mm: vmscan: fix inappropriate zone congestion clearing
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
52d4b9ac 51#include <linux/page_cgroup.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
718a3821 56#include <linux/ftrace_event.h>
f212ad7c 57#include <linux/memcontrol.h>
268bb0ce 58#include <linux/prefetch.h>
041d3a8c 59#include <linux/migrate.h>
c0a32fc5 60#include <linux/page-debug-flags.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
ac924c60 63#include <asm/div64.h>
1da177e4
LT
64#include "internal.h"
65
72812019
LS
66#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67DEFINE_PER_CPU(int, numa_node);
68EXPORT_PER_CPU_SYMBOL(numa_node);
69#endif
70
7aac7898
LS
71#ifdef CONFIG_HAVE_MEMORYLESS_NODES
72/*
73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76 * defined in <linux/topology.h>.
77 */
78DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
79EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80#endif
81
1da177e4 82/*
13808910 83 * Array of node states.
1da177e4 84 */
13808910
CL
85nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 [N_POSSIBLE] = NODE_MASK_ALL,
87 [N_ONLINE] = { { [0] = 1UL } },
88#ifndef CONFIG_NUMA
89 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
90#ifdef CONFIG_HIGHMEM
91 [N_HIGH_MEMORY] = { { [0] = 1UL } },
92#endif
93 [N_CPU] = { { [0] = 1UL } },
94#endif /* NUMA */
95};
96EXPORT_SYMBOL(node_states);
97
6c231b7b 98unsigned long totalram_pages __read_mostly;
cb45b0e9 99unsigned long totalreserve_pages __read_mostly;
ab8fabd4
JW
100/*
101 * When calculating the number of globally allowed dirty pages, there
102 * is a certain number of per-zone reserves that should not be
103 * considered dirtyable memory. This is the sum of those reserves
104 * over all existing zones that contribute dirtyable memory.
105 */
106unsigned long dirty_balance_reserve __read_mostly;
107
1b76b02f 108int percpu_pagelist_fraction;
dcce284a 109gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 110
452aa699
RW
111#ifdef CONFIG_PM_SLEEP
112/*
113 * The following functions are used by the suspend/hibernate code to temporarily
114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115 * while devices are suspended. To avoid races with the suspend/hibernate code,
116 * they should always be called with pm_mutex held (gfp_allowed_mask also should
117 * only be modified with pm_mutex held, unless the suspend/hibernate code is
118 * guaranteed not to run in parallel with that modification).
119 */
c9e664f1
RW
120
121static gfp_t saved_gfp_mask;
122
123void pm_restore_gfp_mask(void)
452aa699
RW
124{
125 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
126 if (saved_gfp_mask) {
127 gfp_allowed_mask = saved_gfp_mask;
128 saved_gfp_mask = 0;
129 }
452aa699
RW
130}
131
c9e664f1 132void pm_restrict_gfp_mask(void)
452aa699 133{
452aa699 134 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
135 WARN_ON(saved_gfp_mask);
136 saved_gfp_mask = gfp_allowed_mask;
137 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 138}
f90ac398
MG
139
140bool pm_suspended_storage(void)
141{
142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 return false;
144 return true;
145}
452aa699
RW
146#endif /* CONFIG_PM_SLEEP */
147
d9c23400
MG
148#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149int pageblock_order __read_mostly;
150#endif
151
d98c7a09 152static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 153
1da177e4
LT
154/*
155 * results with 256, 32 in the lowmem_reserve sysctl:
156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157 * 1G machine -> (16M dma, 784M normal, 224M high)
158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
161 *
162 * TBD: should special case ZONE_DMA32 machines here - in those we normally
163 * don't need any ZONE_NORMAL reservation
1da177e4 164 */
2f1b6248 165int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 166#ifdef CONFIG_ZONE_DMA
2f1b6248 167 256,
4b51d669 168#endif
fb0e7942 169#ifdef CONFIG_ZONE_DMA32
2f1b6248 170 256,
fb0e7942 171#endif
e53ef38d 172#ifdef CONFIG_HIGHMEM
2a1e274a 173 32,
e53ef38d 174#endif
2a1e274a 175 32,
2f1b6248 176};
1da177e4
LT
177
178EXPORT_SYMBOL(totalram_pages);
1da177e4 179
15ad7cdc 180static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 181#ifdef CONFIG_ZONE_DMA
2f1b6248 182 "DMA",
4b51d669 183#endif
fb0e7942 184#ifdef CONFIG_ZONE_DMA32
2f1b6248 185 "DMA32",
fb0e7942 186#endif
2f1b6248 187 "Normal",
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 "HighMem",
e53ef38d 190#endif
2a1e274a 191 "Movable",
2f1b6248
CL
192};
193
1da177e4
LT
194int min_free_kbytes = 1024;
195
2c85f51d
JB
196static unsigned long __meminitdata nr_kernel_pages;
197static unsigned long __meminitdata nr_all_pages;
a3142c8e 198static unsigned long __meminitdata dma_reserve;
1da177e4 199
0ee332c1
TH
200#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203static unsigned long __initdata required_kernelcore;
204static unsigned long __initdata required_movablecore;
205static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206
207/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208int movable_zone;
209EXPORT_SYMBOL(movable_zone);
210#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 211
418508c1
MS
212#if MAX_NUMNODES > 1
213int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 214int nr_online_nodes __read_mostly = 1;
418508c1 215EXPORT_SYMBOL(nr_node_ids);
62bc62a8 216EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
217#endif
218
9ef9acb0
MG
219int page_group_by_mobility_disabled __read_mostly;
220
702d1a6e
MK
221/*
222 * NOTE:
223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224 * Instead, use {un}set_pageblock_isolate.
225 */
ee6f509c 226void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 227{
49255c61
MG
228
229 if (unlikely(page_group_by_mobility_disabled))
230 migratetype = MIGRATE_UNMOVABLE;
231
b2a0ac88
MG
232 set_pageblock_flags_group(page, (unsigned long)migratetype,
233 PB_migrate, PB_migrate_end);
234}
235
7f33d49a
RW
236bool oom_killer_disabled __read_mostly;
237
13e7444b 238#ifdef CONFIG_DEBUG_VM
c6a57e19 239static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 240{
bdc8cb98
DH
241 int ret = 0;
242 unsigned seq;
243 unsigned long pfn = page_to_pfn(page);
c6a57e19 244
bdc8cb98
DH
245 do {
246 seq = zone_span_seqbegin(zone);
247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 ret = 1;
249 else if (pfn < zone->zone_start_pfn)
250 ret = 1;
251 } while (zone_span_seqretry(zone, seq));
252
253 return ret;
c6a57e19
DH
254}
255
256static int page_is_consistent(struct zone *zone, struct page *page)
257{
14e07298 258 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 259 return 0;
1da177e4 260 if (zone != page_zone(page))
c6a57e19
DH
261 return 0;
262
263 return 1;
264}
265/*
266 * Temporary debugging check for pages not lying within a given zone.
267 */
268static int bad_range(struct zone *zone, struct page *page)
269{
270 if (page_outside_zone_boundaries(zone, page))
1da177e4 271 return 1;
c6a57e19
DH
272 if (!page_is_consistent(zone, page))
273 return 1;
274
1da177e4
LT
275 return 0;
276}
13e7444b
NP
277#else
278static inline int bad_range(struct zone *zone, struct page *page)
279{
280 return 0;
281}
282#endif
283
224abf92 284static void bad_page(struct page *page)
1da177e4 285{
d936cf9b
HD
286 static unsigned long resume;
287 static unsigned long nr_shown;
288 static unsigned long nr_unshown;
289
2a7684a2
WF
290 /* Don't complain about poisoned pages */
291 if (PageHWPoison(page)) {
ef2b4b95 292 reset_page_mapcount(page); /* remove PageBuddy */
2a7684a2
WF
293 return;
294 }
295
d936cf9b
HD
296 /*
297 * Allow a burst of 60 reports, then keep quiet for that minute;
298 * or allow a steady drip of one report per second.
299 */
300 if (nr_shown == 60) {
301 if (time_before(jiffies, resume)) {
302 nr_unshown++;
303 goto out;
304 }
305 if (nr_unshown) {
1e9e6365
HD
306 printk(KERN_ALERT
307 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
308 nr_unshown);
309 nr_unshown = 0;
310 }
311 nr_shown = 0;
312 }
313 if (nr_shown++ == 0)
314 resume = jiffies + 60 * HZ;
315
1e9e6365 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 317 current->comm, page_to_pfn(page));
718a3821 318 dump_page(page);
3dc14741 319
4f31888c 320 print_modules();
1da177e4 321 dump_stack();
d936cf9b 322out:
8cc3b392 323 /* Leave bad fields for debug, except PageBuddy could make trouble */
ef2b4b95 324 reset_page_mapcount(page); /* remove PageBuddy */
9f158333 325 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
326}
327
1da177e4
LT
328/*
329 * Higher-order pages are called "compound pages". They are structured thusly:
330 *
331 * The first PAGE_SIZE page is called the "head page".
332 *
333 * The remaining PAGE_SIZE pages are called "tail pages".
334 *
6416b9fa
WSH
335 * All pages have PG_compound set. All tail pages have their ->first_page
336 * pointing at the head page.
1da177e4 337 *
41d78ba5
HD
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
1da177e4 341 */
d98c7a09
HD
342
343static void free_compound_page(struct page *page)
344{
d85f3385 345 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
346}
347
01ad1c08 348void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
349{
350 int i;
351 int nr_pages = 1 << order;
352
353 set_compound_page_dtor(page, free_compound_page);
354 set_compound_order(page, order);
355 __SetPageHead(page);
356 for (i = 1; i < nr_pages; i++) {
357 struct page *p = page + i;
18229df5 358 __SetPageTail(p);
58a84aa9 359 set_page_count(p, 0);
18229df5
AW
360 p->first_page = page;
361 }
362}
363
59ff4216 364/* update __split_huge_page_refcount if you change this function */
8cc3b392 365static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
366{
367 int i;
368 int nr_pages = 1 << order;
8cc3b392 369 int bad = 0;
1da177e4 370
8cc3b392
HD
371 if (unlikely(compound_order(page) != order) ||
372 unlikely(!PageHead(page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
1da177e4 376
6d777953 377 __ClearPageHead(page);
8cc3b392 378
18229df5
AW
379 for (i = 1; i < nr_pages; i++) {
380 struct page *p = page + i;
1da177e4 381
e713a21d 382 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 383 bad_page(page);
8cc3b392
HD
384 bad++;
385 }
d85f3385 386 __ClearPageTail(p);
1da177e4 387 }
8cc3b392
HD
388
389 return bad;
1da177e4 390}
1da177e4 391
17cf4406
NP
392static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393{
394 int i;
395
6626c5d5
AM
396 /*
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 */
725d704e 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
401 for (i = 0; i < (1 << order); i++)
402 clear_highpage(page + i);
403}
404
c0a32fc5
SG
405#ifdef CONFIG_DEBUG_PAGEALLOC
406unsigned int _debug_guardpage_minorder;
407
408static int __init debug_guardpage_minorder_setup(char *buf)
409{
410 unsigned long res;
411
412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 return 0;
415 }
416 _debug_guardpage_minorder = res;
417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 return 0;
419}
420__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421
422static inline void set_page_guard_flag(struct page *page)
423{
424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425}
426
427static inline void clear_page_guard_flag(struct page *page)
428{
429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430}
431#else
432static inline void set_page_guard_flag(struct page *page) { }
433static inline void clear_page_guard_flag(struct page *page) { }
434#endif
435
6aa3001b
AM
436static inline void set_page_order(struct page *page, int order)
437{
4c21e2f2 438 set_page_private(page, order);
676165a8 439 __SetPageBuddy(page);
1da177e4
LT
440}
441
442static inline void rmv_page_order(struct page *page)
443{
676165a8 444 __ClearPageBuddy(page);
4c21e2f2 445 set_page_private(page, 0);
1da177e4
LT
446}
447
448/*
449 * Locate the struct page for both the matching buddy in our
450 * pair (buddy1) and the combined O(n+1) page they form (page).
451 *
452 * 1) Any buddy B1 will have an order O twin B2 which satisfies
453 * the following equation:
454 * B2 = B1 ^ (1 << O)
455 * For example, if the starting buddy (buddy2) is #8 its order
456 * 1 buddy is #10:
457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458 *
459 * 2) Any buddy B will have an order O+1 parent P which
460 * satisfies the following equation:
461 * P = B & ~(1 << O)
462 *
d6e05edc 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4 464 */
1da177e4 465static inline unsigned long
43506fad 466__find_buddy_index(unsigned long page_idx, unsigned int order)
1da177e4 467{
43506fad 468 return page_idx ^ (1 << order);
1da177e4
LT
469}
470
471/*
472 * This function checks whether a page is free && is the buddy
473 * we can do coalesce a page and its buddy if
13e7444b 474 * (a) the buddy is not in a hole &&
676165a8 475 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
476 * (c) a page and its buddy have the same order &&
477 * (d) a page and its buddy are in the same zone.
676165a8 478 *
5f24ce5f
AA
479 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
1da177e4 481 *
676165a8 482 * For recording page's order, we use page_private(page).
1da177e4 483 */
cb2b95e1
AW
484static inline int page_is_buddy(struct page *page, struct page *buddy,
485 int order)
1da177e4 486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 488 return 0;
13e7444b 489
cb2b95e1
AW
490 if (page_zone_id(page) != page_zone_id(buddy))
491 return 0;
492
c0a32fc5
SG
493 if (page_is_guard(buddy) && page_order(buddy) == order) {
494 VM_BUG_ON(page_count(buddy) != 0);
495 return 1;
496 }
497
cb2b95e1 498 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 499 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 500 return 1;
676165a8 501 }
6aa3001b 502 return 0;
1da177e4
LT
503}
504
505/*
506 * Freeing function for a buddy system allocator.
507 *
508 * The concept of a buddy system is to maintain direct-mapped table
509 * (containing bit values) for memory blocks of various "orders".
510 * The bottom level table contains the map for the smallest allocatable
511 * units of memory (here, pages), and each level above it describes
512 * pairs of units from the levels below, hence, "buddies".
513 * At a high level, all that happens here is marking the table entry
514 * at the bottom level available, and propagating the changes upward
515 * as necessary, plus some accounting needed to play nicely with other
516 * parts of the VM system.
517 * At each level, we keep a list of pages, which are heads of continuous
5f24ce5f 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
4c21e2f2 519 * order is recorded in page_private(page) field.
1da177e4 520 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
521 * other. That is, if we allocate a small block, and both were
522 * free, the remainder of the region must be split into blocks.
1da177e4 523 * If a block is freed, and its buddy is also free, then this
5f63b720 524 * triggers coalescing into a block of larger size.
1da177e4
LT
525 *
526 * -- wli
527 */
528
48db57f8 529static inline void __free_one_page(struct page *page,
ed0ae21d
MG
530 struct zone *zone, unsigned int order,
531 int migratetype)
1da177e4
LT
532{
533 unsigned long page_idx;
6dda9d55 534 unsigned long combined_idx;
43506fad 535 unsigned long uninitialized_var(buddy_idx);
6dda9d55 536 struct page *buddy;
1da177e4 537
224abf92 538 if (unlikely(PageCompound(page)))
8cc3b392
HD
539 if (unlikely(destroy_compound_page(page, order)))
540 return;
1da177e4 541
ed0ae21d
MG
542 VM_BUG_ON(migratetype == -1);
543
1da177e4
LT
544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545
f2260e6b 546 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 547 VM_BUG_ON(bad_range(zone, page));
1da177e4 548
1da177e4 549 while (order < MAX_ORDER-1) {
43506fad
KC
550 buddy_idx = __find_buddy_index(page_idx, order);
551 buddy = page + (buddy_idx - page_idx);
cb2b95e1 552 if (!page_is_buddy(page, buddy, order))
3c82d0ce 553 break;
c0a32fc5
SG
554 /*
555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 * merge with it and move up one order.
557 */
558 if (page_is_guard(buddy)) {
559 clear_page_guard_flag(buddy);
560 set_page_private(page, 0);
d1ce749a
BZ
561 __mod_zone_freepage_state(zone, 1 << order,
562 migratetype);
c0a32fc5
SG
563 } else {
564 list_del(&buddy->lru);
565 zone->free_area[order].nr_free--;
566 rmv_page_order(buddy);
567 }
43506fad 568 combined_idx = buddy_idx & page_idx;
1da177e4
LT
569 page = page + (combined_idx - page_idx);
570 page_idx = combined_idx;
571 order++;
572 }
573 set_page_order(page, order);
6dda9d55
CZ
574
575 /*
576 * If this is not the largest possible page, check if the buddy
577 * of the next-highest order is free. If it is, it's possible
578 * that pages are being freed that will coalesce soon. In case,
579 * that is happening, add the free page to the tail of the list
580 * so it's less likely to be used soon and more likely to be merged
581 * as a higher order page
582 */
b7f50cfa 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 584 struct page *higher_page, *higher_buddy;
43506fad
KC
585 combined_idx = buddy_idx & page_idx;
586 higher_page = page + (combined_idx - page_idx);
587 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 588 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 list_add_tail(&page->lru,
591 &zone->free_area[order].free_list[migratetype]);
592 goto out;
593 }
594 }
595
596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597out:
1da177e4
LT
598 zone->free_area[order].nr_free++;
599}
600
224abf92 601static inline int free_pages_check(struct page *page)
1da177e4 602{
92be2e33
NP
603 if (unlikely(page_mapcount(page) |
604 (page->mapping != NULL) |
a3af9c38 605 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 (mem_cgroup_bad_page_check(page)))) {
224abf92 608 bad_page(page);
79f4b7bf 609 return 1;
8cc3b392 610 }
79f4b7bf
HD
611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 return 0;
1da177e4
LT
614}
615
616/*
5f8dcc21 617 * Frees a number of pages from the PCP lists
1da177e4 618 * Assumes all pages on list are in same zone, and of same order.
207f36ee 619 * count is the number of pages to free.
1da177e4
LT
620 *
621 * If the zone was previously in an "all pages pinned" state then look to
622 * see if this freeing clears that state.
623 *
624 * And clear the zone's pages_scanned counter, to hold off the "all pages are
625 * pinned" detection logic.
626 */
5f8dcc21
MG
627static void free_pcppages_bulk(struct zone *zone, int count,
628 struct per_cpu_pages *pcp)
1da177e4 629{
5f8dcc21 630 int migratetype = 0;
a6f9edd6 631 int batch_free = 0;
72853e29 632 int to_free = count;
5f8dcc21 633
c54ad30c 634 spin_lock(&zone->lock);
93e4a89a 635 zone->all_unreclaimable = 0;
1da177e4 636 zone->pages_scanned = 0;
f2260e6b 637
72853e29 638 while (to_free) {
48db57f8 639 struct page *page;
5f8dcc21
MG
640 struct list_head *list;
641
642 /*
a6f9edd6
MG
643 * Remove pages from lists in a round-robin fashion. A
644 * batch_free count is maintained that is incremented when an
645 * empty list is encountered. This is so more pages are freed
646 * off fuller lists instead of spinning excessively around empty
647 * lists
5f8dcc21
MG
648 */
649 do {
a6f9edd6 650 batch_free++;
5f8dcc21
MG
651 if (++migratetype == MIGRATE_PCPTYPES)
652 migratetype = 0;
653 list = &pcp->lists[migratetype];
654 } while (list_empty(list));
48db57f8 655
1d16871d
NK
656 /* This is the only non-empty list. Free them all. */
657 if (batch_free == MIGRATE_PCPTYPES)
658 batch_free = to_free;
659
a6f9edd6 660 do {
770c8aaa
BZ
661 int mt; /* migratetype of the to-be-freed page */
662
a6f9edd6
MG
663 page = list_entry(list->prev, struct page, lru);
664 /* must delete as __free_one_page list manipulates */
665 list_del(&page->lru);
b12c4ad1 666 mt = get_freepage_migratetype(page);
a7016235 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
770c8aaa
BZ
668 __free_one_page(page, zone, 0, mt);
669 trace_mm_page_pcpu_drain(page, 0, mt);
d1ce749a
BZ
670 if (is_migrate_cma(mt))
671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
72853e29 672 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 673 }
72853e29 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 675 spin_unlock(&zone->lock);
1da177e4
LT
676}
677
ed0ae21d
MG
678static void free_one_page(struct zone *zone, struct page *page, int order,
679 int migratetype)
1da177e4 680{
006d22d9 681 spin_lock(&zone->lock);
93e4a89a 682 zone->all_unreclaimable = 0;
006d22d9 683 zone->pages_scanned = 0;
f2260e6b 684
ed0ae21d 685 __free_one_page(page, zone, order, migratetype);
2139cbe6 686 if (unlikely(migratetype != MIGRATE_ISOLATE))
d1ce749a 687 __mod_zone_freepage_state(zone, 1 << order, migratetype);
006d22d9 688 spin_unlock(&zone->lock);
48db57f8
NP
689}
690
ec95f53a 691static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 692{
1da177e4 693 int i;
8cc3b392 694 int bad = 0;
1da177e4 695
b413d48a 696 trace_mm_page_free(page, order);
b1eeab67
VN
697 kmemcheck_free_shadow(page, order);
698
8dd60a3a
AA
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
8cc3b392 703 if (bad)
ec95f53a 704 return false;
689bcebf 705
3ac7fe5a 706 if (!PageHighMem(page)) {
9858db50 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
dafb1367 711 arch_free_page(page, order);
48db57f8 712 kernel_map_pages(page, 1 << order, 0);
dafb1367 713
ec95f53a
KM
714 return true;
715}
716
717static void __free_pages_ok(struct page *page, unsigned int order)
718{
719 unsigned long flags;
95e34412 720 int migratetype;
ec95f53a
KM
721
722 if (!free_pages_prepare(page, order))
723 return;
724
c54ad30c 725 local_irq_save(flags);
f8891e5e 726 __count_vm_events(PGFREE, 1 << order);
95e34412
MK
727 migratetype = get_pageblock_migratetype(page);
728 set_freepage_migratetype(page, migratetype);
729 free_one_page(page_zone(page), page, order, migratetype);
c54ad30c 730 local_irq_restore(flags);
1da177e4
LT
731}
732
af370fb8 733void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8 734{
c3993076
JW
735 unsigned int nr_pages = 1 << order;
736 unsigned int loop;
a226f6c8 737
c3993076
JW
738 prefetchw(page);
739 for (loop = 0; loop < nr_pages; loop++) {
740 struct page *p = &page[loop];
741
742 if (loop + 1 < nr_pages)
743 prefetchw(p + 1);
744 __ClearPageReserved(p);
745 set_page_count(p, 0);
a226f6c8 746 }
c3993076
JW
747
748 set_page_refcounted(page);
749 __free_pages(page, order);
a226f6c8
DH
750}
751
47118af0
MN
752#ifdef CONFIG_CMA
753/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754void __init init_cma_reserved_pageblock(struct page *page)
755{
756 unsigned i = pageblock_nr_pages;
757 struct page *p = page;
758
759 do {
760 __ClearPageReserved(p);
761 set_page_count(p, 0);
762 } while (++p, --i);
763
764 set_page_refcounted(page);
765 set_pageblock_migratetype(page, MIGRATE_CMA);
766 __free_pages(page, pageblock_order);
767 totalram_pages += pageblock_nr_pages;
768}
769#endif
1da177e4
LT
770
771/*
772 * The order of subdivision here is critical for the IO subsystem.
773 * Please do not alter this order without good reasons and regression
774 * testing. Specifically, as large blocks of memory are subdivided,
775 * the order in which smaller blocks are delivered depends on the order
776 * they're subdivided in this function. This is the primary factor
777 * influencing the order in which pages are delivered to the IO
778 * subsystem according to empirical testing, and this is also justified
779 * by considering the behavior of a buddy system containing a single
780 * large block of memory acted on by a series of small allocations.
781 * This behavior is a critical factor in sglist merging's success.
782 *
783 * -- wli
784 */
085cc7d5 785static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
786 int low, int high, struct free_area *area,
787 int migratetype)
1da177e4
LT
788{
789 unsigned long size = 1 << high;
790
791 while (high > low) {
792 area--;
793 high--;
794 size >>= 1;
725d704e 795 VM_BUG_ON(bad_range(zone, &page[size]));
c0a32fc5
SG
796
797#ifdef CONFIG_DEBUG_PAGEALLOC
798 if (high < debug_guardpage_minorder()) {
799 /*
800 * Mark as guard pages (or page), that will allow to
801 * merge back to allocator when buddy will be freed.
