page allocator: inline __rmqueue_smallest()
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
164EXPORT_SYMBOL(nr_node_ids);
165#endif
166
9ef9acb0
MG
167int page_group_by_mobility_disabled __read_mostly;
168
b2a0ac88
MG
169static void set_pageblock_migratetype(struct page *page, int migratetype)
170{
49255c61
MG
171
172 if (unlikely(page_group_by_mobility_disabled))
173 migratetype = MIGRATE_UNMOVABLE;
174
b2a0ac88
MG
175 set_pageblock_flags_group(page, (unsigned long)migratetype,
176 PB_migrate, PB_migrate_end);
177}
178
13e7444b 179#ifdef CONFIG_DEBUG_VM
c6a57e19 180static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 181{
bdc8cb98
DH
182 int ret = 0;
183 unsigned seq;
184 unsigned long pfn = page_to_pfn(page);
c6a57e19 185
bdc8cb98
DH
186 do {
187 seq = zone_span_seqbegin(zone);
188 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
189 ret = 1;
190 else if (pfn < zone->zone_start_pfn)
191 ret = 1;
192 } while (zone_span_seqretry(zone, seq));
193
194 return ret;
c6a57e19
DH
195}
196
197static int page_is_consistent(struct zone *zone, struct page *page)
198{
14e07298 199 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 200 return 0;
1da177e4 201 if (zone != page_zone(page))
c6a57e19
DH
202 return 0;
203
204 return 1;
205}
206/*
207 * Temporary debugging check for pages not lying within a given zone.
208 */
209static int bad_range(struct zone *zone, struct page *page)
210{
211 if (page_outside_zone_boundaries(zone, page))
1da177e4 212 return 1;
c6a57e19
DH
213 if (!page_is_consistent(zone, page))
214 return 1;
215
1da177e4
LT
216 return 0;
217}
13e7444b
NP
218#else
219static inline int bad_range(struct zone *zone, struct page *page)
220{
221 return 0;
222}
223#endif
224
224abf92 225static void bad_page(struct page *page)
1da177e4 226{
d936cf9b
HD
227 static unsigned long resume;
228 static unsigned long nr_shown;
229 static unsigned long nr_unshown;
230
231 /*
232 * Allow a burst of 60 reports, then keep quiet for that minute;
233 * or allow a steady drip of one report per second.
234 */
235 if (nr_shown == 60) {
236 if (time_before(jiffies, resume)) {
237 nr_unshown++;
238 goto out;
239 }
240 if (nr_unshown) {
1e9e6365
HD
241 printk(KERN_ALERT
242 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
243 nr_unshown);
244 nr_unshown = 0;
245 }
246 nr_shown = 0;
247 }
248 if (nr_shown++ == 0)
249 resume = jiffies + 60 * HZ;
250
1e9e6365 251 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 252 current->comm, page_to_pfn(page));
1e9e6365 253 printk(KERN_ALERT
3dc14741
HD
254 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
255 page, (void *)page->flags, page_count(page),
256 page_mapcount(page), page->mapping, page->index);
3dc14741 257
1da177e4 258 dump_stack();
d936cf9b 259out:
8cc3b392
HD
260 /* Leave bad fields for debug, except PageBuddy could make trouble */
261 __ClearPageBuddy(page);
9f158333 262 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
263}
264
1da177e4
LT
265/*
266 * Higher-order pages are called "compound pages". They are structured thusly:
267 *
268 * The first PAGE_SIZE page is called the "head page".
269 *
270 * The remaining PAGE_SIZE pages are called "tail pages".
271 *
272 * All pages have PG_compound set. All pages have their ->private pointing at
273 * the head page (even the head page has this).
274 *
41d78ba5
HD
275 * The first tail page's ->lru.next holds the address of the compound page's
276 * put_page() function. Its ->lru.prev holds the order of allocation.
277 * This usage means that zero-order pages may not be compound.
1da177e4 278 */
d98c7a09
HD
279
280static void free_compound_page(struct page *page)
281{
d85f3385 282 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
283}
284
01ad1c08 285void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
286{
287 int i;
288 int nr_pages = 1 << order;
289
290 set_compound_page_dtor(page, free_compound_page);
291 set_compound_order(page, order);
292 __SetPageHead(page);
293 for (i = 1; i < nr_pages; i++) {
294 struct page *p = page + i;
295
296 __SetPageTail(p);
297 p->first_page = page;
298 }
299}
300
301#ifdef CONFIG_HUGETLBFS
302void prep_compound_gigantic_page(struct page *page, unsigned long order)
1da177e4
LT
303{
304 int i;
305 int nr_pages = 1 << order;
6babc32c 306 struct page *p = page + 1;
1da177e4 307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
18229df5 311 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
d85f3385 312 __SetPageTail(p);
d85f3385 313 p->first_page = page;
1da177e4
LT
314 }
315}
18229df5 316#endif
1da177e4 317
8cc3b392 318static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
319{
320 int i;
321 int nr_pages = 1 << order;
8cc3b392 322 int bad = 0;
1da177e4 323
8cc3b392
HD
324 if (unlikely(compound_order(page) != order) ||
325 unlikely(!PageHead(page))) {
224abf92 326 bad_page(page);
8cc3b392
HD
327 bad++;
328 }
1da177e4 329
6d777953 330 __ClearPageHead(page);
8cc3b392 331
18229df5
AW
332 for (i = 1; i < nr_pages; i++) {
333 struct page *p = page + i;
1da177e4 334
e713a21d 335 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 336 bad_page(page);
8cc3b392
HD
337 bad++;
338 }
d85f3385 339 __ClearPageTail(p);
1da177e4 340 }
8cc3b392
HD
341
342 return bad;
1da177e4 343}
1da177e4 344
17cf4406
NP
345static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
346{
347 int i;
348
6626c5d5
AM
349 /*
350 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
351 * and __GFP_HIGHMEM from hard or soft interrupt context.
352 */
725d704e 353 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
354 for (i = 0; i < (1 << order); i++)
355 clear_highpage(page + i);
356}
357
6aa3001b
AM
358static inline void set_page_order(struct page *page, int order)
359{
4c21e2f2 360 set_page_private(page, order);
676165a8 361 __SetPageBuddy(page);
1da177e4
LT
362}
363
364static inline void rmv_page_order(struct page *page)
365{
676165a8 366 __ClearPageBuddy(page);
4c21e2f2 367 set_page_private(page, 0);
1da177e4
LT
368}
369
370/*
371 * Locate the struct page for both the matching buddy in our
372 * pair (buddy1) and the combined O(n+1) page they form (page).
373 *
374 * 1) Any buddy B1 will have an order O twin B2 which satisfies
375 * the following equation:
376 * B2 = B1 ^ (1 << O)
377 * For example, if the starting buddy (buddy2) is #8 its order
378 * 1 buddy is #10:
379 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
380 *
381 * 2) Any buddy B will have an order O+1 parent P which
382 * satisfies the following equation:
383 * P = B & ~(1 << O)
384 *
d6e05edc 385 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
386 */
387static inline struct page *
388__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
389{
390 unsigned long buddy_idx = page_idx ^ (1 << order);
391
392 return page + (buddy_idx - page_idx);
393}
394
395static inline unsigned long
396__find_combined_index(unsigned long page_idx, unsigned int order)
397{
398 return (page_idx & ~(1 << order));
399}
400
401/*
402 * This function checks whether a page is free && is the buddy
403 * we can do coalesce a page and its buddy if
13e7444b 404 * (a) the buddy is not in a hole &&
676165a8 405 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
406 * (c) a page and its buddy have the same order &&
407 * (d) a page and its buddy are in the same zone.
676165a8
NP
408 *
409 * For recording whether a page is in the buddy system, we use PG_buddy.
410 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 411 *
676165a8 412 * For recording page's order, we use page_private(page).
1da177e4 413 */
cb2b95e1
AW
414static inline int page_is_buddy(struct page *page, struct page *buddy,
415 int order)
1da177e4 416{
14e07298 417 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 418 return 0;
13e7444b 419
cb2b95e1
AW
420 if (page_zone_id(page) != page_zone_id(buddy))
421 return 0;
422
423 if (PageBuddy(buddy) && page_order(buddy) == order) {
424 BUG_ON(page_count(buddy) != 0);
6aa3001b 425 return 1;
676165a8 426 }
6aa3001b 427 return 0;
1da177e4
LT
428}
429
430/*
431 * Freeing function for a buddy system allocator.
432 *
433 * The concept of a buddy system is to maintain direct-mapped table
434 * (containing bit values) for memory blocks of various "orders".
435 * The bottom level table contains the map for the smallest allocatable
436 * units of memory (here, pages), and each level above it describes
437 * pairs of units from the levels below, hence, "buddies".
438 * At a high level, all that happens here is marking the table entry
439 * at the bottom level available, and propagating the changes upward
440 * as necessary, plus some accounting needed to play nicely with other
441 * parts of the VM system.
442 * At each level, we keep a list of pages, which are heads of continuous
676165a8 443 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 444 * order is recorded in page_private(page) field.
1da177e4
LT
445 * So when we are allocating or freeing one, we can derive the state of the
446 * other. That is, if we allocate a small block, and both were
447 * free, the remainder of the region must be split into blocks.
448 * If a block is freed, and its buddy is also free, then this
449 * triggers coalescing into a block of larger size.
450 *
451 * -- wli
452 */
453
48db57f8 454static inline void __free_one_page(struct page *page,
1da177e4
LT
455 struct zone *zone, unsigned int order)
456{
457 unsigned long page_idx;
458 int order_size = 1 << order;
b2a0ac88 459 int migratetype = get_pageblock_migratetype(page);
1da177e4 460
224abf92 461 if (unlikely(PageCompound(page)))
8cc3b392
HD
462 if (unlikely(destroy_compound_page(page, order)))
463 return;
1da177e4
LT
464
465 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
466
725d704e
NP
467 VM_BUG_ON(page_idx & (order_size - 1));
468 VM_BUG_ON(bad_range(zone, page));
1da177e4 469
d23ad423 470 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
471 while (order < MAX_ORDER-1) {
472 unsigned long combined_idx;
1da177e4
LT
473 struct page *buddy;
474
1da177e4 475 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 476 if (!page_is_buddy(page, buddy, order))
3c82d0ce 477 break;
13e7444b 478
3c82d0ce 479 /* Our buddy is free, merge with it and move up one order. */
1da177e4 480 list_del(&buddy->lru);
b2a0ac88 481 zone->free_area[order].nr_free--;
1da177e4 482 rmv_page_order(buddy);
13e7444b 483 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
484 page = page + (combined_idx - page_idx);
485 page_idx = combined_idx;
486 order++;
487 }
488 set_page_order(page, order);
b2a0ac88
MG
489 list_add(&page->lru,
490 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
491 zone->free_area[order].nr_free++;
492}
493
224abf92 494static inline int free_pages_check(struct page *page)
1da177e4 495{
985737cf 496 free_page_mlock(page);
92be2e33
NP
497 if (unlikely(page_mapcount(page) |
498 (page->mapping != NULL) |
499 (page_count(page) != 0) |
8cc3b392 500 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 501 bad_page(page);
79f4b7bf 502 return 1;
8cc3b392 503 }
79f4b7bf
HD
504 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
505 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
506 return 0;
1da177e4
LT
507}
508
509/*
510 * Frees a list of pages.
511 * Assumes all pages on list are in same zone, and of same order.
207f36ee 512 * count is the number of pages to free.
1da177e4
LT
513 *
514 * If the zone was previously in an "all pages pinned" state then look to
515 * see if this freeing clears that state.
516 *
517 * And clear the zone's pages_scanned counter, to hold off the "all pages are
518 * pinned" detection logic.
519 */
48db57f8
NP
520static void free_pages_bulk(struct zone *zone, int count,
521 struct list_head *list, int order)
1da177e4 522{
c54ad30c 523 spin_lock(&zone->lock);
e815af95 524 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 525 zone->pages_scanned = 0;
48db57f8
NP
526 while (count--) {
527 struct page *page;
528
725d704e 529 VM_BUG_ON(list_empty(list));
1da177e4 530 page = list_entry(list->prev, struct page, lru);
48db57f8 531 /* have to delete it as __free_one_page list manipulates */
1da177e4 532 list_del(&page->lru);
48db57f8 533 __free_one_page(page, zone, order);
1da177e4 534 }
c54ad30c 535 spin_unlock(&zone->lock);
1da177e4
LT
536}
537
48db57f8 538static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 539{
006d22d9 540 spin_lock(&zone->lock);
e815af95 541 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 542 zone->pages_scanned = 0;
0798e519 543 __free_one_page(page, zone, order);
006d22d9 544 spin_unlock(&zone->lock);
48db57f8
NP
545}
546
547static void __free_pages_ok(struct page *page, unsigned int order)
548{
549 unsigned long flags;
1da177e4 550 int i;
8cc3b392 551 int bad = 0;
1da177e4 552
1da177e4 553 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
554 bad += free_pages_check(page + i);
555 if (bad)
689bcebf
HD
556 return;
557
3ac7fe5a 558 if (!PageHighMem(page)) {
9858db50 559 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
560 debug_check_no_obj_freed(page_address(page),
561 PAGE_SIZE << order);
562 }
dafb1367 563 arch_free_page(page, order);
48db57f8 564 kernel_map_pages(page, 1 << order, 0);
dafb1367 565
c54ad30c 566 local_irq_save(flags);
f8891e5e 567 __count_vm_events(PGFREE, 1 << order);
48db57f8 568 free_one_page(page_zone(page), page, order);
c54ad30c 569 local_irq_restore(flags);
1da177e4
LT
570}
571
a226f6c8
DH
572/*
573 * permit the bootmem allocator to evade page validation on high-order frees
574 */
af370fb8 575void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
576{
577 if (order == 0) {
578 __ClearPageReserved(page);
579 set_page_count(page, 0);
7835e98b 580 set_page_refcounted(page);
545b1ea9 581 __free_page(page);
a226f6c8 582 } else {
a226f6c8
DH
583 int loop;
584
545b1ea9 585 prefetchw(page);
a226f6c8
DH
586 for (loop = 0; loop < BITS_PER_LONG; loop++) {
587 struct page *p = &page[loop];
588
545b1ea9
NP
589 if (loop + 1 < BITS_PER_LONG)
590 prefetchw(p + 1);
a226f6c8
DH
591 __ClearPageReserved(p);
592 set_page_count(p, 0);
593 }
594
7835e98b 595 set_page_refcounted(page);
545b1ea9 596 __free_pages(page, order);
a226f6c8
DH
597 }
598}
599
1da177e4
LT
600
601/*
602 * The order of subdivision here is critical for the IO subsystem.
603 * Please do not alter this order without good reasons and regression
604 * testing. Specifically, as large blocks of memory are subdivided,
605 * the order in which smaller blocks are delivered depends on the order
606 * they're subdivided in this function. This is the primary factor
607 * influencing the order in which pages are delivered to the IO
608 * subsystem according to empirical testing, and this is also justified
609 * by considering the behavior of a buddy system containing a single
610 * large block of memory acted on by a series of small allocations.
611 * This behavior is a critical factor in sglist merging's success.
612 *
613 * -- wli
614 */
085cc7d5 615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
616 int low, int high, struct free_area *area,
617 int migratetype)
1da177e4
LT
618{
619 unsigned long size = 1 << high;
620
621 while (high > low) {
622 area--;
623 high--;
624 size >>= 1;
725d704e 625 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 626 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
627 area->nr_free++;
628 set_page_order(&page[size], high);
629 }
1da177e4
LT
630}
631
1da177e4
LT
632/*
633 * This page is about to be returned from the page allocator
634 */
17cf4406 635static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 636{
92be2e33
NP
637 if (unlikely(page_mapcount(page) |
638 (page->mapping != NULL) |
639 (page_count(page) != 0) |
8cc3b392 640 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 641 bad_page(page);
689bcebf 642 return 1;
8cc3b392 643 }
689bcebf 644
4c21e2f2 645 set_page_private(page, 0);
7835e98b 646 set_page_refcounted(page);
cc102509
NP
647
648 arch_alloc_page(page, order);
1da177e4 649 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
650
651 if (gfp_flags & __GFP_ZERO)
652 prep_zero_page(page, order, gfp_flags);
653
654 if (order && (gfp_flags & __GFP_COMP))
655 prep_compound_page(page, order);
656
689bcebf 657 return 0;
1da177e4
LT
658}
659
56fd56b8
MG
660/*
661 * Go through the free lists for the given migratetype and remove
662 * the smallest available page from the freelists
663 */
728ec980
MG
664static inline
665struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
666 int migratetype)
667{
668 unsigned int current_order;
669 struct free_area * area;
670 struct page *page;
671
672 /* Find a page of the appropriate size in the preferred list */
673 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
674 area = &(zone->free_area[current_order]);
675 if (list_empty(&area->free_list[migratetype]))
676 continue;
677
678 page = list_entry(area->free_list[migratetype].next,
679 struct page, lru);
680 list_del(&page->lru);
681 rmv_page_order(page);
682 area->nr_free--;
683 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
684 expand(zone, page, order, current_order, area, migratetype);
685 return page;
686 }
687
688 return NULL;
689}
690
691
b2a0ac88
MG
692/*
693 * This array describes the order lists are fallen back to when
694 * the free lists for the desirable migrate type are depleted
695 */
696static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
697 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
699 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
700 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
701};
702
c361be55
MG
703/*
704 * Move the free pages in a range to the free lists of the requested type.
d9c23400 705 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
706 * boundary. If alignment is required, use move_freepages_block()
707 */
b69a7288
AB
708static int move_freepages(struct zone *zone,
709 struct page *start_page, struct page *end_page,
710 int migratetype)
c361be55
MG
711{
712 struct page *page;
713 unsigned long order;
d100313f 714 int pages_moved = 0;
c361be55
MG
715
716#ifndef CONFIG_HOLES_IN_ZONE
717 /*
718 * page_zone is not safe to call in this context when
719 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
720 * anyway as we check zone boundaries in move_freepages_block().
