writeback: avoid extra sync work at enqueue time
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
1da177e4
LT
39/*
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
42 */
43static long ratelimit_pages = 32;
44
1da177e4
LT
45/*
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 48 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
49 * large amounts of I/O are submitted.
50 */
3a2e9a5a 51static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 52{
3a2e9a5a
WF
53 if (dirtied < ratelimit_pages)
54 dirtied = ratelimit_pages;
55
56 return dirtied + dirtied / 2;
1da177e4
LT
57}
58
59/* The following parameters are exported via /proc/sys/vm */
60
61/*
5b0830cb 62 * Start background writeback (via writeback threads) at this percentage
1da177e4 63 */
1b5e62b4 64int dirty_background_ratio = 10;
1da177e4 65
2da02997
DR
66/*
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
69 */
70unsigned long dirty_background_bytes;
71
195cf453
BG
72/*
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
75 */
76int vm_highmem_is_dirtyable;
77
1da177e4
LT
78/*
79 * The generator of dirty data starts writeback at this percentage
80 */
1b5e62b4 81int vm_dirty_ratio = 20;
1da177e4 82
2da02997
DR
83/*
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
86 */
87unsigned long vm_dirty_bytes;
88
1da177e4 89/*
704503d8 90 * The interval between `kupdate'-style writebacks
1da177e4 91 */
22ef37ee 92unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
93
94/*
704503d8 95 * The longest time for which data is allowed to remain dirty
1da177e4 96 */
22ef37ee 97unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
98
99/*
100 * Flag that makes the machine dump writes/reads and block dirtyings.
101 */
102int block_dump;
103
104/*
ed5b43f1
BS
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
107 */
108int laptop_mode;
109
110EXPORT_SYMBOL(laptop_mode);
111
112/* End of sysctl-exported parameters */
113
114
04fbfdc1
PZ
115/*
116 * Scale the writeback cache size proportional to the relative writeout speeds.
117 *
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
121 * share.
122 *
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
125 *
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
129 *
130 */
131static struct prop_descriptor vm_completions;
3e26c149 132static struct prop_descriptor vm_dirties;
04fbfdc1 133
04fbfdc1
PZ
134/*
135 * couple the period to the dirty_ratio:
136 *
137 * period/2 ~ roundup_pow_of_two(dirty limit)
138 */
139static int calc_period_shift(void)
140{
141 unsigned long dirty_total;
142
2da02997
DR
143 if (vm_dirty_bytes)
144 dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 else
146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 100;
04fbfdc1
PZ
148 return 2 + ilog2(dirty_total - 1);
149}
150
151/*
2da02997 152 * update the period when the dirty threshold changes.
04fbfdc1 153 */
2da02997
DR
154static void update_completion_period(void)
155{
156 int shift = calc_period_shift();
157 prop_change_shift(&vm_completions, shift);
158 prop_change_shift(&vm_dirties, shift);
159}
160
161int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 162 void __user *buffer, size_t *lenp,
2da02997
DR
163 loff_t *ppos)
164{
165 int ret;
166
8d65af78 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
168 if (ret == 0 && write)
169 dirty_background_bytes = 0;
170 return ret;
171}
172
173int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 174 void __user *buffer, size_t *lenp,
2da02997
DR
175 loff_t *ppos)
176{
177 int ret;
178
8d65af78 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
180 if (ret == 0 && write)
181 dirty_background_ratio = 0;
182 return ret;
183}
184
04fbfdc1 185int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 186 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
187 loff_t *ppos)
188{
189 int old_ratio = vm_dirty_ratio;
2da02997
DR
190 int ret;
191
8d65af78 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
194 update_completion_period();
195 vm_dirty_bytes = 0;
196 }
197 return ret;
198}
199
200
201int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 202 void __user *buffer, size_t *lenp,
2da02997
DR
203 loff_t *ppos)
204{
fc3501d4 205 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
206 int ret;
207
8d65af78 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 update_completion_period();
211 vm_dirty_ratio = 0;
04fbfdc1
PZ
212 }
213 return ret;
214}
215
216/*
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
219 */
220static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221{
a42dde04
PZ
222 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 bdi->max_prop_frac);
04fbfdc1
PZ
224}
225
dd5656e5
MS
226void bdi_writeout_inc(struct backing_dev_info *bdi)
227{
228 unsigned long flags;
229
230 local_irq_save(flags);
231 __bdi_writeout_inc(bdi);
232 local_irq_restore(flags);
233}
234EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235
1cf6e7d8 236void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
237{
238 prop_inc_single(&vm_dirties, &tsk->dirties);
239}
240
04fbfdc1
PZ
241/*
242 * Obtain an accurate fraction of the BDI's portion.