802 * Corresponding page table entries will not be touched,
803 * pages will stay not present in virtual address space
804 */
805 INIT_LIST_HEAD(&page[size].lru);
806 set_page_guard_flag(&page[size]);
807 set_page_private(&page[size], high);
808 /* Guard pages are not available for any usage */
d1ce749a
BZ
809 __mod_zone_freepage_state(zone, -(1 << high),
810 migratetype);
c0a32fc5
SG
811 continue;
812 }
813#endif
b2a0ac88 814 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
1da177e4
LT
818}
819
1da177e4
LT
820/*
821 * This page is about to be returned from the page allocator
822 */
2a7684a2 823static inline int check_new_page(struct page *page)
1da177e4 824{
92be2e33
NP
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
a3af9c38 827 (atomic_read(&page->_count) != 0) |
f212ad7c
DN
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
224abf92 830 bad_page(page);
689bcebf 831 return 1;
8cc3b392 832 }
2a7684a2
WF
833 return 0;
834}
835
836static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837{
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
689bcebf 845
4c21e2f2 846 set_page_private(page, 0);
7835e98b 847 set_page_refcounted(page);
cc102509
NP
848
849 arch_alloc_page(page, order);
1da177e4 850 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
689bcebf 858 return 0;
1da177e4
LT
859}
860
56fd56b8
MG
861/*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
728ec980
MG
865static inline
866struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
867 int migratetype)
868{
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
56fd56b8
MG
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889}
890
891
b2a0ac88
MG
892/*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
47118af0
MN
896static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899#ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902#else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904#endif
6d4a4916
MN
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
907};
908
c361be55
MG
909/*
910 * Move the free pages in a range to the free lists of the requested type.
d9c23400 911 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
912 * boundary. If alignment is required, use move_freepages_block()
913 */
435b405c 914int move_freepages(struct zone *zone,
b69a7288
AB
915 struct page *start_page, struct page *end_page,
916 int migratetype)
c361be55
MG
917{
918 struct page *page;
919 unsigned long order;
d100313f 920 int pages_moved = 0;
c361be55
MG
921
922#ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
ac0e5b7a 928 * grouping pages by mobility
c361be55
MG
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931#endif
932
933 for (page = start_page; page <= end_page;) {
344c790e
AL
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
c361be55
MG
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
84be48d8
KS
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
95e34412 950 set_freepage_migratetype(page, migratetype);
c361be55 951 page += 1 << order;
d100313f 952 pages_moved += 1 << order;
c361be55
MG
953 }
954
d100313f 955 return pages_moved;
c361be55
MG
956}
957
ee6f509c 958int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 959 int migratetype)
c361be55
MG
960{
961 unsigned long start_pfn, end_pfn;
962 struct page *start_page, *end_page;
963
964 start_pfn = page_to_pfn(page);
d9c23400 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 966 start_page = pfn_to_page(start_pfn);
d9c23400
MG
967 end_page = start_page + pageblock_nr_pages - 1;
968 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
969
970 /* Do not cross zone boundaries */
971 if (start_pfn < zone->zone_start_pfn)
972 start_page = page;
973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 return 0;
975
976 return move_freepages(zone, start_page, end_page, migratetype);
977}
978
2f66a68f
MG
979static void change_pageblock_range(struct page *pageblock_page,
980 int start_order, int migratetype)
981{
982 int nr_pageblocks = 1 << (start_order - pageblock_order);
983
984 while (nr_pageblocks--) {
985 set_pageblock_migratetype(pageblock_page, migratetype);
986 pageblock_page += pageblock_nr_pages;
987 }
988}
989
b2a0ac88 990/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
991static inline struct page *
992__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
993{
994 struct free_area * area;
995 int current_order;
996 struct page *page;
997 int migratetype, i;
998
999 /* Find the largest possible block of pages in the other list */
1000 for (current_order = MAX_ORDER-1; current_order >= order;
1001 --current_order) {
6d4a4916 1002 for (i = 0;; i++) {
b2a0ac88
MG
1003 migratetype = fallbacks[start_migratetype][i];
1004
56fd56b8
MG
1005 /* MIGRATE_RESERVE handled later if necessary */
1006 if (migratetype == MIGRATE_RESERVE)
6d4a4916 1007 break;
e010487d 1008
b2a0ac88
MG
1009 area = &(zone->free_area[current_order]);
1010 if (list_empty(&area->free_list[migratetype]))
1011 continue;
1012
1013 page = list_entry(area->free_list[migratetype].next,
1014 struct page, lru);
1015 area->nr_free--;
1016
1017 /*
c361be55 1018 * If breaking a large block of pages, move all free
46dafbca
MG
1019 * pages to the preferred allocation list. If falling
1020 * back for a reclaimable kernel allocation, be more
25985edc 1021 * aggressive about taking ownership of free pages
47118af0
MN
1022 *
1023 * On the other hand, never change migration
1024 * type of MIGRATE_CMA pageblocks nor move CMA
1025 * pages on different free lists. We don't
1026 * want unmovable pages to be allocated from
1027 * MIGRATE_CMA areas.
b2a0ac88 1028 */
47118af0
MN
1029 if (!is_migrate_cma(migratetype) &&
1030 (unlikely(current_order >= pageblock_order / 2) ||
1031 start_migratetype == MIGRATE_RECLAIMABLE ||
1032 page_group_by_mobility_disabled)) {
1033 int pages;
46dafbca
MG
1034 pages = move_freepages_block(zone, page,
1035 start_migratetype);
1036
1037 /* Claim the whole block if over half of it is free */
dd5d241e
MG
1038 if (pages >= (1 << (pageblock_order-1)) ||
1039 page_group_by_mobility_disabled)
46dafbca
MG
1040 set_pageblock_migratetype(page,
1041 start_migratetype);
1042
b2a0ac88 1043 migratetype = start_migratetype;
c361be55 1044 }
b2a0ac88
MG
1045
1046 /* Remove the page from the freelists */
1047 list_del(&page->lru);
1048 rmv_page_order(page);
b2a0ac88 1049
2f66a68f 1050 /* Take ownership for orders >= pageblock_order */
47118af0
MN
1051 if (current_order >= pageblock_order &&
1052 !is_migrate_cma(migratetype))
2f66a68f 1053 change_pageblock_range(page, current_order,
b2a0ac88
MG
1054 start_migratetype);
1055
47118af0
MN
1056 expand(zone, page, order, current_order, area,
1057 is_migrate_cma(migratetype)
1058 ? migratetype : start_migratetype);
e0fff1bd
MG
1059
1060 trace_mm_page_alloc_extfrag(page, order, current_order,
1061 start_migratetype, migratetype);
1062
b2a0ac88
MG
1063 return page;
1064 }
1065 }
1066
728ec980 1067 return NULL;
b2a0ac88
MG
1068}
1069
56fd56b8 1070/*
1da177e4
LT
1071 * Do the hard work of removing an element from the buddy allocator.
1072 * Call me with the zone->lock already held.
1073 */
b2a0ac88
MG
1074static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 int migratetype)
1da177e4 1076{
1da177e4
LT
1077 struct page *page;
1078
728ec980 1079retry_reserve:
56fd56b8 1080 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1081
728ec980 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 1083 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1084
728ec980
MG
1085 /*
1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 * is used because __rmqueue_smallest is an inline function
1088 * and we want just one call site
1089 */
1090 if (!page) {
1091 migratetype = MIGRATE_RESERVE;
1092 goto retry_reserve;
1093 }
1094 }
1095
0d3d062a 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1097 return page;
1da177e4
LT
1098}
1099
5f63b720 1100/*
1da177e4
LT
1101 * Obtain a specified number of elements from the buddy allocator, all under
1102 * a single hold of the lock, for efficiency. Add them to the supplied list.
1103 * Returns the number of new pages which were placed at *list.
1104 */
5f63b720 1105static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1106 unsigned long count, struct list_head *list,
e084b2d9 1107 int migratetype, int cold)
1da177e4 1108{
47118af0 1109 int mt = migratetype, i;
5f63b720 1110
c54ad30c 1111 spin_lock(&zone->lock);
1da177e4 1112 for (i = 0; i < count; ++i) {
b2a0ac88 1113 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1114 if (unlikely(page == NULL))
1da177e4 1115 break;
81eabcbe
MG
1116
1117 /*
1118 * Split buddy pages returned by expand() are received here
1119 * in physical page order. The page is added to the callers and
1120 * list and the list head then moves forward. From the callers
1121 * perspective, the linked list is ordered by page number in
1122 * some conditions. This is useful for IO devices that can
1123 * merge IO requests if the physical pages are ordered
1124 * properly.
1125 */
e084b2d9
MG
1126 if (likely(cold == 0))
1127 list_add(&page->lru, list);
1128 else
1129 list_add_tail(&page->lru, list);
47118af0
MN
1130 if (IS_ENABLED(CONFIG_CMA)) {
1131 mt = get_pageblock_migratetype(page);
1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 mt = migratetype;
1134 }
b12c4ad1 1135 set_freepage_migratetype(page, mt);
81eabcbe 1136 list = &page->lru;
d1ce749a
BZ
1137 if (is_migrate_cma(mt))
1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 -(1 << order));
1da177e4 1140 }
f2260e6b 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1142 spin_unlock(&zone->lock);
085cc7d5 1143 return i;
1da177e4
LT
1144}
1145
4ae7c039 1146#ifdef CONFIG_NUMA
8fce4d8e 1147/*
4037d452
CL
1148 * Called from the vmstat counter updater to drain pagesets of this
1149 * currently executing processor on remote nodes after they have
1150 * expired.
1151 *
879336c3
CL
1152 * Note that this function must be called with the thread pinned to
1153 * a single processor.
8fce4d8e 1154 */
4037d452 1155void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1156{
4ae7c039 1157 unsigned long flags;
4037d452 1158 int to_drain;
4ae7c039 1159
4037d452
CL
1160 local_irq_save(flags);
1161 if (pcp->count >= pcp->batch)
1162 to_drain = pcp->batch;
1163 else
1164 to_drain = pcp->count;
2a13515c
KM
1165 if (to_drain > 0) {
1166 free_pcppages_bulk(zone, to_drain, pcp);
1167 pcp->count -= to_drain;
1168 }
4037d452 1169 local_irq_restore(flags);
4ae7c039
CL
1170}
1171#endif
1172
9f8f2172
CL
1173/*
1174 * Drain pages of the indicated processor.
1175 *
1176 * The processor must either be the current processor and the
1177 * thread pinned to the current processor or a processor that
1178 * is not online.
1179 */
1180static void drain_pages(unsigned int cpu)
1da177e4 1181{
c54ad30c 1182 unsigned long flags;
1da177e4 1183 struct zone *zone;
1da177e4 1184
ee99c71c 1185 for_each_populated_zone(zone) {
1da177e4 1186 struct per_cpu_pageset *pset;
3dfa5721 1187 struct per_cpu_pages *pcp;
1da177e4 1188
99dcc3e5
CL
1189 local_irq_save(flags);
1190 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1191
1192 pcp = &pset->pcp;
2ff754fa
DR
1193 if (pcp->count) {
1194 free_pcppages_bulk(zone, pcp->count, pcp);
1195 pcp->count = 0;
1196 }
3dfa5721 1197 local_irq_restore(flags);
1da177e4
LT
1198 }
1199}
1da177e4 1200
9f8f2172
CL
1201/*
1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203 */
1204void drain_local_pages(void *arg)
1205{
1206 drain_pages(smp_processor_id());
1207}
1208
1209/*
74046494
GBY
1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211 *
1212 * Note that this code is protected against sending an IPI to an offline
1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215 * nothing keeps CPUs from showing up after we populated the cpumask and
1216 * before the call to on_each_cpu_mask().
9f8f2172
CL
1217 */
1218void drain_all_pages(void)
1219{
74046494
GBY
1220 int cpu;
1221 struct per_cpu_pageset *pcp;
1222 struct zone *zone;
1223
1224 /*
1225 * Allocate in the BSS so we wont require allocation in
1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 */
1228 static cpumask_t cpus_with_pcps;
1229
1230 /*
1231 * We don't care about racing with CPU hotplug event
1232 * as offline notification will cause the notified
1233 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 * disables preemption as part of its processing
1235 */
1236 for_each_online_cpu(cpu) {
1237 bool has_pcps = false;
1238 for_each_populated_zone(zone) {
1239 pcp = per_cpu_ptr(zone->pageset, cpu);
1240 if (pcp->pcp.count) {
1241 has_pcps = true;
1242 break;
1243 }
1244 }
1245 if (has_pcps)
1246 cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 else
1248 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 }
1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
9f8f2172
CL
1251}
1252
296699de 1253#ifdef CONFIG_HIBERNATION
1da177e4
LT
1254
1255void mark_free_pages(struct zone *zone)
1256{
f623f0db
RW
1257 unsigned long pfn, max_zone_pfn;
1258 unsigned long flags;
b2a0ac88 1259 int order, t;
1da177e4
LT
1260 struct list_head *curr;
1261
1262 if (!zone->spanned_pages)
1263 return;
1264
1265 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1266
1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 if (pfn_valid(pfn)) {
1270 struct page *page = pfn_to_page(pfn);
1271
7be98234
RW
1272 if (!swsusp_page_is_forbidden(page))
1273 swsusp_unset_page_free(page);
f623f0db 1274 }
1da177e4 1275
b2a0ac88
MG
1276 for_each_migratetype_order(order, t) {
1277 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1278 unsigned long i;
1da177e4 1279
f623f0db
RW
1280 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 for (i = 0; i < (1UL << order); i++)
7be98234 1282 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1283 }
b2a0ac88 1284 }
1da177e4
LT
1285 spin_unlock_irqrestore(&zone->lock, flags);
1286}
e2c55dc8 1287#endif /* CONFIG_PM */
1da177e4 1288
1da177e4
LT
1289/*
1290 * Free a 0-order page
fc91668e 1291 * cold == 1 ? free a cold page : free a hot page
1da177e4 1292 */
fc91668e 1293void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1294{
1295 struct zone *zone = page_zone(page);
1296 struct per_cpu_pages *pcp;
1297 unsigned long flags;
5f8dcc21 1298 int migratetype;
1da177e4 1299
ec95f53a 1300 if (!free_pages_prepare(page, 0))
689bcebf
HD
1301 return;
1302
5f8dcc21 1303 migratetype = get_pageblock_migratetype(page);
b12c4ad1 1304 set_freepage_migratetype(page, migratetype);
1da177e4 1305 local_irq_save(flags);
f8891e5e 1306 __count_vm_event(PGFREE);
da456f14 1307
5f8dcc21
MG
1308 /*
1309 * We only track unmovable, reclaimable and movable on pcp lists.
1310 * Free ISOLATE pages back to the allocator because they are being
1311 * offlined but treat RESERVE as movable pages so we can get those
1312 * areas back if necessary. Otherwise, we may have to free
1313 * excessively into the page allocator
1314 */
1315 if (migratetype >= MIGRATE_PCPTYPES) {
1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 free_one_page(zone, page, 0, migratetype);
1318 goto out;
1319 }
1320 migratetype = MIGRATE_MOVABLE;
1321 }
1322
99dcc3e5 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1324 if (cold)
5f8dcc21 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1326 else
5f8dcc21 1327 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1328 pcp->count++;
48db57f8 1329 if (pcp->count >= pcp->high) {
5f8dcc21 1330 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1331 pcp->count -= pcp->batch;
1332 }
5f8dcc21
MG
1333
1334out:
1da177e4 1335 local_irq_restore(flags);
1da177e4
LT
1336}
1337
cc59850e
KK
1338/*
1339 * Free a list of 0-order pages
1340 */
1341void free_hot_cold_page_list(struct list_head *list, int cold)
1342{
1343 struct page *page, *next;
1344
1345 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1346 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1347 free_hot_cold_page(page, cold);
1348 }
1349}
1350
8dfcc9ba
NP
1351/*
1352 * split_page takes a non-compound higher-order page, and splits it into
1353 * n (1<<order) sub-pages: page[0..n]
1354 * Each sub-page must be freed individually.
1355 *
1356 * Note: this is probably too low level an operation for use in drivers.
1357 * Please consult with lkml before using this in your driver.
1358 */
1359void split_page(struct page *page, unsigned int order)
1360{
1361 int i;
1362
725d704e
NP
1363 VM_BUG_ON(PageCompound(page));
1364 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1365
1366#ifdef CONFIG_KMEMCHECK
1367 /*
1368 * Split shadow pages too, because free(page[0]) would
1369 * otherwise free the whole shadow.
1370 */
1371 if (kmemcheck_page_is_tracked(page))
1372 split_page(virt_to_page(page[0].shadow), order);
1373#endif
1374
7835e98b
NP
1375 for (i = 1; i < (1 << order); i++)
1376 set_page_refcounted(page + i);
8dfcc9ba 1377}
8dfcc9ba 1378
748446bb 1379/*
1fb3f8ca
MG
1380 * Similar to the split_page family of functions except that the page
1381 * required at the given order and being isolated now to prevent races
1382 * with parallel allocators
748446bb 1383 */
1fb3f8ca 1384int capture_free_page(struct page *page, int alloc_order, int migratetype)
748446bb
MG
1385{
1386 unsigned int order;
1387 unsigned long watermark;
1388 struct zone *zone;
2139cbe6 1389 int mt;
748446bb
MG
1390
1391 BUG_ON(!PageBuddy(page));
1392
1393 zone = page_zone(page);
1394 order = page_order(page);
1395
1396 /* Obey watermarks as if the page was being allocated */
1397 watermark = low_wmark_pages(zone) + (1 << order);
1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 return 0;
1400
1401 /* Remove page from free list */
1402 list_del(&page->lru);
1403 zone->free_area[order].nr_free--;
1404 rmv_page_order(page);
2139cbe6
BZ
1405
1406 mt = get_pageblock_migratetype(page);
1407 if (unlikely(mt != MIGRATE_ISOLATE))
ef6c5be6 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
748446bb 1409
1fb3f8ca
MG
1410 if (alloc_order != order)
1411 expand(zone, page, alloc_order, order,
1412 &zone->free_area[order], migratetype);
748446bb 1413
1fb3f8ca 1414 /* Set the pageblock if the captured page is at least a pageblock */
748446bb
MG
1415 if (order >= pageblock_order - 1) {
1416 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1417 for (; page < endpage; page += pageblock_nr_pages) {
1418 int mt = get_pageblock_migratetype(page);
1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 set_pageblock_migratetype(page,
1421 MIGRATE_MOVABLE);
1422 }
748446bb
MG
1423 }
1424
58d00209 1425 return 1UL << alloc_order;
1fb3f8ca
MG
1426}
1427
1428/*
1429 * Similar to split_page except the page is already free. As this is only
1430 * being used for migration, the migratetype of the block also changes.
1431 * As this is called with interrupts disabled, the caller is responsible
1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433 * are enabled.
1434 *
1435 * Note: this is probably too low level an operation for use in drivers.
1436 * Please consult with lkml before using this in your driver.
1437 */
1438int split_free_page(struct page *page)
1439{
1440 unsigned int order;
1441 int nr_pages;
1442
1443 BUG_ON(!PageBuddy(page));
1444 order = page_order(page);
1445
1446 nr_pages = capture_free_page(page, order, 0);
1447 if (!nr_pages)
1448 return 0;
1449
1450 /* Split into individual pages */
1451 set_page_refcounted(page);
1452 split_page(page, order);
1453 return nr_pages;
748446bb
MG
1454}
1455
1da177e4
LT
1456/*
1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1459 * or two.
1460 */
0a15c3e9
MG
1461static inline
1462struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1463 struct zone *zone, int order, gfp_t gfp_flags,
1464 int migratetype)
1da177e4
LT
1465{
1466 unsigned long flags;
689bcebf 1467 struct page *page;
1da177e4
LT
1468 int cold = !!(gfp_flags & __GFP_COLD);
1469
689bcebf 1470again:
48db57f8 1471 if (likely(order == 0)) {
1da177e4 1472 struct per_cpu_pages *pcp;
5f8dcc21 1473 struct list_head *list;
1da177e4 1474
1da177e4 1475 local_irq_save(flags);
99dcc3e5
CL
1476 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 list = &pcp->lists[migratetype];
5f8dcc21 1478 if (list_empty(list)) {
535131e6 1479 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1480 pcp->batch, list,
e084b2d9 1481 migratetype, cold);
5f8dcc21 1482 if (unlikely(list_empty(list)))
6fb332fa 1483 goto failed;
535131e6 1484 }
b92a6edd 1485
5f8dcc21
MG
1486 if (cold)
1487 page = list_entry(list->prev, struct page, lru);
1488 else
1489 page = list_entry(list->next, struct page, lru);
1490
b92a6edd
MG
1491 list_del(&page->lru);
1492 pcp->count--;
7fb1d9fc 1493 } else {
dab48dab
AM
1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 /*
1496 * __GFP_NOFAIL is not to be used in new code.
1497 *
1498 * All __GFP_NOFAIL callers should be fixed so that they
1499 * properly detect and handle allocation failures.
1500 *
1501 * We most definitely don't want callers attempting to
4923abf9 1502 * allocate greater than order-1 page units with
dab48dab
AM
1503 * __GFP_NOFAIL.
1504 */
4923abf9 1505 WARN_ON_ONCE(order > 1);
dab48dab 1506 }
1da177e4 1507 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1508 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1509 spin_unlock(&zone->lock);
1510 if (!page)
1511 goto failed;
d1ce749a
BZ
1512 __mod_zone_freepage_state(zone, -(1 << order),
1513 get_pageblock_migratetype(page));
1da177e4
LT
1514 }
1515
f8891e5e 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 1517 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 1518 local_irq_restore(flags);
1da177e4 1519
725d704e 1520 VM_BUG_ON(bad_range(zone, page));
17cf4406 1521 if (prep_new_page(page, order, gfp_flags))
a74609fa 1522 goto again;
1da177e4 1523 return page;
a74609fa
NP
1524
1525failed:
1526 local_irq_restore(flags);
a74609fa 1527 return NULL;
1da177e4
LT
1528}
1529
933e312e
AM
1530#ifdef CONFIG_FAIL_PAGE_ALLOC
1531
b2588c4b 1532static struct {
933e312e
AM
1533 struct fault_attr attr;
1534
1535 u32 ignore_gfp_highmem;
1536 u32 ignore_gfp_wait;
54114994 1537 u32 min_order;
933e312e
AM
1538} fail_page_alloc = {
1539 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1540 .ignore_gfp_wait = 1,
1541 .ignore_gfp_highmem = 1,
54114994 1542 .min_order = 1,
933e312e
AM
1543};
1544
1545static int __init setup_fail_page_alloc(char *str)
1546{
1547 return setup_fault_attr(&fail_page_alloc.attr, str);
1548}
1549__setup("fail_page_alloc=", setup_fail_page_alloc);
1550
deaf386e 1551static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1552{
54114994 1553 if (order < fail_page_alloc.min_order)
deaf386e 1554 return false;
933e312e 1555 if (gfp_mask & __GFP_NOFAIL)
deaf386e 1556 return false;
933e312e 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 1558 return false;
933e312e 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 1560 return false;
933e312e
AM
1561
1562 return should_fail(&fail_page_alloc.attr, 1 << order);
1563}
1564
1565#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566
1567static int __init fail_page_alloc_debugfs(void)
1568{
f4ae40a6 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 1570 struct dentry *dir;
933e312e 1571
dd48c085
AM
1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 &fail_page_alloc.attr);
1574 if (IS_ERR(dir))
1575 return PTR_ERR(dir);
933e312e 1576
b2588c4b
AM
1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 &fail_page_alloc.ignore_gfp_wait))
1579 goto fail;
1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 &fail_page_alloc.ignore_gfp_highmem))
1582 goto fail;
1583 if (!debugfs_create_u32("min-order", mode, dir,
1584 &fail_page_alloc.min_order))
1585 goto fail;
1586
1587 return 0;
1588fail:
dd48c085 1589 debugfs_remove_recursive(dir);
933e312e 1590
b2588c4b 1591 return -ENOMEM;
933e312e
AM
1592}
1593
1594late_initcall(fail_page_alloc_debugfs);
1595
1596#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597
1598#else /* CONFIG_FAIL_PAGE_ALLOC */
1599
deaf386e 1600static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 1601{
deaf386e 1602 return false;
933e312e
AM
1603}
1604
1605#endif /* CONFIG_FAIL_PAGE_ALLOC */
1606
1da177e4 1607/*
88f5acf8 1608 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1609 * of the allocation.
