writeback: dirty rate control
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
6c14ae1e
WF
49#define RATELIMIT_CALC_SHIFT 10
50
1da177e4
LT
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
1da177e4
LT
57/*
58 * When balance_dirty_pages decides that the caller needs to perform some
59 * non-background writeback, this is how many pages it will attempt to write.
3a2e9a5a 60 * It should be somewhat larger than dirtied pages to ensure that reasonably
1da177e4
LT
61 * large amounts of I/O are submitted.
62 */
3a2e9a5a 63static inline long sync_writeback_pages(unsigned long dirtied)
1da177e4 64{
3a2e9a5a
WF
65 if (dirtied < ratelimit_pages)
66 dirtied = ratelimit_pages;
67
68 return dirtied + dirtied / 2;
1da177e4
LT
69}
70
71/* The following parameters are exported via /proc/sys/vm */
72
73/*
5b0830cb 74 * Start background writeback (via writeback threads) at this percentage
1da177e4 75 */
1b5e62b4 76int dirty_background_ratio = 10;
1da177e4 77
2da02997
DR
78/*
79 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80 * dirty_background_ratio * the amount of dirtyable memory
81 */
82unsigned long dirty_background_bytes;
83
195cf453
BG
84/*
85 * free highmem will not be subtracted from the total free memory
86 * for calculating free ratios if vm_highmem_is_dirtyable is true
87 */
88int vm_highmem_is_dirtyable;
89
1da177e4
LT
90/*
91 * The generator of dirty data starts writeback at this percentage
92 */
1b5e62b4 93int vm_dirty_ratio = 20;
1da177e4 94
2da02997
DR
95/*
96 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97 * vm_dirty_ratio * the amount of dirtyable memory
98 */
99unsigned long vm_dirty_bytes;
100
1da177e4 101/*
704503d8 102 * The interval between `kupdate'-style writebacks
1da177e4 103 */
22ef37ee 104unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
105
106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
c42843f2 126unsigned long global_dirty_limit;
1da177e4 127
04fbfdc1
PZ
128/*
129 * Scale the writeback cache size proportional to the relative writeout speeds.
130 *
131 * We do this by keeping a floating proportion between BDIs, based on page
132 * writeback completions [end_page_writeback()]. Those devices that write out
133 * pages fastest will get the larger share, while the slower will get a smaller
134 * share.
135 *
136 * We use page writeout completions because we are interested in getting rid of
137 * dirty pages. Having them written out is the primary goal.
138 *
139 * We introduce a concept of time, a period over which we measure these events,
140 * because demand can/will vary over time. The length of this period itself is
141 * measured in page writeback completions.
142 *
143 */
144static struct prop_descriptor vm_completions;
3e26c149 145static struct prop_descriptor vm_dirties;
04fbfdc1 146
04fbfdc1
PZ
147/*
148 * couple the period to the dirty_ratio:
149 *
150 * period/2 ~ roundup_pow_of_two(dirty limit)
151 */
152static int calc_period_shift(void)
153{
154 unsigned long dirty_total;
155
2da02997
DR
156 if (vm_dirty_bytes)
157 dirty_total = vm_dirty_bytes / PAGE_SIZE;
158 else
159 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
160 100;
04fbfdc1
PZ
161 return 2 + ilog2(dirty_total - 1);
162}
163
164/*
2da02997 165 * update the period when the dirty threshold changes.
04fbfdc1 166 */
2da02997
DR
167static void update_completion_period(void)
168{
169 int shift = calc_period_shift();
170 prop_change_shift(&vm_completions, shift);
171 prop_change_shift(&vm_dirties, shift);
172}
173
174int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 175 void __user *buffer, size_t *lenp,
2da02997
DR
176 loff_t *ppos)
177{
178 int ret;
179
8d65af78 180 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
181 if (ret == 0 && write)
182 dirty_background_bytes = 0;
183 return ret;
184}
185
186int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 187 void __user *buffer, size_t *lenp,
2da02997
DR
188 loff_t *ppos)
189{
190 int ret;
191
8d65af78 192 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
193 if (ret == 0 && write)
194 dirty_background_ratio = 0;
195 return ret;
196}
197
04fbfdc1 198int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 199 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
200 loff_t *ppos)
201{
202 int old_ratio = vm_dirty_ratio;
2da02997
DR
203 int ret;
204
8d65af78 205 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 206 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
207 update_completion_period();
208 vm_dirty_bytes = 0;
209 }
210 return ret;
211}
212
213
214int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 215 void __user *buffer, size_t *lenp,
2da02997
DR
216 loff_t *ppos)
217{
fc3501d4 218 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
219 int ret;
220
8d65af78 221 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
222 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
223 update_completion_period();
224 vm_dirty_ratio = 0;
04fbfdc1
PZ
225 }
226 return ret;
227}
228
229/*
230 * Increment the BDI's writeout completion count and the global writeout
231 * completion count. Called from test_clear_page_writeback().
232 */
233static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
234{
f7d2b1ec 235 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
236 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
237 bdi->max_prop_frac);
04fbfdc1
PZ
238}
239
dd5656e5
MS
240void bdi_writeout_inc(struct backing_dev_info *bdi)
241{
242 unsigned long flags;
243
244 local_irq_save(flags);
245 __bdi_writeout_inc(bdi);
246 local_irq_restore(flags);
247}
248EXPORT_SYMBOL_GPL(bdi_writeout_inc);
249
1cf6e7d8 250void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
251{
252 prop_inc_single(&vm_dirties, &tsk->dirties);
253}
254
04fbfdc1
PZ
255/*
256 * Obtain an accurate fraction of the BDI's portion.
257 */
258static void bdi_writeout_fraction(struct backing_dev_info *bdi,
259 long *numerator, long *denominator)
260{
3efaf0fa 261 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 262 numerator, denominator);
04fbfdc1
PZ
263}
264
3e26c149
PZ
265static inline void task_dirties_fraction(struct task_struct *tsk,
266 long *numerator, long *denominator)
267{
268 prop_fraction_single(&vm_dirties, &tsk->dirties,
269 numerator, denominator);
270}
271
272/*
1babe183 273 * task_dirty_limit - scale down dirty throttling threshold for one task
3e26c149
PZ
274 *
275 * task specific dirty limit:
276 *
277 * dirty -= (dirty/8) * p_{t}
1babe183
WF
278 *
279 * To protect light/slow dirtying tasks from heavier/fast ones, we start
280 * throttling individual tasks before reaching the bdi dirty limit.
281 * Relatively low thresholds will be allocated to heavy dirtiers. So when
282 * dirty pages grow large, heavy dirtiers will be throttled first, which will
283 * effectively curb the growth of dirty pages. Light dirtiers with high enough
284 * dirty threshold may never get throttled.