721 * Remove at a later date when no bug reports exist related to
ac0e5b7a 722 * grouping pages by mobility
c361be55
MG
723 */
724 BUG_ON(page_zone(start_page) != page_zone(end_page));
725#endif
726
727 for (page = start_page; page <= end_page;) {
344c790e
AL
728 /* Make sure we are not inadvertently changing nodes */
729 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
730
c361be55
MG
731 if (!pfn_valid_within(page_to_pfn(page))) {
732 page++;
733 continue;
734 }
735
736 if (!PageBuddy(page)) {
737 page++;
738 continue;
739 }
740
741 order = page_order(page);
742 list_del(&page->lru);
743 list_add(&page->lru,
744 &zone->free_area[order].free_list[migratetype]);
745 page += 1 << order;
d100313f 746 pages_moved += 1 << order;
c361be55
MG
747 }
748
d100313f 749 return pages_moved;
c361be55
MG
750}
751
b69a7288
AB
752static int move_freepages_block(struct zone *zone, struct page *page,
753 int migratetype)
c361be55
MG
754{
755 unsigned long start_pfn, end_pfn;
756 struct page *start_page, *end_page;
757
758 start_pfn = page_to_pfn(page);
d9c23400 759 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 760 start_page = pfn_to_page(start_pfn);
d9c23400
MG
761 end_page = start_page + pageblock_nr_pages - 1;
762 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
763
764 /* Do not cross zone boundaries */
765 if (start_pfn < zone->zone_start_pfn)
766 start_page = page;
767 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
768 return 0;
769
770 return move_freepages(zone, start_page, end_page, migratetype);
771}
772
b2a0ac88
MG
773/* Remove an element from the buddy allocator from the fallback list */
774static struct page *__rmqueue_fallback(struct zone *zone, int order,
775 int start_migratetype)
776{
777 struct free_area * area;
778 int current_order;
779 struct page *page;
780 int migratetype, i;
781
782 /* Find the largest possible block of pages in the other list */
783 for (current_order = MAX_ORDER-1; current_order >= order;
784 --current_order) {
785 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
786 migratetype = fallbacks[start_migratetype][i];
787
56fd56b8
MG
788 /* MIGRATE_RESERVE handled later if necessary */
789 if (migratetype == MIGRATE_RESERVE)
790 continue;
e010487d 791
b2a0ac88
MG
792 area = &(zone->free_area[current_order]);
793 if (list_empty(&area->free_list[migratetype]))
794 continue;
795
796 page = list_entry(area->free_list[migratetype].next,
797 struct page, lru);
798 area->nr_free--;
799
800 /*
c361be55 801 * If breaking a large block of pages, move all free
46dafbca
MG
802 * pages to the preferred allocation list. If falling
803 * back for a reclaimable kernel allocation, be more
804 * agressive about taking ownership of free pages
b2a0ac88 805 */
d9c23400 806 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
807 start_migratetype == MIGRATE_RECLAIMABLE) {
808 unsigned long pages;
809 pages = move_freepages_block(zone, page,
810 start_migratetype);
811
812 /* Claim the whole block if over half of it is free */
d9c23400 813 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
814 set_pageblock_migratetype(page,
815 start_migratetype);
816
b2a0ac88 817 migratetype = start_migratetype;
c361be55 818 }
b2a0ac88
MG
819
820 /* Remove the page from the freelists */
821 list_del(&page->lru);
822 rmv_page_order(page);
823 __mod_zone_page_state(zone, NR_FREE_PAGES,
824 -(1UL << order));
825
d9c23400 826 if (current_order == pageblock_order)
b2a0ac88
MG
827 set_pageblock_migratetype(page,
828 start_migratetype);
829
830 expand(zone, page, order, current_order, area, migratetype);
831 return page;
832 }
833 }
834
728ec980 835 return NULL;
b2a0ac88
MG
836}
837
56fd56b8 838/*
1da177e4
LT
839 * Do the hard work of removing an element from the buddy allocator.
840 * Call me with the zone->lock already held.
841 */
b2a0ac88
MG
842static struct page *__rmqueue(struct zone *zone, unsigned int order,
843 int migratetype)
1da177e4 844{
1da177e4
LT
845 struct page *page;
846
728ec980 847retry_reserve:
56fd56b8 848 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 849
728ec980 850 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 851 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 852
728ec980
MG
853 /*
854 * Use MIGRATE_RESERVE rather than fail an allocation. goto
855 * is used because __rmqueue_smallest is an inline function
856 * and we want just one call site
857 */
858 if (!page) {
859 migratetype = MIGRATE_RESERVE;
860 goto retry_reserve;
861 }
862 }
863
b2a0ac88 864 return page;
1da177e4
LT
865}
866
867/*
868 * Obtain a specified number of elements from the buddy allocator, all under
869 * a single hold of the lock, for efficiency. Add them to the supplied list.
870 * Returns the number of new pages which were placed at *list.
871 */
872static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
873 unsigned long count, struct list_head *list,
874 int migratetype)
1da177e4 875{
1da177e4 876 int i;
1da177e4 877
c54ad30c 878 spin_lock(&zone->lock);
1da177e4 879 for (i = 0; i < count; ++i) {
b2a0ac88 880 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 881 if (unlikely(page == NULL))
1da177e4 882 break;
81eabcbe
MG
883
884 /*
885 * Split buddy pages returned by expand() are received here
886 * in physical page order. The page is added to the callers and
887 * list and the list head then moves forward. From the callers
888 * perspective, the linked list is ordered by page number in
889 * some conditions. This is useful for IO devices that can
890 * merge IO requests if the physical pages are ordered
891 * properly.
892 */
535131e6
MG
893 list_add(&page->lru, list);
894 set_page_private(page, migratetype);
81eabcbe 895 list = &page->lru;
1da177e4 896 }
c54ad30c 897 spin_unlock(&zone->lock);
085cc7d5 898 return i;
1da177e4
LT
899}
900
4ae7c039 901#ifdef CONFIG_NUMA
8fce4d8e 902/*
4037d452
CL
903 * Called from the vmstat counter updater to drain pagesets of this
904 * currently executing processor on remote nodes after they have
905 * expired.
906 *
879336c3
CL
907 * Note that this function must be called with the thread pinned to
908 * a single processor.
8fce4d8e 909 */
4037d452 910void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 911{
4ae7c039 912 unsigned long flags;
4037d452 913 int to_drain;
4ae7c039 914
4037d452
CL
915 local_irq_save(flags);
916 if (pcp->count >= pcp->batch)
917 to_drain = pcp->batch;
918 else
919 to_drain = pcp->count;
920 free_pages_bulk(zone, to_drain, &pcp->list, 0);
921 pcp->count -= to_drain;
922 local_irq_restore(flags);
4ae7c039
CL
923}
924#endif
925
9f8f2172
CL
926/*
927 * Drain pages of the indicated processor.
928 *
929 * The processor must either be the current processor and the
930 * thread pinned to the current processor or a processor that
931 * is not online.
932 */
933static void drain_pages(unsigned int cpu)
1da177e4 934{
c54ad30c 935 unsigned long flags;
1da177e4 936 struct zone *zone;
1da177e4 937
ee99c71c 938 for_each_populated_zone(zone) {
1da177e4 939 struct per_cpu_pageset *pset;
3dfa5721 940 struct per_cpu_pages *pcp;
1da177e4 941
e7c8d5c9 942 pset = zone_pcp(zone, cpu);
3dfa5721
CL
943
944 pcp = &pset->pcp;
945 local_irq_save(flags);
946 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
947 pcp->count = 0;
948 local_irq_restore(flags);
1da177e4
LT
949 }
950}
1da177e4 951
9f8f2172
CL
952/*
953 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
954 */
955void drain_local_pages(void *arg)
956{
957 drain_pages(smp_processor_id());
958}
959
960/*
961 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
962 */
963void drain_all_pages(void)
964{
15c8b6c1 965 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
966}
967
296699de 968#ifdef CONFIG_HIBERNATION
1da177e4
LT
969
970void mark_free_pages(struct zone *zone)
971{
f623f0db
RW
972 unsigned long pfn, max_zone_pfn;
973 unsigned long flags;
b2a0ac88 974 int order, t;
1da177e4
LT
975 struct list_head *curr;
976
977 if (!zone->spanned_pages)
978 return;
979
980 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
981
982 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
984 if (pfn_valid(pfn)) {
985 struct page *page = pfn_to_page(pfn);
986
7be98234
RW
987 if (!swsusp_page_is_forbidden(page))
988 swsusp_unset_page_free(page);
f623f0db 989 }
1da177e4 990
b2a0ac88
MG
991 for_each_migratetype_order(order, t) {
992 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 993 unsigned long i;
1da177e4 994
f623f0db
RW
995 pfn = page_to_pfn(list_entry(curr, struct page, lru));
996 for (i = 0; i < (1UL << order); i++)
7be98234 997 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 998 }
b2a0ac88 999 }
1da177e4
LT
1000 spin_unlock_irqrestore(&zone->lock, flags);
1001}
e2c55dc8 1002#endif /* CONFIG_PM */
1da177e4 1003
1da177e4
LT
1004/*
1005 * Free a 0-order page
1006 */
920c7a5d 1007static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1008{
1009 struct zone *zone = page_zone(page);
1010 struct per_cpu_pages *pcp;
1011 unsigned long flags;
1012
1da177e4
LT
1013 if (PageAnon(page))
1014 page->mapping = NULL;
224abf92 1015 if (free_pages_check(page))
689bcebf
HD
1016 return;
1017
3ac7fe5a 1018 if (!PageHighMem(page)) {
9858db50 1019 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1020 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1021 }
dafb1367 1022 arch_free_page(page, 0);
689bcebf
HD
1023 kernel_map_pages(page, 1, 0);
1024
3dfa5721 1025 pcp = &zone_pcp(zone, get_cpu())->pcp;
1da177e4 1026 local_irq_save(flags);
f8891e5e 1027 __count_vm_event(PGFREE);
3dfa5721
CL
1028 if (cold)
1029 list_add_tail(&page->lru, &pcp->list);
1030 else
1031 list_add(&page->lru, &pcp->list);
535131e6 1032 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1033 pcp->count++;
48db57f8
NP
1034 if (pcp->count >= pcp->high) {
1035 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1036 pcp->count -= pcp->batch;
1037 }
1da177e4
LT
1038 local_irq_restore(flags);
1039 put_cpu();
1040}
1041
920c7a5d 1042void free_hot_page(struct page *page)
1da177e4
LT
1043{
1044 free_hot_cold_page(page, 0);
1045}
1046
920c7a5d 1047void free_cold_page(struct page *page)
1da177e4
LT
1048{
1049 free_hot_cold_page(page, 1);
1050}
1051
8dfcc9ba
NP
1052/*
1053 * split_page takes a non-compound higher-order page, and splits it into
1054 * n (1<<order) sub-pages: page[0..n]
1055 * Each sub-page must be freed individually.
1056 *
1057 * Note: this is probably too low level an operation for use in drivers.
1058 * Please consult with lkml before using this in your driver.
1059 */
1060void split_page(struct page *page, unsigned int order)
1061{
1062 int i;
1063
725d704e
NP
1064 VM_BUG_ON(PageCompound(page));
1065 VM_BUG_ON(!page_count(page));
7835e98b
NP
1066 for (i = 1; i < (1 << order); i++)
1067 set_page_refcounted(page + i);
8dfcc9ba 1068}
8dfcc9ba 1069
1da177e4
LT
1070/*
1071 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1072 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1073 * or two.
1074 */
18ea7e71 1075static struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1076 struct zone *zone, int order, gfp_t gfp_flags,
1077 int migratetype)
1da177e4
LT
1078{
1079 unsigned long flags;
689bcebf 1080 struct page *page;
1da177e4 1081 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1082 int cpu;
1da177e4 1083
689bcebf 1084again:
a74609fa 1085 cpu = get_cpu();
48db57f8 1086 if (likely(order == 0)) {
1da177e4
LT
1087 struct per_cpu_pages *pcp;
1088
3dfa5721 1089 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1090 local_irq_save(flags);
a74609fa 1091 if (!pcp->count) {
941c7105 1092 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1093 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1094 if (unlikely(!pcp->count))
1095 goto failed;
1da177e4 1096 }
b92a6edd 1097
535131e6 1098 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1099 if (cold) {
1100 list_for_each_entry_reverse(page, &pcp->list, lru)
1101 if (page_private(page) == migratetype)
1102 break;
1103 } else {
1104 list_for_each_entry(page, &pcp->list, lru)
1105 if (page_private(page) == migratetype)
1106 break;
1107 }
535131e6 1108
b92a6edd
MG
1109 /* Allocate more to the pcp list if necessary */
1110 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1111 pcp->count += rmqueue_bulk(zone, 0,
1112 pcp->batch, &pcp->list, migratetype);
1113 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1114 }
b92a6edd
MG
1115
1116 list_del(&page->lru);
1117 pcp->count--;
7fb1d9fc 1118 } else {
1da177e4 1119 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1120 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1121 spin_unlock(&zone->lock);
1122 if (!page)
1123 goto failed;
1da177e4
LT
1124 }
1125
f8891e5e 1126 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1127 zone_statistics(preferred_zone, zone);
a74609fa
NP
1128 local_irq_restore(flags);
1129 put_cpu();
1da177e4 1130
725d704e 1131 VM_BUG_ON(bad_range(zone, page));
17cf4406 1132 if (prep_new_page(page, order, gfp_flags))
a74609fa 1133 goto again;
1da177e4 1134 return page;
a74609fa
NP
1135
1136failed:
1137 local_irq_restore(flags);
1138 put_cpu();
1139 return NULL;
1da177e4
LT
1140}
1141
7fb1d9fc 1142#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1143#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1144#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1145#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1146#define ALLOC_HARDER 0x10 /* try to alloc harder */
1147#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1148#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1149
933e312e
AM
1150#ifdef CONFIG_FAIL_PAGE_ALLOC
1151
1152static struct fail_page_alloc_attr {
1153 struct fault_attr attr;
1154
1155 u32 ignore_gfp_highmem;
1156 u32 ignore_gfp_wait;
54114994 1157 u32 min_order;
933e312e
AM
1158
1159#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1160
1161 struct dentry *ignore_gfp_highmem_file;
1162 struct dentry *ignore_gfp_wait_file;
54114994 1163 struct dentry *min_order_file;
933e312e
AM
1164
1165#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1166
1167} fail_page_alloc = {
1168 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1169 .ignore_gfp_wait = 1,
1170 .ignore_gfp_highmem = 1,
54114994 1171 .min_order = 1,
933e312e
AM
1172};
1173
1174static int __init setup_fail_page_alloc(char *str)
1175{
1176 return setup_fault_attr(&fail_page_alloc.attr, str);
1177}
1178__setup("fail_page_alloc=", setup_fail_page_alloc);
1179
1180static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1181{
54114994
AM
1182 if (order < fail_page_alloc.min_order)
1183 return 0;
933e312e
AM
1184 if (gfp_mask & __GFP_NOFAIL)
1185 return 0;
1186 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1187 return 0;
1188 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1189 return 0;
1190
1191 return should_fail(&fail_page_alloc.attr, 1 << order);
1192}
1193
1194#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1195
1196static int __init fail_page_alloc_debugfs(void)
1197{
1198 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1199 struct dentry *dir;
1200 int err;
1201
1202 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1203 "fail_page_alloc");
1204 if (err)
1205 return err;
1206 dir = fail_page_alloc.attr.dentries.dir;
1207
1208 fail_page_alloc.ignore_gfp_wait_file =
1209 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1210 &fail_page_alloc.ignore_gfp_wait);
1211
1212 fail_page_alloc.ignore_gfp_highmem_file =
1213 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1214 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1215 fail_page_alloc.min_order_file =
1216 debugfs_create_u32("min-order", mode, dir,
1217 &fail_page_alloc.min_order);
933e312e
AM
1218
1219 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1220 !fail_page_alloc.ignore_gfp_highmem_file ||
1221 !fail_page_alloc.min_order_file) {
933e312e
AM
1222 err = -ENOMEM;
1223 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1224 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1225 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1226 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1227 }
1228
1229 return err;
1230}
1231
1232late_initcall(fail_page_alloc_debugfs);
1233
1234#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1235
1236#else /* CONFIG_FAIL_PAGE_ALLOC */
1237
1238static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1239{
1240 return 0;
1241}
1242
1243#endif /* CONFIG_FAIL_PAGE_ALLOC */
1244
1da177e4
LT
1245/*
1246 * Return 1 if free pages are above 'mark'. This takes into account the order
1247 * of the allocation.
1248 */
1249int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1250 int classzone_idx, int alloc_flags)
1da177e4
LT
1251{
1252 /* free_pages my go negative - that's OK */
d23ad423
CL
1253 long min = mark;
1254 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1255 int o;
1256
7fb1d9fc 1257 if (alloc_flags & ALLOC_HIGH)
1da177e4 1258 min -= min / 2;
7fb1d9fc 1259 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1260 min -= min / 4;
1261
1262 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1263 return 0;
1264 for (o = 0; o < order; o++) {
1265 /* At the next order, this order's pages become unavailable */
1266 free_pages -= z->free_area[o].nr_free << o;
1267
1268 /* Require fewer higher order pages to be free */
1269 min >>= 1;
1270
1271 if (free_pages <= min)
1272 return 0;
1273 }
1274 return 1;
1275}
1276
9276b1bc
PJ
1277#ifdef CONFIG_NUMA
1278/*
1279 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1280 * skip over zones that are not allowed by the cpuset, or that have
1281 * been recently (in last second) found to be nearly full. See further
1282 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1283 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1284 *
1285 * If the zonelist cache is present in the passed in zonelist, then
1286 * returns a pointer to the allowed node mask (either the current
37b07e41 1287 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1288 *
1289 * If the zonelist cache is not available for this zonelist, does
1290 * nothing and returns NULL.
1291 *
1292 * If the fullzones BITMAP in the zonelist cache is stale (more than
1293 * a second since last zap'd) then we zap it out (clear its bits.)
1294 *
1295 * We hold off even calling zlc_setup, until after we've checked the
1296 * first zone in the zonelist, on the theory that most allocations will
1297 * be satisfied from that first zone, so best to examine that zone as
1298 * quickly as we can.
1299 */
1300static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1301{
1302 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1303 nodemask_t *allowednodes; /* zonelist_cache approximation */
1304
1305 zlc = zonelist->zlcache_ptr;
1306 if (!zlc)
1307 return NULL;
1308
f05111f5 1309 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1310 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1311 zlc->last_full_zap = jiffies;
1312 }
1313
1314 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1315 &cpuset_current_mems_allowed :
37b07e41 1316 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1317 return allowednodes;
1318}
1319
1320/*
1321 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1322 * if it is worth looking at further for free memory:
1323 * 1) Check that the zone isn't thought to be full (doesn't have its
1324 * bit set in the zonelist_cache fullzones BITMAP).
1325 * 2) Check that the zones node (obtained from the zonelist_cache
1326 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1327 * Return true (non-zero) if zone is worth looking at further, or
1328 * else return false (zero) if it is not.
1329 *
1330 * This check -ignores- the distinction between various watermarks,
1331 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1332 * found to be full for any variation of these watermarks, it will
1333 * be considered full for up to one second by all requests, unless
1334 * we are so low on memory on all allowed nodes that we are forced
1335 * into the second scan of the zonelist.
1336 *
1337 * In the second scan we ignore this zonelist cache and exactly
1338 * apply the watermarks to all zones, even it is slower to do so.
1339 * We are low on memory in the second scan, and should leave no stone
1340 * unturned looking for a free page.
