaiming on behalf of a cgroup, skip
665 * counting on behalf of references from different
666 * cgroups
667 */
bd845e38 668 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 669 continue;
1cb1729b 670 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 671 &mapcount, vm_flags);
1da177e4
LT
672 if (!mapcount)
673 break;
674 }
675
3d48ae45 676 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
677 return referenced;
678}
679
680/**
681 * page_referenced - test if the page was referenced
682 * @page: the page to test
683 * @is_locked: caller holds lock on the page
43d8eac4 684 * @mem_cont: target memory controller
6fe6b7e3 685 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
686 *
687 * Quick test_and_clear_referenced for all mappings to a page,
688 * returns the number of ptes which referenced the page.
689 */
6fe6b7e3
WF
690int page_referenced(struct page *page,
691 int is_locked,
692 struct mem_cgroup *mem_cont,
693 unsigned long *vm_flags)
1da177e4
LT
694{
695 int referenced = 0;
5ad64688 696 int we_locked = 0;
1da177e4 697
6fe6b7e3 698 *vm_flags = 0;
3ca7b3c5 699 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
700 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
701 we_locked = trylock_page(page);
702 if (!we_locked) {
703 referenced++;
704 goto out;
705 }
706 }
707 if (unlikely(PageKsm(page)))
708 referenced += page_referenced_ksm(page, mem_cont,
709 vm_flags);
710 else if (PageAnon(page))
6fe6b7e3
WF
711 referenced += page_referenced_anon(page, mem_cont,
712 vm_flags);
5ad64688 713 else if (page->mapping)
6fe6b7e3
WF
714 referenced += page_referenced_file(page, mem_cont,
715 vm_flags);
5ad64688 716 if (we_locked)
1da177e4 717 unlock_page(page);
1da177e4 718 }
5ad64688 719out:
2d42552d 720 if (page_test_and_clear_young(page_to_pfn(page)))
5b7baf05
CB
721 referenced++;
722
1da177e4
LT
723 return referenced;
724}
725
1cb1729b
HD
726static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
727 unsigned long address)
d08b3851
PZ
728{
729 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 730 pte_t *pte;
d08b3851
PZ
731 spinlock_t *ptl;
732 int ret = 0;
733
479db0bf 734 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
735 if (!pte)
736 goto out;
737
c2fda5fe
PZ
738 if (pte_dirty(*pte) || pte_write(*pte)) {
739 pte_t entry;
d08b3851 740
c2fda5fe 741 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 742 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
743 entry = pte_wrprotect(entry);
744 entry = pte_mkclean(entry);
d6e88e67 745 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
746 ret = 1;
747 }
d08b3851 748
d08b3851
PZ
749 pte_unmap_unlock(pte, ptl);
750out:
751 return ret;
752}
753
754static int page_mkclean_file(struct address_space *mapping, struct page *page)
755{
756 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
757 struct vm_area_struct *vma;
758 struct prio_tree_iter iter;
759 int ret = 0;
760
761 BUG_ON(PageAnon(page));
762
3d48ae45 763 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 764 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
765 if (vma->vm_flags & VM_SHARED) {
766 unsigned long address = vma_address(page, vma);
767 if (address == -EFAULT)
768 continue;
769 ret += page_mkclean_one(page, vma, address);
770 }
d08b3851 771 }
3d48ae45 772 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
773 return ret;
774}
775
776int page_mkclean(struct page *page)
777{
778 int ret = 0;
779
780 BUG_ON(!PageLocked(page));
781
782 if (page_mapped(page)) {
783 struct address_space *mapping = page_mapping(page);
ce7e9fae 784 if (mapping) {
d08b3851 785 ret = page_mkclean_file(mapping, page);
2d42552d 786 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 787 ret = 1;
6c210482 788 }
d08b3851
PZ
789 }
790
791 return ret;
792}
60b59bea 793EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 794
c44b6743
RR
795/**
796 * page_move_anon_rmap - move a page to our anon_vma
797 * @page: the page to move to our anon_vma
798 * @vma: the vma the page belongs to
799 * @address: the user virtual address mapped
800 *
801 * When a page belongs exclusively to one process after a COW event,
802 * that page can be moved into the anon_vma that belongs to just that
803 * process, so the rmap code will not search the parent or sibling
804 * processes.
