stacktrace: introduce snprint_stack_trace for buffer output
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_ext.c
CommitLineData
eefa864b
JK
1#include <linux/mm.h>
2#include <linux/mmzone.h>
3#include <linux/bootmem.h>
4#include <linux/page_ext.h>
5#include <linux/memory.h>
6#include <linux/vmalloc.h>
7#include <linux/kmemleak.h>
8
9/*
10 * struct page extension
11 *
12 * This is the feature to manage memory for extended data per page.
13 *
14 * Until now, we must modify struct page itself to store extra data per page.
15 * This requires rebuilding the kernel and it is really time consuming process.
16 * And, sometimes, rebuild is impossible due to third party module dependency.
17 * At last, enlarging struct page could cause un-wanted system behaviour change.
18 *
19 * This feature is intended to overcome above mentioned problems. This feature
20 * allocates memory for extended data per page in certain place rather than
21 * the struct page itself. This memory can be accessed by the accessor
22 * functions provided by this code. During the boot process, it checks whether
23 * allocation of huge chunk of memory is needed or not. If not, it avoids
24 * allocating memory at all. With this advantage, we can include this feature
25 * into the kernel in default and can avoid rebuild and solve related problems.
26 *
27 * To help these things to work well, there are two callbacks for clients. One
28 * is the need callback which is mandatory if user wants to avoid useless
29 * memory allocation at boot-time. The other is optional, init callback, which
30 * is used to do proper initialization after memory is allocated.
31 *
32 * The need callback is used to decide whether extended memory allocation is
33 * needed or not. Sometimes users want to deactivate some features in this
34 * boot and extra memory would be unneccessary. In this case, to avoid
35 * allocating huge chunk of memory, each clients represent their need of
36 * extra memory through the need callback. If one of the need callbacks
37 * returns true, it means that someone needs extra memory so that
38 * page extension core should allocates memory for page extension. If
39 * none of need callbacks return true, memory isn't needed at all in this boot
40 * and page extension core can skip to allocate memory. As result,
41 * none of memory is wasted.
42 *
43 * The init callback is used to do proper initialization after page extension
44 * is completely initialized. In sparse memory system, extra memory is
45 * allocated some time later than memmap is allocated. In other words, lifetime
46 * of memory for page extension isn't same with memmap for struct page.
47 * Therefore, clients can't store extra data until page extension is
48 * initialized, even if pages are allocated and used freely. This could
49 * cause inadequate state of extra data per page, so, to prevent it, client
50 * can utilize this callback to initialize the state of it correctly.
51 */
52
53static struct page_ext_operations *page_ext_ops[] = {
e30825f1
JK
54 &debug_guardpage_ops,
55#ifdef CONFIG_PAGE_POISONING
56 &page_poisoning_ops,
57#endif
eefa864b
JK
58};
59
60static unsigned long total_usage;
61
62static bool __init invoke_need_callbacks(void)
63{
64 int i;
65 int entries = ARRAY_SIZE(page_ext_ops);
66
67 for (i = 0; i < entries; i++) {
68 if (page_ext_ops[i]->need && page_ext_ops[i]->need())
69 return true;
70 }
71
72 return false;
73}
74
75static void __init invoke_init_callbacks(void)
76{
77 int i;
78 int entries = ARRAY_SIZE(page_ext_ops);
79
80 for (i = 0; i < entries; i++) {
81 if (page_ext_ops[i]->init)
82 page_ext_ops[i]->init();
83 }
84}
85
86#if !defined(CONFIG_SPARSEMEM)
87
88
89void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
90{
91 pgdat->node_page_ext = NULL;
92}
93
94struct page_ext *lookup_page_ext(struct page *page)
95{
96 unsigned long pfn = page_to_pfn(page);
97 unsigned long offset;
98 struct page_ext *base;
99
100 base = NODE_DATA(page_to_nid(page))->node_page_ext;
101#ifdef CONFIG_DEBUG_VM
102 /*
103 * The sanity checks the page allocator does upon freeing a
104 * page can reach here before the page_ext arrays are
105 * allocated when feeding a range of pages to the allocator
106 * for the first time during bootup or memory hotplug.
