Bias the placement of kernel pages at lower PFNs
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d98c7a09 70static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 71
1da177e4
LT
72/*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
1da177e4 82 */
2f1b6248 83int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 84#ifdef CONFIG_ZONE_DMA
2f1b6248 85 256,
4b51d669 86#endif
fb0e7942 87#ifdef CONFIG_ZONE_DMA32
2f1b6248 88 256,
fb0e7942 89#endif
e53ef38d 90#ifdef CONFIG_HIGHMEM
2a1e274a 91 32,
e53ef38d 92#endif
2a1e274a 93 32,
2f1b6248 94};
1da177e4
LT
95
96EXPORT_SYMBOL(totalram_pages);
1da177e4 97
15ad7cdc 98static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248 100 "DMA",
4b51d669 101#endif
fb0e7942 102#ifdef CONFIG_ZONE_DMA32
2f1b6248 103 "DMA32",
fb0e7942 104#endif
2f1b6248 105 "Normal",
e53ef38d 106#ifdef CONFIG_HIGHMEM
2a1e274a 107 "HighMem",
e53ef38d 108#endif
2a1e274a 109 "Movable",
2f1b6248
CL
110};
111
1da177e4
LT
112int min_free_kbytes = 1024;
113
86356ab1
YG
114unsigned long __meminitdata nr_kernel_pages;
115unsigned long __meminitdata nr_all_pages;
a3142c8e 116static unsigned long __meminitdata dma_reserve;
1da177e4 117
c713216d
MG
118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
98011f56
JB
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 143#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 146#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 147 unsigned long __initdata required_kernelcore;
7e63efef 148 unsigned long __initdata required_movablecore;
e228929b 149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
c713216d
MG
154#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
418508c1
MS
156#if MAX_NUMNODES > 1
157int nr_node_ids __read_mostly = MAX_NUMNODES;
158EXPORT_SYMBOL(nr_node_ids);
159#endif
160
b92a6edd 161#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
9ef9acb0
MG
162int page_group_by_mobility_disabled __read_mostly;
163
b2a0ac88
MG
164static inline int get_pageblock_migratetype(struct page *page)
165{
9ef9acb0
MG
166 if (unlikely(page_group_by_mobility_disabled))
167 return MIGRATE_UNMOVABLE;
168
b2a0ac88
MG
169 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
170}
171
172static void set_pageblock_migratetype(struct page *page, int migratetype)
173{
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176}
177
e010487d 178static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
b2a0ac88 179{
e12ba74d
MG
180 WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
181
9ef9acb0
MG
182 if (unlikely(page_group_by_mobility_disabled))
183 return MIGRATE_UNMOVABLE;
184
e010487d
MG
185 /* Cluster high-order atomic allocations together */
186 if (unlikely(order > 0) &&
187 (!(gfp_flags & __GFP_WAIT) || in_interrupt()))
188 return MIGRATE_HIGHATOMIC;
189
190 /* Cluster based on mobility */
e12ba74d
MG
191 return (((gfp_flags & __GFP_MOVABLE) != 0) << 1) |
192 ((gfp_flags & __GFP_RECLAIMABLE) != 0);
b2a0ac88
MG
193}
194
b92a6edd
MG
195#else
196static inline int get_pageblock_migratetype(struct page *page)
197{
198 return MIGRATE_UNMOVABLE;
199}
200
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
203}
204
e010487d 205static inline int allocflags_to_migratetype(gfp_t gfp_flags, int order)
b92a6edd
MG
206{
207 return MIGRATE_UNMOVABLE;
208}
209#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
210
13e7444b 211#ifdef CONFIG_DEBUG_VM
c6a57e19 212static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 213{
bdc8cb98
DH
214 int ret = 0;
215 unsigned seq;
216 unsigned long pfn = page_to_pfn(page);
c6a57e19 217
bdc8cb98
DH
218 do {
219 seq = zone_span_seqbegin(zone);
220 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
221 ret = 1;
222 else if (pfn < zone->zone_start_pfn)
223 ret = 1;
224 } while (zone_span_seqretry(zone, seq));
225
226 return ret;
c6a57e19
DH
227}
228
229static int page_is_consistent(struct zone *zone, struct page *page)
230{
14e07298 231 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 232 return 0;
1da177e4 233 if (zone != page_zone(page))
c6a57e19
DH
234 return 0;
235
236 return 1;
237}
238/*
239 * Temporary debugging check for pages not lying within a given zone.
240 */
241static int bad_range(struct zone *zone, struct page *page)
242{
243 if (page_outside_zone_boundaries(zone, page))
1da177e4 244 return 1;
c6a57e19
DH
245 if (!page_is_consistent(zone, page))
246 return 1;
247
1da177e4
LT
248 return 0;
249}
13e7444b
NP
250#else
251static inline int bad_range(struct zone *zone, struct page *page)
252{
253 return 0;
254}
255#endif
256
224abf92 257static void bad_page(struct page *page)
1da177e4 258{
224abf92 259 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
260 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
261 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
262 KERN_EMERG "Backtrace:\n",
224abf92
NP
263 current->comm, page, (int)(2*sizeof(unsigned long)),
264 (unsigned long)page->flags, page->mapping,
265 page_mapcount(page), page_count(page));
1da177e4 266 dump_stack();
334795ec
HD
267 page->flags &= ~(1 << PG_lru |
268 1 << PG_private |
1da177e4 269 1 << PG_locked |
1da177e4
LT
270 1 << PG_active |
271 1 << PG_dirty |
334795ec
HD
272 1 << PG_reclaim |
273 1 << PG_slab |
1da177e4 274 1 << PG_swapcache |
676165a8
NP
275 1 << PG_writeback |
276 1 << PG_buddy );
1da177e4
LT
277 set_page_count(page, 0);
278 reset_page_mapcount(page);
279 page->mapping = NULL;
9f158333 280 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
281}
282
1da177e4
LT
283/*
284 * Higher-order pages are called "compound pages". They are structured thusly:
285 *
286 * The first PAGE_SIZE page is called the "head page".
287 *
288 * The remaining PAGE_SIZE pages are called "tail pages".
289 *
290 * All pages have PG_compound set. All pages have their ->private pointing at
291 * the head page (even the head page has this).
292 *
41d78ba5
HD
293 * The first tail page's ->lru.next holds the address of the compound page's
294 * put_page() function. Its ->lru.prev holds the order of allocation.
295 * This usage means that zero-order pages may not be compound.
1da177e4 296 */
d98c7a09
HD
297
298static void free_compound_page(struct page *page)
299{
d85f3385 300 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
301}
302
1da177e4
LT
303static void prep_compound_page(struct page *page, unsigned long order)
304{
305 int i;
306 int nr_pages = 1 << order;
307
33f2ef89 308 set_compound_page_dtor(page, free_compound_page);
d85f3385 309 set_compound_order(page, order);
6d777953 310 __SetPageHead(page);
d85f3385 311 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
312 struct page *p = page + i;
313
d85f3385 314 __SetPageTail(p);
d85f3385 315 p->first_page = page;
1da177e4
LT
316 }
317}
318
319static void destroy_compound_page(struct page *page, unsigned long order)
320{
321 int i;
322 int nr_pages = 1 << order;
323
d85f3385 324 if (unlikely(compound_order(page) != order))
224abf92 325 bad_page(page);
1da177e4 326
6d777953 327 if (unlikely(!PageHead(page)))
d85f3385 328 bad_page(page);
6d777953 329 __ClearPageHead(page);
d85f3385 330 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
331 struct page *p = page + i;
332
6d777953 333 if (unlikely(!PageTail(p) |
d85f3385 334 (p->first_page != page)))
224abf92 335 bad_page(page);
d85f3385 336 __ClearPageTail(p);
1da177e4
LT
337 }
338}
1da177e4 339
17cf4406
NP
340static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
341{
342 int i;
343
725d704e 344 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
345 /*
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 */
725d704e 349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
352}
353
1da177e4
LT
354/*
355 * function for dealing with page's order in buddy system.
356 * zone->lock is already acquired when we use these.
357 * So, we don't need atomic page->flags operations here.
358 */
6aa3001b
AM
359static inline unsigned long page_order(struct page *page)
360{
4c21e2f2 361 return page_private(page);
1da177e4
LT
362}
363
6aa3001b
AM
364static inline void set_page_order(struct page *page, int order)
365{
4c21e2f2 366 set_page_private(page, order);
676165a8 367 __SetPageBuddy(page);
1da177e4
LT
368}
369
370static inline void rmv_page_order(struct page *page)
371{
676165a8 372 __ClearPageBuddy(page);
4c21e2f2 373 set_page_private(page, 0);
1da177e4
LT
374}
375
376/*
377 * Locate the struct page for both the matching buddy in our
378 * pair (buddy1) and the combined O(n+1) page they form (page).
379 *
380 * 1) Any buddy B1 will have an order O twin B2 which satisfies
381 * the following equation:
382 * B2 = B1 ^ (1 << O)
383 * For example, if the starting buddy (buddy2) is #8 its order
384 * 1 buddy is #10:
385 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
386 *
387 * 2) Any buddy B will have an order O+1 parent P which
388 * satisfies the following equation:
389 * P = B & ~(1 << O)
390 *
d6e05edc 391 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
392 */
393static inline struct page *
394__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
395{
396 unsigned long buddy_idx = page_idx ^ (1 << order);
397
398 return page + (buddy_idx - page_idx);
399}
400
401static inline unsigned long
402__find_combined_index(unsigned long page_idx, unsigned int order)
403{
404 return (page_idx & ~(1 << order));
405}
406
407/*
408 * This function checks whether a page is free && is the buddy
409 * we can do coalesce a page and its buddy if
13e7444b 410 * (a) the buddy is not in a hole &&
676165a8 411 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
412 * (c) a page and its buddy have the same order &&
413 * (d) a page and its buddy are in the same zone.
676165a8
NP
414 *
415 * For recording whether a page is in the buddy system, we use PG_buddy.
416 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 417 *
676165a8 418 * For recording page's order, we use page_private(page).
1da177e4 419 */
cb2b95e1
AW
420static inline int page_is_buddy(struct page *page, struct page *buddy,
421 int order)
1da177e4 422{
14e07298 423 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 424 return 0;
13e7444b 425
cb2b95e1
AW
426 if (page_zone_id(page) != page_zone_id(buddy))
427 return 0;
428
429 if (PageBuddy(buddy) && page_order(buddy) == order) {
430 BUG_ON(page_count(buddy) != 0);
6aa3001b 431 return 1;
676165a8 432 }
6aa3001b 433 return 0;
1da177e4
LT
434}
435
436/*
437 * Freeing function for a buddy system allocator.
438 *
439 * The concept of a buddy system is to maintain direct-mapped table
440 * (containing bit values) for memory blocks of various "orders".
441 * The bottom level table contains the map for the smallest allocatable
442 * units of memory (here, pages), and each level above it describes
443 * pairs of units from the levels below, hence, "buddies".
444 * At a high level, all that happens here is marking the table entry
445 * at the bottom level available, and propagating the changes upward
446 * as necessary, plus some accounting needed to play nicely with other
447 * parts of the VM system.
448 * At each level, we keep a list of pages, which are heads of continuous
676165a8 449 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 450 * order is recorded in page_private(page) field.
1da177e4
LT
451 * So when we are allocating or freeing one, we can derive the state of the
452 * other. That is, if we allocate a small block, and both were
453 * free, the remainder of the region must be split into blocks.
454 * If a block is freed, and its buddy is also free, then this
455 * triggers coalescing into a block of larger size.
456 *
457 * -- wli
458 */
459
48db57f8 460static inline void __free_one_page(struct page *page,
1da177e4
LT
461 struct zone *zone, unsigned int order)
462{
463 unsigned long page_idx;
464 int order_size = 1 << order;
b2a0ac88 465 int migratetype = get_pageblock_migratetype(page);
1da177e4 466
224abf92 467 if (unlikely(PageCompound(page)))
1da177e4
LT
468 destroy_compound_page(page, order);
469
470 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
471
725d704e
NP
472 VM_BUG_ON(page_idx & (order_size - 1));
473 VM_BUG_ON(bad_range(zone, page));
1da177e4 474
d23ad423 475 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
476 while (order < MAX_ORDER-1) {
477 unsigned long combined_idx;
1da177e4
LT
478 struct page *buddy;
479
1da177e4 480 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 481 if (!page_is_buddy(page, buddy, order))
1da177e4 482 break; /* Move the buddy up one level. */
13e7444b 483
1da177e4 484 list_del(&buddy->lru);
b2a0ac88 485 zone->free_area[order].nr_free--;
1da177e4 486 rmv_page_order(buddy);
13e7444b 487 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
488 page = page + (combined_idx - page_idx);
489 page_idx = combined_idx;
490 order++;
491 }
492 set_page_order(page, order);
b2a0ac88
MG
493 list_add(&page->lru,
494 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
495 zone->free_area[order].nr_free++;
496}
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (page_count(page) != 0) |
1da177e4
LT
503 (page->flags & (
504 1 << PG_lru |
505 1 << PG_private |
506 1 << PG_locked |
507 1 << PG_active |
1da177e4
LT
508 1 << PG_slab |
509 1 << PG_swapcache |
b5810039 510 1 << PG_writeback |
676165a8
NP
511 1 << PG_reserved |
512 1 << PG_buddy ))))
224abf92 513 bad_page(page);
1da177e4 514 if (PageDirty(page))
242e5468 515 __ClearPageDirty(page);
689bcebf
HD
516 /*
517 * For now, we report if PG_reserved was found set, but do not
518 * clear it, and do not free the page. But we shall soon need
519 * to do more, for when the ZERO_PAGE count wraps negative.
520 */
521 return PageReserved(page);
1da177e4
LT
522}
523
524/*
525 * Frees a list of pages.
526 * Assumes all pages on list are in same zone, and of same order.
207f36ee 527 * count is the number of pages to free.
1da177e4
LT
528 *
529 * If the zone was previously in an "all pages pinned" state then look to
530 * see if this freeing clears that state.
531 *
532 * And clear the zone's pages_scanned counter, to hold off the "all pages are
533 * pinned" detection logic.
534 */
48db57f8
NP
535static void free_pages_bulk(struct zone *zone, int count,
536 struct list_head *list, int order)
1da177e4 537{
c54ad30c 538 spin_lock(&zone->lock);
1da177e4
LT
539 zone->all_unreclaimable = 0;
540 zone->pages_scanned = 0;
48db57f8
NP
541 while (count--) {
542 struct page *page;
543
725d704e 544 VM_BUG_ON(list_empty(list));
1da177e4 545 page = list_entry(list->prev, struct page, lru);
48db57f8 546 /* have to delete it as __free_one_page list manipulates */
1da177e4 547 list_del(&page->lru);
48db57f8 548 __free_one_page(page, zone, order);
1da177e4 549 }
c54ad30c 550 spin_unlock(&zone->lock);
1da177e4
LT
551}
552
48db57f8 553static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 554{
006d22d9
CL
555 spin_lock(&zone->lock);
556 zone->all_unreclaimable = 0;
557 zone->pages_scanned = 0;
0798e519 558 __free_one_page(page, zone, order);
006d22d9 559 spin_unlock(&zone->lock);
48db57f8
NP
560}
561
562static void __free_pages_ok(struct page *page, unsigned int order)
563{
564 unsigned long flags;
1da177e4 565 int i;
689bcebf 566 int reserved = 0;
1da177e4 567
1da177e4 568 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 569 reserved += free_pages_check(page + i);
689bcebf
HD
570 if (reserved)
571 return;
572
9858db50
NP
573 if (!PageHighMem(page))
574 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 575 arch_free_page(page, order);
48db57f8 576 kernel_map_pages(page, 1 << order, 0);
dafb1367 577
c54ad30c 578 local_irq_save(flags);
f8891e5e 579 __count_vm_events(PGFREE, 1 << order);
48db57f8 580 free_one_page(page_zone(page), page, order);
c54ad30c 581 local_irq_restore(flags);
1da177e4
LT
582}
583
a226f6c8
DH
584/*
585 * permit the bootmem allocator to evade page validation on high-order frees
586 */
587void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
588{
589 if (order == 0) {
590 __ClearPageReserved(page);
591 set_page_count(page, 0);
7835e98b 592 set_page_refcounted(page);
545b1ea9 593 __free_page(page);
a226f6c8 594 } else {
a226f6c8
DH
595 int loop;
596
545b1ea9 597 prefetchw(page);
a226f6c8
DH
598 for (loop = 0; loop < BITS_PER_LONG; loop++) {
599 struct page *p = &page[loop];
600
545b1ea9
NP
601 if (loop + 1 < BITS_PER_LONG)
602 prefetchw(p + 1);
a226f6c8
DH
603 __ClearPageReserved(p);
604 set_page_count(p, 0);
605 }
606
7835e98b 607 set_page_refcounted(page);
545b1ea9 608 __free_pages(page, order);
a226f6c8
DH
609 }
610}
611
1da177e4
LT
612
613/*
614 * The order of subdivision here is critical for the IO subsystem.
615 * Please do not alter this order without good reasons and regression
616 * testing. Specifically, as large blocks of memory are subdivided,
617 * the order in which smaller blocks are delivered depends on the order
618 * they're subdivided in this function. This is the primary factor
619 * influencing the order in which pages are delivered to the IO
620 * subsystem according to empirical testing, and this is also justified
621 * by considering the behavior of a buddy system containing a single
622 * large block of memory acted on by a series of small allocations.