805 */
806void page_move_anon_rmap(struct page *page,
807 struct vm_area_struct *vma, unsigned long address)
808{
809 struct anon_vma *anon_vma = vma->anon_vma;
810
811 VM_BUG_ON(!PageLocked(page));
812 VM_BUG_ON(!anon_vma);
813 VM_BUG_ON(page->index != linear_page_index(vma, address));
814
815 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
816 page->mapping = (struct address_space *) anon_vma;
817}
818
9617d95e 819/**
4e1c1975
AK
820 * __page_set_anon_rmap - set up new anonymous rmap
821 * @page: Page to add to rmap
822 * @vma: VM area to add page to.
823 * @address: User virtual address of the mapping
e8a03feb 824 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
825 */
826static void __page_set_anon_rmap(struct page *page,
e8a03feb 827 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 828{
e8a03feb 829 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 830
e8a03feb 831 BUG_ON(!anon_vma);
ea90002b 832
4e1c1975
AK
833 if (PageAnon(page))
834 return;
835
ea90002b 836 /*
e8a03feb
RR
837 * If the page isn't exclusively mapped into this vma,
838 * we must use the _oldest_ possible anon_vma for the
839 * page mapping!
ea90002b 840 */
4e1c1975 841 if (!exclusive)
288468c3 842 anon_vma = anon_vma->root;
9617d95e 843
9617d95e
NP
844 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
845 page->mapping = (struct address_space *) anon_vma;
9617d95e 846 page->index = linear_page_index(vma, address);
9617d95e
NP
847}
848
c97a9e10 849/**
43d8eac4 850 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
851 * @page: the page to add the mapping to
852 * @vma: the vm area in which the mapping is added
853 * @address: the user virtual address mapped
854 */
855static void __page_check_anon_rmap(struct page *page,
856 struct vm_area_struct *vma, unsigned long address)
857{
858#ifdef CONFIG_DEBUG_VM
859 /*
860 * The page's anon-rmap details (mapping and index) are guaranteed to
861 * be set up correctly at this point.
862 *
863 * We have exclusion against page_add_anon_rmap because the caller
864 * always holds the page locked, except if called from page_dup_rmap,
865 * in which case the page is already known to be setup.
866 *
867 * We have exclusion against page_add_new_anon_rmap because those pages
868 * are initially only visible via the pagetables, and the pte is locked
869 * over the call to page_add_new_anon_rmap.
870 */
44ab57a0 871 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
872 BUG_ON(page->index != linear_page_index(vma, address));
873#endif
874}
875
1da177e4
LT
876/**
877 * page_add_anon_rmap - add pte mapping to an anonymous page
878 * @page: the page to add the mapping to
879 * @vma: the vm area in which the mapping is added
880 * @address: the user virtual address mapped
881 *
5ad64688 882 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
883 * the anon_vma case: to serialize mapping,index checking after setting,
884 * and to ensure that PageAnon is not being upgraded racily to PageKsm
885 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
886 */
887void page_add_anon_rmap(struct page *page,
888 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
889{
890 do_page_add_anon_rmap(page, vma, address, 0);
891}
892
893/*
894 * Special version of the above for do_swap_page, which often runs
895 * into pages that are exclusively owned by the current process.
896 * Everybody else should continue to use page_add_anon_rmap above.