1341 */
dd1a239f 1342static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1343 nodemask_t *allowednodes)
1344{
1345 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1346 int i; /* index of *z in zonelist zones */
1347 int n; /* node that zone *z is on */
1348
1349 zlc = zonelist->zlcache_ptr;
1350 if (!zlc)
1351 return 1;
1352
dd1a239f 1353 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1354 n = zlc->z_to_n[i];
1355
1356 /* This zone is worth trying if it is allowed but not full */
1357 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1358}
1359
1360/*
1361 * Given 'z' scanning a zonelist, set the corresponding bit in
1362 * zlc->fullzones, so that subsequent attempts to allocate a page
1363 * from that zone don't waste time re-examining it.
1364 */
dd1a239f 1365static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1366{
1367 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1368 int i; /* index of *z in zonelist zones */
1369
1370 zlc = zonelist->zlcache_ptr;
1371 if (!zlc)
1372 return;
1373
dd1a239f 1374 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1375
1376 set_bit(i, zlc->fullzones);
1377}
1378
1379#else /* CONFIG_NUMA */
1380
1381static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1382{
1383 return NULL;
1384}
1385
dd1a239f 1386static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1387 nodemask_t *allowednodes)
1388{
1389 return 1;
1390}
1391
dd1a239f 1392static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1393{
1394}
1395#endif /* CONFIG_NUMA */
1396
7fb1d9fc 1397/*
0798e519 1398 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1399 * a page.
1400 */
1401static struct page *
19770b32 1402get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1403 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1404 struct zone *preferred_zone, int migratetype)
753ee728 1405{
dd1a239f 1406 struct zoneref *z;
7fb1d9fc 1407 struct page *page = NULL;
54a6eb5c 1408 int classzone_idx;
5117f45d 1409 struct zone *zone;
9276b1bc
PJ
1410 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1411 int zlc_active = 0; /* set if using zonelist_cache */
1412 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1413
b3c466ce
MG
1414 if (WARN_ON_ONCE(order >= MAX_ORDER))
1415 return NULL;
1416
5117f45d 1417 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1418zonelist_scan:
7fb1d9fc 1419 /*
9276b1bc 1420 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1421 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1422 */
19770b32
MG
1423 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1424 high_zoneidx, nodemask) {
9276b1bc
PJ
1425 if (NUMA_BUILD && zlc_active &&
1426 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1427 continue;
7fb1d9fc 1428 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1429 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1430 goto try_next_zone;
7fb1d9fc
RS
1431
1432 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1433 unsigned long mark;
1434 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1435 mark = zone->pages_min;
3148890b 1436 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1437 mark = zone->pages_low;
3148890b 1438 else
1192d526 1439 mark = zone->pages_high;
0798e519
PJ
1440 if (!zone_watermark_ok(zone, order, mark,
1441 classzone_idx, alloc_flags)) {
9eeff239 1442 if (!zone_reclaim_mode ||
1192d526 1443 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1444 goto this_zone_full;
0798e519 1445 }
7fb1d9fc
RS
1446 }
1447
3dd28266
MG
1448 page = buffered_rmqueue(preferred_zone, zone, order,
1449 gfp_mask, migratetype);
0798e519 1450 if (page)
7fb1d9fc 1451 break;
9276b1bc
PJ
1452this_zone_full:
1453 if (NUMA_BUILD)
1454 zlc_mark_zone_full(zonelist, z);
1455try_next_zone:
1456 if (NUMA_BUILD && !did_zlc_setup) {
1457 /* we do zlc_setup after the first zone is tried */
1458 allowednodes = zlc_setup(zonelist, alloc_flags);
1459 zlc_active = 1;
1460 did_zlc_setup = 1;
1461 }
54a6eb5c 1462 }
9276b1bc
PJ
1463
1464 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1465 /* Disable zlc cache for second zonelist scan */
1466 zlc_active = 0;
1467 goto zonelist_scan;
1468 }
7fb1d9fc 1469 return page;
753ee728
MH
1470}
1471
11e33f6a
MG
1472static inline int
1473should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1474 unsigned long pages_reclaimed)
1da177e4 1475{
11e33f6a
MG
1476 /* Do not loop if specifically requested */
1477 if (gfp_mask & __GFP_NORETRY)
1478 return 0;
1da177e4 1479
11e33f6a
MG
1480 /*
1481 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1482 * means __GFP_NOFAIL, but that may not be true in other
1483 * implementations.
1484 */
1485 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1486 return 1;
1487
1488 /*
1489 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1490 * specified, then we retry until we no longer reclaim any pages
1491 * (above), or we've reclaimed an order of pages at least as
1492 * large as the allocation's order. In both cases, if the
1493 * allocation still fails, we stop retrying.
1494 */
1495 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1496 return 1;
cf40bd16 1497
11e33f6a
MG
1498 /*
1499 * Don't let big-order allocations loop unless the caller
1500 * explicitly requests that.
1501 */
1502 if (gfp_mask & __GFP_NOFAIL)
1503 return 1;
1da177e4 1504
11e33f6a
MG
1505 return 0;
1506}
933e312e 1507
11e33f6a
MG
1508static inline struct page *
1509__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1510 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1511 nodemask_t *nodemask, struct zone *preferred_zone,
1512 int migratetype)
11e33f6a
MG
1513{
1514 struct page *page;
1515
1516 /* Acquire the OOM killer lock for the zones in zonelist */
1517 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1518 schedule_timeout_uninterruptible(1);
1da177e4
LT
1519 return NULL;
1520 }
6b1de916 1521
11e33f6a
MG
1522 /*
1523 * Go through the zonelist yet one more time, keep very high watermark
1524 * here, this is only to catch a parallel oom killing, we must fail if
1525 * we're still under heavy pressure.
1526 */
1527 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1528 order, zonelist, high_zoneidx,
5117f45d 1529 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1530 preferred_zone, migratetype);
7fb1d9fc 1531 if (page)
11e33f6a
MG
1532 goto out;
1533
1534 /* The OOM killer will not help higher order allocs */
1535 if (order > PAGE_ALLOC_COSTLY_ORDER)
1536 goto out;
1537
1538 /* Exhausted what can be done so it's blamo time */
1539 out_of_memory(zonelist, gfp_mask, order);
1540
1541out:
1542 clear_zonelist_oom(zonelist, gfp_mask);
1543 return page;
1544}
1545
1546/* The really slow allocator path where we enter direct reclaim */
1547static inline struct page *
1548__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1549 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1550 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1551 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1552{
1553 struct page *page = NULL;
1554 struct reclaim_state reclaim_state;
1555 struct task_struct *p = current;
1556
1557 cond_resched();
1558
1559 /* We now go into synchronous reclaim */
1560 cpuset_memory_pressure_bump();
1561
1562 /*
1563 * The task's cpuset might have expanded its set of allowable nodes
1564 */
1565 p->flags |= PF_MEMALLOC;
1566 lockdep_set_current_reclaim_state(gfp_mask);
1567 reclaim_state.reclaimed_slab = 0;
1568 p->reclaim_state = &reclaim_state;
1569
1570 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1571
1572 p->reclaim_state = NULL;
1573 lockdep_clear_current_reclaim_state();
1574 p->flags &= ~PF_MEMALLOC;
1575
1576 cond_resched();
1577
1578 if (order != 0)
1579 drain_all_pages();
1580
1581 if (likely(*did_some_progress))
1582 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1583 zonelist, high_zoneidx,
3dd28266
MG
1584 alloc_flags, preferred_zone,
1585 migratetype);
11e33f6a
MG
1586 return page;
1587}
1588
11e33f6a
MG
1589/*
1590 * This is called in the allocator slow-path if the allocation request is of
1591 * sufficient urgency to ignore watermarks and take other desperate measures
1592 */
1593static inline struct page *
1594__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1595 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1596 nodemask_t *nodemask, struct zone *preferred_zone,
1597 int migratetype)
11e33f6a
MG
1598{
1599 struct page *page;
1600
1601 do {
1602 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1603 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1604 preferred_zone, migratetype);
11e33f6a
MG
1605
1606 if (!page && gfp_mask & __GFP_NOFAIL)
1607 congestion_wait(WRITE, HZ/50);
1608 } while (!page && (gfp_mask & __GFP_NOFAIL));
1609
1610 return page;
1611}
1612
1613static inline
1614void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1615 enum zone_type high_zoneidx)
1616{
1617 struct zoneref *z;
1618 struct zone *zone;
1619
1620 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1621 wakeup_kswapd(zone, order);
1622}
1623
341ce06f
PZ
1624static inline int
1625gfp_to_alloc_flags(gfp_t gfp_mask)
1626{
1627 struct task_struct *p = current;
1628 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1629 const gfp_t wait = gfp_mask & __GFP_WAIT;
1630
a56f57ff
MG
1631 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1632 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1633
341ce06f
PZ
1634 /*
1635 * The caller may dip into page reserves a bit more if the caller
1636 * cannot run direct reclaim, or if the caller has realtime scheduling
1637 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1638 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1639 */
a56f57ff 1640 alloc_flags |= (gfp_mask & __GFP_HIGH);
341ce06f
PZ
1641
1642 if (!wait) {
1643 alloc_flags |= ALLOC_HARDER;
1644 /*
1645 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1646 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1647 */
1648 alloc_flags &= ~ALLOC_CPUSET;
1649 } else if (unlikely(rt_task(p)))
1650 alloc_flags |= ALLOC_HARDER;
1651
1652 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1653 if (!in_interrupt() &&
1654 ((p->flags & PF_MEMALLOC) ||
1655 unlikely(test_thread_flag(TIF_MEMDIE))))
1656 alloc_flags |= ALLOC_NO_WATERMARKS;
1657 }
1658
1659 return alloc_flags;
1660}
1661
11e33f6a
MG
1662static inline struct page *
1663__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1664 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1665 nodemask_t *nodemask, struct zone *preferred_zone,
1666 int migratetype)
11e33f6a
MG
1667{
1668 const gfp_t wait = gfp_mask & __GFP_WAIT;
1669 struct page *page = NULL;
1670 int alloc_flags;
1671 unsigned long pages_reclaimed = 0;
1672 unsigned long did_some_progress;
1673 struct task_struct *p = current;
1da177e4 1674
952f3b51
CL
1675 /*
1676 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1677 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1678 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1679 * using a larger set of nodes after it has established that the
1680 * allowed per node queues are empty and that nodes are
1681 * over allocated.
1682 */
1683 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1684 goto nopage;
1685
11e33f6a 1686 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1687
9bf2229f 1688 /*
7fb1d9fc
RS
1689 * OK, we're below the kswapd watermark and have kicked background
1690 * reclaim. Now things get more complex, so set up alloc_flags according
1691 * to how we want to proceed.
9bf2229f 1692 */
341ce06f 1693 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1694
11e33f6a 1695restart:
341ce06f 1696 /* This is the last chance, in general, before the goto nopage. */
19770b32 1697 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1698 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1699 preferred_zone, migratetype);
7fb1d9fc
RS
1700 if (page)
1701 goto got_pg;
1da177e4 1702
b43a57bb 1703rebalance:
11e33f6a 1704 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1705 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1706 page = __alloc_pages_high_priority(gfp_mask, order,
1707 zonelist, high_zoneidx, nodemask,
1708 preferred_zone, migratetype);
1709 if (page)
1710 goto got_pg;
1da177e4
LT
1711 }
1712
1713 /* Atomic allocations - we can't balance anything */
1714 if (!wait)
1715 goto nopage;
1716
341ce06f
PZ
1717 /* Avoid recursion of direct reclaim */
1718 if (p->flags & PF_MEMALLOC)
1719 goto nopage;
1720
11e33f6a
MG
1721 /* Try direct reclaim and then allocating */
1722 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1723 zonelist, high_zoneidx,
1724 nodemask,
5117f45d 1725 alloc_flags, preferred_zone,
3dd28266 1726 migratetype, &did_some_progress);
11e33f6a
MG
1727 if (page)
1728 goto got_pg;
1da177e4 1729
11e33f6a
MG
1730 /*
1731 * If we failed to make any progress reclaiming, then we are
1732 * running out of options and have to consider going OOM
1733 */
1734 if (!did_some_progress) {
1735 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1736 page = __alloc_pages_may_oom(gfp_mask, order,
1737 zonelist, high_zoneidx,
3dd28266
MG
1738 nodemask, preferred_zone,
1739 migratetype);
11e33f6a
MG
1740 if (page)
1741 goto got_pg;
1da177e4 1742
11e33f6a
MG
1743 /*
1744 * The OOM killer does not trigger for high-order allocations
1745 * but if no progress is being made, there are no other
1746 * options and retrying is unlikely to help
1747 */
1748 if (order > PAGE_ALLOC_COSTLY_ORDER)
1749 goto nopage;
e2c55dc8 1750
ff0ceb9d
DR
1751 goto restart;
1752 }
1da177e4
LT
1753 }
1754
11e33f6a 1755 /* Check if we should retry the allocation */
a41f24ea 1756 pages_reclaimed += did_some_progress;
11e33f6a
MG
1757 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1758 /* Wait for some write requests to complete then retry */
3fcfab16 1759 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1760 goto rebalance;
1761 }
1762
1763nopage:
1764 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1765 printk(KERN_WARNING "%s: page allocation failure."
1766 " order:%d, mode:0x%x\n",
1767 p->comm, order, gfp_mask);
1768 dump_stack();
578c2fd6 1769 show_mem();
1da177e4 1770 }
1da177e4 1771got_pg:
1da177e4 1772 return page;
11e33f6a
MG
1773
1774}
1775
1776/*
1777 * This is the 'heart' of the zoned buddy allocator.
1778 */
1779struct page *
1780__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1781 struct zonelist *zonelist, nodemask_t *nodemask)
1782{
1783 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1784 struct zone *preferred_zone;
11e33f6a 1785 struct page *page;
3dd28266 1786 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1787
1788 lockdep_trace_alloc(gfp_mask);
1789
1790 might_sleep_if(gfp_mask & __GFP_WAIT);
1791
1792 if (should_fail_alloc_page(gfp_mask, order))
1793 return NULL;
1794
1795 /*
1796 * Check the zones suitable for the gfp_mask contain at least one
1797 * valid zone. It's possible to have an empty zonelist as a result
1798 * of GFP_THISNODE and a memoryless node
1799 */
1800 if (unlikely(!zonelist->_zonerefs->zone))
1801 return NULL;
1802
5117f45d
MG
1803 /* The preferred zone is used for statistics later */
1804 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1805 if (!preferred_zone)
1806 return NULL;
1807
1808 /* First allocation attempt */
11e33f6a 1809 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1810 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1811 preferred_zone, migratetype);
11e33f6a
MG
1812 if (unlikely(!page))
1813 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1814 zonelist, high_zoneidx, nodemask,
3dd28266 1815 preferred_zone, migratetype);
11e33f6a
MG
1816
1817 return page;
1da177e4 1818}
d239171e 1819EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1820
1821/*
1822 * Common helper functions.
1823 */
920c7a5d 1824unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1825{
1826 struct page * page;
1827 page = alloc_pages(gfp_mask, order);
1828 if (!page)
1829 return 0;
1830 return (unsigned long) page_address(page);
1831}
1832
1833EXPORT_SYMBOL(__get_free_pages);
1834
920c7a5d 1835unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1836{
1837 struct page * page;
1838
1839 /*
1840 * get_zeroed_page() returns a 32-bit address, which cannot represent
1841 * a highmem page
1842 */
725d704e 1843 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1844
1845 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1846 if (page)
1847 return (unsigned long) page_address(page);
1848 return 0;
1849}
1850
1851EXPORT_SYMBOL(get_zeroed_page);
1852
1853void __pagevec_free(struct pagevec *pvec)
1854{
1855 int i = pagevec_count(pvec);
1856
1857 while (--i >= 0)
1858 free_hot_cold_page(pvec->pages[i], pvec->cold);
1859}
1860
920c7a5d 1861void __free_pages(struct page *page, unsigned int order)
1da177e4 1862{
b5810039 1863 if (put_page_testzero(page)) {
1da177e4
LT
1864 if (order == 0)
1865 free_hot_page(page);
1866 else
1867 __free_pages_ok(page, order);
1868 }
1869}
1870
1871EXPORT_SYMBOL(__free_pages);
1872
920c7a5d 1873void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1874{
1875 if (addr != 0) {
725d704e 1876 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1877 __free_pages(virt_to_page((void *)addr), order);
1878 }
1879}
1880
1881EXPORT_SYMBOL(free_pages);
1882
2be0ffe2
TT
1883/**
1884 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1885 * @size: the number of bytes to allocate
1886 * @gfp_mask: GFP flags for the allocation
1887 *
1888 * This function is similar to alloc_pages(), except that it allocates the
1889 * minimum number of pages to satisfy the request. alloc_pages() can only
1890 * allocate memory in power-of-two pages.
1891 *
1892 * This function is also limited by MAX_ORDER.
1893 *
1894 * Memory allocated by this function must be released by free_pages_exact().
1895 */
1896void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1897{
1898 unsigned int order = get_order(size);
1899 unsigned long addr;
1900
1901 addr = __get_free_pages(gfp_mask, order);
1902 if (addr) {
1903 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1904 unsigned long used = addr + PAGE_ALIGN(size);
1905
1906 split_page(virt_to_page(addr), order);
1907 while (used < alloc_end) {
1908 free_page(used);
1909 used += PAGE_SIZE;
1910 }
1911 }
1912
1913 return (void *)addr;
1914}
1915EXPORT_SYMBOL(alloc_pages_exact);
1916
1917/**
1918 * free_pages_exact - release memory allocated via alloc_pages_exact()
1919 * @virt: the value returned by alloc_pages_exact.
1920 * @size: size of allocation, same value as passed to alloc_pages_exact().
1921 *
1922 * Release the memory allocated by a previous call to alloc_pages_exact.
