writeback: trace event bdi_dirty_ratelimit
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
e98be2d5
WF
44/*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47#define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
6c14ae1e
WF
49#define RATELIMIT_CALC_SHIFT 10
50
1da177e4
LT
51/*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55static long ratelimit_pages = 32;
56
1da177e4
LT
57/* The following parameters are exported via /proc/sys/vm */
58
59/*
5b0830cb 60 * Start background writeback (via writeback threads) at this percentage
1da177e4 61 */
1b5e62b4 62int dirty_background_ratio = 10;
1da177e4 63
2da02997
DR
64/*
65 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
66 * dirty_background_ratio * the amount of dirtyable memory
67 */
68unsigned long dirty_background_bytes;
69
195cf453
BG
70/*
71 * free highmem will not be subtracted from the total free memory
72 * for calculating free ratios if vm_highmem_is_dirtyable is true
73 */
74int vm_highmem_is_dirtyable;
75
1da177e4
LT
76/*
77 * The generator of dirty data starts writeback at this percentage
78 */
1b5e62b4 79int vm_dirty_ratio = 20;
1da177e4 80
2da02997
DR
81/*
82 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
83 * vm_dirty_ratio * the amount of dirtyable memory
84 */
85unsigned long vm_dirty_bytes;
86
1da177e4 87/*
704503d8 88 * The interval between `kupdate'-style writebacks
1da177e4 89 */
22ef37ee 90unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
91
92/*
704503d8 93 * The longest time for which data is allowed to remain dirty
1da177e4 94 */
22ef37ee 95unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
96
97/*
98 * Flag that makes the machine dump writes/reads and block dirtyings.
99 */
100int block_dump;
101
102/*
ed5b43f1
BS
103 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
104 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
105 */
106int laptop_mode;
107
108EXPORT_SYMBOL(laptop_mode);
109
110/* End of sysctl-exported parameters */
111
c42843f2 112unsigned long global_dirty_limit;
1da177e4 113
04fbfdc1
PZ
114/*
115 * Scale the writeback cache size proportional to the relative writeout speeds.
116 *
117 * We do this by keeping a floating proportion between BDIs, based on page
118 * writeback completions [end_page_writeback()]. Those devices that write out
119 * pages fastest will get the larger share, while the slower will get a smaller
120 * share.
121 *
122 * We use page writeout completions because we are interested in getting rid of
123 * dirty pages. Having them written out is the primary goal.
124 *
125 * We introduce a concept of time, a period over which we measure these events,
126 * because demand can/will vary over time. The length of this period itself is
127 * measured in page writeback completions.
128 *
129 */
130static struct prop_descriptor vm_completions;
3e26c149 131static struct prop_descriptor vm_dirties;
04fbfdc1 132
04fbfdc1
PZ
133/*
134 * couple the period to the dirty_ratio:
135 *
136 * period/2 ~ roundup_pow_of_two(dirty limit)
137 */
138static int calc_period_shift(void)
139{
140 unsigned long dirty_total;
141
2da02997
DR
142 if (vm_dirty_bytes)
143 dirty_total = vm_dirty_bytes / PAGE_SIZE;
144 else
145 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
146 100;
04fbfdc1
PZ
147 return 2 + ilog2(dirty_total - 1);
148}
149
150/*
2da02997 151 * update the period when the dirty threshold changes.
04fbfdc1 152 */
2da02997
DR
153static void update_completion_period(void)
154{
155 int shift = calc_period_shift();
156 prop_change_shift(&vm_completions, shift);
157 prop_change_shift(&vm_dirties, shift);
9d823e8f
WF
158
159 writeback_set_ratelimit();
2da02997
DR
160}
161
162int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 163 void __user *buffer, size_t *lenp,
2da02997
DR
164 loff_t *ppos)
165{
166 int ret;
167
8d65af78 168 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
169 if (ret == 0 && write)
170 dirty_background_bytes = 0;
171 return ret;
172}
173
174int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 175 void __user *buffer, size_t *lenp,
2da02997
DR
176 loff_t *ppos)
177{
178 int ret;
179
8d65af78 180 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
181 if (ret == 0 && write)
182 dirty_background_ratio = 0;
183 return ret;
184}
185
04fbfdc1 186int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 187 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
188 loff_t *ppos)
189{
190 int old_ratio = vm_dirty_ratio;
2da02997
DR
191 int ret;
192
8d65af78 193 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 194 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
195 update_completion_period();
196 vm_dirty_bytes = 0;
197 }
198 return ret;
199}
200
201
202int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 203 void __user *buffer, size_t *lenp,
2da02997
DR
204 loff_t *ppos)
205{
fc3501d4 206 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
207 int ret;
208
8d65af78 209 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
210 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
211 update_completion_period();
212 vm_dirty_ratio = 0;
04fbfdc1
PZ
213 }
214 return ret;
215}
216
217/*
218 * Increment the BDI's writeout completion count and the global writeout
219 * completion count. Called from test_clear_page_writeback().
