usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
452aa699
RW
128#ifdef CONFIG_PM_SLEEP
129/*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
c9e664f1
RW
137
138static gfp_t saved_gfp_mask;
139
140void pm_restore_gfp_mask(void)
452aa699
RW
141{
142 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
452aa699
RW
147}
148
c9e664f1 149void pm_restrict_gfp_mask(void)
452aa699 150{
452aa699 151 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
d0164adc 154 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 155}
f90ac398
MG
156
157bool pm_suspended_storage(void)
158{
d0164adc 159 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
160 return false;
161 return true;
162}
452aa699
RW
163#endif /* CONFIG_PM_SLEEP */
164
d9c23400 165#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 166unsigned int pageblock_order __read_mostly;
d9c23400
MG
167#endif
168
d98c7a09 169static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 170
1da177e4
LT
171/*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
1da177e4 181 */
2f1b6248 182int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 183#ifdef CONFIG_ZONE_DMA
2f1b6248 184 256,
4b51d669 185#endif
fb0e7942 186#ifdef CONFIG_ZONE_DMA32
2f1b6248 187 256,
fb0e7942 188#endif
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 32,
e53ef38d 191#endif
2a1e274a 192 32,
2f1b6248 193};
1da177e4
LT
194
195EXPORT_SYMBOL(totalram_pages);
1da177e4 196
15ad7cdc 197static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 198#ifdef CONFIG_ZONE_DMA
2f1b6248 199 "DMA",
4b51d669 200#endif
fb0e7942 201#ifdef CONFIG_ZONE_DMA32
2f1b6248 202 "DMA32",
fb0e7942 203#endif
2f1b6248 204 "Normal",
e53ef38d 205#ifdef CONFIG_HIGHMEM
2a1e274a 206 "HighMem",
e53ef38d 207#endif
2a1e274a 208 "Movable",
033fbae9
DW
209#ifdef CONFIG_ZONE_DEVICE
210 "Device",
211#endif
2f1b6248
CL
212};
213
f1e61557
KS
214static void free_compound_page(struct page *page);
215compound_page_dtor * const compound_page_dtors[] = {
216 NULL,
217 free_compound_page,
218#ifdef CONFIG_HUGETLB_PAGE
219 free_huge_page,
220#endif
221};
222
f8ade366
RR
223/*
224 * Try to keep at least this much lowmem free. Do not allow normal
225 * allocations below this point, only high priority ones. Automatically
226 * tuned according to the amount of memory in the system.
227 */
1da177e4 228int min_free_kbytes = 1024;
42aa83cb 229int user_min_free_kbytes = -1;
1da177e4 230
f8ade366
RR
231/*
232 * Extra memory for the system to try freeing. Used to temporarily
233 * free memory, to make space for new workloads. Anyone can allocate
234 * down to the min watermarks controlled by min_free_kbytes above.
235 */
236int extra_free_kbytes = 0;
237
2c85f51d
JB
238static unsigned long __meminitdata nr_kernel_pages;
239static unsigned long __meminitdata nr_all_pages;
a3142c8e 240static unsigned long __meminitdata dma_reserve;
1da177e4 241
0ee332c1
TH
242#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
243static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
244static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
245static unsigned long __initdata required_kernelcore;
246static unsigned long __initdata required_movablecore;
247static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
248
249/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
250int movable_zone;
251EXPORT_SYMBOL(movable_zone);
252#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 253
418508c1
MS
254#if MAX_NUMNODES > 1
255int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 256int nr_online_nodes __read_mostly = 1;
418508c1 257EXPORT_SYMBOL(nr_node_ids);
62bc62a8 258EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
259#endif
260
9ef9acb0
MG
261int page_group_by_mobility_disabled __read_mostly;
262
3a80a7fa 263#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
c1b3703b
PT
264
265/*
266 * Determine how many pages need to be initialized durig early boot
267 * (non-deferred initialization).
268 * The value of first_deferred_pfn will be set later, once non-deferred pages
269 * are initialized, but for now set it ULONG_MAX.
270 */
3a80a7fa
MG
271static inline void reset_deferred_meminit(pg_data_t *pgdat)
272{
c1b3703b
PT
273 phys_addr_t start_addr, end_addr;
274 unsigned long max_pgcnt;
275 unsigned long reserved;
cb1fb15c
MH
276
277 /*
278 * Initialise at least 2G of a node but also take into account that
279 * two large system hashes that can take up 1GB for 0.25TB/node.
280 */
c1b3703b
PT
281 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
282 (pgdat->node_spanned_pages >> 8));
cb1fb15c
MH
283
284 /*
285 * Compensate the all the memblock reservations (e.g. crash kernel)
286 * from the initial estimation to make sure we will initialize enough
287 * memory to boot.
288 */
c1b3703b
PT
289 start_addr = PFN_PHYS(pgdat->node_start_pfn);
290 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
291 reserved = memblock_reserved_memory_within(start_addr, end_addr);
292 max_pgcnt += PHYS_PFN(reserved);
cb1fb15c 293
c1b3703b 294 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
295 pgdat->first_deferred_pfn = ULONG_MAX;
296}
297
298/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 299static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 300{
becdfa32
MG
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
304 return true;
305
306 return false;
307}
308
7e18adb4
MG
309static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
310{
311 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
312 return true;
313
314 return false;
315}
316
3a80a7fa
MG
317/*
318 * Returns false when the remaining initialisation should be deferred until
319 * later in the boot cycle when it can be parallelised.
320 */
321static inline bool update_defer_init(pg_data_t *pgdat,
322 unsigned long pfn, unsigned long zone_end,
323 unsigned long *nr_initialised)
324{
325 /* Always populate low zones for address-contrained allocations */
326 if (zone_end < pgdat_end_pfn(pgdat))
327 return true;
3a80a7fa
MG
328 /* Initialise at least 2G of the highest zone */
329 (*nr_initialised)++;
c1b3703b 330 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337}
338#else
339static inline void reset_deferred_meminit(pg_data_t *pgdat)
340{
341}
342
343static inline bool early_page_uninitialised(unsigned long pfn)
344{
345 return false;
346}
347
7e18adb4
MG
348static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
349{
350 return false;
351}
352
3a80a7fa
MG
353static inline bool update_defer_init(pg_data_t *pgdat,
354 unsigned long pfn, unsigned long zone_end,
355 unsigned long *nr_initialised)
356{
357 return true;
358}
359#endif
360
361
ee6f509c 362void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 363{
5d0f3f72
KM
364 if (unlikely(page_group_by_mobility_disabled &&
365 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
366 migratetype = MIGRATE_UNMOVABLE;
367
b2a0ac88
MG
368 set_pageblock_flags_group(page, (unsigned long)migratetype,
369 PB_migrate, PB_migrate_end);
370}
371
13e7444b 372#ifdef CONFIG_DEBUG_VM
c6a57e19 373static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 374{
bdc8cb98
DH
375 int ret = 0;
376 unsigned seq;
377 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 378 unsigned long sp, start_pfn;
c6a57e19 379
bdc8cb98
DH
380 do {
381 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
382 start_pfn = zone->zone_start_pfn;
383 sp = zone->spanned_pages;
108bcc96 384 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
385 ret = 1;
386 } while (zone_span_seqretry(zone, seq));
387
b5e6a5a2 388 if (ret)
613813e8
DH
389 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
390 pfn, zone_to_nid(zone), zone->name,
391 start_pfn, start_pfn + sp);
b5e6a5a2 392
bdc8cb98 393 return ret;
c6a57e19
DH
394}
395
396static int page_is_consistent(struct zone *zone, struct page *page)
397{
14e07298 398 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 399 return 0;
1da177e4 400 if (zone != page_zone(page))
c6a57e19
DH
401 return 0;
402
403 return 1;
404}
405/*
406 * Temporary debugging check for pages not lying within a given zone.
407 */
408static int bad_range(struct zone *zone, struct page *page)
409{
410 if (page_outside_zone_boundaries(zone, page))
1da177e4 411 return 1;
c6a57e19
DH
412 if (!page_is_consistent(zone, page))
413 return 1;
414
1da177e4
LT
415 return 0;
416}
13e7444b
NP
417#else
418static inline int bad_range(struct zone *zone, struct page *page)
419{
420 return 0;
421}
422#endif
423
d230dec1
KS
424static void bad_page(struct page *page, const char *reason,
425 unsigned long bad_flags)
1da177e4 426{
d936cf9b
HD
427 static unsigned long resume;
428 static unsigned long nr_shown;
429 static unsigned long nr_unshown;
430
2a7684a2
WF
431 /* Don't complain about poisoned pages */
432 if (PageHWPoison(page)) {
22b751c3 433 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
434 return;
435 }
436
d936cf9b
HD
437 /*
438 * Allow a burst of 60 reports, then keep quiet for that minute;
439 * or allow a steady drip of one report per second.
440 */
441 if (nr_shown == 60) {
442 if (time_before(jiffies, resume)) {
443 nr_unshown++;
444 goto out;
445 }
446 if (nr_unshown) {
1e9e6365
HD
447 printk(KERN_ALERT
448 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
449 nr_unshown);
450 nr_unshown = 0;
451 }
452 nr_shown = 0;
453 }
454 if (nr_shown++ == 0)
455 resume = jiffies + 60 * HZ;
456
1e9e6365 457 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 458 current->comm, page_to_pfn(page));
f0b791a3 459 dump_page_badflags(page, reason, bad_flags);
3dc14741 460
4f31888c 461 print_modules();
1da177e4 462 dump_stack();
d936cf9b 463out:
8cc3b392 464 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 465 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 466 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
467}
468
1da177e4
LT
469/*
470 * Higher-order pages are called "compound pages". They are structured thusly:
471 *
1d798ca3 472 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 473 *
1d798ca3
KS
474 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
475 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 476 *
1d798ca3
KS
477 * The first tail page's ->compound_dtor holds the offset in array of compound
478 * page destructors. See compound_page_dtors.
1da177e4 479 *
1d798ca3 480 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 481 * This usage means that zero-order pages may not be compound.
1da177e4 482 */
d98c7a09
HD
483
484static void free_compound_page(struct page *page)
485{
d85f3385 486 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
487}
488
d00181b9 489void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
490{
491 int i;
492 int nr_pages = 1 << order;
493
f1e61557 494 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
495 set_compound_order(page, order);
496 __SetPageHead(page);
497 for (i = 1; i < nr_pages; i++) {
498 struct page *p = page + i;
58a84aa9 499 set_page_count(p, 0);
1d798ca3 500 set_compound_head(p, page);
18229df5
AW
501 }
502}
503
c0a32fc5
SG
504#ifdef CONFIG_DEBUG_PAGEALLOC
505unsigned int _debug_guardpage_minorder;
031bc574 506bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
507bool _debug_guardpage_enabled __read_mostly;
508
031bc574
JK
509static int __init early_debug_pagealloc(char *buf)
510{
511 if (!buf)
512 return -EINVAL;
513
514 if (strcmp(buf, "on") == 0)
515 _debug_pagealloc_enabled = true;
516
517 return 0;
518}
519early_param("debug_pagealloc", early_debug_pagealloc);
520
e30825f1
JK
521static bool need_debug_guardpage(void)
522{
031bc574
JK
523 /* If we don't use debug_pagealloc, we don't need guard page */
524 if (!debug_pagealloc_enabled())
525 return false;
526
e30825f1
JK
527 return true;
528}
529
530static void init_debug_guardpage(void)
531{
031bc574
JK
532 if (!debug_pagealloc_enabled())
533 return;
534
e30825f1
JK
535 _debug_guardpage_enabled = true;
536}
537
538struct page_ext_operations debug_guardpage_ops = {
539 .need = need_debug_guardpage,
540 .init = init_debug_guardpage,
541};
c0a32fc5
SG
542
543static int __init debug_guardpage_minorder_setup(char *buf)
544{
545 unsigned long res;
546
547 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
548 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
549 return 0;
550 }
551 _debug_guardpage_minorder = res;
552 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
553 return 0;
554}
555__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
556
2847cf95
JK
557static inline void set_page_guard(struct zone *zone, struct page *page,
558 unsigned int order, int migratetype)
c0a32fc5 559{
e30825f1
JK
560 struct page_ext *page_ext;
561
562 if (!debug_guardpage_enabled())
563 return;
564
565 page_ext = lookup_page_ext(page);
e34e744f
YS
566 if (unlikely(!page_ext))
567 return;
568
e30825f1
JK
569 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
570
2847cf95
JK
571 INIT_LIST_HEAD(&page->lru);
572 set_page_private(page, order);
573 /* Guard pages are not available for any usage */
574 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
575}
576
2847cf95
JK
577static inline void clear_page_guard(struct zone *zone, struct page *page,
578 unsigned int order, int migratetype)
c0a32fc5 579{
e30825f1
JK
580 struct page_ext *page_ext;
581
582 if (!debug_guardpage_enabled())
583 return;
584
585 page_ext = lookup_page_ext(page);
e34e744f
YS
586 if (unlikely(!page_ext))
587 return;
588
e30825f1
JK
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
5dc7e939
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
5dc7e939 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
5dc7e939 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
5dc7e939 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
5dc7e939 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
5dc7e939
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
792 if (unlikely(page_mapcount(page)))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(atomic_read(&page->_count) != 0))
797 bad_reason = "nonzero _count";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a6f9edd6
MG
865 page = list_entry(list->prev, struct page, lru);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
81422f29
KS
916 if (unlikely(!PageTail(page))) {
917 bad_page(page, "PageTail not set", 0);
1d798ca3 918 goto out;
81422f29 919 }
1d798ca3
KS
920 if (unlikely(compound_head(page) != head_page)) {
921 bad_page(page, "compound_head not consistent", 0);
922 goto out;
81422f29 923 }
1d798ca3
KS
924 ret = 0;
925out:
926 clear_compound_head(page);
927 return ret;
81422f29
KS
928}
929
1e8ce83c
RH
930static void __meminit __init_single_page(struct page *page, unsigned long pfn,
931 unsigned long zone, int nid)
932{
1e8ce83c 933 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
934 init_page_count(page);
935 page_mapcount_reset(page);
936 page_cpupid_reset_last(page);
1e8ce83c 937
1e8ce83c
RH
938 INIT_LIST_HEAD(&page->lru);
939#ifdef WANT_PAGE_VIRTUAL
940 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
941 if (!is_highmem_idx(zone))
942 set_page_address(page, __va(pfn << PAGE_SHIFT));
943#endif
944}
945
946static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
947 int nid)
948{
949 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
950}
951
7e18adb4
MG
952#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
953static void init_reserved_page(unsigned long pfn)
954{
955 pg_data_t *pgdat;
956 int nid, zid;
957
958 if (!early_page_uninitialised(pfn))
959 return;
960
961 nid = early_pfn_to_nid(pfn);
962 pgdat = NODE_DATA(nid);
963
964 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
965 struct zone *zone = &pgdat->node_zones[zid];
966
967 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
968 break;
969 }
970 __init_single_pfn(pfn, zid, nid);
971}
972#else
973static inline void init_reserved_page(unsigned long pfn)
974{
975}
976#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
977
92923ca3
NZ
978/*
979 * Initialised pages do not have PageReserved set. This function is
980 * called for each range allocated by the bootmem allocator and
981 * marks the pages PageReserved. The remaining valid pages are later
982 * sent to the buddy page allocator.
983 */
18875bf7 984void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
985{
986 unsigned long start_pfn = PFN_DOWN(start);
987 unsigned long end_pfn = PFN_UP(end);
988
7e18adb4
MG
989 for (; start_pfn < end_pfn; start_pfn++) {
990 if (pfn_valid(start_pfn)) {
991 struct page *page = pfn_to_page(start_pfn);
992
993 init_reserved_page(start_pfn);
1d798ca3
KS
994
995 /* Avoid false-positive PageTail() */
996 INIT_LIST_HEAD(&page->lru);
997
7e18adb4
MG
998 SetPageReserved(page);
999 }
1000 }
92923ca3
NZ
1001}
1002
ec95f53a 1003static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1004{
81422f29
KS
1005 bool compound = PageCompound(page);
1006 int i, bad = 0;
1da177e4 1007
ab1f306f 1008 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 1009 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 1010
b413d48a 1011 trace_mm_page_free(page, order);
b1eeab67 1012 kmemcheck_free_shadow(page, order);
b8c73fc2 1013 kasan_free_pages(page, order);
b1eeab67 1014
1cac41cb 1015 if (PageMappingFlags(page))
8dd60a3a 1016 page->mapping = NULL;
81422f29
KS
1017 bad += free_pages_check(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
8dd60a3a 1021 bad += free_pages_check(page + i);
81422f29 1022 }
8cc3b392 1023 if (bad)
ec95f53a 1024 return false;
689bcebf 1025
48c96a36
JK
1026 reset_page_owner(page, order);
1027
3ac7fe5a 1028 if (!PageHighMem(page)) {
b8af2941
PK
1029 debug_check_no_locks_freed(page_address(page),
1030 PAGE_SIZE << order);
3ac7fe5a
TG
1031 debug_check_no_obj_freed(page_address(page),
1032 PAGE_SIZE << order);
1033 }
dafb1367 1034 arch_free_page(page, order);
48db57f8 1035 kernel_map_pages(page, 1 << order, 0);
dafb1367 1036
ec95f53a
KM
1037 return true;
1038}
1039
1040static void __free_pages_ok(struct page *page, unsigned int order)
1041{
1042 unsigned long flags;
95e34412 1043 int migratetype;
dc4b0caf 1044 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1045
1046 if (!free_pages_prepare(page, order))
1047 return;
1048
cfc47a28 1049 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1050 local_irq_save(flags);
f8891e5e 1051 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1052 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1053 local_irq_restore(flags);
1da177e4
LT
1054}
1055
1cac41cb
MB
1056void put_page_freelist(struct page *page)
1057{
1058 if (put_page_testzero(page)) {
1059 mem_cgroup_uncharge(page);
1060 __free_pages_ok(page, 0);
1061 }
1062}
1063EXPORT_SYMBOL(put_page_freelist);
1064
0e1cc95b 1065static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1066 unsigned long pfn, unsigned int order)
a226f6c8 1067{
c3993076 1068 unsigned int nr_pages = 1 << order;
e2d0bd2b 1069 struct page *p = page;
c3993076 1070 unsigned int loop;
a226f6c8 1071
e2d0bd2b
YL
1072 prefetchw(p);
1073 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1074 prefetchw(p + 1);
c3993076
JW
1075 __ClearPageReserved(p);
1076 set_page_count(p, 0);
a226f6c8 1077 }
e2d0bd2b
YL
1078 __ClearPageReserved(p);
1079 set_page_count(p, 0);
c3993076 1080
e2d0bd2b 1081 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1082 set_page_refcounted(page);
1083 __free_pages(page, order);
a226f6c8
DH
1084}
1085
75a592a4
MG
1086#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1087 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1088
75a592a4
MG
1089static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1090
1091int __meminit early_pfn_to_nid(unsigned long pfn)
1092{
7ace9917 1093 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1094 int nid;
1095
7ace9917 1096 spin_lock(&early_pfn_lock);
75a592a4 1097 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1098 if (nid < 0)
e534d926 1099 nid = first_online_node;
7ace9917
MG
1100 spin_unlock(&early_pfn_lock);
1101
1102 return nid;
75a592a4
MG
1103}
1104#endif
1105
1106#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1107static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1108 struct mminit_pfnnid_cache *state)
1109{
1110 int nid;
1111
1112 nid = __early_pfn_to_nid(pfn, state);
1113 if (nid >= 0 && nid != node)
1114 return false;
1115 return true;
1116}
1117
1118/* Only safe to use early in boot when initialisation is single-threaded */
1119static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1120{
1121 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1122}
1123
1124#else
1125
1126static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1127{
1128 return true;
1129}
1130static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1131 struct mminit_pfnnid_cache *state)
1132{
1133 return true;
1134}
1135#endif
1136
1137
0e1cc95b 1138void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1139 unsigned int order)
1140{
1141 if (early_page_uninitialised(pfn))
1142 return;
1143 return __free_pages_boot_core(page, pfn, order);
1144}
1145
7e18adb4 1146#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1147static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1148 unsigned long pfn, int nr_pages)
1149{
1150 int i;
1151
1152 if (!page)
1153 return;
1154
1155 /* Free a large naturally-aligned chunk if possible */
1156 if (nr_pages == MAX_ORDER_NR_PAGES &&
1157 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1158 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1159 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1160 return;
1161 }
1162
1163 for (i = 0; i < nr_pages; i++, page++, pfn++)
1164 __free_pages_boot_core(page, pfn, 0);
1165}
1166
d3cd131d
NS
1167/* Completion tracking for deferred_init_memmap() threads */
1168static atomic_t pgdat_init_n_undone __initdata;
1169static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1170
1171static inline void __init pgdat_init_report_one_done(void)
1172{
1173 if (atomic_dec_and_test(&pgdat_init_n_undone))
1174 complete(&pgdat_init_all_done_comp);
1175}
0e1cc95b 1176
7e18adb4 1177/* Initialise remaining memory on a node */
0e1cc95b 1178static int __init deferred_init_memmap(void *data)
7e18adb4 1179{
0e1cc95b
MG
1180 pg_data_t *pgdat = data;
1181 int nid = pgdat->node_id;
7e18adb4
MG
1182 struct mminit_pfnnid_cache nid_init_state = { };
1183 unsigned long start = jiffies;
1184 unsigned long nr_pages = 0;
1185 unsigned long walk_start, walk_end;
1186 int i, zid;
1187 struct zone *zone;
7e18adb4 1188 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1189 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1190
0e1cc95b 1191 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1192 pgdat_init_report_one_done();
0e1cc95b
MG
1193 return 0;
1194 }
1195
1196 /* Bind memory initialisation thread to a local node if possible */
1197 if (!cpumask_empty(cpumask))
1198 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1199
1200 /* Sanity check boundaries */
1201 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1202 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1203 pgdat->first_deferred_pfn = ULONG_MAX;
1204
1205 /* Only the highest zone is deferred so find it */
1206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1207 zone = pgdat->node_zones + zid;
1208 if (first_init_pfn < zone_end_pfn(zone))
1209 break;
1210 }
1211
1212 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1213 unsigned long pfn, end_pfn;
54608c3f 1214 struct page *page = NULL;
a4de83dd
MG
1215 struct page *free_base_page = NULL;
1216 unsigned long free_base_pfn = 0;
1217 int nr_to_free = 0;
7e18adb4
MG
1218
1219 end_pfn = min(walk_end, zone_end_pfn(zone));
1220 pfn = first_init_pfn;
1221 if (pfn < walk_start)
1222 pfn = walk_start;
1223 if (pfn < zone->zone_start_pfn)
1224 pfn = zone->zone_start_pfn;
1225
1226 for (; pfn < end_pfn; pfn++) {
54608c3f 1227 if (!pfn_valid_within(pfn))
a4de83dd 1228 goto free_range;
7e18adb4 1229
54608c3f
MG
1230 /*
1231 * Ensure pfn_valid is checked every
1232 * MAX_ORDER_NR_PAGES for memory holes
1233 */
1234 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1235 if (!pfn_valid(pfn)) {
1236 page = NULL;
a4de83dd 1237 goto free_range;
54608c3f
MG
1238 }
1239 }
1240
1241 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1242 page = NULL;
a4de83dd 1243 goto free_range;
54608c3f
MG
1244 }
1245
1246 /* Minimise pfn page lookups and scheduler checks */
1247 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1248 page++;
1249 } else {
a4de83dd
MG
1250 nr_pages += nr_to_free;
1251 deferred_free_range(free_base_page,
1252 free_base_pfn, nr_to_free);
1253 free_base_page = NULL;
1254 free_base_pfn = nr_to_free = 0;
1255
54608c3f
MG
1256 page = pfn_to_page(pfn);
1257 cond_resched();
1258 }
7e18adb4
MG
1259
1260 if (page->flags) {
1261 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1262 goto free_range;
7e18adb4
MG
1263 }
1264
1265 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1266 if (!free_base_page) {
1267 free_base_page = page;
1268 free_base_pfn = pfn;
1269 nr_to_free = 0;
1270 }
1271 nr_to_free++;
1272
1273 /* Where possible, batch up pages for a single free */
1274 continue;
1275free_range:
1276 /* Free the current block of pages to allocator */
1277 nr_pages += nr_to_free;
1278 deferred_free_range(free_base_page, free_base_pfn,
1279 nr_to_free);
1280 free_base_page = NULL;
1281 free_base_pfn = nr_to_free = 0;
7e18adb4 1282 }
a4de83dd 1283
7e18adb4
MG
1284 first_init_pfn = max(end_pfn, first_init_pfn);
1285 }
1286
1287 /* Sanity check that the next zone really is unpopulated */
1288 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1289
0e1cc95b 1290 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1291 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1292
1293 pgdat_init_report_one_done();
0e1cc95b
MG
1294 return 0;
1295}
1296
1297void __init page_alloc_init_late(void)
1298{
1299 int nid;
1300
d3cd131d
NS
1301 /* There will be num_node_state(N_MEMORY) threads */
1302 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1303 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1304 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1305 }
1306
1307 /* Block until all are initialised */
d3cd131d 1308 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1309
1310 /* Reinit limits that are based on free pages after the kernel is up */
1311 files_maxfiles_init();
7e18adb4
MG
1312}
1313#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1314
47118af0 1315#ifdef CONFIG_CMA
9cf510a5 1316/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
beec9920 1317void __init init_cma_reserved_pageblock(struct page *page)
47118af0
MN
1318{
1319 unsigned i = pageblock_nr_pages;
1320 struct page *p = page;
1321
1322 do {
1323 __ClearPageReserved(p);
1324 set_page_count(p, 0);
1325 } while (++p, --i);
1326
beec9920 1327 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1328
1329 if (pageblock_order >= MAX_ORDER) {
1330 i = pageblock_nr_pages;
1331 p = page;
1332 do {
1333 set_page_refcounted(p);
1334 __free_pages(p, MAX_ORDER - 1);
1335 p += MAX_ORDER_NR_PAGES;
1336 } while (i -= MAX_ORDER_NR_PAGES);
1337 } else {
1338 set_page_refcounted(page);
1339 __free_pages(page, pageblock_order);
1340 }
1341
3dcc0571 1342 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1343}
1344#endif
1da177e4
LT
1345
1346/*
1347 * The order of subdivision here is critical for the IO subsystem.
1348 * Please do not alter this order without good reasons and regression
1349 * testing. Specifically, as large blocks of memory are subdivided,
1350 * the order in which smaller blocks are delivered depends on the order
1351 * they're subdivided in this function. This is the primary factor
1352 * influencing the order in which pages are delivered to the IO
1353 * subsystem according to empirical testing, and this is also justified
1354 * by considering the behavior of a buddy system containing a single
1355 * large block of memory acted on by a series of small allocations.