1923 */
1924void free_pages_exact(void *virt, size_t size)
1925{
1926 unsigned long addr = (unsigned long)virt;
1927 unsigned long end = addr + PAGE_ALIGN(size);
1928
1929 while (addr < end) {
1930 free_page(addr);
1931 addr += PAGE_SIZE;
1932 }
1933}
1934EXPORT_SYMBOL(free_pages_exact);
1935
1da177e4
LT
1936static unsigned int nr_free_zone_pages(int offset)
1937{
dd1a239f 1938 struct zoneref *z;
54a6eb5c
MG
1939 struct zone *zone;
1940
e310fd43 1941 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1942 unsigned int sum = 0;
1943
0e88460d 1944 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1945
54a6eb5c 1946 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43
MB
1947 unsigned long size = zone->present_pages;
1948 unsigned long high = zone->pages_high;
1949 if (size > high)
1950 sum += size - high;
1da177e4
LT
1951 }
1952
1953 return sum;
1954}
1955
1956/*
1957 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1958 */
1959unsigned int nr_free_buffer_pages(void)
1960{
af4ca457 1961 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1962}
c2f1a551 1963EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1964
1965/*
1966 * Amount of free RAM allocatable within all zones
1967 */
1968unsigned int nr_free_pagecache_pages(void)
1969{
2a1e274a 1970 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1971}
08e0f6a9
CL
1972
1973static inline void show_node(struct zone *zone)
1da177e4 1974{
08e0f6a9 1975 if (NUMA_BUILD)
25ba77c1 1976 printk("Node %d ", zone_to_nid(zone));
1da177e4 1977}
1da177e4 1978
1da177e4
LT
1979void si_meminfo(struct sysinfo *val)
1980{
1981 val->totalram = totalram_pages;
1982 val->sharedram = 0;
d23ad423 1983 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1984 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1985 val->totalhigh = totalhigh_pages;
1986 val->freehigh = nr_free_highpages();
1da177e4
LT
1987 val->mem_unit = PAGE_SIZE;
1988}
1989
1990EXPORT_SYMBOL(si_meminfo);
1991
1992#ifdef CONFIG_NUMA
1993void si_meminfo_node(struct sysinfo *val, int nid)
1994{
1995 pg_data_t *pgdat = NODE_DATA(nid);
1996
1997 val->totalram = pgdat->node_present_pages;
d23ad423 1998 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1999#ifdef CONFIG_HIGHMEM
1da177e4 2000 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2001 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2002 NR_FREE_PAGES);
98d2b0eb
CL
2003#else
2004 val->totalhigh = 0;
2005 val->freehigh = 0;
2006#endif
1da177e4
LT
2007 val->mem_unit = PAGE_SIZE;
2008}
2009#endif
2010
2011#define K(x) ((x) << (PAGE_SHIFT-10))
2012
2013/*
2014 * Show free area list (used inside shift_scroll-lock stuff)
2015 * We also calculate the percentage fragmentation. We do this by counting the
2016 * memory on each free list with the exception of the first item on the list.
2017 */
2018void show_free_areas(void)
2019{
c7241913 2020 int cpu;
1da177e4
LT
2021 struct zone *zone;
2022
ee99c71c 2023 for_each_populated_zone(zone) {
c7241913
JS
2024 show_node(zone);
2025 printk("%s per-cpu:\n", zone->name);
1da177e4 2026
6b482c67 2027 for_each_online_cpu(cpu) {
1da177e4
LT
2028 struct per_cpu_pageset *pageset;
2029
e7c8d5c9 2030 pageset = zone_pcp(zone, cpu);
1da177e4 2031
3dfa5721
CL
2032 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2033 cpu, pageset->pcp.high,
2034 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2035 }
2036 }
2037
7b854121
LS
2038 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2039 " inactive_file:%lu"
2040//TODO: check/adjust line lengths
2041#ifdef CONFIG_UNEVICTABLE_LRU
2042 " unevictable:%lu"
2043#endif
2044 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2045 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2046 global_page_state(NR_ACTIVE_ANON),
2047 global_page_state(NR_ACTIVE_FILE),
2048 global_page_state(NR_INACTIVE_ANON),
2049 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2050#ifdef CONFIG_UNEVICTABLE_LRU
2051 global_page_state(NR_UNEVICTABLE),
2052#endif
b1e7a8fd 2053 global_page_state(NR_FILE_DIRTY),
ce866b34 2054 global_page_state(NR_WRITEBACK),
fd39fc85 2055 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2056 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2057 global_page_state(NR_SLAB_RECLAIMABLE) +
2058 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2059 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2060 global_page_state(NR_PAGETABLE),
2061 global_page_state(NR_BOUNCE));
1da177e4 2062
ee99c71c 2063 for_each_populated_zone(zone) {
1da177e4
LT
2064 int i;
2065
2066 show_node(zone);
2067 printk("%s"
2068 " free:%lukB"
2069 " min:%lukB"
2070 " low:%lukB"
2071 " high:%lukB"
4f98a2fe
RR
2072 " active_anon:%lukB"
2073 " inactive_anon:%lukB"
2074 " active_file:%lukB"
2075 " inactive_file:%lukB"
7b854121
LS
2076#ifdef CONFIG_UNEVICTABLE_LRU
2077 " unevictable:%lukB"
2078#endif
1da177e4
LT
2079 " present:%lukB"
2080 " pages_scanned:%lu"
2081 " all_unreclaimable? %s"
2082 "\n",
2083 zone->name,
d23ad423 2084 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
2085 K(zone->pages_min),
2086 K(zone->pages_low),
2087 K(zone->pages_high),
4f98a2fe
RR
2088 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2089 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2090 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2091 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2092#ifdef CONFIG_UNEVICTABLE_LRU
2093 K(zone_page_state(zone, NR_UNEVICTABLE)),
2094#endif
1da177e4
LT
2095 K(zone->present_pages),
2096 zone->pages_scanned,
e815af95 2097 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2098 );
2099 printk("lowmem_reserve[]:");
2100 for (i = 0; i < MAX_NR_ZONES; i++)
2101 printk(" %lu", zone->lowmem_reserve[i]);
2102 printk("\n");
2103 }
2104
ee99c71c 2105 for_each_populated_zone(zone) {
8f9de51a 2106 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2107
2108 show_node(zone);
2109 printk("%s: ", zone->name);
1da177e4
LT
2110
2111 spin_lock_irqsave(&zone->lock, flags);
2112 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2113 nr[order] = zone->free_area[order].nr_free;
2114 total += nr[order] << order;
1da177e4
LT
2115 }
2116 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2117 for (order = 0; order < MAX_ORDER; order++)
2118 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2119 printk("= %lukB\n", K(total));
2120 }
2121
e6f3602d
LW
2122 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2123
1da177e4
LT
2124 show_swap_cache_info();
2125}
2126
19770b32
MG
2127static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2128{
2129 zoneref->zone = zone;
2130 zoneref->zone_idx = zone_idx(zone);
2131}
2132
1da177e4
LT
2133/*
2134 * Builds allocation fallback zone lists.
1a93205b
CL
2135 *
2136 * Add all populated zones of a node to the zonelist.
1da177e4 2137 */
f0c0b2b8
KH
2138static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2139 int nr_zones, enum zone_type zone_type)
1da177e4 2140{
1a93205b
CL
2141 struct zone *zone;
2142
98d2b0eb 2143 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2144 zone_type++;
02a68a5e
CL
2145
2146 do {
2f6726e5 2147 zone_type--;
070f8032 2148 zone = pgdat->node_zones + zone_type;
1a93205b 2149 if (populated_zone(zone)) {
dd1a239f
MG
2150 zoneref_set_zone(zone,
2151 &zonelist->_zonerefs[nr_zones++]);
070f8032 2152 check_highest_zone(zone_type);
1da177e4 2153 }
02a68a5e 2154
2f6726e5 2155 } while (zone_type);
070f8032 2156 return nr_zones;
1da177e4
LT
2157}
2158
f0c0b2b8
KH
2159
2160/*
2161 * zonelist_order:
2162 * 0 = automatic detection of better ordering.
2163 * 1 = order by ([node] distance, -zonetype)
2164 * 2 = order by (-zonetype, [node] distance)
2165 *
2166 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2167 * the same zonelist. So only NUMA can configure this param.
2168 */
2169#define ZONELIST_ORDER_DEFAULT 0
2170#define ZONELIST_ORDER_NODE 1
2171#define ZONELIST_ORDER_ZONE 2
2172
2173/* zonelist order in the kernel.
2174 * set_zonelist_order() will set this to NODE or ZONE.
2175 */
2176static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2177static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2178
2179
1da177e4 2180#ifdef CONFIG_NUMA
f0c0b2b8
KH
2181/* The value user specified ....changed by config */
2182static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2183/* string for sysctl */
2184#define NUMA_ZONELIST_ORDER_LEN 16
2185char numa_zonelist_order[16] = "default";
2186
2187/*
2188 * interface for configure zonelist ordering.
2189 * command line option "numa_zonelist_order"
2190 * = "[dD]efault - default, automatic configuration.
2191 * = "[nN]ode - order by node locality, then by zone within node
2192 * = "[zZ]one - order by zone, then by locality within zone
2193 */
2194
2195static int __parse_numa_zonelist_order(char *s)
2196{
2197 if (*s == 'd' || *s == 'D') {
2198 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2199 } else if (*s == 'n' || *s == 'N') {
2200 user_zonelist_order = ZONELIST_ORDER_NODE;
2201 } else if (*s == 'z' || *s == 'Z') {
2202 user_zonelist_order = ZONELIST_ORDER_ZONE;
2203 } else {
2204 printk(KERN_WARNING
2205 "Ignoring invalid numa_zonelist_order value: "
2206 "%s\n", s);
2207 return -EINVAL;
2208 }
2209 return 0;
2210}
2211
2212static __init int setup_numa_zonelist_order(char *s)
2213{
2214 if (s)
2215 return __parse_numa_zonelist_order(s);
2216 return 0;
2217}
2218early_param("numa_zonelist_order", setup_numa_zonelist_order);
2219
2220/*
2221 * sysctl handler for numa_zonelist_order
2222 */
2223int numa_zonelist_order_handler(ctl_table *table, int write,
2224 struct file *file, void __user *buffer, size_t *length,
2225 loff_t *ppos)
2226{
2227 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2228 int ret;
2229
2230 if (write)
2231 strncpy(saved_string, (char*)table->data,
2232 NUMA_ZONELIST_ORDER_LEN);
2233 ret = proc_dostring(table, write, file, buffer, length, ppos);
2234 if (ret)
2235 return ret;
2236 if (write) {
2237 int oldval = user_zonelist_order;
2238 if (__parse_numa_zonelist_order((char*)table->data)) {
2239 /*
2240 * bogus value. restore saved string
2241 */
2242 strncpy((char*)table->data, saved_string,
2243 NUMA_ZONELIST_ORDER_LEN);
2244 user_zonelist_order = oldval;
2245 } else if (oldval != user_zonelist_order)
2246 build_all_zonelists();
2247 }
2248 return 0;
2249}
2250
2251
1da177e4 2252#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2253static int node_load[MAX_NUMNODES];
2254
1da177e4 2255/**
4dc3b16b 2256 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2257 * @node: node whose fallback list we're appending
2258 * @used_node_mask: nodemask_t of already used nodes
2259 *
2260 * We use a number of factors to determine which is the next node that should
2261 * appear on a given node's fallback list. The node should not have appeared
2262 * already in @node's fallback list, and it should be the next closest node
2263 * according to the distance array (which contains arbitrary distance values
2264 * from each node to each node in the system), and should also prefer nodes
2265 * with no CPUs, since presumably they'll have very little allocation pressure
2266 * on them otherwise.
2267 * It returns -1 if no node is found.
2268 */
f0c0b2b8 2269static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2270{
4cf808eb 2271 int n, val;
1da177e4
LT
2272 int min_val = INT_MAX;
2273 int best_node = -1;
a70f7302 2274 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2275
4cf808eb
LT
2276 /* Use the local node if we haven't already */
2277 if (!node_isset(node, *used_node_mask)) {
2278 node_set(node, *used_node_mask);
2279 return node;
2280 }
1da177e4 2281
37b07e41 2282 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2283
2284 /* Don't want a node to appear more than once */
2285 if (node_isset(n, *used_node_mask))
2286 continue;
2287
1da177e4
LT
2288 /* Use the distance array to find the distance */
2289 val = node_distance(node, n);
2290
4cf808eb
LT
2291 /* Penalize nodes under us ("prefer the next node") */
2292 val += (n < node);
2293
1da177e4 2294 /* Give preference to headless and unused nodes */
a70f7302
RR
2295 tmp = cpumask_of_node(n);
2296 if (!cpumask_empty(tmp))
1da177e4
LT
2297 val += PENALTY_FOR_NODE_WITH_CPUS;
2298
2299 /* Slight preference for less loaded node */
2300 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2301 val += node_load[n];
2302
2303 if (val < min_val) {
2304 min_val = val;
2305 best_node = n;
2306 }
2307 }
2308
2309 if (best_node >= 0)
2310 node_set(best_node, *used_node_mask);
2311
2312 return best_node;
2313}
2314
f0c0b2b8
KH
2315
2316/*
2317 * Build zonelists ordered by node and zones within node.
2318 * This results in maximum locality--normal zone overflows into local
2319 * DMA zone, if any--but risks exhausting DMA zone.
2320 */
2321static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2322{
f0c0b2b8 2323 int j;
1da177e4 2324 struct zonelist *zonelist;
f0c0b2b8 2325
54a6eb5c 2326 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2327 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2328 ;
2329 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2330 MAX_NR_ZONES - 1);
dd1a239f
MG
2331 zonelist->_zonerefs[j].zone = NULL;
2332 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2333}
2334
523b9458
CL
2335/*
2336 * Build gfp_thisnode zonelists
2337 */
2338static void build_thisnode_zonelists(pg_data_t *pgdat)
2339{
523b9458
CL
2340 int j;
2341 struct zonelist *zonelist;
2342
54a6eb5c
MG
2343 zonelist = &pgdat->node_zonelists[1];
2344 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2345 zonelist->_zonerefs[j].zone = NULL;
2346 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2347}
2348
f0c0b2b8
KH
2349/*
2350 * Build zonelists ordered by zone and nodes within zones.
2351 * This results in conserving DMA zone[s] until all Normal memory is
2352 * exhausted, but results in overflowing to remote node while memory
2353 * may still exist in local DMA zone.
2354 */
2355static int node_order[MAX_NUMNODES];
2356
2357static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2358{
f0c0b2b8
KH
2359 int pos, j, node;
2360 int zone_type; /* needs to be signed */
2361 struct zone *z;
2362 struct zonelist *zonelist;
2363
54a6eb5c
MG
2364 zonelist = &pgdat->node_zonelists[0];
2365 pos = 0;
2366 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2367 for (j = 0; j < nr_nodes; j++) {
2368 node = node_order[j];
2369 z = &NODE_DATA(node)->node_zones[zone_type];
2370 if (populated_zone(z)) {
dd1a239f
MG
2371 zoneref_set_zone(z,
2372 &zonelist->_zonerefs[pos++]);
54a6eb5c 2373 check_highest_zone(zone_type);
f0c0b2b8
KH
2374 }
2375 }
f0c0b2b8 2376 }
dd1a239f
MG
2377 zonelist->_zonerefs[pos].zone = NULL;
2378 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2379}
2380
2381static int default_zonelist_order(void)
2382{
2383 int nid, zone_type;
2384 unsigned long low_kmem_size,total_size;
2385 struct zone *z;
2386 int average_size;
2387 /*
2388 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2389 * If they are really small and used heavily, the system can fall
2390 * into OOM very easily.
2391 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2392 */
2393 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2394 low_kmem_size = 0;
2395 total_size = 0;
2396 for_each_online_node(nid) {
2397 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2398 z = &NODE_DATA(nid)->node_zones[zone_type];
2399 if (populated_zone(z)) {
2400 if (zone_type < ZONE_NORMAL)
2401 low_kmem_size += z->present_pages;
2402 total_size += z->present_pages;
2403 }
2404 }
2405 }
2406 if (!low_kmem_size || /* there are no DMA area. */
2407 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2408 return ZONELIST_ORDER_NODE;
2409 /*
2410 * look into each node's config.
2411 * If there is a node whose DMA/DMA32 memory is very big area on
2412 * local memory, NODE_ORDER may be suitable.
2413 */
37b07e41
LS
2414 average_size = total_size /
2415 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2416 for_each_online_node(nid) {
2417 low_kmem_size = 0;
2418 total_size = 0;
2419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2420 z = &NODE_DATA(nid)->node_zones[zone_type];
2421 if (populated_zone(z)) {
2422 if (zone_type < ZONE_NORMAL)
2423 low_kmem_size += z->present_pages;
2424 total_size += z->present_pages;
2425 }
2426 }
2427 if (low_kmem_size &&
2428 total_size > average_size && /* ignore small node */
2429 low_kmem_size > total_size * 70/100)
2430 return ZONELIST_ORDER_NODE;
2431 }
2432 return ZONELIST_ORDER_ZONE;
2433}
2434
2435static void set_zonelist_order(void)
2436{
2437 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2438 current_zonelist_order = default_zonelist_order();
2439 else
2440 current_zonelist_order = user_zonelist_order;
2441}
2442
2443static void build_zonelists(pg_data_t *pgdat)
2444{
2445 int j, node, load;
2446 enum zone_type i;
1da177e4 2447 nodemask_t used_mask;
f0c0b2b8
KH
2448 int local_node, prev_node;
2449 struct zonelist *zonelist;
2450 int order = current_zonelist_order;
1da177e4
LT
2451
2452 /* initialize zonelists */
523b9458 2453 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2454 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2455 zonelist->_zonerefs[0].zone = NULL;
2456 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2457 }
2458
2459 /* NUMA-aware ordering of nodes */
2460 local_node = pgdat->node_id;
2461 load = num_online_nodes();
2462 prev_node = local_node;
2463 nodes_clear(used_mask);
f0c0b2b8
KH
2464
2465 memset(node_load, 0, sizeof(node_load));
2466 memset(node_order, 0, sizeof(node_order));
2467 j = 0;
2468
1da177e4 2469 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2470 int distance = node_distance(local_node, node);
2471
2472 /*
2473 * If another node is sufficiently far away then it is better
2474 * to reclaim pages in a zone before going off node.
2475 */
2476 if (distance > RECLAIM_DISTANCE)
2477 zone_reclaim_mode = 1;
2478
1da177e4
LT
2479 /*
2480 * We don't want to pressure a particular node.
2481 * So adding penalty to the first node in same
2482 * distance group to make it round-robin.
2483 */
9eeff239 2484 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2485 node_load[node] = load;
2486
1da177e4
LT
2487 prev_node = node;
2488 load--;
f0c0b2b8
KH
2489 if (order == ZONELIST_ORDER_NODE)
2490 build_zonelists_in_node_order(pgdat, node);
2491 else
2492 node_order[j++] = node; /* remember order */
2493 }
1da177e4 2494
f0c0b2b8
KH
2495 if (order == ZONELIST_ORDER_ZONE) {
2496 /* calculate node order -- i.e., DMA last! */
2497 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2498 }
523b9458
CL
2499
2500 build_thisnode_zonelists(pgdat);
1da177e4
LT
2501}
2502
9276b1bc 2503/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2504static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2505{
54a6eb5c
MG
2506 struct zonelist *zonelist;
2507 struct zonelist_cache *zlc;
dd1a239f 2508 struct zoneref *z;
9276b1bc 2509
54a6eb5c
MG
2510 zonelist = &pgdat->node_zonelists[0];
2511 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2512 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2513 for (z = zonelist->_zonerefs; z->zone; z++)
2514 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2515}
2516
f0c0b2b8 2517
1da177e4
LT
2518#else /* CONFIG_NUMA */
2519
f0c0b2b8
KH
2520static void set_zonelist_order(void)
2521{
2522 current_zonelist_order = ZONELIST_ORDER_ZONE;
2523}
2524
2525static void build_zonelists(pg_data_t *pgdat)
1da177e4 2526{
19655d34 2527 int node, local_node;
54a6eb5c
MG
2528 enum zone_type j;
2529 struct zonelist *zonelist;
1da177e4
LT
2530
2531 local_node = pgdat->node_id;
1da177e4 2532
54a6eb5c
MG
2533 zonelist = &pgdat->node_zonelists[0];
2534 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2535
54a6eb5c
MG
2536 /*
2537 * Now we build the zonelist so that it contains the zones
2538 * of all the other nodes.