220 */
221static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
222{
f7d2b1ec 223 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
224 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
225 bdi->max_prop_frac);
04fbfdc1
PZ
226}
227
dd5656e5
MS
228void bdi_writeout_inc(struct backing_dev_info *bdi)
229{
230 unsigned long flags;
231
232 local_irq_save(flags);
233 __bdi_writeout_inc(bdi);
234 local_irq_restore(flags);
235}
236EXPORT_SYMBOL_GPL(bdi_writeout_inc);
237
1cf6e7d8 238void task_dirty_inc(struct task_struct *tsk)
3e26c149
PZ
239{
240 prop_inc_single(&vm_dirties, &tsk->dirties);
241}
242
04fbfdc1
PZ
243/*
244 * Obtain an accurate fraction of the BDI's portion.
245 */
246static void bdi_writeout_fraction(struct backing_dev_info *bdi,
247 long *numerator, long *denominator)
248{
3efaf0fa 249 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 250 numerator, denominator);
04fbfdc1
PZ
251}
252
189d3c4a
PZ
253/*
254 *
255 */
189d3c4a
PZ
256static unsigned int bdi_min_ratio;
257
258int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
259{
260 int ret = 0;
189d3c4a 261
cfc4ba53 262 spin_lock_bh(&bdi_lock);
a42dde04 263 if (min_ratio > bdi->max_ratio) {
189d3c4a 264 ret = -EINVAL;
a42dde04
PZ
265 } else {
266 min_ratio -= bdi->min_ratio;
267 if (bdi_min_ratio + min_ratio < 100) {
268 bdi_min_ratio += min_ratio;
269 bdi->min_ratio += min_ratio;
270 } else {
271 ret = -EINVAL;
272 }
273 }
cfc4ba53 274 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
275
276 return ret;
277}
278
279int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
280{
a42dde04
PZ
281 int ret = 0;
282
283 if (max_ratio > 100)
284 return -EINVAL;
285
cfc4ba53 286 spin_lock_bh(&bdi_lock);
a42dde04
PZ
287 if (bdi->min_ratio > max_ratio) {
288 ret = -EINVAL;
289 } else {
290 bdi->max_ratio = max_ratio;
291 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
292 }
cfc4ba53 293 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
294
295 return ret;
296}
a42dde04 297EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 298
1da177e4
LT
299/*
300 * Work out the current dirty-memory clamping and background writeout
301 * thresholds.
302 *
303 * The main aim here is to lower them aggressively if there is a lot of mapped
304 * memory around. To avoid stressing page reclaim with lots of unreclaimable
305 * pages. It is better to clamp down on writers than to start swapping, and
306 * performing lots of scanning.
307 *
308 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
309 *
310 * We don't permit the clamping level to fall below 5% - that is getting rather
311 * excessive.
312 *
313 * We make sure that the background writeout level is below the adjusted
314 * clamping level.
315 */
1b424464
CL
316
317static unsigned long highmem_dirtyable_memory(unsigned long total)
318{
319#ifdef CONFIG_HIGHMEM
320 int node;
321 unsigned long x = 0;
322
37b07e41 323 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
324 struct zone *z =
325 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
326
adea02a1
WF
327 x += zone_page_state(z, NR_FREE_PAGES) +
328 zone_reclaimable_pages(z);
1b424464
CL
329 }
330 /*
331 * Make sure that the number of highmem pages is never larger
332 * than the number of the total dirtyable memory. This can only
333 * occur in very strange VM situations but we want to make sure
334 * that this does not occur.
335 */
336 return min(x, total);
337#else
338 return 0;
339#endif
340}
341
3eefae99
SR
342/**
343 * determine_dirtyable_memory - amount of memory that may be used
344 *
345 * Returns the numebr of pages that can currently be freed and used
346 * by the kernel for direct mappings.
347 */
348unsigned long determine_dirtyable_memory(void)
1b424464
CL
349{
350 unsigned long x;
351
adea02a1 352 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
353
354 if (!vm_highmem_is_dirtyable)
355 x -= highmem_dirtyable_memory(x);
356
1b424464
CL
357 return x + 1; /* Ensure that we never return 0 */
358}
359
6c14ae1e
WF
360static unsigned long dirty_freerun_ceiling(unsigned long thresh,
361 unsigned long bg_thresh)
362{
363 return (thresh + bg_thresh) / 2;
364}
365
ffd1f609
WF
366static unsigned long hard_dirty_limit(unsigned long thresh)
367{
368 return max(thresh, global_dirty_limit);
369}
370
03ab450f 371/*
1babe183
WF
372 * global_dirty_limits - background-writeback and dirty-throttling thresholds
373 *
374 * Calculate the dirty thresholds based on sysctl parameters
375 * - vm.dirty_background_ratio or vm.dirty_background_bytes
376 * - vm.dirty_ratio or vm.dirty_bytes
377 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 378 * real-time tasks.
1babe183 379 */
16c4042f 380void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 381{
364aeb28
DR
382 unsigned long background;
383 unsigned long dirty;
240c879f 384 unsigned long uninitialized_var(available_memory);
1da177e4
LT
385 struct task_struct *tsk;
386
240c879f
MK
387 if (!vm_dirty_bytes || !dirty_background_bytes)
388 available_memory = determine_dirtyable_memory();
389
2da02997
DR
390 if (vm_dirty_bytes)
391 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
392 else
393 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 394
2da02997
DR
395 if (dirty_background_bytes)
396 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
397 else
398 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 399
2da02997
DR
400 if (background >= dirty)
401 background = dirty / 2;
1da177e4
LT
402 tsk = current;
403 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
404 background += background / 4;
405 dirty += dirty / 4;
406 }
407 *pbackground = background;
408 *pdirty = dirty;
e1cbe236 409 trace_global_dirty_state(background, dirty);
16c4042f 410}
04fbfdc1 411
6f718656 412/**
1babe183 413 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
414 * @bdi: the backing_dev_info to query
415 * @dirty: global dirty limit in pages
1babe183 416 *
6f718656
WF
417 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
418 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
419 * And the "limit" in the name is not seriously taken as hard limit in
420 * balance_dirty_pages().