1356 * This behavior is a critical factor in sglist merging's success.
1357 *
6d49e352 1358 * -- nyc
1da177e4 1359 */
085cc7d5 1360static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1361 int low, int high, struct free_area *area,
1362 int migratetype)
1da177e4
LT
1363{
1364 unsigned long size = 1 << high;
1365
1366 while (high > low) {
1367 area--;
1368 high--;
1369 size >>= 1;
309381fe 1370 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1371
2847cf95 1372 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1373 debug_guardpage_enabled() &&
2847cf95 1374 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1375 /*
1376 * Mark as guard pages (or page), that will allow to
1377 * merge back to allocator when buddy will be freed.
1378 * Corresponding page table entries will not be touched,
1379 * pages will stay not present in virtual address space
1380 */
2847cf95 1381 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1382 continue;
1383 }
b2a0ac88 1384 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1385 area->nr_free++;
1386 set_page_order(&page[size], high);
1387 }
1da177e4
LT
1388}
1389
1da177e4
LT
1390/*
1391 * This page is about to be returned from the page allocator
1392 */
2a7684a2 1393static inline int check_new_page(struct page *page)
1da177e4 1394{
d230dec1 1395 const char *bad_reason = NULL;
f0b791a3
DH
1396 unsigned long bad_flags = 0;
1397
1398 if (unlikely(page_mapcount(page)))
1399 bad_reason = "nonzero mapcount";
1400 if (unlikely(page->mapping != NULL))
1401 bad_reason = "non-NULL mapping";
1402 if (unlikely(atomic_read(&page->_count) != 0))
1403 bad_reason = "nonzero _count";
f4c18e6f
NH
1404 if (unlikely(page->flags & __PG_HWPOISON)) {
1405 bad_reason = "HWPoisoned (hardware-corrupted)";
1406 bad_flags = __PG_HWPOISON;
1407 }
f0b791a3
DH
1408 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1409 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1410 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1411 }
9edad6ea
JW
1412#ifdef CONFIG_MEMCG
1413 if (unlikely(page->mem_cgroup))
1414 bad_reason = "page still charged to cgroup";
1415#endif
f0b791a3
DH
1416 if (unlikely(bad_reason)) {
1417 bad_page(page, bad_reason, bad_flags);
689bcebf 1418 return 1;
8cc3b392 1419 }
2a7684a2
WF
1420 return 0;
1421}
1422
75379191
VB
1423static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1424 int alloc_flags)
2a7684a2
WF
1425{
1426 int i;
1427
1428 for (i = 0; i < (1 << order); i++) {
1429 struct page *p = page + i;
1430 if (unlikely(check_new_page(p)))
1431 return 1;
1432 }
689bcebf 1433
4c21e2f2 1434 set_page_private(page, 0);
7835e98b 1435 set_page_refcounted(page);
cc102509
NP
1436
1437 arch_alloc_page(page, order);
1da177e4 1438 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1439 kasan_alloc_pages(page, order);
17cf4406
NP
1440
1441 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1442 for (i = 0; i < (1 << order); i++)
1443 clear_highpage(page + i);
17cf4406
NP
1444
1445 if (order && (gfp_flags & __GFP_COMP))
1446 prep_compound_page(page, order);
1447
48c96a36
JK
1448 set_page_owner(page, order, gfp_flags);
1449
75379191 1450 /*
2f064f34 1451 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1452 * allocate the page. The expectation is that the caller is taking
1453 * steps that will free more memory. The caller should avoid the page
1454 * being used for !PFMEMALLOC purposes.
1455 */
2f064f34
MH
1456 if (alloc_flags & ALLOC_NO_WATERMARKS)
1457 set_page_pfmemalloc(page);
1458 else
1459 clear_page_pfmemalloc(page);
75379191 1460
689bcebf 1461 return 0;
1da177e4
LT
1462}
1463
56fd56b8
MG
1464/*
1465 * Go through the free lists for the given migratetype and remove
1466 * the smallest available page from the freelists
1467 */
728ec980
MG
1468static inline
1469struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1470 int migratetype)
1471{
1472 unsigned int current_order;
b8af2941 1473 struct free_area *area;
56fd56b8
MG
1474 struct page *page;
1475
1476 /* Find a page of the appropriate size in the preferred list */
1477 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1478 area = &(zone->free_area[current_order]);
1479 if (list_empty(&area->free_list[migratetype]))
1480 continue;
1481
1482 page = list_entry(area->free_list[migratetype].next,
1483 struct page, lru);
1484 list_del(&page->lru);
1485 rmv_page_order(page);
1486 area->nr_free--;
56fd56b8 1487 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1488 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1489 return page;
1490 }
1491
1492 return NULL;
1493}
1494
1495
b2a0ac88
MG
1496/*
1497 * This array describes the order lists are fallen back to when
1498 * the free lists for the desirable migrate type are depleted
1499 */
47118af0 1500static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1501 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1502 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1503 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1504#ifdef CONFIG_CMA
974a786e 1505 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1506#endif
194159fb 1507#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1508 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1509#endif
b2a0ac88
MG
1510};
1511
dc67647b 1512#ifdef CONFIG_CMA
beec9920
MB
1513static struct page *__rmqueue_cma_fallback(struct zone *zone,
1514 unsigned int order)
dc67647b 1515{
beec9920 1516 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
dc67647b
JK
1517}
1518#else
beec9920 1519static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1520 unsigned int order) { return NULL; }
1521#endif
1522
c361be55
MG
1523/*
1524 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1525 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1526 * boundary. If alignment is required, use move_freepages_block()
1527 */
435b405c 1528int move_freepages(struct zone *zone,
b69a7288
AB
1529 struct page *start_page, struct page *end_page,
1530 int migratetype)
c361be55
MG
1531{
1532 struct page *page;
d00181b9 1533 unsigned int order;
d100313f 1534 int pages_moved = 0;
c361be55
MG
1535
1536#ifndef CONFIG_HOLES_IN_ZONE
1537 /*
1538 * page_zone is not safe to call in this context when
1539 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1540 * anyway as we check zone boundaries in move_freepages_block().
1541 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1542 * grouping pages by mobility
c361be55 1543 */
97ee4ba7 1544 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1545#endif
1546
1547 for (page = start_page; page <= end_page;) {
1548 if (!pfn_valid_within(page_to_pfn(page))) {
1549 page++;
1550 continue;
1551 }
1552
78c04996
AB
1553 /* Make sure we are not inadvertently changing nodes */
1554 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1555
c361be55
MG
1556 if (!PageBuddy(page)) {
1557 page++;
1558 continue;
1559 }
1560
1561 order = page_order(page);
84be48d8
KS
1562 list_move(&page->lru,
1563 &zone->free_area[order].free_list[migratetype]);
c361be55 1564 page += 1 << order;
d100313f 1565 pages_moved += 1 << order;
c361be55
MG
1566 }
1567
d100313f 1568 return pages_moved;
c361be55
MG
1569}
1570
ee6f509c 1571int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1572 int migratetype)
c361be55
MG
1573{
1574 unsigned long start_pfn, end_pfn;
1575 struct page *start_page, *end_page;
1576
1577 start_pfn = page_to_pfn(page);
d9c23400 1578 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1579 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1580 end_page = start_page + pageblock_nr_pages - 1;
1581 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1582
1583 /* Do not cross zone boundaries */
108bcc96 1584 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1585 start_page = page;
108bcc96 1586 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1587 return 0;
1588
1589 return move_freepages(zone, start_page, end_page, migratetype);
1590}
1591
2f66a68f
MG
1592static void change_pageblock_range(struct page *pageblock_page,
1593 int start_order, int migratetype)
1594{
1595 int nr_pageblocks = 1 << (start_order - pageblock_order);
1596
1597 while (nr_pageblocks--) {
1598 set_pageblock_migratetype(pageblock_page, migratetype);
1599 pageblock_page += pageblock_nr_pages;
1600 }
1601}
1602
fef903ef 1603/*
9c0415eb
VB
1604 * When we are falling back to another migratetype during allocation, try to
1605 * steal extra free pages from the same pageblocks to satisfy further
1606 * allocations, instead of polluting multiple pageblocks.
1607 *
1608 * If we are stealing a relatively large buddy page, it is likely there will
1609 * be more free pages in the pageblock, so try to steal them all. For
1610 * reclaimable and unmovable allocations, we steal regardless of page size,
1611 * as fragmentation caused by those allocations polluting movable pageblocks
1612 * is worse than movable allocations stealing from unmovable and reclaimable
1613 * pageblocks.
fef903ef 1614 */
4eb7dce6
JK
1615static bool can_steal_fallback(unsigned int order, int start_mt)
1616{
1617 /*
1618 * Leaving this order check is intended, although there is
1619 * relaxed order check in next check. The reason is that
1620 * we can actually steal whole pageblock if this condition met,
1621 * but, below check doesn't guarantee it and that is just heuristic
1622 * so could be changed anytime.
1623 */
1624 if (order >= pageblock_order)
1625 return true;
1626
1627 if (order >= pageblock_order / 2 ||
1628 start_mt == MIGRATE_RECLAIMABLE ||
1629 start_mt == MIGRATE_UNMOVABLE ||
1cac41cb 1630 start_mt == MIGRATE_MOVABLE ||
4eb7dce6
JK
1631 page_group_by_mobility_disabled)
1632 return true;
1633
1634 return false;
1635}
1636
1637/*
1638 * This function implements actual steal behaviour. If order is large enough,
1639 * we can steal whole pageblock. If not, we first move freepages in this
1640 * pageblock and check whether half of pages are moved or not. If half of
1641 * pages are moved, we can change migratetype of pageblock and permanently
1642 * use it's pages as requested migratetype in the future.
1643 */
1644static void steal_suitable_fallback(struct zone *zone, struct page *page,
1645 int start_type)
fef903ef 1646{
d00181b9 1647 unsigned int current_order = page_order(page);
4eb7dce6 1648 int pages;
fef903ef 1649
fef903ef
SB
1650 /* Take ownership for orders >= pageblock_order */
1651 if (current_order >= pageblock_order) {
1652 change_pageblock_range(page, current_order, start_type);
3a1086fb 1653 return;
fef903ef
SB
1654 }
1655
4eb7dce6 1656 pages = move_freepages_block(zone, page, start_type);
fef903ef 1657
4eb7dce6
JK
1658 /* Claim the whole block if over half of it is free */
1659 if (pages >= (1 << (pageblock_order-1)) ||
1cac41cb 1660 start_type == MIGRATE_MOVABLE ||
4eb7dce6
JK
1661 page_group_by_mobility_disabled)
1662 set_pageblock_migratetype(page, start_type);
1663}
1664
2149cdae
JK
1665/*
1666 * Check whether there is a suitable fallback freepage with requested order.
1667 * If only_stealable is true, this function returns fallback_mt only if
1668 * we can steal other freepages all together. This would help to reduce
1669 * fragmentation due to mixed migratetype pages in one pageblock.
1670 */
1671int find_suitable_fallback(struct free_area *area, unsigned int order,
1672 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1673{
1674 int i;
1675 int fallback_mt;
1676
1677 if (area->nr_free == 0)
1678 return -1;
1679
1680 *can_steal = false;
1681 for (i = 0;; i++) {
1682 fallback_mt = fallbacks[migratetype][i];
974a786e 1683 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1684 break;
1685
1686 if (list_empty(&area->free_list[fallback_mt]))
1687 continue;
fef903ef 1688
4eb7dce6
JK
1689 if (can_steal_fallback(order, migratetype))
1690 *can_steal = true;
1691
2149cdae
JK
1692 if (!only_stealable)
1693 return fallback_mt;
1694
1695 if (*can_steal)
1696 return fallback_mt;
fef903ef 1697 }
4eb7dce6
JK
1698
1699 return -1;
fef903ef
SB
1700}
1701
0aaa29a5
MG
1702/*
1703 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1704 * there are no empty page blocks that contain a page with a suitable order
1705 */
1706static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1707 unsigned int alloc_order)
1708{
1709 int mt;
1710 unsigned long max_managed, flags;
1711
1712 /*
1713 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1714 * Check is race-prone but harmless.
1715 */
1716 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1717 if (zone->nr_reserved_highatomic >= max_managed)
1718 return;
1719
1720 spin_lock_irqsave(&zone->lock, flags);
1721
1722 /* Recheck the nr_reserved_highatomic limit under the lock */
1723 if (zone->nr_reserved_highatomic >= max_managed)
1724 goto out_unlock;
1725
1726 /* Yoink! */
1727 mt = get_pageblock_migratetype(page);
1728 if (mt != MIGRATE_HIGHATOMIC &&
beec9920 1729 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
0aaa29a5
MG
1730 zone->nr_reserved_highatomic += pageblock_nr_pages;
1731 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1732 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1733 }
1734
1735out_unlock:
1736 spin_unlock_irqrestore(&zone->lock, flags);
1737}
1738
1739/*
1740 * Used when an allocation is about to fail under memory pressure. This
1741 * potentially hurts the reliability of high-order allocations when under
1742 * intense memory pressure but failed atomic allocations should be easier
1743 * to recover from than an OOM.
1744 */
1745static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1746{
1747 struct zonelist *zonelist = ac->zonelist;
1748 unsigned long flags;
1749 struct zoneref *z;
1750 struct zone *zone;
1751 struct page *page;
1752 int order;
1753
1754 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1755 ac->nodemask) {
1756 /* Preserve at least one pageblock */
1757 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1758 continue;
1759
1760 spin_lock_irqsave(&zone->lock, flags);
1761 for (order = 0; order < MAX_ORDER; order++) {
1762 struct free_area *area = &(zone->free_area[order]);
1763
1764 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1765 continue;
1766
1767 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1768 struct page, lru);
1769
1770 /*
c576160f
MK
1771 * In page freeing path, migratetype change is racy so
1772 * we can counter several free pages in a pageblock
1773 * in this loop althoug we changed the pageblock type
1774 * from highatomic to ac->migratetype. So we should
1775 * adjust the count once.
0aaa29a5 1776 */
c576160f
MK
1777 if (get_pageblock_migratetype(page) ==
1778 MIGRATE_HIGHATOMIC) {
1779 /*
1780 * It should never happen but changes to
1781 * locking could inadvertently allow a per-cpu
1782 * drain to add pages to MIGRATE_HIGHATOMIC
1783 * while unreserving so be safe and watch for
1784 * underflows.
1785 */
1786 zone->nr_reserved_highatomic -= min(
1787 pageblock_nr_pages,
1788 zone->nr_reserved_highatomic);
1789 }
0aaa29a5
MG
1790
1791 /*
1792 * Convert to ac->migratetype and avoid the normal
1793 * pageblock stealing heuristics. Minimally, the caller
1794 * is doing the work and needs the pages. More
1795 * importantly, if the block was always converted to
1796 * MIGRATE_UNMOVABLE or another type then the number
1797 * of pageblocks that cannot be completely freed
1798 * may increase.
1799 */
1800 set_pageblock_migratetype(page, ac->migratetype);
1801 move_freepages_block(zone, page, ac->migratetype);
1802 spin_unlock_irqrestore(&zone->lock, flags);
1803 return;
1804 }
1805 spin_unlock_irqrestore(&zone->lock, flags);
1806 }
1807}
1808
b2a0ac88 1809/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1810static inline struct page *
7aeb09f9 1811__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1812{
b8af2941 1813 struct free_area *area;
7aeb09f9 1814 unsigned int current_order;
b2a0ac88 1815 struct page *page;
4eb7dce6
JK
1816 int fallback_mt;
1817 bool can_steal;
b2a0ac88
MG
1818
1819 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1820 for (current_order = MAX_ORDER-1;
1821 current_order >= order && current_order <= MAX_ORDER-1;
1822 --current_order) {
4eb7dce6
JK
1823 area = &(zone->free_area[current_order]);
1824 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1825 start_migratetype, false, &can_steal);
4eb7dce6
JK
1826 if (fallback_mt == -1)
1827 continue;
b2a0ac88 1828
4eb7dce6
JK
1829 page = list_entry(area->free_list[fallback_mt].next,
1830 struct page, lru);
1cac41cb
MB
1831 if (can_steal &&
1832 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 1833 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1834
4eb7dce6
JK
1835 /* Remove the page from the freelists */
1836 area->nr_free--;
1837 list_del(&page->lru);
1838 rmv_page_order(page);
3a1086fb 1839
4eb7dce6
JK
1840 expand(zone, page, order, current_order, area,
1841 start_migratetype);
1842 /*
bb14c2c7 1843 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1844 * migratetype depending on the decisions in
bb14c2c7
VB
1845 * find_suitable_fallback(). This is OK as long as it does not
1846 * differ for MIGRATE_CMA pageblocks. Those can be used as
1847 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1848 */
bb14c2c7 1849 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1850
4eb7dce6
JK
1851 trace_mm_page_alloc_extfrag(page, order, current_order,
1852 start_migratetype, fallback_mt);
e0fff1bd 1853
4eb7dce6 1854 return page;
b2a0ac88
MG
1855 }
1856
728ec980 1857 return NULL;
b2a0ac88
MG
1858}
1859
56fd56b8 1860/*
1da177e4
LT
1861 * Do the hard work of removing an element from the buddy allocator.
1862 * Call me with the zone->lock already held.
1863 */
b2a0ac88 1864static struct page *__rmqueue(struct zone *zone, unsigned int order,
0aaa29a5 1865 int migratetype, gfp_t gfp_flags)
1da177e4 1866{
1cac41cb 1867 struct page *page = NULL;
dc67647b 1868
beec9920
MB
1869 if ((migratetype == MIGRATE_MOVABLE) && (gfp_flags & __GFP_CMA))
1870 page = __rmqueue_cma_fallback(zone, order);
728ec980 1871
1cac41cb
MB
1872 if (!page)
1873 page = __rmqueue_smallest(zone, order, migratetype);
1874
1875 if (unlikely(!page))
1876 page = __rmqueue_fallback(zone, order, migratetype);
1877
0d3d062a 1878 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1879 return page;
1da177e4
LT
1880}
1881
5f63b720 1882/*
1da177e4
LT
1883 * Obtain a specified number of elements from the buddy allocator, all under
1884 * a single hold of the lock, for efficiency. Add them to the supplied list.
1885 * Returns the number of new pages which were placed at *list.
1886 */
5f63b720 1887static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1888 unsigned long count, struct list_head *list,
1cac41cb 1889 int migratetype, gfp_t gfp_flags)
1da177e4 1890{
5bcc9f86 1891 int i;
5f63b720 1892
c54ad30c 1893 spin_lock(&zone->lock);
1da177e4 1894 for (i = 0; i < count; ++i) {
1cac41cb 1895 struct page *page = __rmqueue(zone, order, migratetype, gfp_flags);
085cc7d5 1896 if (unlikely(page == NULL))
1da177e4 1897 break;
81eabcbe
MG
1898
1899 /*
1900 * Split buddy pages returned by expand() are received here
1901 * in physical page order. The page is added to the callers and
1902 * list and the list head then moves forward. From the callers
1903 * perspective, the linked list is ordered by page number in
1904 * some conditions. This is useful for IO devices that can
1905 * merge IO requests if the physical pages are ordered
1906 * properly.
1907 */
1cac41cb 1908 if (likely(!(gfp_flags & __GFP_COLD)))
e084b2d9
MG
1909 list_add(&page->lru, list);
1910 else
1911 list_add_tail(&page->lru, list);
81eabcbe 1912 list = &page->lru;
bb14c2c7 1913 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1914 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1915 -(1 << order));
1da177e4 1916 }
f2260e6b 1917 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1918 spin_unlock(&zone->lock);
085cc7d5 1919 return i;
1da177e4
LT
1920}
1921
4ae7c039 1922#ifdef CONFIG_NUMA
8fce4d8e 1923/*
4037d452
CL
1924 * Called from the vmstat counter updater to drain pagesets of this
1925 * currently executing processor on remote nodes after they have
1926 * expired.
1927 *
879336c3
CL
1928 * Note that this function must be called with the thread pinned to
1929 * a single processor.
8fce4d8e 1930 */
4037d452 1931void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1932{
4ae7c039 1933 unsigned long flags;
7be12fc9 1934 int to_drain, batch;
4ae7c039 1935
4037d452 1936 local_irq_save(flags);
4db0c3c2 1937 batch = READ_ONCE(pcp->batch);
7be12fc9 1938 to_drain = min(pcp->count, batch);
2a13515c
KM
1939 if (to_drain > 0) {
1940 free_pcppages_bulk(zone, to_drain, pcp);
1941 pcp->count -= to_drain;
1942 }
4037d452 1943 local_irq_restore(flags);
4ae7c039
CL
1944}
1945#endif
1946
9f8f2172 1947/*
93481ff0 1948 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1949 *
1950 * The processor must either be the current processor and the
1951 * thread pinned to the current processor or a processor that
1952 * is not online.
1953 */
93481ff0 1954static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1955{
c54ad30c 1956 unsigned long flags;
93481ff0
VB
1957 struct per_cpu_pageset *pset;
1958 struct per_cpu_pages *pcp;
1da177e4 1959
93481ff0
VB
1960 local_irq_save(flags);
1961 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1962
93481ff0
VB
1963 pcp = &pset->pcp;
1964 if (pcp->count) {
1965 free_pcppages_bulk(zone, pcp->count, pcp);
1966 pcp->count = 0;
1967 }
1968 local_irq_restore(flags);
1969}
3dfa5721 1970
93481ff0
VB
1971/*
1972 * Drain pcplists of all zones on the indicated processor.
1973 *
1974 * The processor must either be the current processor and the
1975 * thread pinned to the current processor or a processor that
1976 * is not online.
1977 */
1978static void drain_pages(unsigned int cpu)
1979{
1980 struct zone *zone;
1981
1982 for_each_populated_zone(zone) {
1983 drain_pages_zone(cpu, zone);
1da177e4
LT
1984 }
1985}
1da177e4 1986
9f8f2172
CL
1987/*
1988 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1989 *
1990 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1991 * the single zone's pages.
9f8f2172 1992 */
93481ff0 1993void drain_local_pages(struct zone *zone)
9f8f2172 1994{
93481ff0
VB
1995 int cpu = smp_processor_id();
1996
1997 if (zone)
1998 drain_pages_zone(cpu, zone);
1999 else
2000 drain_pages(cpu);
9f8f2172
CL
2001}
2002
2003/*
74046494
GBY
2004 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2005 *
93481ff0
VB
2006 * When zone parameter is non-NULL, spill just the single zone's pages.
2007 *
74046494
GBY
2008 * Note that this code is protected against sending an IPI to an offline
2009 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2010 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2011 * nothing keeps CPUs from showing up after we populated the cpumask and
2012 * before the call to on_each_cpu_mask().
9f8f2172 2013 */
93481ff0 2014void drain_all_pages(struct zone *zone)
9f8f2172 2015{
74046494 2016 int cpu;
74046494
GBY
2017
2018 /*
2019 * Allocate in the BSS so we wont require allocation in
2020 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2021 */
2022 static cpumask_t cpus_with_pcps;
2023
2024 /*
2025 * We don't care about racing with CPU hotplug event
2026 * as offline notification will cause the notified
2027 * cpu to drain that CPU pcps and on_each_cpu_mask
2028 * disables preemption as part of its processing
2029 */
2030 for_each_online_cpu(cpu) {
93481ff0
VB
2031 struct per_cpu_pageset *pcp;
2032 struct zone *z;
74046494 2033 bool has_pcps = false;
93481ff0
VB
2034
2035 if (zone) {
74046494 2036 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2037 if (pcp->pcp.count)
74046494 2038 has_pcps = true;
93481ff0
VB
2039 } else {
2040 for_each_populated_zone(z) {
2041 pcp = per_cpu_ptr(z->pageset, cpu);
2042 if (pcp->pcp.count) {
2043 has_pcps = true;
2044 break;
2045 }
74046494
GBY
2046 }
2047 }
93481ff0 2048
74046494
GBY
2049 if (has_pcps)
2050 cpumask_set_cpu(cpu, &cpus_with_pcps);
2051 else
2052 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2053 }
93481ff0
VB
2054 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2055 zone, 1);
9f8f2172
CL
2056}
2057
296699de 2058#ifdef CONFIG_HIBERNATION
1da177e4
LT
2059
2060void mark_free_pages(struct zone *zone)
2061{
f623f0db
RW
2062 unsigned long pfn, max_zone_pfn;
2063 unsigned long flags;
7aeb09f9 2064 unsigned int order, t;
1da177e4
LT
2065 struct list_head *curr;
2066
8080fc03 2067 if (zone_is_empty(zone))
1da177e4
LT
2068 return;
2069
2070 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2071
108bcc96 2072 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2073 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2074 if (pfn_valid(pfn)) {
2075 struct page *page = pfn_to_page(pfn);
2076
7be98234
RW
2077 if (!swsusp_page_is_forbidden(page))
2078 swsusp_unset_page_free(page);
f623f0db 2079 }
1da177e4 2080
b2a0ac88
MG
2081 for_each_migratetype_order(order, t) {
2082 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 2083 unsigned long i;
1da177e4 2084
f623f0db
RW
2085 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2086 for (i = 0; i < (1UL << order); i++)
7be98234 2087 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2088 }
b2a0ac88 2089 }
1da177e4
LT
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091}
e2c55dc8 2092#endif /* CONFIG_PM */
1da177e4 2093
1da177e4
LT
2094/*
2095 * Free a 0-order page
b745bc85 2096 * cold == true ? free a cold page : free a hot page
1da177e4 2097 */
b745bc85 2098void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2099{
2100 struct zone *zone = page_zone(page);
2101 struct per_cpu_pages *pcp;
2102 unsigned long flags;
dc4b0caf 2103 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2104 int migratetype;
1da177e4 2105
ec95f53a 2106 if (!free_pages_prepare(page, 0))
689bcebf
HD
2107 return;
2108
dc4b0caf 2109 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2110 set_pcppage_migratetype(page, migratetype);
1da177e4 2111 local_irq_save(flags);
f8891e5e 2112 __count_vm_event(PGFREE);
da456f14 2113
5f8dcc21
MG
2114 /*
2115 * We only track unmovable, reclaimable and movable on pcp lists.