1610 */
88f5acf8
MG
1611static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1613{
1614 /* free_pages my go negative - that's OK */
d23ad423 1615 long min = mark;
2cfed075 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1da177e4
LT
1617 int o;
1618
df0a6daa 1619 free_pages -= (1 << order) - 1;
7fb1d9fc 1620 if (alloc_flags & ALLOC_HIGH)
1da177e4 1621 min -= min / 2;
7fb1d9fc 1622 if (alloc_flags & ALLOC_HARDER)
1da177e4 1623 min -= min / 4;
d95ea5d1
BZ
1624#ifdef CONFIG_CMA
1625 /* If allocation can't use CMA areas don't use free CMA pages */
1626 if (!(alloc_flags & ALLOC_CMA))
1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628#endif
2cfed075 1629 if (free_pages <= min + lowmem_reserve)
88f5acf8 1630 return false;
1da177e4
LT
1631 for (o = 0; o < order; o++) {
1632 /* At the next order, this order's pages become unavailable */
1633 free_pages -= z->free_area[o].nr_free << o;
1634
1635 /* Require fewer higher order pages to be free */
1636 min >>= 1;
1637
1638 if (free_pages <= min)
88f5acf8 1639 return false;
1da177e4 1640 }
88f5acf8
MG
1641 return true;
1642}
1643
702d1a6e
MK
1644#ifdef CONFIG_MEMORY_ISOLATION
1645static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646{
1647 if (unlikely(zone->nr_pageblock_isolate))
1648 return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 return 0;
1650}
1651#else
1652static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653{
1654 return 0;
1655}
1656#endif
1657
88f5acf8
MG
1658bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 int classzone_idx, int alloc_flags)
1660{
1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 zone_page_state(z, NR_FREE_PAGES));
1663}
1664
1665bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 int classzone_idx, int alloc_flags)
1667{
1668 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669
1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672
702d1a6e
MK
1673 /*
1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not
1676 * sleep although it could do so. But this is more desirable for memory
1677 * hotplug than sleeping which can cause a livelock in the direct
1678 * reclaim path.
1679 */
1680 free_pages -= nr_zone_isolate_freepages(z);
88f5acf8
MG
1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 free_pages);
1da177e4
LT
1683}
1684
9276b1bc
PJ
1685#ifdef CONFIG_NUMA
1686/*
1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1688 * skip over zones that are not allowed by the cpuset, or that have
1689 * been recently (in last second) found to be nearly full. See further
1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1691 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1692 *
1693 * If the zonelist cache is present in the passed in zonelist, then
1694 * returns a pointer to the allowed node mask (either the current
37b07e41 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1696 *
1697 * If the zonelist cache is not available for this zonelist, does
1698 * nothing and returns NULL.
1699 *
1700 * If the fullzones BITMAP in the zonelist cache is stale (more than
1701 * a second since last zap'd) then we zap it out (clear its bits.)
1702 *
1703 * We hold off even calling zlc_setup, until after we've checked the
1704 * first zone in the zonelist, on the theory that most allocations will
1705 * be satisfied from that first zone, so best to examine that zone as
1706 * quickly as we can.
1707 */
1708static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709{
1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1711 nodemask_t *allowednodes; /* zonelist_cache approximation */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return NULL;
1716
f05111f5 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 zlc->last_full_zap = jiffies;
1720 }
1721
1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 &cpuset_current_mems_allowed :
37b07e41 1724 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1725 return allowednodes;
1726}
1727
1728/*
1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730 * if it is worth looking at further for free memory:
1731 * 1) Check that the zone isn't thought to be full (doesn't have its
1732 * bit set in the zonelist_cache fullzones BITMAP).
1733 * 2) Check that the zones node (obtained from the zonelist_cache
1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735 * Return true (non-zero) if zone is worth looking at further, or
1736 * else return false (zero) if it is not.
1737 *
1738 * This check -ignores- the distinction between various watermarks,
1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1740 * found to be full for any variation of these watermarks, it will
1741 * be considered full for up to one second by all requests, unless
1742 * we are so low on memory on all allowed nodes that we are forced
1743 * into the second scan of the zonelist.
1744 *
1745 * In the second scan we ignore this zonelist cache and exactly
1746 * apply the watermarks to all zones, even it is slower to do so.
1747 * We are low on memory in the second scan, and should leave no stone
1748 * unturned looking for a free page.
1749 */
dd1a239f 1750static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1751 nodemask_t *allowednodes)
1752{
1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1754 int i; /* index of *z in zonelist zones */
1755 int n; /* node that zone *z is on */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return 1;
1760
dd1a239f 1761 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1762 n = zlc->z_to_n[i];
1763
1764 /* This zone is worth trying if it is allowed but not full */
1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766}
1767
1768/*
1769 * Given 'z' scanning a zonelist, set the corresponding bit in
1770 * zlc->fullzones, so that subsequent attempts to allocate a page
1771 * from that zone don't waste time re-examining it.
1772 */
dd1a239f 1773static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1774{
1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1776 int i; /* index of *z in zonelist zones */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return;
1781
dd1a239f 1782 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1783
1784 set_bit(i, zlc->fullzones);
1785}
1786
76d3fbf8
MG
1787/*
1788 * clear all zones full, called after direct reclaim makes progress so that
1789 * a zone that was recently full is not skipped over for up to a second
1790 */
1791static void zlc_clear_zones_full(struct zonelist *zonelist)
1792{
1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1794
1795 zlc = zonelist->zlcache_ptr;
1796 if (!zlc)
1797 return;
1798
1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800}
1801
957f822a
DR
1802static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803{
1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805}
1806
1807static void __paginginit init_zone_allows_reclaim(int nid)
1808{
1809 int i;
1810
1811 for_each_online_node(i)
6b187d02 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
957f822a 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes);
6b187d02 1814 else
957f822a 1815 zone_reclaim_mode = 1;
957f822a
DR
1816}
1817
9276b1bc
PJ
1818#else /* CONFIG_NUMA */
1819
1820static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821{
1822 return NULL;
1823}
1824
dd1a239f 1825static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1826 nodemask_t *allowednodes)
1827{
1828 return 1;
1829}
1830
dd1a239f 1831static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1832{
1833}
76d3fbf8
MG
1834
1835static void zlc_clear_zones_full(struct zonelist *zonelist)
1836{
1837}
957f822a
DR
1838
1839static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840{
1841 return true;
1842}
1843
1844static inline void init_zone_allows_reclaim(int nid)
1845{
1846}
9276b1bc
PJ
1847#endif /* CONFIG_NUMA */
1848
7fb1d9fc 1849/*
0798e519 1850 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1851 * a page.
1852 */
1853static struct page *
19770b32 1854get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1856 struct zone *preferred_zone, int migratetype)
753ee728 1857{
dd1a239f 1858 struct zoneref *z;
7fb1d9fc 1859 struct page *page = NULL;
54a6eb5c 1860 int classzone_idx;
5117f45d 1861 struct zone *zone;
9276b1bc
PJ
1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 int zlc_active = 0; /* set if using zonelist_cache */
1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1865
19770b32 1866 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1867zonelist_scan:
7fb1d9fc 1868 /*
9276b1bc 1869 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 */
19770b32
MG
1872 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 high_zoneidx, nodemask) {
9276b1bc
PJ
1874 if (NUMA_BUILD && zlc_active &&
1875 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 continue;
7fb1d9fc 1877 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask))
cd38b115 1879 continue;
a756cf59
JW
1880 /*
1881 * When allocating a page cache page for writing, we
1882 * want to get it from a zone that is within its dirty
1883 * limit, such that no single zone holds more than its
1884 * proportional share of globally allowed dirty pages.
1885 * The dirty limits take into account the zone's
1886 * lowmem reserves and high watermark so that kswapd
1887 * should be able to balance it without having to
1888 * write pages from its LRU list.
1889 *
1890 * This may look like it could increase pressure on
1891 * lower zones by failing allocations in higher zones
1892 * before they are full. But the pages that do spill
1893 * over are limited as the lower zones are protected
1894 * by this very same mechanism. It should not become
1895 * a practical burden to them.
1896 *
1897 * XXX: For now, allow allocations to potentially
1898 * exceed the per-zone dirty limit in the slowpath
1899 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 * which is important when on a NUMA setup the allowed
1901 * zones are together not big enough to reach the
1902 * global limit. The proper fix for these situations
1903 * will require awareness of zones in the
1904 * dirty-throttling and the flusher threads.
1905 */
1906 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 goto this_zone_full;
7fb1d9fc 1909
41858966 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1912 unsigned long mark;
fa5e084e
MG
1913 int ret;
1914
41858966 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1916 if (zone_watermark_ok(zone, order, mark,
1917 classzone_idx, alloc_flags))
1918 goto try_this_zone;
1919
cd38b115
MG
1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 /*
1922 * we do zlc_setup if there are multiple nodes
1923 * and before considering the first zone allowed
1924 * by the cpuset.
1925 */
1926 allowednodes = zlc_setup(zonelist, alloc_flags);
1927 zlc_active = 1;
1928 did_zlc_setup = 1;
1929 }
1930
957f822a
DR
1931 if (zone_reclaim_mode == 0 ||
1932 !zone_allows_reclaim(preferred_zone, zone))
fa5e084e
MG
1933 goto this_zone_full;
1934
cd38b115
MG
1935 /*
1936 * As we may have just activated ZLC, check if the first
1937 * eligible zone has failed zone_reclaim recently.
1938 */
1939 if (NUMA_BUILD && zlc_active &&
1940 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 continue;
1942
fa5e084e
MG
1943 ret = zone_reclaim(zone, gfp_mask, order);
1944 switch (ret) {
1945 case ZONE_RECLAIM_NOSCAN:
1946 /* did not scan */
cd38b115 1947 continue;
fa5e084e
MG
1948 case ZONE_RECLAIM_FULL:
1949 /* scanned but unreclaimable */
cd38b115 1950 continue;
fa5e084e
MG
1951 default:
1952 /* did we reclaim enough */
1953 if (!zone_watermark_ok(zone, order, mark,
1954 classzone_idx, alloc_flags))
9276b1bc 1955 goto this_zone_full;
0798e519 1956 }
7fb1d9fc
RS
1957 }
1958
fa5e084e 1959try_this_zone:
3dd28266
MG
1960 page = buffered_rmqueue(preferred_zone, zone, order,
1961 gfp_mask, migratetype);
0798e519 1962 if (page)
7fb1d9fc 1963 break;
9276b1bc
PJ
1964this_zone_full:
1965 if (NUMA_BUILD)
1966 zlc_mark_zone_full(zonelist, z);
54a6eb5c 1967 }
9276b1bc
PJ
1968
1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 /* Disable zlc cache for second zonelist scan */
1971 zlc_active = 0;
1972 goto zonelist_scan;
1973 }
b121186a
AS
1974
1975 if (page)
1976 /*
1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 * necessary to allocate the page. The expectation is
1979 * that the caller is taking steps that will free more
1980 * memory. The caller should avoid the page being used
1981 * for !PFMEMALLOC purposes.
1982 */
1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984
7fb1d9fc 1985 return page;
753ee728
MH
1986}
1987
29423e77
DR
1988/*
1989 * Large machines with many possible nodes should not always dump per-node
1990 * meminfo in irq context.
1991 */
1992static inline bool should_suppress_show_mem(void)
1993{
1994 bool ret = false;
1995
1996#if NODES_SHIFT > 8
1997 ret = in_interrupt();
1998#endif
1999 return ret;
2000}
2001
a238ab5b
DH
2002static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 DEFAULT_RATELIMIT_INTERVAL,
2004 DEFAULT_RATELIMIT_BURST);
2005
2006void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007{
a238ab5b
DH
2008 unsigned int filter = SHOW_MEM_FILTER_NODES;
2009
c0a32fc5
SG
2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 debug_guardpage_minorder() > 0)
a238ab5b
DH
2012 return;
2013
2014 /*
2015 * This documents exceptions given to allocations in certain
2016 * contexts that are allowed to allocate outside current's set
2017 * of allowed nodes.
2018 */
2019 if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 if (test_thread_flag(TIF_MEMDIE) ||
2021 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 filter &= ~SHOW_MEM_FILTER_NODES;
2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 filter &= ~SHOW_MEM_FILTER_NODES;
2025
2026 if (fmt) {
3ee9a4f0
JP
2027 struct va_format vaf;
2028 va_list args;
2029
a238ab5b 2030 va_start(args, fmt);
3ee9a4f0
JP
2031
2032 vaf.fmt = fmt;
2033 vaf.va = &args;
2034
2035 pr_warn("%pV", &vaf);
2036
a238ab5b
DH
2037 va_end(args);
2038 }
2039
3ee9a4f0
JP
2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 current->comm, order, gfp_mask);
a238ab5b
DH
2042
2043 dump_stack();
2044 if (!should_suppress_show_mem())
2045 show_mem(filter);
2046}
2047
11e33f6a
MG
2048static inline int
2049should_alloc_retry(gfp_t gfp_mask, unsigned int order,
f90ac398 2050 unsigned long did_some_progress,
11e33f6a 2051 unsigned long pages_reclaimed)
1da177e4 2052{
11e33f6a
MG
2053 /* Do not loop if specifically requested */
2054 if (gfp_mask & __GFP_NORETRY)
2055 return 0;
1da177e4 2056
f90ac398
MG
2057 /* Always retry if specifically requested */
2058 if (gfp_mask & __GFP_NOFAIL)
2059 return 1;
2060
2061 /*
2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 * making forward progress without invoking OOM. Suspend also disables
2064 * storage devices so kswapd will not help. Bail if we are suspending.
2065 */
2066 if (!did_some_progress && pm_suspended_storage())
2067 return 0;
2068
11e33f6a
MG
2069 /*
2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 * means __GFP_NOFAIL, but that may not be true in other
2072 * implementations.
2073 */
2074 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 return 1;
2076
2077 /*
2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 * specified, then we retry until we no longer reclaim any pages
2080 * (above), or we've reclaimed an order of pages at least as
2081 * large as the allocation's order. In both cases, if the
2082 * allocation still fails, we stop retrying.
2083 */
2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 return 1;
cf40bd16 2086
11e33f6a
MG
2087 return 0;
2088}
933e312e 2089
11e33f6a
MG
2090static inline struct page *
2091__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2093 nodemask_t *nodemask, struct zone *preferred_zone,
2094 int migratetype)
11e33f6a
MG
2095{
2096 struct page *page;
2097
2098 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 2100 schedule_timeout_uninterruptible(1);
1da177e4
LT
2101 return NULL;
2102 }
6b1de916 2103
11e33f6a
MG
2104 /*
2105 * Go through the zonelist yet one more time, keep very high watermark
2106 * here, this is only to catch a parallel oom killing, we must fail if
2107 * we're still under heavy pressure.
2108 */
2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 order, zonelist, high_zoneidx,
5117f45d 2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 2112 preferred_zone, migratetype);
7fb1d9fc 2113 if (page)
11e33f6a
MG
2114 goto out;
2115
4365a567
KH
2116 if (!(gfp_mask & __GFP_NOFAIL)) {
2117 /* The OOM killer will not help higher order allocs */
2118 if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 goto out;
03668b3c
DR
2120 /* The OOM killer does not needlessly kill tasks for lowmem */
2121 if (high_zoneidx < ZONE_NORMAL)
2122 goto out;
4365a567
KH
2123 /*
2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 * The caller should handle page allocation failure by itself if
2127 * it specifies __GFP_THISNODE.
2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 */
2130 if (gfp_mask & __GFP_THISNODE)
2131 goto out;
2132 }
11e33f6a 2133 /* Exhausted what can be done so it's blamo time */
08ab9b10 2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
11e33f6a
MG
2135
2136out:
2137 clear_zonelist_oom(zonelist, gfp_mask);
2138 return page;
2139}
2140
56de7263
MG
2141#ifdef CONFIG_COMPACTION
2142/* Try memory compaction for high-order allocations before reclaim */
2143static struct page *
2144__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2147 int migratetype, bool sync_migration,
c67fe375 2148 bool *contended_compaction, bool *deferred_compaction,
66199712 2149 unsigned long *did_some_progress)
56de7263 2150{
1fb3f8ca 2151 struct page *page = NULL;
56de7263 2152
66199712 2153 if (!order)
56de7263
MG
2154 return NULL;
2155
aff62249 2156 if (compaction_deferred(preferred_zone, order)) {
66199712
MG
2157 *deferred_compaction = true;
2158 return NULL;
2159 }
2160
c06b1fca 2161 current->flags |= PF_MEMALLOC;
56de7263 2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
c67fe375 2163 nodemask, sync_migration,
1fb3f8ca 2164 contended_compaction, &page);
c06b1fca 2165 current->flags &= ~PF_MEMALLOC;
56de7263 2166
1fb3f8ca
MG
2167 /* If compaction captured a page, prep and use it */
2168 if (page) {
2169 prep_new_page(page, order, gfp_mask);
2170 goto got_page;
2171 }
2172
2173 if (*did_some_progress != COMPACT_SKIPPED) {
56de7263
MG
2174 /* Page migration frees to the PCP lists but we want merging */
2175 drain_pages(get_cpu());
2176 put_cpu();
2177
2178 page = get_page_from_freelist(gfp_mask, nodemask,
2179 order, zonelist, high_zoneidx,
cfd19c5a
MG
2180 alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 preferred_zone, migratetype);
56de7263 2182 if (page) {
1fb3f8ca 2183got_page:
62997027 2184 preferred_zone->compact_blockskip_flush = false;
4f92e258
MG
2185 preferred_zone->compact_considered = 0;
2186 preferred_zone->compact_defer_shift = 0;
aff62249
RR
2187 if (order >= preferred_zone->compact_order_failed)
2188 preferred_zone->compact_order_failed = order + 1;
56de7263
MG
2189 count_vm_event(COMPACTSUCCESS);
2190 return page;
2191 }
2192
2193 /*
2194 * It's bad if compaction run occurs and fails.
2195 * The most likely reason is that pages exist,
2196 * but not enough to satisfy watermarks.
2197 */
2198 count_vm_event(COMPACTFAIL);
66199712
MG
2199
2200 /*
2201 * As async compaction considers a subset of pageblocks, only
2202 * defer if the failure was a sync compaction failure.
2203 */
2204 if (sync_migration)
aff62249 2205 defer_compaction(preferred_zone, order);
56de7263
MG
2206
2207 cond_resched();
2208 }
2209
2210 return NULL;
2211}
2212#else
2213static inline struct page *
2214__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
66199712 2217 int migratetype, bool sync_migration,
c67fe375 2218 bool *contended_compaction, bool *deferred_compaction,
66199712 2219 unsigned long *did_some_progress)
56de7263
MG
2220{
2221 return NULL;
2222}
2223#endif /* CONFIG_COMPACTION */
2224
bba90710
MS
2225/* Perform direct synchronous page reclaim */
2226static int
2227__perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 nodemask_t *nodemask)
11e33f6a 2229{
11e33f6a 2230 struct reclaim_state reclaim_state;
bba90710 2231 int progress;
11e33f6a
MG
2232
2233 cond_resched();
2234
2235 /* We now go into synchronous reclaim */
2236 cpuset_memory_pressure_bump();
c06b1fca 2237 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2238 lockdep_set_current_reclaim_state(gfp_mask);
2239 reclaim_state.reclaimed_slab = 0;
c06b1fca 2240 current->reclaim_state = &reclaim_state;
11e33f6a 2241
bba90710 2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
11e33f6a 2243
c06b1fca 2244 current->reclaim_state = NULL;
11e33f6a 2245 lockdep_clear_current_reclaim_state();
c06b1fca 2246 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2247
2248 cond_resched();
2249
bba90710
MS
2250 return progress;
2251}
2252
2253/* The really slow allocator path where we enter direct reclaim */
2254static inline struct page *
2255__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 int migratetype, unsigned long *did_some_progress)
2259{
2260 struct page *page = NULL;
2261 bool drained = false;
2262
2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 nodemask);
9ee493ce
MG
2265 if (unlikely(!(*did_some_progress)))
2266 return NULL;
11e33f6a 2267
76d3fbf8
MG
2268 /* After successful reclaim, reconsider all zones for allocation */
2269 if (NUMA_BUILD)
2270 zlc_clear_zones_full(zonelist);
2271
9ee493ce
MG
2272retry:
2273 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2274 zonelist, high_zoneidx,
cfd19c5a
MG
2275 alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 preferred_zone, migratetype);
9ee493ce
MG
2277
2278 /*
2279 * If an allocation failed after direct reclaim, it could be because
2280 * pages are pinned on the per-cpu lists. Drain them and try again
2281 */
2282 if (!page && !drained) {
2283 drain_all_pages();
2284 drained = true;
2285 goto retry;
2286 }
2287
11e33f6a
MG
2288 return page;
2289}
2290
1da177e4 2291/*
11e33f6a
MG
2292 * This is called in the allocator slow-path if the allocation request is of
2293 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2294 */
11e33f6a
MG
2295static inline struct page *
2296__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2298 nodemask_t *nodemask, struct zone *preferred_zone,
2299 int migratetype)
11e33f6a
MG
2300{
2301 struct page *page;
2302
2303 do {
2304 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 2306 preferred_zone, migratetype);
11e33f6a
MG
2307
2308 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
2310 } while (!page && (gfp_mask & __GFP_NOFAIL));
2311
2312 return page;
2313}
2314
2315static inline
2316void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
2317 enum zone_type high_zoneidx,
2318 enum zone_type classzone_idx)
1da177e4 2319{
dd1a239f
MG
2320 struct zoneref *z;
2321 struct zone *zone;
1da177e4 2322
11e33f6a 2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 2324 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 2325}
cf40bd16 2326
341ce06f
PZ
2327static inline int
2328gfp_to_alloc_flags(gfp_t gfp_mask)
2329{
341ce06f
PZ
2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 2332
a56f57ff 2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2335
341ce06f
PZ
2336 /*
2337 * The caller may dip into page reserves a bit more if the caller
2338 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 */
e6223a3b 2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2343
341ce06f 2344 if (!wait) {
5c3240d9
AA
2345 /*
2346 * Not worth trying to allocate harder for
2347 * __GFP_NOMEMALLOC even if it can't schedule.
2348 */
2349 if (!(gfp_mask & __GFP_NOMEMALLOC))
2350 alloc_flags |= ALLOC_HARDER;
523b9458 2351 /*
341ce06f
PZ
2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 2354 */
341ce06f 2355 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2356 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2357 alloc_flags |= ALLOC_HARDER;
2358
b37f1dd0
MG
2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 if (gfp_mask & __GFP_MEMALLOC)
2361 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 alloc_flags |= ALLOC_NO_WATERMARKS;
2364 else if (!in_interrupt() &&
2365 ((current->flags & PF_MEMALLOC) ||
2366 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2367 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2368 }
d95ea5d1
BZ
2369#ifdef CONFIG_CMA
2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 alloc_flags |= ALLOC_CMA;
2372#endif
341ce06f
PZ
2373 return alloc_flags;
2374}
2375
072bb0aa
MG
2376bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377{
b37f1dd0 2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2379}
2380
782fd304
MG
2381/* Returns true if the allocation is likely for THP */
2382static bool is_thp_alloc(gfp_t gfp_mask, unsigned int order)
2383{
2384 if (order == pageblock_order &&
2385 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2386 return true;
2387 return false;
2388}
2389
11e33f6a
MG
2390static inline struct page *
2391__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2392 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
2393 nodemask_t *nodemask, struct zone *preferred_zone,
2394 int migratetype)
11e33f6a
MG
2395{
2396 const gfp_t wait = gfp_mask & __GFP_WAIT;
2397 struct page *page = NULL;
2398 int alloc_flags;
2399 unsigned long pages_reclaimed = 0;
2400 unsigned long did_some_progress;
77f1fe6b 2401 bool sync_migration = false;
66199712 2402 bool deferred_compaction = false;
c67fe375 2403 bool contended_compaction = false;
1da177e4 2404
72807a74
MG
2405 /*
2406 * In the slowpath, we sanity check order to avoid ever trying to
2407 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2408 * be using allocators in order of preference for an area that is
2409 * too large.
2410 */
1fc28b70
MG
2411 if (order >= MAX_ORDER) {
2412 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2413 return NULL;
1fc28b70 2414 }
1da177e4 2415
952f3b51
CL
2416 /*
2417 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2418 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2419 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2420 * using a larger set of nodes after it has established that the
2421 * allowed per node queues are empty and that nodes are
2422 * over allocated.