3e26c149 285 */
bcff25fc 286#define TASK_LIMIT_FRACTION 8
16c4042f
WF
287static unsigned long task_dirty_limit(struct task_struct *tsk,
288 unsigned long bdi_dirty)
3e26c149
PZ
289{
290 long numerator, denominator;
16c4042f 291 unsigned long dirty = bdi_dirty;
bcff25fc 292 u64 inv = dirty / TASK_LIMIT_FRACTION;
3e26c149
PZ
293
294 task_dirties_fraction(tsk, &numerator, &denominator);
295 inv *= numerator;
296 do_div(inv, denominator);
297
298 dirty -= inv;
3e26c149 299
16c4042f 300 return max(dirty, bdi_dirty/2);
3e26c149
PZ
301}
302
bcff25fc
JK
303/* Minimum limit for any task */
304static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
305{
306 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
307}
308
189d3c4a
PZ
309/*
310 *
311 */
189d3c4a
PZ
312static unsigned int bdi_min_ratio;
313
314int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315{
316 int ret = 0;
189d3c4a 317
cfc4ba53 318 spin_lock_bh(&bdi_lock);
a42dde04 319 if (min_ratio > bdi->max_ratio) {
189d3c4a 320 ret = -EINVAL;
a42dde04
PZ
321 } else {
322 min_ratio -= bdi->min_ratio;
323 if (bdi_min_ratio + min_ratio < 100) {
324 bdi_min_ratio += min_ratio;
325 bdi->min_ratio += min_ratio;
326 } else {
327 ret = -EINVAL;
328 }
329 }
cfc4ba53 330 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
331
332 return ret;
333}
334
335int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336{
a42dde04
PZ
337 int ret = 0;
338
339 if (max_ratio > 100)
340 return -EINVAL;
341
cfc4ba53 342 spin_lock_bh(&bdi_lock);
a42dde04
PZ
343 if (bdi->min_ratio > max_ratio) {
344 ret = -EINVAL;
345 } else {
346 bdi->max_ratio = max_ratio;
347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 }
cfc4ba53 349 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
350
351 return ret;
352}
a42dde04 353EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 354
1da177e4
LT
355/*
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
358 *
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
363 *
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365 *
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
368 *
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
371 */
1b424464
CL
372
373static unsigned long highmem_dirtyable_memory(unsigned long total)
374{
375#ifdef CONFIG_HIGHMEM
376 int node;
377 unsigned long x = 0;
378
37b07e41 379 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
380 struct zone *z =
381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
adea02a1
WF
383 x += zone_page_state(z, NR_FREE_PAGES) +
384 zone_reclaimable_pages(z);
1b424464
CL
385 }
386 /*
387 * Make sure that the number of highmem pages is never larger
388 * than the number of the total dirtyable memory. This can only
389 * occur in very strange VM situations but we want to make sure
390 * that this does not occur.
391 */
392 return min(x, total);
393#else
394 return 0;
395#endif
396}
397
3eefae99
SR
398/**
399 * determine_dirtyable_memory - amount of memory that may be used
400 *
401 * Returns the numebr of pages that can currently be freed and used
402 * by the kernel for direct mappings.
403 */
404unsigned long determine_dirtyable_memory(void)
1b424464
CL
405{
406 unsigned long x;
407
adea02a1 408 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
409
410 if (!vm_highmem_is_dirtyable)
411 x -= highmem_dirtyable_memory(x);
412
1b424464
CL
413 return x + 1; /* Ensure that we never return 0 */
414}
415
6c14ae1e
WF
416static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417 unsigned long bg_thresh)
418{
419 return (thresh + bg_thresh) / 2;
420}
421
ffd1f609
WF
422static unsigned long hard_dirty_limit(unsigned long thresh)
423{
424 return max(thresh, global_dirty_limit);
425}
426
03ab450f 427/*
1babe183
WF
428 * global_dirty_limits - background-writeback and dirty-throttling thresholds
429 *
430 * Calculate the dirty thresholds based on sysctl parameters
431 * - vm.dirty_background_ratio or vm.dirty_background_bytes
432 * - vm.dirty_ratio or vm.dirty_bytes
433 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 434 * real-time tasks.
1babe183 435 */
16c4042f 436void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 437{
364aeb28
DR
438 unsigned long background;
439 unsigned long dirty;
240c879f 440 unsigned long uninitialized_var(available_memory);
1da177e4
LT
441 struct task_struct *tsk;
442
240c879f
MK
443 if (!vm_dirty_bytes || !dirty_background_bytes)
444 available_memory = determine_dirtyable_memory();
445
2da02997
DR
446 if (vm_dirty_bytes)
447 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
448 else
449 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 450
2da02997
DR
451 if (dirty_background_bytes)
452 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
453 else
454 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 455
2da02997
DR
456 if (background >= dirty)
457 background = dirty / 2;
1da177e4
LT
458 tsk = current;
459 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
460 background += background / 4;
461 dirty += dirty / 4;
462 }
463 *pbackground = background;
464 *pdirty = dirty;
e1cbe236 465 trace_global_dirty_state(background, dirty);
16c4042f 466}
04fbfdc1 467
6f718656 468/**
1babe183 469 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
470 * @bdi: the backing_dev_info to query
471 * @dirty: global dirty limit in pages
1babe183 472 *
6f718656
WF
473 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
474 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
475 * And the "limit" in the name is not seriously taken as hard limit in
476 * balance_dirty_pages().
1babe183 477 *
6f718656 478 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
479 * - starving fast devices
480 * - piling up dirty pages (that will take long time to sync) on slow devices
481 *
482 * The bdi's share of dirty limit will be adapting to its throughput and
483 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
484 */
485unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
486{
487 u64 bdi_dirty;
488 long numerator, denominator;
04fbfdc1 489
16c4042f
WF
490 /*
491 * Calculate this BDI's share of the dirty ratio.
492 */
493 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 494
16c4042f
WF
495 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
496 bdi_dirty *= numerator;
497 do_div(bdi_dirty, denominator);
04fbfdc1 498
16c4042f
WF
499 bdi_dirty += (dirty * bdi->min_ratio) / 100;
500 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
501 bdi_dirty = dirty * bdi->max_ratio / 100;
502
503 return bdi_dirty;
1da177e4
LT
504}
505
6c14ae1e
WF
506/*
507 * Dirty position control.
508 *
509 * (o) global/bdi setpoints
510 *
511 * We want the dirty pages be balanced around the global/bdi setpoints.
512 * When the number of dirty pages is higher/lower than the setpoint, the
513 * dirty position control ratio (and hence task dirty ratelimit) will be
514 * decreased/increased to bring the dirty pages back to the setpoint.
515 *
516 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517 *
518 * if (dirty < setpoint) scale up pos_ratio
519 * if (dirty > setpoint) scale down pos_ratio
520 *
521 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
522 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523 *
524 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525 *
526 * (o) global control line
527 *
528 * ^ pos_ratio
529 * |
530 * | |<===== global dirty control scope ======>|
531 * 2.0 .............*
532 * | .*
533 * | . *
534 * | . *
535 * | . *
536 * | . *
537 * | . *
538 * 1.0 ................................*
539 * | . . *
540 * | . . *
541 * | . . *
542 * | . . *
543 * | . . *
544 * 0 +------------.------------------.----------------------*------------->
545 * freerun^ setpoint^ limit^ dirty pages
546 *
547 * (o) bdi control line
548 *
549 * ^ pos_ratio
550 * |
551 * | *
552 * | *
553 * | *
554 * | *
555 * | * |<=========== span ============>|
556 * 1.0 .......................*
557 * | . *
558 * | . *
559 * | . *
560 * | . *
561 * | . *
562 * | . *
563 * | . *
564 * | . *
565 * | . *
566 * | . *
567 * | . *
568 * 1/4 ...............................................* * * * * * * * * * * *
569 * | . .
570 * | . .
571 * | . .