243 */
244static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 long *numerator, long *denominator)
246{
247 if (bdi_cap_writeback_dirty(bdi)) {
248 prop_fraction_percpu(&vm_completions, &bdi->completions,
249 numerator, denominator);
250 } else {
251 *numerator = 0;
252 *denominator = 1;
253 }
254}
255
3e26c149
PZ
256static inline void task_dirties_fraction(struct task_struct *tsk,
257 long *numerator, long *denominator)
258{
259 prop_fraction_single(&vm_dirties, &tsk->dirties,
260 numerator, denominator);
261}
262
263/*
1babe183 264 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
265 *
266 * task specific dirty limit:
267 *
268 * dirty -= (dirty/8) * p_{t}
1babe183
WF
269 *
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
3e26c149 276 */
16c4042f
WF
277static unsigned long task_dirty_limit(struct task_struct *tsk,
278 unsigned long bdi_dirty)
3e26c149
PZ
279{
280 long numerator, denominator;
16c4042f 281 unsigned long dirty = bdi_dirty;
3e26c149
PZ
282 u64 inv = dirty >> 3;
283
284 task_dirties_fraction(tsk, &numerator, &denominator);
285 inv *= numerator;
286 do_div(inv, denominator);
287
288 dirty -= inv;
3e26c149 289
16c4042f 290 return max(dirty, bdi_dirty/2);
3e26c149
PZ
291}
292
189d3c4a
PZ
293/*
294 *
295 */
189d3c4a
PZ
296static unsigned int bdi_min_ratio;
297
298int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299{
300 int ret = 0;
189d3c4a 301
cfc4ba53 302 spin_lock_bh(&bdi_lock);
a42dde04 303 if (min_ratio > bdi->max_ratio) {
189d3c4a 304 ret = -EINVAL;
a42dde04
PZ
305 } else {
306 min_ratio -= bdi->min_ratio;
307 if (bdi_min_ratio + min_ratio < 100) {
308 bdi_min_ratio += min_ratio;
309 bdi->min_ratio += min_ratio;
310 } else {
311 ret = -EINVAL;
312 }
313 }
cfc4ba53 314 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
315
316 return ret;
317}
318
319int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320{
a42dde04
PZ
321 int ret = 0;
322
323 if (max_ratio > 100)
324 return -EINVAL;
325
cfc4ba53 326 spin_lock_bh(&bdi_lock);
a42dde04
PZ
327 if (bdi->min_ratio > max_ratio) {
328 ret = -EINVAL;
329 } else {
330 bdi->max_ratio = max_ratio;
331 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332 }
cfc4ba53 333 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
334
335 return ret;
336}
a42dde04 337EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 338
1da177e4
LT
339/*
340 * Work out the current dirty-memory clamping and background writeout
341 * thresholds.
342 *
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around. To avoid stressing page reclaim with lots of unreclaimable
345 * pages. It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
347 *
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349 *
350 * We don't permit the clamping level to fall below 5% - that is getting rather
351 * excessive.
352 *
353 * We make sure that the background writeout level is below the adjusted
354 * clamping level.
355 */
1b424464
CL
356
357static unsigned long highmem_dirtyable_memory(unsigned long total)
358{
359#ifdef CONFIG_HIGHMEM
360 int node;
361 unsigned long x = 0;
362
37b07e41 363 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
364 struct zone *z =
365 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366
adea02a1
WF
367 x += zone_page_state(z, NR_FREE_PAGES) +
368 zone_reclaimable_pages(z);
1b424464
CL
369 }
370 /*
371 * Make sure that the number of highmem pages is never larger
372 * than the number of the total dirtyable memory. This can only
373 * occur in very strange VM situations but we want to make sure
374 * that this does not occur.
375 */
376 return min(x, total);
377#else
378 return 0;
379#endif
380}
381
3eefae99
SR
382/**
383 * determine_dirtyable_memory - amount of memory that may be used
384 *
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
387 */
388unsigned long determine_dirtyable_memory(void)
1b424464
CL
389{
390 unsigned long x;
391
adea02a1 392 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
393
394 if (!vm_highmem_is_dirtyable)
395 x -= highmem_dirtyable_memory(x);
396
1b424464
CL
397 return x + 1; /* Ensure that we never return 0 */
398}
399
03ab450f 400/*
1babe183
WF
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
402 *
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio or vm.dirty_background_bytes
405 * - vm.dirty_ratio or vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 407 * real-time tasks.
1babe183 408 */
16c4042f 409void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 410{
364aeb28
DR
411 unsigned long background;
412 unsigned long dirty;
240c879f 413 unsigned long uninitialized_var(available_memory);
1da177e4
LT
414 struct task_struct *tsk;
415
240c879f
MK
416 if (!vm_dirty_bytes || !dirty_background_bytes)
417 available_memory = determine_dirtyable_memory();
418
2da02997
DR
419 if (vm_dirty_bytes)
420 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
421 else
422 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 423
2da02997
DR
424 if (dirty_background_bytes)
425 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426 else
427 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 428
2da02997
DR
429 if (background >= dirty)
430 background = dirty / 2;
1da177e4
LT
431 tsk = current;
432 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433 background += background / 4;
434 dirty += dirty / 4;
435 }
436 *pbackground = background;
437 *pdirty = dirty;
16c4042f 438}
04fbfdc1 439
03ab450f 440/*
1babe183
WF
441 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
442 *
443 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
444 * - starving fast devices
445 * - piling up dirty pages (that will take long time to sync) on slow devices
446 *
447 * The bdi's share of dirty limit will be adapting to its throughput and
448 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
449 */
450unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
451{
452 u64 bdi_dirty;
453 long numerator, denominator;
04fbfdc1 454
16c4042f
WF
455 /*
456 * Calculate this BDI's share of the dirty ratio.
457 */
458 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 459
16c4042f
WF
460 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
461 bdi_dirty *= numerator;
462 do_div(bdi_dirty, denominator);
04fbfdc1 463
16c4042f
WF
464 bdi_dirty += (dirty * bdi->min_ratio) / 100;
465 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
466 bdi_dirty = dirty * bdi->max_ratio / 100;
467
468 return bdi_dirty;
1da177e4
LT
469}
470
471/*
472 * balance_dirty_pages() must be called by processes which are generating dirty
473 * data. It looks at the number of dirty pages in the machine and will force
474 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
475 * If we're over `background_thresh' then the writeback threads are woken to
476 * perform some writeout.