1babe183 421 *
6f718656 422 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
423 * - starving fast devices
424 * - piling up dirty pages (that will take long time to sync) on slow devices
425 *
426 * The bdi's share of dirty limit will be adapting to its throughput and
427 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
428 */
429unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
430{
431 u64 bdi_dirty;
432 long numerator, denominator;
04fbfdc1 433
16c4042f
WF
434 /*
435 * Calculate this BDI's share of the dirty ratio.
436 */
437 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 438
16c4042f
WF
439 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
440 bdi_dirty *= numerator;
441 do_div(bdi_dirty, denominator);
04fbfdc1 442
16c4042f
WF
443 bdi_dirty += (dirty * bdi->min_ratio) / 100;
444 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
445 bdi_dirty = dirty * bdi->max_ratio / 100;
446
447 return bdi_dirty;
1da177e4
LT
448}
449
6c14ae1e
WF
450/*
451 * Dirty position control.
452 *
453 * (o) global/bdi setpoints
454 *
455 * We want the dirty pages be balanced around the global/bdi setpoints.
456 * When the number of dirty pages is higher/lower than the setpoint, the
457 * dirty position control ratio (and hence task dirty ratelimit) will be
458 * decreased/increased to bring the dirty pages back to the setpoint.
459 *
460 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
461 *
462 * if (dirty < setpoint) scale up pos_ratio
463 * if (dirty > setpoint) scale down pos_ratio
464 *
465 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
466 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
467 *
468 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
469 *
470 * (o) global control line
471 *
472 * ^ pos_ratio
473 * |
474 * | |<===== global dirty control scope ======>|
475 * 2.0 .............*
476 * | .*
477 * | . *
478 * | . *
479 * | . *
480 * | . *
481 * | . *
482 * 1.0 ................................*
483 * | . . *
484 * | . . *
485 * | . . *
486 * | . . *
487 * | . . *
488 * 0 +------------.------------------.----------------------*------------->
489 * freerun^ setpoint^ limit^ dirty pages
490 *
491 * (o) bdi control line
492 *
493 * ^ pos_ratio
494 * |
495 * | *
496 * | *
497 * | *
498 * | *
499 * | * |<=========== span ============>|
500 * 1.0 .......................*
501 * | . *
502 * | . *
503 * | . *
504 * | . *
505 * | . *
506 * | . *
507 * | . *
508 * | . *
509 * | . *
510 * | . *
511 * | . *
512 * 1/4 ...............................................* * * * * * * * * * * *
513 * | . .
514 * | . .
515 * | . .
516 * 0 +----------------------.-------------------------------.------------->
517 * bdi_setpoint^ x_intercept^
518 *
519 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
520 * be smoothly throttled down to normal if it starts high in situations like
521 * - start writing to a slow SD card and a fast disk at the same time. The SD
522 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
523 * - the bdi dirty thresh drops quickly due to change of JBOD workload
524 */
525static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
526 unsigned long thresh,
527 unsigned long bg_thresh,
528 unsigned long dirty,
529 unsigned long bdi_thresh,
530 unsigned long bdi_dirty)
531{
532 unsigned long write_bw = bdi->avg_write_bandwidth;
533 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
534 unsigned long limit = hard_dirty_limit(thresh);
535 unsigned long x_intercept;
536 unsigned long setpoint; /* dirty pages' target balance point */
537 unsigned long bdi_setpoint;
538 unsigned long span;
539 long long pos_ratio; /* for scaling up/down the rate limit */
540 long x;
541
542 if (unlikely(dirty >= limit))
543 return 0;
544
545 /*
546 * global setpoint
547 *
548 * setpoint - dirty 3
549 * f(dirty) := 1.0 + (----------------)
550 * limit - setpoint
551 *
552 * it's a 3rd order polynomial that subjects to
553 *
554 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
555 * (2) f(setpoint) = 1.0 => the balance point
556 * (3) f(limit) = 0 => the hard limit
557 * (4) df/dx <= 0 => negative feedback control
558 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
559 * => fast response on large errors; small oscillation near setpoint
560 */
561 setpoint = (freerun + limit) / 2;
562 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
563 limit - setpoint + 1);
564 pos_ratio = x;
565 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
566 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
567 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
568
569 /*
570 * We have computed basic pos_ratio above based on global situation. If
571 * the bdi is over/under its share of dirty pages, we want to scale
572 * pos_ratio further down/up. That is done by the following mechanism.
573 */
574
575 /*
576 * bdi setpoint
577 *
578 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
579 *
580 * x_intercept - bdi_dirty
581 * := --------------------------
582 * x_intercept - bdi_setpoint
583 *
584 * The main bdi control line is a linear function that subjects to
585 *
586 * (1) f(bdi_setpoint) = 1.0
587 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
588 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
589 *
590 * For single bdi case, the dirty pages are observed to fluctuate
591 * regularly within range
592 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
593 * for various filesystems, where (2) can yield in a reasonable 12.5%
594 * fluctuation range for pos_ratio.