897 */
898void do_page_add_anon_rmap(struct page *page,
899 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 900{
5ad64688 901 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
902 if (first) {
903 if (!PageTransHuge(page))
904 __inc_zone_page_state(page, NR_ANON_PAGES);
905 else
906 __inc_zone_page_state(page,
907 NR_ANON_TRANSPARENT_HUGEPAGES);
908 }
5ad64688
HD
909 if (unlikely(PageKsm(page)))
910 return;
911
c97a9e10
NP
912 VM_BUG_ON(!PageLocked(page));
913 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 914 if (first)
ad8c2ee8 915 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 916 else
c97a9e10 917 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
918}
919
43d8eac4 920/**
9617d95e
NP
921 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
922 * @page: the page to add the mapping to
923 * @vma: the vm area in which the mapping is added
924 * @address: the user virtual address mapped
925 *
926 * Same as page_add_anon_rmap but must only be called on *new* pages.
927 * This means the inc-and-test can be bypassed.
c97a9e10 928 * Page does not have to be locked.
9617d95e
NP
929 */
930void page_add_new_anon_rmap(struct page *page,
931 struct vm_area_struct *vma, unsigned long address)
932{
b5934c53 933 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
934 SetPageSwapBacked(page);
935 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
936 if (!PageTransHuge(page))
937 __inc_zone_page_state(page, NR_ANON_PAGES);
938 else
939 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 940 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 941 if (page_evictable(page, vma))
cbf84b7a 942 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
943 else
944 add_page_to_unevictable_list(page);
9617d95e
NP
945}
946
1da177e4
LT
947/**
948 * page_add_file_rmap - add pte mapping to a file page
949 * @page: the page to add the mapping to
950 *
b8072f09 951 * The caller needs to hold the pte lock.
1da177e4
LT
952 */
953void page_add_file_rmap(struct page *page)
954{
d69b042f 955 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 956 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 957 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 958 }
1da177e4
LT
959}
960
961/**
962 * page_remove_rmap - take down pte mapping from a page
963 * @page: page to remove mapping from
964 *
b8072f09 965 * The caller needs to hold the pte lock.
1da177e4 966 */
edc315fd 967void page_remove_rmap(struct page *page)
1da177e4 968{
b904dcfe
KM
969 /* page still mapped by someone else? */
970 if (!atomic_add_negative(-1, &page->_mapcount))
971 return;
972
973 /*
974 * Now that the last pte has gone, s390 must transfer dirty
975 * flag from storage key to struct page. We can usually skip
976 * this if the page is anon, so about to be freed; but perhaps
977 * not if it's in swapcache - there might be another pte slot
978 * containing the swap entry, but page not yet written to swap.
979 */
2d42552d
MS
980 if ((!PageAnon(page) || PageSwapCache(page)) &&
981 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 982 set_page_dirty(page);
0fe6e20b
NH
983 /*
984 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
985 * and not charged by memcg for now.
986 */
987 if (unlikely(PageHuge(page)))
988 return;
b904dcfe
KM
989 if (PageAnon(page)) {
990 mem_cgroup_uncharge_page(page);
79134171
AA
991 if (!PageTransHuge(page))
992 __dec_zone_page_state(page, NR_ANON_PAGES);
993 else
994 __dec_zone_page_state(page,
995 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
996 } else {
997 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 998 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 999 }
b904dcfe
KM
1000 /*
1001 * It would be tidy to reset the PageAnon mapping here,
1002 * but that might overwrite a racing page_add_anon_rmap
1003 * which increments mapcount after us but sets mapping
1004 * before us: so leave the reset to free_hot_cold_page,
1005 * and remember that it's only reliable while mapped.
1006 * Leaving it set also helps swapoff to reinstate ptes
1007 * faster for those pages still in swapcache.
1008 */
1da177e4
LT
1009}
1010
1011/*
1012 * Subfunctions of try_to_unmap: try_to_unmap_one called
1013 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1014 */
5ad64688
HD
1015int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1017{
1018 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1019 pte_t *pte;
1020 pte_t pteval;
c0718806 1021 spinlock_t *ptl;
1da177e4
LT
1022 int ret = SWAP_AGAIN;
1023
479db0bf 1024 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1025 if (!pte)
81b4082d 1026 goto out;
1da177e4
LT
1027
1028 /*
1029 * If the page is mlock()d, we cannot swap it out.