2423 */
2424 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2425 goto nopage;
2426
cc4a6851 2427restart:
782fd304
MG
2428 /* The decision whether to wake kswapd for THP is made later */
2429 if (!is_thp_alloc(gfp_mask, order))
2430 wake_all_kswapd(order, zonelist, high_zoneidx,
a5091539 2431 zone_idx(preferred_zone));
1da177e4 2432
9bf2229f 2433 /*
7fb1d9fc
RS
2434 * OK, we're below the kswapd watermark and have kicked background
2435 * reclaim. Now things get more complex, so set up alloc_flags according
2436 * to how we want to proceed.
9bf2229f 2437 */
341ce06f 2438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2439
f33261d7
DR
2440 /*
2441 * Find the true preferred zone if the allocation is unconstrained by
2442 * cpusets.
2443 */
2444 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2445 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2446 &preferred_zone);
2447
cfa54a0f 2448rebalance:
341ce06f 2449 /* This is the last chance, in general, before the goto nopage. */
19770b32 2450 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2451 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2452 preferred_zone, migratetype);
7fb1d9fc
RS
2453 if (page)
2454 goto got_pg;
1da177e4 2455
11e33f6a 2456 /* Allocate without watermarks if the context allows */
341ce06f 2457 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2458 /*
2459 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2460 * the allocation is high priority and these type of
2461 * allocations are system rather than user orientated
2462 */
2463 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2464
341ce06f
PZ
2465 page = __alloc_pages_high_priority(gfp_mask, order,
2466 zonelist, high_zoneidx, nodemask,
2467 preferred_zone, migratetype);
cfd19c5a 2468 if (page) {
341ce06f 2469 goto got_pg;
cfd19c5a 2470 }
1da177e4
LT
2471 }
2472
2473 /* Atomic allocations - we can't balance anything */
2474 if (!wait)
2475 goto nopage;
2476
341ce06f 2477 /* Avoid recursion of direct reclaim */
c06b1fca 2478 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
2479 goto nopage;
2480
6583bb64
DR
2481 /* Avoid allocations with no watermarks from looping endlessly */
2482 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2483 goto nopage;
2484
77f1fe6b
MG
2485 /*
2486 * Try direct compaction. The first pass is asynchronous. Subsequent
2487 * attempts after direct reclaim are synchronous
2488 */
56de7263
MG
2489 page = __alloc_pages_direct_compact(gfp_mask, order,
2490 zonelist, high_zoneidx,
2491 nodemask,
2492 alloc_flags, preferred_zone,
66199712 2493 migratetype, sync_migration,
c67fe375 2494 &contended_compaction,
66199712
MG
2495 &deferred_compaction,
2496 &did_some_progress);
56de7263
MG
2497 if (page)
2498 goto got_pg;
c6a140bf 2499 sync_migration = true;
56de7263 2500
782fd304
MG
2501 if (is_thp_alloc(gfp_mask, order)) {
2502 /*
2503 * If compaction is deferred for high-order allocations, it is
2504 * because sync compaction recently failed. If this is the case
2505 * and the caller requested a movable allocation that does not
2506 * heavily disrupt the system then fail the allocation instead
2507 * of entering direct reclaim.
2508 */
2509 if (deferred_compaction || contended_compaction)
2510 goto nopage;
2511
2512 /* If process is willing to reclaim/compact then wake kswapd */
2513 wake_all_kswapd(order, zonelist, high_zoneidx,
2514 zone_idx(preferred_zone));
2515 }
66199712 2516
11e33f6a
MG
2517 /* Try direct reclaim and then allocating */
2518 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2519 zonelist, high_zoneidx,
2520 nodemask,
5117f45d 2521 alloc_flags, preferred_zone,
3dd28266 2522 migratetype, &did_some_progress);
11e33f6a
MG
2523 if (page)
2524 goto got_pg;
1da177e4 2525
e33c3b5e 2526 /*
11e33f6a
MG
2527 * If we failed to make any progress reclaiming, then we are
2528 * running out of options and have to consider going OOM
e33c3b5e 2529 */
11e33f6a
MG
2530 if (!did_some_progress) {
2531 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2532 if (oom_killer_disabled)
2533 goto nopage;
29fd66d2
DR
2534 /* Coredumps can quickly deplete all memory reserves */
2535 if ((current->flags & PF_DUMPCORE) &&
2536 !(gfp_mask & __GFP_NOFAIL))
2537 goto nopage;
11e33f6a
MG
2538 page = __alloc_pages_may_oom(gfp_mask, order,
2539 zonelist, high_zoneidx,
3dd28266
MG
2540 nodemask, preferred_zone,
2541 migratetype);
11e33f6a
MG
2542 if (page)
2543 goto got_pg;
1da177e4 2544
03668b3c
DR
2545 if (!(gfp_mask & __GFP_NOFAIL)) {
2546 /*
2547 * The oom killer is not called for high-order
2548 * allocations that may fail, so if no progress
2549 * is being made, there are no other options and
2550 * retrying is unlikely to help.
2551 */
2552 if (order > PAGE_ALLOC_COSTLY_ORDER)
2553 goto nopage;
2554 /*
2555 * The oom killer is not called for lowmem
2556 * allocations to prevent needlessly killing
2557 * innocent tasks.
2558 */
2559 if (high_zoneidx < ZONE_NORMAL)
2560 goto nopage;
2561 }
e2c55dc8 2562
ff0ceb9d
DR
2563 goto restart;
2564 }
1da177e4
LT
2565 }
2566
11e33f6a 2567 /* Check if we should retry the allocation */
a41f24ea 2568 pages_reclaimed += did_some_progress;
f90ac398
MG
2569 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2570 pages_reclaimed)) {
11e33f6a 2571 /* Wait for some write requests to complete then retry */
0e093d99 2572 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2573 goto rebalance;
3e7d3449
MG
2574 } else {
2575 /*
2576 * High-order allocations do not necessarily loop after
2577 * direct reclaim and reclaim/compaction depends on compaction
2578 * being called after reclaim so call directly if necessary
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
66199712 2584 migratetype, sync_migration,
c67fe375 2585 &contended_compaction,
66199712
MG
2586 &deferred_compaction,
2587 &did_some_progress);
3e7d3449
MG
2588 if (page)
2589 goto got_pg;
1da177e4
LT
2590 }
2591
2592nopage:
a238ab5b 2593 warn_alloc_failed(gfp_mask, order, NULL);
b1eeab67 2594 return page;
1da177e4 2595got_pg:
b1eeab67
VN
2596 if (kmemcheck_enabled)
2597 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
11e33f6a 2598
072bb0aa 2599 return page;
1da177e4 2600}
11e33f6a
MG
2601
2602/*
2603 * This is the 'heart' of the zoned buddy allocator.
2604 */
2605struct page *
2606__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2607 struct zonelist *zonelist, nodemask_t *nodemask)
2608{
2609 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2610 struct zone *preferred_zone;
cc9a6c87 2611 struct page *page = NULL;
3dd28266 2612 int migratetype = allocflags_to_migratetype(gfp_mask);
cc9a6c87 2613 unsigned int cpuset_mems_cookie;
d95ea5d1 2614 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
11e33f6a 2615
dcce284a
BH
2616 gfp_mask &= gfp_allowed_mask;
2617
11e33f6a
MG
2618 lockdep_trace_alloc(gfp_mask);
2619
2620 might_sleep_if(gfp_mask & __GFP_WAIT);
2621
2622 if (should_fail_alloc_page(gfp_mask, order))
2623 return NULL;
2624
2625 /*
2626 * Check the zones suitable for the gfp_mask contain at least one
2627 * valid zone. It's possible to have an empty zonelist as a result
2628 * of GFP_THISNODE and a memoryless node
2629 */
2630 if (unlikely(!zonelist->_zonerefs->zone))
2631 return NULL;
2632
cc9a6c87
MG
2633retry_cpuset:
2634 cpuset_mems_cookie = get_mems_allowed();
2635
5117f45d 2636 /* The preferred zone is used for statistics later */
f33261d7
DR
2637 first_zones_zonelist(zonelist, high_zoneidx,
2638 nodemask ? : &cpuset_current_mems_allowed,
2639 &preferred_zone);
cc9a6c87
MG
2640 if (!preferred_zone)
2641 goto out;
5117f45d 2642
d95ea5d1
BZ
2643#ifdef CONFIG_CMA
2644 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2645 alloc_flags |= ALLOC_CMA;
2646#endif
5117f45d 2647 /* First allocation attempt */
11e33f6a 2648 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
d95ea5d1 2649 zonelist, high_zoneidx, alloc_flags,
3dd28266 2650 preferred_zone, migratetype);
11e33f6a
MG
2651 if (unlikely(!page))
2652 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2653 zonelist, high_zoneidx, nodemask,
3dd28266 2654 preferred_zone, migratetype);
11e33f6a 2655
4b4f278c 2656 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
cc9a6c87
MG
2657
2658out:
2659 /*
2660 * When updating a task's mems_allowed, it is possible to race with
2661 * parallel threads in such a way that an allocation can fail while
2662 * the mask is being updated. If a page allocation is about to fail,
2663 * check if the cpuset changed during allocation and if so, retry.
2664 */
2665 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2666 goto retry_cpuset;
2667
11e33f6a 2668 return page;
1da177e4 2669}
d239171e 2670EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2671
2672/*
2673 * Common helper functions.
2674 */
920c7a5d 2675unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2676{
945a1113
AM
2677 struct page *page;
2678
2679 /*
2680 * __get_free_pages() returns a 32-bit address, which cannot represent
2681 * a highmem page
2682 */
2683 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2684
1da177e4
LT
2685 page = alloc_pages(gfp_mask, order);
2686 if (!page)
2687 return 0;
2688 return (unsigned long) page_address(page);
2689}
1da177e4
LT
2690EXPORT_SYMBOL(__get_free_pages);
2691
920c7a5d 2692unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2693{
945a1113 2694 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2695}
1da177e4
LT
2696EXPORT_SYMBOL(get_zeroed_page);
2697
920c7a5d 2698void __free_pages(struct page *page, unsigned int order)
1da177e4 2699{
b5810039 2700 if (put_page_testzero(page)) {
1da177e4 2701 if (order == 0)
fc91668e 2702 free_hot_cold_page(page, 0);
1da177e4
LT
2703 else
2704 __free_pages_ok(page, order);
2705 }
2706}
2707
2708EXPORT_SYMBOL(__free_pages);
2709
920c7a5d 2710void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2711{
2712 if (addr != 0) {
725d704e 2713 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2714 __free_pages(virt_to_page((void *)addr), order);
2715 }
2716}
2717
2718EXPORT_SYMBOL(free_pages);
2719
ee85c2e1
AK
2720static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2721{
2722 if (addr) {
2723 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2724 unsigned long used = addr + PAGE_ALIGN(size);
2725
2726 split_page(virt_to_page((void *)addr), order);
2727 while (used < alloc_end) {
2728 free_page(used);
2729 used += PAGE_SIZE;
2730 }
2731 }
2732 return (void *)addr;
2733}
2734
2be0ffe2
TT
2735/**
2736 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2737 * @size: the number of bytes to allocate
2738 * @gfp_mask: GFP flags for the allocation
2739 *
2740 * This function is similar to alloc_pages(), except that it allocates the
2741 * minimum number of pages to satisfy the request. alloc_pages() can only
2742 * allocate memory in power-of-two pages.
2743 *
2744 * This function is also limited by MAX_ORDER.
2745 *
2746 * Memory allocated by this function must be released by free_pages_exact().
2747 */
2748void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2749{
2750 unsigned int order = get_order(size);
2751 unsigned long addr;
2752
2753 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 2754 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
2755}
2756EXPORT_SYMBOL(alloc_pages_exact);
2757
ee85c2e1
AK
2758/**
2759 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2760 * pages on a node.
b5e6ab58 2761 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
2762 * @size: the number of bytes to allocate
2763 * @gfp_mask: GFP flags for the allocation
2764 *
2765 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2766 * back.
2767 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2768 * but is not exact.
2769 */
2770void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2771{
2772 unsigned order = get_order(size);
2773 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2774 if (!p)
2775 return NULL;
2776 return make_alloc_exact((unsigned long)page_address(p), order, size);
2777}
2778EXPORT_SYMBOL(alloc_pages_exact_nid);
2779
2be0ffe2
TT
2780/**
2781 * free_pages_exact - release memory allocated via alloc_pages_exact()
2782 * @virt: the value returned by alloc_pages_exact.
2783 * @size: size of allocation, same value as passed to alloc_pages_exact().
2784 *
2785 * Release the memory allocated by a previous call to alloc_pages_exact.
2786 */
2787void free_pages_exact(void *virt, size_t size)
2788{
2789 unsigned long addr = (unsigned long)virt;
2790 unsigned long end = addr + PAGE_ALIGN(size);
2791
2792 while (addr < end) {
2793 free_page(addr);
2794 addr += PAGE_SIZE;
2795 }
2796}
2797EXPORT_SYMBOL(free_pages_exact);
2798
1da177e4
LT
2799static unsigned int nr_free_zone_pages(int offset)
2800{
dd1a239f 2801 struct zoneref *z;
54a6eb5c
MG
2802 struct zone *zone;
2803
e310fd43 2804 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2805 unsigned int sum = 0;
2806
0e88460d 2807 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2808
54a6eb5c 2809 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2810 unsigned long size = zone->present_pages;
41858966 2811 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2812 if (size > high)
2813 sum += size - high;
1da177e4
LT
2814 }
2815
2816 return sum;
2817}
2818
2819/*
2820 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2821 */
2822unsigned int nr_free_buffer_pages(void)
2823{
af4ca457 2824 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2825}
c2f1a551 2826EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2827
2828/*
2829 * Amount of free RAM allocatable within all zones
2830 */
2831unsigned int nr_free_pagecache_pages(void)
2832{
2a1e274a 2833 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2834}
08e0f6a9
CL
2835
2836static inline void show_node(struct zone *zone)
1da177e4 2837{
08e0f6a9 2838 if (NUMA_BUILD)
25ba77c1 2839 printk("Node %d ", zone_to_nid(zone));
1da177e4 2840}
1da177e4 2841
1da177e4
LT
2842void si_meminfo(struct sysinfo *val)
2843{
2844 val->totalram = totalram_pages;
2845 val->sharedram = 0;
d23ad423 2846 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2847 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2848 val->totalhigh = totalhigh_pages;
2849 val->freehigh = nr_free_highpages();
1da177e4
LT
2850 val->mem_unit = PAGE_SIZE;
2851}
2852
2853EXPORT_SYMBOL(si_meminfo);
2854
2855#ifdef CONFIG_NUMA
2856void si_meminfo_node(struct sysinfo *val, int nid)
2857{
2858 pg_data_t *pgdat = NODE_DATA(nid);
2859
2860 val->totalram = pgdat->node_present_pages;
d23ad423 2861 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2862#ifdef CONFIG_HIGHMEM
1da177e4 2863 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2864 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2865 NR_FREE_PAGES);
98d2b0eb
CL
2866#else
2867 val->totalhigh = 0;
2868 val->freehigh = 0;
2869#endif
1da177e4
LT
2870 val->mem_unit = PAGE_SIZE;
2871}
2872#endif
2873
ddd588b5 2874/*
7bf02ea2
DR
2875 * Determine whether the node should be displayed or not, depending on whether
2876 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 2877 */
7bf02ea2 2878bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
2879{
2880 bool ret = false;
cc9a6c87 2881 unsigned int cpuset_mems_cookie;
ddd588b5
DR
2882
2883 if (!(flags & SHOW_MEM_FILTER_NODES))
2884 goto out;
2885
cc9a6c87
MG
2886 do {
2887 cpuset_mems_cookie = get_mems_allowed();
2888 ret = !node_isset(nid, cpuset_current_mems_allowed);
2889 } while (!put_mems_allowed(cpuset_mems_cookie));
ddd588b5
DR
2890out:
2891 return ret;
2892}
2893
1da177e4
LT
2894#define K(x) ((x) << (PAGE_SHIFT-10))
2895
2896/*
2897 * Show free area list (used inside shift_scroll-lock stuff)
2898 * We also calculate the percentage fragmentation. We do this by counting the
2899 * memory on each free list with the exception of the first item on the list.
ddd588b5
DR
2900 * Suppresses nodes that are not allowed by current's cpuset if
2901 * SHOW_MEM_FILTER_NODES is passed.
1da177e4 2902 */
7bf02ea2 2903void show_free_areas(unsigned int filter)
1da177e4 2904{
c7241913 2905 int cpu;
1da177e4
LT
2906 struct zone *zone;
2907
ee99c71c 2908 for_each_populated_zone(zone) {
7bf02ea2 2909 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2910 continue;
c7241913
JS
2911 show_node(zone);
2912 printk("%s per-cpu:\n", zone->name);
1da177e4 2913
6b482c67 2914 for_each_online_cpu(cpu) {
1da177e4
LT
2915 struct per_cpu_pageset *pageset;
2916
99dcc3e5 2917 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2918
3dfa5721
CL
2919 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2920 cpu, pageset->pcp.high,
2921 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2922 }
2923 }
2924
a731286d
KM
2925 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2926 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2927 " unevictable:%lu"
b76146ed 2928 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2929 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a
BZ
2930 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2931 " free_cma:%lu\n",
4f98a2fe 2932 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2933 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2934 global_page_state(NR_ISOLATED_ANON),
2935 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2936 global_page_state(NR_INACTIVE_FILE),
a731286d 2937 global_page_state(NR_ISOLATED_FILE),
7b854121 2938 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2939 global_page_state(NR_FILE_DIRTY),
ce866b34 2940 global_page_state(NR_WRITEBACK),
fd39fc85 2941 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2942 global_page_state(NR_FREE_PAGES),
3701b033
KM
2943 global_page_state(NR_SLAB_RECLAIMABLE),
2944 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2945 global_page_state(NR_FILE_MAPPED),
4b02108a 2946 global_page_state(NR_SHMEM),
a25700a5 2947 global_page_state(NR_PAGETABLE),
d1ce749a
BZ
2948 global_page_state(NR_BOUNCE),
2949 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 2950
ee99c71c 2951 for_each_populated_zone(zone) {
1da177e4
LT
2952 int i;
2953
7bf02ea2 2954 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 2955 continue;
1da177e4
LT
2956 show_node(zone);
2957 printk("%s"
2958 " free:%lukB"
2959 " min:%lukB"
2960 " low:%lukB"
2961 " high:%lukB"
4f98a2fe
RR
2962 " active_anon:%lukB"
2963 " inactive_anon:%lukB"
2964 " active_file:%lukB"
2965 " inactive_file:%lukB"
7b854121 2966 " unevictable:%lukB"
a731286d
KM
2967 " isolated(anon):%lukB"
2968 " isolated(file):%lukB"
1da177e4 2969 " present:%lukB"
4a0aa73f
KM
2970 " mlocked:%lukB"
2971 " dirty:%lukB"
2972 " writeback:%lukB"
2973 " mapped:%lukB"
4b02108a 2974 " shmem:%lukB"
4a0aa73f
KM
2975 " slab_reclaimable:%lukB"
2976 " slab_unreclaimable:%lukB"
c6a7f572 2977 " kernel_stack:%lukB"
4a0aa73f
KM
2978 " pagetables:%lukB"
2979 " unstable:%lukB"
2980 " bounce:%lukB"
d1ce749a 2981 " free_cma:%lukB"
4a0aa73f 2982 " writeback_tmp:%lukB"
1da177e4
LT
2983 " pages_scanned:%lu"
2984 " all_unreclaimable? %s"
2985 "\n",
2986 zone->name,
88f5acf8 2987 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2988 K(min_wmark_pages(zone)),
2989 K(low_wmark_pages(zone)),
2990 K(high_wmark_pages(zone)),
4f98a2fe
RR
2991 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2992 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2993 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2994 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2995 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2996 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2997 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2998 K(zone->present_pages),
4a0aa73f
KM
2999 K(zone_page_state(zone, NR_MLOCK)),
3000 K(zone_page_state(zone, NR_FILE_DIRTY)),
3001 K(zone_page_state(zone, NR_WRITEBACK)),
3002 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3003 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3004 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3005 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3006 zone_page_state(zone, NR_KERNEL_STACK) *
3007 THREAD_SIZE / 1024,
4a0aa73f
KM
3008 K(zone_page_state(zone, NR_PAGETABLE)),
3009 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3010 K(zone_page_state(zone, NR_BOUNCE)),
d1ce749a 3011 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3012 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 3013 zone->pages_scanned,
93e4a89a 3014 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
3015 );
3016 printk("lowmem_reserve[]:");
3017 for (i = 0; i < MAX_NR_ZONES; i++)
3018 printk(" %lu", zone->lowmem_reserve[i]);
3019 printk("\n");
3020 }
3021
ee99c71c 3022 for_each_populated_zone(zone) {
8f9de51a 3023 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 3024
7bf02ea2 3025 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3026 continue;
1da177e4
LT
3027 show_node(zone);
3028 printk("%s: ", zone->name);
1da177e4
LT
3029
3030 spin_lock_irqsave(&zone->lock, flags);
3031 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
3032 nr[order] = zone->free_area[order].nr_free;
3033 total += nr[order] << order;
1da177e4
LT
3034 }
3035 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
3036 for (order = 0; order < MAX_ORDER; order++)
3037 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
3038 printk("= %lukB\n", K(total));
3039 }
3040
e6f3602d
LW
3041 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3042
1da177e4
LT
3043 show_swap_cache_info();
3044}
3045
19770b32
MG
3046static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3047{
3048 zoneref->zone = zone;
3049 zoneref->zone_idx = zone_idx(zone);
3050}
3051
1da177e4
LT
3052/*
3053 * Builds allocation fallback zone lists.
1a93205b
CL
3054 *
3055 * Add all populated zones of a node to the zonelist.
1da177e4 3056 */
f0c0b2b8
KH
3057static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3058 int nr_zones, enum zone_type zone_type)
1da177e4 3059{
1a93205b
CL
3060 struct zone *zone;
3061
98d2b0eb 3062 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 3063 zone_type++;
02a68a5e
CL
3064
3065 do {
2f6726e5 3066 zone_type--;
070f8032 3067 zone = pgdat->node_zones + zone_type;
1a93205b 3068 if (populated_zone(zone)) {
dd1a239f
MG
3069 zoneref_set_zone(zone,
3070 &zonelist->_zonerefs[nr_zones++]);
070f8032 3071 check_highest_zone(zone_type);
1da177e4 3072 }
02a68a5e 3073
2f6726e5 3074 } while (zone_type);
070f8032 3075 return nr_zones;
1da177e4
LT
3076}
3077
f0c0b2b8
KH
3078
3079/*
3080 * zonelist_order:
3081 * 0 = automatic detection of better ordering.
3082 * 1 = order by ([node] distance, -zonetype)
3083 * 2 = order by (-zonetype, [node] distance)
3084 *
3085 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3086 * the same zonelist. So only NUMA can configure this param.
3087 */
3088#define ZONELIST_ORDER_DEFAULT 0
3089#define ZONELIST_ORDER_NODE 1
3090#define ZONELIST_ORDER_ZONE 2
3091
3092/* zonelist order in the kernel.
3093 * set_zonelist_order() will set this to NODE or ZONE.
3094 */
3095static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3096static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3097
3098
1da177e4 3099#ifdef CONFIG_NUMA
f0c0b2b8
KH
3100/* The value user specified ....changed by config */
3101static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3102/* string for sysctl */
3103#define NUMA_ZONELIST_ORDER_LEN 16
3104char numa_zonelist_order[16] = "default";
3105
3106/*
3107 * interface for configure zonelist ordering.
3108 * command line option "numa_zonelist_order"
3109 * = "[dD]efault - default, automatic configuration.