572 * 0 +----------------------.-------------------------------.------------->
573 * bdi_setpoint^ x_intercept^
574 *
575 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576 * be smoothly throttled down to normal if it starts high in situations like
577 * - start writing to a slow SD card and a fast disk at the same time. The SD
578 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
579 * - the bdi dirty thresh drops quickly due to change of JBOD workload
580 */
581static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582 unsigned long thresh,
583 unsigned long bg_thresh,
584 unsigned long dirty,
585 unsigned long bdi_thresh,
586 unsigned long bdi_dirty)
587{
588 unsigned long write_bw = bdi->avg_write_bandwidth;
589 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590 unsigned long limit = hard_dirty_limit(thresh);
591 unsigned long x_intercept;
592 unsigned long setpoint; /* dirty pages' target balance point */
593 unsigned long bdi_setpoint;
594 unsigned long span;
595 long long pos_ratio; /* for scaling up/down the rate limit */
596 long x;
597
598 if (unlikely(dirty >= limit))
599 return 0;
600
601 /*
602 * global setpoint
603 *
604 * setpoint - dirty 3
605 * f(dirty) := 1.0 + (----------------)
606 * limit - setpoint
607 *
608 * it's a 3rd order polynomial that subjects to
609 *
610 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
611 * (2) f(setpoint) = 1.0 => the balance point
612 * (3) f(limit) = 0 => the hard limit
613 * (4) df/dx <= 0 => negative feedback control
614 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615 * => fast response on large errors; small oscillation near setpoint
616 */
617 setpoint = (freerun + limit) / 2;
618 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619 limit - setpoint + 1);
620 pos_ratio = x;
621 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625 /*
626 * We have computed basic pos_ratio above based on global situation. If
627 * the bdi is over/under its share of dirty pages, we want to scale
628 * pos_ratio further down/up. That is done by the following mechanism.
629 */
630
631 /*
632 * bdi setpoint
633 *
634 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635 *
636 * x_intercept - bdi_dirty
637 * := --------------------------
638 * x_intercept - bdi_setpoint
639 *
640 * The main bdi control line is a linear function that subjects to
641 *
642 * (1) f(bdi_setpoint) = 1.0
643 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
644 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
645 *
646 * For single bdi case, the dirty pages are observed to fluctuate
647 * regularly within range
648 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649 * for various filesystems, where (2) can yield in a reasonable 12.5%
650 * fluctuation range for pos_ratio.
651 *
652 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653 * own size, so move the slope over accordingly and choose a slope that
654 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655 */
656 if (unlikely(bdi_thresh > thresh))
657 bdi_thresh = thresh;
658 /*
659 * scale global setpoint to bdi's:
660 * bdi_setpoint = setpoint * bdi_thresh / thresh
661 */
662 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663 bdi_setpoint = setpoint * (u64)x >> 16;
664 /*
665 * Use span=(8*write_bw) in single bdi case as indicated by
666 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667 *
668 * bdi_thresh thresh - bdi_thresh
669 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670 * thresh thresh
671 */
672 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673 x_intercept = bdi_setpoint + span;
674
675 if (bdi_dirty < x_intercept - span / 4) {
676 pos_ratio *= x_intercept - bdi_dirty;
677 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678 } else
679 pos_ratio /= 4;
680
681 return pos_ratio;
682}
683
e98be2d5
WF
684static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
685 unsigned long elapsed,
686 unsigned long written)
687{
688 const unsigned long period = roundup_pow_of_two(3 * HZ);
689 unsigned long avg = bdi->avg_write_bandwidth;
690 unsigned long old = bdi->write_bandwidth;
691 u64 bw;
692
693 /*
694 * bw = written * HZ / elapsed
695 *
696 * bw * elapsed + write_bandwidth * (period - elapsed)
697 * write_bandwidth = ---------------------------------------------------
698 * period
699 */
700 bw = written - bdi->written_stamp;
701 bw *= HZ;
702 if (unlikely(elapsed > period)) {
703 do_div(bw, elapsed);
704 avg = bw;
705 goto out;
706 }
707 bw += (u64)bdi->write_bandwidth * (period - elapsed);
708 bw >>= ilog2(period);
709
710 /*
711 * one more level of smoothing, for filtering out sudden spikes
712 */
713 if (avg > old && old >= (unsigned long)bw)
714 avg -= (avg - old) >> 3;
715
716 if (avg < old && old <= (unsigned long)bw)
717 avg += (old - avg) >> 3;
718
719out:
720 bdi->write_bandwidth = bw;
721 bdi->avg_write_bandwidth = avg;
722}
723
c42843f2
WF
724/*
725 * The global dirtyable memory and dirty threshold could be suddenly knocked
726 * down by a large amount (eg. on the startup of KVM in a swapless system).
727 * This may throw the system into deep dirty exceeded state and throttle
728 * heavy/light dirtiers alike. To retain good responsiveness, maintain
729 * global_dirty_limit for tracking slowly down to the knocked down dirty
730 * threshold.
731 */
732static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
733{
734 unsigned long limit = global_dirty_limit;
735
736 /*
737 * Follow up in one step.
738 */
739 if (limit < thresh) {
740 limit = thresh;
741 goto update;
742 }
743
744 /*
745 * Follow down slowly. Use the higher one as the target, because thresh
746 * may drop below dirty. This is exactly the reason to introduce
747 * global_dirty_limit which is guaranteed to lie above the dirty pages.
748 */
749 thresh = max(thresh, dirty);
750 if (limit > thresh) {
751 limit -= (limit - thresh) >> 5;
752 goto update;
753 }
754 return;
755update:
756 global_dirty_limit = limit;
757}
758
759static void global_update_bandwidth(unsigned long thresh,
760 unsigned long dirty,
761 unsigned long now)
762{
763 static DEFINE_SPINLOCK(dirty_lock);
764 static unsigned long update_time;
765
766 /*
767 * check locklessly first to optimize away locking for the most time
768 */
769 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
770 return;
771
772 spin_lock(&dirty_lock);
773 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
774 update_dirty_limit(thresh, dirty);
775 update_time = now;
776 }
777 spin_unlock(&dirty_lock);
778}
779
be3ffa27
WF
780/*
781 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
782 *
783 * Normal bdi tasks will be curbed at or below it in long term.
784 * Obviously it should be around (write_bw / N) when there are N dd tasks.
785 */
786static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
787 unsigned long thresh,
788 unsigned long bg_thresh,
789 unsigned long dirty,
790 unsigned long bdi_thresh,
791 unsigned long bdi_dirty,
792 unsigned long dirtied,
793 unsigned long elapsed)
794{
795 unsigned long write_bw = bdi->avg_write_bandwidth;
796 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
797 unsigned long dirty_rate;
798 unsigned long task_ratelimit;
799 unsigned long balanced_dirty_ratelimit;
800 unsigned long pos_ratio;
801
802 /*
803 * The dirty rate will match the writeout rate in long term, except
804 * when dirty pages are truncated by userspace or re-dirtied by FS.
805 */
806 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
807
808 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
809 bdi_thresh, bdi_dirty);
810 /*
811 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
812 */
813 task_ratelimit = (u64)dirty_ratelimit *
814 pos_ratio >> RATELIMIT_CALC_SHIFT;
815 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
816
817 /*
818 * A linear estimation of the "balanced" throttle rate. The theory is,
819 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
820 * dirty_rate will be measured to be (N * task_ratelimit). So the below
821 * formula will yield the balanced rate limit (write_bw / N).