623 * This behavior is a critical factor in sglist merging's success.
624 *
625 * -- wli
626 */
085cc7d5 627static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
628 int low, int high, struct free_area *area,
629 int migratetype)
1da177e4
LT
630{
631 unsigned long size = 1 << high;
632
633 while (high > low) {
634 area--;
635 high--;
636 size >>= 1;
725d704e 637 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 638 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
639 area->nr_free++;
640 set_page_order(&page[size], high);
641 }
1da177e4
LT
642}
643
1da177e4
LT
644/*
645 * This page is about to be returned from the page allocator
646 */
17cf4406 647static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 648{
92be2e33
NP
649 if (unlikely(page_mapcount(page) |
650 (page->mapping != NULL) |
651 (page_count(page) != 0) |
334795ec
HD
652 (page->flags & (
653 1 << PG_lru |
1da177e4
LT
654 1 << PG_private |
655 1 << PG_locked |
1da177e4
LT
656 1 << PG_active |
657 1 << PG_dirty |
334795ec 658 1 << PG_slab |
1da177e4 659 1 << PG_swapcache |
b5810039 660 1 << PG_writeback |
676165a8
NP
661 1 << PG_reserved |
662 1 << PG_buddy ))))
224abf92 663 bad_page(page);
1da177e4 664
689bcebf
HD
665 /*
666 * For now, we report if PG_reserved was found set, but do not
667 * clear it, and do not allocate the page: as a safety net.
668 */
669 if (PageReserved(page))
670 return 1;
671
d77c2d7c 672 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 673 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 674 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 675 set_page_private(page, 0);
7835e98b 676 set_page_refcounted(page);
cc102509
NP
677
678 arch_alloc_page(page, order);
1da177e4 679 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
680
681 if (gfp_flags & __GFP_ZERO)
682 prep_zero_page(page, order, gfp_flags);
683
684 if (order && (gfp_flags & __GFP_COMP))
685 prep_compound_page(page, order);
686
689bcebf 687 return 0;
1da177e4
LT
688}
689
b92a6edd 690#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
b2a0ac88
MG
691/*
692 * This array describes the order lists are fallen back to when
693 * the free lists for the desirable migrate type are depleted
694 */
695static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
e010487d
MG
696 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC },
697 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_HIGHATOMIC },
698 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_HIGHATOMIC },
699 [MIGRATE_HIGHATOMIC] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,MIGRATE_MOVABLE},
b2a0ac88
MG
700};
701
c361be55
MG
702/*
703 * Move the free pages in a range to the free lists of the requested type.
704 * Note that start_page and end_pages are not aligned in a MAX_ORDER_NR_PAGES
705 * boundary. If alignment is required, use move_freepages_block()
706 */
707int move_freepages(struct zone *zone,
708 struct page *start_page, struct page *end_page,
709 int migratetype)
710{
711 struct page *page;
712 unsigned long order;
713 int blocks_moved = 0;
714
715#ifndef CONFIG_HOLES_IN_ZONE
716 /*
717 * page_zone is not safe to call in this context when
718 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
719 * anyway as we check zone boundaries in move_freepages_block().
720 * Remove at a later date when no bug reports exist related to
721 * CONFIG_PAGE_GROUP_BY_MOBILITY
722 */
723 BUG_ON(page_zone(start_page) != page_zone(end_page));
724#endif
725
726 for (page = start_page; page <= end_page;) {
727 if (!pfn_valid_within(page_to_pfn(page))) {
728 page++;
729 continue;
730 }
731
732 if (!PageBuddy(page)) {
733 page++;
734 continue;
735 }
736
737 order = page_order(page);
738 list_del(&page->lru);
739 list_add(&page->lru,
740 &zone->free_area[order].free_list[migratetype]);
741 page += 1 << order;
742 blocks_moved++;
743 }
744
745 return blocks_moved;
746}
747
748int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
749{
750 unsigned long start_pfn, end_pfn;
751 struct page *start_page, *end_page;
752
753 start_pfn = page_to_pfn(page);
754 start_pfn = start_pfn & ~(MAX_ORDER_NR_PAGES-1);
755 start_page = pfn_to_page(start_pfn);
756 end_page = start_page + MAX_ORDER_NR_PAGES - 1;
757 end_pfn = start_pfn + MAX_ORDER_NR_PAGES - 1;
758
759 /* Do not cross zone boundaries */
760 if (start_pfn < zone->zone_start_pfn)
761 start_page = page;
762 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
763 return 0;
764
765 return move_freepages(zone, start_page, end_page, migratetype);
766}
767
5adc5be7
MG
768/* Return the page with the lowest PFN in the list */
769static struct page *min_page(struct list_head *list)
770{
771 unsigned long min_pfn = -1UL;
772 struct page *min_page = NULL, *page;;
773
774 list_for_each_entry(page, list, lru) {
775 unsigned long pfn = page_to_pfn(page);
776 if (pfn < min_pfn) {
777 min_pfn = pfn;
778 min_page = page;
779 }
780 }
781
782 return min_page;
783}
784
b2a0ac88
MG
785/* Remove an element from the buddy allocator from the fallback list */
786static struct page *__rmqueue_fallback(struct zone *zone, int order,
787 int start_migratetype)
788{
789 struct free_area * area;
790 int current_order;
791 struct page *page;
792 int migratetype, i;
e010487d 793 int nonatomic_fallback_atomic = 0;
b2a0ac88 794
e010487d 795retry:
b2a0ac88
MG
796 /* Find the largest possible block of pages in the other list */
797 for (current_order = MAX_ORDER-1; current_order >= order;
798 --current_order) {
799 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
800 migratetype = fallbacks[start_migratetype][i];
801
e010487d
MG
802 /*
803 * Make it hard to fallback to blocks used for
804 * high-order atomic allocations
805 */
806 if (migratetype == MIGRATE_HIGHATOMIC &&
807 start_migratetype != MIGRATE_UNMOVABLE &&
808 !nonatomic_fallback_atomic)
809 continue;
810
b2a0ac88
MG
811 area = &(zone->free_area[current_order]);
812 if (list_empty(&area->free_list[migratetype]))
813 continue;
814
5adc5be7 815 /* Bias kernel allocations towards low pfns */
b2a0ac88
MG
816 page = list_entry(area->free_list[migratetype].next,
817 struct page, lru);
5adc5be7
MG
818 if (unlikely(start_migratetype != MIGRATE_MOVABLE))
819 page = min_page(&area->free_list[migratetype]);
b2a0ac88
MG
820 area->nr_free--;
821
822 /*
c361be55
MG
823 * If breaking a large block of pages, move all free
824 * pages to the preferred allocation list
b2a0ac88 825 */
c361be55 826 if (unlikely(current_order >= MAX_ORDER / 2)) {
b2a0ac88 827 migratetype = start_migratetype;
c361be55
MG
828 move_freepages_block(zone, page, migratetype);
829 }
b2a0ac88
MG
830
831 /* Remove the page from the freelists */
832 list_del(&page->lru);
833 rmv_page_order(page);
834 __mod_zone_page_state(zone, NR_FREE_PAGES,
835 -(1UL << order));
836
837 if (current_order == MAX_ORDER - 1)
838 set_pageblock_migratetype(page,
839 start_migratetype);
840
841 expand(zone, page, order, current_order, area, migratetype);
842 return page;
843 }
844 }
845
e010487d
MG
846 /* Allow fallback to high-order atomic blocks if memory is that low */
847 if (!nonatomic_fallback_atomic) {
848 nonatomic_fallback_atomic = 1;
849 goto retry;
850 }
851
b2a0ac88
MG
852 return NULL;
853}
b92a6edd
MG
854#else
855static struct page *__rmqueue_fallback(struct zone *zone, int order,
856 int start_migratetype)
857{
858 return NULL;
859}
860#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
b2a0ac88 861
1da177e4
LT
862/*
863 * Do the hard work of removing an element from the buddy allocator.
864 * Call me with the zone->lock already held.
865 */
b2a0ac88
MG
866static struct page *__rmqueue(struct zone *zone, unsigned int order,
867 int migratetype)
1da177e4
LT
868{
869 struct free_area * area;
870 unsigned int current_order;
871 struct page *page;
872
b2a0ac88 873 /* Find a page of the appropriate size in the preferred list */
1da177e4 874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
b2a0ac88
MG
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
1da177e4
LT
877 continue;
878
b2a0ac88
MG
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
1da177e4
LT
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
d23ad423 884 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
b2a0ac88
MG
885 expand(zone, page, order, current_order, area, migratetype);
886 goto got_page;
1da177e4
LT
887 }
888
b2a0ac88
MG
889 page = __rmqueue_fallback(zone, order, migratetype);
890
891got_page:
892
893 return page;
1da177e4
LT
894}
895
896/*
897 * Obtain a specified number of elements from the buddy allocator, all under
898 * a single hold of the lock, for efficiency. Add them to the supplied list.
899 * Returns the number of new pages which were placed at *list.
900 */
901static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
902 unsigned long count, struct list_head *list,
903 int migratetype)
1da177e4 904{
1da177e4 905 int i;
1da177e4 906
c54ad30c 907 spin_lock(&zone->lock);
1da177e4 908 for (i = 0; i < count; ++i) {
b2a0ac88 909 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 910 if (unlikely(page == NULL))
1da177e4 911 break;
535131e6
MG
912 list_add(&page->lru, list);
913 set_page_private(page, migratetype);
1da177e4 914 }
c54ad30c 915 spin_unlock(&zone->lock);
085cc7d5 916 return i;
1da177e4
LT
917}
918
4ae7c039 919#ifdef CONFIG_NUMA
8fce4d8e 920/*
4037d452
CL
921 * Called from the vmstat counter updater to drain pagesets of this
922 * currently executing processor on remote nodes after they have
923 * expired.
924 *
879336c3
CL
925 * Note that this function must be called with the thread pinned to
926 * a single processor.
8fce4d8e 927 */
4037d452 928void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 929{
4ae7c039 930 unsigned long flags;
4037d452 931 int to_drain;
4ae7c039 932
4037d452
CL
933 local_irq_save(flags);
934 if (pcp->count >= pcp->batch)
935 to_drain = pcp->batch;
936 else
937 to_drain = pcp->count;
938 free_pages_bulk(zone, to_drain, &pcp->list, 0);
939 pcp->count -= to_drain;
940 local_irq_restore(flags);
4ae7c039
CL
941}
942#endif
943
1da177e4
LT
944static void __drain_pages(unsigned int cpu)
945{
c54ad30c 946 unsigned long flags;
1da177e4
LT
947 struct zone *zone;
948 int i;
949
950 for_each_zone(zone) {
951 struct per_cpu_pageset *pset;
952
f2e12bb2
CL
953 if (!populated_zone(zone))
954 continue;
955
e7c8d5c9 956 pset = zone_pcp(zone, cpu);
1da177e4
LT
957 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
958 struct per_cpu_pages *pcp;
959
960 pcp = &pset->pcp[i];
c54ad30c 961 local_irq_save(flags);
48db57f8
NP
962 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
963 pcp->count = 0;
c54ad30c 964 local_irq_restore(flags);
1da177e4
LT
965 }
966 }
967}
1da177e4 968
296699de 969#ifdef CONFIG_HIBERNATION
1da177e4
LT
970
971void mark_free_pages(struct zone *zone)
972{
f623f0db
RW
973 unsigned long pfn, max_zone_pfn;
974 unsigned long flags;
b2a0ac88 975 int order, t;
1da177e4
LT
976 struct list_head *curr;
977
978 if (!zone->spanned_pages)
979 return;
980
981 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
982
983 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
984 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
985 if (pfn_valid(pfn)) {
986 struct page *page = pfn_to_page(pfn);
987
7be98234
RW
988 if (!swsusp_page_is_forbidden(page))
989 swsusp_unset_page_free(page);
f623f0db 990 }
1da177e4 991
b2a0ac88
MG
992 for_each_migratetype_order(order, t) {
993 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 994 unsigned long i;
1da177e4 995
f623f0db
RW
996 pfn = page_to_pfn(list_entry(curr, struct page, lru));
997 for (i = 0; i < (1UL << order); i++)
7be98234 998 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 999 }
b2a0ac88 1000 }
1da177e4
LT
1001 spin_unlock_irqrestore(&zone->lock, flags);
1002}
e2c55dc8 1003#endif /* CONFIG_PM */
1da177e4 1004
e2c55dc8 1005#if defined(CONFIG_HIBERNATION) || defined(CONFIG_PAGE_GROUP_BY_MOBILITY)
1da177e4
LT
1006/*
1007 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1008 */
1009void drain_local_pages(void)
1010{
1011 unsigned long flags;
1012
1013 local_irq_save(flags);
1014 __drain_pages(smp_processor_id());
1015 local_irq_restore(flags);
1016}
e2c55dc8
MG
1017
1018void smp_drain_local_pages(void *arg)
1019{
1020 drain_local_pages();
1021}
1022
1023/*
1024 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1025 */
1026void drain_all_local_pages(void)
1027{
1028 unsigned long flags;
1029
1030 local_irq_save(flags);
1031 __drain_pages(smp_processor_id());
1032 local_irq_restore(flags);
1033
1034 smp_call_function(smp_drain_local_pages, NULL, 0, 1);
1035}
1036#else
1037void drain_all_local_pages(void) {}
1038#endif /* CONFIG_HIBERNATION || CONFIG_PAGE_GROUP_BY_MOBILITY */
1da177e4 1039
1da177e4
LT
1040/*
1041 * Free a 0-order page
1042 */
1da177e4
LT
1043static void fastcall free_hot_cold_page(struct page *page, int cold)
1044{
1045 struct zone *zone = page_zone(page);
1046 struct per_cpu_pages *pcp;
1047 unsigned long flags;
1048
1da177e4
LT
1049 if (PageAnon(page))
1050 page->mapping = NULL;
224abf92 1051 if (free_pages_check(page))
689bcebf
HD
1052 return;
1053
9858db50
NP
1054 if (!PageHighMem(page))
1055 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 1056 arch_free_page(page, 0);
689bcebf
HD
1057 kernel_map_pages(page, 1, 0);
1058
e7c8d5c9 1059 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 1060 local_irq_save(flags);
f8891e5e 1061 __count_vm_event(PGFREE);
1da177e4 1062 list_add(&page->lru, &pcp->list);
535131e6 1063 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1064 pcp->count++;
48db57f8
NP
1065 if (pcp->count >= pcp->high) {
1066 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1067 pcp->count -= pcp->batch;
1068 }
1da177e4
LT
1069 local_irq_restore(flags);
1070 put_cpu();
1071}
1072
1073void fastcall free_hot_page(struct page *page)
1074{
1075 free_hot_cold_page(page, 0);
1076}
1077
1078void fastcall free_cold_page(struct page *page)
1079{
1080 free_hot_cold_page(page, 1);
1081}
1082
8dfcc9ba
NP
1083/*
1084 * split_page takes a non-compound higher-order page, and splits it into
1085 * n (1<<order) sub-pages: page[0..n]
1086 * Each sub-page must be freed individually.
1087 *
1088 * Note: this is probably too low level an operation for use in drivers.
1089 * Please consult with lkml before using this in your driver.
1090 */
1091void split_page(struct page *page, unsigned int order)
1092{
1093 int i;
1094
725d704e
NP
1095 VM_BUG_ON(PageCompound(page));
1096 VM_BUG_ON(!page_count(page));
7835e98b
NP
1097 for (i = 1; i < (1 << order); i++)
1098 set_page_refcounted(page + i);
8dfcc9ba 1099}
8dfcc9ba 1100
1da177e4
LT
1101/*
1102 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1103 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1104 * or two.