3110 * = "[nN]ode - order by node locality, then by zone within node
3111 * = "[zZ]one - order by zone, then by locality within zone
3112 */
3113
3114static int __parse_numa_zonelist_order(char *s)
3115{
3116 if (*s == 'd' || *s == 'D') {
3117 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3118 } else if (*s == 'n' || *s == 'N') {
3119 user_zonelist_order = ZONELIST_ORDER_NODE;
3120 } else if (*s == 'z' || *s == 'Z') {
3121 user_zonelist_order = ZONELIST_ORDER_ZONE;
3122 } else {
3123 printk(KERN_WARNING
3124 "Ignoring invalid numa_zonelist_order value: "
3125 "%s\n", s);
3126 return -EINVAL;
3127 }
3128 return 0;
3129}
3130
3131static __init int setup_numa_zonelist_order(char *s)
3132{
ecb256f8
VL
3133 int ret;
3134
3135 if (!s)
3136 return 0;
3137
3138 ret = __parse_numa_zonelist_order(s);
3139 if (ret == 0)
3140 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3141
3142 return ret;
f0c0b2b8
KH
3143}
3144early_param("numa_zonelist_order", setup_numa_zonelist_order);
3145
3146/*
3147 * sysctl handler for numa_zonelist_order
3148 */
3149int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 3150 void __user *buffer, size_t *length,
f0c0b2b8
KH
3151 loff_t *ppos)
3152{
3153 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3154 int ret;
443c6f14 3155 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3156
443c6f14 3157 mutex_lock(&zl_order_mutex);
f0c0b2b8 3158 if (write)
443c6f14 3159 strcpy(saved_string, (char*)table->data);
8d65af78 3160 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3161 if (ret)
443c6f14 3162 goto out;
f0c0b2b8
KH
3163 if (write) {
3164 int oldval = user_zonelist_order;
3165 if (__parse_numa_zonelist_order((char*)table->data)) {
3166 /*
3167 * bogus value. restore saved string
3168 */
3169 strncpy((char*)table->data, saved_string,
3170 NUMA_ZONELIST_ORDER_LEN);
3171 user_zonelist_order = oldval;
4eaf3f64
HL
3172 } else if (oldval != user_zonelist_order) {
3173 mutex_lock(&zonelists_mutex);
9adb62a5 3174 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3175 mutex_unlock(&zonelists_mutex);
3176 }
f0c0b2b8 3177 }
443c6f14
AK
3178out:
3179 mutex_unlock(&zl_order_mutex);
3180 return ret;
f0c0b2b8
KH
3181}
3182
3183
62bc62a8 3184#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3185static int node_load[MAX_NUMNODES];
3186
1da177e4 3187/**
4dc3b16b 3188 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3189 * @node: node whose fallback list we're appending
3190 * @used_node_mask: nodemask_t of already used nodes
3191 *
3192 * We use a number of factors to determine which is the next node that should
3193 * appear on a given node's fallback list. The node should not have appeared
3194 * already in @node's fallback list, and it should be the next closest node
3195 * according to the distance array (which contains arbitrary distance values
3196 * from each node to each node in the system), and should also prefer nodes
3197 * with no CPUs, since presumably they'll have very little allocation pressure
3198 * on them otherwise.
3199 * It returns -1 if no node is found.
3200 */
f0c0b2b8 3201static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3202{
4cf808eb 3203 int n, val;
1da177e4
LT
3204 int min_val = INT_MAX;
3205 int best_node = -1;
a70f7302 3206 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3207
4cf808eb
LT
3208 /* Use the local node if we haven't already */
3209 if (!node_isset(node, *used_node_mask)) {
3210 node_set(node, *used_node_mask);
3211 return node;
3212 }
1da177e4 3213
37b07e41 3214 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
3215
3216 /* Don't want a node to appear more than once */
3217 if (node_isset(n, *used_node_mask))
3218 continue;
3219
1da177e4
LT
3220 /* Use the distance array to find the distance */
3221 val = node_distance(node, n);
3222
4cf808eb
LT
3223 /* Penalize nodes under us ("prefer the next node") */
3224 val += (n < node);
3225
1da177e4 3226 /* Give preference to headless and unused nodes */
a70f7302
RR
3227 tmp = cpumask_of_node(n);
3228 if (!cpumask_empty(tmp))
1da177e4
LT
3229 val += PENALTY_FOR_NODE_WITH_CPUS;
3230
3231 /* Slight preference for less loaded node */
3232 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3233 val += node_load[n];
3234
3235 if (val < min_val) {
3236 min_val = val;
3237 best_node = n;
3238 }
3239 }
3240
3241 if (best_node >= 0)
3242 node_set(best_node, *used_node_mask);
3243
3244 return best_node;
3245}
3246
f0c0b2b8
KH
3247
3248/*
3249 * Build zonelists ordered by node and zones within node.
3250 * This results in maximum locality--normal zone overflows into local
3251 * DMA zone, if any--but risks exhausting DMA zone.
3252 */
3253static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 3254{
f0c0b2b8 3255 int j;
1da177e4 3256 struct zonelist *zonelist;
f0c0b2b8 3257
54a6eb5c 3258 zonelist = &pgdat->node_zonelists[0];
dd1a239f 3259 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
3260 ;
3261 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3262 MAX_NR_ZONES - 1);
dd1a239f
MG
3263 zonelist->_zonerefs[j].zone = NULL;
3264 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
3265}
3266
523b9458
CL
3267/*
3268 * Build gfp_thisnode zonelists
3269 */
3270static void build_thisnode_zonelists(pg_data_t *pgdat)
3271{
523b9458
CL
3272 int j;
3273 struct zonelist *zonelist;
3274
54a6eb5c
MG
3275 zonelist = &pgdat->node_zonelists[1];
3276 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
3277 zonelist->_zonerefs[j].zone = NULL;
3278 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
3279}
3280
f0c0b2b8
KH
3281/*
3282 * Build zonelists ordered by zone and nodes within zones.
3283 * This results in conserving DMA zone[s] until all Normal memory is
3284 * exhausted, but results in overflowing to remote node while memory
3285 * may still exist in local DMA zone.
3286 */
3287static int node_order[MAX_NUMNODES];
3288
3289static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3290{
f0c0b2b8
KH
3291 int pos, j, node;
3292 int zone_type; /* needs to be signed */
3293 struct zone *z;
3294 struct zonelist *zonelist;
3295
54a6eb5c
MG
3296 zonelist = &pgdat->node_zonelists[0];
3297 pos = 0;
3298 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3299 for (j = 0; j < nr_nodes; j++) {
3300 node = node_order[j];
3301 z = &NODE_DATA(node)->node_zones[zone_type];
3302 if (populated_zone(z)) {
dd1a239f
MG
3303 zoneref_set_zone(z,
3304 &zonelist->_zonerefs[pos++]);
54a6eb5c 3305 check_highest_zone(zone_type);
f0c0b2b8
KH
3306 }
3307 }
f0c0b2b8 3308 }
dd1a239f
MG
3309 zonelist->_zonerefs[pos].zone = NULL;
3310 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
3311}
3312
3313static int default_zonelist_order(void)
3314{
3315 int nid, zone_type;
3316 unsigned long low_kmem_size,total_size;
3317 struct zone *z;
3318 int average_size;
3319 /*
88393161 3320 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
3321 * If they are really small and used heavily, the system can fall
3322 * into OOM very easily.
e325c90f 3323 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
3324 */
3325 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3326 low_kmem_size = 0;
3327 total_size = 0;
3328 for_each_online_node(nid) {
3329 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3330 z = &NODE_DATA(nid)->node_zones[zone_type];
3331 if (populated_zone(z)) {
3332 if (zone_type < ZONE_NORMAL)
3333 low_kmem_size += z->present_pages;
3334 total_size += z->present_pages;
e325c90f
DR
3335 } else if (zone_type == ZONE_NORMAL) {
3336 /*
3337 * If any node has only lowmem, then node order
3338 * is preferred to allow kernel allocations
3339 * locally; otherwise, they can easily infringe
3340 * on other nodes when there is an abundance of
3341 * lowmem available to allocate from.
3342 */
3343 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
3344 }
3345 }
3346 }
3347 if (!low_kmem_size || /* there are no DMA area. */
3348 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3349 return ZONELIST_ORDER_NODE;
3350 /*
3351 * look into each node's config.
3352 * If there is a node whose DMA/DMA32 memory is very big area on
3353 * local memory, NODE_ORDER may be suitable.
3354 */
37b07e41
LS
3355 average_size = total_size /
3356 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
3357 for_each_online_node(nid) {
3358 low_kmem_size = 0;
3359 total_size = 0;
3360 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3361 z = &NODE_DATA(nid)->node_zones[zone_type];
3362 if (populated_zone(z)) {
3363 if (zone_type < ZONE_NORMAL)
3364 low_kmem_size += z->present_pages;
3365 total_size += z->present_pages;
3366 }
3367 }
3368 if (low_kmem_size &&
3369 total_size > average_size && /* ignore small node */
3370 low_kmem_size > total_size * 70/100)
3371 return ZONELIST_ORDER_NODE;
3372 }
3373 return ZONELIST_ORDER_ZONE;
3374}
3375
3376static void set_zonelist_order(void)
3377{
3378 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3379 current_zonelist_order = default_zonelist_order();
3380 else
3381 current_zonelist_order = user_zonelist_order;
3382}
3383
3384static void build_zonelists(pg_data_t *pgdat)
3385{
3386 int j, node, load;
3387 enum zone_type i;
1da177e4 3388 nodemask_t used_mask;
f0c0b2b8
KH
3389 int local_node, prev_node;
3390 struct zonelist *zonelist;
3391 int order = current_zonelist_order;
1da177e4
LT
3392
3393 /* initialize zonelists */
523b9458 3394 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 3395 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
3396 zonelist->_zonerefs[0].zone = NULL;
3397 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
3398 }
3399
3400 /* NUMA-aware ordering of nodes */
3401 local_node = pgdat->node_id;
62bc62a8 3402 load = nr_online_nodes;
1da177e4
LT
3403 prev_node = local_node;
3404 nodes_clear(used_mask);
f0c0b2b8 3405
f0c0b2b8
KH
3406 memset(node_order, 0, sizeof(node_order));
3407 j = 0;
3408
1da177e4
LT
3409 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3410 /*
3411 * We don't want to pressure a particular node.
3412 * So adding penalty to the first node in same
3413 * distance group to make it round-robin.
3414 */
957f822a
DR
3415 if (node_distance(local_node, node) !=
3416 node_distance(local_node, prev_node))
f0c0b2b8
KH
3417 node_load[node] = load;
3418
1da177e4
LT
3419 prev_node = node;
3420 load--;
f0c0b2b8
KH
3421 if (order == ZONELIST_ORDER_NODE)
3422 build_zonelists_in_node_order(pgdat, node);
3423 else
3424 node_order[j++] = node; /* remember order */
3425 }
1da177e4 3426
f0c0b2b8
KH
3427 if (order == ZONELIST_ORDER_ZONE) {
3428 /* calculate node order -- i.e., DMA last! */
3429 build_zonelists_in_zone_order(pgdat, j);
1da177e4 3430 }
523b9458
CL
3431
3432 build_thisnode_zonelists(pgdat);
1da177e4
LT
3433}
3434
9276b1bc 3435/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 3436static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3437{
54a6eb5c
MG
3438 struct zonelist *zonelist;
3439 struct zonelist_cache *zlc;
dd1a239f 3440 struct zoneref *z;
9276b1bc 3441
54a6eb5c
MG
3442 zonelist = &pgdat->node_zonelists[0];
3443 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3444 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
3445 for (z = zonelist->_zonerefs; z->zone; z++)
3446 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
3447}
3448
7aac7898
LS
3449#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3450/*
3451 * Return node id of node used for "local" allocations.
3452 * I.e., first node id of first zone in arg node's generic zonelist.
3453 * Used for initializing percpu 'numa_mem', which is used primarily
3454 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3455 */
3456int local_memory_node(int node)
3457{
3458 struct zone *zone;
3459
3460 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3461 gfp_zone(GFP_KERNEL),
3462 NULL,
3463 &zone);
3464 return zone->node;
3465}
3466#endif
f0c0b2b8 3467
1da177e4
LT
3468#else /* CONFIG_NUMA */
3469
f0c0b2b8
KH
3470static void set_zonelist_order(void)
3471{
3472 current_zonelist_order = ZONELIST_ORDER_ZONE;
3473}
3474
3475static void build_zonelists(pg_data_t *pgdat)
1da177e4 3476{
19655d34 3477 int node, local_node;
54a6eb5c
MG
3478 enum zone_type j;
3479 struct zonelist *zonelist;
1da177e4
LT
3480
3481 local_node = pgdat->node_id;
1da177e4 3482
54a6eb5c
MG
3483 zonelist = &pgdat->node_zonelists[0];
3484 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 3485
54a6eb5c
MG
3486 /*
3487 * Now we build the zonelist so that it contains the zones
3488 * of all the other nodes.
3489 * We don't want to pressure a particular node, so when
3490 * building the zones for node N, we make sure that the
3491 * zones coming right after the local ones are those from
3492 * node N+1 (modulo N)
3493 */
3494 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3495 if (!node_online(node))
3496 continue;
3497 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3498 MAX_NR_ZONES - 1);
1da177e4 3499 }
54a6eb5c
MG
3500 for (node = 0; node < local_node; node++) {
3501 if (!node_online(node))
3502 continue;
3503 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3504 MAX_NR_ZONES - 1);
3505 }
3506
dd1a239f
MG
3507 zonelist->_zonerefs[j].zone = NULL;
3508 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3509}
3510
9276b1bc 3511/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3512static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3513{
54a6eb5c 3514 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3515}
3516
1da177e4
LT
3517#endif /* CONFIG_NUMA */
3518
99dcc3e5
CL
3519/*
3520 * Boot pageset table. One per cpu which is going to be used for all
3521 * zones and all nodes. The parameters will be set in such a way
3522 * that an item put on a list will immediately be handed over to
3523 * the buddy list. This is safe since pageset manipulation is done
3524 * with interrupts disabled.
3525 *
3526 * The boot_pagesets must be kept even after bootup is complete for
3527 * unused processors and/or zones. They do play a role for bootstrapping
3528 * hotplugged processors.
3529 *
3530 * zoneinfo_show() and maybe other functions do
3531 * not check if the processor is online before following the pageset pointer.
3532 * Other parts of the kernel may not check if the zone is available.
3533 */
3534static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3535static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3536static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3537
4eaf3f64
HL
3538/*
3539 * Global mutex to protect against size modification of zonelists
3540 * as well as to serialize pageset setup for the new populated zone.
3541 */
3542DEFINE_MUTEX(zonelists_mutex);
3543
9b1a4d38 3544/* return values int ....just for stop_machine() */
4ed7e022 3545static int __build_all_zonelists(void *data)
1da177e4 3546{
6811378e 3547 int nid;
99dcc3e5 3548 int cpu;
9adb62a5 3549 pg_data_t *self = data;
9276b1bc 3550
7f9cfb31
BL
3551#ifdef CONFIG_NUMA
3552 memset(node_load, 0, sizeof(node_load));
3553#endif
9adb62a5
JL
3554
3555 if (self && !node_online(self->node_id)) {
3556 build_zonelists(self);
3557 build_zonelist_cache(self);
3558 }
3559
9276b1bc 3560 for_each_online_node(nid) {
7ea1530a
CL
3561 pg_data_t *pgdat = NODE_DATA(nid);
3562
3563 build_zonelists(pgdat);
3564 build_zonelist_cache(pgdat);
9276b1bc 3565 }
99dcc3e5
CL
3566
3567 /*
3568 * Initialize the boot_pagesets that are going to be used
3569 * for bootstrapping processors. The real pagesets for
3570 * each zone will be allocated later when the per cpu
3571 * allocator is available.
3572 *
3573 * boot_pagesets are used also for bootstrapping offline
3574 * cpus if the system is already booted because the pagesets
3575 * are needed to initialize allocators on a specific cpu too.
3576 * F.e. the percpu allocator needs the page allocator which
3577 * needs the percpu allocator in order to allocate its pagesets
3578 * (a chicken-egg dilemma).
3579 */
7aac7898 3580 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3581 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3582
7aac7898
LS
3583#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3584 /*
3585 * We now know the "local memory node" for each node--
3586 * i.e., the node of the first zone in the generic zonelist.
3587 * Set up numa_mem percpu variable for on-line cpus. During
3588 * boot, only the boot cpu should be on-line; we'll init the
3589 * secondary cpus' numa_mem as they come on-line. During
3590 * node/memory hotplug, we'll fixup all on-line cpus.
3591 */
3592 if (cpu_online(cpu))
3593 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3594#endif
3595 }
3596
6811378e
YG
3597 return 0;
3598}
3599
4eaf3f64
HL
3600/*
3601 * Called with zonelists_mutex held always
3602 * unless system_state == SYSTEM_BOOTING.
3603 */
9adb62a5 3604void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 3605{
f0c0b2b8
KH
3606 set_zonelist_order();
3607
6811378e 3608 if (system_state == SYSTEM_BOOTING) {
423b41d7 3609 __build_all_zonelists(NULL);
68ad8df4 3610 mminit_verify_zonelist();
6811378e
YG
3611 cpuset_init_current_mems_allowed();
3612 } else {
183ff22b 3613 /* we have to stop all cpus to guarantee there is no user
6811378e 3614 of zonelist */
e9959f0f 3615#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
3616 if (zone)
3617 setup_zone_pageset(zone);
e9959f0f 3618#endif
9adb62a5 3619 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
3620 /* cpuset refresh routine should be here */
3621 }
bd1e22b8 3622 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3623 /*
3624 * Disable grouping by mobility if the number of pages in the
3625 * system is too low to allow the mechanism to work. It would be
3626 * more accurate, but expensive to check per-zone. This check is
3627 * made on memory-hotadd so a system can start with mobility
3628 * disabled and enable it later
3629 */
d9c23400 3630 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3631 page_group_by_mobility_disabled = 1;
3632 else
3633 page_group_by_mobility_disabled = 0;
3634
3635 printk("Built %i zonelists in %s order, mobility grouping %s. "
3636 "Total pages: %ld\n",
62bc62a8 3637 nr_online_nodes,
f0c0b2b8 3638 zonelist_order_name[current_zonelist_order],
9ef9acb0 3639 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3640 vm_total_pages);
3641#ifdef CONFIG_NUMA
3642 printk("Policy zone: %s\n", zone_names[policy_zone]);
3643#endif
1da177e4
LT
3644}
3645
3646/*
3647 * Helper functions to size the waitqueue hash table.
3648 * Essentially these want to choose hash table sizes sufficiently
3649 * large so that collisions trying to wait on pages are rare.
3650 * But in fact, the number of active page waitqueues on typical
3651 * systems is ridiculously low, less than 200. So this is even
3652 * conservative, even though it seems large.
3653 *
3654 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3655 * waitqueues, i.e. the size of the waitq table given the number of pages.
3656 */
3657#define PAGES_PER_WAITQUEUE 256
3658
cca448fe 3659#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3660static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3661{
3662 unsigned long size = 1;
3663
3664 pages /= PAGES_PER_WAITQUEUE;
3665
3666 while (size < pages)
3667 size <<= 1;
3668
3669 /*
3670 * Once we have dozens or even hundreds of threads sleeping
3671 * on IO we've got bigger problems than wait queue collision.
3672 * Limit the size of the wait table to a reasonable size.
3673 */
3674 size = min(size, 4096UL);
3675
3676 return max(size, 4UL);
3677}
cca448fe
YG
3678#else
3679/*
3680 * A zone's size might be changed by hot-add, so it is not possible to determine
3681 * a suitable size for its wait_table. So we use the maximum size now.
3682 *
3683 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3684 *
3685 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3686 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3687 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3688 *
3689 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3690 * or more by the traditional way. (See above). It equals:
3691 *
3692 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3693 * ia64(16K page size) : = ( 8G + 4M)byte.
3694 * powerpc (64K page size) : = (32G +16M)byte.
3695 */
3696static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3697{
3698 return 4096UL;
3699}
3700#endif
1da177e4
LT
3701
3702/*
3703 * This is an integer logarithm so that shifts can be used later
3704 * to extract the more random high bits from the multiplicative
3705 * hash function before the remainder is taken.
3706 */
3707static inline unsigned long wait_table_bits(unsigned long size)
3708{
3709 return ffz(~size);
3710}
3711
3712#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3713
6d3163ce
AH
3714/*
3715 * Check if a pageblock contains reserved pages
3716 */
3717static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3718{
3719 unsigned long pfn;
3720
3721 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3722 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3723 return 1;
3724 }
3725 return 0;
3726}
3727
56fd56b8 3728/*
d9c23400 3729 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3730 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3731 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3732 * higher will lead to a bigger reserve which will get freed as contiguous
3733 * blocks as reclaim kicks in
3734 */
3735static void setup_zone_migrate_reserve(struct zone *zone)
3736{
6d3163ce 3737 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 3738 struct page *page;
78986a67
MG
3739 unsigned long block_migratetype;
3740 int reserve;
56fd56b8 3741
d0215638
MH
3742 /*
3743 * Get the start pfn, end pfn and the number of blocks to reserve
3744 * We have to be careful to be aligned to pageblock_nr_pages to
3745 * make sure that we always check pfn_valid for the first page in
3746 * the block.
3747 */
56fd56b8
MG
3748 start_pfn = zone->zone_start_pfn;
3749 end_pfn = start_pfn + zone->spanned_pages;
d0215638 3750 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 3751 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3752 pageblock_order;
56fd56b8 3753
78986a67
MG
3754 /*
3755 * Reserve blocks are generally in place to help high-order atomic
3756 * allocations that are short-lived. A min_free_kbytes value that
3757 * would result in more than 2 reserve blocks for atomic allocations
3758 * is assumed to be in place to help anti-fragmentation for the
3759 * future allocation of hugepages at runtime.
3760 */
3761 reserve = min(2, reserve);
3762
d9c23400 3763 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3764 if (!pfn_valid(pfn))
3765 continue;
3766 page = pfn_to_page(pfn);
3767
344c790e
AL
3768 /* Watch out for overlapping nodes */
3769 if (page_to_nid(page) != zone_to_nid(zone))
3770 continue;
3771
56fd56b8
MG
3772 block_migratetype = get_pageblock_migratetype(page);
3773
938929f1
MG
3774 /* Only test what is necessary when the reserves are not met */
3775 if (reserve > 0) {
3776 /*
3777 * Blocks with reserved pages will never free, skip
3778 * them.
3779 */
3780 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3781 if (pageblock_is_reserved(pfn, block_end_pfn))
3782 continue;
56fd56b8 3783
938929f1
MG
3784 /* If this block is reserved, account for it */
3785 if (block_migratetype == MIGRATE_RESERVE) {
3786 reserve--;
3787 continue;
3788 }
3789
3790 /* Suitable for reserving if this block is movable */
3791 if (block_migratetype == MIGRATE_MOVABLE) {
3792 set_pageblock_migratetype(page,
3793 MIGRATE_RESERVE);
3794 move_freepages_block(zone, page,
3795 MIGRATE_RESERVE);
3796 reserve--;
3797 continue;
3798 }
56fd56b8
MG
3799 }
3800
3801 /*
3802 * If the reserve is met and this is a previous reserved block,
3803 * take it back
3804 */
3805 if (block_migratetype == MIGRATE_RESERVE) {
3806 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3807 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3808 }
3809 }
3810}
ac0e5b7a 3811
1da177e4
LT
3812/*
3813 * Initially all pages are reserved - free ones are freed
3814 * up by free_all_bootmem() once the early boot process is
3815 * done. Non-atomic initialization, single-pass.
3816 */
c09b4240 3817void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3818 unsigned long start_pfn, enum memmap_context context)
1da177e4 3819{
1da177e4 3820 struct page *page;
29751f69
AW
3821 unsigned long end_pfn = start_pfn + size;
3822 unsigned long pfn;
86051ca5 3823 struct zone *z;
1da177e4 3824
22b31eec
HD
3825 if (highest_memmap_pfn < end_pfn - 1)
3826 highest_memmap_pfn = end_pfn - 1;
3827
86051ca5 3828 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3829 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3830 /*
3831 * There can be holes in boot-time mem_map[]s
3832 * handed to this function. They do not
3833 * exist on hotplugged memory.
3834 */
3835 if (context == MEMMAP_EARLY) {
3836 if (!early_pfn_valid(pfn))
3837 continue;
3838 if (!early_pfn_in_nid(pfn, nid))
3839 continue;
3840 }
d41dee36
AW
3841 page = pfn_to_page(pfn);
3842 set_page_links(page, zone, nid, pfn);
708614e6 3843 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3844 init_page_count(page);
1da177e4
LT
3845 reset_page_mapcount(page);
3846 SetPageReserved(page);
b2a0ac88
MG
3847 /*
3848 * Mark the block movable so that blocks are reserved for
3849 * movable at startup. This will force kernel allocations
3850 * to reserve their blocks rather than leaking throughout
3851 * the address space during boot when many long-lived
56fd56b8
MG
3852 * kernel allocations are made. Later some blocks near
3853 * the start are marked MIGRATE_RESERVE by
3854 * setup_zone_migrate_reserve()
86051ca5
KH
3855 *
3856 * bitmap is created for zone's valid pfn range. but memmap
3857 * can be created for invalid pages (for alignment)
3858 * check here not to call set_pageblock_migratetype() against
3859 * pfn out of zone.
b2a0ac88 3860 */
86051ca5
KH
3861 if ((z->zone_start_pfn <= pfn)
3862 && (pfn < z->zone_start_pfn + z->spanned_pages)
3863 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3864 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3865
1da177e4
LT
3866 INIT_LIST_HEAD(&page->lru);
3867#ifdef WANT_PAGE_VIRTUAL
3868 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3869 if (!is_highmem_idx(zone))
3212c6be 3870 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3871#endif
1da177e4
LT
3872 }
3873}
3874
1e548deb 3875static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3876{
b2a0ac88
MG
3877 int order, t;
3878 for_each_migratetype_order(order, t) {
3879 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3880 zone->free_area[order].nr_free = 0;
3881 }
3882}
3883
3884#ifndef __HAVE_ARCH_MEMMAP_INIT
3885#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3886 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3887#endif
3888
4ed7e022 3889static int __meminit zone_batchsize(struct zone *zone)
e7c8d5c9 3890{
3a6be87f 3891#ifdef CONFIG_MMU
e7c8d5c9
CL
3892 int batch;
3893
3894 /*
3895 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3896 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3897 *
3898 * OK, so we don't know how big the cache is. So guess.