1030 * If it's recently referenced (perhaps page_referenced
1031 * skipped over this mm) then we should reactivate it.
1032 */
14fa31b8 1033 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1034 if (vma->vm_flags & VM_LOCKED)
1035 goto out_mlock;
1036
af8e3354 1037 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1038 goto out_unmap;
14fa31b8
AK
1039 }
1040 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1041 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042 ret = SWAP_FAIL;
1043 goto out_unmap;
1044 }
1045 }
1da177e4 1046
1da177e4
LT
1047 /* Nuke the page table entry. */
1048 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1049 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1050
1051 /* Move the dirty bit to the physical page now the pte is gone. */
1052 if (pte_dirty(pteval))
1053 set_page_dirty(page);
1054
365e9c87
HD
1055 /* Update high watermark before we lower rss */
1056 update_hiwater_rss(mm);
1057
888b9f7c
AK
1058 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059 if (PageAnon(page))
d559db08 1060 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1061 else
d559db08 1062 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1063 set_pte_at(mm, address, pte,
1064 swp_entry_to_pte(make_hwpoison_entry(page)));
1065 } else if (PageAnon(page)) {
4c21e2f2 1066 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1067
1068 if (PageSwapCache(page)) {
1069 /*
1070 * Store the swap location in the pte.
1071 * See handle_pte_fault() ...
1072 */
570a335b
HD
1073 if (swap_duplicate(entry) < 0) {
1074 set_pte_at(mm, address, pte, pteval);
1075 ret = SWAP_FAIL;
1076 goto out_unmap;
1077 }
0697212a
CL
1078 if (list_empty(&mm->mmlist)) {
1079 spin_lock(&mmlist_lock);
1080 if (list_empty(&mm->mmlist))
1081 list_add(&mm->mmlist, &init_mm.mmlist);
1082 spin_unlock(&mmlist_lock);
1083 }
d559db08 1084 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1085 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1086 } else if (PAGE_MIGRATION) {
0697212a
CL
1087 /*
1088 * Store the pfn of the page in a special migration
1089 * pte. do_swap_page() will wait until the migration
1090 * pte is removed and then restart fault handling.
1091 */
14fa31b8 1092 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1093 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1094 }
1095 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096 BUG_ON(pte_file(*pte));
14fa31b8 1097 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1098 /* Establish migration entry for a file page */
1099 swp_entry_t entry;
1100 entry = make_migration_entry(page, pte_write(pteval));
1101 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102 } else
d559db08 1103 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1104
edc315fd 1105 page_remove_rmap(page);
1da177e4
LT
1106 page_cache_release(page);
1107
1108out_unmap:
c0718806 1109 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1110out:
1111 return ret;
53f79acb 1112
caed0f48
KM
1113out_mlock:
1114 pte_unmap_unlock(pte, ptl);
1115
1116
1117 /*
1118 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119 * unstable result and race. Plus, We can't wait here because
3d48ae45 1120 * we now hold anon_vma->lock or mapping->i_mmap_mutex.
caed0f48
KM
1121 * if trylock failed, the page remain in evictable lru and later
1122 * vmscan could retry to move the page to unevictable lru if the
1123 * page is actually mlocked.
1124 */
1125 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126 if (vma->vm_flags & VM_LOCKED) {
1127 mlock_vma_page(page);
1128 ret = SWAP_MLOCK;
53f79acb 1129 }
caed0f48 1130 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1131 }
1da177e4
LT
1132 return ret;
1133}
1134
1135/*
1136 * objrmap doesn't work for nonlinear VMAs because the assumption that
1137 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138 * Consequently, given a particular page and its ->index, we cannot locate the
1139 * ptes which are mapping that page without an exhaustive linear search.
1140 *
1141 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142 * maps the file to which the target page belongs. The ->vm_private_data field
1143 * holds the current cursor into that scan. Successive searches will circulate
1144 * around the vma's virtual address space.
1145 *
1146 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147 * more scanning pressure is placed against them as well. Eventually pages
1148 * will become fully unmapped and are eligible for eviction.