2539 * We don't want to pressure a particular node, so when
2540 * building the zones for node N, we make sure that the
2541 * zones coming right after the local ones are those from
2542 * node N+1 (modulo N)
2543 */
2544 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2545 if (!node_online(node))
2546 continue;
2547 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2548 MAX_NR_ZONES - 1);
1da177e4 2549 }
54a6eb5c
MG
2550 for (node = 0; node < local_node; node++) {
2551 if (!node_online(node))
2552 continue;
2553 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2554 MAX_NR_ZONES - 1);
2555 }
2556
dd1a239f
MG
2557 zonelist->_zonerefs[j].zone = NULL;
2558 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2559}
2560
9276b1bc 2561/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2562static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2563{
54a6eb5c 2564 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2565}
2566
1da177e4
LT
2567#endif /* CONFIG_NUMA */
2568
9b1a4d38 2569/* return values int ....just for stop_machine() */
f0c0b2b8 2570static int __build_all_zonelists(void *dummy)
1da177e4 2571{
6811378e 2572 int nid;
9276b1bc
PJ
2573
2574 for_each_online_node(nid) {
7ea1530a
CL
2575 pg_data_t *pgdat = NODE_DATA(nid);
2576
2577 build_zonelists(pgdat);
2578 build_zonelist_cache(pgdat);
9276b1bc 2579 }
6811378e
YG
2580 return 0;
2581}
2582
f0c0b2b8 2583void build_all_zonelists(void)
6811378e 2584{
f0c0b2b8
KH
2585 set_zonelist_order();
2586
6811378e 2587 if (system_state == SYSTEM_BOOTING) {
423b41d7 2588 __build_all_zonelists(NULL);
68ad8df4 2589 mminit_verify_zonelist();
6811378e
YG
2590 cpuset_init_current_mems_allowed();
2591 } else {
183ff22b 2592 /* we have to stop all cpus to guarantee there is no user
6811378e 2593 of zonelist */
9b1a4d38 2594 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2595 /* cpuset refresh routine should be here */
2596 }
bd1e22b8 2597 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2598 /*
2599 * Disable grouping by mobility if the number of pages in the
2600 * system is too low to allow the mechanism to work. It would be
2601 * more accurate, but expensive to check per-zone. This check is
2602 * made on memory-hotadd so a system can start with mobility
2603 * disabled and enable it later
2604 */
d9c23400 2605 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2606 page_group_by_mobility_disabled = 1;
2607 else
2608 page_group_by_mobility_disabled = 0;
2609
2610 printk("Built %i zonelists in %s order, mobility grouping %s. "
2611 "Total pages: %ld\n",
f0c0b2b8
KH
2612 num_online_nodes(),
2613 zonelist_order_name[current_zonelist_order],
9ef9acb0 2614 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2615 vm_total_pages);
2616#ifdef CONFIG_NUMA
2617 printk("Policy zone: %s\n", zone_names[policy_zone]);
2618#endif
1da177e4
LT
2619}
2620
2621/*
2622 * Helper functions to size the waitqueue hash table.
2623 * Essentially these want to choose hash table sizes sufficiently
2624 * large so that collisions trying to wait on pages are rare.
2625 * But in fact, the number of active page waitqueues on typical
2626 * systems is ridiculously low, less than 200. So this is even
2627 * conservative, even though it seems large.
2628 *
2629 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2630 * waitqueues, i.e. the size of the waitq table given the number of pages.
2631 */
2632#define PAGES_PER_WAITQUEUE 256
2633
cca448fe 2634#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2635static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2636{
2637 unsigned long size = 1;
2638
2639 pages /= PAGES_PER_WAITQUEUE;
2640
2641 while (size < pages)
2642 size <<= 1;
2643
2644 /*
2645 * Once we have dozens or even hundreds of threads sleeping
2646 * on IO we've got bigger problems than wait queue collision.
2647 * Limit the size of the wait table to a reasonable size.
2648 */
2649 size = min(size, 4096UL);
2650
2651 return max(size, 4UL);
2652}
cca448fe
YG
2653#else
2654/*
2655 * A zone's size might be changed by hot-add, so it is not possible to determine
2656 * a suitable size for its wait_table. So we use the maximum size now.
2657 *
2658 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2659 *
2660 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2661 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2662 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2663 *
2664 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2665 * or more by the traditional way. (See above). It equals:
2666 *
2667 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2668 * ia64(16K page size) : = ( 8G + 4M)byte.
2669 * powerpc (64K page size) : = (32G +16M)byte.
2670 */
2671static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2672{
2673 return 4096UL;
2674}
2675#endif
1da177e4
LT
2676
2677/*
2678 * This is an integer logarithm so that shifts can be used later
2679 * to extract the more random high bits from the multiplicative
2680 * hash function before the remainder is taken.
2681 */
2682static inline unsigned long wait_table_bits(unsigned long size)
2683{
2684 return ffz(~size);
2685}
2686
2687#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2688
56fd56b8 2689/*
d9c23400 2690 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
56fd56b8
MG
2691 * of blocks reserved is based on zone->pages_min. The memory within the
2692 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2693 * higher will lead to a bigger reserve which will get freed as contiguous
2694 * blocks as reclaim kicks in
2695 */
2696static void setup_zone_migrate_reserve(struct zone *zone)
2697{
2698 unsigned long start_pfn, pfn, end_pfn;
2699 struct page *page;
2700 unsigned long reserve, block_migratetype;
2701
2702 /* Get the start pfn, end pfn and the number of blocks to reserve */
2703 start_pfn = zone->zone_start_pfn;
2704 end_pfn = start_pfn + zone->spanned_pages;
d9c23400
MG
2705 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2706 pageblock_order;
56fd56b8 2707
d9c23400 2708 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2709 if (!pfn_valid(pfn))
2710 continue;
2711 page = pfn_to_page(pfn);
2712
344c790e
AL
2713 /* Watch out for overlapping nodes */
2714 if (page_to_nid(page) != zone_to_nid(zone))
2715 continue;
2716
56fd56b8
MG
2717 /* Blocks with reserved pages will never free, skip them. */
2718 if (PageReserved(page))
2719 continue;
2720
2721 block_migratetype = get_pageblock_migratetype(page);
2722
2723 /* If this block is reserved, account for it */
2724 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2725 reserve--;
2726 continue;
2727 }
2728
2729 /* Suitable for reserving if this block is movable */
2730 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2731 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2732 move_freepages_block(zone, page, MIGRATE_RESERVE);
2733 reserve--;
2734 continue;
2735 }
2736
2737 /*
2738 * If the reserve is met and this is a previous reserved block,
2739 * take it back
2740 */
2741 if (block_migratetype == MIGRATE_RESERVE) {
2742 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2743 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2744 }
2745 }
2746}
ac0e5b7a 2747
1da177e4
LT
2748/*
2749 * Initially all pages are reserved - free ones are freed
2750 * up by free_all_bootmem() once the early boot process is
2751 * done. Non-atomic initialization, single-pass.
2752 */
c09b4240 2753void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2754 unsigned long start_pfn, enum memmap_context context)
1da177e4 2755{
1da177e4 2756 struct page *page;
29751f69
AW
2757 unsigned long end_pfn = start_pfn + size;
2758 unsigned long pfn;
86051ca5 2759 struct zone *z;
1da177e4 2760
22b31eec
HD
2761 if (highest_memmap_pfn < end_pfn - 1)
2762 highest_memmap_pfn = end_pfn - 1;
2763
86051ca5 2764 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2765 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2766 /*
2767 * There can be holes in boot-time mem_map[]s
2768 * handed to this function. They do not
2769 * exist on hotplugged memory.
2770 */
2771 if (context == MEMMAP_EARLY) {
2772 if (!early_pfn_valid(pfn))
2773 continue;
2774 if (!early_pfn_in_nid(pfn, nid))
2775 continue;
2776 }
d41dee36
AW
2777 page = pfn_to_page(pfn);
2778 set_page_links(page, zone, nid, pfn);
708614e6 2779 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2780 init_page_count(page);
1da177e4
LT
2781 reset_page_mapcount(page);
2782 SetPageReserved(page);
b2a0ac88
MG
2783 /*
2784 * Mark the block movable so that blocks are reserved for
2785 * movable at startup. This will force kernel allocations
2786 * to reserve their blocks rather than leaking throughout
2787 * the address space during boot when many long-lived
56fd56b8
MG
2788 * kernel allocations are made. Later some blocks near
2789 * the start are marked MIGRATE_RESERVE by
2790 * setup_zone_migrate_reserve()
86051ca5
KH
2791 *
2792 * bitmap is created for zone's valid pfn range. but memmap
2793 * can be created for invalid pages (for alignment)
2794 * check here not to call set_pageblock_migratetype() against
2795 * pfn out of zone.
b2a0ac88 2796 */
86051ca5
KH
2797 if ((z->zone_start_pfn <= pfn)
2798 && (pfn < z->zone_start_pfn + z->spanned_pages)
2799 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2800 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2801
1da177e4
LT
2802 INIT_LIST_HEAD(&page->lru);
2803#ifdef WANT_PAGE_VIRTUAL
2804 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2805 if (!is_highmem_idx(zone))
3212c6be 2806 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2807#endif
1da177e4
LT
2808 }
2809}
2810
1e548deb 2811static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2812{
b2a0ac88
MG
2813 int order, t;
2814 for_each_migratetype_order(order, t) {
2815 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2816 zone->free_area[order].nr_free = 0;
2817 }
2818}
2819
2820#ifndef __HAVE_ARCH_MEMMAP_INIT
2821#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2822 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2823#endif
2824
1d6f4e60 2825static int zone_batchsize(struct zone *zone)
e7c8d5c9 2826{
3a6be87f 2827#ifdef CONFIG_MMU
e7c8d5c9
CL
2828 int batch;
2829
2830 /*
2831 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2832 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2833 *
2834 * OK, so we don't know how big the cache is. So guess.
2835 */
2836 batch = zone->present_pages / 1024;
ba56e91c
SR
2837 if (batch * PAGE_SIZE > 512 * 1024)
2838 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2839 batch /= 4; /* We effectively *= 4 below */
2840 if (batch < 1)
2841 batch = 1;
2842
2843 /*
0ceaacc9
NP
2844 * Clamp the batch to a 2^n - 1 value. Having a power
2845 * of 2 value was found to be more likely to have
2846 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2847 *
0ceaacc9
NP
2848 * For example if 2 tasks are alternately allocating
2849 * batches of pages, one task can end up with a lot
2850 * of pages of one half of the possible page colors
2851 * and the other with pages of the other colors.
e7c8d5c9 2852 */
9155203a 2853 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2854
e7c8d5c9 2855 return batch;
3a6be87f
DH
2856
2857#else
2858 /* The deferral and batching of frees should be suppressed under NOMMU
2859 * conditions.
2860 *
2861 * The problem is that NOMMU needs to be able to allocate large chunks
2862 * of contiguous memory as there's no hardware page translation to
2863 * assemble apparent contiguous memory from discontiguous pages.
2864 *
2865 * Queueing large contiguous runs of pages for batching, however,
2866 * causes the pages to actually be freed in smaller chunks. As there
2867 * can be a significant delay between the individual batches being
2868 * recycled, this leads to the once large chunks of space being
2869 * fragmented and becoming unavailable for high-order allocations.
2870 */
2871 return 0;
2872#endif
e7c8d5c9
CL
2873}
2874
b69a7288 2875static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2876{
2877 struct per_cpu_pages *pcp;
2878
1c6fe946
MD
2879 memset(p, 0, sizeof(*p));
2880
3dfa5721 2881 pcp = &p->pcp;
2caaad41 2882 pcp->count = 0;
2caaad41
CL
2883 pcp->high = 6 * batch;
2884 pcp->batch = max(1UL, 1 * batch);
2885 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2886}
2887
8ad4b1fb
RS
2888/*
2889 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2890 * to the value high for the pageset p.
2891 */
2892
2893static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2894 unsigned long high)
2895{
2896 struct per_cpu_pages *pcp;
2897
3dfa5721 2898 pcp = &p->pcp;
8ad4b1fb
RS
2899 pcp->high = high;
2900 pcp->batch = max(1UL, high/4);
2901 if ((high/4) > (PAGE_SHIFT * 8))
2902 pcp->batch = PAGE_SHIFT * 8;
2903}
2904
2905
e7c8d5c9
CL
2906#ifdef CONFIG_NUMA
2907/*
2caaad41
CL
2908 * Boot pageset table. One per cpu which is going to be used for all
2909 * zones and all nodes. The parameters will be set in such a way
2910 * that an item put on a list will immediately be handed over to
2911 * the buddy list. This is safe since pageset manipulation is done
2912 * with interrupts disabled.
2913 *
2914 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2915 *
2916 * The boot_pagesets must be kept even after bootup is complete for
2917 * unused processors and/or zones. They do play a role for bootstrapping
2918 * hotplugged processors.
2919 *
2920 * zoneinfo_show() and maybe other functions do
2921 * not check if the processor is online before following the pageset pointer.
2922 * Other parts of the kernel may not check if the zone is available.
2caaad41 2923 */
88a2a4ac 2924static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2925
2926/*
2927 * Dynamically allocate memory for the
e7c8d5c9
CL
2928 * per cpu pageset array in struct zone.
2929 */
6292d9aa 2930static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2931{
2932 struct zone *zone, *dzone;
37c0708d
CL
2933 int node = cpu_to_node(cpu);
2934
2935 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2936
ee99c71c 2937 for_each_populated_zone(zone) {
23316bc8 2938 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2939 GFP_KERNEL, node);
23316bc8 2940 if (!zone_pcp(zone, cpu))
e7c8d5c9 2941 goto bad;
e7c8d5c9 2942
23316bc8 2943 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2944
2945 if (percpu_pagelist_fraction)
2946 setup_pagelist_highmark(zone_pcp(zone, cpu),
2947 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2948 }
2949
2950 return 0;
2951bad:
2952 for_each_zone(dzone) {
64191688
AM
2953 if (!populated_zone(dzone))
2954 continue;
e7c8d5c9
CL
2955 if (dzone == zone)
2956 break;
23316bc8
NP
2957 kfree(zone_pcp(dzone, cpu));
2958 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2959 }
2960 return -ENOMEM;
2961}
2962
2963static inline void free_zone_pagesets(int cpu)
2964{
e7c8d5c9
CL
2965 struct zone *zone;
2966
2967 for_each_zone(zone) {
2968 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2969
f3ef9ead
DR
2970 /* Free per_cpu_pageset if it is slab allocated */
2971 if (pset != &boot_pageset[cpu])
2972 kfree(pset);
e7c8d5c9 2973 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2974 }
e7c8d5c9
CL
2975}
2976
9c7b216d 2977static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2978 unsigned long action,
2979 void *hcpu)
2980{
2981 int cpu = (long)hcpu;
2982 int ret = NOTIFY_OK;
2983
2984 switch (action) {
ce421c79 2985 case CPU_UP_PREPARE:
8bb78442 2986 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2987 if (process_zones(cpu))
2988 ret = NOTIFY_BAD;
2989 break;
2990 case CPU_UP_CANCELED:
8bb78442 2991 case CPU_UP_CANCELED_FROZEN:
ce421c79 2992 case CPU_DEAD:
8bb78442 2993 case CPU_DEAD_FROZEN:
ce421c79
AW
2994 free_zone_pagesets(cpu);
2995 break;
2996 default:
2997 break;
e7c8d5c9
CL
2998 }
2999 return ret;
3000}
3001
74b85f37 3002static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3003 { &pageset_cpuup_callback, NULL, 0 };
3004
78d9955b 3005void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3006{
3007 int err;
3008
3009 /* Initialize per_cpu_pageset for cpu 0.
3010 * A cpuup callback will do this for every cpu
3011 * as it comes online
3012 */
3013 err = process_zones(smp_processor_id());
3014 BUG_ON(err);
3015 register_cpu_notifier(&pageset_notifier);
3016}
3017
3018#endif
3019
577a32f6 3020static noinline __init_refok
cca448fe 3021int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3022{
3023 int i;
3024 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3025 size_t alloc_size;
ed8ece2e
DH
3026
3027 /*
3028 * The per-page waitqueue mechanism uses hashed waitqueues
3029 * per zone.
3030 */
02b694de
YG
3031 zone->wait_table_hash_nr_entries =
3032 wait_table_hash_nr_entries(zone_size_pages);
3033 zone->wait_table_bits =
3034 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3035 alloc_size = zone->wait_table_hash_nr_entries
3036 * sizeof(wait_queue_head_t);
3037
cd94b9db 3038 if (!slab_is_available()) {
cca448fe
YG
3039 zone->wait_table = (wait_queue_head_t *)
3040 alloc_bootmem_node(pgdat, alloc_size);
3041 } else {
3042 /*
3043 * This case means that a zone whose size was 0 gets new memory
3044 * via memory hot-add.
3045 * But it may be the case that a new node was hot-added. In
3046 * this case vmalloc() will not be able to use this new node's
3047 * memory - this wait_table must be initialized to use this new
3048 * node itself as well.
3049 * To use this new node's memory, further consideration will be
3050 * necessary.