1da177e4 477 */
3a2e9a5a
WF
478static void balance_dirty_pages(struct address_space *mapping,
479 unsigned long write_chunk)
1da177e4 480{
5fce25a9
PZ
481 long nr_reclaimable, bdi_nr_reclaimable;
482 long nr_writeback, bdi_nr_writeback;
364aeb28
DR
483 unsigned long background_thresh;
484 unsigned long dirty_thresh;
485 unsigned long bdi_thresh;
1da177e4 486 unsigned long pages_written = 0;
87c6a9b2 487 unsigned long pause = 1;
e50e3720 488 bool dirty_exceeded = false;
1da177e4
LT
489 struct backing_dev_info *bdi = mapping->backing_dev_info;
490
491 for (;;) {
492 struct writeback_control wbc = {
1da177e4
LT
493 .sync_mode = WB_SYNC_NONE,
494 .older_than_this = NULL,
495 .nr_to_write = write_chunk,
111ebb6e 496 .range_cyclic = 1,
1da177e4
LT
497 };
498
5fce25a9
PZ
499 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
500 global_page_state(NR_UNSTABLE_NFS);
501 nr_writeback = global_page_state(NR_WRITEBACK);
502
16c4042f
WF
503 global_dirty_limits(&background_thresh, &dirty_thresh);
504
505 /*
506 * Throttle it only when the background writeback cannot
507 * catch-up. This avoids (excessively) small writeouts
508 * when the bdi limits are ramping up.
509 */
4cbec4c8 510 if (nr_reclaimable + nr_writeback <=
16c4042f
WF
511 (background_thresh + dirty_thresh) / 2)
512 break;
513
514 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
515 bdi_thresh = task_dirty_limit(current, bdi_thresh);
516
e50e3720
WF
517 /*
518 * In order to avoid the stacked BDI deadlock we need
519 * to ensure we accurately count the 'dirty' pages when
520 * the threshold is low.
521 *
522 * Otherwise it would be possible to get thresh+n pages
523 * reported dirty, even though there are thresh-m pages
524 * actually dirty; with m+n sitting in the percpu
525 * deltas.
526 */
527 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
528 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
529 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
530 } else {
531 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
532 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
533 }
5fce25a9 534
e50e3720
WF
535 /*
536 * The bdi thresh is somehow "soft" limit derived from the
537 * global "hard" limit. The former helps to prevent heavy IO
538 * bdi or process from holding back light ones; The latter is
539 * the last resort safeguard.
540 */
541 dirty_exceeded =
4cbec4c8
WF
542 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
543 || (nr_reclaimable + nr_writeback > dirty_thresh);
e50e3720
WF
544
545 if (!dirty_exceeded)
04fbfdc1 546 break;
1da177e4 547
04fbfdc1
PZ
548 if (!bdi->dirty_exceeded)
549 bdi->dirty_exceeded = 1;
1da177e4
LT
550
551 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
552 * Unstable writes are a feature of certain networked
553 * filesystems (i.e. NFS) in which data may have been
554 * written to the server's write cache, but has not yet
555 * been flushed to permanent storage.
d7831a0b
RK
556 * Only move pages to writeback if this bdi is over its
557 * threshold otherwise wait until the disk writes catch
558 * up.
1da177e4 559 */
028c2dd1 560 trace_wbc_balance_dirty_start(&wbc, bdi);
d7831a0b 561 if (bdi_nr_reclaimable > bdi_thresh) {
9c3a8ee8 562 writeback_inodes_wb(&bdi->wb, &wbc);
1da177e4 563 pages_written += write_chunk - wbc.nr_to_write;
028c2dd1 564 trace_wbc_balance_dirty_written(&wbc, bdi);
e50e3720
WF
565 if (pages_written >= write_chunk)
566 break; /* We've done our duty */
04fbfdc1 567 }
028c2dd1 568 trace_wbc_balance_dirty_wait(&wbc, bdi);
d153ba64 569 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 570 io_schedule_timeout(pause);
87c6a9b2
JA
571
572 /*
573 * Increase the delay for each loop, up to our previous
574 * default of taking a 100ms nap.
575 */
576 pause <<= 1;
577 if (pause > HZ / 10)
578 pause = HZ / 10;
1da177e4
LT
579 }
580
e50e3720 581 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 582 bdi->dirty_exceeded = 0;
1da177e4
LT
583
584 if (writeback_in_progress(bdi))
5b0830cb 585 return;
1da177e4
LT
586
587 /*
588 * In laptop mode, we wait until hitting the higher threshold before
589 * starting background writeout, and then write out all the way down
590 * to the lower threshold. So slow writers cause minimal disk activity.
591 *
592 * In normal mode, we start background writeout at the lower
593 * background_thresh, to keep the amount of dirty memory low.
594 */
595 if ((laptop_mode && pages_written) ||
e50e3720 596 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 597 bdi_start_background_writeback(bdi);
1da177e4
LT
598}
599
a200ee18 600void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 601{
a200ee18 602 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
603 struct address_space *mapping = page_mapping(page);
604
605 if (mapping)
606 balance_dirty_pages_ratelimited(mapping);
607 }
608}
609
245b2e70
TH
610static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
611
1da177e4 612/**
fa5a734e 613 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 614 * @mapping: address_space which was dirtied
a580290c 615 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
616 *
617 * Processes which are dirtying memory should call in here once for each page
618 * which was newly dirtied. The function will periodically check the system's
619 * dirty state and will initiate writeback if needed.