595 *
596 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
597 * own size, so move the slope over accordingly and choose a slope that
598 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
599 */
600 if (unlikely(bdi_thresh > thresh))
601 bdi_thresh = thresh;
8927f66c 602 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
6c14ae1e
WF
603 /*
604 * scale global setpoint to bdi's:
605 * bdi_setpoint = setpoint * bdi_thresh / thresh
606 */
607 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
608 bdi_setpoint = setpoint * (u64)x >> 16;
609 /*
610 * Use span=(8*write_bw) in single bdi case as indicated by
611 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
612 *
613 * bdi_thresh thresh - bdi_thresh
614 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
615 * thresh thresh
616 */
617 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
618 x_intercept = bdi_setpoint + span;
619
620 if (bdi_dirty < x_intercept - span / 4) {
50657fc4
WF
621 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
622 x_intercept - bdi_setpoint + 1);
6c14ae1e
WF
623 } else
624 pos_ratio /= 4;
625
8927f66c
WF
626 /*
627 * bdi reserve area, safeguard against dirty pool underrun and disk idle
628 * It may push the desired control point of global dirty pages higher
629 * than setpoint.
630 */
631 x_intercept = bdi_thresh / 2;
632 if (bdi_dirty < x_intercept) {
50657fc4
WF
633 if (bdi_dirty > x_intercept / 8)
634 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
635 else
8927f66c
WF
636 pos_ratio *= 8;
637 }
638
6c14ae1e
WF
639 return pos_ratio;
640}
641
e98be2d5
WF
642static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
643 unsigned long elapsed,
644 unsigned long written)
645{
646 const unsigned long period = roundup_pow_of_two(3 * HZ);
647 unsigned long avg = bdi->avg_write_bandwidth;
648 unsigned long old = bdi->write_bandwidth;
649 u64 bw;
650
651 /*
652 * bw = written * HZ / elapsed
653 *
654 * bw * elapsed + write_bandwidth * (period - elapsed)
655 * write_bandwidth = ---------------------------------------------------
656 * period
657 */
658 bw = written - bdi->written_stamp;
659 bw *= HZ;
660 if (unlikely(elapsed > period)) {
661 do_div(bw, elapsed);
662 avg = bw;
663 goto out;
664 }
665 bw += (u64)bdi->write_bandwidth * (period - elapsed);
666 bw >>= ilog2(period);
667
668 /*
669 * one more level of smoothing, for filtering out sudden spikes
670 */
671 if (avg > old && old >= (unsigned long)bw)
672 avg -= (avg - old) >> 3;
673
674 if (avg < old && old <= (unsigned long)bw)
675 avg += (old - avg) >> 3;
676
677out:
678 bdi->write_bandwidth = bw;
679 bdi->avg_write_bandwidth = avg;
680}
681
c42843f2
WF
682/*
683 * The global dirtyable memory and dirty threshold could be suddenly knocked
684 * down by a large amount (eg. on the startup of KVM in a swapless system).
685 * This may throw the system into deep dirty exceeded state and throttle
686 * heavy/light dirtiers alike. To retain good responsiveness, maintain
687 * global_dirty_limit for tracking slowly down to the knocked down dirty
688 * threshold.
689 */
690static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
691{
692 unsigned long limit = global_dirty_limit;
693
694 /*
695 * Follow up in one step.
696 */
697 if (limit < thresh) {
698 limit = thresh;
699 goto update;
700 }
701
702 /*
703 * Follow down slowly. Use the higher one as the target, because thresh
704 * may drop below dirty. This is exactly the reason to introduce
705 * global_dirty_limit which is guaranteed to lie above the dirty pages.
706 */
707 thresh = max(thresh, dirty);
708 if (limit > thresh) {
709 limit -= (limit - thresh) >> 5;
710 goto update;
711 }
712 return;
713update:
714 global_dirty_limit = limit;
715}
716
717static void global_update_bandwidth(unsigned long thresh,
718 unsigned long dirty,
719 unsigned long now)
720{
721 static DEFINE_SPINLOCK(dirty_lock);
722 static unsigned long update_time;
723
724 /*
725 * check locklessly first to optimize away locking for the most time
726 */
727 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
728 return;
729
730 spin_lock(&dirty_lock);
731 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
732 update_dirty_limit(thresh, dirty);
733 update_time = now;
734 }
735 spin_unlock(&dirty_lock);
736}
737
be3ffa27
WF
738/*
739 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
740 *
741 * Normal bdi tasks will be curbed at or below it in long term.
742 * Obviously it should be around (write_bw / N) when there are N dd tasks.
743 */
744static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
745 unsigned long thresh,
746 unsigned long bg_thresh,
747 unsigned long dirty,
748 unsigned long bdi_thresh,
749 unsigned long bdi_dirty,
750 unsigned long dirtied,
751 unsigned long elapsed)
752{
7381131c
WF
753 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
754 unsigned long limit = hard_dirty_limit(thresh);
755 unsigned long setpoint = (freerun + limit) / 2;
be3ffa27
WF
756 unsigned long write_bw = bdi->avg_write_bandwidth;
757 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
758 unsigned long dirty_rate;
759 unsigned long task_ratelimit;
760 unsigned long balanced_dirty_ratelimit;
761 unsigned long pos_ratio;
7381131c
WF
762 unsigned long step;
763 unsigned long x;
be3ffa27
WF
764
765 /*
766 * The dirty rate will match the writeout rate in long term, except
767 * when dirty pages are truncated by userspace or re-dirtied by FS.