1149 *
1150 * For very sparsely populated VMAs this is a little inefficient - chances are
1151 * there there won't be many ptes located within the scan cluster. In this case
1152 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1153 *
1154 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1155 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1156 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1157 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1158 */
1159#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1160#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1161
b291f000
NP
1162static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1164{
1165 struct mm_struct *mm = vma->vm_mm;
1166 pgd_t *pgd;
1167 pud_t *pud;
1168 pmd_t *pmd;
c0718806 1169 pte_t *pte;
1da177e4 1170 pte_t pteval;
c0718806 1171 spinlock_t *ptl;
1da177e4
LT
1172 struct page *page;
1173 unsigned long address;
1174 unsigned long end;
b291f000
NP
1175 int ret = SWAP_AGAIN;
1176 int locked_vma = 0;
1da177e4 1177
1da177e4
LT
1178 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179 end = address + CLUSTER_SIZE;
1180 if (address < vma->vm_start)
1181 address = vma->vm_start;
1182 if (end > vma->vm_end)
1183 end = vma->vm_end;
1184
1185 pgd = pgd_offset(mm, address);
1186 if (!pgd_present(*pgd))
b291f000 1187 return ret;
1da177e4
LT
1188
1189 pud = pud_offset(pgd, address);
1190 if (!pud_present(*pud))
b291f000 1191 return ret;
1da177e4
LT
1192
1193 pmd = pmd_offset(pud, address);
1194 if (!pmd_present(*pmd))
b291f000
NP
1195 return ret;
1196
1197 /*
af8e3354 1198 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1199 * keep the sem while scanning the cluster for mlocking pages.
1200 */
af8e3354 1201 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1202 locked_vma = (vma->vm_flags & VM_LOCKED);
1203 if (!locked_vma)
1204 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1205 }
c0718806
HD
1206
1207 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1208
365e9c87
HD
1209 /* Update high watermark before we lower rss */
1210 update_hiwater_rss(mm);
1211
c0718806 1212 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1213 if (!pte_present(*pte))
1214 continue;
6aab341e
LT
1215 page = vm_normal_page(vma, address, *pte);
1216 BUG_ON(!page || PageAnon(page));
1da177e4 1217
b291f000
NP
1218 if (locked_vma) {
1219 mlock_vma_page(page); /* no-op if already mlocked */
1220 if (page == check_page)
1221 ret = SWAP_MLOCK;
1222 continue; /* don't unmap */
1223 }
1224
cddb8a5c 1225 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1226 continue;
1227
1228 /* Nuke the page table entry. */
eca35133 1229 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1230 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1231
1232 /* If nonlinear, store the file page offset in the pte. */
1233 if (page->index != linear_page_index(vma, address))
1234 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1235
1236 /* Move the dirty bit to the physical page now the pte is gone. */
1237 if (pte_dirty(pteval))
1238 set_page_dirty(page);
1239
edc315fd 1240 page_remove_rmap(page);
1da177e4 1241 page_cache_release(page);
d559db08 1242 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1243 (*mapcount)--;
1244 }
c0718806 1245 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1246 if (locked_vma)
1247 up_read(&vma->vm_mm->mmap_sem);
1248 return ret;
1da177e4
LT
1249}
1250
71e3aac0 1251bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1252{
1253 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1254
1255 if (!maybe_stack)
1256 return false;
1257
1258 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259 VM_STACK_INCOMPLETE_SETUP)
1260 return true;
1261
1262 return false;
1263}
1264
b291f000
NP
1265/**
1266 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267 * rmap method
1268 * @page: the page to unmap/unlock
8051be5e 1269 * @flags: action and flags
b291f000
NP
1270 *
1271 * Find all the mappings of a page using the mapping pointer and the vma chains
1272 * contained in the anon_vma struct it points to.
1273 *
1274 * This function is only called from try_to_unmap/try_to_munlock for
1275 * anonymous pages.