1105 */
a74609fa
NP
1106static struct page *buffered_rmqueue(struct zonelist *zonelist,
1107 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
1108{
1109 unsigned long flags;
689bcebf 1110 struct page *page;
1da177e4 1111 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1112 int cpu;
e010487d 1113 int migratetype = allocflags_to_migratetype(gfp_flags, order);
1da177e4 1114
689bcebf 1115again:
a74609fa 1116 cpu = get_cpu();
48db57f8 1117 if (likely(order == 0)) {
1da177e4
LT
1118 struct per_cpu_pages *pcp;
1119
a74609fa 1120 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 1121 local_irq_save(flags);
a74609fa 1122 if (!pcp->count) {
941c7105 1123 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1124 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1125 if (unlikely(!pcp->count))
1126 goto failed;
1da177e4 1127 }
b92a6edd
MG
1128
1129#ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
535131e6 1130 /* Find a page of the appropriate migrate type */
b92a6edd
MG
1131 list_for_each_entry(page, &pcp->list, lru)
1132 if (page_private(page) == migratetype)
535131e6 1133 break;
535131e6 1134
b92a6edd
MG
1135 /* Allocate more to the pcp list if necessary */
1136 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1137 pcp->count += rmqueue_bulk(zone, 0,
1138 pcp->batch, &pcp->list, migratetype);
1139 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1140 }
b92a6edd
MG
1141#else
1142 page = list_entry(pcp->list.next, struct page, lru);
1143#endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
1144
1145 list_del(&page->lru);
1146 pcp->count--;
7fb1d9fc 1147 } else {
1da177e4 1148 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1149 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1150 spin_unlock(&zone->lock);
1151 if (!page)
1152 goto failed;
1da177e4
LT
1153 }
1154
f8891e5e 1155 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 1156 zone_statistics(zonelist, zone);
a74609fa
NP
1157 local_irq_restore(flags);
1158 put_cpu();
1da177e4 1159
725d704e 1160 VM_BUG_ON(bad_range(zone, page));
17cf4406 1161 if (prep_new_page(page, order, gfp_flags))
a74609fa 1162 goto again;
1da177e4 1163 return page;
a74609fa
NP
1164
1165failed:
1166 local_irq_restore(flags);
1167 put_cpu();
1168 return NULL;
1da177e4
LT
1169}
1170
7fb1d9fc 1171#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
1172#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1173#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1174#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1175#define ALLOC_HARDER 0x10 /* try to alloc harder */
1176#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1177#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1178
933e312e
AM
1179#ifdef CONFIG_FAIL_PAGE_ALLOC
1180
1181static struct fail_page_alloc_attr {
1182 struct fault_attr attr;
1183
1184 u32 ignore_gfp_highmem;
1185 u32 ignore_gfp_wait;
54114994 1186 u32 min_order;
933e312e
AM
1187
1188#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1189
1190 struct dentry *ignore_gfp_highmem_file;
1191 struct dentry *ignore_gfp_wait_file;
54114994 1192 struct dentry *min_order_file;
933e312e
AM
1193
1194#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1195
1196} fail_page_alloc = {
1197 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1198 .ignore_gfp_wait = 1,
1199 .ignore_gfp_highmem = 1,
54114994 1200 .min_order = 1,
933e312e
AM
1201};
1202
1203static int __init setup_fail_page_alloc(char *str)
1204{
1205 return setup_fault_attr(&fail_page_alloc.attr, str);
1206}
1207__setup("fail_page_alloc=", setup_fail_page_alloc);
1208
1209static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1210{
54114994
AM
1211 if (order < fail_page_alloc.min_order)
1212 return 0;
933e312e
AM
1213 if (gfp_mask & __GFP_NOFAIL)
1214 return 0;
1215 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1216 return 0;
1217 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1218 return 0;
1219
1220 return should_fail(&fail_page_alloc.attr, 1 << order);
1221}
1222
1223#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1224
1225static int __init fail_page_alloc_debugfs(void)
1226{
1227 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1228 struct dentry *dir;
1229 int err;
1230
1231 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1232 "fail_page_alloc");
1233 if (err)
1234 return err;
1235 dir = fail_page_alloc.attr.dentries.dir;
1236
1237 fail_page_alloc.ignore_gfp_wait_file =
1238 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1239 &fail_page_alloc.ignore_gfp_wait);
1240
1241 fail_page_alloc.ignore_gfp_highmem_file =
1242 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1243 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1244 fail_page_alloc.min_order_file =
1245 debugfs_create_u32("min-order", mode, dir,
1246 &fail_page_alloc.min_order);
933e312e
AM
1247
1248 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1249 !fail_page_alloc.ignore_gfp_highmem_file ||
1250 !fail_page_alloc.min_order_file) {
933e312e
AM
1251 err = -ENOMEM;
1252 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1253 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1254 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1255 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1256 }
1257
1258 return err;
1259}
1260
1261late_initcall(fail_page_alloc_debugfs);
1262
1263#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1264
1265#else /* CONFIG_FAIL_PAGE_ALLOC */
1266
1267static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1268{
1269 return 0;
1270}
1271
1272#endif /* CONFIG_FAIL_PAGE_ALLOC */
1273
1da177e4
LT
1274/*
1275 * Return 1 if free pages are above 'mark'. This takes into account the order
1276 * of the allocation.
1277 */
1278int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1279 int classzone_idx, int alloc_flags)
1da177e4
LT
1280{
1281 /* free_pages my go negative - that's OK */
d23ad423
CL
1282 long min = mark;
1283 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1284 int o;
1285
7fb1d9fc 1286 if (alloc_flags & ALLOC_HIGH)
1da177e4 1287 min -= min / 2;
7fb1d9fc 1288 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1289 min -= min / 4;
1290
1291 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1292 return 0;
1293 for (o = 0; o < order; o++) {
1294 /* At the next order, this order's pages become unavailable */
1295 free_pages -= z->free_area[o].nr_free << o;
1296
1297 /* Require fewer higher order pages to be free */
1298 min >>= 1;
1299
1300 if (free_pages <= min)
1301 return 0;
1302 }
1303 return 1;
1304}
1305
9276b1bc
PJ
1306#ifdef CONFIG_NUMA
1307/*
1308 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1309 * skip over zones that are not allowed by the cpuset, or that have
1310 * been recently (in last second) found to be nearly full. See further
1311 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1312 * that have to skip over alot of full or unallowed zones.
1313 *
1314 * If the zonelist cache is present in the passed in zonelist, then
1315 * returns a pointer to the allowed node mask (either the current
37b07e41 1316 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1317 *
1318 * If the zonelist cache is not available for this zonelist, does
1319 * nothing and returns NULL.
1320 *
1321 * If the fullzones BITMAP in the zonelist cache is stale (more than
1322 * a second since last zap'd) then we zap it out (clear its bits.)
1323 *
1324 * We hold off even calling zlc_setup, until after we've checked the
1325 * first zone in the zonelist, on the theory that most allocations will
1326 * be satisfied from that first zone, so best to examine that zone as
1327 * quickly as we can.
1328 */
1329static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1330{
1331 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1332 nodemask_t *allowednodes; /* zonelist_cache approximation */
1333
1334 zlc = zonelist->zlcache_ptr;
1335 if (!zlc)
1336 return NULL;
1337
1338 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1339 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1340 zlc->last_full_zap = jiffies;
1341 }
1342
1343 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1344 &cpuset_current_mems_allowed :
37b07e41 1345 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1346 return allowednodes;
1347}
1348
1349/*
1350 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1351 * if it is worth looking at further for free memory:
1352 * 1) Check that the zone isn't thought to be full (doesn't have its
1353 * bit set in the zonelist_cache fullzones BITMAP).
1354 * 2) Check that the zones node (obtained from the zonelist_cache
1355 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1356 * Return true (non-zero) if zone is worth looking at further, or
1357 * else return false (zero) if it is not.
1358 *
1359 * This check -ignores- the distinction between various watermarks,
1360 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1361 * found to be full for any variation of these watermarks, it will
1362 * be considered full for up to one second by all requests, unless
1363 * we are so low on memory on all allowed nodes that we are forced
1364 * into the second scan of the zonelist.
1365 *
1366 * In the second scan we ignore this zonelist cache and exactly
1367 * apply the watermarks to all zones, even it is slower to do so.
1368 * We are low on memory in the second scan, and should leave no stone
1369 * unturned looking for a free page.
1370 */
1371static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1372 nodemask_t *allowednodes)
1373{
1374 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1375 int i; /* index of *z in zonelist zones */
1376 int n; /* node that zone *z is on */
1377
1378 zlc = zonelist->zlcache_ptr;
1379 if (!zlc)
1380 return 1;
1381
1382 i = z - zonelist->zones;
1383 n = zlc->z_to_n[i];
1384
1385 /* This zone is worth trying if it is allowed but not full */
1386 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1387}
1388
1389/*
1390 * Given 'z' scanning a zonelist, set the corresponding bit in
1391 * zlc->fullzones, so that subsequent attempts to allocate a page
1392 * from that zone don't waste time re-examining it.
1393 */
1394static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1395{
1396 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1397 int i; /* index of *z in zonelist zones */
1398
1399 zlc = zonelist->zlcache_ptr;
1400 if (!zlc)
1401 return;
1402
1403 i = z - zonelist->zones;
1404
1405 set_bit(i, zlc->fullzones);
1406}
1407
1408#else /* CONFIG_NUMA */
1409
1410static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1411{
1412 return NULL;
1413}
1414
1415static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1416 nodemask_t *allowednodes)
1417{
1418 return 1;
1419}
1420
1421static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1422{
1423}
1424#endif /* CONFIG_NUMA */
1425
7fb1d9fc 1426/*
0798e519 1427 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1428 * a page.
1429 */
1430static struct page *
1431get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1432 struct zonelist *zonelist, int alloc_flags)
753ee728 1433{
9276b1bc 1434 struct zone **z;
7fb1d9fc 1435 struct page *page = NULL;
9276b1bc 1436 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1437 struct zone *zone;
9276b1bc
PJ
1438 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1439 int zlc_active = 0; /* set if using zonelist_cache */
1440 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1441 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1442
9276b1bc 1443zonelist_scan:
7fb1d9fc 1444 /*
9276b1bc 1445 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1446 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1447 */
9276b1bc
PJ
1448 z = zonelist->zones;
1449
7fb1d9fc 1450 do {
b377fd39
MG
1451 /*
1452 * In NUMA, this could be a policy zonelist which contains
1453 * zones that may not be allowed by the current gfp_mask.
1454 * Check the zone is allowed by the current flags
1455 */
1456 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1457 if (highest_zoneidx == -1)
1458 highest_zoneidx = gfp_zone(gfp_mask);
1459 if (zone_idx(*z) > highest_zoneidx)
1460 continue;
1461 }
1462
9276b1bc
PJ
1463 if (NUMA_BUILD && zlc_active &&
1464 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1465 continue;
1192d526 1466 zone = *z;
7fb1d9fc 1467 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1468 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1469 goto try_next_zone;
7fb1d9fc
RS
1470
1471 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1472 unsigned long mark;
1473 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1474 mark = zone->pages_min;
3148890b 1475 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1476 mark = zone->pages_low;
3148890b 1477 else
1192d526 1478 mark = zone->pages_high;
0798e519
PJ
1479 if (!zone_watermark_ok(zone, order, mark,
1480 classzone_idx, alloc_flags)) {
9eeff239 1481 if (!zone_reclaim_mode ||
1192d526 1482 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1483 goto this_zone_full;
0798e519 1484 }
7fb1d9fc
RS
1485 }
1486
1192d526 1487 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1488 if (page)
7fb1d9fc 1489 break;
9276b1bc
PJ
1490this_zone_full:
1491 if (NUMA_BUILD)
1492 zlc_mark_zone_full(zonelist, z);
1493try_next_zone:
1494 if (NUMA_BUILD && !did_zlc_setup) {
1495 /* we do zlc_setup after the first zone is tried */
1496 allowednodes = zlc_setup(zonelist, alloc_flags);
1497 zlc_active = 1;
1498 did_zlc_setup = 1;
1499 }
7fb1d9fc 1500 } while (*(++z) != NULL);
9276b1bc
PJ
1501
1502 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1503 /* Disable zlc cache for second zonelist scan */
1504 zlc_active = 0;
1505 goto zonelist_scan;
1506 }
7fb1d9fc 1507 return page;
753ee728
MH
1508}
1509
1da177e4
LT
1510/*
1511 * This is the 'heart' of the zoned buddy allocator.
1512 */
1513struct page * fastcall
dd0fc66f 1514__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1515 struct zonelist *zonelist)
1516{
260b2367 1517 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1518 struct zone **z;
1da177e4
LT
1519 struct page *page;
1520 struct reclaim_state reclaim_state;
1521 struct task_struct *p = current;
1da177e4 1522 int do_retry;
7fb1d9fc 1523 int alloc_flags;
1da177e4
LT
1524 int did_some_progress;
1525
1526 might_sleep_if(wait);
1527
933e312e
AM
1528 if (should_fail_alloc_page(gfp_mask, order))
1529 return NULL;
1530
6b1de916 1531restart:
7fb1d9fc 1532 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1533
7fb1d9fc 1534 if (unlikely(*z == NULL)) {
523b9458
CL
1535 /*
1536 * Happens if we have an empty zonelist as a result of
1537 * GFP_THISNODE being used on a memoryless node
1538 */
1da177e4
LT
1539 return NULL;
1540 }
6b1de916 1541
7fb1d9fc 1542 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1543 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1544 if (page)
1545 goto got_pg;
1da177e4 1546
952f3b51
CL
1547 /*
1548 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1549 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1550 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1551 * using a larger set of nodes after it has established that the
1552 * allowed per node queues are empty and that nodes are
1553 * over allocated.
1554 */
1555 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1556 goto nopage;
1557
0798e519 1558 for (z = zonelist->zones; *z; z++)
43b0bc00 1559 wakeup_kswapd(*z, order);
1da177e4 1560
9bf2229f 1561 /*
7fb1d9fc
RS
1562 * OK, we're below the kswapd watermark and have kicked background
1563 * reclaim. Now things get more complex, so set up alloc_flags according
1564 * to how we want to proceed.
1565 *
1566 * The caller may dip into page reserves a bit more if the caller
1567 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1568 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1569 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1570 */
3148890b 1571 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1572 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1573 alloc_flags |= ALLOC_HARDER;
1574 if (gfp_mask & __GFP_HIGH)
1575 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1576 if (wait)
1577 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1578
1579 /*
1580 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1581 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1582 *
1583 * This is the last chance, in general, before the goto nopage.
1584 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1585 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1586 */
7fb1d9fc
RS
1587 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1588 if (page)
1589 goto got_pg;
1da177e4
LT
1590
1591 /* This allocation should allow future memory freeing. */
b84a35be 1592
b43a57bb 1593rebalance:
b84a35be
NP
1594 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1595 && !in_interrupt()) {
1596 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1597nofail_alloc:
b84a35be 1598 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1599 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1600 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1601 if (page)
1602 goto got_pg;
885036d3 1603 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1604 congestion_wait(WRITE, HZ/50);
885036d3
KK
1605 goto nofail_alloc;
1606 }
1da177e4
LT
1607 }
1608 goto nopage;
1609 }
1610
1611 /* Atomic allocations - we can't balance anything */
1612 if (!wait)
1613 goto nopage;
1614
1da177e4
LT
1615 cond_resched();
1616
1617 /* We now go into synchronous reclaim */
3e0d98b9 1618 cpuset_memory_pressure_bump();
1da177e4
LT
1619 p->flags |= PF_MEMALLOC;
1620 reclaim_state.reclaimed_slab = 0;
1621 p->reclaim_state = &reclaim_state;
1622
5ad333eb 1623 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1624
1625 p->reclaim_state = NULL;
1626 p->flags &= ~PF_MEMALLOC;
1627
1628 cond_resched();
1629
e2c55dc8
MG
1630 if (order != 0)
1631 drain_all_local_pages();
1632
1da177e4 1633 if (likely(did_some_progress)) {
7fb1d9fc
RS
1634 page = get_page_from_freelist(gfp_mask, order,
1635 zonelist, alloc_flags);
1636 if (page)
1637 goto got_pg;
1da177e4
LT
1638 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1639 /*
1640 * Go through the zonelist yet one more time, keep
1641 * very high watermark here, this is only to catch
1642 * a parallel oom killing, we must fail if we're still
1643 * under heavy pressure.
1644 */
7fb1d9fc 1645 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1646 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1647 if (page)
1648 goto got_pg;
1da177e4 1649
a8bbf72a
MG
1650 /* The OOM killer will not help higher order allocs so fail */
1651 if (order > PAGE_ALLOC_COSTLY_ORDER)
1652 goto nopage;
1653
9b0f8b04 1654 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1655 goto restart;
1656 }
1657
1658 /*
1659 * Don't let big-order allocations loop unless the caller explicitly
1660 * requests that. Wait for some write requests to complete then retry.
1661 *
1662 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1663 * <= 3, but that may not be true in other implementations.
1664 */
1665 do_retry = 0;
1666 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1667 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1668 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1669 do_retry = 1;
1670 if (gfp_mask & __GFP_NOFAIL)
1671 do_retry = 1;
1672 }
1673 if (do_retry) {
3fcfab16 1674 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1675 goto rebalance;
1676 }
1677
1678nopage:
1679 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1680 printk(KERN_WARNING "%s: page allocation failure."
1681 " order:%d, mode:0x%x\n",
1682 p->comm, order, gfp_mask);
1683 dump_stack();
578c2fd6 1684 show_mem();
1da177e4 1685 }
1da177e4 1686got_pg:
1da177e4
LT
1687 return page;
1688}
1689
1690EXPORT_SYMBOL(__alloc_pages);
1691
1692/*
1693 * Common helper functions.