822 *
823 * Note that the expanded form is not a pure rate feedback:
824 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
825 * but also takes pos_ratio into account:
826 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
827 *
828 * (1) is not realistic because pos_ratio also takes part in balancing
829 * the dirty rate. Consider the state
830 * pos_ratio = 0.5 (3)
831 * rate = 2 * (write_bw / N) (4)
832 * If (1) is used, it will stuck in that state! Because each dd will
833 * be throttled at
834 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
835 * yielding
836 * dirty_rate = N * task_ratelimit = write_bw (6)
837 * put (6) into (1) we get
838 * rate_(i+1) = rate_(i) (7)
839 *
840 * So we end up using (2) to always keep
841 * rate_(i+1) ~= (write_bw / N) (8)
842 * regardless of the value of pos_ratio. As long as (8) is satisfied,
843 * pos_ratio is able to drive itself to 1.0, which is not only where
844 * the dirty count meet the setpoint, but also where the slope of
845 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
846 */
847 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
848 dirty_rate | 1);
849
850 bdi->dirty_ratelimit = max(balanced_dirty_ratelimit, 1UL);
851}
852
e98be2d5 853void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 854 unsigned long thresh,
af6a3113 855 unsigned long bg_thresh,
c42843f2
WF
856 unsigned long dirty,
857 unsigned long bdi_thresh,
858 unsigned long bdi_dirty,
e98be2d5
WF
859 unsigned long start_time)
860{
861 unsigned long now = jiffies;
862 unsigned long elapsed = now - bdi->bw_time_stamp;
be3ffa27 863 unsigned long dirtied;
e98be2d5
WF
864 unsigned long written;
865
866 /*
867 * rate-limit, only update once every 200ms.
868 */
869 if (elapsed < BANDWIDTH_INTERVAL)
870 return;
871
be3ffa27 872 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
e98be2d5
WF
873 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
874
875 /*
876 * Skip quiet periods when disk bandwidth is under-utilized.
877 * (at least 1s idle time between two flusher runs)
878 */
879 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
880 goto snapshot;
881
be3ffa27 882 if (thresh) {
c42843f2 883 global_update_bandwidth(thresh, dirty, now);
be3ffa27
WF
884 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
885 bdi_thresh, bdi_dirty,
886 dirtied, elapsed);
887 }
e98be2d5
WF
888 bdi_update_write_bandwidth(bdi, elapsed, written);
889
890snapshot:
be3ffa27 891 bdi->dirtied_stamp = dirtied;
e98be2d5
WF
892 bdi->written_stamp = written;
893 bdi->bw_time_stamp = now;
894}
895
896static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 897 unsigned long thresh,
af6a3113 898 unsigned long bg_thresh,
c42843f2
WF
899 unsigned long dirty,
900 unsigned long bdi_thresh,
901 unsigned long bdi_dirty,
e98be2d5
WF
902 unsigned long start_time)
903{
904 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
905 return;
906 spin_lock(&bdi->wb.list_lock);
af6a3113
WF
907 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
908 bdi_thresh, bdi_dirty, start_time);
e98be2d5
WF
909 spin_unlock(&bdi->wb.list_lock);
910}
911
1da177e4
LT
912/*
913 * balance_dirty_pages() must be called by processes which are generating dirty
914 * data. It looks at the number of dirty pages in the machine and will force
915 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
5b0830cb
JA
916 * If we're over `background_thresh' then the writeback threads are woken to
917 * perform some writeout.
1da177e4 918 */
3a2e9a5a
WF
919static void balance_dirty_pages(struct address_space *mapping,
920 unsigned long write_chunk)
1da177e4 921{
7762741e
WF
922 unsigned long nr_reclaimable, bdi_nr_reclaimable;
923 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
924 unsigned long bdi_dirty;
6c14ae1e 925 unsigned long freerun;
364aeb28
DR
926 unsigned long background_thresh;
927 unsigned long dirty_thresh;
928 unsigned long bdi_thresh;
bcff25fc
JK
929 unsigned long task_bdi_thresh;
930 unsigned long min_task_bdi_thresh;
1da177e4 931 unsigned long pages_written = 0;
87c6a9b2 932 unsigned long pause = 1;
e50e3720 933 bool dirty_exceeded = false;
bcff25fc 934 bool clear_dirty_exceeded = true;
1da177e4 935 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 936 unsigned long start_time = jiffies;
1da177e4
LT
937
938 for (;;) {
5fce25a9
PZ
939 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
940 global_page_state(NR_UNSTABLE_NFS);
7762741e 941 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 942
16c4042f
WF
943 global_dirty_limits(&background_thresh, &dirty_thresh);
944
945 /*
946 * Throttle it only when the background writeback cannot
947 * catch-up. This avoids (excessively) small writeouts
948 * when the bdi limits are ramping up.
949 */
6c14ae1e
WF
950 freerun = dirty_freerun_ceiling(dirty_thresh,
951 background_thresh);
952 if (nr_dirty <= freerun)
16c4042f
WF
953 break;
954
955 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
bcff25fc
JK
956 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
957 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
16c4042f 958
e50e3720
WF
959 /*
960 * In order to avoid the stacked BDI deadlock we need
961 * to ensure we accurately count the 'dirty' pages when
962 * the threshold is low.
963 *
964 * Otherwise it would be possible to get thresh+n pages
965 * reported dirty, even though there are thresh-m pages
966 * actually dirty; with m+n sitting in the percpu
967 * deltas.
968 */
bcff25fc 969 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
e50e3720 970 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
7762741e
WF
971 bdi_dirty = bdi_nr_reclaimable +
972 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720
WF
973 } else {
974 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
7762741e
WF
975 bdi_dirty = bdi_nr_reclaimable +
976 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 977 }
5fce25a9 978
e50e3720
WF
979 /*
980 * The bdi thresh is somehow "soft" limit derived from the
981 * global "hard" limit. The former helps to prevent heavy IO
982 * bdi or process from holding back light ones; The latter is
983 * the last resort safeguard.
984 */
bcff25fc 985 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
7762741e 986 (nr_dirty > dirty_thresh);
bcff25fc
JK
987 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
988 (nr_dirty <= dirty_thresh);
e50e3720
WF
989
990 if (!dirty_exceeded)
04fbfdc1 991 break;
1da177e4 992
04fbfdc1
PZ
993 if (!bdi->dirty_exceeded)
994 bdi->dirty_exceeded = 1;
1da177e4 995
af6a3113
WF
996 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
997 nr_dirty, bdi_thresh, bdi_dirty,
998 start_time);
e98be2d5 999
1da177e4
LT
1000 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
1001 * Unstable writes are a feature of certain networked
1002 * filesystems (i.e. NFS) in which data may have been
1003 * written to the server's write cache, but has not yet
1004 * been flushed to permanent storage.
d7831a0b
RK
1005 * Only move pages to writeback if this bdi is over its
1006 * threshold otherwise wait until the disk writes catch
1007 * up.
1da177e4 1008 */
d46db3d5 1009 trace_balance_dirty_start(bdi);
bcff25fc 1010 if (bdi_nr_reclaimable > task_bdi_thresh) {
d46db3d5
WF
1011 pages_written += writeback_inodes_wb(&bdi->wb,
1012 write_chunk);
1013 trace_balance_dirty_written(bdi, pages_written);
e50e3720
WF
1014 if (pages_written >= write_chunk)
1015 break; /* We've done our duty */
04fbfdc1 1016 }
d153ba64 1017 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 1018 io_schedule_timeout(pause);
d46db3d5 1019 trace_balance_dirty_wait(bdi);
87c6a9b2 1020
ffd1f609
WF
1021 dirty_thresh = hard_dirty_limit(dirty_thresh);
1022 /*
1023 * max-pause area. If dirty exceeded but still within this
1024 * area, no need to sleep for more than 200ms: (a) 8 pages per
1025 * 200ms is typically more than enough to curb heavy dirtiers;
1026 * (b) the pause time limit makes the dirtiers more responsive.