1276 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277 * where the page was found will be held for write. So, we won't recheck
1278 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1279 * 'LOCKED.
1280 */
14fa31b8 1281static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1282{
1283 struct anon_vma *anon_vma;
5beb4930 1284 struct anon_vma_chain *avc;
1da177e4 1285 int ret = SWAP_AGAIN;
b291f000 1286
1da177e4
LT
1287 anon_vma = page_lock_anon_vma(page);
1288 if (!anon_vma)
1289 return ret;
1290
5beb4930
RR
1291 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1293 unsigned long address;
1294
1295 /*
1296 * During exec, a temporary VMA is setup and later moved.
1297 * The VMA is moved under the anon_vma lock but not the
1298 * page tables leading to a race where migration cannot
1299 * find the migration ptes. Rather than increasing the
1300 * locking requirements of exec(), migration skips
1301 * temporary VMAs until after exec() completes.
1302 */
1303 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304 is_vma_temporary_stack(vma))
1305 continue;
1306
1307 address = vma_address(page, vma);
1cb1729b
HD
1308 if (address == -EFAULT)
1309 continue;
1310 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1311 if (ret != SWAP_AGAIN || !page_mapped(page))
1312 break;
1da177e4 1313 }
34bbd704
ON
1314
1315 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1316 return ret;
1317}
1318
1319/**
b291f000
NP
1320 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321 * @page: the page to unmap/unlock
14fa31b8 1322 * @flags: action and flags
1da177e4
LT
1323 *
1324 * Find all the mappings of a page using the mapping pointer and the vma chains
1325 * contained in the address_space struct it points to.
1326 *
b291f000
NP
1327 * This function is only called from try_to_unmap/try_to_munlock for
1328 * object-based pages.
1329 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330 * where the page was found will be held for write. So, we won't recheck
1331 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1332 * 'LOCKED.
1da177e4 1333 */
14fa31b8 1334static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1335{
1336 struct address_space *mapping = page->mapping;
1337 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338 struct vm_area_struct *vma;
1339 struct prio_tree_iter iter;
1340 int ret = SWAP_AGAIN;
1341 unsigned long cursor;
1342 unsigned long max_nl_cursor = 0;
1343 unsigned long max_nl_size = 0;
1344 unsigned int mapcount;
1345
3d48ae45 1346 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1347 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1348 unsigned long address = vma_address(page, vma);
1349 if (address == -EFAULT)
1350 continue;
1351 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1352 if (ret != SWAP_AGAIN || !page_mapped(page))
1353 goto out;
1da177e4
LT
1354 }
1355
1356 if (list_empty(&mapping->i_mmap_nonlinear))
1357 goto out;
1358
53f79acb
HD
1359 /*
1360 * We don't bother to try to find the munlocked page in nonlinears.
1361 * It's costly. Instead, later, page reclaim logic may call
1362 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1363 */
1364 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365 goto out;
1366
1da177e4
LT
1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368 shared.vm_set.list) {
1da177e4
LT
1369 cursor = (unsigned long) vma->vm_private_data;
1370 if (cursor > max_nl_cursor)
1371 max_nl_cursor = cursor;
1372 cursor = vma->vm_end - vma->vm_start;
1373 if (cursor > max_nl_size)
1374 max_nl_size = cursor;
1375 }
1376
b291f000 1377 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1378 ret = SWAP_FAIL;
1379 goto out;
1380 }
1381
1382 /*
1383 * We don't try to search for this page in the nonlinear vmas,
1384 * and page_referenced wouldn't have found it anyway. Instead
1385 * just walk the nonlinear vmas trying to age and unmap some.
1386 * The mapcount of the page we came in with is irrelevant,
1387 * but even so use it as a guide to how hard we should try?