1694 */
dd0fc66f 1695fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1696{
1697 struct page * page;
1698 page = alloc_pages(gfp_mask, order);
1699 if (!page)
1700 return 0;
1701 return (unsigned long) page_address(page);
1702}
1703
1704EXPORT_SYMBOL(__get_free_pages);
1705
dd0fc66f 1706fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1707{
1708 struct page * page;
1709
1710 /*
1711 * get_zeroed_page() returns a 32-bit address, which cannot represent
1712 * a highmem page
1713 */
725d704e 1714 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1715
1716 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1717 if (page)
1718 return (unsigned long) page_address(page);
1719 return 0;
1720}
1721
1722EXPORT_SYMBOL(get_zeroed_page);
1723
1724void __pagevec_free(struct pagevec *pvec)
1725{
1726 int i = pagevec_count(pvec);
1727
1728 while (--i >= 0)
1729 free_hot_cold_page(pvec->pages[i], pvec->cold);
1730}
1731
1732fastcall void __free_pages(struct page *page, unsigned int order)
1733{
b5810039 1734 if (put_page_testzero(page)) {
1da177e4
LT
1735 if (order == 0)
1736 free_hot_page(page);
1737 else
1738 __free_pages_ok(page, order);
1739 }
1740}
1741
1742EXPORT_SYMBOL(__free_pages);
1743
1744fastcall void free_pages(unsigned long addr, unsigned int order)
1745{
1746 if (addr != 0) {
725d704e 1747 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1748 __free_pages(virt_to_page((void *)addr), order);
1749 }
1750}
1751
1752EXPORT_SYMBOL(free_pages);
1753
1da177e4
LT
1754static unsigned int nr_free_zone_pages(int offset)
1755{
e310fd43
MB
1756 /* Just pick one node, since fallback list is circular */
1757 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1758 unsigned int sum = 0;
1759
e310fd43
MB
1760 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1761 struct zone **zonep = zonelist->zones;
1762 struct zone *zone;
1da177e4 1763
e310fd43
MB
1764 for (zone = *zonep++; zone; zone = *zonep++) {
1765 unsigned long size = zone->present_pages;
1766 unsigned long high = zone->pages_high;
1767 if (size > high)
1768 sum += size - high;
1da177e4
LT
1769 }
1770
1771 return sum;
1772}
1773
1774/*
1775 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1776 */
1777unsigned int nr_free_buffer_pages(void)
1778{
af4ca457 1779 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1780}
c2f1a551 1781EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1782
1783/*
1784 * Amount of free RAM allocatable within all zones
1785 */
1786unsigned int nr_free_pagecache_pages(void)
1787{
2a1e274a 1788 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1789}
08e0f6a9
CL
1790
1791static inline void show_node(struct zone *zone)
1da177e4 1792{
08e0f6a9 1793 if (NUMA_BUILD)
25ba77c1 1794 printk("Node %d ", zone_to_nid(zone));
1da177e4 1795}
1da177e4 1796
1da177e4
LT
1797void si_meminfo(struct sysinfo *val)
1798{
1799 val->totalram = totalram_pages;
1800 val->sharedram = 0;
d23ad423 1801 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1802 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1803 val->totalhigh = totalhigh_pages;
1804 val->freehigh = nr_free_highpages();
1da177e4
LT
1805 val->mem_unit = PAGE_SIZE;
1806}
1807
1808EXPORT_SYMBOL(si_meminfo);
1809
1810#ifdef CONFIG_NUMA
1811void si_meminfo_node(struct sysinfo *val, int nid)
1812{
1813 pg_data_t *pgdat = NODE_DATA(nid);
1814
1815 val->totalram = pgdat->node_present_pages;
d23ad423 1816 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1817#ifdef CONFIG_HIGHMEM
1da177e4 1818 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1819 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1820 NR_FREE_PAGES);
98d2b0eb
CL
1821#else
1822 val->totalhigh = 0;
1823 val->freehigh = 0;
1824#endif
1da177e4
LT
1825 val->mem_unit = PAGE_SIZE;
1826}
1827#endif
1828
1829#define K(x) ((x) << (PAGE_SHIFT-10))
1830
1831/*
1832 * Show free area list (used inside shift_scroll-lock stuff)
1833 * We also calculate the percentage fragmentation. We do this by counting the
1834 * memory on each free list with the exception of the first item on the list.
1835 */
1836void show_free_areas(void)
1837{
c7241913 1838 int cpu;
1da177e4
LT
1839 struct zone *zone;
1840
1841 for_each_zone(zone) {
c7241913 1842 if (!populated_zone(zone))
1da177e4 1843 continue;
c7241913
JS
1844
1845 show_node(zone);
1846 printk("%s per-cpu:\n", zone->name);
1da177e4 1847
6b482c67 1848 for_each_online_cpu(cpu) {
1da177e4
LT
1849 struct per_cpu_pageset *pageset;
1850
e7c8d5c9 1851 pageset = zone_pcp(zone, cpu);
1da177e4 1852
c7241913
JS
1853 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1854 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1855 cpu, pageset->pcp[0].high,
1856 pageset->pcp[0].batch, pageset->pcp[0].count,
1857 pageset->pcp[1].high, pageset->pcp[1].batch,
1858 pageset->pcp[1].count);
1da177e4
LT
1859 }
1860 }
1861
a25700a5 1862 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1863 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1864 global_page_state(NR_ACTIVE),
1865 global_page_state(NR_INACTIVE),
b1e7a8fd 1866 global_page_state(NR_FILE_DIRTY),
ce866b34 1867 global_page_state(NR_WRITEBACK),
fd39fc85 1868 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1869 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1870 global_page_state(NR_SLAB_RECLAIMABLE) +
1871 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1872 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1873 global_page_state(NR_PAGETABLE),
1874 global_page_state(NR_BOUNCE));
1da177e4
LT
1875
1876 for_each_zone(zone) {
1877 int i;
1878
c7241913
JS
1879 if (!populated_zone(zone))
1880 continue;
1881
1da177e4
LT
1882 show_node(zone);
1883 printk("%s"
1884 " free:%lukB"
1885 " min:%lukB"
1886 " low:%lukB"
1887 " high:%lukB"
1888 " active:%lukB"
1889 " inactive:%lukB"
1890 " present:%lukB"
1891 " pages_scanned:%lu"
1892 " all_unreclaimable? %s"
1893 "\n",
1894 zone->name,
d23ad423 1895 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1896 K(zone->pages_min),
1897 K(zone->pages_low),
1898 K(zone->pages_high),
c8785385
CL
1899 K(zone_page_state(zone, NR_ACTIVE)),
1900 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1901 K(zone->present_pages),
1902 zone->pages_scanned,
1903 (zone->all_unreclaimable ? "yes" : "no")
1904 );
1905 printk("lowmem_reserve[]:");
1906 for (i = 0; i < MAX_NR_ZONES; i++)
1907 printk(" %lu", zone->lowmem_reserve[i]);
1908 printk("\n");
1909 }
1910
1911 for_each_zone(zone) {
8f9de51a 1912 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1913
c7241913
JS
1914 if (!populated_zone(zone))
1915 continue;
1916
1da177e4
LT
1917 show_node(zone);
1918 printk("%s: ", zone->name);
1da177e4
LT
1919
1920 spin_lock_irqsave(&zone->lock, flags);
1921 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1922 nr[order] = zone->free_area[order].nr_free;
1923 total += nr[order] << order;
1da177e4
LT
1924 }
1925 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1926 for (order = 0; order < MAX_ORDER; order++)
1927 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1928 printk("= %lukB\n", K(total));
1929 }
1930
1931 show_swap_cache_info();
1932}
1933
1934/*
1935 * Builds allocation fallback zone lists.
1a93205b
CL
1936 *
1937 * Add all populated zones of a node to the zonelist.
1da177e4 1938 */
f0c0b2b8
KH
1939static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1940 int nr_zones, enum zone_type zone_type)
1da177e4 1941{
1a93205b
CL
1942 struct zone *zone;
1943
98d2b0eb 1944 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1945 zone_type++;
02a68a5e
CL
1946
1947 do {
2f6726e5 1948 zone_type--;
070f8032 1949 zone = pgdat->node_zones + zone_type;
1a93205b 1950 if (populated_zone(zone)) {
070f8032
CL
1951 zonelist->zones[nr_zones++] = zone;
1952 check_highest_zone(zone_type);
1da177e4 1953 }
02a68a5e 1954
2f6726e5 1955 } while (zone_type);
070f8032 1956 return nr_zones;
1da177e4
LT
1957}
1958
f0c0b2b8
KH
1959
1960/*
1961 * zonelist_order:
1962 * 0 = automatic detection of better ordering.
1963 * 1 = order by ([node] distance, -zonetype)
1964 * 2 = order by (-zonetype, [node] distance)
1965 *
1966 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1967 * the same zonelist. So only NUMA can configure this param.
1968 */
1969#define ZONELIST_ORDER_DEFAULT 0
1970#define ZONELIST_ORDER_NODE 1
1971#define ZONELIST_ORDER_ZONE 2
1972
1973/* zonelist order in the kernel.
1974 * set_zonelist_order() will set this to NODE or ZONE.
1975 */
1976static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1977static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1978
1979
1da177e4 1980#ifdef CONFIG_NUMA
f0c0b2b8
KH
1981/* The value user specified ....changed by config */
1982static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1983/* string for sysctl */
1984#define NUMA_ZONELIST_ORDER_LEN 16
1985char numa_zonelist_order[16] = "default";
1986
1987/*
1988 * interface for configure zonelist ordering.
1989 * command line option "numa_zonelist_order"
1990 * = "[dD]efault - default, automatic configuration.
1991 * = "[nN]ode - order by node locality, then by zone within node
1992 * = "[zZ]one - order by zone, then by locality within zone
1993 */
1994
1995static int __parse_numa_zonelist_order(char *s)
1996{
1997 if (*s == 'd' || *s == 'D') {
1998 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1999 } else if (*s == 'n' || *s == 'N') {
2000 user_zonelist_order = ZONELIST_ORDER_NODE;
2001 } else if (*s == 'z' || *s == 'Z') {
2002 user_zonelist_order = ZONELIST_ORDER_ZONE;
2003 } else {
2004 printk(KERN_WARNING
2005 "Ignoring invalid numa_zonelist_order value: "
2006 "%s\n", s);
2007 return -EINVAL;
2008 }
2009 return 0;
2010}
2011
2012static __init int setup_numa_zonelist_order(char *s)
2013{
2014 if (s)
2015 return __parse_numa_zonelist_order(s);
2016 return 0;
2017}
2018early_param("numa_zonelist_order", setup_numa_zonelist_order);
2019
2020/*
2021 * sysctl handler for numa_zonelist_order
2022 */
2023int numa_zonelist_order_handler(ctl_table *table, int write,
2024 struct file *file, void __user *buffer, size_t *length,
2025 loff_t *ppos)
2026{
2027 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2028 int ret;
2029
2030 if (write)
2031 strncpy(saved_string, (char*)table->data,
2032 NUMA_ZONELIST_ORDER_LEN);
2033 ret = proc_dostring(table, write, file, buffer, length, ppos);
2034 if (ret)
2035 return ret;
2036 if (write) {
2037 int oldval = user_zonelist_order;
2038 if (__parse_numa_zonelist_order((char*)table->data)) {
2039 /*
2040 * bogus value. restore saved string
2041 */
2042 strncpy((char*)table->data, saved_string,
2043 NUMA_ZONELIST_ORDER_LEN);
2044 user_zonelist_order = oldval;
2045 } else if (oldval != user_zonelist_order)
2046 build_all_zonelists();
2047 }
2048 return 0;
2049}
2050
2051
1da177e4 2052#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
2053static int node_load[MAX_NUMNODES];
2054
1da177e4 2055/**
4dc3b16b 2056 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2057 * @node: node whose fallback list we're appending
2058 * @used_node_mask: nodemask_t of already used nodes
2059 *
2060 * We use a number of factors to determine which is the next node that should
2061 * appear on a given node's fallback list. The node should not have appeared
2062 * already in @node's fallback list, and it should be the next closest node
2063 * according to the distance array (which contains arbitrary distance values
2064 * from each node to each node in the system), and should also prefer nodes
2065 * with no CPUs, since presumably they'll have very little allocation pressure
2066 * on them otherwise.
2067 * It returns -1 if no node is found.
2068 */
f0c0b2b8 2069static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2070{
4cf808eb 2071 int n, val;
1da177e4
LT
2072 int min_val = INT_MAX;
2073 int best_node = -1;
2074
4cf808eb
LT
2075 /* Use the local node if we haven't already */
2076 if (!node_isset(node, *used_node_mask)) {
2077 node_set(node, *used_node_mask);
2078 return node;
2079 }
1da177e4 2080
37b07e41 2081 for_each_node_state(n, N_HIGH_MEMORY) {
4cf808eb 2082 cpumask_t tmp;
1da177e4
LT
2083
2084 /* Don't want a node to appear more than once */
2085 if (node_isset(n, *used_node_mask))
2086 continue;
2087
1da177e4
LT
2088 /* Use the distance array to find the distance */
2089 val = node_distance(node, n);
2090
4cf808eb
LT
2091 /* Penalize nodes under us ("prefer the next node") */
2092 val += (n < node);
2093
1da177e4
LT
2094 /* Give preference to headless and unused nodes */
2095 tmp = node_to_cpumask(n);
2096 if (!cpus_empty(tmp))
2097 val += PENALTY_FOR_NODE_WITH_CPUS;
2098
2099 /* Slight preference for less loaded node */
2100 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2101 val += node_load[n];
2102
2103 if (val < min_val) {
2104 min_val = val;
2105 best_node = n;
2106 }
2107 }
2108
2109 if (best_node >= 0)
2110 node_set(best_node, *used_node_mask);
2111
2112 return best_node;
2113}
2114
f0c0b2b8
KH
2115
2116/*
2117 * Build zonelists ordered by node and zones within node.
2118 * This results in maximum locality--normal zone overflows into local
2119 * DMA zone, if any--but risks exhausting DMA zone.
2120 */
2121static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2122{
19655d34 2123 enum zone_type i;
f0c0b2b8 2124 int j;
1da177e4 2125 struct zonelist *zonelist;
f0c0b2b8
KH
2126
2127 for (i = 0; i < MAX_NR_ZONES; i++) {
2128 zonelist = pgdat->node_zonelists + i;
2129 for (j = 0; zonelist->zones[j] != NULL; j++)
2130 ;
2131 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2132 zonelist->zones[j] = NULL;
2133 }
2134}
2135
523b9458
CL
2136/*
2137 * Build gfp_thisnode zonelists
2138 */
2139static void build_thisnode_zonelists(pg_data_t *pgdat)
2140{
2141 enum zone_type i;
2142 int j;
2143 struct zonelist *zonelist;
2144
2145 for (i = 0; i < MAX_NR_ZONES; i++) {
2146 zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
2147 j = build_zonelists_node(pgdat, zonelist, 0, i);
2148 zonelist->zones[j] = NULL;
2149 }
2150}
2151
f0c0b2b8
KH
2152/*
2153 * Build zonelists ordered by zone and nodes within zones.
2154 * This results in conserving DMA zone[s] until all Normal memory is
2155 * exhausted, but results in overflowing to remote node while memory
2156 * may still exist in local DMA zone.
2157 */
2158static int node_order[MAX_NUMNODES];
2159
2160static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2161{
2162 enum zone_type i;
2163 int pos, j, node;
2164 int zone_type; /* needs to be signed */
2165 struct zone *z;
2166 struct zonelist *zonelist;
2167
2168 for (i = 0; i < MAX_NR_ZONES; i++) {
2169 zonelist = pgdat->node_zonelists + i;
2170 pos = 0;
2171 for (zone_type = i; zone_type >= 0; zone_type--) {
2172 for (j = 0; j < nr_nodes; j++) {
2173 node = node_order[j];
2174 z = &NODE_DATA(node)->node_zones[zone_type];
2175 if (populated_zone(z)) {
2176 zonelist->zones[pos++] = z;
2177 check_highest_zone(zone_type);
2178 }
2179 }
2180 }
2181 zonelist->zones[pos] = NULL;
2182 }
2183}
2184
2185static int default_zonelist_order(void)
2186{
2187 int nid, zone_type;
2188 unsigned long low_kmem_size,total_size;
2189 struct zone *z;
2190 int average_size;
2191 /*
2192 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2193 * If they are really small and used heavily, the system can fall
2194 * into OOM very easily.
2195 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2196 */
2197 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2198 low_kmem_size = 0;
2199 total_size = 0;
2200 for_each_online_node(nid) {
2201 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2202 z = &NODE_DATA(nid)->node_zones[zone_type];
2203 if (populated_zone(z)) {
2204 if (zone_type < ZONE_NORMAL)
2205 low_kmem_size += z->present_pages;
2206 total_size += z->present_pages;
2207 }
2208 }
2209 }
2210 if (!low_kmem_size || /* there are no DMA area. */
2211 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2212 return ZONELIST_ORDER_NODE;
2213 /*
2214 * look into each node's config.
2215 * If there is a node whose DMA/DMA32 memory is very big area on
2216 * local memory, NODE_ORDER may be suitable.