3051 */
8691f3a7 3052 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3053 }
3054 if (!zone->wait_table)
3055 return -ENOMEM;
ed8ece2e 3056
02b694de 3057 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3058 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3059
3060 return 0;
ed8ece2e
DH
3061}
3062
c09b4240 3063static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3064{
3065 int cpu;
3066 unsigned long batch = zone_batchsize(zone);
3067
3068 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3069#ifdef CONFIG_NUMA
3070 /* Early boot. Slab allocator not functional yet */
23316bc8 3071 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3072 setup_pageset(&boot_pageset[cpu],0);
3073#else
3074 setup_pageset(zone_pcp(zone,cpu), batch);
3075#endif
3076 }
f5335c0f
AB
3077 if (zone->present_pages)
3078 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3079 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3080}
3081
718127cc
YG
3082__meminit int init_currently_empty_zone(struct zone *zone,
3083 unsigned long zone_start_pfn,
a2f3aa02
DH
3084 unsigned long size,
3085 enum memmap_context context)
ed8ece2e
DH
3086{
3087 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3088 int ret;
3089 ret = zone_wait_table_init(zone, size);
3090 if (ret)
3091 return ret;
ed8ece2e
DH
3092 pgdat->nr_zones = zone_idx(zone) + 1;
3093
ed8ece2e
DH
3094 zone->zone_start_pfn = zone_start_pfn;
3095
708614e6
MG
3096 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3097 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3098 pgdat->node_id,
3099 (unsigned long)zone_idx(zone),
3100 zone_start_pfn, (zone_start_pfn + size));
3101
1e548deb 3102 zone_init_free_lists(zone);
718127cc
YG
3103
3104 return 0;
ed8ece2e
DH
3105}
3106
c713216d
MG
3107#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3108/*
3109 * Basic iterator support. Return the first range of PFNs for a node
3110 * Note: nid == MAX_NUMNODES returns first region regardless of node
3111 */
a3142c8e 3112static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3113{
3114 int i;
3115
3116 for (i = 0; i < nr_nodemap_entries; i++)
3117 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3118 return i;
3119
3120 return -1;
3121}
3122
3123/*
3124 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3125 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3126 */
a3142c8e 3127static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3128{
3129 for (index = index + 1; index < nr_nodemap_entries; index++)
3130 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3131 return index;
3132
3133 return -1;
3134}
3135
3136#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3137/*
3138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3139 * Architectures may implement their own version but if add_active_range()
3140 * was used and there are no special requirements, this is a convenient
3141 * alternative
3142 */
f2dbcfa7 3143int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3144{
3145 int i;
3146
3147 for (i = 0; i < nr_nodemap_entries; i++) {
3148 unsigned long start_pfn = early_node_map[i].start_pfn;
3149 unsigned long end_pfn = early_node_map[i].end_pfn;
3150
3151 if (start_pfn <= pfn && pfn < end_pfn)
3152 return early_node_map[i].nid;
3153 }
cc2559bc
KH
3154 /* This is a memory hole */
3155 return -1;
c713216d
MG
3156}
3157#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3158
f2dbcfa7
KH
3159int __meminit early_pfn_to_nid(unsigned long pfn)
3160{
cc2559bc
KH
3161 int nid;
3162
3163 nid = __early_pfn_to_nid(pfn);
3164 if (nid >= 0)
3165 return nid;
3166 /* just returns 0 */
3167 return 0;
f2dbcfa7
KH
3168}
3169
cc2559bc
KH
3170#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3171bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3172{
3173 int nid;
3174
3175 nid = __early_pfn_to_nid(pfn);
3176 if (nid >= 0 && nid != node)
3177 return false;
3178 return true;
3179}
3180#endif
f2dbcfa7 3181
c713216d
MG
3182/* Basic iterator support to walk early_node_map[] */
3183#define for_each_active_range_index_in_nid(i, nid) \
3184 for (i = first_active_region_index_in_nid(nid); i != -1; \
3185 i = next_active_region_index_in_nid(i, nid))
3186
3187/**
3188 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3189 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3190 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3191 *
3192 * If an architecture guarantees that all ranges registered with
3193 * add_active_ranges() contain no holes and may be freed, this
3194 * this function may be used instead of calling free_bootmem() manually.
3195 */
3196void __init free_bootmem_with_active_regions(int nid,
3197 unsigned long max_low_pfn)
3198{
3199 int i;
3200
3201 for_each_active_range_index_in_nid(i, nid) {
3202 unsigned long size_pages = 0;
3203 unsigned long end_pfn = early_node_map[i].end_pfn;
3204
3205 if (early_node_map[i].start_pfn >= max_low_pfn)
3206 continue;
3207
3208 if (end_pfn > max_low_pfn)
3209 end_pfn = max_low_pfn;
3210
3211 size_pages = end_pfn - early_node_map[i].start_pfn;
3212 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3213 PFN_PHYS(early_node_map[i].start_pfn),
3214 size_pages << PAGE_SHIFT);
3215 }
3216}
3217
b5bc6c0e
YL
3218void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3219{
3220 int i;
d52d53b8 3221 int ret;
b5bc6c0e 3222
d52d53b8
YL
3223 for_each_active_range_index_in_nid(i, nid) {
3224 ret = work_fn(early_node_map[i].start_pfn,
3225 early_node_map[i].end_pfn, data);
3226 if (ret)
3227 break;
3228 }
b5bc6c0e 3229}
c713216d
MG
3230/**
3231 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3232 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3233 *
3234 * If an architecture guarantees that all ranges registered with
3235 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3236 * function may be used instead of calling memory_present() manually.
c713216d
MG
3237 */
3238void __init sparse_memory_present_with_active_regions(int nid)
3239{
3240 int i;
3241
3242 for_each_active_range_index_in_nid(i, nid)
3243 memory_present(early_node_map[i].nid,
3244 early_node_map[i].start_pfn,
3245 early_node_map[i].end_pfn);
3246}
3247
3248/**
3249 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3250 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3251 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3252 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3253 *
3254 * It returns the start and end page frame of a node based on information
3255 * provided by an arch calling add_active_range(). If called for a node
3256 * with no available memory, a warning is printed and the start and end
88ca3b94 3257 * PFNs will be 0.
c713216d 3258 */
a3142c8e 3259void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3260 unsigned long *start_pfn, unsigned long *end_pfn)
3261{
3262 int i;
3263 *start_pfn = -1UL;
3264 *end_pfn = 0;
3265
3266 for_each_active_range_index_in_nid(i, nid) {
3267 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3268 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3269 }
3270
633c0666 3271 if (*start_pfn == -1UL)
c713216d 3272 *start_pfn = 0;
c713216d
MG
3273}
3274
2a1e274a
MG
3275/*
3276 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3277 * assumption is made that zones within a node are ordered in monotonic
3278 * increasing memory addresses so that the "highest" populated zone is used
3279 */
b69a7288 3280static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3281{
3282 int zone_index;
3283 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3284 if (zone_index == ZONE_MOVABLE)
3285 continue;
3286
3287 if (arch_zone_highest_possible_pfn[zone_index] >
3288 arch_zone_lowest_possible_pfn[zone_index])
3289 break;
3290 }
3291
3292 VM_BUG_ON(zone_index == -1);
3293 movable_zone = zone_index;
3294}
3295
3296/*
3297 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3298 * because it is sized independant of architecture. Unlike the other zones,
3299 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3300 * in each node depending on the size of each node and how evenly kernelcore
3301 * is distributed. This helper function adjusts the zone ranges
3302 * provided by the architecture for a given node by using the end of the
3303 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3304 * zones within a node are in order of monotonic increases memory addresses
3305 */
b69a7288 3306static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3307 unsigned long zone_type,
3308 unsigned long node_start_pfn,
3309 unsigned long node_end_pfn,
3310 unsigned long *zone_start_pfn,
3311 unsigned long *zone_end_pfn)
3312{
3313 /* Only adjust if ZONE_MOVABLE is on this node */
3314 if (zone_movable_pfn[nid]) {
3315 /* Size ZONE_MOVABLE */
3316 if (zone_type == ZONE_MOVABLE) {
3317 *zone_start_pfn = zone_movable_pfn[nid];
3318 *zone_end_pfn = min(node_end_pfn,
3319 arch_zone_highest_possible_pfn[movable_zone]);
3320
3321 /* Adjust for ZONE_MOVABLE starting within this range */
3322 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3323 *zone_end_pfn > zone_movable_pfn[nid]) {
3324 *zone_end_pfn = zone_movable_pfn[nid];
3325
3326 /* Check if this whole range is within ZONE_MOVABLE */
3327 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3328 *zone_start_pfn = *zone_end_pfn;
3329 }
3330}
3331
c713216d
MG
3332/*
3333 * Return the number of pages a zone spans in a node, including holes
3334 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3335 */
6ea6e688 3336static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3337 unsigned long zone_type,
3338 unsigned long *ignored)
3339{
3340 unsigned long node_start_pfn, node_end_pfn;
3341 unsigned long zone_start_pfn, zone_end_pfn;
3342
3343 /* Get the start and end of the node and zone */
3344 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3345 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3346 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3347 adjust_zone_range_for_zone_movable(nid, zone_type,
3348 node_start_pfn, node_end_pfn,
3349 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3350
3351 /* Check that this node has pages within the zone's required range */
3352 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3353 return 0;
3354
3355 /* Move the zone boundaries inside the node if necessary */
3356 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3357 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3358
3359 /* Return the spanned pages */
3360 return zone_end_pfn - zone_start_pfn;
3361}
3362
3363/*
3364 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3365 * then all holes in the requested range will be accounted for.
c713216d 3366 */
b69a7288 3367static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3368 unsigned long range_start_pfn,
3369 unsigned long range_end_pfn)
3370{
3371 int i = 0;
3372 unsigned long prev_end_pfn = 0, hole_pages = 0;
3373 unsigned long start_pfn;
3374
3375 /* Find the end_pfn of the first active range of pfns in the node */
3376 i = first_active_region_index_in_nid(nid);
3377 if (i == -1)
3378 return 0;
3379
b5445f95
MG
3380 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3381
9c7cd687
MG
3382 /* Account for ranges before physical memory on this node */
3383 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3384 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3385
3386 /* Find all holes for the zone within the node */
3387 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3388
3389 /* No need to continue if prev_end_pfn is outside the zone */
3390 if (prev_end_pfn >= range_end_pfn)
3391 break;
3392
3393 /* Make sure the end of the zone is not within the hole */
3394 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3395 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3396
3397 /* Update the hole size cound and move on */
3398 if (start_pfn > range_start_pfn) {
3399 BUG_ON(prev_end_pfn > start_pfn);
3400 hole_pages += start_pfn - prev_end_pfn;
3401 }
3402 prev_end_pfn = early_node_map[i].end_pfn;
3403 }
3404
9c7cd687
MG
3405 /* Account for ranges past physical memory on this node */
3406 if (range_end_pfn > prev_end_pfn)
0c6cb974 3407 hole_pages += range_end_pfn -
9c7cd687
MG
3408 max(range_start_pfn, prev_end_pfn);
3409
c713216d
MG
3410 return hole_pages;
3411}
3412
3413/**
3414 * absent_pages_in_range - Return number of page frames in holes within a range
3415 * @start_pfn: The start PFN to start searching for holes
3416 * @end_pfn: The end PFN to stop searching for holes
3417 *
88ca3b94 3418 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3419 */
3420unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3421 unsigned long end_pfn)
3422{
3423 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3424}
3425
3426/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3427static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3428 unsigned long zone_type,
3429 unsigned long *ignored)
3430{
9c7cd687
MG
3431 unsigned long node_start_pfn, node_end_pfn;
3432 unsigned long zone_start_pfn, zone_end_pfn;
3433
3434 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3435 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3436 node_start_pfn);
3437 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3438 node_end_pfn);
3439
2a1e274a
MG
3440 adjust_zone_range_for_zone_movable(nid, zone_type,
3441 node_start_pfn, node_end_pfn,
3442 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3443 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3444}
0e0b864e 3445
c713216d 3446#else
6ea6e688 3447static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3448 unsigned long zone_type,
3449 unsigned long *zones_size)
3450{
3451 return zones_size[zone_type];
3452}
3453
6ea6e688 3454static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3455 unsigned long zone_type,
3456 unsigned long *zholes_size)
3457{
3458 if (!zholes_size)
3459 return 0;
3460
3461 return zholes_size[zone_type];
3462}
0e0b864e 3463
c713216d
MG
3464#endif
3465
a3142c8e 3466static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3467 unsigned long *zones_size, unsigned long *zholes_size)
3468{
3469 unsigned long realtotalpages, totalpages = 0;
3470 enum zone_type i;
3471
3472 for (i = 0; i < MAX_NR_ZONES; i++)
3473 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3474 zones_size);
3475 pgdat->node_spanned_pages = totalpages;
3476
3477 realtotalpages = totalpages;
3478 for (i = 0; i < MAX_NR_ZONES; i++)
3479 realtotalpages -=
3480 zone_absent_pages_in_node(pgdat->node_id, i,
3481 zholes_size);
3482 pgdat->node_present_pages = realtotalpages;
3483 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3484 realtotalpages);
3485}
3486
835c134e
MG
3487#ifndef CONFIG_SPARSEMEM
3488/*
3489 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3490 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3491 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3492 * round what is now in bits to nearest long in bits, then return it in
3493 * bytes.
3494 */
3495static unsigned long __init usemap_size(unsigned long zonesize)
3496{
3497 unsigned long usemapsize;
3498
d9c23400
MG
3499 usemapsize = roundup(zonesize, pageblock_nr_pages);
3500 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3501 usemapsize *= NR_PAGEBLOCK_BITS;
3502 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3503
3504 return usemapsize / 8;
3505}
3506
3507static void __init setup_usemap(struct pglist_data *pgdat,
3508 struct zone *zone, unsigned long zonesize)
3509{
3510 unsigned long usemapsize = usemap_size(zonesize);
3511 zone->pageblock_flags = NULL;
58a01a45 3512 if (usemapsize)
835c134e 3513 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3514}
3515#else
3516static void inline setup_usemap(struct pglist_data *pgdat,
3517 struct zone *zone, unsigned long zonesize) {}
3518#endif /* CONFIG_SPARSEMEM */
3519
d9c23400 3520#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3521
3522/* Return a sensible default order for the pageblock size. */
3523static inline int pageblock_default_order(void)
3524{
3525 if (HPAGE_SHIFT > PAGE_SHIFT)
3526 return HUGETLB_PAGE_ORDER;
3527
3528 return MAX_ORDER-1;
3529}
3530
d9c23400
MG
3531/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3532static inline void __init set_pageblock_order(unsigned int order)
3533{
3534 /* Check that pageblock_nr_pages has not already been setup */
3535 if (pageblock_order)
3536 return;
3537
3538 /*
3539 * Assume the largest contiguous order of interest is a huge page.
3540 * This value may be variable depending on boot parameters on IA64
3541 */
3542 pageblock_order = order;
3543}
3544#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3545
ba72cb8c
MG
3546/*
3547 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3548 * and pageblock_default_order() are unused as pageblock_order is set
3549 * at compile-time. See include/linux/pageblock-flags.h for the values of
3550 * pageblock_order based on the kernel config
3551 */
3552static inline int pageblock_default_order(unsigned int order)
3553{
3554 return MAX_ORDER-1;
3555}
d9c23400
MG
3556#define set_pageblock_order(x) do {} while (0)
3557
3558#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3559
1da177e4
LT
3560/*
3561 * Set up the zone data structures:
3562 * - mark all pages reserved
3563 * - mark all memory queues empty
3564 * - clear the memory bitmaps
3565 */
b5a0e011 3566static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3567 unsigned long *zones_size, unsigned long *zholes_size)
3568{
2f1b6248 3569 enum zone_type j;
ed8ece2e 3570 int nid = pgdat->node_id;
1da177e4 3571 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3572 int ret;
1da177e4 3573
208d54e5 3574 pgdat_resize_init(pgdat);
1da177e4
LT
3575 pgdat->nr_zones = 0;
3576 init_waitqueue_head(&pgdat->kswapd_wait);
3577 pgdat->kswapd_max_order = 0;
52d4b9ac 3578 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3579
3580 for (j = 0; j < MAX_NR_ZONES; j++) {
3581 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3582 unsigned long size, realsize, memmap_pages;
b69408e8 3583 enum lru_list l;
1da177e4 3584
c713216d
MG
3585 size = zone_spanned_pages_in_node(nid, j, zones_size);
3586 realsize = size - zone_absent_pages_in_node(nid, j,
3587 zholes_size);
1da177e4 3588
0e0b864e
MG
3589 /*
3590 * Adjust realsize so that it accounts for how much memory
3591 * is used by this zone for memmap. This affects the watermark
3592 * and per-cpu initialisations
3593 */
f7232154
JW
3594 memmap_pages =
3595 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3596 if (realsize >= memmap_pages) {
3597 realsize -= memmap_pages;
5594c8c8
YL
3598 if (memmap_pages)
3599 printk(KERN_DEBUG
3600 " %s zone: %lu pages used for memmap\n",
3601 zone_names[j], memmap_pages);
0e0b864e
MG
3602 } else
3603 printk(KERN_WARNING
3604 " %s zone: %lu pages exceeds realsize %lu\n",
3605 zone_names[j], memmap_pages, realsize);
3606
6267276f
CL
3607 /* Account for reserved pages */
3608 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3609 realsize -= dma_reserve;
d903ef9f 3610 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3611 zone_names[0], dma_reserve);
0e0b864e
MG
3612 }
3613
98d2b0eb 3614 if (!is_highmem_idx(j))
1da177e4
LT
3615 nr_kernel_pages += realsize;
3616 nr_all_pages += realsize;
3617
3618 zone->spanned_pages = size;
3619 zone->present_pages = realsize;
9614634f 3620#ifdef CONFIG_NUMA
d5f541ed 3621 zone->node = nid;
8417bba4 3622 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3623 / 100;
0ff38490 3624 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3625#endif
1da177e4
LT
3626 zone->name = zone_names[j];
3627 spin_lock_init(&zone->lock);
3628 spin_lock_init(&zone->lru_lock);
bdc8cb98 3629 zone_seqlock_init(zone);
1da177e4 3630 zone->zone_pgdat = pgdat;
1da177e4 3631
3bb1a852 3632 zone->prev_priority = DEF_PRIORITY;
1da177e4 3633
ed8ece2e 3634 zone_pcp_init(zone);
b69408e8
CL
3635 for_each_lru(l) {
3636 INIT_LIST_HEAD(&zone->lru[l].list);
3637 zone->lru[l].nr_scan = 0;
3638 }
6e901571
KM
3639 zone->reclaim_stat.recent_rotated[0] = 0;
3640 zone->reclaim_stat.recent_rotated[1] = 0;
3641 zone->reclaim_stat.recent_scanned[0] = 0;
3642 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3643 zap_zone_vm_stats(zone);
e815af95 3644 zone->flags = 0;
1da177e4
LT
3645 if (!size)
3646 continue;
3647
ba72cb8c 3648 set_pageblock_order(pageblock_default_order());
835c134e 3649 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3650 ret = init_currently_empty_zone(zone, zone_start_pfn,
3651 size, MEMMAP_EARLY);
718127cc 3652 BUG_ON(ret);
76cdd58e 3653 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3654 zone_start_pfn += size;
1da177e4
LT
3655 }
3656}
3657
577a32f6 3658static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3659{
1da177e4
LT
3660 /* Skip empty nodes */
3661 if (!pgdat->node_spanned_pages)
3662 return;
3663
d41dee36 3664#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3665 /* ia64 gets its own node_mem_map, before this, without bootmem */
3666 if (!pgdat->node_mem_map) {
e984bb43 3667 unsigned long size, start, end;
d41dee36
AW
3668 struct page *map;
3669
e984bb43
BP
3670 /*
3671 * The zone's endpoints aren't required to be MAX_ORDER
3672 * aligned but the node_mem_map endpoints must be in order
3673 * for the buddy allocator to function correctly.