2116 * Free ISOLATE pages back to the allocator because they are being
2117 * offlined but treat RESERVE as movable pages so we can get those
2118 * areas back if necessary. Otherwise, we may have to free
2119 * excessively into the page allocator
2120 */
2121 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2122 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2123 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2124 goto out;
2125 }
2126 migratetype = MIGRATE_MOVABLE;
2127 }
2128
99dcc3e5 2129 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2130 if (!cold)
5f8dcc21 2131 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2132 else
2133 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2134 pcp->count++;
48db57f8 2135 if (pcp->count >= pcp->high) {
4db0c3c2 2136 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2137 free_pcppages_bulk(zone, batch, pcp);
2138 pcp->count -= batch;
48db57f8 2139 }
5f8dcc21
MG
2140
2141out:
1da177e4 2142 local_irq_restore(flags);
1da177e4
LT
2143}
2144
cc59850e
KK
2145/*
2146 * Free a list of 0-order pages
2147 */
b745bc85 2148void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2149{
2150 struct page *page, *next;
2151
2152 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2153 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2154 free_hot_cold_page(page, cold);
2155 }
2156}
2157
8dfcc9ba
NP
2158/*
2159 * split_page takes a non-compound higher-order page, and splits it into
2160 * n (1<<order) sub-pages: page[0..n]
2161 * Each sub-page must be freed individually.
2162 *
2163 * Note: this is probably too low level an operation for use in drivers.
2164 * Please consult with lkml before using this in your driver.
2165 */
2166void split_page(struct page *page, unsigned int order)
2167{
2168 int i;
e2cfc911 2169 gfp_t gfp_mask;
8dfcc9ba 2170
309381fe
SL
2171 VM_BUG_ON_PAGE(PageCompound(page), page);
2172 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2173
2174#ifdef CONFIG_KMEMCHECK
2175 /*
2176 * Split shadow pages too, because free(page[0]) would
2177 * otherwise free the whole shadow.
2178 */
2179 if (kmemcheck_page_is_tracked(page))
2180 split_page(virt_to_page(page[0].shadow), order);
2181#endif
2182
e2cfc911
JK
2183 gfp_mask = get_page_owner_gfp(page);
2184 set_page_owner(page, 0, gfp_mask);
48c96a36 2185 for (i = 1; i < (1 << order); i++) {
7835e98b 2186 set_page_refcounted(page + i);
e2cfc911 2187 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2188 }
8dfcc9ba 2189}
5853ff23 2190EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2191
3c605096 2192int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2193{
748446bb
MG
2194 unsigned long watermark;
2195 struct zone *zone;
2139cbe6 2196 int mt;
748446bb
MG
2197
2198 BUG_ON(!PageBuddy(page));
2199
2200 zone = page_zone(page);
2e30abd1 2201 mt = get_pageblock_migratetype(page);
748446bb 2202
194159fb 2203 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2204 /* Obey watermarks as if the page was being allocated */
2205 watermark = low_wmark_pages(zone) + (1 << order);
2206 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2207 return 0;
2208
8fb74b9f 2209 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2210 }
748446bb
MG
2211
2212 /* Remove page from free list */
2213 list_del(&page->lru);
2214 zone->free_area[order].nr_free--;
2215 rmv_page_order(page);
2139cbe6 2216
e2cfc911 2217 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2218
8fb74b9f 2219 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2220 if (order >= pageblock_order - 1) {
2221 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2222 for (; page < endpage; page += pageblock_nr_pages) {
2223 int mt = get_pageblock_migratetype(page);
beec9920 2224 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
1cac41cb 2225 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2226 set_pageblock_migratetype(page,
2227 MIGRATE_MOVABLE);
2228 }
748446bb
MG
2229 }
2230
f3a14ced 2231
8fb74b9f 2232 return 1UL << order;
1fb3f8ca
MG
2233}
2234
2235/*
2236 * Similar to split_page except the page is already free. As this is only
2237 * being used for migration, the migratetype of the block also changes.
2238 * As this is called with interrupts disabled, the caller is responsible
2239 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2240 * are enabled.
2241 *
2242 * Note: this is probably too low level an operation for use in drivers.
2243 * Please consult with lkml before using this in your driver.
2244 */
2245int split_free_page(struct page *page)
2246{
2247 unsigned int order;
2248 int nr_pages;
2249
1fb3f8ca
MG
2250 order = page_order(page);
2251
8fb74b9f 2252 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2253 if (!nr_pages)
2254 return 0;
2255
2256 /* Split into individual pages */
2257 set_page_refcounted(page);
2258 split_page(page, order);
2259 return nr_pages;
748446bb
MG
2260}
2261
1da177e4 2262/*
75379191 2263 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2264 */
0a15c3e9
MG
2265static inline
2266struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2267 struct zone *zone, unsigned int order,
0aaa29a5 2268 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2269{
2270 unsigned long flags;
1cac41cb
MB
2271 struct page *page = NULL;
2272
48db57f8 2273 if (likely(order == 0)) {
1da177e4 2274 struct per_cpu_pages *pcp;
5f8dcc21 2275 struct list_head *list;
1da177e4 2276
1da177e4 2277 local_irq_save(flags);
99dcc3e5
CL
2278 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2279 list = &pcp->lists[migratetype];
5f8dcc21 2280 if (list_empty(list)) {
535131e6 2281 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2282 pcp->batch, list,
1cac41cb 2283 migratetype, gfp_flags);
5f8dcc21 2284 if (unlikely(list_empty(list)))
6fb332fa 2285 goto failed;
535131e6 2286 }
b92a6edd 2287
1cac41cb 2288 if ((gfp_flags & __GFP_COLD) != 0)
5f8dcc21
MG
2289 page = list_entry(list->prev, struct page, lru);
2290 else
2291 page = list_entry(list->next, struct page, lru);
2292
1cac41cb
MB
2293 /*
2294 * If the head or the tail page in the pcp list is CMA page and
2295 * the gfp flags does not have __GFP_CMA, try allocation from
2296 * free list. If a page in the pcp list is CMA page, all pages
2297 * in the pcp list is probabily CMA pages because rmqueue_bulk()
2298 * fills the list from the free list of the same migratetype.
2299 */
beec9920
MB
2300 if (!(gfp_flags & __GFP_CMA) &&
2301 is_migrate_cma(get_pcppage_migratetype(page))) {
1cac41cb
MB
2302 page = NULL;
2303 local_irq_restore(flags);
2304 } else {
2305 list_del(&page->lru);
2306 pcp->count--;
2307 }
2308 }
2309
2310 if (!page) {
dab48dab
AM
2311 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2312 /*
2313 * __GFP_NOFAIL is not to be used in new code.
2314 *
2315 * All __GFP_NOFAIL callers should be fixed so that they
2316 * properly detect and handle allocation failures.
2317 *
2318 * We most definitely don't want callers attempting to
4923abf9 2319 * allocate greater than order-1 page units with
dab48dab
AM
2320 * __GFP_NOFAIL.
2321 */
4923abf9 2322 WARN_ON_ONCE(order > 1);
dab48dab 2323 }
1da177e4 2324 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2325
0aaa29a5
MG
2326 if (alloc_flags & ALLOC_HARDER) {
2327 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2328 if (page)
2329 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2330 }
2331 if (!page)
2332 page = __rmqueue(zone, order, migratetype, gfp_flags);
a74609fa
NP
2333 spin_unlock(&zone->lock);
2334 if (!page)
2335 goto failed;
d1ce749a 2336 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2337 get_pcppage_migratetype(page));
1da177e4
LT
2338 }
2339
3a025760 2340 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2341 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2342 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2343 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2344
f8891e5e 2345 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2346 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2347 local_irq_restore(flags);
1da177e4 2348
309381fe 2349 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2350 return page;
a74609fa
NP
2351
2352failed:
2353 local_irq_restore(flags);
a74609fa 2354 return NULL;
1da177e4
LT
2355}
2356
933e312e
AM
2357#ifdef CONFIG_FAIL_PAGE_ALLOC
2358
b2588c4b 2359static struct {
933e312e
AM
2360 struct fault_attr attr;
2361
621a5f7a 2362 bool ignore_gfp_highmem;
71baba4b 2363 bool ignore_gfp_reclaim;
54114994 2364 u32 min_order;
933e312e
AM
2365} fail_page_alloc = {
2366 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2367 .ignore_gfp_reclaim = true,
621a5f7a 2368 .ignore_gfp_highmem = true,
54114994 2369 .min_order = 1,
933e312e
AM
2370};
2371
2372static int __init setup_fail_page_alloc(char *str)
2373{
2374 return setup_fault_attr(&fail_page_alloc.attr, str);
2375}
2376__setup("fail_page_alloc=", setup_fail_page_alloc);
2377
deaf386e 2378static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2379{
54114994 2380 if (order < fail_page_alloc.min_order)
deaf386e 2381 return false;
933e312e 2382 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2383 return false;
933e312e 2384 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2385 return false;
71baba4b
MG
2386 if (fail_page_alloc.ignore_gfp_reclaim &&
2387 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2388 return false;
933e312e
AM
2389
2390 return should_fail(&fail_page_alloc.attr, 1 << order);
2391}
2392
2393#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2394
2395static int __init fail_page_alloc_debugfs(void)
2396{
f4ae40a6 2397 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2398 struct dentry *dir;
933e312e 2399
dd48c085
AM
2400 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2401 &fail_page_alloc.attr);
2402 if (IS_ERR(dir))
2403 return PTR_ERR(dir);
933e312e 2404
b2588c4b 2405 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2406 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2407 goto fail;
2408 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2409 &fail_page_alloc.ignore_gfp_highmem))
2410 goto fail;
2411 if (!debugfs_create_u32("min-order", mode, dir,
2412 &fail_page_alloc.min_order))
2413 goto fail;
2414
2415 return 0;
2416fail:
dd48c085 2417 debugfs_remove_recursive(dir);
933e312e 2418
b2588c4b 2419 return -ENOMEM;
933e312e
AM
2420}
2421
2422late_initcall(fail_page_alloc_debugfs);
2423
2424#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2425
2426#else /* CONFIG_FAIL_PAGE_ALLOC */
2427
deaf386e 2428static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2429{
deaf386e 2430 return false;
933e312e
AM
2431}
2432
2433#endif /* CONFIG_FAIL_PAGE_ALLOC */
2434
1da177e4 2435/*
97a16fc8
MG
2436 * Return true if free base pages are above 'mark'. For high-order checks it
2437 * will return true of the order-0 watermark is reached and there is at least
2438 * one free page of a suitable size. Checking now avoids taking the zone lock
2439 * to check in the allocation paths if no pages are free.
1da177e4 2440 */
7aeb09f9
MG
2441static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2442 unsigned long mark, int classzone_idx, int alloc_flags,
2443 long free_pages)
1da177e4 2444{
d23ad423 2445 long min = mark;
1da177e4 2446 int o;
97a16fc8 2447 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2448
0aaa29a5 2449 /* free_pages may go negative - that's OK */
df0a6daa 2450 free_pages -= (1 << order) - 1;
0aaa29a5 2451
7fb1d9fc 2452 if (alloc_flags & ALLOC_HIGH)
1da177e4 2453 min -= min / 2;
0aaa29a5
MG
2454
2455 /*
2456 * If the caller does not have rights to ALLOC_HARDER then subtract
2457 * the high-atomic reserves. This will over-estimate the size of the
2458 * atomic reserve but it avoids a search.
2459 */
97a16fc8 2460 if (likely(!alloc_harder))
0aaa29a5
MG
2461 free_pages -= z->nr_reserved_highatomic;
2462 else
1da177e4 2463 min -= min / 4;
e2b19197 2464
d95ea5d1
BZ
2465#ifdef CONFIG_CMA
2466 /* If allocation can't use CMA areas don't use free CMA pages */
2467 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2468 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2469#endif
026b0814 2470
97a16fc8
MG
2471 /*
2472 * Check watermarks for an order-0 allocation request. If these
2473 * are not met, then a high-order request also cannot go ahead
2474 * even if a suitable page happened to be free.
2475 */
2476 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2477 return false;
1da177e4 2478
97a16fc8
MG
2479 /* If this is an order-0 request then the watermark is fine */
2480 if (!order)
2481 return true;
2482
2483 /* For a high-order request, check at least one suitable page is free */
2484 for (o = order; o < MAX_ORDER; o++) {
2485 struct free_area *area = &z->free_area[o];
2486 int mt;
2487
2488 if (!area->nr_free)
2489 continue;
2490
2491 if (alloc_harder)
2492 return true;
1da177e4 2493
97a16fc8
MG
2494 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2495 if (!list_empty(&area->free_list[mt]))
2496 return true;
2497 }
2498
2499#ifdef CONFIG_CMA
2500 if ((alloc_flags & ALLOC_CMA) &&
2501 !list_empty(&area->free_list[MIGRATE_CMA])) {
2502 return true;
2503 }
2504#endif
1da177e4 2505 }
97a16fc8 2506 return false;
88f5acf8
MG
2507}
2508
7aeb09f9 2509bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2510 int classzone_idx, int alloc_flags)
2511{
2512 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2513 zone_page_state(z, NR_FREE_PAGES));
2514}
2515
7aeb09f9 2516bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2517 unsigned long mark, int classzone_idx)
88f5acf8
MG
2518{
2519 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2520
2521 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2522 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2523
e2b19197 2524 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2525 free_pages);
1da177e4
LT
2526}
2527
9276b1bc 2528#ifdef CONFIG_NUMA
81c0a2bb
JW
2529static bool zone_local(struct zone *local_zone, struct zone *zone)
2530{
fff4068c 2531 return local_zone->node == zone->node;
81c0a2bb
JW
2532}
2533
957f822a
DR
2534static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2535{
612e4679 2536 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 2537 RECLAIM_DISTANCE;
957f822a 2538}
9276b1bc 2539#else /* CONFIG_NUMA */
81c0a2bb
JW
2540static bool zone_local(struct zone *local_zone, struct zone *zone)
2541{
2542 return true;
2543}
2544
957f822a
DR
2545static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2546{
2547 return true;
2548}
9276b1bc
PJ
2549#endif /* CONFIG_NUMA */
2550
4ffeaf35
MG
2551static void reset_alloc_batches(struct zone *preferred_zone)
2552{
2553 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2554
2555 do {
2556 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2557 high_wmark_pages(zone) - low_wmark_pages(zone) -
2558 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2559 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2560 } while (zone++ != preferred_zone);
2561}
2562
7fb1d9fc 2563/*
0798e519 2564 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2565 * a page.
2566 */
2567static struct page *
a9263751
VB
2568get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2569 const struct alloc_context *ac)
753ee728 2570{
a9263751 2571 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2572 struct zoneref *z;
7fb1d9fc 2573 struct page *page = NULL;
5117f45d 2574 struct zone *zone;
4ffeaf35
MG
2575 int nr_fair_skipped = 0;
2576 bool zonelist_rescan;
54a6eb5c 2577
9276b1bc 2578zonelist_scan:
4ffeaf35
MG
2579 zonelist_rescan = false;
2580
7fb1d9fc 2581 /*
9276b1bc 2582 * Scan zonelist, looking for a zone with enough free.
344736f2 2583 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2584 */
a9263751
VB
2585 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2586 ac->nodemask) {
e085dbc5
JW
2587 unsigned long mark;
2588
664eedde
MG
2589 if (cpusets_enabled() &&
2590 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2591 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2592 continue;
81c0a2bb
JW
2593 /*
2594 * Distribute pages in proportion to the individual
2595 * zone size to ensure fair page aging. The zone a
2596 * page was allocated in should have no effect on the
2597 * time the page has in memory before being reclaimed.
81c0a2bb 2598 */
3a025760 2599 if (alloc_flags & ALLOC_FAIR) {
a9263751 2600 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2601 break;
57054651 2602 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2603 nr_fair_skipped++;
3a025760 2604 continue;
4ffeaf35 2605 }
81c0a2bb 2606 }
a756cf59
JW
2607 /*
2608 * When allocating a page cache page for writing, we
2609 * want to get it from a zone that is within its dirty
2610 * limit, such that no single zone holds more than its
2611 * proportional share of globally allowed dirty pages.
2612 * The dirty limits take into account the zone's
2613 * lowmem reserves and high watermark so that kswapd
2614 * should be able to balance it without having to
2615 * write pages from its LRU list.
2616 *
2617 * This may look like it could increase pressure on
2618 * lower zones by failing allocations in higher zones
2619 * before they are full. But the pages that do spill
2620 * over are limited as the lower zones are protected
2621 * by this very same mechanism. It should not become
2622 * a practical burden to them.
2623 *
2624 * XXX: For now, allow allocations to potentially
2625 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2626 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2627 * which is important when on a NUMA setup the allowed
2628 * zones are together not big enough to reach the
2629 * global limit. The proper fix for these situations
2630 * will require awareness of zones in the
2631 * dirty-throttling and the flusher threads.
2632 */
c9ab0c4f 2633 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2634 continue;
7fb1d9fc 2635
e085dbc5
JW
2636 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2637 if (!zone_watermark_ok(zone, order, mark,
a9263751 2638 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2639 int ret;
2640
5dab2911
MG
2641 /* Checked here to keep the fast path fast */
2642 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2643 if (alloc_flags & ALLOC_NO_WATERMARKS)
2644 goto try_this_zone;
2645
957f822a 2646 if (zone_reclaim_mode == 0 ||
a9263751 2647 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2648 continue;
2649
fa5e084e
MG
2650 ret = zone_reclaim(zone, gfp_mask, order);
2651 switch (ret) {
2652 case ZONE_RECLAIM_NOSCAN:
2653 /* did not scan */
cd38b115 2654 continue;
fa5e084e
MG
2655 case ZONE_RECLAIM_FULL:
2656 /* scanned but unreclaimable */
cd38b115 2657 continue;
fa5e084e
MG
2658 default:
2659 /* did we reclaim enough */
fed2719e 2660 if (zone_watermark_ok(zone, order, mark,
a9263751 2661 ac->classzone_idx, alloc_flags))
fed2719e
MG
2662 goto try_this_zone;
2663
fed2719e 2664 continue;
0798e519 2665 }
7fb1d9fc
RS
2666 }
2667
fa5e084e 2668try_this_zone:
a9263751 2669 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2670 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2671 if (page) {
2672 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2673 goto try_this_zone;
0aaa29a5
MG
2674
2675 /*
2676 * If this is a high-order atomic allocation then check
2677 * if the pageblock should be reserved for the future
2678 */
2679 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2680 reserve_highatomic_pageblock(page, zone, order);
2681
75379191
VB
2682 return page;
2683 }
54a6eb5c 2684 }
9276b1bc 2685
4ffeaf35
MG
2686 /*
2687 * The first pass makes sure allocations are spread fairly within the
2688 * local node. However, the local node might have free pages left
2689 * after the fairness batches are exhausted, and remote zones haven't
2690 * even been considered yet. Try once more without fairness, and
2691 * include remote zones now, before entering the slowpath and waking
2692 * kswapd: prefer spilling to a remote zone over swapping locally.
2693 */
2694 if (alloc_flags & ALLOC_FAIR) {
2695 alloc_flags &= ~ALLOC_FAIR;
2696 if (nr_fair_skipped) {
2697 zonelist_rescan = true;
a9263751 2698 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2699 }
2700 if (nr_online_nodes > 1)
2701 zonelist_rescan = true;
2702 }
2703
4ffeaf35
MG
2704 if (zonelist_rescan)
2705 goto zonelist_scan;
2706
2707 return NULL;
753ee728
MH
2708}
2709
29423e77
DR
2710/*
2711 * Large machines with many possible nodes should not always dump per-node
2712 * meminfo in irq context.
2713 */
2714static inline bool should_suppress_show_mem(void)
2715{
2716 bool ret = false;
2717
2718#if NODES_SHIFT > 8
2719 ret = in_interrupt();
2720#endif
2721 return ret;
2722}
2723
a238ab5b
DH
2724static DEFINE_RATELIMIT_STATE(nopage_rs,
2725 DEFAULT_RATELIMIT_INTERVAL,
2726 DEFAULT_RATELIMIT_BURST);
2727
d00181b9 2728void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2729{
a238ab5b
DH
2730 unsigned int filter = SHOW_MEM_FILTER_NODES;
2731
c0a32fc5
SG
2732 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2733 debug_guardpage_minorder() > 0)
a238ab5b
DH
2734 return;
2735
2736 /*
2737 * This documents exceptions given to allocations in certain
2738 * contexts that are allowed to allocate outside current's set
2739 * of allowed nodes.
2740 */
2741 if (!(gfp_mask & __GFP_NOMEMALLOC))
2742 if (test_thread_flag(TIF_MEMDIE) ||
2743 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2744 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2745 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2746 filter &= ~SHOW_MEM_FILTER_NODES;
2747
2748 if (fmt) {
3ee9a4f0
JP
2749 struct va_format vaf;
2750 va_list args;
2751
a238ab5b 2752 va_start(args, fmt);
3ee9a4f0
JP
2753
2754 vaf.fmt = fmt;
2755 vaf.va = &args;
2756
2757 pr_warn("%pV", &vaf);
2758
a238ab5b
DH
2759 va_end(args);
2760 }
2761
d00181b9 2762 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2763 current->comm, order, gfp_mask);
a238ab5b
DH
2764
2765 dump_stack();
2766 if (!should_suppress_show_mem())
2767 show_mem(filter);
2768}
2769
11e33f6a
MG
2770static inline struct page *
2771__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2772 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2773{
6e0fc46d
DR
2774 struct oom_control oc = {
2775 .zonelist = ac->zonelist,
2776 .nodemask = ac->nodemask,
2777 .gfp_mask = gfp_mask,
2778 .order = order,
6e0fc46d 2779 };
11e33f6a
MG
2780 struct page *page;
2781
9879de73
JW
2782 *did_some_progress = 0;
2783
9879de73 2784 /*
dc56401f
JW
2785 * Acquire the oom lock. If that fails, somebody else is
2786 * making progress for us.
9879de73 2787 */
dc56401f 2788 if (!mutex_trylock(&oom_lock)) {
9879de73 2789 *did_some_progress = 1;
11e33f6a 2790 schedule_timeout_uninterruptible(1);
1da177e4
LT
2791 return NULL;
2792 }
6b1de916 2793
11e33f6a
MG
2794 /*
2795 * Go through the zonelist yet one more time, keep very high watermark
2796 * here, this is only to catch a parallel oom killing, we must fail if
2797 * we're still under heavy pressure.
2798 */
a9263751
VB
2799 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2800 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2801 if (page)
11e33f6a
MG
2802 goto out;
2803
4365a567 2804 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2805 /* Coredumps can quickly deplete all memory reserves */
2806 if (current->flags & PF_DUMPCORE)
2807 goto out;
4365a567
KH
2808 /* The OOM killer will not help higher order allocs */
2809 if (order > PAGE_ALLOC_COSTLY_ORDER)
2810 goto out;
03668b3c 2811 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2812 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2813 goto out;
9083905a 2814 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2815 if (!(gfp_mask & __GFP_FS)) {
2816 /*
2817 * XXX: Page reclaim didn't yield anything,
2818 * and the OOM killer can't be invoked, but
9083905a 2819 * keep looping as per tradition.
cc873177
JW
2820 */
2821 *did_some_progress = 1;
9879de73 2822 goto out;
cc873177 2823 }
9083905a
JW
2824 if (pm_suspended_storage())
2825 goto out;
4167e9b2 2826 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2827 if (gfp_mask & __GFP_THISNODE)
2828 goto out;
2829 }
11e33f6a 2830 /* Exhausted what can be done so it's blamo time */
6e0fc46d 2831 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2832 *did_some_progress = 1;
11e33f6a 2833out:
dc56401f 2834 mutex_unlock(&oom_lock);
11e33f6a
MG
2835 return page;
2836}
2837
56de7263
MG
2838#ifdef CONFIG_COMPACTION
2839/* Try memory compaction for high-order allocations before reclaim */
2840static struct page *
2841__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2842 int alloc_flags, const struct alloc_context *ac,
2843 enum migrate_mode mode, int *contended_compaction,
2844 bool *deferred_compaction)
56de7263 2845{
53853e2d 2846 unsigned long compact_result;
98dd3b48 2847 struct page *page;
53853e2d
VB
2848
2849 if (!order)
66199712 2850 return NULL;
66199712 2851
c06b1fca 2852 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2853 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2854 mode, contended_compaction);
c06b1fca 2855 current->flags &= ~PF_MEMALLOC;
56de7263 2856
98dd3b48
VB
2857 switch (compact_result) {
2858 case COMPACT_DEFERRED:
53853e2d 2859 *deferred_compaction = true;
98dd3b48
VB
2860 /* fall-through */
2861 case COMPACT_SKIPPED:
2862 return NULL;
2863 default:
2864 break;
2865 }
53853e2d 2866
98dd3b48
VB
2867 /*
2868 * At least in one zone compaction wasn't deferred or skipped, so let's
2869 * count a compaction stall
2870 */
2871 count_vm_event(COMPACTSTALL);
8fb74b9f 2872
a9263751
VB
2873 page = get_page_from_freelist(gfp_mask, order,
2874 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2875
98dd3b48
VB
2876 if (page) {
2877 struct zone *zone = page_zone(page);
53853e2d 2878
98dd3b48
VB
2879 zone->compact_blockskip_flush = false;
2880 compaction_defer_reset(zone, order, true);
2881 count_vm_event(COMPACTSUCCESS);
2882 return page;
2883 }
56de7263 2884
98dd3b48
VB
2885 /*
2886 * It's bad if compaction run occurs and fails. The most likely reason
2887 * is that pages exist, but not enough to satisfy watermarks.
2888 */
2889 count_vm_event(COMPACTFAIL);
66199712 2890
98dd3b48 2891 cond_resched();
56de7263
MG
2892
2893 return NULL;
2894}
2895#else
2896static inline struct page *
2897__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2898 int alloc_flags, const struct alloc_context *ac,
2899 enum migrate_mode mode, int *contended_compaction,
2900 bool *deferred_compaction)
56de7263
MG
2901{
2902 return NULL;
2903}
2904#endif /* CONFIG_COMPACTION */
2905
bba90710
MS
2906/* Perform direct synchronous page reclaim */
2907static int
a9263751
VB
2908__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2909 const struct alloc_context *ac)
11e33f6a 2910{
11e33f6a 2911 struct reclaim_state reclaim_state;
bba90710 2912 int progress;
11e33f6a
MG
2913
2914 cond_resched();
2915
2916 /* We now go into synchronous reclaim */
2917 cpuset_memory_pressure_bump();
c06b1fca 2918 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2919 lockdep_set_current_reclaim_state(gfp_mask);
2920 reclaim_state.reclaimed_slab = 0;
c06b1fca 2921 current->reclaim_state = &reclaim_state;
11e33f6a 2922
a9263751
VB
2923 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2924 ac->nodemask);
11e33f6a 2925
c06b1fca 2926 current->reclaim_state = NULL;
11e33f6a 2927 lockdep_clear_current_reclaim_state();
c06b1fca 2928 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2929
2930 cond_resched();
2931
bba90710
MS
2932 return progress;
2933}
2934
2935/* The really slow allocator path where we enter direct reclaim */
2936static inline struct page *
2937__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2938 int alloc_flags, const struct alloc_context *ac,
2939 unsigned long *did_some_progress)
bba90710
MS
2940{
2941 struct page *page = NULL;
2942 bool drained = false;
2943
a9263751 2944 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2945 if (unlikely(!(*did_some_progress)))
2946 return NULL;
11e33f6a 2947
9ee493ce 2948retry:
a9263751
VB
2949 page = get_page_from_freelist(gfp_mask, order,
2950 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2951
2952 /*
2953 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2954 * pages are pinned on the per-cpu lists or in high alloc reserves.