1027 */
bb082295
WF
1028 if (nr_dirty < dirty_thresh &&
1029 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
ffd1f609
WF
1030 time_after(jiffies, start_time + MAX_PAUSE))
1031 break;
87c6a9b2
JA
1032
1033 /*
1034 * Increase the delay for each loop, up to our previous
1035 * default of taking a 100ms nap.
1036 */
1037 pause <<= 1;
1038 if (pause > HZ / 10)
1039 pause = HZ / 10;
1da177e4
LT
1040 }
1041
bcff25fc
JK
1042 /* Clear dirty_exceeded flag only when no task can exceed the limit */
1043 if (clear_dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 1044 bdi->dirty_exceeded = 0;
1da177e4
LT
1045
1046 if (writeback_in_progress(bdi))
5b0830cb 1047 return;
1da177e4
LT
1048
1049 /*
1050 * In laptop mode, we wait until hitting the higher threshold before
1051 * starting background writeout, and then write out all the way down
1052 * to the lower threshold. So slow writers cause minimal disk activity.
1053 *
1054 * In normal mode, we start background writeout at the lower
1055 * background_thresh, to keep the amount of dirty memory low.
1056 */
1057 if ((laptop_mode && pages_written) ||
e50e3720 1058 (!laptop_mode && (nr_reclaimable > background_thresh)))
c5444198 1059 bdi_start_background_writeback(bdi);
1da177e4
LT
1060}
1061
a200ee18 1062void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 1063{
a200ee18 1064 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
1065 struct address_space *mapping = page_mapping(page);
1066
1067 if (mapping)
1068 balance_dirty_pages_ratelimited(mapping);
1069 }
1070}
1071
245b2e70
TH
1072static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
1073
1da177e4 1074/**
fa5a734e 1075 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 1076 * @mapping: address_space which was dirtied
a580290c 1077 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
1078 *
1079 * Processes which are dirtying memory should call in here once for each page
1080 * which was newly dirtied. The function will periodically check the system's
1081 * dirty state and will initiate writeback if needed.
1082 *
1083 * On really big machines, get_writeback_state is expensive, so try to avoid
1084 * calling it too often (ratelimiting). But once we're over the dirty memory
1085 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1086 * from overshooting the limit by (ratelimit_pages) each.
1087 */
fa5a734e
AM
1088void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1089 unsigned long nr_pages_dirtied)
1da177e4 1090{
36715cef 1091 struct backing_dev_info *bdi = mapping->backing_dev_info;
fa5a734e
AM
1092 unsigned long ratelimit;
1093 unsigned long *p;
1da177e4 1094
36715cef
WF
1095 if (!bdi_cap_account_dirty(bdi))
1096 return;
1097
1da177e4 1098 ratelimit = ratelimit_pages;
04fbfdc1 1099 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
1100 ratelimit = 8;
1101
1102 /*
1103 * Check the rate limiting. Also, we do not want to throttle real-time
1104 * tasks in balance_dirty_pages(). Period.
1105 */
fa5a734e 1106 preempt_disable();
245b2e70 1107 p = &__get_cpu_var(bdp_ratelimits);
fa5a734e
AM
1108 *p += nr_pages_dirtied;
1109 if (unlikely(*p >= ratelimit)) {
3a2e9a5a 1110 ratelimit = sync_writeback_pages(*p);
fa5a734e
AM
1111 *p = 0;
1112 preempt_enable();
3a2e9a5a 1113 balance_dirty_pages(mapping, ratelimit);
1da177e4
LT
1114 return;
1115 }
fa5a734e 1116 preempt_enable();
1da177e4 1117}
fa5a734e 1118EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1119
232ea4d6 1120void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1121{
364aeb28
DR
1122 unsigned long background_thresh;
1123 unsigned long dirty_thresh;
1da177e4
LT
1124
1125 for ( ; ; ) {
16c4042f 1126 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1127
1128 /*
1129 * Boost the allowable dirty threshold a bit for page
1130 * allocators so they don't get DoS'ed by heavy writers
1131 */
1132 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1133
c24f21bd
CL
1134 if (global_page_state(NR_UNSTABLE_NFS) +
1135 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1136 break;
8aa7e847 1137 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1138
1139 /*
1140 * The caller might hold locks which can prevent IO completion
1141 * or progress in the filesystem. So we cannot just sit here
1142 * waiting for IO to complete.
1143 */
1144 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1145 break;
1da177e4
LT
1146 }
1147}
1148
1da177e4
LT
1149/*
1150 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1151 */
1152int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1153 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1154{
8d65af78 1155 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1156 bdi_arm_supers_timer();
1da177e4
LT
1157 return 0;
1158}
1159
c2c4986e 1160#ifdef CONFIG_BLOCK
31373d09 1161void laptop_mode_timer_fn(unsigned long data)
1da177e4 1162{
31373d09
MG
1163 struct request_queue *q = (struct request_queue *)data;
1164 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1165 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1166
31373d09
MG
1167 /*
1168 * We want to write everything out, not just down to the dirty
1169 * threshold
1170 */
31373d09 1171 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 1172 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
1173}
1174
1175/*
1176 * We've spun up the disk and we're in laptop mode: schedule writeback
1177 * of all dirty data a few seconds from now. If the flush is already scheduled
1178 * then push it back - the user is still using the disk.
1179 */
31373d09 1180void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1181{
31373d09 1182 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1183}
1184
1185/*
1186 * We're in laptop mode and we've just synced. The sync's writes will have
1187 * caused another writeback to be scheduled by laptop_io_completion.
1188 * Nothing needs to be written back anymore, so we unschedule the writeback.
1189 */
1190void laptop_sync_completion(void)
1191{
31373d09
MG
1192 struct backing_dev_info *bdi;
1193
1194 rcu_read_lock();
1195
1196 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1197 del_timer(&bdi->laptop_mode_wb_timer);
1198
1199 rcu_read_unlock();
1da177e4 1200}
c2c4986e 1201#endif
1da177e4
LT
1202
1203/*
1204 * If ratelimit_pages is too high then we can get into dirty-data overload
1205 * if a large number of processes all perform writes at the same time.
1206 * If it is too low then SMP machines will call the (expensive)
1207 * get_writeback_state too often.
1208 *
1209 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1210 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1211 * thresholds before writeback cuts in.
1212 *
1213 * But the limit should not be set too high. Because it also controls the
1214 * amount of memory which the balance_dirty_pages() caller has to write back.
1215 * If this is too large then the caller will block on the IO queue all the
1216 * time. So limit it to four megabytes - the balance_dirty_pages() caller
1217 * will write six megabyte chunks, max.