107 */
108 if (unlikely(!base))
109 return NULL;
110#endif
111 offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
112 MAX_ORDER_NR_PAGES);
113 return base + offset;
114}
115
116static int __init alloc_node_page_ext(int nid)
117{
118 struct page_ext *base;
119 unsigned long table_size;
120 unsigned long nr_pages;
121
122 nr_pages = NODE_DATA(nid)->node_spanned_pages;
123 if (!nr_pages)
124 return 0;
125
126 /*
127 * Need extra space if node range is not aligned with
128 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
129 * checks buddy's status, range could be out of exact node range.
130 */
131 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
132 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
133 nr_pages += MAX_ORDER_NR_PAGES;
134
135 table_size = sizeof(struct page_ext) * nr_pages;
136
137 base = memblock_virt_alloc_try_nid_nopanic(
138 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
139 BOOTMEM_ALLOC_ACCESSIBLE, nid);
140 if (!base)
141 return -ENOMEM;
142 NODE_DATA(nid)->node_page_ext = base;
143 total_usage += table_size;
144 return 0;
145}
146
147void __init page_ext_init_flatmem(void)
148{
149
150 int nid, fail;
151
152 if (!invoke_need_callbacks())
153 return;
154
155 for_each_online_node(nid) {
156 fail = alloc_node_page_ext(nid);
157 if (fail)
158 goto fail;
159 }
160 pr_info("allocated %ld bytes of page_ext\n", total_usage);
161 invoke_init_callbacks();
162 return;
163
164fail:
165 pr_crit("allocation of page_ext failed.\n");
166 panic("Out of memory");
167}
168
169#else /* CONFIG_FLAT_NODE_MEM_MAP */
170
171struct page_ext *lookup_page_ext(struct page *page)
172{
173 unsigned long pfn = page_to_pfn(page);
174 struct mem_section *section = __pfn_to_section(pfn);
175#ifdef CONFIG_DEBUG_VM
176 /*
177 * The sanity checks the page allocator does upon freeing a
178 * page can reach here before the page_ext arrays are
179 * allocated when feeding a range of pages to the allocator
180 * for the first time during bootup or memory hotplug.
181 */
182 if (!section->page_ext)
183 return NULL;
184#endif
185 return section->page_ext + pfn;
186}
187
188static void *__meminit alloc_page_ext(size_t size, int nid)
189{
190 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
191 void *addr = NULL;
192
193 addr = alloc_pages_exact_nid(nid, size, flags);
194 if (addr) {
195 kmemleak_alloc(addr, size, 1, flags);
196 return addr;
197 }
198
199 if (node_state(nid, N_HIGH_MEMORY))
200 addr = vzalloc_node(size, nid);
201 else
202 addr = vzalloc(size);
203
204 return addr;
205}
206
207static int __meminit init_section_page_ext(unsigned long pfn, int nid)
208{
209 struct mem_section *section;
210 struct page_ext *base;
211 unsigned long table_size;
212
213 section = __pfn_to_section(pfn);
214
215 if (section->page_ext)
216 return 0;
217
218 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
219 base = alloc_page_ext(table_size, nid);
220
221 /*
222 * The value stored in section->page_ext is (base - pfn)
223 * and it does not point to the memory block allocated above,
224 * causing kmemleak false positives.
225 */
226 kmemleak_not_leak(base);
227
228 if (!base) {
229 pr_err("page ext allocation failure\n");
230 return -ENOMEM;
231 }
232
233 /*
234 * The passed "pfn" may not be aligned to SECTION. For the calculation
235 * we need to apply a mask.