2955 * Shrink them them and try again
9ee493ce
MG
2956 */
2957 if (!page && !drained) {
0aaa29a5 2958 unreserve_highatomic_pageblock(ac);
93481ff0 2959 drain_all_pages(NULL);
9ee493ce
MG
2960 drained = true;
2961 goto retry;
2962 }
2963
11e33f6a
MG
2964 return page;
2965}
2966
1da177e4 2967/*
11e33f6a
MG
2968 * This is called in the allocator slow-path if the allocation request is of
2969 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2970 */
11e33f6a
MG
2971static inline struct page *
2972__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2973 const struct alloc_context *ac)
11e33f6a
MG
2974{
2975 struct page *page;
2976
2977 do {
a9263751
VB
2978 page = get_page_from_freelist(gfp_mask, order,
2979 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2980
2981 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2982 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2983 HZ/50);
11e33f6a
MG
2984 } while (!page && (gfp_mask & __GFP_NOFAIL));
2985
2986 return page;
2987}
2988
a9263751 2989static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2990{
2991 struct zoneref *z;
2992 struct zone *zone;
2993
a9263751
VB
2994 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2995 ac->high_zoneidx, ac->nodemask)
2996 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2997}
2998
341ce06f
PZ
2999static inline int
3000gfp_to_alloc_flags(gfp_t gfp_mask)
3001{
341ce06f 3002 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3003
a56f57ff 3004 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3005 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3006
341ce06f
PZ
3007 /*
3008 * The caller may dip into page reserves a bit more if the caller
3009 * cannot run direct reclaim, or if the caller has realtime scheduling
3010 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3011 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3012 */
e6223a3b 3013 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3014
d0164adc 3015 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3016 /*
b104a35d
DR
3017 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3018 * if it can't schedule.
5c3240d9 3019 */
b104a35d 3020 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3021 alloc_flags |= ALLOC_HARDER;
523b9458 3022 /*
b104a35d 3023 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3024 * comment for __cpuset_node_allowed().
523b9458 3025 */
341ce06f 3026 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3027 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3028 alloc_flags |= ALLOC_HARDER;
3029
b37f1dd0
MG
3030 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3031 if (gfp_mask & __GFP_MEMALLOC)
3032 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3033 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3034 alloc_flags |= ALLOC_NO_WATERMARKS;
3035 else if (!in_interrupt() &&
3036 ((current->flags & PF_MEMALLOC) ||
3037 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3038 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3039 }
d95ea5d1 3040#ifdef CONFIG_CMA
beec9920
MB
3041 if ((gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3042 && !!(gfp_mask & __GFP_CMA))
3043 alloc_flags |= ALLOC_CMA;
d95ea5d1 3044#endif
341ce06f
PZ
3045 return alloc_flags;
3046}
3047
072bb0aa
MG
3048bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3049{
b37f1dd0 3050 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3051}
3052
d0164adc
MG
3053static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3054{
3055 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3056}
3057
11e33f6a
MG
3058static inline struct page *
3059__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3060 struct alloc_context *ac)
11e33f6a 3061{
d0164adc 3062 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3063 struct page *page = NULL;
3064 int alloc_flags;
3065 unsigned long pages_reclaimed = 0;
3066 unsigned long did_some_progress;
e0b9daeb 3067 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3068 bool deferred_compaction = false;
1f9efdef 3069 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3070
72807a74
MG
3071 /*
3072 * In the slowpath, we sanity check order to avoid ever trying to
3073 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3074 * be using allocators in order of preference for an area that is
3075 * too large.
3076 */
1fc28b70
MG
3077 if (order >= MAX_ORDER) {
3078 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3079 return NULL;
1fc28b70 3080 }
1da177e4 3081
1cac41cb
MB
3082#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3083 set_tsk_thread_flag(current, TIF_MEMALLOC);
3084#endif
3085
d0164adc
MG
3086 /*
3087 * We also sanity check to catch abuse of atomic reserves being used by
3088 * callers that are not in atomic context.
3089 */
3090 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3091 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3092 gfp_mask &= ~__GFP_ATOMIC;
3093
952f3b51 3094 /*
4167e9b2
DR
3095 * If this allocation cannot block and it is for a specific node, then
3096 * fail early. There's no need to wakeup kswapd or retry for a
3097 * speculative node-specific allocation.
952f3b51 3098 */
d0164adc 3099 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3100 goto nopage;
3101
9879de73 3102retry:
d0164adc 3103 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3104 wake_all_kswapds(order, ac);
1da177e4 3105
9bf2229f 3106 /*
7fb1d9fc
RS
3107 * OK, we're below the kswapd watermark and have kicked background
3108 * reclaim. Now things get more complex, so set up alloc_flags according
3109 * to how we want to proceed.
9bf2229f 3110 */
341ce06f 3111 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3112
f33261d7
DR
3113 /*
3114 * Find the true preferred zone if the allocation is unconstrained by
3115 * cpusets.
3116 */
a9263751 3117 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3118 struct zoneref *preferred_zoneref;
a9263751
VB
3119 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3120 ac->high_zoneidx, NULL, &ac->preferred_zone);
3121 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3122 }
f33261d7 3123
341ce06f 3124 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3125 page = get_page_from_freelist(gfp_mask, order,
3126 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3127 if (page)
3128 goto got_pg;
1da177e4 3129
11e33f6a 3130 /* Allocate without watermarks if the context allows */
341ce06f 3131 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3132 /*
3133 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3134 * the allocation is high priority and these type of
3135 * allocations are system rather than user orientated
3136 */
a9263751
VB
3137 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3138
3139 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3140
cfd19c5a 3141 if (page) {
341ce06f 3142 goto got_pg;
cfd19c5a 3143 }
1da177e4
LT
3144 }
3145
d0164adc
MG
3146 /* Caller is not willing to reclaim, we can't balance anything */
3147 if (!can_direct_reclaim) {
aed0a0e3
DR
3148 /*
3149 * All existing users of the deprecated __GFP_NOFAIL are
3150 * blockable, so warn of any new users that actually allow this
3151 * type of allocation to fail.
3152 */
3153 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3154 goto nopage;
aed0a0e3 3155 }
1da177e4 3156
341ce06f 3157 /* Avoid recursion of direct reclaim */
c06b1fca 3158 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3159 goto nopage;
3160
6583bb64
DR
3161 /* Avoid allocations with no watermarks from looping endlessly */
3162 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3163 goto nopage;
3164
77f1fe6b
MG
3165 /*
3166 * Try direct compaction. The first pass is asynchronous. Subsequent
3167 * attempts after direct reclaim are synchronous
3168 */
a9263751
VB
3169 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3170 migration_mode,
3171 &contended_compaction,
53853e2d 3172 &deferred_compaction);
56de7263
MG
3173 if (page)
3174 goto got_pg;
75f30861 3175
1f9efdef 3176 /* Checks for THP-specific high-order allocations */
d0164adc 3177 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3178 /*
3179 * If compaction is deferred for high-order allocations, it is
3180 * because sync compaction recently failed. If this is the case
3181 * and the caller requested a THP allocation, we do not want
3182 * to heavily disrupt the system, so we fail the allocation
3183 * instead of entering direct reclaim.
3184 */
3185 if (deferred_compaction)
3186 goto nopage;
3187
3188 /*
3189 * In all zones where compaction was attempted (and not
3190 * deferred or skipped), lock contention has been detected.
3191 * For THP allocation we do not want to disrupt the others
3192 * so we fallback to base pages instead.
3193 */
3194 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3195 goto nopage;
3196
3197 /*
3198 * If compaction was aborted due to need_resched(), we do not
3199 * want to further increase allocation latency, unless it is
3200 * khugepaged trying to collapse.
3201 */
3202 if (contended_compaction == COMPACT_CONTENDED_SCHED
3203 && !(current->flags & PF_KTHREAD))
3204 goto nopage;
3205 }
66199712 3206
8fe78048
DR
3207 /*
3208 * It can become very expensive to allocate transparent hugepages at
3209 * fault, so use asynchronous memory compaction for THP unless it is
3210 * khugepaged trying to collapse.
3211 */
d0164adc 3212 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3213 migration_mode = MIGRATE_SYNC_LIGHT;
3214
11e33f6a 3215 /* Try direct reclaim and then allocating */
a9263751
VB
3216 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3217 &did_some_progress);
11e33f6a
MG
3218 if (page)
3219 goto got_pg;
1da177e4 3220
9083905a
JW
3221 /* Do not loop if specifically requested */
3222 if (gfp_mask & __GFP_NORETRY)
3223 goto noretry;
3224
3225 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3226 pages_reclaimed += did_some_progress;
9083905a
JW
3227 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3228 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3229 /* Wait for some write requests to complete then retry */
a9263751 3230 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3231 goto retry;
1da177e4
LT
3232 }
3233
9083905a
JW
3234 /* Reclaim has failed us, start killing things */
3235 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3236 if (page)
3237 goto got_pg;
3238
3239 /* Retry as long as the OOM killer is making progress */
3240 if (did_some_progress)
3241 goto retry;
3242
3243noretry:
3244 /*
3245 * High-order allocations do not necessarily loop after
3246 * direct reclaim and reclaim/compaction depends on compaction
3247 * being called after reclaim so call directly if necessary
3248 */
3249 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3250 ac, migration_mode,
3251 &contended_compaction,
3252 &deferred_compaction);
3253 if (page)
3254 goto got_pg;
1da177e4 3255nopage:
1cac41cb
MB
3256#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3257 clear_tsk_thread_flag(current, TIF_MEMALLOC);
3258#endif
a238ab5b 3259 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3260got_pg:
1cac41cb
MB
3261#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3262 clear_tsk_thread_flag(current, TIF_MEMALLOC);
3263#endif
072bb0aa 3264 return page;
1da177e4 3265}
11e33f6a
MG
3266
3267/*
3268 * This is the 'heart' of the zoned buddy allocator.
3269 */
3270struct page *
3271__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3272 struct zonelist *zonelist, nodemask_t *nodemask)
3273{
d8846374 3274 struct zoneref *preferred_zoneref;
cc9a6c87 3275 struct page *page = NULL;
cc9a6c87 3276 unsigned int cpuset_mems_cookie;
3a025760 3277 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3278 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3279 struct alloc_context ac = {
3280 .high_zoneidx = gfp_zone(gfp_mask),
3281 .nodemask = nodemask,
3282 .migratetype = gfpflags_to_migratetype(gfp_mask),
3283 };
11e33f6a 3284
dcce284a
BH
3285 gfp_mask &= gfp_allowed_mask;
3286
11e33f6a
MG
3287 lockdep_trace_alloc(gfp_mask);
3288
d0164adc 3289 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3290
3291 if (should_fail_alloc_page(gfp_mask, order))
3292 return NULL;
3293
3294 /*
3295 * Check the zones suitable for the gfp_mask contain at least one
3296 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3297 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3298 */
3299 if (unlikely(!zonelist->_zonerefs->zone))
3300 return NULL;
3301
beec9920
MB
3302 if (IS_ENABLED(CONFIG_CMA) && (ac.migratetype == MIGRATE_MOVABLE)
3303 && !!(gfp_mask & __GFP_CMA))
3304 alloc_flags |= ALLOC_CMA;
21bb9bd1 3305
cc9a6c87 3306retry_cpuset:
d26914d1 3307 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3308
a9263751
VB
3309 /* We set it here, as __alloc_pages_slowpath might have changed it */
3310 ac.zonelist = zonelist;
c9ab0c4f
MG
3311
3312 /* Dirty zone balancing only done in the fast path */
3313 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3314
5117f45d 3315 /* The preferred zone is used for statistics later */
a9263751
VB
3316 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3317 ac.nodemask ? : &cpuset_current_mems_allowed,
3318 &ac.preferred_zone);
3319 if (!ac.preferred_zone)
cc9a6c87 3320 goto out;
a9263751 3321 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3322
3323 /* First allocation attempt */
91fbdc0f 3324 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3325 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3326 if (unlikely(!page)) {
3327 /*
3328 * Runtime PM, block IO and its error handling path
3329 * can deadlock because I/O on the device might not
3330 * complete.
3331 */
91fbdc0f 3332 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3333 ac.spread_dirty_pages = false;
91fbdc0f 3334
a9263751 3335 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3336 }
11e33f6a 3337
23f086f9
XQ
3338 if (kmemcheck_enabled && page)
3339 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3340
a9263751 3341 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3342
3343out:
3344 /*
3345 * When updating a task's mems_allowed, it is possible to race with
3346 * parallel threads in such a way that an allocation can fail while
3347 * the mask is being updated. If a page allocation is about to fail,
3348 * check if the cpuset changed during allocation and if so, retry.
3349 */
d26914d1 3350 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3351 goto retry_cpuset;
3352
11e33f6a 3353 return page;
1da177e4 3354}
d239171e 3355EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3356
3357/*
3358 * Common helper functions.
3359 */
920c7a5d 3360unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3361{
945a1113
AM
3362 struct page *page;
3363
3364 /*
3365 * __get_free_pages() returns a 32-bit address, which cannot represent
3366 * a highmem page
3367 */
3368 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3369
1da177e4
LT
3370 page = alloc_pages(gfp_mask, order);
3371 if (!page)
3372 return 0;
3373 return (unsigned long) page_address(page);
3374}
1da177e4
LT
3375EXPORT_SYMBOL(__get_free_pages);
3376
920c7a5d 3377unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3378{
945a1113 3379 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3380}
1da177e4
LT
3381EXPORT_SYMBOL(get_zeroed_page);
3382
920c7a5d 3383void __free_pages(struct page *page, unsigned int order)
1da177e4 3384{
b5810039 3385 if (put_page_testzero(page)) {
1da177e4 3386 if (order == 0)
b745bc85 3387 free_hot_cold_page(page, false);
1da177e4
LT
3388 else
3389 __free_pages_ok(page, order);
3390 }
3391}
3392
3393EXPORT_SYMBOL(__free_pages);
3394
920c7a5d 3395void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3396{
3397 if (addr != 0) {
725d704e 3398 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3399 __free_pages(virt_to_page((void *)addr), order);
3400 }
3401}
3402
3403EXPORT_SYMBOL(free_pages);
3404
b63ae8ca
AD
3405/*
3406 * Page Fragment:
3407 * An arbitrary-length arbitrary-offset area of memory which resides
3408 * within a 0 or higher order page. Multiple fragments within that page
3409 * are individually refcounted, in the page's reference counter.
3410 *
3411 * The page_frag functions below provide a simple allocation framework for
3412 * page fragments. This is used by the network stack and network device
3413 * drivers to provide a backing region of memory for use as either an
3414 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3415 */
3416static struct page *__page_frag_refill(struct page_frag_cache *nc,
3417 gfp_t gfp_mask)
3418{
3419 struct page *page = NULL;
3420 gfp_t gfp = gfp_mask;
3421
3422#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3423 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3424 __GFP_NOMEMALLOC;
3425 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3426 PAGE_FRAG_CACHE_MAX_ORDER);
3427 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3428#endif
3429 if (unlikely(!page))
3430 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3431
3432 nc->va = page ? page_address(page) : NULL;
3433
3434 return page;
3435}
3436
3437void *__alloc_page_frag(struct page_frag_cache *nc,
3438 unsigned int fragsz, gfp_t gfp_mask)
3439{
3440 unsigned int size = PAGE_SIZE;
3441 struct page *page;
3442 int offset;
3443
3444 if (unlikely(!nc->va)) {
3445refill:
3446 page = __page_frag_refill(nc, gfp_mask);
3447 if (!page)
3448 return NULL;
3449
3450#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3451 /* if size can vary use size else just use PAGE_SIZE */
3452 size = nc->size;
3453#endif
3454 /* Even if we own the page, we do not use atomic_set().
3455 * This would break get_page_unless_zero() users.
3456 */
3457 atomic_add(size - 1, &page->_count);
3458
3459 /* reset page count bias and offset to start of new frag */
2f064f34 3460 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3461 nc->pagecnt_bias = size;
3462 nc->offset = size;
3463 }
3464
3465 offset = nc->offset - fragsz;
3466 if (unlikely(offset < 0)) {
3467 page = virt_to_page(nc->va);
3468
3469 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3470 goto refill;
3471
3472#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3473 /* if size can vary use size else just use PAGE_SIZE */
3474 size = nc->size;
3475#endif
3476 /* OK, page count is 0, we can safely set it */
3477 atomic_set(&page->_count, size);
3478
3479 /* reset page count bias and offset to start of new frag */
3480 nc->pagecnt_bias = size;
3481 offset = size - fragsz;
3482 }
3483
3484 nc->pagecnt_bias--;
3485 nc->offset = offset;
3486
3487 return nc->va + offset;
3488}
3489EXPORT_SYMBOL(__alloc_page_frag);
3490
3491/*
3492 * Frees a page fragment allocated out of either a compound or order 0 page.
3493 */
3494void __free_page_frag(void *addr)
3495{
3496 struct page *page = virt_to_head_page(addr);
3497
3498 if (unlikely(put_page_testzero(page)))
3499 __free_pages_ok(page, compound_order(page));
3500}
3501EXPORT_SYMBOL(__free_page_frag);
3502
6a1a0d3b 3503/*
52383431
VD
3504 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3505 * of the current memory cgroup.
6a1a0d3b 3506 *
52383431
VD
3507 * It should be used when the caller would like to use kmalloc, but since the
3508 * allocation is large, it has to fall back to the page allocator.
3509 */
3510struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3511{
3512 struct page *page;
52383431 3513
52383431 3514 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3515 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3516 __free_pages(page, order);
3517 page = NULL;
3518 }
52383431
VD
3519 return page;
3520}
3521
3522struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3523{
3524 struct page *page;
52383431 3525
52383431 3526 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3527 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3528 __free_pages(page, order);
3529 page = NULL;
3530 }
52383431
VD
3531 return page;
3532}
3533
3534/*
3535 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3536 * alloc_kmem_pages.
6a1a0d3b 3537 */
52383431 3538void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3539{
d05e83a6 3540 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3541 __free_pages(page, order);
3542}
3543
52383431 3544void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3545{
3546 if (addr != 0) {
3547 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3548 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3549 }
3550}
3551
d00181b9
KS
3552static void *make_alloc_exact(unsigned long addr, unsigned int order,
3553 size_t size)
ee85c2e1
AK
3554{
3555 if (addr) {
3556 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3557 unsigned long used = addr + PAGE_ALIGN(size);
3558
3559 split_page(virt_to_page((void *)addr), order);
3560 while (used < alloc_end) {
3561 free_page(used);
3562 used += PAGE_SIZE;
3563 }
3564 }
3565 return (void *)addr;
3566}
3567
2be0ffe2
TT
3568/**
3569 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3570 * @size: the number of bytes to allocate
3571 * @gfp_mask: GFP flags for the allocation
3572 *
3573 * This function is similar to alloc_pages(), except that it allocates the
3574 * minimum number of pages to satisfy the request. alloc_pages() can only
3575 * allocate memory in power-of-two pages.
3576 *
3577 * This function is also limited by MAX_ORDER.
3578 *
3579 * Memory allocated by this function must be released by free_pages_exact().
3580 */
3581void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3582{
3583 unsigned int order = get_order(size);
3584 unsigned long addr;
3585
3586 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3587 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3588}
3589EXPORT_SYMBOL(alloc_pages_exact);
3590
ee85c2e1
AK
3591/**
3592 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3593 * pages on a node.
b5e6ab58 3594 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3595 * @size: the number of bytes to allocate
3596 * @gfp_mask: GFP flags for the allocation
3597 *
3598 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3599 * back.
ee85c2e1 3600 */
e1931811 3601void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3602{
d00181b9 3603 unsigned int order = get_order(size);
ee85c2e1
AK
3604 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3605 if (!p)
3606 return NULL;
3607 return make_alloc_exact((unsigned long)page_address(p), order, size);
3608}
ee85c2e1 3609
2be0ffe2
TT
3610/**
3611 * free_pages_exact - release memory allocated via alloc_pages_exact()
3612 * @virt: the value returned by alloc_pages_exact.
3613 * @size: size of allocation, same value as passed to alloc_pages_exact().
3614 *
3615 * Release the memory allocated by a previous call to alloc_pages_exact.
3616 */
3617void free_pages_exact(void *virt, size_t size)
3618{
3619 unsigned long addr = (unsigned long)virt;
3620 unsigned long end = addr + PAGE_ALIGN(size);
3621
3622 while (addr < end) {
3623 free_page(addr);
3624 addr += PAGE_SIZE;
3625 }
3626}
3627EXPORT_SYMBOL(free_pages_exact);
3628
e0fb5815
ZY
3629/**
3630 * nr_free_zone_pages - count number of pages beyond high watermark
3631 * @offset: The zone index of the highest zone
3632 *
3633 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3634 * high watermark within all zones at or below a given zone index. For each
3635 * zone, the number of pages is calculated as:
834405c3 3636 * managed_pages - high_pages
e0fb5815 3637 */
ebec3862 3638static unsigned long nr_free_zone_pages(int offset)
1da177e4 3639{
dd1a239f 3640 struct zoneref *z;
54a6eb5c
MG
3641 struct zone *zone;
3642
e310fd43 3643 /* Just pick one node, since fallback list is circular */
ebec3862 3644 unsigned long sum = 0;
1da177e4 3645
0e88460d 3646 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3647
54a6eb5c 3648 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3649 unsigned long size = zone->managed_pages;
41858966 3650 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3651 if (size > high)
3652 sum += size - high;
1da177e4
LT
3653 }
3654
3655 return sum;
3656}
3657
e0fb5815
ZY
3658/**
3659 * nr_free_buffer_pages - count number of pages beyond high watermark
3660 *
3661 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3662 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3663 */
ebec3862 3664unsigned long nr_free_buffer_pages(void)
1da177e4 3665{
af4ca457 3666 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3667}
c2f1a551 3668EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3669
e0fb5815
ZY
3670/**
3671 * nr_free_pagecache_pages - count number of pages beyond high watermark
3672 *
3673 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3674 * high watermark within all zones.
1da177e4 3675 */
ebec3862 3676unsigned long nr_free_pagecache_pages(void)
1da177e4 3677{
2a1e274a 3678 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3679}
08e0f6a9
CL
3680
3681static inline void show_node(struct zone *zone)
1da177e4 3682{
e5adfffc 3683 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3684 printk("Node %d ", zone_to_nid(zone));
1da177e4 3685}
1da177e4 3686
1da177e4
LT
3687void si_meminfo(struct sysinfo *val)
3688{
3689 val->totalram = totalram_pages;
cc7452b6 3690 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3691 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3692 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3693 val->totalhigh = totalhigh_pages;
3694 val->freehigh = nr_free_highpages();
1da177e4
LT
3695 val->mem_unit = PAGE_SIZE;
3696}
3697
3698EXPORT_SYMBOL(si_meminfo);
3699
3700#ifdef CONFIG_NUMA
3701void si_meminfo_node(struct sysinfo *val, int nid)
3702{
cdd91a77
JL
3703 int zone_type; /* needs to be signed */
3704 unsigned long managed_pages = 0;
1da177e4
LT
3705 pg_data_t *pgdat = NODE_DATA(nid);
3706
cdd91a77
JL
3707 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3708 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3709 val->totalram = managed_pages;
cc7452b6 3710 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3711 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3712#ifdef CONFIG_HIGHMEM
b40da049 3713 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3714 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3715 NR_FREE_PAGES);
98d2b0eb
CL
3716#else
3717 val->totalhigh = 0;
3718 val->freehigh = 0;
3719#endif
1da177e4
LT
3720 val->mem_unit = PAGE_SIZE;
3721}
3722#endif
3723
ddd588b5 3724/*
7bf02ea2
DR
3725 * Determine whether the node should be displayed or not, depending on whether
3726 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3727 */
7bf02ea2 3728bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3729{
3730 bool ret = false;
cc9a6c87 3731 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3732
3733 if (!(flags & SHOW_MEM_FILTER_NODES))
3734 goto out;
3735
cc9a6c87 3736 do {
d26914d1 3737 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3738 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3739 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3740out:
3741 return ret;
3742}
3743
1da177e4
LT
3744#define K(x) ((x) << (PAGE_SHIFT-10))
3745
377e4f16
RV
3746static void show_migration_types(unsigned char type)
3747{
3748 static const char types[MIGRATE_TYPES] = {
3749 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3750 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3751 [MIGRATE_RECLAIMABLE] = 'E',
3752 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3753#ifdef CONFIG_CMA
3754 [MIGRATE_CMA] = 'C',
3755#endif
194159fb 3756#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3757 [MIGRATE_ISOLATE] = 'I',
194159fb 3758#endif
377e4f16
RV
3759 };
3760 char tmp[MIGRATE_TYPES + 1];
3761 char *p = tmp;
3762 int i;
3763
3764 for (i = 0; i < MIGRATE_TYPES; i++) {
3765 if (type & (1 << i))
3766 *p++ = types[i];
3767 }
3768
3769 *p = '\0';
3770 printk("(%s) ", tmp);
3771}
3772
1da177e4
LT
3773/*
3774 * Show free area list (used inside shift_scroll-lock stuff)
3775 * We also calculate the percentage fragmentation. We do this by counting the
3776 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3777 *
3778 * Bits in @filter:
3779 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3780 * cpuset.