2217 */
37b07e41
LS
2218 average_size = total_size /
2219 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2220 for_each_online_node(nid) {
2221 low_kmem_size = 0;
2222 total_size = 0;
2223 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2224 z = &NODE_DATA(nid)->node_zones[zone_type];
2225 if (populated_zone(z)) {
2226 if (zone_type < ZONE_NORMAL)
2227 low_kmem_size += z->present_pages;
2228 total_size += z->present_pages;
2229 }
2230 }
2231 if (low_kmem_size &&
2232 total_size > average_size && /* ignore small node */
2233 low_kmem_size > total_size * 70/100)
2234 return ZONELIST_ORDER_NODE;
2235 }
2236 return ZONELIST_ORDER_ZONE;
2237}
2238
2239static void set_zonelist_order(void)
2240{
2241 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2242 current_zonelist_order = default_zonelist_order();
2243 else
2244 current_zonelist_order = user_zonelist_order;
2245}
2246
2247static void build_zonelists(pg_data_t *pgdat)
2248{
2249 int j, node, load;
2250 enum zone_type i;
1da177e4 2251 nodemask_t used_mask;
f0c0b2b8
KH
2252 int local_node, prev_node;
2253 struct zonelist *zonelist;
2254 int order = current_zonelist_order;
1da177e4
LT
2255
2256 /* initialize zonelists */
523b9458 2257 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4
LT
2258 zonelist = pgdat->node_zonelists + i;
2259 zonelist->zones[0] = NULL;
2260 }
2261
2262 /* NUMA-aware ordering of nodes */
2263 local_node = pgdat->node_id;
2264 load = num_online_nodes();
2265 prev_node = local_node;
2266 nodes_clear(used_mask);
f0c0b2b8
KH
2267
2268 memset(node_load, 0, sizeof(node_load));
2269 memset(node_order, 0, sizeof(node_order));
2270 j = 0;
2271
1da177e4 2272 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2273 int distance = node_distance(local_node, node);
2274
2275 /*
2276 * If another node is sufficiently far away then it is better
2277 * to reclaim pages in a zone before going off node.
2278 */
2279 if (distance > RECLAIM_DISTANCE)
2280 zone_reclaim_mode = 1;
2281
1da177e4
LT
2282 /*
2283 * We don't want to pressure a particular node.
2284 * So adding penalty to the first node in same
2285 * distance group to make it round-robin.
2286 */
9eeff239 2287 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2288 node_load[node] = load;
2289
1da177e4
LT
2290 prev_node = node;
2291 load--;
f0c0b2b8
KH
2292 if (order == ZONELIST_ORDER_NODE)
2293 build_zonelists_in_node_order(pgdat, node);
2294 else
2295 node_order[j++] = node; /* remember order */
2296 }
1da177e4 2297
f0c0b2b8
KH
2298 if (order == ZONELIST_ORDER_ZONE) {
2299 /* calculate node order -- i.e., DMA last! */
2300 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2301 }
523b9458
CL
2302
2303 build_thisnode_zonelists(pgdat);
1da177e4
LT
2304}
2305
9276b1bc 2306/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2307static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2308{
2309 int i;
2310
2311 for (i = 0; i < MAX_NR_ZONES; i++) {
2312 struct zonelist *zonelist;
2313 struct zonelist_cache *zlc;
2314 struct zone **z;
2315
2316 zonelist = pgdat->node_zonelists + i;
2317 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2318 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2319 for (z = zonelist->zones; *z; z++)
2320 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2321 }
2322}
2323
f0c0b2b8 2324
1da177e4
LT
2325#else /* CONFIG_NUMA */
2326
f0c0b2b8
KH
2327static void set_zonelist_order(void)
2328{
2329 current_zonelist_order = ZONELIST_ORDER_ZONE;
2330}
2331
2332static void build_zonelists(pg_data_t *pgdat)
1da177e4 2333{
19655d34
CL
2334 int node, local_node;
2335 enum zone_type i,j;
1da177e4
LT
2336
2337 local_node = pgdat->node_id;
19655d34 2338 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2339 struct zonelist *zonelist;
2340
2341 zonelist = pgdat->node_zonelists + i;
2342
19655d34 2343 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2344 /*
2345 * Now we build the zonelist so that it contains the zones
2346 * of all the other nodes.
2347 * We don't want to pressure a particular node, so when
2348 * building the zones for node N, we make sure that the
2349 * zones coming right after the local ones are those from
2350 * node N+1 (modulo N)
2351 */
2352 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2353 if (!node_online(node))
2354 continue;
19655d34 2355 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2356 }
2357 for (node = 0; node < local_node; node++) {
2358 if (!node_online(node))
2359 continue;
19655d34 2360 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2361 }
2362
2363 zonelist->zones[j] = NULL;
2364 }
2365}
2366
9276b1bc 2367/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2368static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2369{
2370 int i;
2371
2372 for (i = 0; i < MAX_NR_ZONES; i++)
2373 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2374}
2375
1da177e4
LT
2376#endif /* CONFIG_NUMA */
2377
6811378e 2378/* return values int ....just for stop_machine_run() */
f0c0b2b8 2379static int __build_all_zonelists(void *dummy)
1da177e4 2380{
6811378e 2381 int nid;
9276b1bc
PJ
2382
2383 for_each_online_node(nid) {
7ea1530a
CL
2384 pg_data_t *pgdat = NODE_DATA(nid);
2385
2386 build_zonelists(pgdat);
2387 build_zonelist_cache(pgdat);
9276b1bc 2388 }
6811378e
YG
2389 return 0;
2390}
2391
f0c0b2b8 2392void build_all_zonelists(void)
6811378e 2393{
f0c0b2b8
KH
2394 set_zonelist_order();
2395
6811378e 2396 if (system_state == SYSTEM_BOOTING) {
423b41d7 2397 __build_all_zonelists(NULL);
6811378e
YG
2398 cpuset_init_current_mems_allowed();
2399 } else {
2400 /* we have to stop all cpus to guaranntee there is no user
2401 of zonelist */
2402 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2403 /* cpuset refresh routine should be here */
2404 }
bd1e22b8 2405 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2406 /*
2407 * Disable grouping by mobility if the number of pages in the
2408 * system is too low to allow the mechanism to work. It would be
2409 * more accurate, but expensive to check per-zone. This check is
2410 * made on memory-hotadd so a system can start with mobility
2411 * disabled and enable it later
2412 */
2413 if (vm_total_pages < (MAX_ORDER_NR_PAGES * MIGRATE_TYPES))
2414 page_group_by_mobility_disabled = 1;
2415 else
2416 page_group_by_mobility_disabled = 0;
2417
2418 printk("Built %i zonelists in %s order, mobility grouping %s. "
2419 "Total pages: %ld\n",
f0c0b2b8
KH
2420 num_online_nodes(),
2421 zonelist_order_name[current_zonelist_order],
9ef9acb0 2422 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2423 vm_total_pages);
2424#ifdef CONFIG_NUMA
2425 printk("Policy zone: %s\n", zone_names[policy_zone]);
2426#endif
1da177e4
LT
2427}
2428
2429/*
2430 * Helper functions to size the waitqueue hash table.
2431 * Essentially these want to choose hash table sizes sufficiently
2432 * large so that collisions trying to wait on pages are rare.
2433 * But in fact, the number of active page waitqueues on typical
2434 * systems is ridiculously low, less than 200. So this is even
2435 * conservative, even though it seems large.
2436 *
2437 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2438 * waitqueues, i.e. the size of the waitq table given the number of pages.
2439 */
2440#define PAGES_PER_WAITQUEUE 256
2441
cca448fe 2442#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2443static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2444{
2445 unsigned long size = 1;
2446
2447 pages /= PAGES_PER_WAITQUEUE;
2448
2449 while (size < pages)
2450 size <<= 1;
2451
2452 /*
2453 * Once we have dozens or even hundreds of threads sleeping
2454 * on IO we've got bigger problems than wait queue collision.
2455 * Limit the size of the wait table to a reasonable size.
2456 */
2457 size = min(size, 4096UL);
2458
2459 return max(size, 4UL);
2460}
cca448fe
YG
2461#else
2462/*
2463 * A zone's size might be changed by hot-add, so it is not possible to determine
2464 * a suitable size for its wait_table. So we use the maximum size now.
2465 *
2466 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2467 *
2468 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2469 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2470 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2471 *
2472 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2473 * or more by the traditional way. (See above). It equals:
2474 *
2475 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2476 * ia64(16K page size) : = ( 8G + 4M)byte.
2477 * powerpc (64K page size) : = (32G +16M)byte.
2478 */
2479static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2480{
2481 return 4096UL;
2482}
2483#endif
1da177e4
LT
2484
2485/*
2486 * This is an integer logarithm so that shifts can be used later
2487 * to extract the more random high bits from the multiplicative
2488 * hash function before the remainder is taken.
2489 */
2490static inline unsigned long wait_table_bits(unsigned long size)
2491{
2492 return ffz(~size);
2493}
2494
2495#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2496
1da177e4
LT
2497/*
2498 * Initially all pages are reserved - free ones are freed
2499 * up by free_all_bootmem() once the early boot process is
2500 * done. Non-atomic initialization, single-pass.
2501 */
c09b4240 2502void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2503 unsigned long start_pfn, enum memmap_context context)
1da177e4 2504{
1da177e4 2505 struct page *page;
29751f69
AW
2506 unsigned long end_pfn = start_pfn + size;
2507 unsigned long pfn;
1da177e4 2508
cbe8dd4a 2509 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2510 /*
2511 * There can be holes in boot-time mem_map[]s
2512 * handed to this function. They do not
2513 * exist on hotplugged memory.
2514 */
2515 if (context == MEMMAP_EARLY) {
2516 if (!early_pfn_valid(pfn))
2517 continue;
2518 if (!early_pfn_in_nid(pfn, nid))
2519 continue;
2520 }
d41dee36
AW
2521 page = pfn_to_page(pfn);
2522 set_page_links(page, zone, nid, pfn);
7835e98b 2523 init_page_count(page);
1da177e4
LT
2524 reset_page_mapcount(page);
2525 SetPageReserved(page);
b2a0ac88
MG
2526
2527 /*
2528 * Mark the block movable so that blocks are reserved for
2529 * movable at startup. This will force kernel allocations
2530 * to reserve their blocks rather than leaking throughout
2531 * the address space during boot when many long-lived
2532 * kernel allocations are made
2533 */
2534 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2535
1da177e4
LT
2536 INIT_LIST_HEAD(&page->lru);
2537#ifdef WANT_PAGE_VIRTUAL
2538 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2539 if (!is_highmem_idx(zone))
3212c6be 2540 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2541#endif
1da177e4
LT
2542 }
2543}
2544
6ea6e688
PM
2545static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2546 struct zone *zone, unsigned long size)
1da177e4 2547{
b2a0ac88
MG
2548 int order, t;
2549 for_each_migratetype_order(order, t) {
2550 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2551 zone->free_area[order].nr_free = 0;
2552 }
2553}
2554
2555#ifndef __HAVE_ARCH_MEMMAP_INIT
2556#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2557 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2558#endif
2559
d09c6b80 2560static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2561{
2562 int batch;
2563
2564 /*
2565 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2566 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2567 *
2568 * OK, so we don't know how big the cache is. So guess.
2569 */
2570 batch = zone->present_pages / 1024;
ba56e91c
SR
2571 if (batch * PAGE_SIZE > 512 * 1024)
2572 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2573 batch /= 4; /* We effectively *= 4 below */
2574 if (batch < 1)
2575 batch = 1;
2576
2577 /*
0ceaacc9
NP
2578 * Clamp the batch to a 2^n - 1 value. Having a power
2579 * of 2 value was found to be more likely to have
2580 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2581 *
0ceaacc9
NP
2582 * For example if 2 tasks are alternately allocating
2583 * batches of pages, one task can end up with a lot
2584 * of pages of one half of the possible page colors
2585 * and the other with pages of the other colors.
e7c8d5c9 2586 */
0ceaacc9 2587 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2588
e7c8d5c9
CL
2589 return batch;
2590}
2591
2caaad41
CL
2592inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2593{
2594 struct per_cpu_pages *pcp;
2595
1c6fe946
MD
2596 memset(p, 0, sizeof(*p));
2597
2caaad41
CL
2598 pcp = &p->pcp[0]; /* hot */
2599 pcp->count = 0;
2caaad41
CL
2600 pcp->high = 6 * batch;
2601 pcp->batch = max(1UL, 1 * batch);
2602 INIT_LIST_HEAD(&pcp->list);
2603
2604 pcp = &p->pcp[1]; /* cold*/
2605 pcp->count = 0;
2caaad41 2606 pcp->high = 2 * batch;
e46a5e28 2607 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2608 INIT_LIST_HEAD(&pcp->list);
2609}
2610
8ad4b1fb
RS
2611/*
2612 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2613 * to the value high for the pageset p.
2614 */
2615
2616static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2617 unsigned long high)
2618{
2619 struct per_cpu_pages *pcp;
2620
2621 pcp = &p->pcp[0]; /* hot list */
2622 pcp->high = high;
2623 pcp->batch = max(1UL, high/4);
2624 if ((high/4) > (PAGE_SHIFT * 8))
2625 pcp->batch = PAGE_SHIFT * 8;
2626}
2627
2628
e7c8d5c9
CL
2629#ifdef CONFIG_NUMA
2630/*
2caaad41
CL
2631 * Boot pageset table. One per cpu which is going to be used for all
2632 * zones and all nodes. The parameters will be set in such a way
2633 * that an item put on a list will immediately be handed over to
2634 * the buddy list. This is safe since pageset manipulation is done
2635 * with interrupts disabled.
2636 *
2637 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2638 *
2639 * The boot_pagesets must be kept even after bootup is complete for
2640 * unused processors and/or zones. They do play a role for bootstrapping
2641 * hotplugged processors.
2642 *
2643 * zoneinfo_show() and maybe other functions do
2644 * not check if the processor is online before following the pageset pointer.
2645 * Other parts of the kernel may not check if the zone is available.
2caaad41 2646 */
88a2a4ac 2647static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2648
2649/*
2650 * Dynamically allocate memory for the
e7c8d5c9
CL
2651 * per cpu pageset array in struct zone.
2652 */
6292d9aa 2653static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2654{
2655 struct zone *zone, *dzone;
37c0708d
CL
2656 int node = cpu_to_node(cpu);
2657
2658 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2659
2660 for_each_zone(zone) {
e7c8d5c9 2661
66a55030
CL
2662 if (!populated_zone(zone))
2663 continue;
2664
23316bc8 2665 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2666 GFP_KERNEL, node);
23316bc8 2667 if (!zone_pcp(zone, cpu))
e7c8d5c9 2668 goto bad;
e7c8d5c9 2669
23316bc8 2670 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2671
2672 if (percpu_pagelist_fraction)
2673 setup_pagelist_highmark(zone_pcp(zone, cpu),
2674 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2675 }
2676
2677 return 0;
2678bad:
2679 for_each_zone(dzone) {
64191688
AM
2680 if (!populated_zone(dzone))
2681 continue;
e7c8d5c9
CL
2682 if (dzone == zone)
2683 break;
23316bc8
NP
2684 kfree(zone_pcp(dzone, cpu));
2685 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2686 }
2687 return -ENOMEM;
2688}
2689
2690static inline void free_zone_pagesets(int cpu)
2691{
e7c8d5c9
CL
2692 struct zone *zone;
2693
2694 for_each_zone(zone) {
2695 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2696
f3ef9ead
DR
2697 /* Free per_cpu_pageset if it is slab allocated */
2698 if (pset != &boot_pageset[cpu])
2699 kfree(pset);
e7c8d5c9 2700 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2701 }
e7c8d5c9
CL
2702}
2703
9c7b216d 2704static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2705 unsigned long action,
2706 void *hcpu)
2707{
2708 int cpu = (long)hcpu;
2709 int ret = NOTIFY_OK;
2710
2711 switch (action) {
ce421c79 2712 case CPU_UP_PREPARE:
8bb78442 2713 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2714 if (process_zones(cpu))
2715 ret = NOTIFY_BAD;
2716 break;
2717 case CPU_UP_CANCELED:
8bb78442 2718 case CPU_UP_CANCELED_FROZEN:
ce421c79 2719 case CPU_DEAD:
8bb78442 2720 case CPU_DEAD_FROZEN:
ce421c79
AW
2721 free_zone_pagesets(cpu);
2722 break;
2723 default:
2724 break;
e7c8d5c9
CL
2725 }
2726 return ret;
2727}
2728
74b85f37 2729static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2730 { &pageset_cpuup_callback, NULL, 0 };
2731
78d9955b 2732void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2733{
2734 int err;
2735
2736 /* Initialize per_cpu_pageset for cpu 0.
2737 * A cpuup callback will do this for every cpu
2738 * as it comes online
2739 */
2740 err = process_zones(smp_processor_id());
2741 BUG_ON(err);
2742 register_cpu_notifier(&pageset_notifier);
2743}
2744
2745#endif
2746
577a32f6 2747static noinline __init_refok
cca448fe 2748int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2749{
2750 int i;
2751 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2752 size_t alloc_size;
ed8ece2e
DH
2753
2754 /*
2755 * The per-page waitqueue mechanism uses hashed waitqueues
2756 * per zone.
2757 */
02b694de
YG
2758 zone->wait_table_hash_nr_entries =
2759 wait_table_hash_nr_entries(zone_size_pages);
2760 zone->wait_table_bits =
2761 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2762 alloc_size = zone->wait_table_hash_nr_entries
2763 * sizeof(wait_queue_head_t);
2764
2765 if (system_state == SYSTEM_BOOTING) {
2766 zone->wait_table = (wait_queue_head_t *)
2767 alloc_bootmem_node(pgdat, alloc_size);
2768 } else {
2769 /*
2770 * This case means that a zone whose size was 0 gets new memory
2771 * via memory hot-add.
2772 * But it may be the case that a new node was hot-added. In
2773 * this case vmalloc() will not be able to use this new node's
2774 * memory - this wait_table must be initialized to use this new
2775 * node itself as well.
2776 * To use this new node's memory, further consideration will be
2777 * necessary.