3674 */
3675 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3676 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3677 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3678 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3679 map = alloc_remap(pgdat->node_id, size);
3680 if (!map)
3681 map = alloc_bootmem_node(pgdat, size);
e984bb43 3682 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3683 }
12d810c1 3684#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3685 /*
3686 * With no DISCONTIG, the global mem_map is just set as node 0's
3687 */
c713216d 3688 if (pgdat == NODE_DATA(0)) {
1da177e4 3689 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3690#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3691 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3692 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3693#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3694 }
1da177e4 3695#endif
d41dee36 3696#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3697}
3698
9109fb7b
JW
3699void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3700 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3701{
9109fb7b
JW
3702 pg_data_t *pgdat = NODE_DATA(nid);
3703
1da177e4
LT
3704 pgdat->node_id = nid;
3705 pgdat->node_start_pfn = node_start_pfn;
c713216d 3706 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3707
3708 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3709#ifdef CONFIG_FLAT_NODE_MEM_MAP
3710 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3711 nid, (unsigned long)pgdat,
3712 (unsigned long)pgdat->node_mem_map);
3713#endif
1da177e4
LT
3714
3715 free_area_init_core(pgdat, zones_size, zholes_size);
3716}
3717
c713216d 3718#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3719
3720#if MAX_NUMNODES > 1
3721/*
3722 * Figure out the number of possible node ids.
3723 */
3724static void __init setup_nr_node_ids(void)
3725{
3726 unsigned int node;
3727 unsigned int highest = 0;
3728
3729 for_each_node_mask(node, node_possible_map)
3730 highest = node;
3731 nr_node_ids = highest + 1;
3732}
3733#else
3734static inline void setup_nr_node_ids(void)
3735{
3736}
3737#endif
3738
c713216d
MG
3739/**
3740 * add_active_range - Register a range of PFNs backed by physical memory
3741 * @nid: The node ID the range resides on
3742 * @start_pfn: The start PFN of the available physical memory
3743 * @end_pfn: The end PFN of the available physical memory
3744 *
3745 * These ranges are stored in an early_node_map[] and later used by
3746 * free_area_init_nodes() to calculate zone sizes and holes. If the
3747 * range spans a memory hole, it is up to the architecture to ensure
3748 * the memory is not freed by the bootmem allocator. If possible
3749 * the range being registered will be merged with existing ranges.
3750 */
3751void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3752 unsigned long end_pfn)
3753{
3754 int i;
3755
6b74ab97
MG
3756 mminit_dprintk(MMINIT_TRACE, "memory_register",
3757 "Entering add_active_range(%d, %#lx, %#lx) "
3758 "%d entries of %d used\n",
3759 nid, start_pfn, end_pfn,
3760 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3761
2dbb51c4
MG
3762 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3763
c713216d
MG
3764 /* Merge with existing active regions if possible */
3765 for (i = 0; i < nr_nodemap_entries; i++) {
3766 if (early_node_map[i].nid != nid)
3767 continue;
3768
3769 /* Skip if an existing region covers this new one */
3770 if (start_pfn >= early_node_map[i].start_pfn &&
3771 end_pfn <= early_node_map[i].end_pfn)
3772 return;
3773
3774 /* Merge forward if suitable */
3775 if (start_pfn <= early_node_map[i].end_pfn &&
3776 end_pfn > early_node_map[i].end_pfn) {
3777 early_node_map[i].end_pfn = end_pfn;
3778 return;
3779 }
3780
3781 /* Merge backward if suitable */
3782 if (start_pfn < early_node_map[i].end_pfn &&
3783 end_pfn >= early_node_map[i].start_pfn) {
3784 early_node_map[i].start_pfn = start_pfn;
3785 return;
3786 }
3787 }
3788
3789 /* Check that early_node_map is large enough */
3790 if (i >= MAX_ACTIVE_REGIONS) {
3791 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3792 MAX_ACTIVE_REGIONS);
3793 return;
3794 }
3795
3796 early_node_map[i].nid = nid;
3797 early_node_map[i].start_pfn = start_pfn;
3798 early_node_map[i].end_pfn = end_pfn;
3799 nr_nodemap_entries = i + 1;
3800}
3801
3802/**
cc1050ba 3803 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3804 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3805 * @start_pfn: The new PFN of the range
3806 * @end_pfn: The new PFN of the range
c713216d
MG
3807 *
3808 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3809 * The map is kept near the end physical page range that has already been
3810 * registered. This function allows an arch to shrink an existing registered
3811 * range.
c713216d 3812 */
cc1050ba
YL
3813void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3814 unsigned long end_pfn)
c713216d 3815{
cc1a9d86
YL
3816 int i, j;
3817 int removed = 0;
c713216d 3818
cc1050ba
YL
3819 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3820 nid, start_pfn, end_pfn);
3821
c713216d 3822 /* Find the old active region end and shrink */
cc1a9d86 3823 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3824 if (early_node_map[i].start_pfn >= start_pfn &&
3825 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3826 /* clear it */
cc1050ba 3827 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3828 early_node_map[i].end_pfn = 0;
3829 removed = 1;
3830 continue;
3831 }
cc1050ba
YL
3832 if (early_node_map[i].start_pfn < start_pfn &&
3833 early_node_map[i].end_pfn > start_pfn) {
3834 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3835 early_node_map[i].end_pfn = start_pfn;
3836 if (temp_end_pfn > end_pfn)
3837 add_active_range(nid, end_pfn, temp_end_pfn);
3838 continue;
3839 }
3840 if (early_node_map[i].start_pfn >= start_pfn &&
3841 early_node_map[i].end_pfn > end_pfn &&
3842 early_node_map[i].start_pfn < end_pfn) {
3843 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3844 continue;
c713216d 3845 }
cc1a9d86
YL
3846 }
3847
3848 if (!removed)
3849 return;
3850
3851 /* remove the blank ones */
3852 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3853 if (early_node_map[i].nid != nid)
3854 continue;
3855 if (early_node_map[i].end_pfn)
3856 continue;
3857 /* we found it, get rid of it */
3858 for (j = i; j < nr_nodemap_entries - 1; j++)
3859 memcpy(&early_node_map[j], &early_node_map[j+1],
3860 sizeof(early_node_map[j]));
3861 j = nr_nodemap_entries - 1;
3862 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3863 nr_nodemap_entries--;
3864 }
c713216d
MG
3865}
3866
3867/**
3868 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3869 *
c713216d
MG
3870 * During discovery, it may be found that a table like SRAT is invalid
3871 * and an alternative discovery method must be used. This function removes
3872 * all currently registered regions.
3873 */
88ca3b94 3874void __init remove_all_active_ranges(void)
c713216d
MG
3875{
3876 memset(early_node_map, 0, sizeof(early_node_map));
3877 nr_nodemap_entries = 0;
3878}
3879
3880/* Compare two active node_active_regions */
3881static int __init cmp_node_active_region(const void *a, const void *b)
3882{
3883 struct node_active_region *arange = (struct node_active_region *)a;
3884 struct node_active_region *brange = (struct node_active_region *)b;
3885
3886 /* Done this way to avoid overflows */
3887 if (arange->start_pfn > brange->start_pfn)
3888 return 1;
3889 if (arange->start_pfn < brange->start_pfn)
3890 return -1;
3891
3892 return 0;
3893}
3894
3895/* sort the node_map by start_pfn */
3896static void __init sort_node_map(void)
3897{
3898 sort(early_node_map, (size_t)nr_nodemap_entries,
3899 sizeof(struct node_active_region),
3900 cmp_node_active_region, NULL);
3901}
3902
a6af2bc3 3903/* Find the lowest pfn for a node */
b69a7288 3904static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3905{
3906 int i;
a6af2bc3 3907 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3908
c713216d
MG
3909 /* Assuming a sorted map, the first range found has the starting pfn */
3910 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3911 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3912
a6af2bc3
MG
3913 if (min_pfn == ULONG_MAX) {
3914 printk(KERN_WARNING
2bc0d261 3915 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3916 return 0;
3917 }
3918
3919 return min_pfn;
c713216d
MG
3920}
3921
3922/**
3923 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3924 *
3925 * It returns the minimum PFN based on information provided via
88ca3b94 3926 * add_active_range().
c713216d
MG
3927 */
3928unsigned long __init find_min_pfn_with_active_regions(void)
3929{
3930 return find_min_pfn_for_node(MAX_NUMNODES);
3931}
3932
37b07e41
LS
3933/*
3934 * early_calculate_totalpages()
3935 * Sum pages in active regions for movable zone.
3936 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3937 */
484f51f8 3938static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3939{
3940 int i;
3941 unsigned long totalpages = 0;
3942
37b07e41
LS
3943 for (i = 0; i < nr_nodemap_entries; i++) {
3944 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3945 early_node_map[i].start_pfn;
37b07e41
LS
3946 totalpages += pages;
3947 if (pages)
3948 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3949 }
3950 return totalpages;
7e63efef
MG
3951}
3952
2a1e274a
MG
3953/*
3954 * Find the PFN the Movable zone begins in each node. Kernel memory
3955 * is spread evenly between nodes as long as the nodes have enough
3956 * memory. When they don't, some nodes will have more kernelcore than
3957 * others
3958 */
b69a7288 3959static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
3960{
3961 int i, nid;
3962 unsigned long usable_startpfn;
3963 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3964 unsigned long totalpages = early_calculate_totalpages();
3965 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3966
7e63efef
MG
3967 /*
3968 * If movablecore was specified, calculate what size of
3969 * kernelcore that corresponds so that memory usable for
3970 * any allocation type is evenly spread. If both kernelcore
3971 * and movablecore are specified, then the value of kernelcore
3972 * will be used for required_kernelcore if it's greater than
3973 * what movablecore would have allowed.
3974 */
3975 if (required_movablecore) {
7e63efef
MG
3976 unsigned long corepages;
3977
3978 /*
3979 * Round-up so that ZONE_MOVABLE is at least as large as what
3980 * was requested by the user
3981 */
3982 required_movablecore =
3983 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3984 corepages = totalpages - required_movablecore;
3985
3986 required_kernelcore = max(required_kernelcore, corepages);
3987 }
3988
2a1e274a
MG
3989 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3990 if (!required_kernelcore)
3991 return;
3992
3993 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3994 find_usable_zone_for_movable();
3995 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3996
3997restart:
3998 /* Spread kernelcore memory as evenly as possible throughout nodes */
3999 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4000 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4001 /*
4002 * Recalculate kernelcore_node if the division per node
4003 * now exceeds what is necessary to satisfy the requested
4004 * amount of memory for the kernel
4005 */
4006 if (required_kernelcore < kernelcore_node)
4007 kernelcore_node = required_kernelcore / usable_nodes;
4008
4009 /*
4010 * As the map is walked, we track how much memory is usable
4011 * by the kernel using kernelcore_remaining. When it is
4012 * 0, the rest of the node is usable by ZONE_MOVABLE
4013 */
4014 kernelcore_remaining = kernelcore_node;
4015
4016 /* Go through each range of PFNs within this node */
4017 for_each_active_range_index_in_nid(i, nid) {
4018 unsigned long start_pfn, end_pfn;
4019 unsigned long size_pages;
4020
4021 start_pfn = max(early_node_map[i].start_pfn,
4022 zone_movable_pfn[nid]);
4023 end_pfn = early_node_map[i].end_pfn;
4024 if (start_pfn >= end_pfn)
4025 continue;
4026
4027 /* Account for what is only usable for kernelcore */
4028 if (start_pfn < usable_startpfn) {
4029 unsigned long kernel_pages;
4030 kernel_pages = min(end_pfn, usable_startpfn)
4031 - start_pfn;
4032
4033 kernelcore_remaining -= min(kernel_pages,
4034 kernelcore_remaining);
4035 required_kernelcore -= min(kernel_pages,
4036 required_kernelcore);
4037
4038 /* Continue if range is now fully accounted */
4039 if (end_pfn <= usable_startpfn) {
4040
4041 /*
4042 * Push zone_movable_pfn to the end so
4043 * that if we have to rebalance
4044 * kernelcore across nodes, we will
4045 * not double account here
4046 */
4047 zone_movable_pfn[nid] = end_pfn;
4048 continue;
4049 }
4050 start_pfn = usable_startpfn;
4051 }
4052
4053 /*
4054 * The usable PFN range for ZONE_MOVABLE is from
4055 * start_pfn->end_pfn. Calculate size_pages as the
4056 * number of pages used as kernelcore
4057 */
4058 size_pages = end_pfn - start_pfn;
4059 if (size_pages > kernelcore_remaining)
4060 size_pages = kernelcore_remaining;
4061 zone_movable_pfn[nid] = start_pfn + size_pages;
4062
4063 /*
4064 * Some kernelcore has been met, update counts and
4065 * break if the kernelcore for this node has been
4066 * satisified
4067 */
4068 required_kernelcore -= min(required_kernelcore,
4069 size_pages);
4070 kernelcore_remaining -= size_pages;
4071 if (!kernelcore_remaining)
4072 break;
4073 }
4074 }
4075
4076 /*
4077 * If there is still required_kernelcore, we do another pass with one
4078 * less node in the count. This will push zone_movable_pfn[nid] further
4079 * along on the nodes that still have memory until kernelcore is
4080 * satisified
4081 */
4082 usable_nodes--;
4083 if (usable_nodes && required_kernelcore > usable_nodes)
4084 goto restart;
4085
4086 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4087 for (nid = 0; nid < MAX_NUMNODES; nid++)
4088 zone_movable_pfn[nid] =
4089 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4090}
4091
37b07e41
LS
4092/* Any regular memory on that node ? */
4093static void check_for_regular_memory(pg_data_t *pgdat)
4094{
4095#ifdef CONFIG_HIGHMEM
4096 enum zone_type zone_type;
4097
4098 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4099 struct zone *zone = &pgdat->node_zones[zone_type];
4100 if (zone->present_pages)
4101 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4102 }
4103#endif
4104}
4105
c713216d
MG
4106/**
4107 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4108 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4109 *
4110 * This will call free_area_init_node() for each active node in the system.
4111 * Using the page ranges provided by add_active_range(), the size of each
4112 * zone in each node and their holes is calculated. If the maximum PFN
4113 * between two adjacent zones match, it is assumed that the zone is empty.
4114 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4115 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4116 * starts where the previous one ended. For example, ZONE_DMA32 starts
4117 * at arch_max_dma_pfn.
4118 */
4119void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4120{
4121 unsigned long nid;
db99100d 4122 int i;
c713216d 4123
a6af2bc3
MG
4124 /* Sort early_node_map as initialisation assumes it is sorted */
4125 sort_node_map();
4126
c713216d
MG
4127 /* Record where the zone boundaries are */
4128 memset(arch_zone_lowest_possible_pfn, 0,
4129 sizeof(arch_zone_lowest_possible_pfn));
4130 memset(arch_zone_highest_possible_pfn, 0,
4131 sizeof(arch_zone_highest_possible_pfn));
4132 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4133 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4134 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4135 if (i == ZONE_MOVABLE)
4136 continue;
c713216d
MG
4137 arch_zone_lowest_possible_pfn[i] =
4138 arch_zone_highest_possible_pfn[i-1];
4139 arch_zone_highest_possible_pfn[i] =
4140 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4141 }
2a1e274a
MG
4142 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4143 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4144
4145 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4146 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4147 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4148
c713216d
MG
4149 /* Print out the zone ranges */
4150 printk("Zone PFN ranges:\n");
2a1e274a
MG
4151 for (i = 0; i < MAX_NR_ZONES; i++) {
4152 if (i == ZONE_MOVABLE)
4153 continue;
5dab8ec1 4154 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4155 zone_names[i],
4156 arch_zone_lowest_possible_pfn[i],
4157 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4158 }
4159
4160 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4161 printk("Movable zone start PFN for each node\n");
4162 for (i = 0; i < MAX_NUMNODES; i++) {
4163 if (zone_movable_pfn[i])
4164 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4165 }
c713216d
MG
4166
4167 /* Print out the early_node_map[] */
4168 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4169 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4170 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4171 early_node_map[i].start_pfn,
4172 early_node_map[i].end_pfn);
4173
4174 /* Initialise every node */
708614e6 4175 mminit_verify_pageflags_layout();
8ef82866 4176 setup_nr_node_ids();
c713216d
MG
4177 for_each_online_node(nid) {
4178 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4179 free_area_init_node(nid, NULL,
c713216d 4180 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4181
4182 /* Any memory on that node */
4183 if (pgdat->node_present_pages)
4184 node_set_state(nid, N_HIGH_MEMORY);
4185 check_for_regular_memory(pgdat);
c713216d
MG
4186 }
4187}
2a1e274a 4188
7e63efef 4189static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4190{
4191 unsigned long long coremem;
4192 if (!p)
4193 return -EINVAL;
4194
4195 coremem = memparse(p, &p);
7e63efef 4196 *core = coremem >> PAGE_SHIFT;
2a1e274a 4197
7e63efef 4198 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4199 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4200
4201 return 0;
4202}
ed7ed365 4203
7e63efef
MG
4204/*
4205 * kernelcore=size sets the amount of memory for use for allocations that
4206 * cannot be reclaimed or migrated.
4207 */
4208static int __init cmdline_parse_kernelcore(char *p)
4209{
4210 return cmdline_parse_core(p, &required_kernelcore);
4211}
4212
4213/*
4214 * movablecore=size sets the amount of memory for use for allocations that
4215 * can be reclaimed or migrated.
4216 */
4217static int __init cmdline_parse_movablecore(char *p)
4218{
4219 return cmdline_parse_core(p, &required_movablecore);
4220}
4221
ed7ed365 4222early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4223early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4224
c713216d
MG
4225#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4226
0e0b864e 4227/**
88ca3b94
RD
4228 * set_dma_reserve - set the specified number of pages reserved in the first zone
4229 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4230 *
4231 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4232 * In the DMA zone, a significant percentage may be consumed by kernel image
4233 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4234 * function may optionally be used to account for unfreeable pages in the
4235 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4236 * smaller per-cpu batchsize.
0e0b864e
MG
4237 */
4238void __init set_dma_reserve(unsigned long new_dma_reserve)
4239{
4240 dma_reserve = new_dma_reserve;
4241}
4242
93b7504e 4243#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4244struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4245EXPORT_SYMBOL(contig_page_data);
93b7504e 4246#endif
1da177e4
LT
4247
4248void __init free_area_init(unsigned long *zones_size)
4249{
9109fb7b 4250 free_area_init_node(0, zones_size,
1da177e4
LT
4251 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4252}
1da177e4 4253
1da177e4
LT
4254static int page_alloc_cpu_notify(struct notifier_block *self,
4255 unsigned long action, void *hcpu)
4256{
4257 int cpu = (unsigned long)hcpu;
1da177e4 4258
8bb78442 4259 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4260 drain_pages(cpu);
4261
4262 /*
4263 * Spill the event counters of the dead processor
4264 * into the current processors event counters.
4265 * This artificially elevates the count of the current
4266 * processor.
4267 */
f8891e5e 4268 vm_events_fold_cpu(cpu);
9f8f2172
CL
4269
4270 /*
4271 * Zero the differential counters of the dead processor
4272 * so that the vm statistics are consistent.