1da177e4 3781 */
7bf02ea2 3782void show_free_areas(unsigned int filter)
1da177e4 3783{
d1bfcdb8 3784 unsigned long free_pcp = 0;
c7241913 3785 int cpu;
1da177e4
LT
3786 struct zone *zone;
3787
ee99c71c 3788 for_each_populated_zone(zone) {
7bf02ea2 3789 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3790 continue;
d1bfcdb8 3791
761b0677
KK
3792 for_each_online_cpu(cpu)
3793 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3794 }
3795
a731286d
KM
3796 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3797 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3798 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3799 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3800 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
beec9920 3801 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3802 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3803 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3804 global_page_state(NR_ISOLATED_ANON),
3805 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3806 global_page_state(NR_INACTIVE_FILE),
a731286d 3807 global_page_state(NR_ISOLATED_FILE),
7b854121 3808 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3809 global_page_state(NR_FILE_DIRTY),
ce866b34 3810 global_page_state(NR_WRITEBACK),
fd39fc85 3811 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3812 global_page_state(NR_SLAB_RECLAIMABLE),
3813 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3814 global_page_state(NR_FILE_MAPPED),
4b02108a 3815 global_page_state(NR_SHMEM),
a25700a5 3816 global_page_state(NR_PAGETABLE),
d1ce749a 3817 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3818 global_page_state(NR_FREE_PAGES),
3819 free_pcp,
beec9920 3820 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3821
ee99c71c 3822 for_each_populated_zone(zone) {
1da177e4
LT
3823 int i;
3824
7bf02ea2 3825 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3826 continue;
d1bfcdb8
KK
3827
3828 free_pcp = 0;
3829 for_each_online_cpu(cpu)
3830 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3831
1da177e4
LT
3832 show_node(zone);
3833 printk("%s"
3834 " free:%lukB"
3835 " min:%lukB"
3836 " low:%lukB"
3837 " high:%lukB"
4f98a2fe
RR
3838 " active_anon:%lukB"
3839 " inactive_anon:%lukB"
3840 " active_file:%lukB"
3841 " inactive_file:%lukB"
7b854121 3842 " unevictable:%lukB"
a731286d
KM
3843 " isolated(anon):%lukB"
3844 " isolated(file):%lukB"
1da177e4 3845 " present:%lukB"
9feedc9d 3846 " managed:%lukB"
4a0aa73f
KM
3847 " mlocked:%lukB"
3848 " dirty:%lukB"
3849 " writeback:%lukB"
3850 " mapped:%lukB"
4b02108a 3851 " shmem:%lukB"
4a0aa73f
KM
3852 " slab_reclaimable:%lukB"
3853 " slab_unreclaimable:%lukB"
c6a7f572 3854 " kernel_stack:%lukB"
4a0aa73f
KM
3855 " pagetables:%lukB"
3856 " unstable:%lukB"
3857 " bounce:%lukB"
d1bfcdb8
KK
3858 " free_pcp:%lukB"
3859 " local_pcp:%ukB"
d1ce749a 3860 " free_cma:%lukB"
4a0aa73f 3861 " writeback_tmp:%lukB"
1da177e4
LT
3862 " pages_scanned:%lu"
3863 " all_unreclaimable? %s"
3864 "\n",
3865 zone->name,
88f5acf8 3866 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3867 K(min_wmark_pages(zone)),
3868 K(low_wmark_pages(zone)),
3869 K(high_wmark_pages(zone)),
4f98a2fe
RR
3870 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3871 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3872 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3873 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3874 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3875 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3876 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3877 K(zone->present_pages),
9feedc9d 3878 K(zone->managed_pages),
4a0aa73f
KM
3879 K(zone_page_state(zone, NR_MLOCK)),
3880 K(zone_page_state(zone, NR_FILE_DIRTY)),
3881 K(zone_page_state(zone, NR_WRITEBACK)),
3882 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3883 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3884 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3885 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3886 zone_page_state(zone, NR_KERNEL_STACK) *
3887 THREAD_SIZE / 1024,
4a0aa73f
KM
3888 K(zone_page_state(zone, NR_PAGETABLE)),
3889 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3890 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3891 K(free_pcp),
3892 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3893 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3894 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3895 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3896 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3897 );
3898 printk("lowmem_reserve[]:");
3899 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3900 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3901 printk("\n");
3902 }
3903
ee99c71c 3904 for_each_populated_zone(zone) {
d00181b9
KS
3905 unsigned int order;
3906 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3907 unsigned char types[MAX_ORDER];
1da177e4 3908
7bf02ea2 3909 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3910 continue;
1da177e4
LT
3911 show_node(zone);
3912 printk("%s: ", zone->name);
1da177e4
LT
3913
3914 spin_lock_irqsave(&zone->lock, flags);
3915 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3916 struct free_area *area = &zone->free_area[order];
3917 int type;
3918
3919 nr[order] = area->nr_free;
8f9de51a 3920 total += nr[order] << order;
377e4f16
RV
3921
3922 types[order] = 0;
3923 for (type = 0; type < MIGRATE_TYPES; type++) {
3924 if (!list_empty(&area->free_list[type]))
3925 types[order] |= 1 << type;
3926 }
1da177e4
LT
3927 }
3928 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3929 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3930 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3931 if (nr[order])
3932 show_migration_types(types[order]);
3933 }
1da177e4
LT
3934 printk("= %lukB\n", K(total));
3935 }
3936
949f7ec5
DR
3937 hugetlb_show_meminfo();
3938
e6f3602d
LW
3939 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3940
1da177e4
LT
3941 show_swap_cache_info();
3942}
3943
19770b32
MG
3944static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3945{
3946 zoneref->zone = zone;
3947 zoneref->zone_idx = zone_idx(zone);
3948}
3949
1da177e4
LT
3950/*
3951 * Builds allocation fallback zone lists.
1a93205b
CL
3952 *
3953 * Add all populated zones of a node to the zonelist.
1da177e4 3954 */
f0c0b2b8 3955static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3956 int nr_zones)
1da177e4 3957{
1a93205b 3958 struct zone *zone;
bc732f1d 3959 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3960
3961 do {
2f6726e5 3962 zone_type--;
070f8032 3963 zone = pgdat->node_zones + zone_type;
1a93205b 3964 if (populated_zone(zone)) {
dd1a239f
MG
3965 zoneref_set_zone(zone,
3966 &zonelist->_zonerefs[nr_zones++]);
070f8032 3967 check_highest_zone(zone_type);
1da177e4 3968 }
2f6726e5 3969 } while (zone_type);
bc732f1d 3970
070f8032 3971 return nr_zones;
1da177e4
LT
3972}
3973
f0c0b2b8
KH
3974
3975/*
3976 * zonelist_order:
3977 * 0 = automatic detection of better ordering.
3978 * 1 = order by ([node] distance, -zonetype)
3979 * 2 = order by (-zonetype, [node] distance)
3980 *
3981 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3982 * the same zonelist. So only NUMA can configure this param.
3983 */
3984#define ZONELIST_ORDER_DEFAULT 0
3985#define ZONELIST_ORDER_NODE 1
3986#define ZONELIST_ORDER_ZONE 2
3987
3988/* zonelist order in the kernel.
3989 * set_zonelist_order() will set this to NODE or ZONE.
3990 */
3991static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3992static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3993
3994
1da177e4 3995#ifdef CONFIG_NUMA
f0c0b2b8
KH
3996/* The value user specified ....changed by config */
3997static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3998/* string for sysctl */
3999#define NUMA_ZONELIST_ORDER_LEN 16
4000char numa_zonelist_order[16] = "default";
4001
4002/*
4003 * interface for configure zonelist ordering.
4004 * command line option "numa_zonelist_order"
4005 * = "[dD]efault - default, automatic configuration.
4006 * = "[nN]ode - order by node locality, then by zone within node
4007 * = "[zZ]one - order by zone, then by locality within zone
4008 */
4009
4010static int __parse_numa_zonelist_order(char *s)
4011{
4012 if (*s == 'd' || *s == 'D') {
4013 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4014 } else if (*s == 'n' || *s == 'N') {
4015 user_zonelist_order = ZONELIST_ORDER_NODE;
4016 } else if (*s == 'z' || *s == 'Z') {
4017 user_zonelist_order = ZONELIST_ORDER_ZONE;
4018 } else {
4019 printk(KERN_WARNING
1a44264a 4020 "Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4021 return -EINVAL;
4022 }
4023 return 0;
4024}
4025
4026static __init int setup_numa_zonelist_order(char *s)
4027{
ecb256f8
VL
4028 int ret;
4029
4030 if (!s)
4031 return 0;
4032
4033 ret = __parse_numa_zonelist_order(s);
4034 if (ret == 0)
4035 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4036
4037 return ret;
f0c0b2b8
KH
4038}
4039early_param("numa_zonelist_order", setup_numa_zonelist_order);
4040
4041/*
4042 * sysctl handler for numa_zonelist_order
4043 */
cccad5b9 4044int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4045 void __user *buffer, size_t *length,
f0c0b2b8
KH
4046 loff_t *ppos)
4047{
4048 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4049 int ret;
443c6f14 4050 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4051
443c6f14 4052 mutex_lock(&zl_order_mutex);
dacbde09
CG
4053 if (write) {
4054 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4055 ret = -EINVAL;
4056 goto out;
4057 }
4058 strcpy(saved_string, (char *)table->data);
4059 }
8d65af78 4060 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4061 if (ret)
443c6f14 4062 goto out;
f0c0b2b8
KH
4063 if (write) {
4064 int oldval = user_zonelist_order;
dacbde09
CG
4065
4066 ret = __parse_numa_zonelist_order((char *)table->data);
4067 if (ret) {
f0c0b2b8
KH
4068 /*
4069 * bogus value. restore saved string
4070 */
dacbde09 4071 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4072 NUMA_ZONELIST_ORDER_LEN);
4073 user_zonelist_order = oldval;
4eaf3f64
HL
4074 } else if (oldval != user_zonelist_order) {
4075 mutex_lock(&zonelists_mutex);
9adb62a5 4076 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4077 mutex_unlock(&zonelists_mutex);
4078 }
f0c0b2b8 4079 }
443c6f14
AK
4080out:
4081 mutex_unlock(&zl_order_mutex);
4082 return ret;
f0c0b2b8
KH
4083}
4084
4085
62bc62a8 4086#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4087static int node_load[MAX_NUMNODES];
4088
1da177e4 4089/**
4dc3b16b 4090 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4091 * @node: node whose fallback list we're appending
4092 * @used_node_mask: nodemask_t of already used nodes
4093 *
4094 * We use a number of factors to determine which is the next node that should
4095 * appear on a given node's fallback list. The node should not have appeared
4096 * already in @node's fallback list, and it should be the next closest node
4097 * according to the distance array (which contains arbitrary distance values
4098 * from each node to each node in the system), and should also prefer nodes
4099 * with no CPUs, since presumably they'll have very little allocation pressure
4100 * on them otherwise.
4101 * It returns -1 if no node is found.
4102 */
f0c0b2b8 4103static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4104{
4cf808eb 4105 int n, val;
1da177e4 4106 int min_val = INT_MAX;
00ef2d2f 4107 int best_node = NUMA_NO_NODE;
a70f7302 4108 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4109
4cf808eb
LT
4110 /* Use the local node if we haven't already */
4111 if (!node_isset(node, *used_node_mask)) {
4112 node_set(node, *used_node_mask);
4113 return node;
4114 }
1da177e4 4115
4b0ef1fe 4116 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4117
4118 /* Don't want a node to appear more than once */
4119 if (node_isset(n, *used_node_mask))
4120 continue;
4121
1da177e4
LT
4122 /* Use the distance array to find the distance */
4123 val = node_distance(node, n);
4124
4cf808eb
LT
4125 /* Penalize nodes under us ("prefer the next node") */
4126 val += (n < node);
4127
1da177e4 4128 /* Give preference to headless and unused nodes */
a70f7302
RR
4129 tmp = cpumask_of_node(n);
4130 if (!cpumask_empty(tmp))
1da177e4
LT
4131 val += PENALTY_FOR_NODE_WITH_CPUS;
4132
4133 /* Slight preference for less loaded node */
4134 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4135 val += node_load[n];
4136
4137 if (val < min_val) {
4138 min_val = val;
4139 best_node = n;
4140 }
4141 }
4142
4143 if (best_node >= 0)
4144 node_set(best_node, *used_node_mask);
4145
4146 return best_node;
4147}
4148
f0c0b2b8
KH
4149
4150/*
4151 * Build zonelists ordered by node and zones within node.
4152 * This results in maximum locality--normal zone overflows into local
4153 * DMA zone, if any--but risks exhausting DMA zone.
4154 */
4155static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4156{
f0c0b2b8 4157 int j;
1da177e4 4158 struct zonelist *zonelist;
f0c0b2b8 4159
54a6eb5c 4160 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4161 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4162 ;
bc732f1d 4163 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4164 zonelist->_zonerefs[j].zone = NULL;
4165 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4166}
4167
523b9458
CL
4168/*
4169 * Build gfp_thisnode zonelists
4170 */
4171static void build_thisnode_zonelists(pg_data_t *pgdat)
4172{
523b9458
CL
4173 int j;
4174 struct zonelist *zonelist;
4175
54a6eb5c 4176 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4177 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4178 zonelist->_zonerefs[j].zone = NULL;
4179 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4180}
4181
f0c0b2b8
KH
4182/*
4183 * Build zonelists ordered by zone and nodes within zones.
4184 * This results in conserving DMA zone[s] until all Normal memory is
4185 * exhausted, but results in overflowing to remote node while memory
4186 * may still exist in local DMA zone.
4187 */
4188static int node_order[MAX_NUMNODES];
4189
4190static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4191{
f0c0b2b8
KH
4192 int pos, j, node;
4193 int zone_type; /* needs to be signed */
4194 struct zone *z;
4195 struct zonelist *zonelist;
4196
54a6eb5c
MG
4197 zonelist = &pgdat->node_zonelists[0];
4198 pos = 0;
4199 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4200 for (j = 0; j < nr_nodes; j++) {
4201 node = node_order[j];
4202 z = &NODE_DATA(node)->node_zones[zone_type];
4203 if (populated_zone(z)) {
dd1a239f
MG
4204 zoneref_set_zone(z,
4205 &zonelist->_zonerefs[pos++]);
54a6eb5c 4206 check_highest_zone(zone_type);
f0c0b2b8
KH
4207 }
4208 }
f0c0b2b8 4209 }
dd1a239f
MG
4210 zonelist->_zonerefs[pos].zone = NULL;
4211 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4212}
4213
3193913c
MG
4214#if defined(CONFIG_64BIT)
4215/*
4216 * Devices that require DMA32/DMA are relatively rare and do not justify a
4217 * penalty to every machine in case the specialised case applies. Default
4218 * to Node-ordering on 64-bit NUMA machines
4219 */
4220static int default_zonelist_order(void)
4221{
4222 return ZONELIST_ORDER_NODE;
4223}
4224#else
4225/*
4226 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4227 * by the kernel. If processes running on node 0 deplete the low memory zone
4228 * then reclaim will occur more frequency increasing stalls and potentially
4229 * be easier to OOM if a large percentage of the zone is under writeback or
4230 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4231 * Hence, default to zone ordering on 32-bit.
4232 */
f0c0b2b8
KH
4233static int default_zonelist_order(void)
4234{
f0c0b2b8
KH
4235 return ZONELIST_ORDER_ZONE;
4236}
3193913c 4237#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4238
4239static void set_zonelist_order(void)
4240{
4241 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4242 current_zonelist_order = default_zonelist_order();
4243 else
4244 current_zonelist_order = user_zonelist_order;
4245}
4246
4247static void build_zonelists(pg_data_t *pgdat)
4248{
4249 int j, node, load;
4250 enum zone_type i;
1da177e4 4251 nodemask_t used_mask;
f0c0b2b8
KH
4252 int local_node, prev_node;
4253 struct zonelist *zonelist;
d00181b9 4254 unsigned int order = current_zonelist_order;
1da177e4
LT
4255
4256 /* initialize zonelists */
523b9458 4257 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4258 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4259 zonelist->_zonerefs[0].zone = NULL;
4260 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4261 }
4262
4263 /* NUMA-aware ordering of nodes */
4264 local_node = pgdat->node_id;
62bc62a8 4265 load = nr_online_nodes;
1da177e4
LT
4266 prev_node = local_node;
4267 nodes_clear(used_mask);
f0c0b2b8 4268
f0c0b2b8
KH
4269 memset(node_order, 0, sizeof(node_order));
4270 j = 0;
4271
1da177e4
LT
4272 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4273 /*
4274 * We don't want to pressure a particular node.
4275 * So adding penalty to the first node in same
4276 * distance group to make it round-robin.
4277 */
957f822a
DR
4278 if (node_distance(local_node, node) !=
4279 node_distance(local_node, prev_node))
f0c0b2b8
KH
4280 node_load[node] = load;
4281
1da177e4
LT
4282 prev_node = node;
4283 load--;
f0c0b2b8
KH
4284 if (order == ZONELIST_ORDER_NODE)
4285 build_zonelists_in_node_order(pgdat, node);
4286 else
4287 node_order[j++] = node; /* remember order */
4288 }
1da177e4 4289
f0c0b2b8
KH
4290 if (order == ZONELIST_ORDER_ZONE) {
4291 /* calculate node order -- i.e., DMA last! */
4292 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4293 }
523b9458
CL
4294
4295 build_thisnode_zonelists(pgdat);
1da177e4
LT
4296}
4297
7aac7898
LS
4298#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4299/*
4300 * Return node id of node used for "local" allocations.
4301 * I.e., first node id of first zone in arg node's generic zonelist.
4302 * Used for initializing percpu 'numa_mem', which is used primarily
4303 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4304 */
4305int local_memory_node(int node)
4306{
4307 struct zone *zone;
4308
4309 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4310 gfp_zone(GFP_KERNEL),
4311 NULL,
4312 &zone);
4313 return zone->node;
4314}
4315#endif
f0c0b2b8 4316
1da177e4
LT
4317#else /* CONFIG_NUMA */
4318
f0c0b2b8
KH
4319static void set_zonelist_order(void)
4320{
4321 current_zonelist_order = ZONELIST_ORDER_ZONE;
4322}
4323
4324static void build_zonelists(pg_data_t *pgdat)
1da177e4 4325{
19655d34 4326 int node, local_node;
54a6eb5c
MG
4327 enum zone_type j;
4328 struct zonelist *zonelist;
1da177e4
LT
4329
4330 local_node = pgdat->node_id;
1da177e4 4331
54a6eb5c 4332 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4333 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4334
54a6eb5c
MG
4335 /*
4336 * Now we build the zonelist so that it contains the zones
4337 * of all the other nodes.
4338 * We don't want to pressure a particular node, so when
4339 * building the zones for node N, we make sure that the
4340 * zones coming right after the local ones are those from
4341 * node N+1 (modulo N)
4342 */
4343 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4344 if (!node_online(node))
4345 continue;
bc732f1d 4346 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4347 }
54a6eb5c
MG
4348 for (node = 0; node < local_node; node++) {
4349 if (!node_online(node))
4350 continue;
bc732f1d 4351 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4352 }
4353
dd1a239f
MG
4354 zonelist->_zonerefs[j].zone = NULL;
4355 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4356}
4357
4358#endif /* CONFIG_NUMA */
4359
99dcc3e5
CL
4360/*
4361 * Boot pageset table. One per cpu which is going to be used for all
4362 * zones and all nodes. The parameters will be set in such a way
4363 * that an item put on a list will immediately be handed over to
4364 * the buddy list. This is safe since pageset manipulation is done
4365 * with interrupts disabled.
4366 *
4367 * The boot_pagesets must be kept even after bootup is complete for
4368 * unused processors and/or zones. They do play a role for bootstrapping
4369 * hotplugged processors.
4370 *
4371 * zoneinfo_show() and maybe other functions do
4372 * not check if the processor is online before following the pageset pointer.
4373 * Other parts of the kernel may not check if the zone is available.
4374 */
4375static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4376static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4377static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4378
4eaf3f64
HL
4379/*
4380 * Global mutex to protect against size modification of zonelists
4381 * as well as to serialize pageset setup for the new populated zone.
4382 */
4383DEFINE_MUTEX(zonelists_mutex);
4384
9b1a4d38 4385/* return values int ....just for stop_machine() */
4ed7e022 4386static int __build_all_zonelists(void *data)
1da177e4 4387{
6811378e 4388 int nid;
99dcc3e5 4389 int cpu;
9adb62a5 4390 pg_data_t *self = data;
9276b1bc 4391
7f9cfb31
BL
4392#ifdef CONFIG_NUMA
4393 memset(node_load, 0, sizeof(node_load));
4394#endif
9adb62a5
JL
4395
4396 if (self && !node_online(self->node_id)) {
4397 build_zonelists(self);
9adb62a5
JL
4398 }
4399
9276b1bc 4400 for_each_online_node(nid) {
7ea1530a
CL
4401 pg_data_t *pgdat = NODE_DATA(nid);
4402
4403 build_zonelists(pgdat);
9276b1bc 4404 }
99dcc3e5
CL
4405
4406 /*
4407 * Initialize the boot_pagesets that are going to be used
4408 * for bootstrapping processors. The real pagesets for
4409 * each zone will be allocated later when the per cpu
4410 * allocator is available.
4411 *
4412 * boot_pagesets are used also for bootstrapping offline
4413 * cpus if the system is already booted because the pagesets
4414 * are needed to initialize allocators on a specific cpu too.
4415 * F.e. the percpu allocator needs the page allocator which
4416 * needs the percpu allocator in order to allocate its pagesets
4417 * (a chicken-egg dilemma).
4418 */
7aac7898 4419 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4420 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4421
7aac7898
LS
4422#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4423 /*
4424 * We now know the "local memory node" for each node--
4425 * i.e., the node of the first zone in the generic zonelist.
4426 * Set up numa_mem percpu variable for on-line cpus. During
4427 * boot, only the boot cpu should be on-line; we'll init the
4428 * secondary cpus' numa_mem as they come on-line. During
4429 * node/memory hotplug, we'll fixup all on-line cpus.
4430 */
4431 if (cpu_online(cpu))
4432 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4433#endif
4434 }
4435
6811378e
YG
4436 return 0;
4437}
4438
061f67bc
RV
4439static noinline void __init
4440build_all_zonelists_init(void)
4441{
4442 __build_all_zonelists(NULL);
4443 mminit_verify_zonelist();
4444 cpuset_init_current_mems_allowed();
4445}
4446
4eaf3f64
HL
4447/*
4448 * Called with zonelists_mutex held always
4449 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4450 *
4451 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4452 * [we're only called with non-NULL zone through __meminit paths] and
4453 * (2) call of __init annotated helper build_all_zonelists_init
4454 * [protected by SYSTEM_BOOTING].
4eaf3f64 4455 */
9adb62a5 4456void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4457{
f0c0b2b8
KH
4458 set_zonelist_order();
4459
6811378e 4460 if (system_state == SYSTEM_BOOTING) {
061f67bc 4461 build_all_zonelists_init();
6811378e 4462 } else {
e9959f0f 4463#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4464 if (zone)
4465 setup_zone_pageset(zone);
e9959f0f 4466#endif
dd1895e2
CS
4467 /* we have to stop all cpus to guarantee there is no user
4468 of zonelist */
9adb62a5 4469 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4470 /* cpuset refresh routine should be here */
4471 }
bd1e22b8 4472 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4473 /*
4474 * Disable grouping by mobility if the number of pages in the
4475 * system is too low to allow the mechanism to work. It would be
4476 * more accurate, but expensive to check per-zone. This check is
4477 * made on memory-hotadd so a system can start with mobility
4478 * disabled and enable it later
4479 */
d9c23400 4480 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4481 page_group_by_mobility_disabled = 1;
4482 else
4483 page_group_by_mobility_disabled = 0;
4484
1a44264a
JP
4485 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4486 nr_online_nodes,
4487 zonelist_order_name[current_zonelist_order],
4488 page_group_by_mobility_disabled ? "off" : "on",
4489 vm_total_pages);
f0c0b2b8 4490#ifdef CONFIG_NUMA
f88dfff5 4491 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4492#endif
1da177e4
LT
4493}
4494
4495/*
4496 * Helper functions to size the waitqueue hash table.
4497 * Essentially these want to choose hash table sizes sufficiently
4498 * large so that collisions trying to wait on pages are rare.
4499 * But in fact, the number of active page waitqueues on typical
4500 * systems is ridiculously low, less than 200. So this is even
4501 * conservative, even though it seems large.
4502 *
4503 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4504 * waitqueues, i.e. the size of the waitq table given the number of pages.
4505 */
4506#define PAGES_PER_WAITQUEUE 256
4507
cca448fe 4508#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4509static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4510{
4511 unsigned long size = 1;
4512
4513 pages /= PAGES_PER_WAITQUEUE;
4514
4515 while (size < pages)
4516 size <<= 1;
4517
4518 /*
4519 * Once we have dozens or even hundreds of threads sleeping
4520 * on IO we've got bigger problems than wait queue collision.
4521 * Limit the size of the wait table to a reasonable size.
4522 */
4523 size = min(size, 4096UL);
4524
4525 return max(size, 4UL);
4526}
cca448fe
YG
4527#else
4528/*
4529 * A zone's size might be changed by hot-add, so it is not possible to determine
4530 * a suitable size for its wait_table. So we use the maximum size now.
4531 *
4532 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4533 *
4534 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4535 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4536 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4537 *
4538 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4539 * or more by the traditional way. (See above). It equals:
4540 *
4541 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4542 * ia64(16K page size) : = ( 8G + 4M)byte.
4543 * powerpc (64K page size) : = (32G +16M)byte.
4544 */
4545static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4546{
4547 return 4096UL;
4548}
4549#endif
1da177e4
LT
4550
4551/*
4552 * This is an integer logarithm so that shifts can be used later
4553 * to extract the more random high bits from the multiplicative
4554 * hash function before the remainder is taken.
4555 */
4556static inline unsigned long wait_table_bits(unsigned long size)
4557{
4558 return ffz(~size);
4559}
4560
1da177e4
LT
4561/*
4562 * Initially all pages are reserved - free ones are freed
4563 * up by free_all_bootmem() once the early boot process is
4564 * done. Non-atomic initialization, single-pass.
4565 */
c09b4240 4566void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4567 unsigned long start_pfn, enum memmap_context context)
1da177e4 4568{
3a80a7fa 4569 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4570 unsigned long end_pfn = start_pfn + size;
4571 unsigned long pfn;
86051ca5 4572 struct zone *z;
3a80a7fa 4573 unsigned long nr_initialised = 0;
1da177e4 4574
22b31eec
HD
4575 if (highest_memmap_pfn < end_pfn - 1)
4576 highest_memmap_pfn = end_pfn - 1;
4577
3a80a7fa 4578 z = &pgdat->node_zones[zone];
cbe8dd4a 4579 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4580 /*
4581 * There can be holes in boot-time mem_map[]s
4582 * handed to this function. They do not
4583 * exist on hotplugged memory.