1388 */
1389 mapcount = page_mapcount(page);
1390 if (!mapcount)
1391 goto out;
3d48ae45 1392 cond_resched();
1da177e4
LT
1393
1394 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395 if (max_nl_cursor == 0)
1396 max_nl_cursor = CLUSTER_SIZE;
1397
1398 do {
1399 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400 shared.vm_set.list) {
1da177e4 1401 cursor = (unsigned long) vma->vm_private_data;
839b9685 1402 while ( cursor < max_nl_cursor &&
1da177e4 1403 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1404 if (try_to_unmap_cluster(cursor, &mapcount,
1405 vma, page) == SWAP_MLOCK)
1406 ret = SWAP_MLOCK;
1da177e4
LT
1407 cursor += CLUSTER_SIZE;
1408 vma->vm_private_data = (void *) cursor;
1409 if ((int)mapcount <= 0)
1410 goto out;
1411 }
1412 vma->vm_private_data = (void *) max_nl_cursor;
1413 }
3d48ae45 1414 cond_resched();
1da177e4
LT
1415 max_nl_cursor += CLUSTER_SIZE;
1416 } while (max_nl_cursor <= max_nl_size);
1417
1418 /*
1419 * Don't loop forever (perhaps all the remaining pages are
1420 * in locked vmas). Reset cursor on all unreserved nonlinear
1421 * vmas, now forgetting on which ones it had fallen behind.
1422 */
101d2be7
HD
1423 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424 vma->vm_private_data = NULL;
1da177e4 1425out:
3d48ae45 1426 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1427 return ret;
1428}
1429
1430/**
1431 * try_to_unmap - try to remove all page table mappings to a page
1432 * @page: the page to get unmapped
14fa31b8 1433 * @flags: action and flags
1da177e4
LT
1434 *
1435 * Tries to remove all the page table entries which are mapping this
1436 * page, used in the pageout path. Caller must hold the page lock.
1437 * Return values are:
1438 *
1439 * SWAP_SUCCESS - we succeeded in removing all mappings
1440 * SWAP_AGAIN - we missed a mapping, try again later
1441 * SWAP_FAIL - the page is unswappable
b291f000 1442 * SWAP_MLOCK - page is mlocked.
1da177e4 1443 */
14fa31b8 1444int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1445{
1446 int ret;
1447
1da177e4 1448 BUG_ON(!PageLocked(page));
91600e9e 1449 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1450
5ad64688
HD
1451 if (unlikely(PageKsm(page)))
1452 ret = try_to_unmap_ksm(page, flags);
1453 else if (PageAnon(page))
14fa31b8 1454 ret = try_to_unmap_anon(page, flags);
1da177e4 1455 else
14fa31b8 1456 ret = try_to_unmap_file(page, flags);
b291f000 1457 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1458 ret = SWAP_SUCCESS;
1459 return ret;
1460}
81b4082d 1461
b291f000
NP
1462/**
1463 * try_to_munlock - try to munlock a page
1464 * @page: the page to be munlocked
1465 *
1466 * Called from munlock code. Checks all of the VMAs mapping the page
1467 * to make sure nobody else has this page mlocked. The page will be
1468 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1469 *
1470 * Return values are:
1471 *
53f79acb 1472 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1473 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1474 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1475 * SWAP_MLOCK - page is now mlocked.
1476 */
1477int try_to_munlock(struct page *page)
1478{
1479 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1480
5ad64688
HD
1481 if (unlikely(PageKsm(page)))
1482 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483 else if (PageAnon(page))
14fa31b8 1484 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1485 else
14fa31b8 1486 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1487}
e9995ef9 1488
01d8b20d 1489void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1490{
01d8b20d 1491 struct anon_vma *root = anon_vma->root;
76545066 1492
01d8b20d
PZ
1493 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1494 anon_vma_free(root);
76545066 1495
01d8b20d 1496 anon_vma_free(anon_vma);
76545066 1497}
76545066 1498
e9995ef9
HD
1499#ifdef CONFIG_MIGRATION
1500/*
1501 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1502 * Called by migrate.c to remove migration ptes, but might be used more later.