620 *
621 * On really big machines, get_writeback_state is expensive, so try to avoid
622 * calling it too often (ratelimiting). But once we're over the dirty memory
623 * limit we decrease the ratelimiting by a lot, to prevent individual processes
624 * from overshooting the limit by (ratelimit_pages) each.
625 */
fa5a734e
AM
626void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
627 unsigned long nr_pages_dirtied)
1da177e4 628{
fa5a734e
AM
629 unsigned long ratelimit;
630 unsigned long *p;
1da177e4
LT
631
632 ratelimit = ratelimit_pages;
04fbfdc1 633 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
634 ratelimit = 8;
635
636 /*
637 * Check the rate limiting. Also, we do not want to throttle real-time
638 * tasks in balance_dirty_pages(). Period.
639 */
fa5a734e 640 preempt_disable();
245b2e70 641 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
642 *p += nr_pages_dirtied;
643 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 644 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
645 *p = 0;
646 preempt_enable();
3a2e9a5a 647 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
648 return;
649 }
fa5a734e 650 preempt_enable();
1da177e4 651}
fa5a734e 652EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 653
232ea4d6 654void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 655{
364aeb28
DR
656 unsigned long background_thresh;
657 unsigned long dirty_thresh;
1da177e4
LT
658
659 for ( ; ; ) {
16c4042f 660 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
661
662 /*
663 * Boost the allowable dirty threshold a bit for page
664 * allocators so they don't get DoS'ed by heavy writers
665 */
666 dirty_thresh += dirty_thresh / 10; /* wheeee... */
667
c24f21bd
CL
668 if (global_page_state(NR_UNSTABLE_NFS) +
669 global_page_state(NR_WRITEBACK) <= dirty_thresh)
670 break;
8aa7e847 671 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
672
673 /*
674 * The caller might hold locks which can prevent IO completion
675 * or progress in the filesystem. So we cannot just sit here
676 * waiting for IO to complete.
677 */
678 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
679 break;
1da177e4
LT
680 }
681}
682
1da177e4
LT
683/*
684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685 */
686int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 687 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 688{
8d65af78 689 proc_dointvec(table, write, buffer, length, ppos);
6423104b 690 bdi_arm_supers_timer();
1da177e4
LT
691 return 0;
692}
693
c2c4986e 694#ifdef CONFIG_BLOCK
31373d09 695void laptop_mode_timer_fn(unsigned long data)
1da177e4 696{
31373d09
MG
697 struct request_queue *q = (struct request_queue *)data;
698 int nr_pages = global_page_state(NR_FILE_DIRTY) +
699 global_page_state(NR_UNSTABLE_NFS);
1da177e4 700
31373d09
MG
701 /*
702 * We want to write everything out, not just down to the dirty
703 * threshold
704 */
31373d09 705 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 706 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
707}
708
709/*
710 * We've spun up the disk and we're in laptop mode: schedule writeback
711 * of all dirty data a few seconds from now. If the flush is already scheduled
712 * then push it back - the user is still using the disk.
713 */
31373d09 714void laptop_io_completion(struct backing_dev_info *info)
1da177e4 715{
31373d09 716 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
717}
718
719/*
720 * We're in laptop mode and we've just synced. The sync's writes will have
721 * caused another writeback to be scheduled by laptop_io_completion.
722 * Nothing needs to be written back anymore, so we unschedule the writeback.
723 */
724void laptop_sync_completion(void)
725{
31373d09
MG
726 struct backing_dev_info *bdi;
727
728 rcu_read_lock();
729
730 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
731 del_timer(&bdi->laptop_mode_wb_timer);
732
733 rcu_read_unlock();
1da177e4 734}
c2c4986e 735#endif
1da177e4
LT
736
737/*
738 * If ratelimit_pages is too high then we can get into dirty-data overload
739 * if a large number of processes all perform writes at the same time.
740 * If it is too low then SMP machines will call the (expensive)
741 * get_writeback_state too often.
742 *
743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745 * thresholds before writeback cuts in.
746 *
747 * But the limit should not be set too high. Because it also controls the
748 * amount of memory which the balance_dirty_pages() caller has to write back.
749 * If this is too large then the caller will block on the IO queue all the
750 * time. So limit it to four megabytes - the balance_dirty_pages() caller
751 * will write six megabyte chunks, max.
752 */
753
2d1d43f6 754void writeback_set_ratelimit(void)
1da177e4 755{
40c99aae 756 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
757 if (ratelimit_pages < 16)
758 ratelimit_pages = 16;
759 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
760 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
761}
762
26c2143b 763static int __cpuinit
1da177e4
LT
764ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
765{
2d1d43f6 766 writeback_set_ratelimit();
aa0f0303 767 return NOTIFY_DONE;
1da177e4
LT
768}
769
74b85f37 770static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
771 .notifier_call = ratelimit_handler,
772 .next = NULL,
773};
774
775/*
dc6e29da
LT
776 * Called early on to tune the page writeback dirty limits.
777 *
778 * We used to scale dirty pages according to how total memory
779 * related to pages that could be allocated for buffers (by
780 * comparing nr_free_buffer_pages() to vm_total_pages.