2778 */
8691f3a7 2779 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2780 }
2781 if (!zone->wait_table)
2782 return -ENOMEM;
ed8ece2e 2783
02b694de 2784 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2785 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2786
2787 return 0;
ed8ece2e
DH
2788}
2789
c09b4240 2790static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2791{
2792 int cpu;
2793 unsigned long batch = zone_batchsize(zone);
2794
2795 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2796#ifdef CONFIG_NUMA
2797 /* Early boot. Slab allocator not functional yet */
23316bc8 2798 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2799 setup_pageset(&boot_pageset[cpu],0);
2800#else
2801 setup_pageset(zone_pcp(zone,cpu), batch);
2802#endif
2803 }
f5335c0f
AB
2804 if (zone->present_pages)
2805 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2806 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2807}
2808
718127cc
YG
2809__meminit int init_currently_empty_zone(struct zone *zone,
2810 unsigned long zone_start_pfn,
a2f3aa02
DH
2811 unsigned long size,
2812 enum memmap_context context)
ed8ece2e
DH
2813{
2814 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2815 int ret;
2816 ret = zone_wait_table_init(zone, size);
2817 if (ret)
2818 return ret;
ed8ece2e
DH
2819 pgdat->nr_zones = zone_idx(zone) + 1;
2820
ed8ece2e
DH
2821 zone->zone_start_pfn = zone_start_pfn;
2822
2823 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2824
2825 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2826
2827 return 0;
ed8ece2e
DH
2828}
2829
c713216d
MG
2830#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2831/*
2832 * Basic iterator support. Return the first range of PFNs for a node
2833 * Note: nid == MAX_NUMNODES returns first region regardless of node
2834 */
a3142c8e 2835static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2836{
2837 int i;
2838
2839 for (i = 0; i < nr_nodemap_entries; i++)
2840 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2841 return i;
2842
2843 return -1;
2844}
2845
2846/*
2847 * Basic iterator support. Return the next active range of PFNs for a node
2848 * Note: nid == MAX_NUMNODES returns next region regardles of node
2849 */
a3142c8e 2850static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2851{
2852 for (index = index + 1; index < nr_nodemap_entries; index++)
2853 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2854 return index;
2855
2856 return -1;
2857}
2858
2859#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2860/*
2861 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2862 * Architectures may implement their own version but if add_active_range()
2863 * was used and there are no special requirements, this is a convenient
2864 * alternative
2865 */
6f076f5d 2866int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2867{
2868 int i;
2869
2870 for (i = 0; i < nr_nodemap_entries; i++) {
2871 unsigned long start_pfn = early_node_map[i].start_pfn;
2872 unsigned long end_pfn = early_node_map[i].end_pfn;
2873
2874 if (start_pfn <= pfn && pfn < end_pfn)
2875 return early_node_map[i].nid;
2876 }
2877
2878 return 0;
2879}
2880#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2881
2882/* Basic iterator support to walk early_node_map[] */
2883#define for_each_active_range_index_in_nid(i, nid) \
2884 for (i = first_active_region_index_in_nid(nid); i != -1; \
2885 i = next_active_region_index_in_nid(i, nid))
2886
2887/**
2888 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2889 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2890 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2891 *
2892 * If an architecture guarantees that all ranges registered with
2893 * add_active_ranges() contain no holes and may be freed, this
2894 * this function may be used instead of calling free_bootmem() manually.
2895 */
2896void __init free_bootmem_with_active_regions(int nid,
2897 unsigned long max_low_pfn)
2898{
2899 int i;
2900
2901 for_each_active_range_index_in_nid(i, nid) {
2902 unsigned long size_pages = 0;
2903 unsigned long end_pfn = early_node_map[i].end_pfn;
2904
2905 if (early_node_map[i].start_pfn >= max_low_pfn)
2906 continue;
2907
2908 if (end_pfn > max_low_pfn)
2909 end_pfn = max_low_pfn;
2910
2911 size_pages = end_pfn - early_node_map[i].start_pfn;
2912 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2913 PFN_PHYS(early_node_map[i].start_pfn),
2914 size_pages << PAGE_SHIFT);
2915 }
2916}
2917
2918/**
2919 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2920 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2921 *
2922 * If an architecture guarantees that all ranges registered with
2923 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2924 * function may be used instead of calling memory_present() manually.
c713216d
MG
2925 */
2926void __init sparse_memory_present_with_active_regions(int nid)
2927{
2928 int i;
2929
2930 for_each_active_range_index_in_nid(i, nid)
2931 memory_present(early_node_map[i].nid,
2932 early_node_map[i].start_pfn,
2933 early_node_map[i].end_pfn);
2934}
2935
fb01439c
MG
2936/**
2937 * push_node_boundaries - Push node boundaries to at least the requested boundary
2938 * @nid: The nid of the node to push the boundary for
2939 * @start_pfn: The start pfn of the node
2940 * @end_pfn: The end pfn of the node
2941 *
2942 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2943 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2944 * be hotplugged even though no physical memory exists. This function allows
2945 * an arch to push out the node boundaries so mem_map is allocated that can
2946 * be used later.
2947 */
2948#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2949void __init push_node_boundaries(unsigned int nid,
2950 unsigned long start_pfn, unsigned long end_pfn)
2951{
2952 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2953 nid, start_pfn, end_pfn);
2954
2955 /* Initialise the boundary for this node if necessary */
2956 if (node_boundary_end_pfn[nid] == 0)
2957 node_boundary_start_pfn[nid] = -1UL;
2958
2959 /* Update the boundaries */
2960 if (node_boundary_start_pfn[nid] > start_pfn)
2961 node_boundary_start_pfn[nid] = start_pfn;
2962 if (node_boundary_end_pfn[nid] < end_pfn)
2963 node_boundary_end_pfn[nid] = end_pfn;
2964}
2965
2966/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2967static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2968 unsigned long *start_pfn, unsigned long *end_pfn)
2969{
2970 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2971 nid, *start_pfn, *end_pfn);
2972
2973 /* Return if boundary information has not been provided */
2974 if (node_boundary_end_pfn[nid] == 0)
2975 return;
2976
2977 /* Check the boundaries and update if necessary */
2978 if (node_boundary_start_pfn[nid] < *start_pfn)
2979 *start_pfn = node_boundary_start_pfn[nid];
2980 if (node_boundary_end_pfn[nid] > *end_pfn)
2981 *end_pfn = node_boundary_end_pfn[nid];
2982}
2983#else
2984void __init push_node_boundaries(unsigned int nid,
2985 unsigned long start_pfn, unsigned long end_pfn) {}
2986
98011f56 2987static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2988 unsigned long *start_pfn, unsigned long *end_pfn) {}
2989#endif
2990
2991
c713216d
MG
2992/**
2993 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2994 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2995 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2996 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2997 *
2998 * It returns the start and end page frame of a node based on information
2999 * provided by an arch calling add_active_range(). If called for a node
3000 * with no available memory, a warning is printed and the start and end
88ca3b94 3001 * PFNs will be 0.
c713216d 3002 */
a3142c8e 3003void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3004 unsigned long *start_pfn, unsigned long *end_pfn)
3005{
3006 int i;
3007 *start_pfn = -1UL;
3008 *end_pfn = 0;
3009
3010 for_each_active_range_index_in_nid(i, nid) {
3011 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3012 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3013 }
3014
633c0666 3015 if (*start_pfn == -1UL)
c713216d 3016 *start_pfn = 0;
fb01439c
MG
3017
3018 /* Push the node boundaries out if requested */
3019 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
3020}
3021
2a1e274a
MG
3022/*
3023 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3024 * assumption is made that zones within a node are ordered in monotonic
3025 * increasing memory addresses so that the "highest" populated zone is used
3026 */
3027void __init find_usable_zone_for_movable(void)
3028{
3029 int zone_index;
3030 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3031 if (zone_index == ZONE_MOVABLE)
3032 continue;
3033
3034 if (arch_zone_highest_possible_pfn[zone_index] >
3035 arch_zone_lowest_possible_pfn[zone_index])
3036 break;
3037 }
3038
3039 VM_BUG_ON(zone_index == -1);
3040 movable_zone = zone_index;
3041}
3042
3043/*
3044 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3045 * because it is sized independant of architecture. Unlike the other zones,
3046 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3047 * in each node depending on the size of each node and how evenly kernelcore
3048 * is distributed. This helper function adjusts the zone ranges
3049 * provided by the architecture for a given node by using the end of the
3050 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3051 * zones within a node are in order of monotonic increases memory addresses
3052 */
3053void __meminit adjust_zone_range_for_zone_movable(int nid,
3054 unsigned long zone_type,
3055 unsigned long node_start_pfn,
3056 unsigned long node_end_pfn,
3057 unsigned long *zone_start_pfn,
3058 unsigned long *zone_end_pfn)
3059{
3060 /* Only adjust if ZONE_MOVABLE is on this node */
3061 if (zone_movable_pfn[nid]) {
3062 /* Size ZONE_MOVABLE */
3063 if (zone_type == ZONE_MOVABLE) {
3064 *zone_start_pfn = zone_movable_pfn[nid];
3065 *zone_end_pfn = min(node_end_pfn,
3066 arch_zone_highest_possible_pfn[movable_zone]);
3067
3068 /* Adjust for ZONE_MOVABLE starting within this range */
3069 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3070 *zone_end_pfn > zone_movable_pfn[nid]) {
3071 *zone_end_pfn = zone_movable_pfn[nid];
3072
3073 /* Check if this whole range is within ZONE_MOVABLE */
3074 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3075 *zone_start_pfn = *zone_end_pfn;
3076 }
3077}
3078
c713216d
MG
3079/*
3080 * Return the number of pages a zone spans in a node, including holes
3081 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3082 */
6ea6e688 3083static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3084 unsigned long zone_type,
3085 unsigned long *ignored)
3086{
3087 unsigned long node_start_pfn, node_end_pfn;
3088 unsigned long zone_start_pfn, zone_end_pfn;
3089
3090 /* Get the start and end of the node and zone */
3091 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3092 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3093 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3094 adjust_zone_range_for_zone_movable(nid, zone_type,
3095 node_start_pfn, node_end_pfn,
3096 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3097
3098 /* Check that this node has pages within the zone's required range */
3099 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3100 return 0;
3101
3102 /* Move the zone boundaries inside the node if necessary */
3103 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3104 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3105
3106 /* Return the spanned pages */
3107 return zone_end_pfn - zone_start_pfn;
3108}
3109
3110/*
3111 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3112 * then all holes in the requested range will be accounted for.
c713216d 3113 */
a3142c8e 3114unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3115 unsigned long range_start_pfn,
3116 unsigned long range_end_pfn)
3117{
3118 int i = 0;
3119 unsigned long prev_end_pfn = 0, hole_pages = 0;
3120 unsigned long start_pfn;
3121
3122 /* Find the end_pfn of the first active range of pfns in the node */
3123 i = first_active_region_index_in_nid(nid);
3124 if (i == -1)
3125 return 0;
3126
b5445f95
MG
3127 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3128
9c7cd687
MG
3129 /* Account for ranges before physical memory on this node */
3130 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3131 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3132
3133 /* Find all holes for the zone within the node */
3134 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3135
3136 /* No need to continue if prev_end_pfn is outside the zone */
3137 if (prev_end_pfn >= range_end_pfn)
3138 break;
3139
3140 /* Make sure the end of the zone is not within the hole */
3141 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3142 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3143
3144 /* Update the hole size cound and move on */
3145 if (start_pfn > range_start_pfn) {
3146 BUG_ON(prev_end_pfn > start_pfn);
3147 hole_pages += start_pfn - prev_end_pfn;
3148 }
3149 prev_end_pfn = early_node_map[i].end_pfn;
3150 }
3151
9c7cd687
MG
3152 /* Account for ranges past physical memory on this node */
3153 if (range_end_pfn > prev_end_pfn)
0c6cb974 3154 hole_pages += range_end_pfn -
9c7cd687
MG
3155 max(range_start_pfn, prev_end_pfn);
3156
c713216d
MG
3157 return hole_pages;
3158}
3159
3160/**
3161 * absent_pages_in_range - Return number of page frames in holes within a range
3162 * @start_pfn: The start PFN to start searching for holes
3163 * @end_pfn: The end PFN to stop searching for holes
3164 *
88ca3b94 3165 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3166 */
3167unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3168 unsigned long end_pfn)
3169{
3170 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3171}
3172
3173/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3174static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3175 unsigned long zone_type,
3176 unsigned long *ignored)
3177{
9c7cd687
MG
3178 unsigned long node_start_pfn, node_end_pfn;
3179 unsigned long zone_start_pfn, zone_end_pfn;
3180
3181 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3182 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3183 node_start_pfn);
3184 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3185 node_end_pfn);
3186
2a1e274a
MG
3187 adjust_zone_range_for_zone_movable(nid, zone_type,
3188 node_start_pfn, node_end_pfn,
3189 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3190 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3191}
0e0b864e 3192
c713216d 3193#else
6ea6e688 3194static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3195 unsigned long zone_type,
3196 unsigned long *zones_size)
3197{
3198 return zones_size[zone_type];
3199}
3200
6ea6e688 3201static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3202 unsigned long zone_type,
3203 unsigned long *zholes_size)
3204{
3205 if (!zholes_size)
3206 return 0;
3207
3208 return zholes_size[zone_type];
3209}
0e0b864e 3210
c713216d
MG
3211#endif
3212
a3142c8e 3213static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3214 unsigned long *zones_size, unsigned long *zholes_size)
3215{
3216 unsigned long realtotalpages, totalpages = 0;
3217 enum zone_type i;
3218
3219 for (i = 0; i < MAX_NR_ZONES; i++)
3220 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3221 zones_size);
3222 pgdat->node_spanned_pages = totalpages;
3223
3224 realtotalpages = totalpages;
3225 for (i = 0; i < MAX_NR_ZONES; i++)
3226 realtotalpages -=
3227 zone_absent_pages_in_node(pgdat->node_id, i,
3228 zholes_size);
3229 pgdat->node_present_pages = realtotalpages;
3230 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3231 realtotalpages);
3232}
3233
835c134e
MG
3234#ifndef CONFIG_SPARSEMEM
3235/*
3236 * Calculate the size of the zone->blockflags rounded to an unsigned long
3237 * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
3238 * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
3239 * round what is now in bits to nearest long in bits, then return it in
3240 * bytes.
3241 */
3242static unsigned long __init usemap_size(unsigned long zonesize)
3243{
3244 unsigned long usemapsize;
3245
3246 usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
3247 usemapsize = usemapsize >> (MAX_ORDER-1);
3248 usemapsize *= NR_PAGEBLOCK_BITS;
3249 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3250
3251 return usemapsize / 8;
3252}
3253
3254static void __init setup_usemap(struct pglist_data *pgdat,
3255 struct zone *zone, unsigned long zonesize)
3256{
3257 unsigned long usemapsize = usemap_size(zonesize);
3258 zone->pageblock_flags = NULL;
3259 if (usemapsize) {
3260 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3261 memset(zone->pageblock_flags, 0, usemapsize);
3262 }
3263}
3264#else
3265static void inline setup_usemap(struct pglist_data *pgdat,
3266 struct zone *zone, unsigned long zonesize) {}
3267#endif /* CONFIG_SPARSEMEM */
3268
1da177e4
LT
3269/*
3270 * Set up the zone data structures:
3271 * - mark all pages reserved
3272 * - mark all memory queues empty
3273 * - clear the memory bitmaps
3274 */
86356ab1 3275static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3276 unsigned long *zones_size, unsigned long *zholes_size)
3277{
2f1b6248 3278 enum zone_type j;
ed8ece2e 3279 int nid = pgdat->node_id;
1da177e4 3280 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3281 int ret;
1da177e4 3282
208d54e5 3283 pgdat_resize_init(pgdat);
1da177e4
LT
3284 pgdat->nr_zones = 0;
3285 init_waitqueue_head(&pgdat->kswapd_wait);
3286 pgdat->kswapd_max_order = 0;
3287
3288 for (j = 0; j < MAX_NR_ZONES; j++) {
3289 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3290 unsigned long size, realsize, memmap_pages;
1da177e4 3291
c713216d
MG
3292 size = zone_spanned_pages_in_node(nid, j, zones_size);
3293 realsize = size - zone_absent_pages_in_node(nid, j,
3294 zholes_size);
1da177e4 3295
0e0b864e
MG
3296 /*
3297 * Adjust realsize so that it accounts for how much memory
3298 * is used by this zone for memmap. This affects the watermark
3299 * and per-cpu initialisations
3300 */
3301 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3302 if (realsize >= memmap_pages) {
3303 realsize -= memmap_pages;
3304 printk(KERN_DEBUG
3305 " %s zone: %lu pages used for memmap\n",
3306 zone_names[j], memmap_pages);
3307 } else
3308 printk(KERN_WARNING
3309 " %s zone: %lu pages exceeds realsize %lu\n",
3310 zone_names[j], memmap_pages, realsize);
3311
6267276f
CL
3312 /* Account for reserved pages */
3313 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3314 realsize -= dma_reserve;
6267276f
CL
3315 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3316 zone_names[0], dma_reserve);
0e0b864e
MG
3317 }
3318
98d2b0eb 3319 if (!is_highmem_idx(j))
1da177e4
LT
3320 nr_kernel_pages += realsize;
3321 nr_all_pages += realsize;
3322
3323 zone->spanned_pages = size;
3324 zone->present_pages = realsize;
9614634f 3325#ifdef CONFIG_NUMA
d5f541ed 3326 zone->node = nid;
8417bba4 3327 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3328 / 100;
0ff38490 3329 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3330#endif
1da177e4
LT
3331 zone->name = zone_names[j];
3332 spin_lock_init(&zone->lock);
3333 spin_lock_init(&zone->lru_lock);
bdc8cb98 3334 zone_seqlock_init(zone);
1da177e4 3335 zone->zone_pgdat = pgdat;
1da177e4 3336
3bb1a852 3337 zone->prev_priority = DEF_PRIORITY;
1da177e4 3338
ed8ece2e 3339 zone_pcp_init(zone);
1da177e4
LT
3340 INIT_LIST_HEAD(&zone->active_list);
3341 INIT_LIST_HEAD(&zone->inactive_list);
3342 zone->nr_scan_active = 0;
3343 zone->nr_scan_inactive = 0;
2244b95a 3344 zap_zone_vm_stats(zone);
53e9a615 3345 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3346 if (!size)
3347 continue;
3348
835c134e 3349 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3350 ret = init_currently_empty_zone(zone, zone_start_pfn,
3351 size, MEMMAP_EARLY);
718127cc 3352 BUG_ON(ret);
1da177e4 3353 zone_start_pfn += size;
1da177e4
LT
3354 }
3355}
3356
577a32f6 3357static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3358{
1da177e4
LT
3359 /* Skip empty nodes */
3360 if (!pgdat->node_spanned_pages)
3361 return;
3362
d41dee36 3363#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3364 /* ia64 gets its own node_mem_map, before this, without bootmem */
3365 if (!pgdat->node_mem_map) {
e984bb43 3366 unsigned long size, start, end;
d41dee36
AW
3367 struct page *map;
3368
e984bb43
BP
3369 /*
3370 * The zone's endpoints aren't required to be MAX_ORDER
3371 * aligned but the node_mem_map endpoints must be in order
3372 * for the buddy allocator to function correctly.