4584 */
4585 if (context == MEMMAP_EARLY) {
4586 if (!early_pfn_valid(pfn))
4587 continue;
4588 if (!early_pfn_in_nid(pfn, nid))
4589 continue;
3a80a7fa
MG
4590 if (!update_defer_init(pgdat, pfn, end_pfn,
4591 &nr_initialised))
4592 break;
a2f3aa02 4593 }
ac5d2539
MG
4594
4595 /*
4596 * Mark the block movable so that blocks are reserved for
4597 * movable at startup. This will force kernel allocations
4598 * to reserve their blocks rather than leaking throughout
4599 * the address space during boot when many long-lived
974a786e 4600 * kernel allocations are made.
ac5d2539
MG
4601 *
4602 * bitmap is created for zone's valid pfn range. but memmap
4603 * can be created for invalid pages (for alignment)
4604 * check here not to call set_pageblock_migratetype() against
4605 * pfn out of zone.
4606 */
4607 if (!(pfn & (pageblock_nr_pages - 1))) {
4608 struct page *page = pfn_to_page(pfn);
4609
4610 __init_single_page(page, pfn, zone, nid);
4611 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4612 } else {
4613 __init_single_pfn(pfn, zone, nid);
4614 }
1da177e4
LT
4615 }
4616}
4617
1e548deb 4618static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4619{
7aeb09f9 4620 unsigned int order, t;
b2a0ac88
MG
4621 for_each_migratetype_order(order, t) {
4622 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4623 zone->free_area[order].nr_free = 0;
4624 }
4625}
4626
4627#ifndef __HAVE_ARCH_MEMMAP_INIT
4628#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4629 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4630#endif
4631
7cd2b0a3 4632static int zone_batchsize(struct zone *zone)
e7c8d5c9 4633{
3a6be87f 4634#ifdef CONFIG_MMU
e7c8d5c9
CL
4635 int batch;
4636
4637 /*
4638 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4639 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4640 *
4641 * OK, so we don't know how big the cache is. So guess.
4642 */
b40da049 4643 batch = zone->managed_pages / 1024;
ba56e91c
SR
4644 if (batch * PAGE_SIZE > 512 * 1024)
4645 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4646 batch /= 4; /* We effectively *= 4 below */
4647 if (batch < 1)
4648 batch = 1;
4649
4650 /*
0ceaacc9
NP
4651 * Clamp the batch to a 2^n - 1 value. Having a power
4652 * of 2 value was found to be more likely to have
4653 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4654 *
0ceaacc9
NP
4655 * For example if 2 tasks are alternately allocating
4656 * batches of pages, one task can end up with a lot
4657 * of pages of one half of the possible page colors
4658 * and the other with pages of the other colors.
e7c8d5c9 4659 */
9155203a 4660 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4661
e7c8d5c9 4662 return batch;
3a6be87f
DH
4663
4664#else
4665 /* The deferral and batching of frees should be suppressed under NOMMU
4666 * conditions.
4667 *
4668 * The problem is that NOMMU needs to be able to allocate large chunks
4669 * of contiguous memory as there's no hardware page translation to
4670 * assemble apparent contiguous memory from discontiguous pages.
4671 *
4672 * Queueing large contiguous runs of pages for batching, however,
4673 * causes the pages to actually be freed in smaller chunks. As there
4674 * can be a significant delay between the individual batches being
4675 * recycled, this leads to the once large chunks of space being
4676 * fragmented and becoming unavailable for high-order allocations.
4677 */
4678 return 0;
4679#endif
e7c8d5c9
CL
4680}
4681
8d7a8fa9
CS
4682/*
4683 * pcp->high and pcp->batch values are related and dependent on one another:
4684 * ->batch must never be higher then ->high.
4685 * The following function updates them in a safe manner without read side
4686 * locking.
4687 *
4688 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4689 * those fields changing asynchronously (acording the the above rule).
4690 *
4691 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4692 * outside of boot time (or some other assurance that no concurrent updaters
4693 * exist).
4694 */
4695static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4696 unsigned long batch)
4697{
4698 /* start with a fail safe value for batch */
4699 pcp->batch = 1;
4700 smp_wmb();
4701
4702 /* Update high, then batch, in order */
4703 pcp->high = high;
4704 smp_wmb();
4705
4706 pcp->batch = batch;
4707}
4708
3664033c 4709/* a companion to pageset_set_high() */
4008bab7
CS
4710static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4711{
8d7a8fa9 4712 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4713}
4714
88c90dbc 4715static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4716{
4717 struct per_cpu_pages *pcp;
5f8dcc21 4718 int migratetype;
2caaad41 4719
1c6fe946
MD
4720 memset(p, 0, sizeof(*p));
4721
3dfa5721 4722 pcp = &p->pcp;
2caaad41 4723 pcp->count = 0;
5f8dcc21
MG
4724 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4725 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4726}
4727
88c90dbc
CS
4728static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4729{
4730 pageset_init(p);
4731 pageset_set_batch(p, batch);
4732}
4733
8ad4b1fb 4734/*
3664033c 4735 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4736 * to the value high for the pageset p.
4737 */
3664033c 4738static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4739 unsigned long high)
4740{
8d7a8fa9
CS
4741 unsigned long batch = max(1UL, high / 4);
4742 if ((high / 4) > (PAGE_SHIFT * 8))
4743 batch = PAGE_SHIFT * 8;
8ad4b1fb 4744
8d7a8fa9 4745 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4746}
4747
7cd2b0a3
DR
4748static void pageset_set_high_and_batch(struct zone *zone,
4749 struct per_cpu_pageset *pcp)
56cef2b8 4750{
56cef2b8 4751 if (percpu_pagelist_fraction)
3664033c 4752 pageset_set_high(pcp,
56cef2b8
CS
4753 (zone->managed_pages /
4754 percpu_pagelist_fraction));
4755 else
4756 pageset_set_batch(pcp, zone_batchsize(zone));
4757}
4758
169f6c19
CS
4759static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4760{
4761 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4762
4763 pageset_init(pcp);
4764 pageset_set_high_and_batch(zone, pcp);
4765}
4766
4ed7e022 4767static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4768{
4769 int cpu;
319774e2 4770 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4771 for_each_possible_cpu(cpu)
4772 zone_pageset_init(zone, cpu);
319774e2
WF
4773}
4774
2caaad41 4775/*
99dcc3e5
CL
4776 * Allocate per cpu pagesets and initialize them.
4777 * Before this call only boot pagesets were available.
e7c8d5c9 4778 */
99dcc3e5 4779void __init setup_per_cpu_pageset(void)
e7c8d5c9 4780{
99dcc3e5 4781 struct zone *zone;
e7c8d5c9 4782
319774e2
WF
4783 for_each_populated_zone(zone)
4784 setup_zone_pageset(zone);
e7c8d5c9
CL
4785}
4786
577a32f6 4787static noinline __init_refok
cca448fe 4788int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4789{
4790 int i;
cca448fe 4791 size_t alloc_size;
ed8ece2e
DH
4792
4793 /*
4794 * The per-page waitqueue mechanism uses hashed waitqueues
4795 * per zone.
4796 */
02b694de
YG
4797 zone->wait_table_hash_nr_entries =
4798 wait_table_hash_nr_entries(zone_size_pages);
4799 zone->wait_table_bits =
4800 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4801 alloc_size = zone->wait_table_hash_nr_entries
4802 * sizeof(wait_queue_head_t);
4803
cd94b9db 4804 if (!slab_is_available()) {
cca448fe 4805 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4806 memblock_virt_alloc_node_nopanic(
4807 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4808 } else {
4809 /*
4810 * This case means that a zone whose size was 0 gets new memory
4811 * via memory hot-add.
4812 * But it may be the case that a new node was hot-added. In
4813 * this case vmalloc() will not be able to use this new node's
4814 * memory - this wait_table must be initialized to use this new
4815 * node itself as well.
4816 * To use this new node's memory, further consideration will be
4817 * necessary.
4818 */
8691f3a7 4819 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4820 }
4821 if (!zone->wait_table)
4822 return -ENOMEM;
ed8ece2e 4823
b8af2941 4824 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4825 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4826
4827 return 0;
ed8ece2e
DH
4828}
4829
c09b4240 4830static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4831{
99dcc3e5
CL
4832 /*
4833 * per cpu subsystem is not up at this point. The following code
4834 * relies on the ability of the linker to provide the
4835 * offset of a (static) per cpu variable into the per cpu area.
4836 */
4837 zone->pageset = &boot_pageset;
ed8ece2e 4838
b38a8725 4839 if (populated_zone(zone))
99dcc3e5
CL
4840 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4841 zone->name, zone->present_pages,
4842 zone_batchsize(zone));
ed8ece2e
DH
4843}
4844
4ed7e022 4845int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4846 unsigned long zone_start_pfn,
b171e409 4847 unsigned long size)
ed8ece2e
DH
4848{
4849 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4850 int ret;
4851 ret = zone_wait_table_init(zone, size);
4852 if (ret)
4853 return ret;
ed8ece2e
DH
4854 pgdat->nr_zones = zone_idx(zone) + 1;
4855
ed8ece2e
DH
4856 zone->zone_start_pfn = zone_start_pfn;
4857
708614e6
MG
4858 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4859 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4860 pgdat->node_id,
4861 (unsigned long)zone_idx(zone),
4862 zone_start_pfn, (zone_start_pfn + size));
4863
1e548deb 4864 zone_init_free_lists(zone);
718127cc
YG
4865
4866 return 0;
ed8ece2e
DH
4867}
4868
0ee332c1 4869#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4870#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4871
c713216d
MG
4872/*
4873 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4874 */
8a942fde
MG
4875int __meminit __early_pfn_to_nid(unsigned long pfn,
4876 struct mminit_pfnnid_cache *state)
c713216d 4877{
c13291a5 4878 unsigned long start_pfn, end_pfn;
e76b63f8 4879 int nid;
7c243c71 4880
8a942fde
MG
4881 if (state->last_start <= pfn && pfn < state->last_end)
4882 return state->last_nid;
c713216d 4883
e76b63f8
YL
4884 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4885 if (nid != -1) {
8a942fde
MG
4886 state->last_start = start_pfn;
4887 state->last_end = end_pfn;
4888 state->last_nid = nid;
e76b63f8
YL
4889 }
4890
4891 return nid;
c713216d
MG
4892}
4893#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4894
c713216d 4895/**
6782832e 4896 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4897 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4898 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4899 *
7d018176
ZZ
4900 * If an architecture guarantees that all ranges registered contain no holes
4901 * and may be freed, this this function may be used instead of calling
4902 * memblock_free_early_nid() manually.
c713216d 4903 */
c13291a5 4904void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4905{
c13291a5
TH
4906 unsigned long start_pfn, end_pfn;
4907 int i, this_nid;
edbe7d23 4908
c13291a5
TH
4909 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4910 start_pfn = min(start_pfn, max_low_pfn);
4911 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4912
c13291a5 4913 if (start_pfn < end_pfn)
6782832e
SS
4914 memblock_free_early_nid(PFN_PHYS(start_pfn),
4915 (end_pfn - start_pfn) << PAGE_SHIFT,
4916 this_nid);
edbe7d23 4917 }
edbe7d23 4918}
edbe7d23 4919
c713216d
MG
4920/**
4921 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4922 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4923 *
7d018176
ZZ
4924 * If an architecture guarantees that all ranges registered contain no holes and may
4925 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4926 */
4927void __init sparse_memory_present_with_active_regions(int nid)
4928{
c13291a5
TH
4929 unsigned long start_pfn, end_pfn;
4930 int i, this_nid;
c713216d 4931
c13291a5
TH
4932 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4933 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4934}
4935
4936/**
4937 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4938 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4939 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4940 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4941 *
4942 * It returns the start and end page frame of a node based on information
7d018176 4943 * provided by memblock_set_node(). If called for a node
c713216d 4944 * with no available memory, a warning is printed and the start and end
88ca3b94 4945 * PFNs will be 0.
c713216d 4946 */
a3142c8e 4947void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4948 unsigned long *start_pfn, unsigned long *end_pfn)
4949{
c13291a5 4950 unsigned long this_start_pfn, this_end_pfn;
c713216d 4951 int i;
c13291a5 4952
c713216d
MG
4953 *start_pfn = -1UL;
4954 *end_pfn = 0;
4955
c13291a5
TH
4956 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4957 *start_pfn = min(*start_pfn, this_start_pfn);
4958 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4959 }
4960
633c0666 4961 if (*start_pfn == -1UL)
c713216d 4962 *start_pfn = 0;
c713216d
MG
4963}
4964
2a1e274a
MG
4965/*
4966 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4967 * assumption is made that zones within a node are ordered in monotonic
4968 * increasing memory addresses so that the "highest" populated zone is used
4969 */
b69a7288 4970static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4971{
4972 int zone_index;
4973 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4974 if (zone_index == ZONE_MOVABLE)
4975 continue;
4976
4977 if (arch_zone_highest_possible_pfn[zone_index] >
4978 arch_zone_lowest_possible_pfn[zone_index])
4979 break;
4980 }
4981
4982 VM_BUG_ON(zone_index == -1);
4983 movable_zone = zone_index;
4984}
4985
4986/*
4987 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4988 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4989 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4990 * in each node depending on the size of each node and how evenly kernelcore
4991 * is distributed. This helper function adjusts the zone ranges
4992 * provided by the architecture for a given node by using the end of the
4993 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4994 * zones within a node are in order of monotonic increases memory addresses
4995 */
b69a7288 4996static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4997 unsigned long zone_type,
4998 unsigned long node_start_pfn,
4999 unsigned long node_end_pfn,
5000 unsigned long *zone_start_pfn,
5001 unsigned long *zone_end_pfn)
5002{
5003 /* Only adjust if ZONE_MOVABLE is on this node */
5004 if (zone_movable_pfn[nid]) {
5005 /* Size ZONE_MOVABLE */
5006 if (zone_type == ZONE_MOVABLE) {
5007 *zone_start_pfn = zone_movable_pfn[nid];
5008 *zone_end_pfn = min(node_end_pfn,
5009 arch_zone_highest_possible_pfn[movable_zone]);
5010
5011 /* Adjust for ZONE_MOVABLE starting within this range */
5012 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5013 *zone_end_pfn > zone_movable_pfn[nid]) {
5014 *zone_end_pfn = zone_movable_pfn[nid];
5015
5016 /* Check if this whole range is within ZONE_MOVABLE */
5017 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5018 *zone_start_pfn = *zone_end_pfn;
5019 }
5020}
5021
c713216d
MG
5022/*
5023 * Return the number of pages a zone spans in a node, including holes
5024 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5025 */
6ea6e688 5026static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5027 unsigned long zone_type,
7960aedd
ZY
5028 unsigned long node_start_pfn,
5029 unsigned long node_end_pfn,
c713216d
MG
5030 unsigned long *ignored)
5031{
c713216d
MG
5032 unsigned long zone_start_pfn, zone_end_pfn;
5033
b5685e92 5034 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5035 if (!node_start_pfn && !node_end_pfn)
5036 return 0;
5037
7960aedd 5038 /* Get the start and end of the zone */
c713216d
MG
5039 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5040 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5041 adjust_zone_range_for_zone_movable(nid, zone_type,
5042 node_start_pfn, node_end_pfn,
5043 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5044
5045 /* Check that this node has pages within the zone's required range */
5046 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5047 return 0;
5048
5049 /* Move the zone boundaries inside the node if necessary */
5050 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5051 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5052
5053 /* Return the spanned pages */
5054 return zone_end_pfn - zone_start_pfn;
5055}
5056
5057/*
5058 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5059 * then all holes in the requested range will be accounted for.
c713216d 5060 */
32996250 5061unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5062 unsigned long range_start_pfn,
5063 unsigned long range_end_pfn)
5064{
96e907d1
TH
5065 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5066 unsigned long start_pfn, end_pfn;
5067 int i;
c713216d 5068
96e907d1
TH
5069 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5070 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5071 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5072 nr_absent -= end_pfn - start_pfn;
c713216d 5073 }
96e907d1 5074 return nr_absent;
c713216d
MG
5075}
5076
5077/**
5078 * absent_pages_in_range - Return number of page frames in holes within a range
5079 * @start_pfn: The start PFN to start searching for holes
5080 * @end_pfn: The end PFN to stop searching for holes
5081 *
88ca3b94 5082 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5083 */
5084unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5085 unsigned long end_pfn)
5086{
5087 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5088}
5089
5090/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5091static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5092 unsigned long zone_type,
7960aedd
ZY
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
c713216d
MG
5095 unsigned long *ignored)
5096{
96e907d1
TH
5097 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5098 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5099 unsigned long zone_start_pfn, zone_end_pfn;
5100
b5685e92 5101 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5102 if (!node_start_pfn && !node_end_pfn)
5103 return 0;
5104
96e907d1
TH
5105 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5106 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5107
2a1e274a
MG
5108 adjust_zone_range_for_zone_movable(nid, zone_type,
5109 node_start_pfn, node_end_pfn,
5110 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5111 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5112}
0e0b864e 5113
0ee332c1 5114#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5115static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5116 unsigned long zone_type,
7960aedd
ZY
5117 unsigned long node_start_pfn,
5118 unsigned long node_end_pfn,
c713216d
MG
5119 unsigned long *zones_size)
5120{
5121 return zones_size[zone_type];
5122}
5123
6ea6e688 5124static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5125 unsigned long zone_type,
7960aedd
ZY
5126 unsigned long node_start_pfn,
5127 unsigned long node_end_pfn,
c713216d
MG
5128 unsigned long *zholes_size)
5129{
5130 if (!zholes_size)
5131 return 0;
5132
5133 return zholes_size[zone_type];
5134}
20e6926d 5135
0ee332c1 5136#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5137
a3142c8e 5138static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5139 unsigned long node_start_pfn,
5140 unsigned long node_end_pfn,
5141 unsigned long *zones_size,
5142 unsigned long *zholes_size)
c713216d 5143{
febd5949 5144 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5145 enum zone_type i;
5146
febd5949
GZ
5147 for (i = 0; i < MAX_NR_ZONES; i++) {
5148 struct zone *zone = pgdat->node_zones + i;
5149 unsigned long size, real_size;
c713216d 5150
febd5949
GZ
5151 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5152 node_start_pfn,
5153 node_end_pfn,
5154 zones_size);
5155 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5156 node_start_pfn, node_end_pfn,
5157 zholes_size);
febd5949
GZ
5158 zone->spanned_pages = size;
5159 zone->present_pages = real_size;
5160
5161 totalpages += size;
5162 realtotalpages += real_size;
5163 }
5164
5165 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5166 pgdat->node_present_pages = realtotalpages;
5167 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5168 realtotalpages);
5169}
5170
835c134e
MG
5171#ifndef CONFIG_SPARSEMEM
5172/*
5173 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5174 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5175 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5176 * round what is now in bits to nearest long in bits, then return it in
5177 * bytes.
5178 */
7c45512d 5179static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5180{
5181 unsigned long usemapsize;
5182
7c45512d 5183 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5184 usemapsize = roundup(zonesize, pageblock_nr_pages);
5185 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5186 usemapsize *= NR_PAGEBLOCK_BITS;
5187 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5188
5189 return usemapsize / 8;
5190}
5191
5192static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5193 struct zone *zone,
5194 unsigned long zone_start_pfn,
5195 unsigned long zonesize)
835c134e 5196{
7c45512d 5197 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5198 zone->pageblock_flags = NULL;
58a01a45 5199 if (usemapsize)
6782832e
SS
5200 zone->pageblock_flags =
5201 memblock_virt_alloc_node_nopanic(usemapsize,
5202 pgdat->node_id);
835c134e
MG
5203}
5204#else
7c45512d
LT
5205static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5206 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5207#endif /* CONFIG_SPARSEMEM */
5208
d9c23400 5209#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5210
d9c23400 5211/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5212void __paginginit set_pageblock_order(void)
d9c23400 5213{
955c1cd7
AM
5214 unsigned int order;
5215
d9c23400
MG
5216 /* Check that pageblock_nr_pages has not already been setup */
5217 if (pageblock_order)
5218 return;
5219
955c1cd7
AM
5220 if (HPAGE_SHIFT > PAGE_SHIFT)
5221 order = HUGETLB_PAGE_ORDER;
5222 else
5223 order = MAX_ORDER - 1;
5224
d9c23400
MG
5225 /*
5226 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5227 * This value may be variable depending on boot parameters on IA64 and
5228 * powerpc.
d9c23400
MG
5229 */
5230 pageblock_order = order;
5231}
5232#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5233
ba72cb8c
MG
5234/*
5235 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5236 * is unused as pageblock_order is set at compile-time. See
5237 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5238 * the kernel config
ba72cb8c 5239 */
15ca220e 5240void __paginginit set_pageblock_order(void)
ba72cb8c 5241{
ba72cb8c 5242}
d9c23400
MG
5243
5244#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5245
01cefaef
JL
5246static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5247 unsigned long present_pages)
5248{
5249 unsigned long pages = spanned_pages;
5250
5251 /*
5252 * Provide a more accurate estimation if there are holes within
5253 * the zone and SPARSEMEM is in use. If there are holes within the
5254 * zone, each populated memory region may cost us one or two extra
5255 * memmap pages due to alignment because memmap pages for each
5256 * populated regions may not naturally algined on page boundary.
5257 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5258 */
5259 if (spanned_pages > present_pages + (present_pages >> 4) &&
5260 IS_ENABLED(CONFIG_SPARSEMEM))
5261 pages = present_pages;
5262
5263 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5264}
5265
1da177e4
LT
5266/*
5267 * Set up the zone data structures:
5268 * - mark all pages reserved
5269 * - mark all memory queues empty
5270 * - clear the memory bitmaps
6527af5d
MK
5271 *
5272 * NOTE: pgdat should get zeroed by caller.
1da177e4 5273 */
7f3eb55b 5274static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5275{
2f1b6248 5276 enum zone_type j;
ed8ece2e 5277 int nid = pgdat->node_id;
1da177e4 5278 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5279 int ret;
1da177e4 5280
208d54e5 5281 pgdat_resize_init(pgdat);
8177a420
AA
5282#ifdef CONFIG_NUMA_BALANCING
5283 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5284 pgdat->numabalancing_migrate_nr_pages = 0;
5285 pgdat->numabalancing_migrate_next_window = jiffies;
5286#endif
1da177e4 5287 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5288 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1cac41cb
MB
5289#ifdef CONFIG_COMPACTION
5290 init_waitqueue_head(&pgdat->kcompactd_wait);
5291#endif
eefa864b 5292 pgdat_page_ext_init(pgdat);
5f63b720 5293
1da177e4
LT
5294 for (j = 0; j < MAX_NR_ZONES; j++) {
5295 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5296 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5297
febd5949
GZ
5298 size = zone->spanned_pages;
5299 realsize = freesize = zone->present_pages;
1da177e4 5300
0e0b864e 5301 /*
9feedc9d 5302 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5303 * is used by this zone for memmap. This affects the watermark
5304 * and per-cpu initialisations
5305 */
01cefaef 5306 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5307 if (!is_highmem_idx(j)) {
5308 if (freesize >= memmap_pages) {
5309 freesize -= memmap_pages;
5310 if (memmap_pages)
5311 printk(KERN_DEBUG
5312 " %s zone: %lu pages used for memmap\n",
5313 zone_names[j], memmap_pages);
5314 } else
5315 printk(KERN_WARNING
5316 " %s zone: %lu pages exceeds freesize %lu\n",
5317 zone_names[j], memmap_pages, freesize);
5318 }
0e0b864e 5319
6267276f 5320 /* Account for reserved pages */
9feedc9d
JL
5321 if (j == 0 && freesize > dma_reserve) {
5322 freesize -= dma_reserve;
d903ef9f 5323 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5324 zone_names[0], dma_reserve);
0e0b864e
MG
5325 }
5326
98d2b0eb 5327 if (!is_highmem_idx(j))
9feedc9d 5328 nr_kernel_pages += freesize;
01cefaef
JL
5329 /* Charge for highmem memmap if there are enough kernel pages */
5330 else if (nr_kernel_pages > memmap_pages * 2)
5331 nr_kernel_pages -= memmap_pages;
9feedc9d 5332 nr_all_pages += freesize;
1da177e4 5333
9feedc9d
JL
5334 /*
5335 * Set an approximate value for lowmem here, it will be adjusted
5336 * when the bootmem allocator frees pages into the buddy system.
5337 * And all highmem pages will be managed by the buddy system.
5338 */
5339 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5340#ifdef CONFIG_NUMA
d5f541ed 5341 zone->node = nid;
9feedc9d 5342 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5343 / 100;
9feedc9d 5344 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5345#endif
1da177e4
LT
5346 zone->name = zone_names[j];
5347 spin_lock_init(&zone->lock);
5348 spin_lock_init(&zone->lru_lock);
bdc8cb98 5349 zone_seqlock_init(zone);
1da177e4 5350 zone->zone_pgdat = pgdat;
ed8ece2e 5351 zone_pcp_init(zone);
81c0a2bb
JW
5352
5353 /* For bootup, initialized properly in watermark setup */
5354 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5355
bea8c150 5356 lruvec_init(&zone->lruvec);
1da177e4
LT
5357 if (!size)
5358 continue;
5359
955c1cd7 5360 set_pageblock_order();
7c45512d 5361 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5362 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5363 BUG_ON(ret);
76cdd58e 5364 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5365 zone_start_pfn += size;
1da177e4
LT
5366 }
5367}
5368
577a32f6 5369static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5370{
b0aeba74 5371 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5372 unsigned long __maybe_unused offset = 0;
5373
1da177e4
LT
5374 /* Skip empty nodes */
5375 if (!pgdat->node_spanned_pages)
5376 return;
5377
d41dee36 5378#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5379 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5380 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5381 /* ia64 gets its own node_mem_map, before this, without bootmem */
5382 if (!pgdat->node_mem_map) {
b0aeba74 5383 unsigned long size, end;
d41dee36
AW
5384 struct page *map;
5385
e984bb43
BP
5386 /*
5387 * The zone's endpoints aren't required to be MAX_ORDER
5388 * aligned but the node_mem_map endpoints must be in order
5389 * for the buddy allocator to function correctly.