1503 */
1504static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1505 struct vm_area_struct *, unsigned long, void *), void *arg)
1506{
1507 struct anon_vma *anon_vma;
5beb4930 1508 struct anon_vma_chain *avc;
e9995ef9
HD
1509 int ret = SWAP_AGAIN;
1510
1511 /*
1512 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1513 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1514 * are holding mmap_sem. Users without mmap_sem are required to
1515 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1516 */
1517 anon_vma = page_anon_vma(page);
1518 if (!anon_vma)
1519 return ret;
cba48b98 1520 anon_vma_lock(anon_vma);
5beb4930
RR
1521 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1522 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1523 unsigned long address = vma_address(page, vma);
1524 if (address == -EFAULT)
1525 continue;
1526 ret = rmap_one(page, vma, address, arg);
1527 if (ret != SWAP_AGAIN)
1528 break;
1529 }
cba48b98 1530 anon_vma_unlock(anon_vma);
e9995ef9
HD
1531 return ret;
1532}
1533
1534static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1535 struct vm_area_struct *, unsigned long, void *), void *arg)
1536{
1537 struct address_space *mapping = page->mapping;
1538 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1539 struct vm_area_struct *vma;
1540 struct prio_tree_iter iter;
1541 int ret = SWAP_AGAIN;
1542
1543 if (!mapping)
1544 return ret;
3d48ae45 1545 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1546 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1547 unsigned long address = vma_address(page, vma);
1548 if (address == -EFAULT)
1549 continue;
1550 ret = rmap_one(page, vma, address, arg);
1551 if (ret != SWAP_AGAIN)
1552 break;
1553 }
1554 /*
1555 * No nonlinear handling: being always shared, nonlinear vmas
1556 * never contain migration ptes. Decide what to do about this
1557 * limitation to linear when we need rmap_walk() on nonlinear.
1558 */
3d48ae45 1559 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1560 return ret;
1561}
1562
1563int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1564 struct vm_area_struct *, unsigned long, void *), void *arg)
1565{
1566 VM_BUG_ON(!PageLocked(page));
1567
1568 if (unlikely(PageKsm(page)))
1569 return rmap_walk_ksm(page, rmap_one, arg);
1570 else if (PageAnon(page))
1571 return rmap_walk_anon(page, rmap_one, arg);
1572 else
1573 return rmap_walk_file(page, rmap_one, arg);
1574}
1575#endif /* CONFIG_MIGRATION */
0fe6e20b 1576
e3390f67 1577#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1578/*
1579 * The following three functions are for anonymous (private mapped) hugepages.
1580 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1581 * and no lru code, because we handle hugepages differently from common pages.
1582 */
1583static void __hugepage_set_anon_rmap(struct page *page,
1584 struct vm_area_struct *vma, unsigned long address, int exclusive)
1585{
1586 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1587
0fe6e20b 1588 BUG_ON(!anon_vma);
433abed6
NH
1589
1590 if (PageAnon(page))
1591 return;
1592 if (!exclusive)
1593 anon_vma = anon_vma->root;
1594
0fe6e20b
NH
1595 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1596 page->mapping = (struct address_space *) anon_vma;
1597 page->index = linear_page_index(vma, address);
1598}
1599
1600void hugepage_add_anon_rmap(struct page *page,
1601 struct vm_area_struct *vma, unsigned long address)
1602{
1603 struct anon_vma *anon_vma = vma->anon_vma;
1604 int first;
a850ea30
NH
1605
1606 BUG_ON(!PageLocked(page));
0fe6e20b
NH
1607 BUG_ON(!anon_vma);
1608 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1609 first = atomic_inc_and_test(&page->_mapcount);
1610 if (first)
1611 __hugepage_set_anon_rmap(page, vma, address, 0);
1612}
1613
1614void hugepage_add_new_anon_rmap(struct page *page,
1615 struct vm_area_struct *vma, unsigned long address)
1616{
1617 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1618 atomic_set(&page->_mapcount, 0);
1619 __hugepage_set_anon_rmap(page, vma, address, 1);
1620}
e3390f67 1621#endif /* CONFIG_HUGETLB_PAGE */