3373 */
3374 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3375 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3376 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3377 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3378 map = alloc_remap(pgdat->node_id, size);
3379 if (!map)
3380 map = alloc_bootmem_node(pgdat, size);
e984bb43 3381 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3382 }
12d810c1 3383#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3384 /*
3385 * With no DISCONTIG, the global mem_map is just set as node 0's
3386 */
c713216d 3387 if (pgdat == NODE_DATA(0)) {
1da177e4 3388 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3389#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3390 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3391 mem_map -= pgdat->node_start_pfn;
3392#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3393 }
1da177e4 3394#endif
d41dee36 3395#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3396}
3397
86356ab1 3398void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3399 unsigned long *zones_size, unsigned long node_start_pfn,
3400 unsigned long *zholes_size)
3401{
3402 pgdat->node_id = nid;
3403 pgdat->node_start_pfn = node_start_pfn;
c713216d 3404 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3405
3406 alloc_node_mem_map(pgdat);
3407
3408 free_area_init_core(pgdat, zones_size, zholes_size);
3409}
3410
c713216d 3411#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3412
3413#if MAX_NUMNODES > 1
3414/*
3415 * Figure out the number of possible node ids.
3416 */
3417static void __init setup_nr_node_ids(void)
3418{
3419 unsigned int node;
3420 unsigned int highest = 0;
3421
3422 for_each_node_mask(node, node_possible_map)
3423 highest = node;
3424 nr_node_ids = highest + 1;
3425}
3426#else
3427static inline void setup_nr_node_ids(void)
3428{
3429}
3430#endif
3431
c713216d
MG
3432/**
3433 * add_active_range - Register a range of PFNs backed by physical memory
3434 * @nid: The node ID the range resides on
3435 * @start_pfn: The start PFN of the available physical memory
3436 * @end_pfn: The end PFN of the available physical memory
3437 *
3438 * These ranges are stored in an early_node_map[] and later used by
3439 * free_area_init_nodes() to calculate zone sizes and holes. If the
3440 * range spans a memory hole, it is up to the architecture to ensure
3441 * the memory is not freed by the bootmem allocator. If possible
3442 * the range being registered will be merged with existing ranges.
3443 */
3444void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3445 unsigned long end_pfn)
3446{
3447 int i;
3448
3449 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3450 "%d entries of %d used\n",
3451 nid, start_pfn, end_pfn,
3452 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3453
3454 /* Merge with existing active regions if possible */
3455 for (i = 0; i < nr_nodemap_entries; i++) {
3456 if (early_node_map[i].nid != nid)
3457 continue;
3458
3459 /* Skip if an existing region covers this new one */
3460 if (start_pfn >= early_node_map[i].start_pfn &&
3461 end_pfn <= early_node_map[i].end_pfn)
3462 return;
3463
3464 /* Merge forward if suitable */
3465 if (start_pfn <= early_node_map[i].end_pfn &&
3466 end_pfn > early_node_map[i].end_pfn) {
3467 early_node_map[i].end_pfn = end_pfn;
3468 return;
3469 }
3470
3471 /* Merge backward if suitable */
3472 if (start_pfn < early_node_map[i].end_pfn &&
3473 end_pfn >= early_node_map[i].start_pfn) {
3474 early_node_map[i].start_pfn = start_pfn;
3475 return;
3476 }
3477 }
3478
3479 /* Check that early_node_map is large enough */
3480 if (i >= MAX_ACTIVE_REGIONS) {
3481 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3482 MAX_ACTIVE_REGIONS);
3483 return;
3484 }
3485
3486 early_node_map[i].nid = nid;
3487 early_node_map[i].start_pfn = start_pfn;
3488 early_node_map[i].end_pfn = end_pfn;
3489 nr_nodemap_entries = i + 1;
3490}
3491
3492/**
3493 * shrink_active_range - Shrink an existing registered range of PFNs
3494 * @nid: The node id the range is on that should be shrunk
3495 * @old_end_pfn: The old end PFN of the range
3496 * @new_end_pfn: The new PFN of the range
3497 *
3498 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3499 * The map is kept at the end physical page range that has already been
3500 * registered with add_active_range(). This function allows an arch to shrink
3501 * an existing registered range.
3502 */
3503void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3504 unsigned long new_end_pfn)
3505{
3506 int i;
3507
3508 /* Find the old active region end and shrink */
3509 for_each_active_range_index_in_nid(i, nid)
3510 if (early_node_map[i].end_pfn == old_end_pfn) {
3511 early_node_map[i].end_pfn = new_end_pfn;
3512 break;
3513 }
3514}
3515
3516/**
3517 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3518 *
c713216d
MG
3519 * During discovery, it may be found that a table like SRAT is invalid
3520 * and an alternative discovery method must be used. This function removes
3521 * all currently registered regions.
3522 */
88ca3b94 3523void __init remove_all_active_ranges(void)
c713216d
MG
3524{
3525 memset(early_node_map, 0, sizeof(early_node_map));
3526 nr_nodemap_entries = 0;
fb01439c
MG
3527#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3528 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3529 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3530#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3531}
3532
3533/* Compare two active node_active_regions */
3534static int __init cmp_node_active_region(const void *a, const void *b)
3535{
3536 struct node_active_region *arange = (struct node_active_region *)a;
3537 struct node_active_region *brange = (struct node_active_region *)b;
3538
3539 /* Done this way to avoid overflows */
3540 if (arange->start_pfn > brange->start_pfn)
3541 return 1;
3542 if (arange->start_pfn < brange->start_pfn)
3543 return -1;
3544
3545 return 0;
3546}
3547
3548/* sort the node_map by start_pfn */
3549static void __init sort_node_map(void)
3550{
3551 sort(early_node_map, (size_t)nr_nodemap_entries,
3552 sizeof(struct node_active_region),
3553 cmp_node_active_region, NULL);
3554}
3555
a6af2bc3 3556/* Find the lowest pfn for a node */
c713216d
MG
3557unsigned long __init find_min_pfn_for_node(unsigned long nid)
3558{
3559 int i;
a6af2bc3 3560 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3561
c713216d
MG
3562 /* Assuming a sorted map, the first range found has the starting pfn */
3563 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3564 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3565
a6af2bc3
MG
3566 if (min_pfn == ULONG_MAX) {
3567 printk(KERN_WARNING
3568 "Could not find start_pfn for node %lu\n", nid);
3569 return 0;
3570 }
3571
3572 return min_pfn;
c713216d
MG
3573}
3574
3575/**
3576 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3577 *
3578 * It returns the minimum PFN based on information provided via
88ca3b94 3579 * add_active_range().
c713216d
MG
3580 */
3581unsigned long __init find_min_pfn_with_active_regions(void)
3582{
3583 return find_min_pfn_for_node(MAX_NUMNODES);
3584}
3585
3586/**
3587 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3588 *
3589 * It returns the maximum PFN based on information provided via
88ca3b94 3590 * add_active_range().
c713216d
MG
3591 */
3592unsigned long __init find_max_pfn_with_active_regions(void)
3593{
3594 int i;
3595 unsigned long max_pfn = 0;
3596
3597 for (i = 0; i < nr_nodemap_entries; i++)
3598 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3599
3600 return max_pfn;
3601}
3602
37b07e41
LS
3603/*
3604 * early_calculate_totalpages()
3605 * Sum pages in active regions for movable zone.
3606 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3607 */
7e63efef
MG
3608unsigned long __init early_calculate_totalpages(void)
3609{
3610 int i;
3611 unsigned long totalpages = 0;
3612
37b07e41
LS
3613 for (i = 0; i < nr_nodemap_entries; i++) {
3614 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3615 early_node_map[i].start_pfn;
37b07e41
LS
3616 totalpages += pages;
3617 if (pages)
3618 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3619 }
3620 return totalpages;
7e63efef
MG
3621}
3622
2a1e274a
MG
3623/*
3624 * Find the PFN the Movable zone begins in each node. Kernel memory
3625 * is spread evenly between nodes as long as the nodes have enough
3626 * memory. When they don't, some nodes will have more kernelcore than
3627 * others
3628 */
3629void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3630{
3631 int i, nid;
3632 unsigned long usable_startpfn;
3633 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
3634 unsigned long totalpages = early_calculate_totalpages();
3635 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 3636
7e63efef
MG
3637 /*
3638 * If movablecore was specified, calculate what size of
3639 * kernelcore that corresponds so that memory usable for
3640 * any allocation type is evenly spread. If both kernelcore
3641 * and movablecore are specified, then the value of kernelcore
3642 * will be used for required_kernelcore if it's greater than
3643 * what movablecore would have allowed.
3644 */
3645 if (required_movablecore) {
7e63efef
MG
3646 unsigned long corepages;
3647
3648 /*
3649 * Round-up so that ZONE_MOVABLE is at least as large as what
3650 * was requested by the user
3651 */
3652 required_movablecore =
3653 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3654 corepages = totalpages - required_movablecore;
3655
3656 required_kernelcore = max(required_kernelcore, corepages);
3657 }
3658
2a1e274a
MG
3659 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3660 if (!required_kernelcore)
3661 return;
3662
3663 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3664 find_usable_zone_for_movable();
3665 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3666
3667restart:
3668 /* Spread kernelcore memory as evenly as possible throughout nodes */
3669 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 3670 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
3671 /*
3672 * Recalculate kernelcore_node if the division per node
3673 * now exceeds what is necessary to satisfy the requested
3674 * amount of memory for the kernel
3675 */
3676 if (required_kernelcore < kernelcore_node)
3677 kernelcore_node = required_kernelcore / usable_nodes;
3678
3679 /*
3680 * As the map is walked, we track how much memory is usable
3681 * by the kernel using kernelcore_remaining. When it is
3682 * 0, the rest of the node is usable by ZONE_MOVABLE
3683 */
3684 kernelcore_remaining = kernelcore_node;
3685
3686 /* Go through each range of PFNs within this node */
3687 for_each_active_range_index_in_nid(i, nid) {
3688 unsigned long start_pfn, end_pfn;
3689 unsigned long size_pages;
3690
3691 start_pfn = max(early_node_map[i].start_pfn,
3692 zone_movable_pfn[nid]);
3693 end_pfn = early_node_map[i].end_pfn;
3694 if (start_pfn >= end_pfn)
3695 continue;
3696
3697 /* Account for what is only usable for kernelcore */
3698 if (start_pfn < usable_startpfn) {
3699 unsigned long kernel_pages;
3700 kernel_pages = min(end_pfn, usable_startpfn)
3701 - start_pfn;
3702
3703 kernelcore_remaining -= min(kernel_pages,
3704 kernelcore_remaining);
3705 required_kernelcore -= min(kernel_pages,
3706 required_kernelcore);
3707
3708 /* Continue if range is now fully accounted */
3709 if (end_pfn <= usable_startpfn) {
3710
3711 /*
3712 * Push zone_movable_pfn to the end so
3713 * that if we have to rebalance
3714 * kernelcore across nodes, we will
3715 * not double account here
3716 */
3717 zone_movable_pfn[nid] = end_pfn;
3718 continue;
3719 }
3720 start_pfn = usable_startpfn;
3721 }
3722
3723 /*
3724 * The usable PFN range for ZONE_MOVABLE is from
3725 * start_pfn->end_pfn. Calculate size_pages as the
3726 * number of pages used as kernelcore
3727 */
3728 size_pages = end_pfn - start_pfn;
3729 if (size_pages > kernelcore_remaining)
3730 size_pages = kernelcore_remaining;
3731 zone_movable_pfn[nid] = start_pfn + size_pages;
3732
3733 /*
3734 * Some kernelcore has been met, update counts and
3735 * break if the kernelcore for this node has been
3736 * satisified
3737 */
3738 required_kernelcore -= min(required_kernelcore,
3739 size_pages);
3740 kernelcore_remaining -= size_pages;
3741 if (!kernelcore_remaining)
3742 break;
3743 }
3744 }
3745
3746 /*
3747 * If there is still required_kernelcore, we do another pass with one
3748 * less node in the count. This will push zone_movable_pfn[nid] further
3749 * along on the nodes that still have memory until kernelcore is
3750 * satisified
3751 */
3752 usable_nodes--;
3753 if (usable_nodes && required_kernelcore > usable_nodes)
3754 goto restart;
3755
3756 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3757 for (nid = 0; nid < MAX_NUMNODES; nid++)
3758 zone_movable_pfn[nid] =
3759 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3760}
3761
37b07e41
LS
3762/* Any regular memory on that node ? */
3763static void check_for_regular_memory(pg_data_t *pgdat)
3764{
3765#ifdef CONFIG_HIGHMEM
3766 enum zone_type zone_type;
3767
3768 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3769 struct zone *zone = &pgdat->node_zones[zone_type];
3770 if (zone->present_pages)
3771 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3772 }
3773#endif
3774}
3775
c713216d
MG
3776/**
3777 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3778 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3779 *
3780 * This will call free_area_init_node() for each active node in the system.
3781 * Using the page ranges provided by add_active_range(), the size of each
3782 * zone in each node and their holes is calculated. If the maximum PFN
3783 * between two adjacent zones match, it is assumed that the zone is empty.
3784 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3785 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3786 * starts where the previous one ended. For example, ZONE_DMA32 starts
3787 * at arch_max_dma_pfn.
3788 */
3789void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3790{
3791 unsigned long nid;
3792 enum zone_type i;
3793
a6af2bc3
MG
3794 /* Sort early_node_map as initialisation assumes it is sorted */
3795 sort_node_map();
3796
c713216d
MG
3797 /* Record where the zone boundaries are */
3798 memset(arch_zone_lowest_possible_pfn, 0,
3799 sizeof(arch_zone_lowest_possible_pfn));
3800 memset(arch_zone_highest_possible_pfn, 0,
3801 sizeof(arch_zone_highest_possible_pfn));
3802 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3803 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3804 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3805 if (i == ZONE_MOVABLE)
3806 continue;
c713216d
MG
3807 arch_zone_lowest_possible_pfn[i] =
3808 arch_zone_highest_possible_pfn[i-1];
3809 arch_zone_highest_possible_pfn[i] =
3810 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3811 }
2a1e274a
MG
3812 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3813 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3814
3815 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3816 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3817 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3818
c713216d
MG
3819 /* Print out the zone ranges */
3820 printk("Zone PFN ranges:\n");
2a1e274a
MG
3821 for (i = 0; i < MAX_NR_ZONES; i++) {
3822 if (i == ZONE_MOVABLE)
3823 continue;
c713216d
MG
3824 printk(" %-8s %8lu -> %8lu\n",
3825 zone_names[i],
3826 arch_zone_lowest_possible_pfn[i],
3827 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3828 }
3829
3830 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3831 printk("Movable zone start PFN for each node\n");
3832 for (i = 0; i < MAX_NUMNODES; i++) {
3833 if (zone_movable_pfn[i])
3834 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3835 }
c713216d
MG
3836
3837 /* Print out the early_node_map[] */
3838 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3839 for (i = 0; i < nr_nodemap_entries; i++)
3840 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3841 early_node_map[i].start_pfn,
3842 early_node_map[i].end_pfn);
3843
3844 /* Initialise every node */
8ef82866 3845 setup_nr_node_ids();
c713216d
MG
3846 for_each_online_node(nid) {
3847 pg_data_t *pgdat = NODE_DATA(nid);
3848 free_area_init_node(nid, pgdat, NULL,
3849 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
3850
3851 /* Any memory on that node */
3852 if (pgdat->node_present_pages)
3853 node_set_state(nid, N_HIGH_MEMORY);
3854 check_for_regular_memory(pgdat);
c713216d
MG
3855 }
3856}
2a1e274a 3857
7e63efef 3858static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3859{
3860 unsigned long long coremem;
3861 if (!p)
3862 return -EINVAL;
3863
3864 coremem = memparse(p, &p);
7e63efef 3865 *core = coremem >> PAGE_SHIFT;
2a1e274a 3866
7e63efef 3867 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3868 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3869
3870 return 0;
3871}
ed7ed365 3872
7e63efef
MG
3873/*
3874 * kernelcore=size sets the amount of memory for use for allocations that
3875 * cannot be reclaimed or migrated.