781 *
782 * However, that was when we used "dirty_ratio" to scale with
783 * all memory, and we don't do that any more. "dirty_ratio"
784 * is now applied to total non-HIGHPAGE memory (by subtracting
785 * totalhigh_pages from vm_total_pages), and as such we can't
786 * get into the old insane situation any more where we had
787 * large amounts of dirty pages compared to a small amount of
788 * non-HIGHMEM memory.
789 *
790 * But we might still want to scale the dirty_ratio by how
791 * much memory the box has..
1da177e4
LT
792 */
793void __init page_writeback_init(void)
794{
04fbfdc1
PZ
795 int shift;
796
2d1d43f6 797 writeback_set_ratelimit();
1da177e4 798 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
799
800 shift = calc_period_shift();
801 prop_descriptor_init(&vm_completions, shift);
3e26c149 802 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
803}
804
f446daae
JK
805/**
806 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
807 * @mapping: address space structure to write
808 * @start: starting page index
809 * @end: ending page index (inclusive)
810 *
811 * This function scans the page range from @start to @end (inclusive) and tags
812 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
813 * that write_cache_pages (or whoever calls this function) will then use
814 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
815 * used to avoid livelocking of writeback by a process steadily creating new
816 * dirty pages in the file (thus it is important for this function to be quick
817 * so that it can tag pages faster than a dirtying process can create them).
818 */
819/*
820 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
821 */
f446daae
JK
822void tag_pages_for_writeback(struct address_space *mapping,
823 pgoff_t start, pgoff_t end)
824{
3c111a07 825#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
826 unsigned long tagged;
827
828 do {
829 spin_lock_irq(&mapping->tree_lock);
830 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
831 &start, end, WRITEBACK_TAG_BATCH,
832 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
833 spin_unlock_irq(&mapping->tree_lock);
834 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
835 cond_resched();
d5ed3a4a
JK
836 /* We check 'start' to handle wrapping when end == ~0UL */
837 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
838}
839EXPORT_SYMBOL(tag_pages_for_writeback);
840
811d736f 841/**
0ea97180 842 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
843 * @mapping: address space structure to write
844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
845 * @writepage: function called for each page
846 * @data: data passed to writepage function
811d736f 847 *
0ea97180 848 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
849 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
850 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
851 * and msync() need to guarantee that all the data which was dirty at the time
852 * the call was made get new I/O started against them. If wbc->sync_mode is
853 * WB_SYNC_ALL then we were called for data integrity and we must wait for
854 * existing IO to complete.
f446daae
JK
855 *
856 * To avoid livelocks (when other process dirties new pages), we first tag
857 * pages which should be written back with TOWRITE tag and only then start
858 * writing them. For data-integrity sync we have to be careful so that we do
859 * not miss some pages (e.g., because some other process has cleared TOWRITE
860 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
861 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 862 */
0ea97180
MS
863int write_cache_pages(struct address_space *mapping,
864 struct writeback_control *wbc, writepage_t writepage,
865 void *data)
811d736f 866{
811d736f
DH
867 int ret = 0;
868 int done = 0;
811d736f
DH
869 struct pagevec pvec;
870 int nr_pages;
31a12666 871 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
872 pgoff_t index;
873 pgoff_t end; /* Inclusive */
bd19e012 874 pgoff_t done_index;
31a12666 875 int cycled;
811d736f 876 int range_whole = 0;
f446daae 877 int tag;
811d736f 878
811d736f
DH
879 pagevec_init(&pvec, 0);
880 if (wbc->range_cyclic) {
31a12666
NP
881 writeback_index = mapping->writeback_index; /* prev offset */
882 index = writeback_index;
883 if (index == 0)
884 cycled = 1;
885 else
886 cycled = 0;
811d736f
DH
887 end = -1;
888 } else {
889 index = wbc->range_start >> PAGE_CACHE_SHIFT;
890 end = wbc->range_end >> PAGE_CACHE_SHIFT;
891 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
892 range_whole = 1;
31a12666 893 cycled = 1; /* ignore range_cyclic tests */
811d736f 894 }
6e6938b6 895 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
896 tag = PAGECACHE_TAG_TOWRITE;
897 else
898 tag = PAGECACHE_TAG_DIRTY;
811d736f 899retry:
6e6938b6 900 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 901 tag_pages_for_writeback(mapping, index, end);
bd19e012 902 done_index = index;
5a3d5c98
NP
903 while (!done && (index <= end)) {
904 int i;
905
f446daae 906 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
907 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
908 if (nr_pages == 0)
909 break;
811d736f 910
811d736f
DH
911 for (i = 0; i < nr_pages; i++) {
912 struct page *page = pvec.pages[i];
913
914 /*
d5482cdf
NP
915 * At this point, the page may be truncated or
916 * invalidated (changing page->mapping to NULL), or
917 * even swizzled back from swapper_space to tmpfs file
918 * mapping. However, page->index will not change
919 * because we have a reference on the page.
811d736f 920 */
d5482cdf
NP
921 if (page->index > end) {
922 /*
923 * can't be range_cyclic (1st pass) because
924 * end == -1 in that case.
925 */
926 done = 1;
927 break;
928 }
929
cf15b07c 930 done_index = page->index;
d5482cdf 931
811d736f
DH
932 lock_page(page);
933
5a3d5c98
NP
934 /*
935 * Page truncated or invalidated. We can freely skip it
936 * then, even for data integrity operations: the page
937 * has disappeared concurrently, so there could be no
938 * real expectation of this data interity operation
939 * even if there is now a new, dirty page at the same
940 * pagecache address.