1218 */
1219
2d1d43f6 1220void writeback_set_ratelimit(void)
1da177e4 1221{
40c99aae 1222 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
1223 if (ratelimit_pages < 16)
1224 ratelimit_pages = 16;
1225 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
1226 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
1227}
1228
26c2143b 1229static int __cpuinit
1da177e4
LT
1230ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1231{
2d1d43f6 1232 writeback_set_ratelimit();
aa0f0303 1233 return NOTIFY_DONE;
1da177e4
LT
1234}
1235
74b85f37 1236static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1237 .notifier_call = ratelimit_handler,
1238 .next = NULL,
1239};
1240
1241/*
dc6e29da
LT
1242 * Called early on to tune the page writeback dirty limits.
1243 *
1244 * We used to scale dirty pages according to how total memory
1245 * related to pages that could be allocated for buffers (by
1246 * comparing nr_free_buffer_pages() to vm_total_pages.
1247 *
1248 * However, that was when we used "dirty_ratio" to scale with
1249 * all memory, and we don't do that any more. "dirty_ratio"
1250 * is now applied to total non-HIGHPAGE memory (by subtracting
1251 * totalhigh_pages from vm_total_pages), and as such we can't
1252 * get into the old insane situation any more where we had
1253 * large amounts of dirty pages compared to a small amount of
1254 * non-HIGHMEM memory.
1255 *
1256 * But we might still want to scale the dirty_ratio by how
1257 * much memory the box has..
1da177e4
LT
1258 */
1259void __init page_writeback_init(void)
1260{
04fbfdc1
PZ
1261 int shift;
1262
2d1d43f6 1263 writeback_set_ratelimit();
1da177e4 1264 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1265
1266 shift = calc_period_shift();
1267 prop_descriptor_init(&vm_completions, shift);
3e26c149 1268 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
1269}
1270
f446daae
JK
1271/**
1272 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1273 * @mapping: address space structure to write
1274 * @start: starting page index
1275 * @end: ending page index (inclusive)
1276 *
1277 * This function scans the page range from @start to @end (inclusive) and tags
1278 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1279 * that write_cache_pages (or whoever calls this function) will then use
1280 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1281 * used to avoid livelocking of writeback by a process steadily creating new
1282 * dirty pages in the file (thus it is important for this function to be quick
1283 * so that it can tag pages faster than a dirtying process can create them).
1284 */
1285/*
1286 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1287 */
f446daae
JK
1288void tag_pages_for_writeback(struct address_space *mapping,
1289 pgoff_t start, pgoff_t end)
1290{
3c111a07 1291#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1292 unsigned long tagged;
1293
1294 do {
1295 spin_lock_irq(&mapping->tree_lock);
1296 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1297 &start, end, WRITEBACK_TAG_BATCH,
1298 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1299 spin_unlock_irq(&mapping->tree_lock);
1300 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1301 cond_resched();
d5ed3a4a
JK
1302 /* We check 'start' to handle wrapping when end == ~0UL */
1303 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1304}
1305EXPORT_SYMBOL(tag_pages_for_writeback);
1306
811d736f 1307/**
0ea97180 1308 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1309 * @mapping: address space structure to write
1310 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1311 * @writepage: function called for each page
1312 * @data: data passed to writepage function
811d736f 1313 *
0ea97180 1314 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1315 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1316 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1317 * and msync() need to guarantee that all the data which was dirty at the time
1318 * the call was made get new I/O started against them. If wbc->sync_mode is
1319 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1320 * existing IO to complete.
f446daae
JK
1321 *
1322 * To avoid livelocks (when other process dirties new pages), we first tag
1323 * pages which should be written back with TOWRITE tag and only then start
1324 * writing them. For data-integrity sync we have to be careful so that we do
1325 * not miss some pages (e.g., because some other process has cleared TOWRITE
1326 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1327 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1328 */
0ea97180
MS
1329int write_cache_pages(struct address_space *mapping,
1330 struct writeback_control *wbc, writepage_t writepage,
1331 void *data)
811d736f 1332{
811d736f
DH
1333 int ret = 0;
1334 int done = 0;
811d736f
DH
1335 struct pagevec pvec;
1336 int nr_pages;
31a12666 1337 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1338 pgoff_t index;
1339 pgoff_t end; /* Inclusive */
bd19e012 1340 pgoff_t done_index;
31a12666 1341 int cycled;
811d736f 1342 int range_whole = 0;
f446daae 1343 int tag;
811d736f 1344
811d736f
DH
1345 pagevec_init(&pvec, 0);
1346 if (wbc->range_cyclic) {
31a12666
NP
1347 writeback_index = mapping->writeback_index; /* prev offset */
1348 index = writeback_index;
1349 if (index == 0)
1350 cycled = 1;
1351 else
1352 cycled = 0;
811d736f
DH
1353 end = -1;
1354 } else {
1355 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1356 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1357 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1358 range_whole = 1;
31a12666 1359 cycled = 1; /* ignore range_cyclic tests */
811d736f 1360 }
6e6938b6 1361 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1362 tag = PAGECACHE_TAG_TOWRITE;
1363 else
1364 tag = PAGECACHE_TAG_DIRTY;
811d736f 1365retry:
6e6938b6 1366 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1367 tag_pages_for_writeback(mapping, index, end);
bd19e012 1368 done_index = index;
5a3d5c98
NP
1369 while (!done && (index <= end)) {
1370 int i;
1371
f446daae 1372 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1374 if (nr_pages == 0)
1375 break;
811d736f 1376
811d736f
DH
1377 for (i = 0; i < nr_pages; i++) {
1378 struct page *page = pvec.pages[i];
1379
1380 /*
d5482cdf
NP
1381 * At this point, the page may be truncated or
1382 * invalidated (changing page->mapping to NULL), or
1383 * even swizzled back from swapper_space to tmpfs file
1384 * mapping. However, page->index will not change
1385 * because we have a reference on the page.
811d736f 1386 */
d5482cdf
NP
1387 if (page->index > end) {
1388 /*
1389 * can't be range_cyclic (1st pass) because
1390 * end == -1 in that case.
1391 */
1392 done = 1;
1393 break;
1394 }
1395
cf15b07c 1396 done_index = page->index;
d5482cdf 1397
811d736f
DH
1398 lock_page(page);
1399
5a3d5c98
NP
1400 /*
1401 * Page truncated or invalidated. We can freely skip it
1402 * then, even for data integrity operations: the page
1403 * has disappeared concurrently, so there could be no
1404 * real expectation of this data interity operation
1405 * even if there is now a new, dirty page at the same
1406 * pagecache address.
1407 */
811d736f 1408 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1409continue_unlock:
811d736f
DH
1410 unlock_page(page);
1411 continue;
1412 }
1413
515f4a03
NP
1414 if (!PageDirty(page)) {
1415 /* someone wrote it for us */
1416 goto continue_unlock;
1417 }
1418
1419 if (PageWriteback(page)) {
1420 if (wbc->sync_mode != WB_SYNC_NONE)
1421 wait_on_page_writeback(page);
1422 else
1423 goto continue_unlock;
1424 }
811d736f 1425
515f4a03
NP
1426 BUG_ON(PageWriteback(page));
1427 if (!clear_page_dirty_for_io(page))
5a3d5c98 1428 goto continue_unlock;
811d736f 1429
9e094383 1430 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1431 ret = (*writepage)(page, wbc, data);
00266770
NP
1432 if (unlikely(ret)) {
1433 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1434 unlock_page(page);
1435 ret = 0;
1436 } else {
1437 /*
1438 * done_index is set past this page,
1439 * so media errors will not choke
1440 * background writeout for the entire
1441 * file. This has consequences for
1442 * range_cyclic semantics (ie. it may
1443 * not be suitable for data integrity
1444 * writeout).