3876 */
3877static int __init cmdline_parse_kernelcore(char *p)
3878{
3879 return cmdline_parse_core(p, &required_kernelcore);
3880}
3881
3882/*
3883 * movablecore=size sets the amount of memory for use for allocations that
3884 * can be reclaimed or migrated.
3885 */
3886static int __init cmdline_parse_movablecore(char *p)
3887{
3888 return cmdline_parse_core(p, &required_movablecore);
3889}
3890
ed7ed365 3891early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3892early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3893
c713216d
MG
3894#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3895
0e0b864e 3896/**
88ca3b94
RD
3897 * set_dma_reserve - set the specified number of pages reserved in the first zone
3898 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3899 *
3900 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3901 * In the DMA zone, a significant percentage may be consumed by kernel image
3902 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3903 * function may optionally be used to account for unfreeable pages in the
3904 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3905 * smaller per-cpu batchsize.
0e0b864e
MG
3906 */
3907void __init set_dma_reserve(unsigned long new_dma_reserve)
3908{
3909 dma_reserve = new_dma_reserve;
3910}
3911
93b7504e 3912#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3913static bootmem_data_t contig_bootmem_data;
3914struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3915
3916EXPORT_SYMBOL(contig_page_data);
93b7504e 3917#endif
1da177e4
LT
3918
3919void __init free_area_init(unsigned long *zones_size)
3920{
93b7504e 3921 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3922 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3923}
1da177e4 3924
1da177e4
LT
3925static int page_alloc_cpu_notify(struct notifier_block *self,
3926 unsigned long action, void *hcpu)
3927{
3928 int cpu = (unsigned long)hcpu;
1da177e4 3929
8bb78442 3930 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3931 local_irq_disable();
3932 __drain_pages(cpu);
f8891e5e 3933 vm_events_fold_cpu(cpu);
1da177e4 3934 local_irq_enable();
2244b95a 3935 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3936 }
3937 return NOTIFY_OK;
3938}
1da177e4
LT
3939
3940void __init page_alloc_init(void)
3941{
3942 hotcpu_notifier(page_alloc_cpu_notify, 0);
3943}
3944
cb45b0e9
HA
3945/*
3946 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3947 * or min_free_kbytes changes.
3948 */
3949static void calculate_totalreserve_pages(void)
3950{
3951 struct pglist_data *pgdat;
3952 unsigned long reserve_pages = 0;
2f6726e5 3953 enum zone_type i, j;
cb45b0e9
HA
3954
3955 for_each_online_pgdat(pgdat) {
3956 for (i = 0; i < MAX_NR_ZONES; i++) {
3957 struct zone *zone = pgdat->node_zones + i;
3958 unsigned long max = 0;
3959
3960 /* Find valid and maximum lowmem_reserve in the zone */
3961 for (j = i; j < MAX_NR_ZONES; j++) {
3962 if (zone->lowmem_reserve[j] > max)
3963 max = zone->lowmem_reserve[j];
3964 }
3965
3966 /* we treat pages_high as reserved pages. */
3967 max += zone->pages_high;
3968
3969 if (max > zone->present_pages)
3970 max = zone->present_pages;
3971 reserve_pages += max;
3972 }
3973 }
3974 totalreserve_pages = reserve_pages;
3975}
3976
1da177e4
LT
3977/*
3978 * setup_per_zone_lowmem_reserve - called whenever
3979 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3980 * has a correct pages reserved value, so an adequate number of
3981 * pages are left in the zone after a successful __alloc_pages().
3982 */
3983static void setup_per_zone_lowmem_reserve(void)
3984{
3985 struct pglist_data *pgdat;
2f6726e5 3986 enum zone_type j, idx;
1da177e4 3987
ec936fc5 3988 for_each_online_pgdat(pgdat) {
1da177e4
LT
3989 for (j = 0; j < MAX_NR_ZONES; j++) {
3990 struct zone *zone = pgdat->node_zones + j;
3991 unsigned long present_pages = zone->present_pages;
3992
3993 zone->lowmem_reserve[j] = 0;
3994
2f6726e5
CL
3995 idx = j;
3996 while (idx) {
1da177e4
LT
3997 struct zone *lower_zone;
3998
2f6726e5
CL
3999 idx--;
4000
1da177e4
LT
4001 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4002 sysctl_lowmem_reserve_ratio[idx] = 1;
4003
4004 lower_zone = pgdat->node_zones + idx;
4005 lower_zone->lowmem_reserve[j] = present_pages /
4006 sysctl_lowmem_reserve_ratio[idx];
4007 present_pages += lower_zone->present_pages;
4008 }
4009 }
4010 }
cb45b0e9
HA
4011
4012 /* update totalreserve_pages */
4013 calculate_totalreserve_pages();
1da177e4
LT
4014}
4015
88ca3b94
RD
4016/**
4017 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4018 *
4019 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4020 * with respect to min_free_kbytes.
1da177e4 4021 */
3947be19 4022void setup_per_zone_pages_min(void)
1da177e4
LT
4023{
4024 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4025 unsigned long lowmem_pages = 0;
4026 struct zone *zone;
4027 unsigned long flags;
4028
4029 /* Calculate total number of !ZONE_HIGHMEM pages */
4030 for_each_zone(zone) {
4031 if (!is_highmem(zone))
4032 lowmem_pages += zone->present_pages;
4033 }
4034
4035 for_each_zone(zone) {
ac924c60
AM
4036 u64 tmp;
4037
1da177e4 4038 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
4039 tmp = (u64)pages_min * zone->present_pages;
4040 do_div(tmp, lowmem_pages);
1da177e4
LT
4041 if (is_highmem(zone)) {
4042 /*
669ed175
NP
4043 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4044 * need highmem pages, so cap pages_min to a small
4045 * value here.
4046 *
4047 * The (pages_high-pages_low) and (pages_low-pages_min)
4048 * deltas controls asynch page reclaim, and so should
4049 * not be capped for highmem.
1da177e4
LT
4050 */
4051 int min_pages;
4052
4053 min_pages = zone->present_pages / 1024;
4054 if (min_pages < SWAP_CLUSTER_MAX)
4055 min_pages = SWAP_CLUSTER_MAX;
4056 if (min_pages > 128)
4057 min_pages = 128;
4058 zone->pages_min = min_pages;
4059 } else {
669ed175
NP
4060 /*
4061 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4062 * proportionate to the zone's size.
4063 */
669ed175 4064 zone->pages_min = tmp;
1da177e4
LT
4065 }
4066
ac924c60
AM
4067 zone->pages_low = zone->pages_min + (tmp >> 2);
4068 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
4069 spin_unlock_irqrestore(&zone->lru_lock, flags);
4070 }
cb45b0e9
HA
4071
4072 /* update totalreserve_pages */
4073 calculate_totalreserve_pages();
1da177e4
LT
4074}
4075
4076/*
4077 * Initialise min_free_kbytes.
4078 *
4079 * For small machines we want it small (128k min). For large machines
4080 * we want it large (64MB max). But it is not linear, because network
4081 * bandwidth does not increase linearly with machine size. We use
4082 *
4083 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4084 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4085 *
4086 * which yields
4087 *
4088 * 16MB: 512k
4089 * 32MB: 724k
4090 * 64MB: 1024k
4091 * 128MB: 1448k
4092 * 256MB: 2048k
4093 * 512MB: 2896k
4094 * 1024MB: 4096k
4095 * 2048MB: 5792k
4096 * 4096MB: 8192k
4097 * 8192MB: 11584k
4098 * 16384MB: 16384k
4099 */
4100static int __init init_per_zone_pages_min(void)
4101{
4102 unsigned long lowmem_kbytes;
4103
4104 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4105
4106 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4107 if (min_free_kbytes < 128)
4108 min_free_kbytes = 128;
4109 if (min_free_kbytes > 65536)
4110 min_free_kbytes = 65536;
4111 setup_per_zone_pages_min();
4112 setup_per_zone_lowmem_reserve();
4113 return 0;
4114}
4115module_init(init_per_zone_pages_min)
4116
4117/*
4118 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4119 * that we can call two helper functions whenever min_free_kbytes
4120 * changes.
4121 */
4122int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4123 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4124{
4125 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4126 if (write)
4127 setup_per_zone_pages_min();
1da177e4
LT
4128 return 0;
4129}
4130
9614634f
CL
4131#ifdef CONFIG_NUMA
4132int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4133 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4134{
4135 struct zone *zone;
4136 int rc;
4137
4138 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4139 if (rc)
4140 return rc;
4141
4142 for_each_zone(zone)
8417bba4 4143 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4144 sysctl_min_unmapped_ratio) / 100;
4145 return 0;
4146}
0ff38490
CL
4147
4148int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4149 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4150{
4151 struct zone *zone;
4152 int rc;
4153
4154 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4155 if (rc)
4156 return rc;
4157
4158 for_each_zone(zone)
4159 zone->min_slab_pages = (zone->present_pages *
4160 sysctl_min_slab_ratio) / 100;
4161 return 0;
4162}
9614634f
CL
4163#endif
4164
1da177e4
LT
4165/*
4166 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4167 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4168 * whenever sysctl_lowmem_reserve_ratio changes.
4169 *
4170 * The reserve ratio obviously has absolutely no relation with the
4171 * pages_min watermarks. The lowmem reserve ratio can only make sense
4172 * if in function of the boot time zone sizes.
4173 */
4174int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4175 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4176{
4177 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4178 setup_per_zone_lowmem_reserve();
4179 return 0;
4180}
4181
8ad4b1fb
RS
4182/*
4183 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4184 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4185 * can have before it gets flushed back to buddy allocator.
4186 */
4187
4188int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4189 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4190{
4191 struct zone *zone;
4192 unsigned int cpu;
4193 int ret;
4194
4195 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4196 if (!write || (ret == -EINVAL))
4197 return ret;
4198 for_each_zone(zone) {
4199 for_each_online_cpu(cpu) {
4200 unsigned long high;
4201 high = zone->present_pages / percpu_pagelist_fraction;
4202 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4203 }
4204 }
4205 return 0;
4206}
4207
f034b5d4 4208int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4209
4210#ifdef CONFIG_NUMA
4211static int __init set_hashdist(char *str)
4212{
4213 if (!str)
4214 return 0;
4215 hashdist = simple_strtoul(str, &str, 0);
4216 return 1;
4217}
4218__setup("hashdist=", set_hashdist);
4219#endif
4220
4221/*
4222 * allocate a large system hash table from bootmem
4223 * - it is assumed that the hash table must contain an exact power-of-2
4224 * quantity of entries
4225 * - limit is the number of hash buckets, not the total allocation size
4226 */
4227void *__init alloc_large_system_hash(const char *tablename,
4228 unsigned long bucketsize,
4229 unsigned long numentries,
4230 int scale,
4231 int flags,
4232 unsigned int *_hash_shift,
4233 unsigned int *_hash_mask,
4234 unsigned long limit)
4235{
4236 unsigned long long max = limit;
4237 unsigned long log2qty, size;
4238 void *table = NULL;
4239
4240 /* allow the kernel cmdline to have a say */
4241 if (!numentries) {
4242 /* round applicable memory size up to nearest megabyte */
04903664 4243 numentries = nr_kernel_pages;
1da177e4
LT
4244 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4245 numentries >>= 20 - PAGE_SHIFT;
4246 numentries <<= 20 - PAGE_SHIFT;
4247
4248 /* limit to 1 bucket per 2^scale bytes of low memory */
4249 if (scale > PAGE_SHIFT)
4250 numentries >>= (scale - PAGE_SHIFT);
4251 else
4252 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4253
4254 /* Make sure we've got at least a 0-order allocation.. */
4255 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4256 numentries = PAGE_SIZE / bucketsize;
1da177e4 4257 }
6e692ed3 4258 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4259
4260 /* limit allocation size to 1/16 total memory by default */
4261 if (max == 0) {
4262 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4263 do_div(max, bucketsize);
4264 }
4265
4266 if (numentries > max)
4267 numentries = max;
4268
f0d1b0b3 4269 log2qty = ilog2(numentries);
1da177e4
LT
4270
4271 do {
4272 size = bucketsize << log2qty;
4273 if (flags & HASH_EARLY)
4274 table = alloc_bootmem(size);
4275 else if (hashdist)
4276 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4277 else {
4278 unsigned long order;
4279 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
4280 ;
4281 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
4282 /*
4283 * If bucketsize is not a power-of-two, we may free
4284 * some pages at the end of hash table.
4285 */
4286 if (table) {
4287 unsigned long alloc_end = (unsigned long)table +
4288 (PAGE_SIZE << order);
4289 unsigned long used = (unsigned long)table +
4290 PAGE_ALIGN(size);
4291 split_page(virt_to_page(table), order);
4292 while (used < alloc_end) {
4293 free_page(used);
4294 used += PAGE_SIZE;
4295 }
4296 }
1da177e4
LT
4297 }
4298 } while (!table && size > PAGE_SIZE && --log2qty);
4299
4300 if (!table)
4301 panic("Failed to allocate %s hash table\n", tablename);
4302
b49ad484 4303 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4304 tablename,
4305 (1U << log2qty),
f0d1b0b3 4306 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4307 size);
4308
4309 if (_hash_shift)
4310 *_hash_shift = log2qty;
4311 if (_hash_mask)
4312 *_hash_mask = (1 << log2qty) - 1;
4313
4314 return table;
4315}
a117e66e
KH
4316
4317#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
4318struct page *pfn_to_page(unsigned long pfn)
4319{
67de6482 4320 return __pfn_to_page(pfn);
a117e66e
KH
4321}
4322unsigned long page_to_pfn(struct page *page)
4323{
67de6482 4324 return __page_to_pfn(page);
a117e66e 4325}
a117e66e
KH
4326EXPORT_SYMBOL(pfn_to_page);
4327EXPORT_SYMBOL(page_to_pfn);
4328#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 4329
835c134e
MG
4330/* Return a pointer to the bitmap storing bits affecting a block of pages */
4331static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4332 unsigned long pfn)
4333{
4334#ifdef CONFIG_SPARSEMEM
4335 return __pfn_to_section(pfn)->pageblock_flags;
4336#else
4337 return zone->pageblock_flags;
4338#endif /* CONFIG_SPARSEMEM */
4339}
4340
4341static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4342{
4343#ifdef CONFIG_SPARSEMEM
4344 pfn &= (PAGES_PER_SECTION-1);
4345 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4346#else
4347 pfn = pfn - zone->zone_start_pfn;
4348 return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
4349#endif /* CONFIG_SPARSEMEM */
4350}
4351
4352/**
4353 * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
4354 * @page: The page within the block of interest
4355 * @start_bitidx: The first bit of interest to retrieve
4356 * @end_bitidx: The last bit of interest
4357 * returns pageblock_bits flags
4358 */
4359unsigned long get_pageblock_flags_group(struct page *page,
4360 int start_bitidx, int end_bitidx)
4361{
4362 struct zone *zone;
4363 unsigned long *bitmap;
4364 unsigned long pfn, bitidx;
4365 unsigned long flags = 0;
4366 unsigned long value = 1;
4367
4368 zone = page_zone(page);
4369 pfn = page_to_pfn(page);
4370 bitmap = get_pageblock_bitmap(zone, pfn);
4371 bitidx = pfn_to_bitidx(zone, pfn);
4372
4373 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4374 if (test_bit(bitidx + start_bitidx, bitmap))
4375 flags |= value;
6220ec78 4376
835c134e
MG
4377 return flags;
4378}
4379
4380/**
4381 * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
4382 * @page: The page within the block of interest
4383 * @start_bitidx: The first bit of interest
4384 * @end_bitidx: The last bit of interest
4385 * @flags: The flags to set
4386 */
4387void set_pageblock_flags_group(struct page *page, unsigned long flags,
4388 int start_bitidx, int end_bitidx)
4389{
4390 struct zone *zone;
4391 unsigned long *bitmap;
4392 unsigned long pfn, bitidx;
4393 unsigned long value = 1;
4394
4395 zone = page_zone(page);
4396 pfn = page_to_pfn(page);
4397 bitmap = get_pageblock_bitmap(zone, pfn);
4398 bitidx = pfn_to_bitidx(zone, pfn);
4399
4400 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4401 if (flags & value)
4402 __set_bit(bitidx + start_bitidx, bitmap);
4403 else
4404 __clear_bit(bitidx + start_bitidx, bitmap);
4405}