941 */
811d736f 942 if (unlikely(page->mapping != mapping)) {
5a3d5c98 943continue_unlock:
811d736f
DH
944 unlock_page(page);
945 continue;
946 }
947
515f4a03
NP
948 if (!PageDirty(page)) {
949 /* someone wrote it for us */
950 goto continue_unlock;
951 }
952
953 if (PageWriteback(page)) {
954 if (wbc->sync_mode != WB_SYNC_NONE)
955 wait_on_page_writeback(page);
956 else
957 goto continue_unlock;
958 }
811d736f 959
515f4a03
NP
960 BUG_ON(PageWriteback(page));
961 if (!clear_page_dirty_for_io(page))
5a3d5c98 962 goto continue_unlock;
811d736f 963
9e094383 964 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 965 ret = (*writepage)(page, wbc, data);
00266770
NP
966 if (unlikely(ret)) {
967 if (ret == AOP_WRITEPAGE_ACTIVATE) {
968 unlock_page(page);
969 ret = 0;
970 } else {
971 /*
972 * done_index is set past this page,
973 * so media errors will not choke
974 * background writeout for the entire
975 * file. This has consequences for
976 * range_cyclic semantics (ie. it may
977 * not be suitable for data integrity
978 * writeout).
979 */
cf15b07c 980 done_index = page->index + 1;
00266770
NP
981 done = 1;
982 break;
983 }
0b564927 984 }
00266770 985
546a1924
DC
986 /*
987 * We stop writing back only if we are not doing
988 * integrity sync. In case of integrity sync we have to
989 * keep going until we have written all the pages
990 * we tagged for writeback prior to entering this loop.
991 */
992 if (--wbc->nr_to_write <= 0 &&
993 wbc->sync_mode == WB_SYNC_NONE) {
994 done = 1;
995 break;
05fe478d 996 }
811d736f
DH
997 }
998 pagevec_release(&pvec);
999 cond_resched();
1000 }
3a4c6800 1001 if (!cycled && !done) {
811d736f 1002 /*
31a12666 1003 * range_cyclic:
811d736f
DH
1004 * We hit the last page and there is more work to be done: wrap
1005 * back to the start of the file
1006 */
31a12666 1007 cycled = 1;
811d736f 1008 index = 0;
31a12666 1009 end = writeback_index - 1;
811d736f
DH
1010 goto retry;
1011 }
0b564927
DC
1012 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1013 mapping->writeback_index = done_index;
06d6cf69 1014
811d736f
DH
1015 return ret;
1016}
0ea97180
MS
1017EXPORT_SYMBOL(write_cache_pages);
1018
1019/*
1020 * Function used by generic_writepages to call the real writepage
1021 * function and set the mapping flags on error
1022 */
1023static int __writepage(struct page *page, struct writeback_control *wbc,
1024 void *data)
1025{
1026 struct address_space *mapping = data;
1027 int ret = mapping->a_ops->writepage(page, wbc);
1028 mapping_set_error(mapping, ret);
1029 return ret;
1030}
1031
1032/**
1033 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1034 * @mapping: address space structure to write
1035 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1036 *
1037 * This is a library function, which implements the writepages()
1038 * address_space_operation.
1039 */
1040int generic_writepages(struct address_space *mapping,
1041 struct writeback_control *wbc)
1042{
9b6096a6
SL
1043 struct blk_plug plug;
1044 int ret;
1045
0ea97180
MS
1046 /* deal with chardevs and other special file */
1047 if (!mapping->a_ops->writepage)
1048 return 0;
1049
9b6096a6
SL
1050 blk_start_plug(&plug);
1051 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1052 blk_finish_plug(&plug);
1053 return ret;
0ea97180 1054}
811d736f
DH
1055
1056EXPORT_SYMBOL(generic_writepages);
1057
1da177e4
LT
1058int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1059{
22905f77
AM
1060 int ret;
1061
1da177e4
LT
1062 if (wbc->nr_to_write <= 0)
1063 return 0;
1064 if (mapping->a_ops->writepages)
d08b3851 1065 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1066 else
1067 ret = generic_writepages(mapping, wbc);
22905f77 1068 return ret;
1da177e4
LT
1069}
1070
1071/**
1072 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1073 * @page: the page to write
1074 * @wait: if true, wait on writeout
1da177e4
LT
1075 *
1076 * The page must be locked by the caller and will be unlocked upon return.
1077 *
1078 * write_one_page() returns a negative error code if I/O failed.
1079 */
1080int write_one_page(struct page *page, int wait)
1081{
1082 struct address_space *mapping = page->mapping;
1083 int ret = 0;
1084 struct writeback_control wbc = {
1085 .sync_mode = WB_SYNC_ALL,
1086 .nr_to_write = 1,
1087 };
1088
1089 BUG_ON(!PageLocked(page));
1090
1091 if (wait)
1092 wait_on_page_writeback(page);
1093
1094 if (clear_page_dirty_for_io(page)) {
1095 page_cache_get(page);
1096 ret = mapping->a_ops->writepage(page, &wbc);
1097 if (ret == 0 && wait) {
1098 wait_on_page_writeback(page);
1099 if (PageError(page))
1100 ret = -EIO;
1101 }
1102 page_cache_release(page);
1103 } else {
1104 unlock_page(page);
1105 }
1106 return ret;
1107}
1108EXPORT_SYMBOL(write_one_page);
1109
76719325
KC
1110/*
1111 * For address_spaces which do not use buffers nor write back.