4273 *
4274 * This is only okay since the processor is dead and cannot
4275 * race with what we are doing.
4276 */
2244b95a 4277 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4278 }
4279 return NOTIFY_OK;
4280}
1da177e4
LT
4281
4282void __init page_alloc_init(void)
4283{
4284 hotcpu_notifier(page_alloc_cpu_notify, 0);
4285}
4286
cb45b0e9
HA
4287/*
4288 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4289 * or min_free_kbytes changes.
4290 */
4291static void calculate_totalreserve_pages(void)
4292{
4293 struct pglist_data *pgdat;
4294 unsigned long reserve_pages = 0;
2f6726e5 4295 enum zone_type i, j;
cb45b0e9
HA
4296
4297 for_each_online_pgdat(pgdat) {
4298 for (i = 0; i < MAX_NR_ZONES; i++) {
4299 struct zone *zone = pgdat->node_zones + i;
4300 unsigned long max = 0;
4301
4302 /* Find valid and maximum lowmem_reserve in the zone */
4303 for (j = i; j < MAX_NR_ZONES; j++) {
4304 if (zone->lowmem_reserve[j] > max)
4305 max = zone->lowmem_reserve[j];
4306 }
4307
4308 /* we treat pages_high as reserved pages. */
4309 max += zone->pages_high;
4310
4311 if (max > zone->present_pages)
4312 max = zone->present_pages;
4313 reserve_pages += max;
4314 }
4315 }
4316 totalreserve_pages = reserve_pages;
4317}
4318
1da177e4
LT
4319/*
4320 * setup_per_zone_lowmem_reserve - called whenever
4321 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4322 * has a correct pages reserved value, so an adequate number of
4323 * pages are left in the zone after a successful __alloc_pages().
4324 */
4325static void setup_per_zone_lowmem_reserve(void)
4326{
4327 struct pglist_data *pgdat;
2f6726e5 4328 enum zone_type j, idx;
1da177e4 4329
ec936fc5 4330 for_each_online_pgdat(pgdat) {
1da177e4
LT
4331 for (j = 0; j < MAX_NR_ZONES; j++) {
4332 struct zone *zone = pgdat->node_zones + j;
4333 unsigned long present_pages = zone->present_pages;
4334
4335 zone->lowmem_reserve[j] = 0;
4336
2f6726e5
CL
4337 idx = j;
4338 while (idx) {
1da177e4
LT
4339 struct zone *lower_zone;
4340
2f6726e5
CL
4341 idx--;
4342
1da177e4
LT
4343 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4344 sysctl_lowmem_reserve_ratio[idx] = 1;
4345
4346 lower_zone = pgdat->node_zones + idx;
4347 lower_zone->lowmem_reserve[j] = present_pages /
4348 sysctl_lowmem_reserve_ratio[idx];
4349 present_pages += lower_zone->present_pages;
4350 }
4351 }
4352 }
cb45b0e9
HA
4353
4354 /* update totalreserve_pages */
4355 calculate_totalreserve_pages();
1da177e4
LT
4356}
4357
88ca3b94
RD
4358/**
4359 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4360 *
4361 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4362 * with respect to min_free_kbytes.
1da177e4 4363 */
3947be19 4364void setup_per_zone_pages_min(void)
1da177e4
LT
4365{
4366 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4367 unsigned long lowmem_pages = 0;
4368 struct zone *zone;
4369 unsigned long flags;
4370
4371 /* Calculate total number of !ZONE_HIGHMEM pages */
4372 for_each_zone(zone) {
4373 if (!is_highmem(zone))
4374 lowmem_pages += zone->present_pages;
4375 }
4376
4377 for_each_zone(zone) {
ac924c60
AM
4378 u64 tmp;
4379
1125b4e3 4380 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4381 tmp = (u64)pages_min * zone->present_pages;
4382 do_div(tmp, lowmem_pages);
1da177e4
LT
4383 if (is_highmem(zone)) {
4384 /*
669ed175
NP
4385 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4386 * need highmem pages, so cap pages_min to a small
4387 * value here.
4388 *
4389 * The (pages_high-pages_low) and (pages_low-pages_min)
4390 * deltas controls asynch page reclaim, and so should
4391 * not be capped for highmem.
1da177e4
LT
4392 */
4393 int min_pages;
4394
4395 min_pages = zone->present_pages / 1024;
4396 if (min_pages < SWAP_CLUSTER_MAX)
4397 min_pages = SWAP_CLUSTER_MAX;
4398 if (min_pages > 128)
4399 min_pages = 128;
4400 zone->pages_min = min_pages;
4401 } else {
669ed175
NP
4402 /*
4403 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4404 * proportionate to the zone's size.
4405 */
669ed175 4406 zone->pages_min = tmp;
1da177e4
LT
4407 }
4408
ac924c60
AM
4409 zone->pages_low = zone->pages_min + (tmp >> 2);
4410 zone->pages_high = zone->pages_min + (tmp >> 1);
56fd56b8 4411 setup_zone_migrate_reserve(zone);
1125b4e3 4412 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4413 }
cb45b0e9
HA
4414
4415 /* update totalreserve_pages */
4416 calculate_totalreserve_pages();
1da177e4
LT
4417}
4418
556adecb
RR
4419/**
4420 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4421 *
4422 * The inactive anon list should be small enough that the VM never has to
4423 * do too much work, but large enough that each inactive page has a chance
4424 * to be referenced again before it is swapped out.
4425 *
4426 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4427 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4428 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4429 * the anonymous pages are kept on the inactive list.
4430 *
4431 * total target max
4432 * memory ratio inactive anon
4433 * -------------------------------------
4434 * 10MB 1 5MB
4435 * 100MB 1 50MB
4436 * 1GB 3 250MB
4437 * 10GB 10 0.9GB
4438 * 100GB 31 3GB
4439 * 1TB 101 10GB
4440 * 10TB 320 32GB
4441 */
efab8186 4442static void setup_per_zone_inactive_ratio(void)
556adecb
RR
4443{
4444 struct zone *zone;
4445
4446 for_each_zone(zone) {
4447 unsigned int gb, ratio;
4448
4449 /* Zone size in gigabytes */
4450 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4451 ratio = int_sqrt(10 * gb);
4452 if (!ratio)
4453 ratio = 1;
4454
4455 zone->inactive_ratio = ratio;
4456 }
4457}
4458
1da177e4
LT
4459/*
4460 * Initialise min_free_kbytes.
4461 *
4462 * For small machines we want it small (128k min). For large machines
4463 * we want it large (64MB max). But it is not linear, because network
4464 * bandwidth does not increase linearly with machine size. We use
4465 *
4466 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4467 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4468 *
4469 * which yields
4470 *
4471 * 16MB: 512k
4472 * 32MB: 724k
4473 * 64MB: 1024k
4474 * 128MB: 1448k
4475 * 256MB: 2048k
4476 * 512MB: 2896k
4477 * 1024MB: 4096k
4478 * 2048MB: 5792k
4479 * 4096MB: 8192k
4480 * 8192MB: 11584k
4481 * 16384MB: 16384k
4482 */
4483static int __init init_per_zone_pages_min(void)
4484{
4485 unsigned long lowmem_kbytes;
4486
4487 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4488
4489 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4490 if (min_free_kbytes < 128)
4491 min_free_kbytes = 128;
4492 if (min_free_kbytes > 65536)
4493 min_free_kbytes = 65536;
4494 setup_per_zone_pages_min();
4495 setup_per_zone_lowmem_reserve();
556adecb 4496 setup_per_zone_inactive_ratio();
1da177e4
LT
4497 return 0;
4498}
4499module_init(init_per_zone_pages_min)
4500
4501/*
4502 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4503 * that we can call two helper functions whenever min_free_kbytes
4504 * changes.
4505 */
4506int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4507 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4508{
4509 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4510 if (write)
4511 setup_per_zone_pages_min();
1da177e4
LT
4512 return 0;
4513}
4514
9614634f
CL
4515#ifdef CONFIG_NUMA
4516int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4517 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4518{
4519 struct zone *zone;
4520 int rc;
4521
4522 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4523 if (rc)
4524 return rc;
4525
4526 for_each_zone(zone)
8417bba4 4527 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4528 sysctl_min_unmapped_ratio) / 100;
4529 return 0;
4530}
0ff38490
CL
4531
4532int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4533 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4534{
4535 struct zone *zone;
4536 int rc;
4537
4538 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4539 if (rc)
4540 return rc;
4541
4542 for_each_zone(zone)
4543 zone->min_slab_pages = (zone->present_pages *
4544 sysctl_min_slab_ratio) / 100;
4545 return 0;
4546}
9614634f
CL
4547#endif
4548
1da177e4
LT
4549/*
4550 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4551 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4552 * whenever sysctl_lowmem_reserve_ratio changes.
4553 *
4554 * The reserve ratio obviously has absolutely no relation with the
4555 * pages_min watermarks. The lowmem reserve ratio can only make sense
4556 * if in function of the boot time zone sizes.
4557 */
4558int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4559 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4560{
4561 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4562 setup_per_zone_lowmem_reserve();
4563 return 0;
4564}
4565
8ad4b1fb
RS
4566/*
4567 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4568 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4569 * can have before it gets flushed back to buddy allocator.
4570 */
4571
4572int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4573 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4574{
4575 struct zone *zone;
4576 unsigned int cpu;
4577 int ret;
4578
4579 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4580 if (!write || (ret == -EINVAL))
4581 return ret;
4582 for_each_zone(zone) {
4583 for_each_online_cpu(cpu) {
4584 unsigned long high;
4585 high = zone->present_pages / percpu_pagelist_fraction;
4586 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4587 }
4588 }
4589 return 0;
4590}
4591
f034b5d4 4592int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4593
4594#ifdef CONFIG_NUMA
4595static int __init set_hashdist(char *str)
4596{
4597 if (!str)
4598 return 0;
4599 hashdist = simple_strtoul(str, &str, 0);
4600 return 1;
4601}
4602__setup("hashdist=", set_hashdist);
4603#endif
4604
4605/*
4606 * allocate a large system hash table from bootmem
4607 * - it is assumed that the hash table must contain an exact power-of-2
4608 * quantity of entries
4609 * - limit is the number of hash buckets, not the total allocation size
4610 */
4611void *__init alloc_large_system_hash(const char *tablename,
4612 unsigned long bucketsize,
4613 unsigned long numentries,
4614 int scale,
4615 int flags,
4616 unsigned int *_hash_shift,
4617 unsigned int *_hash_mask,
4618 unsigned long limit)
4619{
4620 unsigned long long max = limit;
4621 unsigned long log2qty, size;
4622 void *table = NULL;
4623
4624 /* allow the kernel cmdline to have a say */
4625 if (!numentries) {
4626 /* round applicable memory size up to nearest megabyte */
04903664 4627 numentries = nr_kernel_pages;
1da177e4
LT
4628 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4629 numentries >>= 20 - PAGE_SHIFT;
4630 numentries <<= 20 - PAGE_SHIFT;
4631
4632 /* limit to 1 bucket per 2^scale bytes of low memory */
4633 if (scale > PAGE_SHIFT)
4634 numentries >>= (scale - PAGE_SHIFT);
4635 else
4636 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4637
4638 /* Make sure we've got at least a 0-order allocation.. */
4639 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4640 numentries = PAGE_SIZE / bucketsize;
1da177e4 4641 }
6e692ed3 4642 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4643
4644 /* limit allocation size to 1/16 total memory by default */
4645 if (max == 0) {
4646 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4647 do_div(max, bucketsize);
4648 }
4649
4650 if (numentries > max)
4651 numentries = max;
4652
f0d1b0b3 4653 log2qty = ilog2(numentries);
1da177e4
LT
4654
4655 do {
4656 size = bucketsize << log2qty;
4657 if (flags & HASH_EARLY)
74768ed8 4658 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4659 else if (hashdist)
4660 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4661 else {
2309f9e6 4662 unsigned long order = get_order(size);
6c0db466
HD
4663
4664 if (order < MAX_ORDER)
4665 table = (void *)__get_free_pages(GFP_ATOMIC,
4666 order);
1037b83b
ED
4667 /*
4668 * If bucketsize is not a power-of-two, we may free
4669 * some pages at the end of hash table.
4670 */
4671 if (table) {
4672 unsigned long alloc_end = (unsigned long)table +
4673 (PAGE_SIZE << order);
4674 unsigned long used = (unsigned long)table +
4675 PAGE_ALIGN(size);
4676 split_page(virt_to_page(table), order);
4677 while (used < alloc_end) {
4678 free_page(used);
4679 used += PAGE_SIZE;
4680 }
4681 }
1da177e4
LT
4682 }
4683 } while (!table && size > PAGE_SIZE && --log2qty);
4684
4685 if (!table)
4686 panic("Failed to allocate %s hash table\n", tablename);
4687
b49ad484 4688 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4689 tablename,
4690 (1U << log2qty),
f0d1b0b3 4691 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4692 size);
4693
4694 if (_hash_shift)
4695 *_hash_shift = log2qty;
4696 if (_hash_mask)
4697 *_hash_mask = (1 << log2qty) - 1;
4698
dbb1f81c
CM
4699 /*
4700 * If hashdist is set, the table allocation is done with __vmalloc()
4701 * which invokes the kmemleak_alloc() callback. This function may also
4702 * be called before the slab and kmemleak are initialised when
4703 * kmemleak simply buffers the request to be executed later
4704 * (GFP_ATOMIC flag ignored in this case).
4705 */
4706 if (!hashdist)
4707 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4708
1da177e4
LT
4709 return table;
4710}
a117e66e 4711
835c134e
MG
4712/* Return a pointer to the bitmap storing bits affecting a block of pages */
4713static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4714 unsigned long pfn)
4715{
4716#ifdef CONFIG_SPARSEMEM
4717 return __pfn_to_section(pfn)->pageblock_flags;
4718#else
4719 return zone->pageblock_flags;
4720#endif /* CONFIG_SPARSEMEM */
4721}
4722
4723static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4724{
4725#ifdef CONFIG_SPARSEMEM
4726 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4727 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4728#else
4729 pfn = pfn - zone->zone_start_pfn;
d9c23400 4730 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4731#endif /* CONFIG_SPARSEMEM */
4732}
4733
4734/**
d9c23400 4735 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4736 * @page: The page within the block of interest
4737 * @start_bitidx: The first bit of interest to retrieve
4738 * @end_bitidx: The last bit of interest
4739 * returns pageblock_bits flags
4740 */
4741unsigned long get_pageblock_flags_group(struct page *page,
4742 int start_bitidx, int end_bitidx)
4743{
4744 struct zone *zone;
4745 unsigned long *bitmap;
4746 unsigned long pfn, bitidx;
4747 unsigned long flags = 0;
4748 unsigned long value = 1;
4749
4750 zone = page_zone(page);
4751 pfn = page_to_pfn(page);
4752 bitmap = get_pageblock_bitmap(zone, pfn);
4753 bitidx = pfn_to_bitidx(zone, pfn);
4754
4755 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4756 if (test_bit(bitidx + start_bitidx, bitmap))
4757 flags |= value;
6220ec78 4758
835c134e
MG
4759 return flags;
4760}
4761
4762/**
d9c23400 4763 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4764 * @page: The page within the block of interest
4765 * @start_bitidx: The first bit of interest
4766 * @end_bitidx: The last bit of interest
4767 * @flags: The flags to set
4768 */
4769void set_pageblock_flags_group(struct page *page, unsigned long flags,
4770 int start_bitidx, int end_bitidx)
4771{
4772 struct zone *zone;
4773 unsigned long *bitmap;
4774 unsigned long pfn, bitidx;
4775 unsigned long value = 1;
4776
4777 zone = page_zone(page);
4778 pfn = page_to_pfn(page);
4779 bitmap = get_pageblock_bitmap(zone, pfn);
4780 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4781 VM_BUG_ON(pfn < zone->zone_start_pfn);
4782 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4783
4784 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4785 if (flags & value)
4786 __set_bit(bitidx + start_bitidx, bitmap);
4787 else
4788 __clear_bit(bitidx + start_bitidx, bitmap);
4789}
a5d76b54
KH
4790
4791/*
4792 * This is designed as sub function...plz see page_isolation.c also.
4793 * set/clear page block's type to be ISOLATE.
4794 * page allocater never alloc memory from ISOLATE block.
4795 */
4796
4797int set_migratetype_isolate(struct page *page)
4798{
4799 struct zone *zone;
4800 unsigned long flags;
4801 int ret = -EBUSY;
4802
4803 zone = page_zone(page);
4804 spin_lock_irqsave(&zone->lock, flags);
4805 /*
4806 * In future, more migrate types will be able to be isolation target.
4807 */
4808 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4809 goto out;
4810 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4811 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4812 ret = 0;
4813out:
4814 spin_unlock_irqrestore(&zone->lock, flags);
4815 if (!ret)
9f8f2172 4816 drain_all_pages();
a5d76b54
KH
4817 return ret;
4818}
4819
4820void unset_migratetype_isolate(struct page *page)
4821{
4822 struct zone *zone;
4823 unsigned long flags;
4824 zone = page_zone(page);
4825 spin_lock_irqsave(&zone->lock, flags);
4826 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4827 goto out;
4828 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4829 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4830out:
4831 spin_unlock_irqrestore(&zone->lock, flags);
4832}
0c0e6195
KH
4833
4834#ifdef CONFIG_MEMORY_HOTREMOVE
4835/*
4836 * All pages in the range must be isolated before calling this.
4837 */
4838void
4839__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4840{
4841 struct page *page;
4842 struct zone *zone;
4843 int order, i;
4844 unsigned long pfn;
4845 unsigned long flags;
4846 /* find the first valid pfn */
4847 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4848 if (pfn_valid(pfn))
4849 break;
4850 if (pfn == end_pfn)
4851 return;
4852 zone = page_zone(pfn_to_page(pfn));
4853 spin_lock_irqsave(&zone->lock, flags);
4854 pfn = start_pfn;
4855 while (pfn < end_pfn) {
4856 if (!pfn_valid(pfn)) {
4857 pfn++;
4858 continue;
4859 }
4860 page = pfn_to_page(pfn);
4861 BUG_ON(page_count(page));
4862 BUG_ON(!PageBuddy(page));
4863 order = page_order(page);
4864#ifdef CONFIG_DEBUG_VM
4865 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4866 pfn, 1 << order, end_pfn);
4867#endif
4868 list_del(&page->lru);
4869 rmv_page_order(page);
4870 zone->free_area[order].nr_free--;
4871 __mod_zone_page_state(zone, NR_FREE_PAGES,
4872 - (1UL << order));
4873 for (i = 0; i < (1 << order); i++)
4874 SetPageReserved((page+i));
4875 pfn += (1 << order);
4876 }
4877 spin_unlock_irqrestore(&zone->lock, flags);
4878}
4879#endif