1445 */
cf15b07c 1446 done_index = page->index + 1;
00266770
NP
1447 done = 1;
1448 break;
1449 }
0b564927 1450 }
00266770 1451
546a1924
DC
1452 /*
1453 * We stop writing back only if we are not doing
1454 * integrity sync. In case of integrity sync we have to
1455 * keep going until we have written all the pages
1456 * we tagged for writeback prior to entering this loop.
1457 */
1458 if (--wbc->nr_to_write <= 0 &&
1459 wbc->sync_mode == WB_SYNC_NONE) {
1460 done = 1;
1461 break;
05fe478d 1462 }
811d736f
DH
1463 }
1464 pagevec_release(&pvec);
1465 cond_resched();
1466 }
3a4c6800 1467 if (!cycled && !done) {
811d736f 1468 /*
31a12666 1469 * range_cyclic:
811d736f
DH
1470 * We hit the last page and there is more work to be done: wrap
1471 * back to the start of the file
1472 */
31a12666 1473 cycled = 1;
811d736f 1474 index = 0;
31a12666 1475 end = writeback_index - 1;
811d736f
DH
1476 goto retry;
1477 }
0b564927
DC
1478 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1479 mapping->writeback_index = done_index;
06d6cf69 1480
811d736f
DH
1481 return ret;
1482}
0ea97180
MS
1483EXPORT_SYMBOL(write_cache_pages);
1484
1485/*
1486 * Function used by generic_writepages to call the real writepage
1487 * function and set the mapping flags on error
1488 */
1489static int __writepage(struct page *page, struct writeback_control *wbc,
1490 void *data)
1491{
1492 struct address_space *mapping = data;
1493 int ret = mapping->a_ops->writepage(page, wbc);
1494 mapping_set_error(mapping, ret);
1495 return ret;
1496}
1497
1498/**
1499 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1500 * @mapping: address space structure to write
1501 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1502 *
1503 * This is a library function, which implements the writepages()
1504 * address_space_operation.
1505 */
1506int generic_writepages(struct address_space *mapping,
1507 struct writeback_control *wbc)
1508{
9b6096a6
SL
1509 struct blk_plug plug;
1510 int ret;
1511
0ea97180
MS
1512 /* deal with chardevs and other special file */
1513 if (!mapping->a_ops->writepage)
1514 return 0;
1515
9b6096a6
SL
1516 blk_start_plug(&plug);
1517 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1518 blk_finish_plug(&plug);
1519 return ret;
0ea97180 1520}
811d736f
DH
1521
1522EXPORT_SYMBOL(generic_writepages);
1523
1da177e4
LT
1524int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1525{
22905f77
AM
1526 int ret;
1527
1da177e4
LT
1528 if (wbc->nr_to_write <= 0)
1529 return 0;
1530 if (mapping->a_ops->writepages)
d08b3851 1531 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1532 else
1533 ret = generic_writepages(mapping, wbc);
22905f77 1534 return ret;
1da177e4
LT
1535}
1536
1537/**
1538 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1539 * @page: the page to write
1540 * @wait: if true, wait on writeout
1da177e4
LT
1541 *
1542 * The page must be locked by the caller and will be unlocked upon return.
1543 *
1544 * write_one_page() returns a negative error code if I/O failed.
1545 */
1546int write_one_page(struct page *page, int wait)
1547{
1548 struct address_space *mapping = page->mapping;
1549 int ret = 0;
1550 struct writeback_control wbc = {
1551 .sync_mode = WB_SYNC_ALL,
1552 .nr_to_write = 1,
1553 };
1554
1555 BUG_ON(!PageLocked(page));
1556
1557 if (wait)
1558 wait_on_page_writeback(page);
1559
1560 if (clear_page_dirty_for_io(page)) {
1561 page_cache_get(page);
1562 ret = mapping->a_ops->writepage(page, &wbc);
1563 if (ret == 0 && wait) {
1564 wait_on_page_writeback(page);
1565 if (PageError(page))
1566 ret = -EIO;
1567 }
1568 page_cache_release(page);
1569 } else {
1570 unlock_page(page);
1571 }
1572 return ret;
1573}
1574EXPORT_SYMBOL(write_one_page);
1575
76719325
KC
1576/*
1577 * For address_spaces which do not use buffers nor write back.
1578 */
1579int __set_page_dirty_no_writeback(struct page *page)
1580{
1581 if (!PageDirty(page))
c3f0da63 1582 return !TestSetPageDirty(page);
76719325
KC
1583 return 0;
1584}
1585
e3a7cca1
ES
1586/*
1587 * Helper function for set_page_dirty family.
1588 * NOTE: This relies on being atomic wrt interrupts.
1589 */
1590void account_page_dirtied(struct page *page, struct address_space *mapping)
1591{
1592 if (mapping_cap_account_dirty(mapping)) {
1593 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1594 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1595 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1596 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1
ES
1597 task_dirty_inc(current);
1598 task_io_account_write(PAGE_CACHE_SIZE);
1599 }
1600}
679ceace 1601EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1602
f629d1c9
MR
1603/*
1604 * Helper function for set_page_writeback family.
1605 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1606 * wrt interrupts.
1607 */
1608void account_page_writeback(struct page *page)
1609{
1610 inc_zone_page_state(page, NR_WRITEBACK);
1611}
1612EXPORT_SYMBOL(account_page_writeback);
1613
1da177e4
LT
1614/*
1615 * For address_spaces which do not use buffers. Just tag the page as dirty in
1616 * its radix tree.
1617 *
1618 * This is also used when a single buffer is being dirtied: we want to set the
1619 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1620 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1621 *
1622 * Most callers have locked the page, which pins the address_space in memory.
1623 * But zap_pte_range() does not lock the page, however in that case the
1624 * mapping is pinned by the vma's ->vm_file reference.
1625 *
1626 * We take care to handle the case where the page was truncated from the
183ff22b 1627 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1628 */
1629int __set_page_dirty_nobuffers(struct page *page)
1630{
1da177e4
LT
1631 if (!TestSetPageDirty(page)) {
1632 struct address_space *mapping = page_mapping(page);
1633 struct address_space *mapping2;
1634
8c08540f
AM
1635 if (!mapping)
1636 return 1;
1637
19fd6231 1638 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1639 mapping2 = page_mapping(page);
1640 if (mapping2) { /* Race with truncate? */
1641 BUG_ON(mapping2 != mapping);
787d2214 1642 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1643 account_page_dirtied(page, mapping);
8c08540f
AM
1644 radix_tree_tag_set(&mapping->page_tree,
1645 page_index(page), PAGECACHE_TAG_DIRTY);
1646 }
19fd6231 1647 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1648 if (mapping->host) {
1649 /* !PageAnon && !swapper_space */
1650 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1651 }
4741c9fd 1652 return 1;
1da177e4 1653 }
4741c9fd 1654 return 0;
1da177e4
LT
1655}
1656EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1657
1658/*
1659 * When a writepage implementation decides that it doesn't want to write this
1660 * page for some reason, it should redirty the locked page via
1661 * redirty_page_for_writepage() and it should then unlock the page and return 0
1662 */
1663int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1664{
1665 wbc->pages_skipped++;
1666 return __set_page_dirty_nobuffers(page);
1667}
1668EXPORT_SYMBOL(redirty_page_for_writepage);
1669
1670/*
6746aff7
WF
1671 * Dirty a page.