1112 */
1113int __set_page_dirty_no_writeback(struct page *page)
1114{
1115 if (!PageDirty(page))
c3f0da63 1116 return !TestSetPageDirty(page);
76719325
KC
1117 return 0;
1118}
1119
e3a7cca1
ES
1120/*
1121 * Helper function for set_page_dirty family.
1122 * NOTE: This relies on being atomic wrt interrupts.
1123 */
1124void account_page_dirtied(struct page *page, struct address_space *mapping)
1125{
1126 if (mapping_cap_account_dirty(mapping)) {
1127 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1128 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1
ES
1129 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1130 task_dirty_inc(current);
1131 task_io_account_write(PAGE_CACHE_SIZE);
1132 }
1133}
679ceace 1134EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1135
f629d1c9
MR
1136/*
1137 * Helper function for set_page_writeback family.
1138 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1139 * wrt interrupts.
1140 */
1141void account_page_writeback(struct page *page)
1142{
1143 inc_zone_page_state(page, NR_WRITEBACK);
ea941f0e 1144 inc_zone_page_state(page, NR_WRITTEN);
f629d1c9
MR
1145}
1146EXPORT_SYMBOL(account_page_writeback);
1147
1da177e4
LT
1148/*
1149 * For address_spaces which do not use buffers. Just tag the page as dirty in
1150 * its radix tree.
1151 *
1152 * This is also used when a single buffer is being dirtied: we want to set the
1153 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1154 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1155 *
1156 * Most callers have locked the page, which pins the address_space in memory.
1157 * But zap_pte_range() does not lock the page, however in that case the
1158 * mapping is pinned by the vma's ->vm_file reference.
1159 *
1160 * We take care to handle the case where the page was truncated from the
183ff22b 1161 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1162 */
1163int __set_page_dirty_nobuffers(struct page *page)
1164{
1da177e4
LT
1165 if (!TestSetPageDirty(page)) {
1166 struct address_space *mapping = page_mapping(page);
1167 struct address_space *mapping2;
1168
8c08540f
AM
1169 if (!mapping)
1170 return 1;
1171
19fd6231 1172 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1173 mapping2 = page_mapping(page);
1174 if (mapping2) { /* Race with truncate? */
1175 BUG_ON(mapping2 != mapping);
787d2214 1176 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1177 account_page_dirtied(page, mapping);
8c08540f
AM
1178 radix_tree_tag_set(&mapping->page_tree,
1179 page_index(page), PAGECACHE_TAG_DIRTY);
1180 }
19fd6231 1181 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1182 if (mapping->host) {
1183 /* !PageAnon && !swapper_space */
1184 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1185 }
4741c9fd 1186 return 1;
1da177e4 1187 }
4741c9fd 1188 return 0;
1da177e4
LT
1189}
1190EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1191
1192/*
1193 * When a writepage implementation decides that it doesn't want to write this
1194 * page for some reason, it should redirty the locked page via
1195 * redirty_page_for_writepage() and it should then unlock the page and return 0
1196 */
1197int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1198{
1199 wbc->pages_skipped++;
1200 return __set_page_dirty_nobuffers(page);
1201}
1202EXPORT_SYMBOL(redirty_page_for_writepage);
1203
1204/*
6746aff7
WF
1205 * Dirty a page.
1206 *
1207 * For pages with a mapping this should be done under the page lock
1208 * for the benefit of asynchronous memory errors who prefer a consistent
1209 * dirty state. This rule can be broken in some special cases,
1210 * but should be better not to.
1211 *
1da177e4
LT
1212 * If the mapping doesn't provide a set_page_dirty a_op, then
1213 * just fall through and assume that it wants buffer_heads.
1214 */
1cf6e7d8 1215int set_page_dirty(struct page *page)
1da177e4
LT
1216{
1217 struct address_space *mapping = page_mapping(page);
1218
1219 if (likely(mapping)) {
1220 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1221 /*
1222 * readahead/lru_deactivate_page could remain
1223 * PG_readahead/PG_reclaim due to race with end_page_writeback
1224 * About readahead, if the page is written, the flags would be
1225 * reset. So no problem.
1226 * About lru_deactivate_page, if the page is redirty, the flag
1227 * will be reset. So no problem. but if the page is used by readahead
1228 * it will confuse readahead and make it restart the size rampup
1229 * process. But it's a trivial problem.
1230 */
1231 ClearPageReclaim(page);
9361401e
DH
1232#ifdef CONFIG_BLOCK
1233 if (!spd)
1234 spd = __set_page_dirty_buffers;
1235#endif
1236 return (*spd)(page);
1da177e4 1237 }
4741c9fd
AM
1238 if (!PageDirty(page)) {
1239 if (!TestSetPageDirty(page))
1240 return 1;
1241 }
1da177e4
LT
1242 return 0;
1243}
1244EXPORT_SYMBOL(set_page_dirty);
1245
1246/*
1247 * set_page_dirty() is racy if the caller has no reference against
1248 * page->mapping->host, and if the page is unlocked. This is because another
1249 * CPU could truncate the page off the mapping and then free the mapping.
1250 *
1251 * Usually, the page _is_ locked, or the caller is a user-space process which
1252 * holds a reference on the inode by having an open file.
1253 *
1254 * In other cases, the page should be locked before running set_page_dirty().