768 */
769 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
770
771 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
772 bdi_thresh, bdi_dirty);
773 /*
774 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
775 */
776 task_ratelimit = (u64)dirty_ratelimit *
777 pos_ratio >> RATELIMIT_CALC_SHIFT;
778 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
779
780 /*
781 * A linear estimation of the "balanced" throttle rate. The theory is,
782 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
783 * dirty_rate will be measured to be (N * task_ratelimit). So the below
784 * formula will yield the balanced rate limit (write_bw / N).
785 *
786 * Note that the expanded form is not a pure rate feedback:
787 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
788 * but also takes pos_ratio into account:
789 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
790 *
791 * (1) is not realistic because pos_ratio also takes part in balancing
792 * the dirty rate. Consider the state
793 * pos_ratio = 0.5 (3)
794 * rate = 2 * (write_bw / N) (4)
795 * If (1) is used, it will stuck in that state! Because each dd will
796 * be throttled at
797 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
798 * yielding
799 * dirty_rate = N * task_ratelimit = write_bw (6)
800 * put (6) into (1) we get
801 * rate_(i+1) = rate_(i) (7)
802 *
803 * So we end up using (2) to always keep
804 * rate_(i+1) ~= (write_bw / N) (8)
805 * regardless of the value of pos_ratio. As long as (8) is satisfied,
806 * pos_ratio is able to drive itself to 1.0, which is not only where
807 * the dirty count meet the setpoint, but also where the slope of
808 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
809 */
810 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
811 dirty_rate | 1);
812
7381131c
WF
813 /*
814 * We could safely do this and return immediately:
815 *
816 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
817 *
818 * However to get a more stable dirty_ratelimit, the below elaborated
819 * code makes use of task_ratelimit to filter out sigular points and
820 * limit the step size.
821 *
822 * The below code essentially only uses the relative value of
823 *
824 * task_ratelimit - dirty_ratelimit
825 * = (pos_ratio - 1) * dirty_ratelimit
826 *
827 * which reflects the direction and size of dirty position error.
828 */
829
830 /*
831 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
832 * task_ratelimit is on the same side of dirty_ratelimit, too.
833 * For example, when
834 * - dirty_ratelimit > balanced_dirty_ratelimit
835 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
836 * lowering dirty_ratelimit will help meet both the position and rate
837 * control targets. Otherwise, don't update dirty_ratelimit if it will
838 * only help meet the rate target. After all, what the users ultimately
839 * feel and care are stable dirty rate and small position error.
840 *
841 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
842 * and filter out the sigular points of balanced_dirty_ratelimit. Which
843 * keeps jumping around randomly and can even leap far away at times
844 * due to the small 200ms estimation period of dirty_rate (we want to
845 * keep that period small to reduce time lags).
846 */
847 step = 0;
848 if (dirty < setpoint) {
849 x = min(bdi->balanced_dirty_ratelimit,
850 min(balanced_dirty_ratelimit, task_ratelimit));
851 if (dirty_ratelimit < x)
852 step = x - dirty_ratelimit;
853 } else {
854 x = max(bdi->balanced_dirty_ratelimit,
855 max(balanced_dirty_ratelimit, task_ratelimit));
856 if (dirty_ratelimit > x)
857 step = dirty_ratelimit - x;
858 }
859
860 /*
861 * Don't pursue 100% rate matching. It's impossible since the balanced
862 * rate itself is constantly fluctuating. So decrease the track speed
863 * when it gets close to the target. Helps eliminate pointless tremors.
864 */
865 step >>= dirty_ratelimit / (2 * step + 1);
866 /*
867 * Limit the tracking speed to avoid overshooting.
868 */
869 step = (step + 7) / 8;
870
871 if (dirty_ratelimit < balanced_dirty_ratelimit)
872 dirty_ratelimit += step;
873 else
874 dirty_ratelimit -= step;
875
876 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
877 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d
WF
878
879 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
880}
881
e98be2d5 882void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 883 unsigned long thresh,
af6a3113 884 unsigned long bg_thresh,
c42843f2
WF
885 unsigned long dirty,
886 unsigned long bdi_thresh,
887 unsigned long bdi_dirty,
e98be2d5
WF
888 unsigned long start_time)
889{
890 unsigned long now = jiffies;
891 unsigned long elapsed = now - bdi->bw_time_stamp;
be3ffa27 892 unsigned long dirtied;
e98be2d5
WF
893 unsigned long written;
894
895 /*
896 * rate-limit, only update once every 200ms.
897 */
898 if (elapsed < BANDWIDTH_INTERVAL)
899 return;
900
be3ffa27 901 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
e98be2d5
WF
902 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
903
904 /*
905 * Skip quiet periods when disk bandwidth is under-utilized.