5390 */
108bcc96 5391 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5392 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5393 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5394 map = alloc_remap(pgdat->node_id, size);
5395 if (!map)
6782832e
SS
5396 map = memblock_virt_alloc_node_nopanic(size,
5397 pgdat->node_id);
a1c34a3b 5398 pgdat->node_mem_map = map + offset;
1da177e4 5399 }
12d810c1 5400#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5401 /*
5402 * With no DISCONTIG, the global mem_map is just set as node 0's
5403 */
c713216d 5404 if (pgdat == NODE_DATA(0)) {
1da177e4 5405 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5406#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5407 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5408 mem_map -= offset;
0ee332c1 5409#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5410 }
1da177e4 5411#endif
d41dee36 5412#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5413}
5414
9109fb7b
JW
5415void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5416 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5417{
9109fb7b 5418 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5419 unsigned long start_pfn = 0;
5420 unsigned long end_pfn = 0;
9109fb7b 5421
88fdf75d 5422 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5423 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5424
1da177e4
LT
5425 pgdat->node_id = nid;
5426 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5427#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5428 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5429 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5430 (u64)start_pfn << PAGE_SHIFT,
5431 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5432#endif
5433 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5434 zones_size, zholes_size);
1da177e4
LT
5435
5436 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5437#ifdef CONFIG_FLAT_NODE_MEM_MAP
5438 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5439 nid, (unsigned long)pgdat,
5440 (unsigned long)pgdat->node_mem_map);
5441#endif
1da177e4 5442
cb1fb15c 5443 reset_deferred_meminit(pgdat);
7f3eb55b 5444 free_area_init_core(pgdat);
1da177e4
LT
5445}
5446
0ee332c1 5447#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5448
5449#if MAX_NUMNODES > 1
5450/*
5451 * Figure out the number of possible node ids.
5452 */
f9872caf 5453void __init setup_nr_node_ids(void)
418508c1 5454{
904a9553 5455 unsigned int highest;
418508c1 5456
904a9553 5457 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5458 nr_node_ids = highest + 1;
5459}
418508c1
MS
5460#endif
5461
1e01979c
TH
5462/**
5463 * node_map_pfn_alignment - determine the maximum internode alignment
5464 *
5465 * This function should be called after node map is populated and sorted.
5466 * It calculates the maximum power of two alignment which can distinguish
5467 * all the nodes.
5468 *
5469 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5470 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5471 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5472 * shifted, 1GiB is enough and this function will indicate so.
5473 *
5474 * This is used to test whether pfn -> nid mapping of the chosen memory
5475 * model has fine enough granularity to avoid incorrect mapping for the
5476 * populated node map.
5477 *
5478 * Returns the determined alignment in pfn's. 0 if there is no alignment
5479 * requirement (single node).
5480 */
5481unsigned long __init node_map_pfn_alignment(void)
5482{
5483 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5484 unsigned long start, end, mask;
1e01979c 5485 int last_nid = -1;
c13291a5 5486 int i, nid;
1e01979c 5487
c13291a5 5488 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5489 if (!start || last_nid < 0 || last_nid == nid) {
5490 last_nid = nid;
5491 last_end = end;
5492 continue;
5493 }
5494
5495 /*
5496 * Start with a mask granular enough to pin-point to the
5497 * start pfn and tick off bits one-by-one until it becomes
5498 * too coarse to separate the current node from the last.
5499 */
5500 mask = ~((1 << __ffs(start)) - 1);
5501 while (mask && last_end <= (start & (mask << 1)))
5502 mask <<= 1;
5503
5504 /* accumulate all internode masks */
5505 accl_mask |= mask;
5506 }
5507
5508 /* convert mask to number of pages */
5509 return ~accl_mask + 1;
5510}
5511
a6af2bc3 5512/* Find the lowest pfn for a node */
b69a7288 5513static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5514{
a6af2bc3 5515 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5516 unsigned long start_pfn;
5517 int i;
1abbfb41 5518
c13291a5
TH
5519 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5520 min_pfn = min(min_pfn, start_pfn);
c713216d 5521
a6af2bc3
MG
5522 if (min_pfn == ULONG_MAX) {
5523 printk(KERN_WARNING
2bc0d261 5524 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5525 return 0;
5526 }
5527
5528 return min_pfn;
c713216d
MG
5529}
5530
5531/**
5532 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5533 *
5534 * It returns the minimum PFN based on information provided via
7d018176 5535 * memblock_set_node().
c713216d
MG
5536 */
5537unsigned long __init find_min_pfn_with_active_regions(void)
5538{
5539 return find_min_pfn_for_node(MAX_NUMNODES);
5540}
5541
37b07e41
LS
5542/*
5543 * early_calculate_totalpages()
5544 * Sum pages in active regions for movable zone.
4b0ef1fe 5545 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5546 */
484f51f8 5547static unsigned long __init early_calculate_totalpages(void)
7e63efef 5548{
7e63efef 5549 unsigned long totalpages = 0;
c13291a5
TH
5550 unsigned long start_pfn, end_pfn;
5551 int i, nid;
5552
5553 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5554 unsigned long pages = end_pfn - start_pfn;
7e63efef 5555
37b07e41
LS
5556 totalpages += pages;
5557 if (pages)
4b0ef1fe 5558 node_set_state(nid, N_MEMORY);
37b07e41 5559 }
b8af2941 5560 return totalpages;
7e63efef
MG
5561}
5562
2a1e274a
MG
5563/*
5564 * Find the PFN the Movable zone begins in each node. Kernel memory
5565 * is spread evenly between nodes as long as the nodes have enough
5566 * memory. When they don't, some nodes will have more kernelcore than
5567 * others
5568 */
b224ef85 5569static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5570{
5571 int i, nid;
5572 unsigned long usable_startpfn;
5573 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5574 /* save the state before borrow the nodemask */
4b0ef1fe 5575 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5576 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5577 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5578 struct memblock_region *r;
b2f3eebe
TC
5579
5580 /* Need to find movable_zone earlier when movable_node is specified. */
5581 find_usable_zone_for_movable();
5582
5583 /*
5584 * If movable_node is specified, ignore kernelcore and movablecore
5585 * options.
5586 */
5587 if (movable_node_is_enabled()) {
136199f0
EM
5588 for_each_memblock(memory, r) {
5589 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5590 continue;
5591
136199f0 5592 nid = r->nid;
b2f3eebe 5593
136199f0 5594 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5595 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5596 min(usable_startpfn, zone_movable_pfn[nid]) :
5597 usable_startpfn;
5598 }
5599
5600 goto out2;
5601 }
2a1e274a 5602
7e63efef 5603 /*
b2f3eebe 5604 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5605 * kernelcore that corresponds so that memory usable for
5606 * any allocation type is evenly spread. If both kernelcore
5607 * and movablecore are specified, then the value of kernelcore
5608 * will be used for required_kernelcore if it's greater than
5609 * what movablecore would have allowed.
5610 */
5611 if (required_movablecore) {
7e63efef
MG
5612 unsigned long corepages;
5613
5614 /*
5615 * Round-up so that ZONE_MOVABLE is at least as large as what
5616 * was requested by the user
5617 */
5618 required_movablecore =
5619 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5620 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5621 corepages = totalpages - required_movablecore;
5622
5623 required_kernelcore = max(required_kernelcore, corepages);
5624 }
5625
bde304bd
XQ
5626 /*
5627 * If kernelcore was not specified or kernelcore size is larger
5628 * than totalpages, there is no ZONE_MOVABLE.
5629 */
5630 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5631 goto out;
2a1e274a
MG
5632
5633 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5634 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5635
5636restart:
5637 /* Spread kernelcore memory as evenly as possible throughout nodes */
5638 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5639 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5640 unsigned long start_pfn, end_pfn;
5641
2a1e274a
MG
5642 /*
5643 * Recalculate kernelcore_node if the division per node
5644 * now exceeds what is necessary to satisfy the requested
5645 * amount of memory for the kernel
5646 */
5647 if (required_kernelcore < kernelcore_node)
5648 kernelcore_node = required_kernelcore / usable_nodes;
5649
5650 /*
5651 * As the map is walked, we track how much memory is usable
5652 * by the kernel using kernelcore_remaining. When it is
5653 * 0, the rest of the node is usable by ZONE_MOVABLE
5654 */
5655 kernelcore_remaining = kernelcore_node;
5656
5657 /* Go through each range of PFNs within this node */
c13291a5 5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5659 unsigned long size_pages;
5660
c13291a5 5661 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5662 if (start_pfn >= end_pfn)
5663 continue;
5664
5665 /* Account for what is only usable for kernelcore */
5666 if (start_pfn < usable_startpfn) {
5667 unsigned long kernel_pages;
5668 kernel_pages = min(end_pfn, usable_startpfn)
5669 - start_pfn;
5670
5671 kernelcore_remaining -= min(kernel_pages,
5672 kernelcore_remaining);
5673 required_kernelcore -= min(kernel_pages,
5674 required_kernelcore);
5675
5676 /* Continue if range is now fully accounted */
5677 if (end_pfn <= usable_startpfn) {
5678
5679 /*
5680 * Push zone_movable_pfn to the end so
5681 * that if we have to rebalance
5682 * kernelcore across nodes, we will
5683 * not double account here
5684 */
5685 zone_movable_pfn[nid] = end_pfn;
5686 continue;
5687 }
5688 start_pfn = usable_startpfn;
5689 }
5690
5691 /*
5692 * The usable PFN range for ZONE_MOVABLE is from
5693 * start_pfn->end_pfn. Calculate size_pages as the
5694 * number of pages used as kernelcore
5695 */
5696 size_pages = end_pfn - start_pfn;
5697 if (size_pages > kernelcore_remaining)
5698 size_pages = kernelcore_remaining;
5699 zone_movable_pfn[nid] = start_pfn + size_pages;
5700
5701 /*
5702 * Some kernelcore has been met, update counts and
5703 * break if the kernelcore for this node has been
b8af2941 5704 * satisfied
2a1e274a
MG
5705 */
5706 required_kernelcore -= min(required_kernelcore,
5707 size_pages);
5708 kernelcore_remaining -= size_pages;
5709 if (!kernelcore_remaining)
5710 break;
5711 }
5712 }
5713
5714 /*
5715 * If there is still required_kernelcore, we do another pass with one
5716 * less node in the count. This will push zone_movable_pfn[nid] further
5717 * along on the nodes that still have memory until kernelcore is
b8af2941 5718 * satisfied
2a1e274a
MG
5719 */
5720 usable_nodes--;
5721 if (usable_nodes && required_kernelcore > usable_nodes)
5722 goto restart;
5723
b2f3eebe 5724out2:
2a1e274a
MG
5725 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5726 for (nid = 0; nid < MAX_NUMNODES; nid++)
5727 zone_movable_pfn[nid] =
5728 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5729
20e6926d 5730out:
66918dcd 5731 /* restore the node_state */
4b0ef1fe 5732 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5733}
5734
4b0ef1fe
LJ
5735/* Any regular or high memory on that node ? */
5736static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5737{
37b07e41
LS
5738 enum zone_type zone_type;
5739
4b0ef1fe
LJ
5740 if (N_MEMORY == N_NORMAL_MEMORY)
5741 return;
5742
5743 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5744 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5745 if (populated_zone(zone)) {
4b0ef1fe
LJ
5746 node_set_state(nid, N_HIGH_MEMORY);
5747 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5748 zone_type <= ZONE_NORMAL)
5749 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5750 break;
5751 }
37b07e41 5752 }
37b07e41
LS
5753}
5754
c713216d
MG
5755/**
5756 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5757 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5758 *
5759 * This will call free_area_init_node() for each active node in the system.
7d018176 5760 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5761 * zone in each node and their holes is calculated. If the maximum PFN
5762 * between two adjacent zones match, it is assumed that the zone is empty.
5763 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5764 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5765 * starts where the previous one ended. For example, ZONE_DMA32 starts
5766 * at arch_max_dma_pfn.
5767 */
5768void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5769{
c13291a5
TH
5770 unsigned long start_pfn, end_pfn;
5771 int i, nid;
a6af2bc3 5772
c713216d
MG
5773 /* Record where the zone boundaries are */
5774 memset(arch_zone_lowest_possible_pfn, 0,
5775 sizeof(arch_zone_lowest_possible_pfn));
5776 memset(arch_zone_highest_possible_pfn, 0,
5777 sizeof(arch_zone_highest_possible_pfn));
e21901d7
OH
5778
5779 start_pfn = find_min_pfn_with_active_regions();
5780
5781 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5782 if (i == ZONE_MOVABLE)
5783 continue;
e21901d7
OH
5784
5785 end_pfn = max(max_zone_pfn[i], start_pfn);
5786 arch_zone_lowest_possible_pfn[i] = start_pfn;
5787 arch_zone_highest_possible_pfn[i] = end_pfn;
5788
5789 start_pfn = end_pfn;
c713216d 5790 }
2a1e274a
MG
5791 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5792 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5793
5794 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5795 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5796 find_zone_movable_pfns_for_nodes();
c713216d 5797
c713216d 5798 /* Print out the zone ranges */
f88dfff5 5799 pr_info("Zone ranges:\n");
2a1e274a
MG
5800 for (i = 0; i < MAX_NR_ZONES; i++) {
5801 if (i == ZONE_MOVABLE)
5802 continue;
f88dfff5 5803 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5804 if (arch_zone_lowest_possible_pfn[i] ==
5805 arch_zone_highest_possible_pfn[i])
f88dfff5 5806 pr_cont("empty\n");
72f0ba02 5807 else
8d29e18a
JG
5808 pr_cont("[mem %#018Lx-%#018Lx]\n",
5809 (u64)arch_zone_lowest_possible_pfn[i]
5810 << PAGE_SHIFT,
5811 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5812 << PAGE_SHIFT) - 1);
2a1e274a
MG
5813 }
5814
5815 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5816 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5817 for (i = 0; i < MAX_NUMNODES; i++) {
5818 if (zone_movable_pfn[i])
8d29e18a
JG
5819 pr_info(" Node %d: %#018Lx\n", i,
5820 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5821 }
c713216d 5822
f2d52fe5 5823 /* Print out the early node map */
f88dfff5 5824 pr_info("Early memory node ranges\n");
c13291a5 5825 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5826 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5827 (u64)start_pfn << PAGE_SHIFT,
5828 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5829
5830 /* Initialise every node */
708614e6 5831 mminit_verify_pageflags_layout();
8ef82866 5832 setup_nr_node_ids();
c713216d
MG
5833 for_each_online_node(nid) {
5834 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5835 free_area_init_node(nid, NULL,
c713216d 5836 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5837
5838 /* Any memory on that node */
5839 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5840 node_set_state(nid, N_MEMORY);
5841 check_for_memory(pgdat, nid);
c713216d
MG
5842 }
5843}
2a1e274a 5844
7e63efef 5845static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5846{
5847 unsigned long long coremem;
5848 if (!p)
5849 return -EINVAL;
5850
5851 coremem = memparse(p, &p);
7e63efef 5852 *core = coremem >> PAGE_SHIFT;
2a1e274a 5853
7e63efef 5854 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5855 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5856
5857 return 0;
5858}
ed7ed365 5859
7e63efef
MG
5860/*
5861 * kernelcore=size sets the amount of memory for use for allocations that
5862 * cannot be reclaimed or migrated.
5863 */
5864static int __init cmdline_parse_kernelcore(char *p)
5865{
5866 return cmdline_parse_core(p, &required_kernelcore);
5867}
5868
5869/*
5870 * movablecore=size sets the amount of memory for use for allocations that
5871 * can be reclaimed or migrated.
5872 */
5873static int __init cmdline_parse_movablecore(char *p)
5874{
5875 return cmdline_parse_core(p, &required_movablecore);
5876}
5877
ed7ed365 5878early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5879early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5880
0ee332c1 5881#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5882
c3d5f5f0
JL
5883void adjust_managed_page_count(struct page *page, long count)
5884{
5885 spin_lock(&managed_page_count_lock);
5886 page_zone(page)->managed_pages += count;
5887 totalram_pages += count;
3dcc0571
JL
5888#ifdef CONFIG_HIGHMEM
5889 if (PageHighMem(page))
5890 totalhigh_pages += count;
5891#endif
c3d5f5f0
JL
5892 spin_unlock(&managed_page_count_lock);
5893}
3dcc0571 5894EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5895
11199692 5896unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5897{
11199692
JL
5898 void *pos;
5899 unsigned long pages = 0;
69afade7 5900
11199692
JL
5901 start = (void *)PAGE_ALIGN((unsigned long)start);
5902 end = (void *)((unsigned long)end & PAGE_MASK);
5903 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5904 if ((unsigned int)poison <= 0xFF)
11199692
JL
5905 memset(pos, poison, PAGE_SIZE);
5906 free_reserved_page(virt_to_page(pos));
69afade7
JL
5907 }
5908
5909 if (pages && s)
12f60018
JP
5910 pr_info("Freeing %s memory: %ldK\n",
5911 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
5912
5913 return pages;
5914}
11199692 5915EXPORT_SYMBOL(free_reserved_area);
69afade7 5916
cfa11e08
JL
5917#ifdef CONFIG_HIGHMEM
5918void free_highmem_page(struct page *page)
5919{
5920 __free_reserved_page(page);
5921 totalram_pages++;
7b4b2a0d 5922 page_zone(page)->managed_pages++;
cfa11e08
JL
5923 totalhigh_pages++;
5924}
5925#endif
5926
7ee3d4e8
JL
5927
5928void __init mem_init_print_info(const char *str)
5929{
5930 unsigned long physpages, codesize, datasize, rosize, bss_size;
5931 unsigned long init_code_size, init_data_size;
5932
5933 physpages = get_num_physpages();
5934 codesize = _etext - _stext;
5935 datasize = _edata - _sdata;
5936 rosize = __end_rodata - __start_rodata;
5937 bss_size = __bss_stop - __bss_start;
5938 init_data_size = __init_end - __init_begin;
5939 init_code_size = _einittext - _sinittext;
5940
5941 /*
5942 * Detect special cases and adjust section sizes accordingly:
5943 * 1) .init.* may be embedded into .data sections
5944 * 2) .init.text.* may be out of [__init_begin, __init_end],
5945 * please refer to arch/tile/kernel/vmlinux.lds.S.
5946 * 3) .rodata.* may be embedded into .text or .data sections.
5947 */
5948#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5949 do { \
5950 if (start <= pos && pos < end && size > adj) \
5951 size -= adj; \
5952 } while (0)
7ee3d4e8
JL
5953
5954 adj_init_size(__init_begin, __init_end, init_data_size,
5955 _sinittext, init_code_size);
5956 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5957 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5958 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5959 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5960
5961#undef adj_init_size
5962
1a44264a 5963 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 5964#ifdef CONFIG_HIGHMEM
1a44264a 5965 ", %luK highmem"
7ee3d4e8 5966#endif
1a44264a
JP
5967 "%s%s)\n",
5968 nr_free_pages() << (PAGE_SHIFT - 10),
5969 physpages << (PAGE_SHIFT - 10),
5970 codesize >> 10, datasize >> 10, rosize >> 10,
5971 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5972 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
5973 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 5974#ifdef CONFIG_HIGHMEM
1a44264a 5975 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 5976#endif
1a44264a 5977 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
5978}
5979
0e0b864e 5980/**
88ca3b94
RD
5981 * set_dma_reserve - set the specified number of pages reserved in the first zone
5982 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5983 *
013110a7 5984 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5985 * In the DMA zone, a significant percentage may be consumed by kernel image
5986 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5987 * function may optionally be used to account for unfreeable pages in the
5988 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5989 * smaller per-cpu batchsize.
0e0b864e
MG
5990 */
5991void __init set_dma_reserve(unsigned long new_dma_reserve)
5992{
5993 dma_reserve = new_dma_reserve;
5994}
5995
1da177e4
LT
5996void __init free_area_init(unsigned long *zones_size)
5997{
9109fb7b 5998 free_area_init_node(0, zones_size,
1da177e4
LT
5999 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6000}
1da177e4 6001
1da177e4
LT
6002static int page_alloc_cpu_notify(struct notifier_block *self,
6003 unsigned long action, void *hcpu)
6004{
6005 int cpu = (unsigned long)hcpu;
1da177e4 6006
8bb78442 6007 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6008 lru_add_drain_cpu(cpu);
9f8f2172
CL
6009 drain_pages(cpu);
6010
6011 /*
6012 * Spill the event counters of the dead processor
6013 * into the current processors event counters.
6014 * This artificially elevates the count of the current
6015 * processor.
6016 */
f8891e5e 6017 vm_events_fold_cpu(cpu);
9f8f2172
CL
6018
6019 /*
6020 * Zero the differential counters of the dead processor
6021 * so that the vm statistics are consistent.
6022 *
6023 * This is only okay since the processor is dead and cannot
6024 * race with what we are doing.
6025 */
2bb921e5 6026 cpu_vm_stats_fold(cpu);
1da177e4
LT
6027 }
6028 return NOTIFY_OK;
6029}
1da177e4
LT
6030
6031void __init page_alloc_init(void)
6032{
6033 hotcpu_notifier(page_alloc_cpu_notify, 0);
6034}
6035
cb45b0e9 6036/*
34b10060 6037 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6038 * or min_free_kbytes changes.
6039 */
6040static void calculate_totalreserve_pages(void)
6041{
6042 struct pglist_data *pgdat;
6043 unsigned long reserve_pages = 0;
2f6726e5 6044 enum zone_type i, j;
cb45b0e9
HA
6045
6046 for_each_online_pgdat(pgdat) {
6047 for (i = 0; i < MAX_NR_ZONES; i++) {
6048 struct zone *zone = pgdat->node_zones + i;
3484b2de 6049 long max = 0;
cb45b0e9
HA
6050
6051 /* Find valid and maximum lowmem_reserve in the zone */
6052 for (j = i; j < MAX_NR_ZONES; j++) {
6053 if (zone->lowmem_reserve[j] > max)
6054 max = zone->lowmem_reserve[j];
6055 }
6056
41858966
MG
6057 /* we treat the high watermark as reserved pages. */
6058 max += high_wmark_pages(zone);
cb45b0e9 6059
b40da049
JL
6060 if (max > zone->managed_pages)
6061 max = zone->managed_pages;
cb45b0e9 6062 reserve_pages += max;
ab8fabd4
JW
6063 /*
6064 * Lowmem reserves are not available to
6065 * GFP_HIGHUSER page cache allocations and
6066 * kswapd tries to balance zones to their high
6067 * watermark. As a result, neither should be
6068 * regarded as dirtyable memory, to prevent a
6069 * situation where reclaim has to clean pages
6070 * in order to balance the zones.
6071 */
6072 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6073 }
6074 }
ab8fabd4 6075 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6076 totalreserve_pages = reserve_pages;
6077}
6078
1da177e4
LT
6079/*
6080 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6081 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6082 * has a correct pages reserved value, so an adequate number of
6083 * pages are left in the zone after a successful __alloc_pages().
6084 */
6085static void setup_per_zone_lowmem_reserve(void)
6086{
6087 struct pglist_data *pgdat;
2f6726e5 6088 enum zone_type j, idx;
1da177e4 6089
ec936fc5 6090 for_each_online_pgdat(pgdat) {
1da177e4
LT
6091 for (j = 0; j < MAX_NR_ZONES; j++) {
6092 struct zone *zone = pgdat->node_zones + j;
b40da049 6093 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6094
6095 zone->lowmem_reserve[j] = 0;
6096
2f6726e5
CL
6097 idx = j;
6098 while (idx) {
1da177e4
LT
6099 struct zone *lower_zone;
6100
2f6726e5
CL
6101 idx--;
6102
1da177e4
LT
6103 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6104 sysctl_lowmem_reserve_ratio[idx] = 1;
6105
6106 lower_zone = pgdat->node_zones + idx;
b40da049 6107 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6108 sysctl_lowmem_reserve_ratio[idx];
b40da049 6109 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6110 }
6111 }
6112 }
cb45b0e9
HA
6113
6114 /* update totalreserve_pages */
6115 calculate_totalreserve_pages();
1da177e4
LT
6116}
6117
cfd3da1e 6118static void __setup_per_zone_wmarks(void)
1da177e4
LT
6119{
6120 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
f8ade366 6121 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
6122 unsigned long lowmem_pages = 0;
6123 struct zone *zone;
6124 unsigned long flags;
6125
6126 /* Calculate total number of !ZONE_HIGHMEM pages */
6127 for_each_zone(zone) {
6128 if (!is_highmem(zone))
b40da049 6129 lowmem_pages += zone->managed_pages;
1da177e4
LT
6130 }
6131
6132 for_each_zone(zone) {
f8ade366 6133 u64 min, low;
ac924c60 6134
1125b4e3 6135 spin_lock_irqsave(&zone->lock, flags);
f8ade366
RR
6136 min = (u64)pages_min * zone->managed_pages;
6137 do_div(min, lowmem_pages);
6138 low = (u64)pages_low * zone->managed_pages;
6139 do_div(low, vm_total_pages);
6140
1da177e4
LT
6141 if (is_highmem(zone)) {
6142 /*
669ed175
NP
6143 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6144 * need highmem pages, so cap pages_min to a small
6145 * value here.
6146 *
41858966 6147 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6148 * deltas control asynch page reclaim, and so should
669ed175 6149 * not be capped for highmem.
1da177e4 6150 */
90ae8d67 6151 unsigned long min_pages;
1da177e4 6152
b40da049 6153 min_pages = zone->managed_pages / 1024;
90ae8d67 6154 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6155 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6156 } else {
669ed175
NP
6157 /*
6158 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6159 * proportionate to the zone's size.
6160 */
f8ade366 6161 zone->watermark[WMARK_MIN] = min;
1da177e4
LT
6162 }
6163
f8ade366
RR
6164 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6165 low + (min >> 2);
6166 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6167 low + (min >> 1);
49f223a9 6168
81c0a2bb 6169 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6170 high_wmark_pages(zone) - low_wmark_pages(zone) -
6171 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6172
1125b4e3 6173 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6174 }
cb45b0e9
HA
6175
6176 /* update totalreserve_pages */
6177 calculate_totalreserve_pages();
1da177e4
LT
6178}
6179
cfd3da1e
MG
6180/**
6181 * setup_per_zone_wmarks - called when min_free_kbytes changes
6182 * or when memory is hot-{added|removed}
6183 *
6184 * Ensures that the watermark[min,low,high] values for each zone are set
6185 * correctly with respect to min_free_kbytes.
6186 */
6187void setup_per_zone_wmarks(void)
6188{
6189 mutex_lock(&zonelists_mutex);
6190 __setup_per_zone_wmarks();
6191 mutex_unlock(&zonelists_mutex);
6192}
6193
55a4462a 6194/*
556adecb
RR
6195 * The inactive anon list should be small enough that the VM never has to
6196 * do too much work, but large enough that each inactive page has a chance
6197 * to be referenced again before it is swapped out.
6198 *
6199 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6200 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6201 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6202 * the anonymous pages are kept on the inactive list.