1255 */
1256int set_page_dirty_lock(struct page *page)
1257{
1258 int ret;
1259
7eaceacc 1260 lock_page(page);
1da177e4
LT
1261 ret = set_page_dirty(page);
1262 unlock_page(page);
1263 return ret;
1264}
1265EXPORT_SYMBOL(set_page_dirty_lock);
1266
1da177e4
LT
1267/*
1268 * Clear a page's dirty flag, while caring for dirty memory accounting.
1269 * Returns true if the page was previously dirty.
1270 *
1271 * This is for preparing to put the page under writeout. We leave the page
1272 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1273 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1274 * implementation will run either set_page_writeback() or set_page_dirty(),
1275 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1276 * back into sync.
1277 *
1278 * This incoherency between the page's dirty flag and radix-tree tag is
1279 * unfortunate, but it only exists while the page is locked.
1280 */
1281int clear_page_dirty_for_io(struct page *page)
1282{
1283 struct address_space *mapping = page_mapping(page);
1284
79352894
NP
1285 BUG_ON(!PageLocked(page));
1286
7658cc28
LT
1287 if (mapping && mapping_cap_account_dirty(mapping)) {
1288 /*
1289 * Yes, Virginia, this is indeed insane.
1290 *
1291 * We use this sequence to make sure that
1292 * (a) we account for dirty stats properly
1293 * (b) we tell the low-level filesystem to
1294 * mark the whole page dirty if it was
1295 * dirty in a pagetable. Only to then
1296 * (c) clean the page again and return 1 to
1297 * cause the writeback.
1298 *
1299 * This way we avoid all nasty races with the
1300 * dirty bit in multiple places and clearing
1301 * them concurrently from different threads.
1302 *
1303 * Note! Normally the "set_page_dirty(page)"
1304 * has no effect on the actual dirty bit - since
1305 * that will already usually be set. But we
1306 * need the side effects, and it can help us
1307 * avoid races.
1308 *
1309 * We basically use the page "master dirty bit"
1310 * as a serialization point for all the different
1311 * threads doing their things.
7658cc28
LT
1312 */
1313 if (page_mkclean(page))
1314 set_page_dirty(page);
79352894
NP
1315 /*
1316 * We carefully synchronise fault handlers against
1317 * installing a dirty pte and marking the page dirty
1318 * at this point. We do this by having them hold the
1319 * page lock at some point after installing their
1320 * pte, but before marking the page dirty.
1321 * Pages are always locked coming in here, so we get
1322 * the desired exclusion. See mm/memory.c:do_wp_page()
1323 * for more comments.
1324 */
7658cc28 1325 if (TestClearPageDirty(page)) {
8c08540f 1326 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1327 dec_bdi_stat(mapping->backing_dev_info,
1328 BDI_RECLAIMABLE);
7658cc28 1329 return 1;
1da177e4 1330 }
7658cc28 1331 return 0;
1da177e4 1332 }
7658cc28 1333 return TestClearPageDirty(page);
1da177e4 1334}
58bb01a9 1335EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1336
1337int test_clear_page_writeback(struct page *page)
1338{
1339 struct address_space *mapping = page_mapping(page);
1340 int ret;
1341
1342 if (mapping) {
69cb51d1 1343 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1344 unsigned long flags;
1345
19fd6231 1346 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1347 ret = TestClearPageWriteback(page);
69cb51d1 1348 if (ret) {
1da177e4
LT
1349 radix_tree_tag_clear(&mapping->page_tree,
1350 page_index(page),
1351 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1352 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1353 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1354 __bdi_writeout_inc(bdi);
1355 }
69cb51d1 1356 }
19fd6231 1357 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1358 } else {
1359 ret = TestClearPageWriteback(page);
1360 }
d688abf5
AM
1361 if (ret)
1362 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1363 return ret;
1364}
1365
1366int test_set_page_writeback(struct page *page)
1367{
1368 struct address_space *mapping = page_mapping(page);
1369 int ret;
1370
1371 if (mapping) {
69cb51d1 1372 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1373 unsigned long flags;
1374
19fd6231 1375 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1376 ret = TestSetPageWriteback(page);
69cb51d1 1377 if (!ret) {
1da177e4
LT
1378 radix_tree_tag_set(&mapping->page_tree,
1379 page_index(page),
1380 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1381 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1382 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1383 }
1da177e4
LT
1384 if (!PageDirty(page))
1385 radix_tree_tag_clear(&mapping->page_tree,
1386 page_index(page),
1387 PAGECACHE_TAG_DIRTY);
f446daae
JK
1388 radix_tree_tag_clear(&mapping->page_tree,
1389 page_index(page),
1390 PAGECACHE_TAG_TOWRITE);
19fd6231 1391 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1392 } else {
1393 ret = TestSetPageWriteback(page);
1394 }
d688abf5 1395 if (!ret)
f629d1c9 1396 account_page_writeback(page);
1da177e4
LT
1397 return ret;
1398
1399}
1400EXPORT_SYMBOL(test_set_page_writeback);
1401
1402/*
00128188 1403 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1404 * passed tag.
1405 */
1406int mapping_tagged(struct address_space *mapping, int tag)
1407{
1da177e4 1408 int ret;
00128188 1409 rcu_read_lock();
1da177e4 1410 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1411 rcu_read_unlock();
1da177e4
LT
1412 return ret;
1413}
1414EXPORT_SYMBOL(mapping_tagged);