906 * (at least 1s idle time between two flusher runs)
907 */
908 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
909 goto snapshot;
910
be3ffa27 911 if (thresh) {
c42843f2 912 global_update_bandwidth(thresh, dirty, now);
be3ffa27
WF
913 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
914 bdi_thresh, bdi_dirty,
915 dirtied, elapsed);
916 }
e98be2d5
WF
917 bdi_update_write_bandwidth(bdi, elapsed, written);
918
919snapshot:
be3ffa27 920 bdi->dirtied_stamp = dirtied;
e98be2d5
WF
921 bdi->written_stamp = written;
922 bdi->bw_time_stamp = now;
923}
924
925static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 926 unsigned long thresh,
af6a3113 927 unsigned long bg_thresh,
c42843f2
WF
928 unsigned long dirty,
929 unsigned long bdi_thresh,
930 unsigned long bdi_dirty,
e98be2d5
WF
931 unsigned long start_time)
932{
933 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
934 return;
935 spin_lock(&bdi->wb.list_lock);
af6a3113
WF
936 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
937 bdi_thresh, bdi_dirty, start_time);
e98be2d5
WF
938 spin_unlock(&bdi->wb.list_lock);
939}
940
9d823e8f
WF
941/*
942 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
943 * will look to see if it needs to start dirty throttling.
944 *
945 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
946 * global_page_state() too often. So scale it near-sqrt to the safety margin
947 * (the number of pages we may dirty without exceeding the dirty limits).
948 */
949static unsigned long dirty_poll_interval(unsigned long dirty,
950 unsigned long thresh)
951{
952 if (thresh > dirty)
953 return 1UL << (ilog2(thresh - dirty) >> 1);
954
955 return 1;
956}
957
c8462cc9
WF
958static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
959 unsigned long bdi_dirty)
960{
961 unsigned long bw = bdi->avg_write_bandwidth;
962 unsigned long hi = ilog2(bw);
963 unsigned long lo = ilog2(bdi->dirty_ratelimit);
964 unsigned long t;
965
966 /* target for 20ms max pause on 1-dd case */
967 t = HZ / 50;
968
969 /*
970 * Scale up pause time for concurrent dirtiers in order to reduce CPU
971 * overheads.
972 *
973 * (N * 20ms) on 2^N concurrent tasks.
974 */
975 if (hi > lo)
976 t += (hi - lo) * (20 * HZ) / 1024;
977
978 /*
979 * Limit pause time for small memory systems. If sleeping for too long
980 * time, a small pool of dirty/writeback pages may go empty and disk go
981 * idle.
982 *
983 * 8 serves as the safety ratio.
984 */
985 if (bdi_dirty)
986 t = min(t, bdi_dirty * HZ / (8 * bw + 1));
987
988 /*
989 * The pause time will be settled within range (max_pause/4, max_pause).
990 * Apply a minimal value of 4 to get a non-zero max_pause/4.
991 */
992 return clamp_val(t, 4, MAX_PAUSE);
993}
994
1da177e4
LT
995/*
996 * balance_dirty_pages() must be called by processes which are generating dirty
997 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 998 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
999 * If we're over `background_thresh' then the writeback threads are woken to
1000 * perform some writeout.
1da177e4 1001 */
3a2e9a5a 1002static void balance_dirty_pages(struct address_space *mapping,
143dfe86 1003 unsigned long pages_dirtied)
1da177e4 1004{
143dfe86
WF
1005 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1006 unsigned long bdi_reclaimable;
7762741e
WF
1007 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1008 unsigned long bdi_dirty;
6c14ae1e 1009 unsigned long freerun;
364aeb28
DR
1010 unsigned long background_thresh;
1011 unsigned long dirty_thresh;
1012 unsigned long bdi_thresh;
143dfe86 1013 long pause = 0;
50657fc4 1014 long uninitialized_var(max_pause);
e50e3720 1015 bool dirty_exceeded = false;
143dfe86 1016 unsigned long task_ratelimit;
50657fc4 1017 unsigned long uninitialized_var(dirty_ratelimit);
143dfe86 1018 unsigned long pos_ratio;
1da177e4 1019 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 1020 unsigned long start_time = jiffies;
1da177e4
LT
1021
1022 for (;;) {
143dfe86
WF
1023 /*
1024 * Unstable writes are a feature of certain networked
1025 * filesystems (i.e. NFS) in which data may have been
1026 * written to the server's write cache, but has not yet
1027 * been flushed to permanent storage.
1028 */
5fce25a9
PZ
1029 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1030 global_page_state(NR_UNSTABLE_NFS);
7762741e 1031 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1032
16c4042f
WF
1033 global_dirty_limits(&background_thresh, &dirty_thresh);
1034
1035 /*
1036 * Throttle it only when the background writeback cannot
1037 * catch-up. This avoids (excessively) small writeouts
1038 * when the bdi limits are ramping up.
1039 */
6c14ae1e
WF
1040 freerun = dirty_freerun_ceiling(dirty_thresh,
1041 background_thresh);
1042 if (nr_dirty <= freerun)
16c4042f
WF
1043 break;
1044
143dfe86
WF
1045 if (unlikely(!writeback_in_progress(bdi)))
1046 bdi_start_background_writeback(bdi);
1047
1048 /*
1049 * bdi_thresh is not treated as some limiting factor as
1050 * dirty_thresh, due to reasons
1051 * - in JBOD setup, bdi_thresh can fluctuate a lot
1052 * - in a system with HDD and USB key, the USB key may somehow
1053 * go into state (bdi_dirty >> bdi_thresh) either because
1054 * bdi_dirty starts high, or because bdi_thresh drops low.