236 */
237 pfn &= PAGE_SECTION_MASK;
238 section->page_ext = base - pfn;
239 total_usage += table_size;
240 return 0;
241}
242#ifdef CONFIG_MEMORY_HOTPLUG
243static void free_page_ext(void *addr)
244{
245 if (is_vmalloc_addr(addr)) {
246 vfree(addr);
247 } else {
248 struct page *page = virt_to_page(addr);
249 size_t table_size;
250
251 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
252
253 BUG_ON(PageReserved(page));
254 free_pages_exact(addr, table_size);
255 }
256}
257
258static void __free_page_ext(unsigned long pfn)
259{
260 struct mem_section *ms;
261 struct page_ext *base;
262
263 ms = __pfn_to_section(pfn);
264 if (!ms || !ms->page_ext)
265 return;
266 base = ms->page_ext + pfn;
267 free_page_ext(base);
268 ms->page_ext = NULL;
269}
270
271static int __meminit online_page_ext(unsigned long start_pfn,
272 unsigned long nr_pages,
273 int nid)
274{
275 unsigned long start, end, pfn;
276 int fail = 0;
277
278 start = SECTION_ALIGN_DOWN(start_pfn);
279 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
280
281 if (nid == -1) {
282 /*
283 * In this case, "nid" already exists and contains valid memory.
284 * "start_pfn" passed to us is a pfn which is an arg for
285 * online__pages(), and start_pfn should exist.
286 */
287 nid = pfn_to_nid(start_pfn);
288 VM_BUG_ON(!node_state(nid, N_ONLINE));
289 }
290
291 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
292 if (!pfn_present(pfn))
293 continue;
294 fail = init_section_page_ext(pfn, nid);
295 }
296 if (!fail)
297 return 0;
298
299 /* rollback */
300 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
301 __free_page_ext(pfn);
302
303 return -ENOMEM;
304}
305
306static int __meminit offline_page_ext(unsigned long start_pfn,
307 unsigned long nr_pages, int nid)
308{
309 unsigned long start, end, pfn;
310
311 start = SECTION_ALIGN_DOWN(start_pfn);
312 end = SECTION_ALIGN_UP(start_pfn + nr_pages);
313
314 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
315 __free_page_ext(pfn);
316 return 0;
317
318}
319
320static int __meminit page_ext_callback(struct notifier_block *self,
321 unsigned long action, void *arg)
322{
323 struct memory_notify *mn = arg;
324 int ret = 0;
325
326 switch (action) {
327 case MEM_GOING_ONLINE:
328 ret = online_page_ext(mn->start_pfn,
329 mn->nr_pages, mn->status_change_nid);
330 break;
331 case MEM_OFFLINE:
332 offline_page_ext(mn->start_pfn,
333 mn->nr_pages, mn->status_change_nid);
334 break;
335 case MEM_CANCEL_ONLINE:
336 offline_page_ext(mn->start_pfn,
337 mn->nr_pages, mn->status_change_nid);
338 break;
339 case MEM_GOING_OFFLINE:
340 break;
341 case MEM_ONLINE:
342 case MEM_CANCEL_OFFLINE:
343 break;
344 }
345
346 return notifier_from_errno(ret);
347}
348
349#endif
350
351void __init page_ext_init(void)
352{
353 unsigned long pfn;
354 int nid;
355
356 if (!invoke_need_callbacks())
357 return;
358
359 for_each_node_state(nid, N_MEMORY) {
360 unsigned long start_pfn, end_pfn;
361
362 start_pfn = node_start_pfn(nid);
363 end_pfn = node_end_pfn(nid);
364 /*
365 * start_pfn and end_pfn may not be aligned to SECTION and the
366 * page->flags of out of node pages are not initialized. So we
367 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
368 */
369 for (pfn = start_pfn; pfn < end_pfn;
370 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
371
372 if (!pfn_valid(pfn))
373 continue;
374 /*
375 * Nodes's pfns can be overlapping.
376 * We know some arch can have a nodes layout such as
377 * -------------pfn-------------->
378 * N0 | N1 | N2 | N0 | N1 | N2|....
379 */
380 if (pfn_to_nid(pfn) != nid)
381 continue;
382 if (init_section_page_ext(pfn, nid))
383 goto oom;
384 }
385 }
386 hotplug_memory_notifier(page_ext_callback, 0);
387 pr_info("allocated %ld bytes of page_ext\n", total_usage);
388 invoke_init_callbacks();
389 return;
390
391oom:
392 panic("Out of memory");
393}
394
395void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
396{
397}
398
399#endif