6203 *
6204 * total target max
6205 * memory ratio inactive anon
6206 * -------------------------------------
6207 * 10MB 1 5MB
6208 * 100MB 1 50MB
6209 * 1GB 3 250MB
6210 * 10GB 10 0.9GB
6211 * 100GB 31 3GB
6212 * 1TB 101 10GB
6213 * 10TB 320 32GB
6214 */
1b79acc9 6215static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6216{
1cac41cb
MB
6217#ifdef CONFIG_FIX_INACTIVE_RATIO
6218 zone->inactive_ratio = 1;
6219#else
96cb4df5 6220 unsigned int gb, ratio;
556adecb 6221
96cb4df5 6222 /* Zone size in gigabytes */
b40da049 6223 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6224 if (gb)
556adecb 6225 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6226 else
6227 ratio = 1;
556adecb 6228
96cb4df5 6229 zone->inactive_ratio = ratio;
1cac41cb 6230#endif
96cb4df5 6231}
556adecb 6232
839a4fcc 6233static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6234{
6235 struct zone *zone;
6236
6237 for_each_zone(zone)
6238 calculate_zone_inactive_ratio(zone);
556adecb
RR
6239}
6240
1da177e4
LT
6241/*
6242 * Initialise min_free_kbytes.
6243 *
6244 * For small machines we want it small (128k min). For large machines
6245 * we want it large (64MB max). But it is not linear, because network
6246 * bandwidth does not increase linearly with machine size. We use
6247 *
b8af2941 6248 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6249 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6250 *
6251 * which yields
6252 *
6253 * 16MB: 512k
6254 * 32MB: 724k
6255 * 64MB: 1024k
6256 * 128MB: 1448k
6257 * 256MB: 2048k
6258 * 512MB: 2896k
6259 * 1024MB: 4096k
6260 * 2048MB: 5792k
6261 * 4096MB: 8192k
6262 * 8192MB: 11584k
6263 * 16384MB: 16384k
6264 */
1b79acc9 6265int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6266{
6267 unsigned long lowmem_kbytes;
5f12733e 6268 int new_min_free_kbytes;
1da177e4
LT
6269
6270 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6271 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6272
6273 if (new_min_free_kbytes > user_min_free_kbytes) {
6274 min_free_kbytes = new_min_free_kbytes;
6275 if (min_free_kbytes < 128)
6276 min_free_kbytes = 128;
6277 if (min_free_kbytes > 65536)
6278 min_free_kbytes = 65536;
6279 } else {
6280 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6281 new_min_free_kbytes, user_min_free_kbytes);
6282 }
bc75d33f 6283 setup_per_zone_wmarks();
a6cccdc3 6284 refresh_zone_stat_thresholds();
1da177e4 6285 setup_per_zone_lowmem_reserve();
556adecb 6286 setup_per_zone_inactive_ratio();
1da177e4
LT
6287 return 0;
6288}
24b8a175 6289core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6290
6291/*
b8af2941 6292 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4 6293 * that we can call two helper functions whenever min_free_kbytes
f8ade366 6294 * or extra_free_kbytes changes.
1da177e4 6295 */
cccad5b9 6296int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6297 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6298{
da8c757b
HP
6299 int rc;
6300
6301 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6302 if (rc)
6303 return rc;
6304
5f12733e
MH
6305 if (write) {
6306 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6307 setup_per_zone_wmarks();
5f12733e 6308 }
1da177e4
LT
6309 return 0;
6310}
6311
9614634f 6312#ifdef CONFIG_NUMA
cccad5b9 6313int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6314 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6315{
6316 struct zone *zone;
6317 int rc;
6318
8d65af78 6319 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6320 if (rc)
6321 return rc;
6322
6323 for_each_zone(zone)
b40da049 6324 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6325 sysctl_min_unmapped_ratio) / 100;
6326 return 0;
6327}
0ff38490 6328
cccad5b9 6329int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6330 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6331{
6332 struct zone *zone;
6333 int rc;
6334
8d65af78 6335 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6336 if (rc)
6337 return rc;
6338
6339 for_each_zone(zone)
b40da049 6340 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6341 sysctl_min_slab_ratio) / 100;
6342 return 0;
6343}
9614634f
CL
6344#endif
6345
1da177e4
LT
6346/*
6347 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6348 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6349 * whenever sysctl_lowmem_reserve_ratio changes.
6350 *
6351 * The reserve ratio obviously has absolutely no relation with the
41858966 6352 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6353 * if in function of the boot time zone sizes.
6354 */
cccad5b9 6355int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6356 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6357{
8d65af78 6358 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6359 setup_per_zone_lowmem_reserve();
6360 return 0;
6361}
6362
8ad4b1fb
RS
6363/*
6364 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6365 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6366 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6367 */
cccad5b9 6368int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6369 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6370{
6371 struct zone *zone;
7cd2b0a3 6372 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6373 int ret;
6374
7cd2b0a3
DR
6375 mutex_lock(&pcp_batch_high_lock);
6376 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6377
8d65af78 6378 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6379 if (!write || ret < 0)
6380 goto out;
6381
6382 /* Sanity checking to avoid pcp imbalance */
6383 if (percpu_pagelist_fraction &&
6384 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6385 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6386 ret = -EINVAL;
6387 goto out;
6388 }
6389
6390 /* No change? */
6391 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6392 goto out;
c8e251fa 6393
364df0eb 6394 for_each_populated_zone(zone) {
7cd2b0a3
DR
6395 unsigned int cpu;
6396
22a7f12b 6397 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6398 pageset_set_high_and_batch(zone,
6399 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6400 }
7cd2b0a3 6401out:
c8e251fa 6402 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6403 return ret;
8ad4b1fb
RS
6404}
6405
a9919c79 6406#ifdef CONFIG_NUMA
f034b5d4 6407int hashdist = HASHDIST_DEFAULT;
1da177e4 6408
1da177e4
LT
6409static int __init set_hashdist(char *str)
6410{
6411 if (!str)
6412 return 0;
6413 hashdist = simple_strtoul(str, &str, 0);
6414 return 1;
6415}
6416__setup("hashdist=", set_hashdist);
6417#endif
6418
6419/*
6420 * allocate a large system hash table from bootmem
6421 * - it is assumed that the hash table must contain an exact power-of-2
6422 * quantity of entries
6423 * - limit is the number of hash buckets, not the total allocation size
6424 */
6425void *__init alloc_large_system_hash(const char *tablename,
6426 unsigned long bucketsize,
6427 unsigned long numentries,
6428 int scale,
6429 int flags,
6430 unsigned int *_hash_shift,
6431 unsigned int *_hash_mask,
31fe62b9
TB
6432 unsigned long low_limit,
6433 unsigned long high_limit)
1da177e4 6434{
31fe62b9 6435 unsigned long long max = high_limit;
1da177e4
LT
6436 unsigned long log2qty, size;
6437 void *table = NULL;
6438
6439 /* allow the kernel cmdline to have a say */
6440 if (!numentries) {
6441 /* round applicable memory size up to nearest megabyte */
04903664 6442 numentries = nr_kernel_pages;
a7e83318
JZ
6443
6444 /* It isn't necessary when PAGE_SIZE >= 1MB */
6445 if (PAGE_SHIFT < 20)
6446 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6447
6448 /* limit to 1 bucket per 2^scale bytes of low memory */
6449 if (scale > PAGE_SHIFT)
6450 numentries >>= (scale - PAGE_SHIFT);
6451 else
6452 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6453
6454 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6455 if (unlikely(flags & HASH_SMALL)) {
6456 /* Makes no sense without HASH_EARLY */
6457 WARN_ON(!(flags & HASH_EARLY));
6458 if (!(numentries >> *_hash_shift)) {
6459 numentries = 1UL << *_hash_shift;
6460 BUG_ON(!numentries);
6461 }
6462 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6463 numentries = PAGE_SIZE / bucketsize;
1da177e4 6464 }
6e692ed3 6465 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6466
6467 /* limit allocation size to 1/16 total memory by default */
6468 if (max == 0) {
6469 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6470 do_div(max, bucketsize);
6471 }
074b8517 6472 max = min(max, 0x80000000ULL);
1da177e4 6473
31fe62b9
TB
6474 if (numentries < low_limit)
6475 numentries = low_limit;
1da177e4
LT
6476 if (numentries > max)
6477 numentries = max;
6478
f0d1b0b3 6479 log2qty = ilog2(numentries);
1da177e4
LT
6480
6481 do {
6482 size = bucketsize << log2qty;
6483 if (flags & HASH_EARLY)
6782832e 6484 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6485 else if (hashdist)
6486 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6487 else {
1037b83b
ED
6488 /*
6489 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6490 * some pages at the end of hash table which
6491 * alloc_pages_exact() automatically does
1037b83b 6492 */
264ef8a9 6493 if (get_order(size) < MAX_ORDER) {
a1dd268c 6494 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6495 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6496 }
1da177e4
LT
6497 }
6498 } while (!table && size > PAGE_SIZE && --log2qty);
6499
6500 if (!table)
6501 panic("Failed to allocate %s hash table\n", tablename);
6502
f241e660 6503 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6504 tablename,
f241e660 6505 (1UL << log2qty),
f0d1b0b3 6506 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6507 size);
6508
6509 if (_hash_shift)
6510 *_hash_shift = log2qty;
6511 if (_hash_mask)
6512 *_hash_mask = (1 << log2qty) - 1;
6513
6514 return table;
6515}
a117e66e 6516
835c134e
MG
6517/* Return a pointer to the bitmap storing bits affecting a block of pages */
6518static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6519 unsigned long pfn)
6520{
6521#ifdef CONFIG_SPARSEMEM
6522 return __pfn_to_section(pfn)->pageblock_flags;
6523#else
6524 return zone->pageblock_flags;
6525#endif /* CONFIG_SPARSEMEM */
6526}
6527
6528static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6529{
6530#ifdef CONFIG_SPARSEMEM
6531 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6532 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6533#else
c060f943 6534 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6535 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6536#endif /* CONFIG_SPARSEMEM */
6537}
6538
6539/**
1aab4d77 6540 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6541 * @page: The page within the block of interest
1aab4d77
RD
6542 * @pfn: The target page frame number
6543 * @end_bitidx: The last bit of interest to retrieve
6544 * @mask: mask of bits that the caller is interested in
6545 *
6546 * Return: pageblock_bits flags
835c134e 6547 */
dc4b0caf 6548unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6549 unsigned long end_bitidx,
6550 unsigned long mask)
835c134e
MG
6551{
6552 struct zone *zone;
6553 unsigned long *bitmap;
dc4b0caf 6554 unsigned long bitidx, word_bitidx;
e58469ba 6555 unsigned long word;
835c134e
MG
6556
6557 zone = page_zone(page);
835c134e
MG
6558 bitmap = get_pageblock_bitmap(zone, pfn);
6559 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6560 word_bitidx = bitidx / BITS_PER_LONG;
6561 bitidx &= (BITS_PER_LONG-1);
835c134e 6562
e58469ba
MG
6563 word = bitmap[word_bitidx];
6564 bitidx += end_bitidx;
6565 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6566}
6567
6568/**
dc4b0caf 6569 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6570 * @page: The page within the block of interest
835c134e 6571 * @flags: The flags to set
1aab4d77
RD
6572 * @pfn: The target page frame number
6573 * @end_bitidx: The last bit of interest
6574 * @mask: mask of bits that the caller is interested in
835c134e 6575 */
dc4b0caf
MG
6576void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6577 unsigned long pfn,
e58469ba
MG
6578 unsigned long end_bitidx,
6579 unsigned long mask)
835c134e
MG
6580{
6581 struct zone *zone;
6582 unsigned long *bitmap;
dc4b0caf 6583 unsigned long bitidx, word_bitidx;
e58469ba
MG
6584 unsigned long old_word, word;
6585
6586 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6587
6588 zone = page_zone(page);
835c134e
MG
6589 bitmap = get_pageblock_bitmap(zone, pfn);
6590 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6591 word_bitidx = bitidx / BITS_PER_LONG;
6592 bitidx &= (BITS_PER_LONG-1);
6593
309381fe 6594 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6595
e58469ba
MG
6596 bitidx += end_bitidx;
6597 mask <<= (BITS_PER_LONG - bitidx - 1);
6598 flags <<= (BITS_PER_LONG - bitidx - 1);
6599
4db0c3c2 6600 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6601 for (;;) {
6602 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6603 if (word == old_word)
6604 break;
6605 word = old_word;
6606 }
835c134e 6607}
a5d76b54
KH
6608
6609/*
80934513
MK
6610 * This function checks whether pageblock includes unmovable pages or not.
6611 * If @count is not zero, it is okay to include less @count unmovable pages
6612 *
b8af2941 6613 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6614 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6615 * expect this function should be exact.
a5d76b54 6616 */
b023f468
WC
6617bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6618 bool skip_hwpoisoned_pages)
49ac8255
KH
6619{
6620 unsigned long pfn, iter, found;
47118af0
MN
6621 int mt;
6622
49ac8255
KH
6623 /*
6624 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6625 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6626 */
6627 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6628 return false;
47118af0 6629 mt = get_pageblock_migratetype(page);
beec9920 6630 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6631 return false;
49ac8255
KH
6632
6633 pfn = page_to_pfn(page);
6634 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6635 unsigned long check = pfn + iter;
6636
29723fcc 6637 if (!pfn_valid_within(check))
49ac8255 6638 continue;
29723fcc 6639
49ac8255 6640 page = pfn_to_page(check);
c8721bbb
NH
6641
6642 /*
6643 * Hugepages are not in LRU lists, but they're movable.
6644 * We need not scan over tail pages bacause we don't
6645 * handle each tail page individually in migration.
6646 */
6647 if (PageHuge(page)) {
6648 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6649 continue;
6650 }
6651
97d255c8
MK
6652 /*
6653 * We can't use page_count without pin a page
6654 * because another CPU can free compound page.
6655 * This check already skips compound tails of THP
6656 * because their page->_count is zero at all time.
6657 */
6658 if (!atomic_read(&page->_count)) {
49ac8255
KH
6659 if (PageBuddy(page))
6660 iter += (1 << page_order(page)) - 1;
6661 continue;
6662 }
97d255c8 6663
b023f468
WC
6664 /*
6665 * The HWPoisoned page may be not in buddy system, and
6666 * page_count() is not 0.
6667 */
6668 if (skip_hwpoisoned_pages && PageHWPoison(page))
6669 continue;
6670
49ac8255
KH
6671 if (!PageLRU(page))
6672 found++;
6673 /*
6b4f7799
JW
6674 * If there are RECLAIMABLE pages, we need to check
6675 * it. But now, memory offline itself doesn't call
6676 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6677 */
6678 /*
6679 * If the page is not RAM, page_count()should be 0.
6680 * we don't need more check. This is an _used_ not-movable page.
6681 *
6682 * The problematic thing here is PG_reserved pages. PG_reserved
6683 * is set to both of a memory hole page and a _used_ kernel
6684 * page at boot.
6685 */
6686 if (found > count)
80934513 6687 return true;
49ac8255 6688 }
80934513 6689 return false;
49ac8255
KH
6690}
6691
6692bool is_pageblock_removable_nolock(struct page *page)
6693{
656a0706
MH
6694 struct zone *zone;
6695 unsigned long pfn;
687875fb
MH
6696
6697 /*
6698 * We have to be careful here because we are iterating over memory
6699 * sections which are not zone aware so we might end up outside of
6700 * the zone but still within the section.
656a0706
MH
6701 * We have to take care about the node as well. If the node is offline
6702 * its NODE_DATA will be NULL - see page_zone.
687875fb 6703 */
656a0706
MH
6704 if (!node_online(page_to_nid(page)))
6705 return false;
6706
6707 zone = page_zone(page);
6708 pfn = page_to_pfn(page);
108bcc96 6709 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6710 return false;
6711
b023f468 6712 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6713}
0c0e6195 6714
041d3a8c
MN
6715#ifdef CONFIG_CMA
6716
6717static unsigned long pfn_max_align_down(unsigned long pfn)
6718{
6719 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6720 pageblock_nr_pages) - 1);
6721}
6722
6723static unsigned long pfn_max_align_up(unsigned long pfn)
6724{
6725 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6726 pageblock_nr_pages));
6727}
6728
041d3a8c 6729/* [start, end) must belong to a single zone. */
bb13ffeb 6730static int __alloc_contig_migrate_range(struct compact_control *cc,
1cac41cb 6731 unsigned long start, unsigned long end,
beec9920 6732 bool cma)
041d3a8c
MN
6733{
6734 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6735 unsigned long nr_reclaimed;
041d3a8c
MN
6736 unsigned long pfn = start;
6737 unsigned int tries = 0;
6738 int ret = 0;
6739
1cac41cb
MB
6740 if (cma)
6741 migrate_prep();
041d3a8c 6742
bb13ffeb 6743 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6744 if (fatal_signal_pending(current)) {
6745 ret = -EINTR;
6746 break;
6747 }
6748
bb13ffeb
MG
6749 if (list_empty(&cc->migratepages)) {
6750 cc->nr_migratepages = 0;
edc2ca61 6751 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6752 if (!pfn) {
6753 ret = -EINTR;
6754 break;
6755 }
beec9920 6756 tries = 0;
041d3a8c
MN
6757 } else if (++tries == 5) {
6758 ret = ret < 0 ? ret : -EBUSY;
6759 break;
6760 }
6761
beb51eaa
MK
6762 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6763 &cc->migratepages);
6764 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6765
9c620e2b 6766 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
1cac41cb 6767 NULL, 0, cc->mode, cma ? MR_CMA : MR_HPA);
041d3a8c 6768 }
2a6f5124
SP
6769 if (ret < 0) {
6770 putback_movable_pages(&cc->migratepages);
6771 return ret;
6772 }
6773 return 0;
041d3a8c
MN
6774}
6775
6776/**
1cac41cb 6777 * __alloc_contig_range() -- tries to allocate given range of pages
041d3a8c
MN
6778 * @start: start PFN to allocate
6779 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6780 * @migratetype: migratetype of the underlaying pageblocks (either
6781 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6782 * in range must have the same migratetype and it must
6783 * be either of the two.
1cac41cb 6784 * @cma: true if cma allocation
041d3a8c
MN
6785 *
6786 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6787 * aligned, however it's the caller's responsibility to guarantee that
6788 * we are the only thread that changes migrate type of pageblocks the
6789 * pages fall in.
6790 *
6791 * The PFN range must belong to a single zone.
6792 *
1cac41cb
MB
6793 * If the 'cma' is not true, caller allows and assumes that this allocation
6794 * could be failed.
6795 *
041d3a8c
MN
6796 * Returns zero on success or negative error code. On success all
6797 * pages which PFN is in [start, end) are allocated for the caller and
6798 * need to be freed with free_contig_range().
6799 */
1cac41cb
MB
6800int __alloc_contig_range(unsigned long start, unsigned long end,
6801 unsigned migratetype, bool cma)
041d3a8c 6802{
041d3a8c 6803 unsigned long outer_start, outer_end;
d00181b9
KS
6804 unsigned int order;
6805 int ret = 0;
041d3a8c 6806
bb13ffeb
MG
6807 struct compact_control cc = {
6808 .nr_migratepages = 0,
6809 .order = -1,
6810 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6811 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6812 .ignore_skip_hint = true,
6813 };
6814 INIT_LIST_HEAD(&cc.migratepages);
6815
041d3a8c
MN
6816 /*
6817 * What we do here is we mark all pageblocks in range as
6818 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6819 * have different sizes, and due to the way page allocator
6820 * work, we align the range to biggest of the two pages so
6821 * that page allocator won't try to merge buddies from
6822 * different pageblocks and change MIGRATE_ISOLATE to some
6823 * other migration type.
6824 *
6825 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6826 * migrate the pages from an unaligned range (ie. pages that
6827 * we are interested in). This will put all the pages in
6828 * range back to page allocator as MIGRATE_ISOLATE.
6829 *
6830 * When this is done, we take the pages in range from page
6831 * allocator removing them from the buddy system. This way
6832 * page allocator will never consider using them.
6833 *
6834 * This lets us mark the pageblocks back as
6835 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6836 * aligned range but not in the unaligned, original range are
6837 * put back to page allocator so that buddy can use them.
6838 */
6839
6840 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6841 pfn_max_align_up(end), migratetype,
6842 false);
041d3a8c 6843 if (ret)
86a595f9 6844 return ret;
041d3a8c 6845
beec9920 6846 ret = __alloc_contig_migrate_range(&cc, start, end, cma);
041d3a8c
MN
6847 if (ret)
6848 goto done;
6849
6850 /*
6851 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6852 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6853 * more, all pages in [start, end) are free in page allocator.
6854 * What we are going to do is to allocate all pages from
6855 * [start, end) (that is remove them from page allocator).
6856 *
6857 * The only problem is that pages at the beginning and at the
6858 * end of interesting range may be not aligned with pages that
6859 * page allocator holds, ie. they can be part of higher order
6860 * pages. Because of this, we reserve the bigger range and
6861 * once this is done free the pages we are not interested in.
6862 *
6863 * We don't have to hold zone->lock here because the pages are
6864 * isolated thus they won't get removed from buddy.
6865 */
6866
041d3a8c
MN
6867 order = 0;
6868 outer_start = start;
1cac41cb
MB
6869
6870 if (cma) {
6871 lru_add_drain_all();
6872 drain_all_pages(cc.zone);
6873
6874 while (!PageBuddy(pfn_to_page(outer_start))) {
6875 if (++order >= MAX_ORDER) {
6876 ret = -EBUSY;
6877 goto done;
6878 }
6879 outer_start &= ~0UL << order;
6880 }
6881
6882 /* Make sure the range is really isolated. */
6883 if (test_pages_isolated(outer_start, end, false)) {
6884 pr_info("%s: [%lx, %lx) PFNs busy\n",
6885 __func__, outer_start, end);
041d3a8c
MN
6886 ret = -EBUSY;
6887 goto done;
6888 }
041d3a8c
MN
6889 }
6890
49f223a9 6891 /* Grab isolated pages from freelists. */
bb13ffeb 6892 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6893 if (!outer_end) {
6894 ret = -EBUSY;
6895 goto done;
6896 }
6897
6898 /* Free head and tail (if any) */
6899 if (start != outer_start)
6900 free_contig_range(outer_start, start - outer_start);
6901 if (end != outer_end)
6902 free_contig_range(end, outer_end - end);
6903
6904done:
6905 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6906 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6907 return ret;
6908}
6909
1cac41cb
MB
6910int alloc_contig_range(unsigned long start, unsigned long end,
6911 unsigned migratetype)
6912{
6913 return __alloc_contig_range(start, end, migratetype, true);
6914}
6915
6916int alloc_contig_range_fast(unsigned long start, unsigned long end,
6917 unsigned migratetype)
6918{
6919 return __alloc_contig_range(start, end, migratetype, false);
6920}
6921
041d3a8c
MN
6922void free_contig_range(unsigned long pfn, unsigned nr_pages)
6923{
bcc2b02f
MS
6924 unsigned int count = 0;
6925
6926 for (; nr_pages--; pfn++) {
6927 struct page *page = pfn_to_page(pfn);
6928
6929 count += page_count(page) != 1;
6930 __free_page(page);
6931 }
6932 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6933}
6934#endif
6935
4ed7e022 6936#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6937/*
6938 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6939 * page high values need to be recalulated.
6940 */
4ed7e022
JL
6941void __meminit zone_pcp_update(struct zone *zone)
6942{
0a647f38 6943 unsigned cpu;
c8e251fa 6944 mutex_lock(&pcp_batch_high_lock);
0a647f38 6945 for_each_possible_cpu(cpu)
169f6c19
CS
6946 pageset_set_high_and_batch(zone,
6947 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6948 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6949}
6950#endif
6951
340175b7
JL
6952void zone_pcp_reset(struct zone *zone)
6953{
6954 unsigned long flags;
5a883813
MK
6955 int cpu;
6956 struct per_cpu_pageset *pset;
340175b7
JL
6957
6958 /* avoid races with drain_pages() */
6959 local_irq_save(flags);
6960 if (zone->pageset != &boot_pageset) {
5a883813
MK
6961 for_each_online_cpu(cpu) {
6962 pset = per_cpu_ptr(zone->pageset, cpu);
6963 drain_zonestat(zone, pset);
6964 }
340175b7
JL
6965 free_percpu(zone->pageset);
6966 zone->pageset = &boot_pageset;
6967 }
6968 local_irq_restore(flags);
6969}
6970
6dcd73d7 6971#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6972/*
6973 * All pages in the range must be isolated before calling this.
6974 */
6975void
6976__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6977{
6978 struct page *page;
6979 struct zone *zone;
7aeb09f9 6980 unsigned int order, i;
0c0e6195
KH
6981 unsigned long pfn;
6982 unsigned long flags;
6983 /* find the first valid pfn */
6984 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6985 if (pfn_valid(pfn))
6986 break;
6987 if (pfn == end_pfn)
6988 return;
6989 zone = page_zone(pfn_to_page(pfn));
6990 spin_lock_irqsave(&zone->lock, flags);
6991 pfn = start_pfn;
6992 while (pfn < end_pfn) {
6993 if (!pfn_valid(pfn)) {
6994 pfn++;
6995 continue;
6996 }
6997 page = pfn_to_page(pfn);
b023f468
WC
6998 /*
6999 * The HWPoisoned page may be not in buddy system, and
7000 * page_count() is not 0.
7001 */
7002 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7003 pfn++;
7004 SetPageReserved(page);
7005 continue;
7006 }
7007
0c0e6195
KH
7008 BUG_ON(page_count(page));
7009 BUG_ON(!PageBuddy(page));
7010 order = page_order(page);
7011#ifdef CONFIG_DEBUG_VM
7012 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7013 pfn, 1 << order, end_pfn);
7014#endif
7015 list_del(&page->lru);
7016 rmv_page_order(page);
7017 zone->free_area[order].nr_free--;
0c0e6195
KH
7018 for (i = 0; i < (1 << order); i++)
7019 SetPageReserved((page+i));
7020 pfn += (1 << order);
7021 }
7022 spin_unlock_irqrestore(&zone->lock, flags);
7023}
7024#endif
8d22ba1b
WF
7025
7026#ifdef CONFIG_MEMORY_FAILURE
7027bool is_free_buddy_page(struct page *page)
7028{
7029 struct zone *zone = page_zone(page);
7030 unsigned long pfn = page_to_pfn(page);
7031 unsigned long flags;
7aeb09f9 7032 unsigned int order;
8d22ba1b
WF
7033
7034 spin_lock_irqsave(&zone->lock, flags);
7035 for (order = 0; order < MAX_ORDER; order++) {
7036 struct page *page_head = page - (pfn & ((1 << order) - 1));
7037
7038 if (PageBuddy(page_head) && page_order(page_head) >= order)
7039 break;
7040 }
7041 spin_unlock_irqrestore(&zone->lock, flags);
7042
7043 return order < MAX_ORDER;
7044}
7045#endif