1055 * In this case we don't want to hard throttle the USB key
1056 * dirtiers for 100 seconds until bdi_dirty drops under
1057 * bdi_thresh. Instead the auxiliary bdi control line in
1058 * bdi_position_ratio() will let the dirtier task progress
1059 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1060 */
16c4042f 1061 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
16c4042f 1062
e50e3720
WF
1063 /*
1064 * In order to avoid the stacked BDI deadlock we need
1065 * to ensure we accurately count the 'dirty' pages when
1066 * the threshold is low.
1067 *
1068 * Otherwise it would be possible to get thresh+n pages
1069 * reported dirty, even though there are thresh-m pages
1070 * actually dirty; with m+n sitting in the percpu
1071 * deltas.
1072 */
143dfe86
WF
1073 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1074 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1075 bdi_dirty = bdi_reclaimable +
7762741e 1076 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720 1077 } else {
143dfe86
WF
1078 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1079 bdi_dirty = bdi_reclaimable +
7762741e 1080 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 1081 }
5fce25a9 1082
143dfe86 1083 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
7762741e 1084 (nr_dirty > dirty_thresh);
143dfe86 1085 if (dirty_exceeded && !bdi->dirty_exceeded)
04fbfdc1 1086 bdi->dirty_exceeded = 1;
1da177e4 1087
af6a3113
WF
1088 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1089 nr_dirty, bdi_thresh, bdi_dirty,
1090 start_time);
e98be2d5 1091
c8462cc9
WF
1092 max_pause = bdi_max_pause(bdi, bdi_dirty);
1093
143dfe86
WF
1094 dirty_ratelimit = bdi->dirty_ratelimit;
1095 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1096 background_thresh, nr_dirty,
1097 bdi_thresh, bdi_dirty);
1098 if (unlikely(pos_ratio == 0)) {
c8462cc9 1099 pause = max_pause;
143dfe86 1100 goto pause;
04fbfdc1 1101 }
143dfe86
WF
1102 task_ratelimit = (u64)dirty_ratelimit *
1103 pos_ratio >> RATELIMIT_CALC_SHIFT;
1104 pause = (HZ * pages_dirtied) / (task_ratelimit | 1);
57fc978c
WF
1105 if (unlikely(pause <= 0)) {
1106 pause = 1; /* avoid resetting nr_dirtied_pause below */
1107 break;
1108 }
c8462cc9 1109 pause = min(pause, max_pause);
143dfe86
WF
1110
1111pause:
d153ba64 1112 __set_current_state(TASK_UNINTERRUPTIBLE);
d25105e8 1113 io_schedule_timeout(pause);
87c6a9b2 1114
ffd1f609
WF
1115 dirty_thresh = hard_dirty_limit(dirty_thresh);
1116 /*
1117 * max-pause area. If dirty exceeded but still within this
1118 * area, no need to sleep for more than 200ms: (a) 8 pages per
1119 * 200ms is typically more than enough to curb heavy dirtiers;
1120 * (b) the pause time limit makes the dirtiers more responsive.
1121 */
143dfe86 1122 if (nr_dirty < dirty_thresh)
ffd1f609 1123 break;
1da177e4
LT
1124 }
1125
143dfe86 1126 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 1127 bdi->dirty_exceeded = 0;
1da177e4 1128
9d823e8f 1129 current->nr_dirtied = 0;
57fc978c
WF
1130 if (pause == 0) { /* in freerun area */
1131 current->nr_dirtied_pause =
1132 dirty_poll_interval(nr_dirty, dirty_thresh);
1133 } else if (pause <= max_pause / 4 &&
1134 pages_dirtied >= current->nr_dirtied_pause) {
1135 current->nr_dirtied_pause = clamp_val(
1136 dirty_ratelimit * (max_pause / 2) / HZ,
1137 pages_dirtied + pages_dirtied / 8,
1138 pages_dirtied * 4);
1139 } else if (pause >= max_pause) {
1140 current->nr_dirtied_pause = 1 | clamp_val(
1141 dirty_ratelimit * (max_pause / 2) / HZ,
1142 pages_dirtied / 4,
1143 pages_dirtied - pages_dirtied / 8);
1144 }
9d823e8f 1145
1da177e4 1146 if (writeback_in_progress(bdi))
5b0830cb 1147 return;
1da177e4
LT
1148
1149 /*
1150 * In laptop mode, we wait until hitting the higher threshold before
1151 * starting background writeout, and then write out all the way down
1152 * to the lower threshold. So slow writers cause minimal disk activity.
1153 *
1154 * In normal mode, we start background writeout at the lower
1155 * background_thresh, to keep the amount of dirty memory low.
1156 */
143dfe86
WF
1157 if (laptop_mode)
1158 return;
1159
1160 if (nr_reclaimable > background_thresh)
c5444198 1161 bdi_start_background_writeback(bdi);
1da177e4
LT
1162}
1163
a200ee18 1164void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 1165{
a200ee18 1166 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
1167 struct address_space *mapping = page_mapping(page);
1168
1169 if (mapping)
1170 balance_dirty_pages_ratelimited(mapping);
1171 }
1172}
1173
9d823e8f 1174static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1175
1da177e4 1176/**
fa5a734e 1177 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 1178 * @mapping: address_space which was dirtied
a580290c 1179 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
1180 *
1181 * Processes which are dirtying memory should call in here once for each page
1182 * which was newly dirtied. The function will periodically check the system's
1183 * dirty state and will initiate writeback if needed.