1672 *
1673 * For pages with a mapping this should be done under the page lock
1674 * for the benefit of asynchronous memory errors who prefer a consistent
1675 * dirty state. This rule can be broken in some special cases,
1676 * but should be better not to.
1677 *
1da177e4
LT
1678 * If the mapping doesn't provide a set_page_dirty a_op, then
1679 * just fall through and assume that it wants buffer_heads.
1680 */
1cf6e7d8 1681int set_page_dirty(struct page *page)
1da177e4
LT
1682{
1683 struct address_space *mapping = page_mapping(page);
1684
1685 if (likely(mapping)) {
1686 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1687 /*
1688 * readahead/lru_deactivate_page could remain
1689 * PG_readahead/PG_reclaim due to race with end_page_writeback
1690 * About readahead, if the page is written, the flags would be
1691 * reset. So no problem.
1692 * About lru_deactivate_page, if the page is redirty, the flag
1693 * will be reset. So no problem. but if the page is used by readahead
1694 * it will confuse readahead and make it restart the size rampup
1695 * process. But it's a trivial problem.
1696 */
1697 ClearPageReclaim(page);
9361401e
DH
1698#ifdef CONFIG_BLOCK
1699 if (!spd)
1700 spd = __set_page_dirty_buffers;
1701#endif
1702 return (*spd)(page);
1da177e4 1703 }
4741c9fd
AM
1704 if (!PageDirty(page)) {
1705 if (!TestSetPageDirty(page))
1706 return 1;
1707 }
1da177e4
LT
1708 return 0;
1709}
1710EXPORT_SYMBOL(set_page_dirty);
1711
1712/*
1713 * set_page_dirty() is racy if the caller has no reference against
1714 * page->mapping->host, and if the page is unlocked. This is because another
1715 * CPU could truncate the page off the mapping and then free the mapping.
1716 *
1717 * Usually, the page _is_ locked, or the caller is a user-space process which
1718 * holds a reference on the inode by having an open file.
1719 *
1720 * In other cases, the page should be locked before running set_page_dirty().
1721 */
1722int set_page_dirty_lock(struct page *page)
1723{
1724 int ret;
1725
7eaceacc 1726 lock_page(page);
1da177e4
LT
1727 ret = set_page_dirty(page);
1728 unlock_page(page);
1729 return ret;
1730}
1731EXPORT_SYMBOL(set_page_dirty_lock);
1732
1da177e4
LT
1733/*
1734 * Clear a page's dirty flag, while caring for dirty memory accounting.
1735 * Returns true if the page was previously dirty.
1736 *
1737 * This is for preparing to put the page under writeout. We leave the page
1738 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1739 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1740 * implementation will run either set_page_writeback() or set_page_dirty(),
1741 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1742 * back into sync.
1743 *
1744 * This incoherency between the page's dirty flag and radix-tree tag is
1745 * unfortunate, but it only exists while the page is locked.
1746 */
1747int clear_page_dirty_for_io(struct page *page)
1748{
1749 struct address_space *mapping = page_mapping(page);
1750
79352894
NP
1751 BUG_ON(!PageLocked(page));
1752
7658cc28
LT
1753 if (mapping && mapping_cap_account_dirty(mapping)) {
1754 /*
1755 * Yes, Virginia, this is indeed insane.
1756 *
1757 * We use this sequence to make sure that
1758 * (a) we account for dirty stats properly
1759 * (b) we tell the low-level filesystem to
1760 * mark the whole page dirty if it was
1761 * dirty in a pagetable. Only to then
1762 * (c) clean the page again and return 1 to
1763 * cause the writeback.
1764 *
1765 * This way we avoid all nasty races with the
1766 * dirty bit in multiple places and clearing
1767 * them concurrently from different threads.
1768 *
1769 * Note! Normally the "set_page_dirty(page)"
1770 * has no effect on the actual dirty bit - since
1771 * that will already usually be set. But we
1772 * need the side effects, and it can help us
1773 * avoid races.
1774 *
1775 * We basically use the page "master dirty bit"
1776 * as a serialization point for all the different
1777 * threads doing their things.
7658cc28
LT
1778 */
1779 if (page_mkclean(page))
1780 set_page_dirty(page);
79352894
NP
1781 /*
1782 * We carefully synchronise fault handlers against
1783 * installing a dirty pte and marking the page dirty
1784 * at this point. We do this by having them hold the
1785 * page lock at some point after installing their
1786 * pte, but before marking the page dirty.
1787 * Pages are always locked coming in here, so we get
1788 * the desired exclusion. See mm/memory.c:do_wp_page()
1789 * for more comments.
1790 */
7658cc28 1791 if (TestClearPageDirty(page)) {
8c08540f 1792 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1793 dec_bdi_stat(mapping->backing_dev_info,
1794 BDI_RECLAIMABLE);
7658cc28 1795 return 1;
1da177e4 1796 }
7658cc28 1797 return 0;
1da177e4 1798 }
7658cc28 1799 return TestClearPageDirty(page);
1da177e4 1800}
58bb01a9 1801EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1802
1803int test_clear_page_writeback(struct page *page)
1804{
1805 struct address_space *mapping = page_mapping(page);
1806 int ret;
1807
1808 if (mapping) {
69cb51d1 1809 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1810 unsigned long flags;
1811
19fd6231 1812 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1813 ret = TestClearPageWriteback(page);
69cb51d1 1814 if (ret) {
1da177e4
LT
1815 radix_tree_tag_clear(&mapping->page_tree,
1816 page_index(page),
1817 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1818 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1819 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1820 __bdi_writeout_inc(bdi);
1821 }
69cb51d1 1822 }
19fd6231 1823 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1824 } else {
1825 ret = TestClearPageWriteback(page);
1826 }
99b12e3d 1827 if (ret) {
d688abf5 1828 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
1829 inc_zone_page_state(page, NR_WRITTEN);
1830 }
1da177e4
LT
1831 return ret;
1832}
1833
1834int test_set_page_writeback(struct page *page)
1835{
1836 struct address_space *mapping = page_mapping(page);
1837 int ret;
1838
1839 if (mapping) {
69cb51d1 1840 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1841 unsigned long flags;
1842
19fd6231 1843 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1844 ret = TestSetPageWriteback(page);
69cb51d1 1845 if (!ret) {
1da177e4
LT
1846 radix_tree_tag_set(&mapping->page_tree,
1847 page_index(page),
1848 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1849 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1850 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1851 }
1da177e4
LT
1852 if (!PageDirty(page))
1853 radix_tree_tag_clear(&mapping->page_tree,
1854 page_index(page),
1855 PAGECACHE_TAG_DIRTY);
f446daae
JK
1856 radix_tree_tag_clear(&mapping->page_tree,
1857 page_index(page),
1858 PAGECACHE_TAG_TOWRITE);
19fd6231 1859 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1860 } else {
1861 ret = TestSetPageWriteback(page);
1862 }
d688abf5 1863 if (!ret)
f629d1c9 1864 account_page_writeback(page);
1da177e4
LT
1865 return ret;
1866
1867}
1868EXPORT_SYMBOL(test_set_page_writeback);
1869
1870/*
00128188 1871 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1872 * passed tag.
1873 */
1874int mapping_tagged(struct address_space *mapping, int tag)
1875{
72c47832 1876 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
1877}
1878EXPORT_SYMBOL(mapping_tagged);