3899 */
3900 batch = zone->present_pages / 1024;
ba56e91c
SR
3901 if (batch * PAGE_SIZE > 512 * 1024)
3902 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3903 batch /= 4; /* We effectively *= 4 below */
3904 if (batch < 1)
3905 batch = 1;
3906
3907 /*
0ceaacc9
NP
3908 * Clamp the batch to a 2^n - 1 value. Having a power
3909 * of 2 value was found to be more likely to have
3910 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3911 *
0ceaacc9
NP
3912 * For example if 2 tasks are alternately allocating
3913 * batches of pages, one task can end up with a lot
3914 * of pages of one half of the possible page colors
3915 * and the other with pages of the other colors.
e7c8d5c9 3916 */
9155203a 3917 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3918
e7c8d5c9 3919 return batch;
3a6be87f
DH
3920
3921#else
3922 /* The deferral and batching of frees should be suppressed under NOMMU
3923 * conditions.
3924 *
3925 * The problem is that NOMMU needs to be able to allocate large chunks
3926 * of contiguous memory as there's no hardware page translation to
3927 * assemble apparent contiguous memory from discontiguous pages.
3928 *
3929 * Queueing large contiguous runs of pages for batching, however,
3930 * causes the pages to actually be freed in smaller chunks. As there
3931 * can be a significant delay between the individual batches being
3932 * recycled, this leads to the once large chunks of space being
3933 * fragmented and becoming unavailable for high-order allocations.
3934 */
3935 return 0;
3936#endif
e7c8d5c9
CL
3937}
3938
b69a7288 3939static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3940{
3941 struct per_cpu_pages *pcp;
5f8dcc21 3942 int migratetype;
2caaad41 3943
1c6fe946
MD
3944 memset(p, 0, sizeof(*p));
3945
3dfa5721 3946 pcp = &p->pcp;
2caaad41 3947 pcp->count = 0;
2caaad41
CL
3948 pcp->high = 6 * batch;
3949 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3950 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3951 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3952}
3953
8ad4b1fb
RS
3954/*
3955 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3956 * to the value high for the pageset p.
3957 */
3958
3959static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3960 unsigned long high)
3961{
3962 struct per_cpu_pages *pcp;
3963
3dfa5721 3964 pcp = &p->pcp;
8ad4b1fb
RS
3965 pcp->high = high;
3966 pcp->batch = max(1UL, high/4);
3967 if ((high/4) > (PAGE_SHIFT * 8))
3968 pcp->batch = PAGE_SHIFT * 8;
3969}
3970
4ed7e022 3971static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
3972{
3973 int cpu;
3974
3975 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3976
3977 for_each_possible_cpu(cpu) {
3978 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3979
3980 setup_pageset(pcp, zone_batchsize(zone));
3981
3982 if (percpu_pagelist_fraction)
3983 setup_pagelist_highmark(pcp,
3984 (zone->present_pages /
3985 percpu_pagelist_fraction));
3986 }
3987}
3988
2caaad41 3989/*
99dcc3e5
CL
3990 * Allocate per cpu pagesets and initialize them.
3991 * Before this call only boot pagesets were available.
e7c8d5c9 3992 */
99dcc3e5 3993void __init setup_per_cpu_pageset(void)
e7c8d5c9 3994{
99dcc3e5 3995 struct zone *zone;
e7c8d5c9 3996
319774e2
WF
3997 for_each_populated_zone(zone)
3998 setup_zone_pageset(zone);
e7c8d5c9
CL
3999}
4000
577a32f6 4001static noinline __init_refok
cca448fe 4002int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4003{
4004 int i;
4005 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 4006 size_t alloc_size;
ed8ece2e
DH
4007
4008 /*
4009 * The per-page waitqueue mechanism uses hashed waitqueues
4010 * per zone.
4011 */
02b694de
YG
4012 zone->wait_table_hash_nr_entries =
4013 wait_table_hash_nr_entries(zone_size_pages);
4014 zone->wait_table_bits =
4015 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4016 alloc_size = zone->wait_table_hash_nr_entries
4017 * sizeof(wait_queue_head_t);
4018
cd94b9db 4019 if (!slab_is_available()) {
cca448fe 4020 zone->wait_table = (wait_queue_head_t *)
8f389a99 4021 alloc_bootmem_node_nopanic(pgdat, alloc_size);
cca448fe
YG
4022 } else {
4023 /*
4024 * This case means that a zone whose size was 0 gets new memory
4025 * via memory hot-add.
4026 * But it may be the case that a new node was hot-added. In
4027 * this case vmalloc() will not be able to use this new node's
4028 * memory - this wait_table must be initialized to use this new
4029 * node itself as well.
4030 * To use this new node's memory, further consideration will be
4031 * necessary.
4032 */
8691f3a7 4033 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4034 }
4035 if (!zone->wait_table)
4036 return -ENOMEM;
ed8ece2e 4037
02b694de 4038 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4039 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4040
4041 return 0;
ed8ece2e
DH
4042}
4043
c09b4240 4044static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4045{
99dcc3e5
CL
4046 /*
4047 * per cpu subsystem is not up at this point. The following code
4048 * relies on the ability of the linker to provide the
4049 * offset of a (static) per cpu variable into the per cpu area.
4050 */
4051 zone->pageset = &boot_pageset;
ed8ece2e 4052
f5335c0f 4053 if (zone->present_pages)
99dcc3e5
CL
4054 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4055 zone->name, zone->present_pages,
4056 zone_batchsize(zone));
ed8ece2e
DH
4057}
4058
4ed7e022 4059int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4060 unsigned long zone_start_pfn,
a2f3aa02
DH
4061 unsigned long size,
4062 enum memmap_context context)
ed8ece2e
DH
4063{
4064 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4065 int ret;
4066 ret = zone_wait_table_init(zone, size);
4067 if (ret)
4068 return ret;
ed8ece2e
DH
4069 pgdat->nr_zones = zone_idx(zone) + 1;
4070
ed8ece2e
DH
4071 zone->zone_start_pfn = zone_start_pfn;
4072
708614e6
MG
4073 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4074 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4075 pgdat->node_id,
4076 (unsigned long)zone_idx(zone),
4077 zone_start_pfn, (zone_start_pfn + size));
4078
1e548deb 4079 zone_init_free_lists(zone);
718127cc
YG
4080
4081 return 0;
ed8ece2e
DH
4082}
4083
0ee332c1 4084#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
4085#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4086/*
4087 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4088 * Architectures may implement their own version but if add_active_range()
4089 * was used and there are no special requirements, this is a convenient
4090 * alternative
4091 */
f2dbcfa7 4092int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d 4093{
c13291a5
TH
4094 unsigned long start_pfn, end_pfn;
4095 int i, nid;
c713216d 4096
c13291a5 4097 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
c713216d 4098 if (start_pfn <= pfn && pfn < end_pfn)
c13291a5 4099 return nid;
cc2559bc
KH
4100 /* This is a memory hole */
4101 return -1;
c713216d
MG
4102}
4103#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4104
f2dbcfa7
KH
4105int __meminit early_pfn_to_nid(unsigned long pfn)
4106{
cc2559bc
KH
4107 int nid;
4108
4109 nid = __early_pfn_to_nid(pfn);
4110 if (nid >= 0)
4111 return nid;
4112 /* just returns 0 */
4113 return 0;
f2dbcfa7
KH
4114}
4115
cc2559bc
KH
4116#ifdef CONFIG_NODES_SPAN_OTHER_NODES
4117bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4118{
4119 int nid;
4120
4121 nid = __early_pfn_to_nid(pfn);
4122 if (nid >= 0 && nid != node)
4123 return false;
4124 return true;
4125}
4126#endif
f2dbcfa7 4127
c713216d
MG
4128/**
4129 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
4130 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4131 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
4132 *
4133 * If an architecture guarantees that all ranges registered with
4134 * add_active_ranges() contain no holes and may be freed, this
4135 * this function may be used instead of calling free_bootmem() manually.
4136 */
c13291a5 4137void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4138{
c13291a5
TH
4139 unsigned long start_pfn, end_pfn;
4140 int i, this_nid;
edbe7d23 4141
c13291a5
TH
4142 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4143 start_pfn = min(start_pfn, max_low_pfn);
4144 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4145
c13291a5
TH
4146 if (start_pfn < end_pfn)
4147 free_bootmem_node(NODE_DATA(this_nid),
4148 PFN_PHYS(start_pfn),
4149 (end_pfn - start_pfn) << PAGE_SHIFT);
edbe7d23 4150 }
edbe7d23 4151}
edbe7d23 4152
c713216d
MG
4153/**
4154 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4155 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
4156 *
4157 * If an architecture guarantees that all ranges registered with
4158 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 4159 * function may be used instead of calling memory_present() manually.
c713216d
MG
4160 */
4161void __init sparse_memory_present_with_active_regions(int nid)
4162{
c13291a5
TH
4163 unsigned long start_pfn, end_pfn;
4164 int i, this_nid;
c713216d 4165
c13291a5
TH
4166 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4167 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4168}
4169
4170/**
4171 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4172 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4173 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4174 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4175 *
4176 * It returns the start and end page frame of a node based on information
4177 * provided by an arch calling add_active_range(). If called for a node
4178 * with no available memory, a warning is printed and the start and end
88ca3b94 4179 * PFNs will be 0.
c713216d 4180 */
a3142c8e 4181void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4182 unsigned long *start_pfn, unsigned long *end_pfn)
4183{
c13291a5 4184 unsigned long this_start_pfn, this_end_pfn;
c713216d 4185 int i;
c13291a5 4186
c713216d
MG
4187 *start_pfn = -1UL;
4188 *end_pfn = 0;
4189
c13291a5
TH
4190 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4191 *start_pfn = min(*start_pfn, this_start_pfn);
4192 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4193 }
4194
633c0666 4195 if (*start_pfn == -1UL)
c713216d 4196 *start_pfn = 0;
c713216d
MG
4197}
4198
2a1e274a
MG
4199/*
4200 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4201 * assumption is made that zones within a node are ordered in monotonic
4202 * increasing memory addresses so that the "highest" populated zone is used
4203 */
b69a7288 4204static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4205{
4206 int zone_index;
4207 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4208 if (zone_index == ZONE_MOVABLE)
4209 continue;
4210
4211 if (arch_zone_highest_possible_pfn[zone_index] >
4212 arch_zone_lowest_possible_pfn[zone_index])
4213 break;
4214 }
4215
4216 VM_BUG_ON(zone_index == -1);
4217 movable_zone = zone_index;
4218}
4219
4220/*
4221 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4222 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4223 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4224 * in each node depending on the size of each node and how evenly kernelcore
4225 * is distributed. This helper function adjusts the zone ranges
4226 * provided by the architecture for a given node by using the end of the
4227 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4228 * zones within a node are in order of monotonic increases memory addresses
4229 */
b69a7288 4230static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4231 unsigned long zone_type,
4232 unsigned long node_start_pfn,
4233 unsigned long node_end_pfn,
4234 unsigned long *zone_start_pfn,
4235 unsigned long *zone_end_pfn)
4236{
4237 /* Only adjust if ZONE_MOVABLE is on this node */
4238 if (zone_movable_pfn[nid]) {
4239 /* Size ZONE_MOVABLE */
4240 if (zone_type == ZONE_MOVABLE) {
4241 *zone_start_pfn = zone_movable_pfn[nid];
4242 *zone_end_pfn = min(node_end_pfn,
4243 arch_zone_highest_possible_pfn[movable_zone]);
4244
4245 /* Adjust for ZONE_MOVABLE starting within this range */
4246 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4247 *zone_end_pfn > zone_movable_pfn[nid]) {
4248 *zone_end_pfn = zone_movable_pfn[nid];
4249
4250 /* Check if this whole range is within ZONE_MOVABLE */
4251 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4252 *zone_start_pfn = *zone_end_pfn;
4253 }
4254}
4255
c713216d
MG
4256/*
4257 * Return the number of pages a zone spans in a node, including holes
4258 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4259 */
6ea6e688 4260static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4261 unsigned long zone_type,
4262 unsigned long *ignored)
4263{
4264 unsigned long node_start_pfn, node_end_pfn;
4265 unsigned long zone_start_pfn, zone_end_pfn;
4266
4267 /* Get the start and end of the node and zone */
4268 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4269 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4270 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4271 adjust_zone_range_for_zone_movable(nid, zone_type,
4272 node_start_pfn, node_end_pfn,
4273 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4274
4275 /* Check that this node has pages within the zone's required range */
4276 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4277 return 0;
4278
4279 /* Move the zone boundaries inside the node if necessary */
4280 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4281 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4282
4283 /* Return the spanned pages */
4284 return zone_end_pfn - zone_start_pfn;
4285}
4286
4287/*
4288 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4289 * then all holes in the requested range will be accounted for.
c713216d 4290 */
32996250 4291unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4292 unsigned long range_start_pfn,
4293 unsigned long range_end_pfn)
4294{
96e907d1
TH
4295 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4296 unsigned long start_pfn, end_pfn;
4297 int i;
c713216d 4298
96e907d1
TH
4299 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4300 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4301 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4302 nr_absent -= end_pfn - start_pfn;
c713216d 4303 }
96e907d1 4304 return nr_absent;
c713216d
MG
4305}
4306
4307/**
4308 * absent_pages_in_range - Return number of page frames in holes within a range
4309 * @start_pfn: The start PFN to start searching for holes
4310 * @end_pfn: The end PFN to stop searching for holes
4311 *
88ca3b94 4312 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4313 */
4314unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4315 unsigned long end_pfn)
4316{
4317 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4318}
4319
4320/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4321static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4322 unsigned long zone_type,
4323 unsigned long *ignored)
4324{
96e907d1
TH
4325 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4326 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4327 unsigned long node_start_pfn, node_end_pfn;
4328 unsigned long zone_start_pfn, zone_end_pfn;
4329
4330 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
96e907d1
TH
4331 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4332 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4333
2a1e274a
MG
4334 adjust_zone_range_for_zone_movable(nid, zone_type,
4335 node_start_pfn, node_end_pfn,
4336 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4337 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 4338}
0e0b864e 4339
0ee332c1 4340#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 4341static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
4342 unsigned long zone_type,
4343 unsigned long *zones_size)
4344{
4345 return zones_size[zone_type];
4346}
4347
6ea6e688 4348static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4349 unsigned long zone_type,
4350 unsigned long *zholes_size)
4351{
4352 if (!zholes_size)
4353 return 0;
4354
4355 return zholes_size[zone_type];
4356}
0e0b864e 4357
0ee332c1 4358#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4359
a3142c8e 4360static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4361 unsigned long *zones_size, unsigned long *zholes_size)
4362{
4363 unsigned long realtotalpages, totalpages = 0;
4364 enum zone_type i;
4365
4366 for (i = 0; i < MAX_NR_ZONES; i++)
4367 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4368 zones_size);
4369 pgdat->node_spanned_pages = totalpages;
4370
4371 realtotalpages = totalpages;
4372 for (i = 0; i < MAX_NR_ZONES; i++)
4373 realtotalpages -=
4374 zone_absent_pages_in_node(pgdat->node_id, i,
4375 zholes_size);
4376 pgdat->node_present_pages = realtotalpages;
4377 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4378 realtotalpages);
4379}
4380
835c134e
MG
4381#ifndef CONFIG_SPARSEMEM
4382/*
4383 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4384 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4385 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4386 * round what is now in bits to nearest long in bits, then return it in
4387 * bytes.
4388 */
4389static unsigned long __init usemap_size(unsigned long zonesize)
4390{
4391 unsigned long usemapsize;
4392
d9c23400
MG
4393 usemapsize = roundup(zonesize, pageblock_nr_pages);
4394 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4395 usemapsize *= NR_PAGEBLOCK_BITS;
4396 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4397
4398 return usemapsize / 8;
4399}
4400
4401static void __init setup_usemap(struct pglist_data *pgdat,
4402 struct zone *zone, unsigned long zonesize)
4403{
4404 unsigned long usemapsize = usemap_size(zonesize);
4405 zone->pageblock_flags = NULL;
58a01a45 4406 if (usemapsize)
8f389a99
YL
4407 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4408 usemapsize);
835c134e
MG
4409}
4410#else
fa9f90be 4411static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4412 struct zone *zone, unsigned long zonesize) {}
4413#endif /* CONFIG_SPARSEMEM */
4414
d9c23400 4415#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 4416
d9c23400 4417/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
ca57df79 4418void __init set_pageblock_order(void)
d9c23400 4419{
955c1cd7
AM
4420 unsigned int order;
4421
d9c23400
MG
4422 /* Check that pageblock_nr_pages has not already been setup */
4423 if (pageblock_order)
4424 return;
4425
955c1cd7
AM
4426 if (HPAGE_SHIFT > PAGE_SHIFT)
4427 order = HUGETLB_PAGE_ORDER;
4428 else
4429 order = MAX_ORDER - 1;
4430
d9c23400
MG
4431 /*
4432 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
4433 * This value may be variable depending on boot parameters on IA64 and
4434 * powerpc.
d9c23400
MG
4435 */
4436 pageblock_order = order;
4437}
4438#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4439
ba72cb8c
MG
4440/*
4441 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
4442 * is unused as pageblock_order is set at compile-time. See
4443 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4444 * the kernel config
ba72cb8c 4445 */
ca57df79 4446void __init set_pageblock_order(void)
ba72cb8c 4447{
ba72cb8c 4448}
d9c23400
MG
4449
4450#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4451
1da177e4
LT
4452/*
4453 * Set up the zone data structures:
4454 * - mark all pages reserved
4455 * - mark all memory queues empty
4456 * - clear the memory bitmaps
6527af5d
MK
4457 *
4458 * NOTE: pgdat should get zeroed by caller.
1da177e4 4459 */
b5a0e011 4460static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4461 unsigned long *zones_size, unsigned long *zholes_size)
4462{
2f1b6248 4463 enum zone_type j;
ed8ece2e 4464 int nid = pgdat->node_id;
1da177e4 4465 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4466 int ret;
1da177e4 4467
208d54e5 4468 pgdat_resize_init(pgdat);
1da177e4 4469 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 4470 init_waitqueue_head(&pgdat->pfmemalloc_wait);
52d4b9ac 4471 pgdat_page_cgroup_init(pgdat);
5f63b720 4472
1da177e4
LT
4473 for (j = 0; j < MAX_NR_ZONES; j++) {
4474 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4475 unsigned long size, realsize, memmap_pages;
1da177e4 4476
c713216d
MG
4477 size = zone_spanned_pages_in_node(nid, j, zones_size);
4478 realsize = size - zone_absent_pages_in_node(nid, j,
4479 zholes_size);
1da177e4 4480
0e0b864e
MG
4481 /*
4482 * Adjust realsize so that it accounts for how much memory
4483 * is used by this zone for memmap. This affects the watermark
4484 * and per-cpu initialisations
4485 */
f7232154
JW
4486 memmap_pages =
4487 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4488 if (realsize >= memmap_pages) {
4489 realsize -= memmap_pages;
5594c8c8
YL
4490 if (memmap_pages)
4491 printk(KERN_DEBUG
4492 " %s zone: %lu pages used for memmap\n",
4493 zone_names[j], memmap_pages);
0e0b864e
MG
4494 } else
4495 printk(KERN_WARNING
4496 " %s zone: %lu pages exceeds realsize %lu\n",
4497 zone_names[j], memmap_pages, realsize);
4498
6267276f
CL
4499 /* Account for reserved pages */
4500 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4501 realsize -= dma_reserve;
d903ef9f 4502 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4503 zone_names[0], dma_reserve);
0e0b864e
MG
4504 }
4505
98d2b0eb 4506 if (!is_highmem_idx(j))
1da177e4
LT
4507 nr_kernel_pages += realsize;
4508 nr_all_pages += realsize;
4509
4510 zone->spanned_pages = size;
4511 zone->present_pages = realsize;
9614634f 4512#ifdef CONFIG_NUMA
d5f541ed 4513 zone->node = nid;
8417bba4 4514 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4515 / 100;
0ff38490 4516 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4517#endif
1da177e4
LT
4518 zone->name = zone_names[j];
4519 spin_lock_init(&zone->lock);
4520 spin_lock_init(&zone->lru_lock);
bdc8cb98 4521 zone_seqlock_init(zone);
1da177e4 4522 zone->zone_pgdat = pgdat;
1da177e4 4523
ed8ece2e 4524 zone_pcp_init(zone);
bea8c150 4525 lruvec_init(&zone->lruvec);
1da177e4
LT
4526 if (!size)
4527 continue;
4528
955c1cd7 4529 set_pageblock_order();
835c134e 4530 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4531 ret = init_currently_empty_zone(zone, zone_start_pfn,
4532 size, MEMMAP_EARLY);
718127cc 4533 BUG_ON(ret);
76cdd58e 4534 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4535 zone_start_pfn += size;
1da177e4
LT
4536 }
4537}
4538
577a32f6 4539static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4540{
1da177e4
LT
4541 /* Skip empty nodes */
4542 if (!pgdat->node_spanned_pages)
4543 return;
4544
d41dee36 4545#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4546 /* ia64 gets its own node_mem_map, before this, without bootmem */
4547 if (!pgdat->node_mem_map) {
e984bb43 4548 unsigned long size, start, end;
d41dee36
AW
4549 struct page *map;
4550
e984bb43
BP
4551 /*
4552 * The zone's endpoints aren't required to be MAX_ORDER
4553 * aligned but the node_mem_map endpoints must be in order
4554 * for the buddy allocator to function correctly.
4555 */
4556 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4557 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4558 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4559 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4560 map = alloc_remap(pgdat->node_id, size);
4561 if (!map)
8f389a99 4562 map = alloc_bootmem_node_nopanic(pgdat, size);
e984bb43 4563 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4564 }
12d810c1 4565#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4566 /*
4567 * With no DISCONTIG, the global mem_map is just set as node 0's
4568 */
c713216d 4569 if (pgdat == NODE_DATA(0)) {
1da177e4 4570 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 4571#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4572 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4573 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 4574#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 4575 }
1da177e4 4576#endif
d41dee36 4577#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4578}
4579
9109fb7b
JW
4580void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4581 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4582{
9109fb7b
JW
4583 pg_data_t *pgdat = NODE_DATA(nid);
4584
88fdf75d 4585 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 4586 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 4587
1da177e4
LT
4588 pgdat->node_id = nid;
4589 pgdat->node_start_pfn = node_start_pfn;
957f822a 4590 init_zone_allows_reclaim(nid);
c713216d 4591 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4592
4593 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4594#ifdef CONFIG_FLAT_NODE_MEM_MAP
4595 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4596 nid, (unsigned long)pgdat,
4597 (unsigned long)pgdat->node_mem_map);
4598#endif
1da177e4
LT
4599
4600 free_area_init_core(pgdat, zones_size, zholes_size);
4601}
4602
0ee332c1 4603#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
4604
4605#if MAX_NUMNODES > 1
4606/*
4607 * Figure out the number of possible node ids.
4608 */
4609static void __init setup_nr_node_ids(void)
4610{
4611 unsigned int node;
4612 unsigned int highest = 0;
4613
4614 for_each_node_mask(node, node_possible_map)
4615 highest = node;
4616 nr_node_ids = highest + 1;
4617}
4618#else
4619static inline void setup_nr_node_ids(void)
4620{
4621}
4622#endif
4623
1e01979c
TH
4624/**
4625 * node_map_pfn_alignment - determine the maximum internode alignment
4626 *
4627 * This function should be called after node map is populated and sorted.
4628 * It calculates the maximum power of two alignment which can distinguish
4629 * all the nodes.
4630 *
4631 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4632 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4633 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4634 * shifted, 1GiB is enough and this function will indicate so.
4635 *
4636 * This is used to test whether pfn -> nid mapping of the chosen memory
4637 * model has fine enough granularity to avoid incorrect mapping for the
4638 * populated node map.
4639 *
4640 * Returns the determined alignment in pfn's. 0 if there is no alignment
4641 * requirement (single node).
4642 */
4643unsigned long __init node_map_pfn_alignment(void)
4644{
4645 unsigned long accl_mask = 0, last_end = 0;
c13291a5 4646 unsigned long start, end, mask;
1e01979c 4647 int last_nid = -1;
c13291a5 4648 int i, nid;
1e01979c 4649
c13291a5 4650 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
4651 if (!start || last_nid < 0 || last_nid == nid) {
4652 last_nid = nid;
4653 last_end = end;
4654 continue;
4655 }
4656
4657 /*
4658 * Start with a mask granular enough to pin-point to the
4659 * start pfn and tick off bits one-by-one until it becomes
4660 * too coarse to separate the current node from the last.
4661 */
4662 mask = ~((1 << __ffs(start)) - 1);
4663 while (mask && last_end <= (start & (mask << 1)))
4664 mask <<= 1;
4665
4666 /* accumulate all internode masks */
4667 accl_mask |= mask;
4668 }
4669
4670 /* convert mask to number of pages */
4671 return ~accl_mask + 1;
4672}
4673
a6af2bc3 4674/* Find the lowest pfn for a node */
b69a7288 4675static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 4676{
a6af2bc3 4677 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
4678 unsigned long start_pfn;
4679 int i;
1abbfb41 4680
c13291a5
TH
4681 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4682 min_pfn = min(min_pfn, start_pfn);
c713216d 4683
a6af2bc3
MG
4684 if (min_pfn == ULONG_MAX) {
4685 printk(KERN_WARNING
2bc0d261 4686 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4687 return 0;
4688 }
4689
4690 return min_pfn;
c713216d
MG
4691}
4692
4693/**
4694 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4695 *
4696 * It returns the minimum PFN based on information provided via
88ca3b94 4697 * add_active_range().
c713216d
MG
4698 */
4699unsigned long __init find_min_pfn_with_active_regions(void)
4700{
4701 return find_min_pfn_for_node(MAX_NUMNODES);
4702}
4703
37b07e41
LS
4704/*
4705 * early_calculate_totalpages()
4706 * Sum pages in active regions for movable zone.
4707 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4708 */
484f51f8 4709static unsigned long __init early_calculate_totalpages(void)
7e63efef 4710{
7e63efef 4711 unsigned long totalpages = 0;
c13291a5
TH
4712 unsigned long start_pfn, end_pfn;
4713 int i, nid;
4714
4715 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4716 unsigned long pages = end_pfn - start_pfn;
7e63efef 4717
37b07e41
LS
4718 totalpages += pages;
4719 if (pages)
c13291a5 4720 node_set_state(nid, N_HIGH_MEMORY);
37b07e41
LS
4721 }
4722 return totalpages;
7e63efef
MG
4723}
4724
2a1e274a
MG
4725/*
4726 * Find the PFN the Movable zone begins in each node. Kernel memory
4727 * is spread evenly between nodes as long as the nodes have enough
4728 * memory. When they don't, some nodes will have more kernelcore than
4729 * others
4730 */
b224ef85 4731static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
4732{
4733 int i, nid;
4734 unsigned long usable_startpfn;
4735 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4736 /* save the state before borrow the nodemask */
4737 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4738 unsigned long totalpages = early_calculate_totalpages();
4739 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4740
7e63efef
MG
4741 /*
4742 * If movablecore was specified, calculate what size of
4743 * kernelcore that corresponds so that memory usable for
4744 * any allocation type is evenly spread. If both kernelcore
4745 * and movablecore are specified, then the value of kernelcore
4746 * will be used for required_kernelcore if it's greater than
4747 * what movablecore would have allowed.
4748 */
4749 if (required_movablecore) {
7e63efef
MG
4750 unsigned long corepages;
4751
4752 /*
4753 * Round-up so that ZONE_MOVABLE is at least as large as what
4754 * was requested by the user
4755 */
4756 required_movablecore =
4757 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4758 corepages = totalpages - required_movablecore;
4759
4760 required_kernelcore = max(required_kernelcore, corepages);
4761 }
4762
2a1e274a
MG
4763 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4764 if (!required_kernelcore)
66918dcd 4765 goto out;
2a1e274a
MG
4766
4767 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4768 find_usable_zone_for_movable();
4769 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4770
4771restart:
4772 /* Spread kernelcore memory as evenly as possible throughout nodes */
4773 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4774 for_each_node_state(nid, N_HIGH_MEMORY) {
c13291a5
TH
4775 unsigned long start_pfn, end_pfn;
4776
2a1e274a
MG
4777 /*
4778 * Recalculate kernelcore_node if the division per node
4779 * now exceeds what is necessary to satisfy the requested
4780 * amount of memory for the kernel
4781 */
4782 if (required_kernelcore < kernelcore_node)
4783 kernelcore_node = required_kernelcore / usable_nodes;
4784
4785 /*
4786 * As the map is walked, we track how much memory is usable
4787 * by the kernel using kernelcore_remaining. When it is
4788 * 0, the rest of the node is usable by ZONE_MOVABLE
4789 */
4790 kernelcore_remaining = kernelcore_node;
4791
4792 /* Go through each range of PFNs within this node */
c13291a5 4793 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
4794 unsigned long size_pages;
4795
c13291a5 4796 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
4797 if (start_pfn >= end_pfn)
4798 continue;
4799
4800 /* Account for what is only usable for kernelcore */
4801 if (start_pfn < usable_startpfn) {
4802 unsigned long kernel_pages;
4803 kernel_pages = min(end_pfn, usable_startpfn)
4804 - start_pfn;
4805
4806 kernelcore_remaining -= min(kernel_pages,
4807 kernelcore_remaining);
4808 required_kernelcore -= min(kernel_pages,
4809 required_kernelcore);
4810
4811 /* Continue if range is now fully accounted */
4812 if (end_pfn <= usable_startpfn) {
4813
4814 /*
4815 * Push zone_movable_pfn to the end so
4816 * that if we have to rebalance
4817 * kernelcore across nodes, we will
4818 * not double account here
4819 */
4820 zone_movable_pfn[nid] = end_pfn;
4821 continue;
4822 }
4823 start_pfn = usable_startpfn;
4824 }
4825
4826 /*
4827 * The usable PFN range for ZONE_MOVABLE is from
4828 * start_pfn->end_pfn. Calculate size_pages as the
4829 * number of pages used as kernelcore
4830 */
4831 size_pages = end_pfn - start_pfn;
4832 if (size_pages > kernelcore_remaining)
4833 size_pages = kernelcore_remaining;
4834 zone_movable_pfn[nid] = start_pfn + size_pages;
4835
4836 /*
4837 * Some kernelcore has been met, update counts and
4838 * break if the kernelcore for this node has been
4839 * satisified
4840 */
4841 required_kernelcore -= min(required_kernelcore,
4842 size_pages);
4843 kernelcore_remaining -= size_pages;
4844 if (!kernelcore_remaining)
4845 break;
4846 }
4847 }
4848
4849 /*
4850 * If there is still required_kernelcore, we do another pass with one
4851 * less node in the count. This will push zone_movable_pfn[nid] further
4852 * along on the nodes that still have memory until kernelcore is
4853 * satisified
4854 */
4855 usable_nodes--;
4856 if (usable_nodes && required_kernelcore > usable_nodes)
4857 goto restart;
4858
4859 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4860 for (nid = 0; nid < MAX_NUMNODES; nid++)
4861 zone_movable_pfn[nid] =
4862 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4863
4864out:
4865 /* restore the node_state */
4866 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4867}
4868
37b07e41 4869/* Any regular memory on that node ? */
4ed7e022 4870static void __init check_for_regular_memory(pg_data_t *pgdat)
37b07e41
LS
4871{
4872#ifdef CONFIG_HIGHMEM
4873 enum zone_type zone_type;
4874
4875 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4876 struct zone *zone = &pgdat->node_zones[zone_type];
d0048b0e 4877 if (zone->present_pages) {
37b07e41 4878 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
d0048b0e
BL
4879 break;
4880 }
37b07e41
LS
4881 }
4882#endif
4883}
4884
c713216d
MG
4885/**
4886 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4887 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4888 *
4889 * This will call free_area_init_node() for each active node in the system.
4890 * Using the page ranges provided by add_active_range(), the size of each
4891 * zone in each node and their holes is calculated. If the maximum PFN
4892 * between two adjacent zones match, it is assumed that the zone is empty.
4893 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4894 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4895 * starts where the previous one ended. For example, ZONE_DMA32 starts
4896 * at arch_max_dma_pfn.
4897 */
4898void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4899{
c13291a5
TH
4900 unsigned long start_pfn, end_pfn;
4901 int i, nid;
a6af2bc3 4902
c713216d
MG
4903 /* Record where the zone boundaries are */
4904 memset(arch_zone_lowest_possible_pfn, 0,
4905 sizeof(arch_zone_lowest_possible_pfn));
4906 memset(arch_zone_highest_possible_pfn, 0,
4907 sizeof(arch_zone_highest_possible_pfn));
4908 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4909 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4910 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4911 if (i == ZONE_MOVABLE)
4912 continue;
c713216d
MG
4913 arch_zone_lowest_possible_pfn[i] =
4914 arch_zone_highest_possible_pfn[i-1];
4915 arch_zone_highest_possible_pfn[i] =
4916 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4917 }
2a1e274a
MG
4918 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4919 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4920
4921 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4922 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 4923 find_zone_movable_pfns_for_nodes();
c713216d 4924
c713216d 4925 /* Print out the zone ranges */
a62e2f4f 4926 printk("Zone ranges:\n");
2a1e274a
MG
4927 for (i = 0; i < MAX_NR_ZONES; i++) {
4928 if (i == ZONE_MOVABLE)
4929 continue;
155cbfc8 4930 printk(KERN_CONT " %-8s ", zone_names[i]);
72f0ba02
DR
4931 if (arch_zone_lowest_possible_pfn[i] ==
4932 arch_zone_highest_possible_pfn[i])
155cbfc8 4933 printk(KERN_CONT "empty\n");
72f0ba02 4934 else
a62e2f4f
BH
4935 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4936 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4937 (arch_zone_highest_possible_pfn[i]
4938 << PAGE_SHIFT) - 1);
2a1e274a
MG
4939 }
4940
4941 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
a62e2f4f 4942 printk("Movable zone start for each node\n");
2a1e274a
MG
4943 for (i = 0; i < MAX_NUMNODES; i++) {
4944 if (zone_movable_pfn[i])
a62e2f4f
BH
4945 printk(" Node %d: %#010lx\n", i,
4946 zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 4947 }
c713216d 4948
f2d52fe5 4949 /* Print out the early node map */
a62e2f4f 4950 printk("Early memory node ranges\n");
c13291a5 4951 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
a62e2f4f
BH
4952 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4953 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
4954
4955 /* Initialise every node */
708614e6 4956 mminit_verify_pageflags_layout();
8ef82866 4957 setup_nr_node_ids();
c713216d
MG
4958 for_each_online_node(nid) {
4959 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4960 free_area_init_node(nid, NULL,
c713216d 4961 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4962
4963 /* Any memory on that node */
4964 if (pgdat->node_present_pages)
4965 node_set_state(nid, N_HIGH_MEMORY);
4966 check_for_regular_memory(pgdat);
c713216d
MG
4967 }
4968}
2a1e274a 4969
7e63efef 4970static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4971{
4972 unsigned long long coremem;
4973 if (!p)
4974 return -EINVAL;
4975
4976 coremem = memparse(p, &p);
7e63efef 4977 *core = coremem >> PAGE_SHIFT;
2a1e274a 4978
7e63efef 4979 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4980 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4981
4982 return 0;
4983}
ed7ed365 4984
7e63efef
MG
4985/*
4986 * kernelcore=size sets the amount of memory for use for allocations that
4987 * cannot be reclaimed or migrated.
4988 */
4989static int __init cmdline_parse_kernelcore(char *p)
4990{
4991 return cmdline_parse_core(p, &required_kernelcore);
4992}
4993
4994/*
4995 * movablecore=size sets the amount of memory for use for allocations that
4996 * can be reclaimed or migrated.
4997 */
4998static int __init cmdline_parse_movablecore(char *p)
4999{
5000 return cmdline_parse_core(p, &required_movablecore);
5001}
5002
ed7ed365 5003early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5004early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5005
0ee332c1 5006#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5007
0e0b864e 5008/**
88ca3b94
RD
5009 * set_dma_reserve - set the specified number of pages reserved in the first zone
5010 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5011 *
5012 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5013 * In the DMA zone, a significant percentage may be consumed by kernel image
5014 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5015 * function may optionally be used to account for unfreeable pages in the
5016 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5017 * smaller per-cpu batchsize.
0e0b864e
MG
5018 */
5019void __init set_dma_reserve(unsigned long new_dma_reserve)
5020{
5021 dma_reserve = new_dma_reserve;
5022}
5023
1da177e4
LT
5024void __init free_area_init(unsigned long *zones_size)
5025{
9109fb7b 5026 free_area_init_node(0, zones_size,
1da177e4
LT
5027 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5028}
1da177e4 5029
1da177e4
LT
5030static int page_alloc_cpu_notify(struct notifier_block *self,
5031 unsigned long action, void *hcpu)
5032{
5033 int cpu = (unsigned long)hcpu;
1da177e4 5034
8bb78442 5035 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5036 lru_add_drain_cpu(cpu);
9f8f2172
CL
5037 drain_pages(cpu);
5038
5039 /*
5040 * Spill the event counters of the dead processor
5041 * into the current processors event counters.
5042 * This artificially elevates the count of the current
5043 * processor.
5044 */
f8891e5e 5045 vm_events_fold_cpu(cpu);
9f8f2172
CL
5046
5047 /*
5048 * Zero the differential counters of the dead processor
5049 * so that the vm statistics are consistent.
5050 *
5051 * This is only okay since the processor is dead and cannot
5052 * race with what we are doing.
5053 */
2244b95a 5054 refresh_cpu_vm_stats(cpu);
1da177e4
LT
5055 }
5056 return NOTIFY_OK;
5057}
1da177e4
LT
5058
5059void __init page_alloc_init(void)
5060{
5061 hotcpu_notifier(page_alloc_cpu_notify, 0);
5062}
5063
cb45b0e9
HA
5064/*
5065 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5066 * or min_free_kbytes changes.
5067 */
5068static void calculate_totalreserve_pages(void)
5069{
5070 struct pglist_data *pgdat;
5071 unsigned long reserve_pages = 0;
2f6726e5 5072 enum zone_type i, j;
cb45b0e9
HA
5073
5074 for_each_online_pgdat(pgdat) {
5075 for (i = 0; i < MAX_NR_ZONES; i++) {
5076 struct zone *zone = pgdat->node_zones + i;
5077 unsigned long max = 0;
5078
5079 /* Find valid and maximum lowmem_reserve in the zone */
5080 for (j = i; j < MAX_NR_ZONES; j++) {
5081 if (zone->lowmem_reserve[j] > max)
5082 max = zone->lowmem_reserve[j];
5083 }
5084
41858966
MG
5085 /* we treat the high watermark as reserved pages. */
5086 max += high_wmark_pages(zone);
cb45b0e9
HA
5087
5088 if (max > zone->present_pages)
5089 max = zone->present_pages;
5090 reserve_pages += max;
ab8fabd4
JW
5091 /*
5092 * Lowmem reserves are not available to
5093 * GFP_HIGHUSER page cache allocations and
5094 * kswapd tries to balance zones to their high
5095 * watermark. As a result, neither should be
5096 * regarded as dirtyable memory, to prevent a
5097 * situation where reclaim has to clean pages
5098 * in order to balance the zones.
5099 */
5100 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5101 }
5102 }
ab8fabd4 5103 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5104 totalreserve_pages = reserve_pages;
5105}
5106
1da177e4
LT
5107/*
5108 * setup_per_zone_lowmem_reserve - called whenever
5109 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5110 * has a correct pages reserved value, so an adequate number of
5111 * pages are left in the zone after a successful __alloc_pages().
5112 */
5113static void setup_per_zone_lowmem_reserve(void)
5114{
5115 struct pglist_data *pgdat;
2f6726e5 5116 enum zone_type j, idx;
1da177e4 5117
ec936fc5 5118 for_each_online_pgdat(pgdat) {
1da177e4
LT
5119 for (j = 0; j < MAX_NR_ZONES; j++) {
5120 struct zone *zone = pgdat->node_zones + j;
5121 unsigned long present_pages = zone->present_pages;
5122
5123 zone->lowmem_reserve[j] = 0;
5124
2f6726e5
CL
5125 idx = j;
5126 while (idx) {
1da177e4
LT
5127 struct zone *lower_zone;
5128
2f6726e5
CL
5129 idx--;
5130
1da177e4
LT
5131 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5132 sysctl_lowmem_reserve_ratio[idx] = 1;
5133
5134 lower_zone = pgdat->node_zones + idx;
5135 lower_zone->lowmem_reserve[j] = present_pages /
5136 sysctl_lowmem_reserve_ratio[idx];
5137 present_pages += lower_zone->present_pages;
5138 }
5139 }
5140 }
cb45b0e9
HA
5141
5142 /* update totalreserve_pages */
5143 calculate_totalreserve_pages();
1da177e4
LT
5144}
5145
cfd3da1e 5146static void __setup_per_zone_wmarks(void)
1da177e4
LT
5147{
5148 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5149 unsigned long lowmem_pages = 0;
5150 struct zone *zone;
5151 unsigned long flags;
5152
5153 /* Calculate total number of !ZONE_HIGHMEM pages */
5154 for_each_zone(zone) {
5155 if (!is_highmem(zone))
5156 lowmem_pages += zone->present_pages;
5157 }
5158
5159 for_each_zone(zone) {
ac924c60
AM
5160 u64 tmp;
5161
1125b4e3 5162 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
5163 tmp = (u64)pages_min * zone->present_pages;
5164 do_div(tmp, lowmem_pages);
1da177e4
LT
5165 if (is_highmem(zone)) {
5166 /*
669ed175
NP
5167 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5168 * need highmem pages, so cap pages_min to a small
5169 * value here.
5170 *
41858966 5171 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
5172 * deltas controls asynch page reclaim, and so should
5173 * not be capped for highmem.
1da177e4
LT
5174 */
5175 int min_pages;
5176
5177 min_pages = zone->present_pages / 1024;
5178 if (min_pages < SWAP_CLUSTER_MAX)
5179 min_pages = SWAP_CLUSTER_MAX;
5180 if (min_pages > 128)
5181 min_pages = 128;
41858966 5182 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 5183 } else {
669ed175
NP
5184 /*
5185 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
5186 * proportionate to the zone's size.
5187 */
41858966 5188 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
5189 }
5190
41858966
MG
5191 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5192 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9
MS
5193
5194 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5195 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5196 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5197
56fd56b8 5198 setup_zone_migrate_reserve(zone);
1125b4e3 5199 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 5200 }
cb45b0e9
HA
5201
5202 /* update totalreserve_pages */
5203 calculate_totalreserve_pages();
1da177e4
LT
5204}
5205
cfd3da1e
MG
5206/**
5207 * setup_per_zone_wmarks - called when min_free_kbytes changes
5208 * or when memory is hot-{added|removed}
5209 *
5210 * Ensures that the watermark[min,low,high] values for each zone are set
5211 * correctly with respect to min_free_kbytes.
5212 */
5213void setup_per_zone_wmarks(void)
5214{
5215 mutex_lock(&zonelists_mutex);
5216 __setup_per_zone_wmarks();
5217 mutex_unlock(&zonelists_mutex);
5218}
5219
55a4462a 5220/*
556adecb
RR
5221 * The inactive anon list should be small enough that the VM never has to
5222 * do too much work, but large enough that each inactive page has a chance
5223 * to be referenced again before it is swapped out.
5224 *
5225 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5226 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5227 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5228 * the anonymous pages are kept on the inactive list.
5229 *
5230 * total target max
5231 * memory ratio inactive anon
5232 * -------------------------------------
5233 * 10MB 1 5MB
5234 * 100MB 1 50MB
5235 * 1GB 3 250MB
5236 * 10GB 10 0.9GB
5237 * 100GB 31 3GB
5238 * 1TB 101 10GB
5239 * 10TB 320 32GB
5240 */
1b79acc9 5241static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5242{
96cb4df5 5243 unsigned int gb, ratio;
556adecb 5244
96cb4df5
MK
5245 /* Zone size in gigabytes */
5246 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5247 if (gb)
556adecb 5248 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5249 else
5250 ratio = 1;
556adecb 5251
96cb4df5
MK
5252 zone->inactive_ratio = ratio;
5253}
556adecb 5254
839a4fcc 5255static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
5256{
5257 struct zone *zone;
5258
5259 for_each_zone(zone)
5260 calculate_zone_inactive_ratio(zone);
556adecb
RR
5261}
5262
1da177e4
LT
5263/*
5264 * Initialise min_free_kbytes.
5265 *
5266 * For small machines we want it small (128k min). For large machines
5267 * we want it large (64MB max). But it is not linear, because network
5268 * bandwidth does not increase linearly with machine size. We use
5269 *
5270 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5271 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5272 *
5273 * which yields
5274 *
5275 * 16MB: 512k
5276 * 32MB: 724k
5277 * 64MB: 1024k
5278 * 128MB: 1448k
5279 * 256MB: 2048k
5280 * 512MB: 2896k
5281 * 1024MB: 4096k
5282 * 2048MB: 5792k
5283 * 4096MB: 8192k
5284 * 8192MB: 11584k
5285 * 16384MB: 16384k
5286 */
1b79acc9 5287int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
5288{
5289 unsigned long lowmem_kbytes;
5290
5291 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5292
5293 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5294 if (min_free_kbytes < 128)
5295 min_free_kbytes = 128;
5296 if (min_free_kbytes > 65536)
5297 min_free_kbytes = 65536;
bc75d33f 5298 setup_per_zone_wmarks();
a6cccdc3 5299 refresh_zone_stat_thresholds();
1da177e4 5300 setup_per_zone_lowmem_reserve();
556adecb 5301 setup_per_zone_inactive_ratio();
1da177e4
LT
5302 return 0;
5303}
bc75d33f 5304module_init(init_per_zone_wmark_min)
1da177e4
LT
5305
5306/*
5307 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5308 * that we can call two helper functions whenever min_free_kbytes
5309 * changes.
5310 */
5311int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5312 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5313{
8d65af78 5314 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5315 if (write)
bc75d33f 5316 setup_per_zone_wmarks();
1da177e4
LT
5317 return 0;
5318}
5319
9614634f
CL
5320#ifdef CONFIG_NUMA
5321int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5322 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5323{
5324 struct zone *zone;
5325 int rc;
5326
8d65af78 5327 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5328 if (rc)
5329 return rc;
5330
5331 for_each_zone(zone)
8417bba4 5332 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5333 sysctl_min_unmapped_ratio) / 100;
5334 return 0;
5335}
0ff38490
CL
5336
5337int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5338 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5339{
5340 struct zone *zone;
5341 int rc;
5342
8d65af78 5343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5344 if (rc)
5345 return rc;
5346
5347 for_each_zone(zone)
5348 zone->min_slab_pages = (zone->present_pages *
5349 sysctl_min_slab_ratio) / 100;
5350 return 0;
5351}
9614634f
CL
5352#endif
5353
1da177e4
LT
5354/*
5355 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5356 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5357 * whenever sysctl_lowmem_reserve_ratio changes.
5358 *
5359 * The reserve ratio obviously has absolutely no relation with the
41858966 5360 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5361 * if in function of the boot time zone sizes.
5362 */
5363int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5364 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5365{
8d65af78 5366 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5367 setup_per_zone_lowmem_reserve();
5368 return 0;
5369}
5370
8ad4b1fb
RS
5371/*
5372 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5373 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5374 * can have before it gets flushed back to buddy allocator.
5375 */
5376
5377int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5378 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5379{
5380 struct zone *zone;
5381 unsigned int cpu;
5382 int ret;
5383
8d65af78 5384 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
93278814 5385 if (!write || (ret < 0))
8ad4b1fb 5386 return ret;
364df0eb 5387 for_each_populated_zone(zone) {
99dcc3e5 5388 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5389 unsigned long high;
5390 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5391 setup_pagelist_highmark(
5392 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5393 }
5394 }
5395 return 0;
5396}
5397
f034b5d4 5398int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5399
5400#ifdef CONFIG_NUMA
5401static int __init set_hashdist(char *str)
5402{
5403 if (!str)
5404 return 0;
5405 hashdist = simple_strtoul(str, &str, 0);
5406 return 1;
5407}
5408__setup("hashdist=", set_hashdist);
5409#endif
5410
5411/*
5412 * allocate a large system hash table from bootmem
5413 * - it is assumed that the hash table must contain an exact power-of-2
5414 * quantity of entries
5415 * - limit is the number of hash buckets, not the total allocation size
5416 */
5417void *__init alloc_large_system_hash(const char *tablename,
5418 unsigned long bucketsize,
5419 unsigned long numentries,
5420 int scale,
5421 int flags,
5422 unsigned int *_hash_shift,
5423 unsigned int *_hash_mask,
31fe62b9
TB
5424 unsigned long low_limit,
5425 unsigned long high_limit)
1da177e4 5426{
31fe62b9 5427 unsigned long long max = high_limit;
1da177e4
LT
5428 unsigned long log2qty, size;
5429 void *table = NULL;
5430
5431 /* allow the kernel cmdline to have a say */
5432 if (!numentries) {
5433 /* round applicable memory size up to nearest megabyte */
04903664 5434 numentries = nr_kernel_pages;
1da177e4
LT
5435 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5436 numentries >>= 20 - PAGE_SHIFT;
5437 numentries <<= 20 - PAGE_SHIFT;
5438
5439 /* limit to 1 bucket per 2^scale bytes of low memory */
5440 if (scale > PAGE_SHIFT)
5441 numentries >>= (scale - PAGE_SHIFT);
5442 else
5443 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5444
5445 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5446 if (unlikely(flags & HASH_SMALL)) {
5447 /* Makes no sense without HASH_EARLY */
5448 WARN_ON(!(flags & HASH_EARLY));
5449 if (!(numentries >> *_hash_shift)) {
5450 numentries = 1UL << *_hash_shift;
5451 BUG_ON(!numentries);
5452 }
5453 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5454 numentries = PAGE_SIZE / bucketsize;
1da177e4 5455 }
6e692ed3 5456 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5457
5458 /* limit allocation size to 1/16 total memory by default */
5459 if (max == 0) {
5460 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5461 do_div(max, bucketsize);
5462 }
074b8517 5463 max = min(max, 0x80000000ULL);
1da177e4 5464
31fe62b9
TB
5465 if (numentries < low_limit)
5466 numentries = low_limit;
1da177e4
LT
5467 if (numentries > max)
5468 numentries = max;
5469
f0d1b0b3 5470 log2qty = ilog2(numentries);
1da177e4
LT
5471
5472 do {
5473 size = bucketsize << log2qty;
5474 if (flags & HASH_EARLY)
74768ed8 5475 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5476 else if (hashdist)
5477 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5478 else {
1037b83b
ED
5479 /*
5480 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5481 * some pages at the end of hash table which
5482 * alloc_pages_exact() automatically does
1037b83b 5483 */
264ef8a9 5484 if (get_order(size) < MAX_ORDER) {
a1dd268c 5485 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5486 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5487 }
1da177e4
LT
5488 }
5489 } while (!table && size > PAGE_SIZE && --log2qty);
5490
5491 if (!table)
5492 panic("Failed to allocate %s hash table\n", tablename);
5493
f241e660 5494 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5495 tablename,
f241e660 5496 (1UL << log2qty),
f0d1b0b3 5497 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5498 size);
5499
5500 if (_hash_shift)
5501 *_hash_shift = log2qty;
5502 if (_hash_mask)
5503 *_hash_mask = (1 << log2qty) - 1;
5504
5505 return table;
5506}
a117e66e 5507
835c134e
MG
5508/* Return a pointer to the bitmap storing bits affecting a block of pages */
5509static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5510 unsigned long pfn)
5511{
5512#ifdef CONFIG_SPARSEMEM
5513 return __pfn_to_section(pfn)->pageblock_flags;
5514#else
5515 return zone->pageblock_flags;
5516#endif /* CONFIG_SPARSEMEM */
5517}
5518
5519static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5520{
5521#ifdef CONFIG_SPARSEMEM
5522 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5523 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5524#else
5525 pfn = pfn - zone->zone_start_pfn;
d9c23400 5526 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5527#endif /* CONFIG_SPARSEMEM */
5528}
5529
5530/**
d9c23400 5531 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5532 * @page: The page within the block of interest
5533 * @start_bitidx: The first bit of interest to retrieve
5534 * @end_bitidx: The last bit of interest
5535 * returns pageblock_bits flags
5536 */
5537unsigned long get_pageblock_flags_group(struct page *page,
5538 int start_bitidx, int end_bitidx)
5539{
5540 struct zone *zone;
5541 unsigned long *bitmap;
5542 unsigned long pfn, bitidx;
5543 unsigned long flags = 0;
5544 unsigned long value = 1;
5545
5546 zone = page_zone(page);
5547 pfn = page_to_pfn(page);
5548 bitmap = get_pageblock_bitmap(zone, pfn);
5549 bitidx = pfn_to_bitidx(zone, pfn);
5550
5551 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5552 if (test_bit(bitidx + start_bitidx, bitmap))
5553 flags |= value;
6220ec78 5554
835c134e
MG
5555 return flags;
5556}
5557
5558/**
d9c23400 5559 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5560 * @page: The page within the block of interest
5561 * @start_bitidx: The first bit of interest
5562 * @end_bitidx: The last bit of interest
5563 * @flags: The flags to set
5564 */
5565void set_pageblock_flags_group(struct page *page, unsigned long flags,
5566 int start_bitidx, int end_bitidx)
5567{
5568 struct zone *zone;
5569 unsigned long *bitmap;
5570 unsigned long pfn, bitidx;
5571 unsigned long value = 1;
5572
5573 zone = page_zone(page);
5574 pfn = page_to_pfn(page);
5575 bitmap = get_pageblock_bitmap(zone, pfn);
5576 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5577 VM_BUG_ON(pfn < zone->zone_start_pfn);
5578 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5579
5580 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5581 if (flags & value)
5582 __set_bit(bitidx + start_bitidx, bitmap);
5583 else
5584 __clear_bit(bitidx + start_bitidx, bitmap);
5585}
a5d76b54
KH
5586
5587/*
80934513
MK
5588 * This function checks whether pageblock includes unmovable pages or not.
5589 * If @count is not zero, it is okay to include less @count unmovable pages
5590 *
5591 * PageLRU check wihtout isolation or lru_lock could race so that
5592 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5593 * expect this function should be exact.
a5d76b54 5594 */
ee6f509c 5595bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
49ac8255
KH
5596{
5597 unsigned long pfn, iter, found;
47118af0
MN
5598 int mt;
5599
49ac8255
KH
5600 /*
5601 * For avoiding noise data, lru_add_drain_all() should be called
80934513 5602 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
5603 */
5604 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 5605 return false;
47118af0
MN
5606 mt = get_pageblock_migratetype(page);
5607 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 5608 return false;
49ac8255
KH
5609
5610 pfn = page_to_pfn(page);
5611 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5612 unsigned long check = pfn + iter;
5613
29723fcc 5614 if (!pfn_valid_within(check))
49ac8255 5615 continue;
29723fcc 5616
49ac8255 5617 page = pfn_to_page(check);
97d255c8
MK
5618 /*
5619 * We can't use page_count without pin a page
5620 * because another CPU can free compound page.
5621 * This check already skips compound tails of THP
5622 * because their page->_count is zero at all time.
5623 */
5624 if (!atomic_read(&page->_count)) {
49ac8255
KH
5625 if (PageBuddy(page))
5626 iter += (1 << page_order(page)) - 1;
5627 continue;
5628 }
97d255c8 5629
49ac8255
KH
5630 if (!PageLRU(page))
5631 found++;
5632 /*
5633 * If there are RECLAIMABLE pages, we need to check it.
5634 * But now, memory offline itself doesn't call shrink_slab()
5635 * and it still to be fixed.
5636 */
5637 /*
5638 * If the page is not RAM, page_count()should be 0.
5639 * we don't need more check. This is an _used_ not-movable page.
5640 *
5641 * The problematic thing here is PG_reserved pages. PG_reserved
5642 * is set to both of a memory hole page and a _used_ kernel
5643 * page at boot.
5644 */
5645 if (found > count)
80934513 5646 return true;
49ac8255 5647 }
80934513 5648 return false;
49ac8255
KH
5649}
5650
5651bool is_pageblock_removable_nolock(struct page *page)
5652{
656a0706
MH
5653 struct zone *zone;
5654 unsigned long pfn;
687875fb
MH
5655
5656 /*
5657 * We have to be careful here because we are iterating over memory
5658 * sections which are not zone aware so we might end up outside of
5659 * the zone but still within the section.
656a0706
MH
5660 * We have to take care about the node as well. If the node is offline
5661 * its NODE_DATA will be NULL - see page_zone.
687875fb 5662 */
656a0706
MH
5663 if (!node_online(page_to_nid(page)))
5664 return false;
5665
5666 zone = page_zone(page);
5667 pfn = page_to_pfn(page);
5668 if (zone->zone_start_pfn > pfn ||
687875fb
MH
5669 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5670 return false;
5671
ee6f509c 5672 return !has_unmovable_pages(zone, page, 0);
a5d76b54 5673}
0c0e6195 5674
041d3a8c
MN
5675#ifdef CONFIG_CMA
5676
5677static unsigned long pfn_max_align_down(unsigned long pfn)
5678{
5679 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5680 pageblock_nr_pages) - 1);
5681}
5682
5683static unsigned long pfn_max_align_up(unsigned long pfn)
5684{
5685 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5686 pageblock_nr_pages));
5687}
5688
041d3a8c 5689/* [start, end) must belong to a single zone. */
bb13ffeb
MG
5690static int __alloc_contig_migrate_range(struct compact_control *cc,
5691 unsigned long start, unsigned long end)
041d3a8c
MN
5692{
5693 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 5694 unsigned long nr_reclaimed;
041d3a8c
MN
5695 unsigned long pfn = start;
5696 unsigned int tries = 0;
5697 int ret = 0;
5698
041d3a8c
MN
5699 migrate_prep_local();
5700
bb13ffeb 5701 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
5702 if (fatal_signal_pending(current)) {
5703 ret = -EINTR;
5704 break;
5705 }
5706
bb13ffeb
MG
5707 if (list_empty(&cc->migratepages)) {
5708 cc->nr_migratepages = 0;
5709 pfn = isolate_migratepages_range(cc->zone, cc,
e46a2879 5710 pfn, end, true);
041d3a8c
MN
5711 if (!pfn) {
5712 ret = -EINTR;
5713 break;
5714 }
5715 tries = 0;
5716 } else if (++tries == 5) {
5717 ret = ret < 0 ? ret : -EBUSY;
5718 break;
5719 }
5720
beb51eaa
MK
5721 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5722 &cc->migratepages);
5723 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 5724
bb13ffeb 5725 ret = migrate_pages(&cc->migratepages,
723a0644 5726 alloc_migrate_target,
58f42fd5 5727 0, false, MIGRATE_SYNC);
041d3a8c
MN
5728 }
5729
bb13ffeb 5730 putback_lru_pages(&cc->migratepages);
041d3a8c
MN
5731 return ret > 0 ? 0 : ret;
5732}
5733
49f223a9
MS
5734/*
5735 * Update zone's cma pages counter used for watermark level calculation.
5736 */
5737static inline void __update_cma_watermarks(struct zone *zone, int count)
5738{
5739 unsigned long flags;
5740 spin_lock_irqsave(&zone->lock, flags);
5741 zone->min_cma_pages += count;
5742 spin_unlock_irqrestore(&zone->lock, flags);
5743 setup_per_zone_wmarks();
5744}
5745
5746/*
5747 * Trigger memory pressure bump to reclaim some pages in order to be able to
5748 * allocate 'count' pages in single page units. Does similar work as
5749 *__alloc_pages_slowpath() function.
5750 */
5751static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5752{
5753 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5754 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5755 int did_some_progress = 0;
5756 int order = 1;
5757
5758 /*
5759 * Increase level of watermarks to force kswapd do his job
5760 * to stabilise at new watermark level.
5761 */
5762 __update_cma_watermarks(zone, count);
5763
5764 /* Obey watermarks as if the page was being allocated */
5765 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5766 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5767
5768 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5769 NULL);
5770 if (!did_some_progress) {
5771 /* Exhausted what can be done so it's blamo time */
5772 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5773 }
5774 }
5775
5776 /* Restore original watermark levels. */
5777 __update_cma_watermarks(zone, -count);
5778
5779 return count;
5780}
5781
041d3a8c
MN
5782/**
5783 * alloc_contig_range() -- tries to allocate given range of pages
5784 * @start: start PFN to allocate
5785 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
5786 * @migratetype: migratetype of the underlaying pageblocks (either
5787 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5788 * in range must have the same migratetype and it must
5789 * be either of the two.
041d3a8c
MN
5790 *
5791 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5792 * aligned, however it's the caller's responsibility to guarantee that
5793 * we are the only thread that changes migrate type of pageblocks the
5794 * pages fall in.
5795 *
5796 * The PFN range must belong to a single zone.
5797 *
5798 * Returns zero on success or negative error code. On success all
5799 * pages which PFN is in [start, end) are allocated for the caller and
5800 * need to be freed with free_contig_range().
5801 */
0815f3d8
MN
5802int alloc_contig_range(unsigned long start, unsigned long end,
5803 unsigned migratetype)
041d3a8c
MN
5804{
5805 struct zone *zone = page_zone(pfn_to_page(start));
5806 unsigned long outer_start, outer_end;
5807 int ret = 0, order;
5808
bb13ffeb
MG
5809 struct compact_control cc = {
5810 .nr_migratepages = 0,
5811 .order = -1,
5812 .zone = page_zone(pfn_to_page(start)),
5813 .sync = true,
5814 .ignore_skip_hint = true,
5815 };
5816 INIT_LIST_HEAD(&cc.migratepages);
5817
041d3a8c
MN
5818 /*
5819 * What we do here is we mark all pageblocks in range as
5820 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5821 * have different sizes, and due to the way page allocator
5822 * work, we align the range to biggest of the two pages so
5823 * that page allocator won't try to merge buddies from
5824 * different pageblocks and change MIGRATE_ISOLATE to some
5825 * other migration type.
5826 *
5827 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5828 * migrate the pages from an unaligned range (ie. pages that
5829 * we are interested in). This will put all the pages in
5830 * range back to page allocator as MIGRATE_ISOLATE.
5831 *
5832 * When this is done, we take the pages in range from page
5833 * allocator removing them from the buddy system. This way
5834 * page allocator will never consider using them.
5835 *
5836 * This lets us mark the pageblocks back as
5837 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5838 * aligned range but not in the unaligned, original range are
5839 * put back to page allocator so that buddy can use them.
5840 */
5841
5842 ret = start_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5843 pfn_max_align_up(end), migratetype);
041d3a8c 5844 if (ret)
86a595f9 5845 return ret;
041d3a8c 5846
bb13ffeb 5847 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
5848 if (ret)
5849 goto done;
5850
5851 /*
5852 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5853 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5854 * more, all pages in [start, end) are free in page allocator.
5855 * What we are going to do is to allocate all pages from
5856 * [start, end) (that is remove them from page allocator).
5857 *
5858 * The only problem is that pages at the beginning and at the
5859 * end of interesting range may be not aligned with pages that
5860 * page allocator holds, ie. they can be part of higher order
5861 * pages. Because of this, we reserve the bigger range and
5862 * once this is done free the pages we are not interested in.
5863 *
5864 * We don't have to hold zone->lock here because the pages are
5865 * isolated thus they won't get removed from buddy.
5866 */
5867
5868 lru_add_drain_all();
5869 drain_all_pages();
5870
5871 order = 0;
5872 outer_start = start;
5873 while (!PageBuddy(pfn_to_page(outer_start))) {
5874 if (++order >= MAX_ORDER) {
5875 ret = -EBUSY;
5876 goto done;
5877 }
5878 outer_start &= ~0UL << order;
5879 }
5880
5881 /* Make sure the range is really isolated. */
5882 if (test_pages_isolated(outer_start, end)) {
5883 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5884 outer_start, end);
5885 ret = -EBUSY;
5886 goto done;
5887 }
5888
49f223a9
MS
5889 /*
5890 * Reclaim enough pages to make sure that contiguous allocation
5891 * will not starve the system.
5892 */
5893 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5894
5895 /* Grab isolated pages from freelists. */
bb13ffeb 5896 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
5897 if (!outer_end) {
5898 ret = -EBUSY;
5899 goto done;
5900 }
5901
5902 /* Free head and tail (if any) */
5903 if (start != outer_start)
5904 free_contig_range(outer_start, start - outer_start);
5905 if (end != outer_end)
5906 free_contig_range(end, outer_end - end);
5907
5908done:
5909 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 5910 pfn_max_align_up(end), migratetype);
041d3a8c
MN
5911 return ret;
5912}
5913
5914void free_contig_range(unsigned long pfn, unsigned nr_pages)
5915{
5916 for (; nr_pages--; ++pfn)
5917 __free_page(pfn_to_page(pfn));
5918}
5919#endif
5920
4ed7e022
JL
5921#ifdef CONFIG_MEMORY_HOTPLUG
5922static int __meminit __zone_pcp_update(void *data)
5923{
5924 struct zone *zone = data;
5925 int cpu;
5926 unsigned long batch = zone_batchsize(zone), flags;
5927
5928 for_each_possible_cpu(cpu) {
5929 struct per_cpu_pageset *pset;
5930 struct per_cpu_pages *pcp;
5931
5932 pset = per_cpu_ptr(zone->pageset, cpu);
5933 pcp = &pset->pcp;
5934
5935 local_irq_save(flags);
5936 if (pcp->count > 0)
5937 free_pcppages_bulk(zone, pcp->count, pcp);
5a883813 5938 drain_zonestat(zone, pset);
4ed7e022
JL
5939 setup_pageset(pset, batch);
5940 local_irq_restore(flags);
5941 }
5942 return 0;
5943}
5944
5945void __meminit zone_pcp_update(struct zone *zone)
5946{
5947 stop_machine(__zone_pcp_update, zone, NULL);
5948}
5949#endif
5950
0c0e6195 5951#ifdef CONFIG_MEMORY_HOTREMOVE
340175b7
JL
5952void zone_pcp_reset(struct zone *zone)
5953{
5954 unsigned long flags;
5a883813
MK
5955 int cpu;
5956 struct per_cpu_pageset *pset;
340175b7
JL
5957
5958 /* avoid races with drain_pages() */
5959 local_irq_save(flags);
5960 if (zone->pageset != &boot_pageset) {
5a883813
MK
5961 for_each_online_cpu(cpu) {
5962 pset = per_cpu_ptr(zone->pageset, cpu);
5963 drain_zonestat(zone, pset);
5964 }
340175b7
JL
5965 free_percpu(zone->pageset);
5966 zone->pageset = &boot_pageset;
5967 }
5968 local_irq_restore(flags);
5969}
5970
0c0e6195
KH
5971/*
5972 * All pages in the range must be isolated before calling this.
5973 */
5974void
5975__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5976{
5977 struct page *page;
5978 struct zone *zone;
5979 int order, i;
5980 unsigned long pfn;
5981 unsigned long flags;
5982 /* find the first valid pfn */
5983 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5984 if (pfn_valid(pfn))
5985 break;
5986 if (pfn == end_pfn)
5987 return;
5988 zone = page_zone(pfn_to_page(pfn));
5989 spin_lock_irqsave(&zone->lock, flags);
5990 pfn = start_pfn;
5991 while (pfn < end_pfn) {
5992 if (!pfn_valid(pfn)) {
5993 pfn++;
5994 continue;
5995 }
5996 page = pfn_to_page(pfn);
5997 BUG_ON(page_count(page));
5998 BUG_ON(!PageBuddy(page));
5999 order = page_order(page);
6000#ifdef CONFIG_DEBUG_VM
6001 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6002 pfn, 1 << order, end_pfn);
6003#endif
6004 list_del(&page->lru);
6005 rmv_page_order(page);
6006 zone->free_area[order].nr_free--;
6007 __mod_zone_page_state(zone, NR_FREE_PAGES,
6008 - (1UL << order));
6009 for (i = 0; i < (1 << order); i++)
6010 SetPageReserved((page+i));
6011 pfn += (1 << order);
6012 }
6013 spin_unlock_irqrestore(&zone->lock, flags);
6014}
6015#endif
8d22ba1b
WF
6016
6017#ifdef CONFIG_MEMORY_FAILURE
6018bool is_free_buddy_page(struct page *page)
6019{
6020 struct zone *zone = page_zone(page);
6021 unsigned long pfn = page_to_pfn(page);
6022 unsigned long flags;
6023 int order;
6024
6025 spin_lock_irqsave(&zone->lock, flags);
6026 for (order = 0; order < MAX_ORDER; order++) {
6027 struct page *page_head = page - (pfn & ((1 << order) - 1));
6028
6029 if (PageBuddy(page_head) && page_order(page_head) >= order)
6030 break;
6031 }
6032 spin_unlock_irqrestore(&zone->lock, flags);
6033
6034 return order < MAX_ORDER;
6035}
6036#endif
718a3821 6037
51300cef 6038static const struct trace_print_flags pageflag_names[] = {
718a3821
WF
6039 {1UL << PG_locked, "locked" },
6040 {1UL << PG_error, "error" },
6041 {1UL << PG_referenced, "referenced" },
6042 {1UL << PG_uptodate, "uptodate" },
6043 {1UL << PG_dirty, "dirty" },
6044 {1UL << PG_lru, "lru" },
6045 {1UL << PG_active, "active" },
6046 {1UL << PG_slab, "slab" },
6047 {1UL << PG_owner_priv_1, "owner_priv_1" },
6048 {1UL << PG_arch_1, "arch_1" },
6049 {1UL << PG_reserved, "reserved" },
6050 {1UL << PG_private, "private" },
6051 {1UL << PG_private_2, "private_2" },
6052 {1UL << PG_writeback, "writeback" },
6053#ifdef CONFIG_PAGEFLAGS_EXTENDED
6054 {1UL << PG_head, "head" },
6055 {1UL << PG_tail, "tail" },
6056#else
6057 {1UL << PG_compound, "compound" },
6058#endif
6059 {1UL << PG_swapcache, "swapcache" },
6060 {1UL << PG_mappedtodisk, "mappedtodisk" },
6061 {1UL << PG_reclaim, "reclaim" },
718a3821
WF
6062 {1UL << PG_swapbacked, "swapbacked" },
6063 {1UL << PG_unevictable, "unevictable" },
6064#ifdef CONFIG_MMU
6065 {1UL << PG_mlocked, "mlocked" },
6066#endif
6067#ifdef CONFIG_ARCH_USES_PG_UNCACHED
6068 {1UL << PG_uncached, "uncached" },
6069#endif
6070#ifdef CONFIG_MEMORY_FAILURE
6071 {1UL << PG_hwpoison, "hwpoison" },
be9cd873
GS
6072#endif
6073#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6074 {1UL << PG_compound_lock, "compound_lock" },
718a3821 6075#endif
718a3821
WF
6076};
6077
6078static void dump_page_flags(unsigned long flags)
6079{
6080 const char *delim = "";
6081 unsigned long mask;
6082 int i;
6083
51300cef 6084 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
acc50c11 6085
718a3821
WF
6086 printk(KERN_ALERT "page flags: %#lx(", flags);
6087
6088 /* remove zone id */
6089 flags &= (1UL << NR_PAGEFLAGS) - 1;
6090
51300cef 6091 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
718a3821
WF
6092
6093 mask = pageflag_names[i].mask;
6094 if ((flags & mask) != mask)
6095 continue;
6096
6097 flags &= ~mask;
6098 printk("%s%s", delim, pageflag_names[i].name);
6099 delim = "|";
6100 }
6101
6102 /* check for left over flags */
6103 if (flags)
6104 printk("%s%#lx", delim, flags);
6105
6106 printk(")\n");
6107}
6108
6109void dump_page(struct page *page)
6110{
6111 printk(KERN_ALERT
6112 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
4e9f64c4 6113 page, atomic_read(&page->_count), page_mapcount(page),
718a3821
WF
6114 page->mapping, page->index);
6115 dump_page_flags(page->flags);
f212ad7c 6116 mem_cgroup_print_bad_page(page);
718a3821 6117}