1184 *
1185 * On really big machines, get_writeback_state is expensive, so try to avoid
1186 * calling it too often (ratelimiting). But once we're over the dirty memory
1187 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1188 * from overshooting the limit by (ratelimit_pages) each.
1189 */
fa5a734e
AM
1190void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1191 unsigned long nr_pages_dirtied)
1da177e4 1192{
36715cef 1193 struct backing_dev_info *bdi = mapping->backing_dev_info;
9d823e8f
WF
1194 int ratelimit;
1195 int *p;
1da177e4 1196
36715cef
WF
1197 if (!bdi_cap_account_dirty(bdi))
1198 return;
1199
9d823e8f
WF
1200 ratelimit = current->nr_dirtied_pause;
1201 if (bdi->dirty_exceeded)
1202 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1203
1204 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1205
9d823e8f 1206 preempt_disable();
1da177e4 1207 /*
9d823e8f
WF
1208 * This prevents one CPU to accumulate too many dirtied pages without
1209 * calling into balance_dirty_pages(), which can happen when there are
1210 * 1000+ tasks, all of them start dirtying pages at exactly the same
1211 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1212 */
245b2e70 1213 p = &__get_cpu_var(bdp_ratelimits);
9d823e8f 1214 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1215 *p = 0;
9d823e8f
WF
1216 else {
1217 *p += nr_pages_dirtied;
1218 if (unlikely(*p >= ratelimit_pages)) {
1219 *p = 0;
1220 ratelimit = 0;
1221 }
1da177e4 1222 }
fa5a734e 1223 preempt_enable();
9d823e8f
WF
1224
1225 if (unlikely(current->nr_dirtied >= ratelimit))
1226 balance_dirty_pages(mapping, current->nr_dirtied);
1da177e4 1227}
fa5a734e 1228EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1229
232ea4d6 1230void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1231{
364aeb28
DR
1232 unsigned long background_thresh;
1233 unsigned long dirty_thresh;
1da177e4
LT
1234
1235 for ( ; ; ) {
16c4042f 1236 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1237
1238 /*
1239 * Boost the allowable dirty threshold a bit for page
1240 * allocators so they don't get DoS'ed by heavy writers
1241 */
1242 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1243
c24f21bd
CL
1244 if (global_page_state(NR_UNSTABLE_NFS) +
1245 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1246 break;
8aa7e847 1247 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1248
1249 /*
1250 * The caller might hold locks which can prevent IO completion
1251 * or progress in the filesystem. So we cannot just sit here
1252 * waiting for IO to complete.
1253 */
1254 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1255 break;
1da177e4
LT
1256 }
1257}
1258
1da177e4
LT
1259/*
1260 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1261 */
1262int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1263 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1264{
8d65af78 1265 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1266 bdi_arm_supers_timer();
1da177e4
LT
1267 return 0;
1268}
1269
c2c4986e 1270#ifdef CONFIG_BLOCK
31373d09 1271void laptop_mode_timer_fn(unsigned long data)
1da177e4 1272{
31373d09
MG
1273 struct request_queue *q = (struct request_queue *)data;
1274 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1275 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1276
31373d09
MG
1277 /*
1278 * We want to write everything out, not just down to the dirty
1279 * threshold
1280 */
31373d09 1281 if (bdi_has_dirty_io(&q->backing_dev_info))
c5444198 1282 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1da177e4
LT
1283}
1284
1285/*
1286 * We've spun up the disk and we're in laptop mode: schedule writeback
1287 * of all dirty data a few seconds from now. If the flush is already scheduled
1288 * then push it back - the user is still using the disk.
1289 */
31373d09 1290void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1291{
31373d09 1292 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1293}
1294
1295/*
1296 * We're in laptop mode and we've just synced. The sync's writes will have
1297 * caused another writeback to be scheduled by laptop_io_completion.
1298 * Nothing needs to be written back anymore, so we unschedule the writeback.
1299 */
1300void laptop_sync_completion(void)
1301{
31373d09
MG
1302 struct backing_dev_info *bdi;
1303
1304 rcu_read_lock();
1305
1306 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1307 del_timer(&bdi->laptop_mode_wb_timer);
1308
1309 rcu_read_unlock();
1da177e4 1310}
c2c4986e 1311#endif
1da177e4
LT
1312
1313/*
1314 * If ratelimit_pages is too high then we can get into dirty-data overload
1315 * if a large number of processes all perform writes at the same time.
1316 * If it is too low then SMP machines will call the (expensive)
1317 * get_writeback_state too often.
1318 *
1319 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1320 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1321 * thresholds.
1da177e4
LT
1322 */
1323
2d1d43f6 1324void writeback_set_ratelimit(void)
1da177e4 1325{
9d823e8f
WF
1326 unsigned long background_thresh;
1327 unsigned long dirty_thresh;
1328 global_dirty_limits(&background_thresh, &dirty_thresh);
1329 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1330 if (ratelimit_pages < 16)
1331 ratelimit_pages = 16;
1da177e4
LT
1332}
1333
26c2143b 1334static int __cpuinit
1da177e4
LT
1335ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1336{
2d1d43f6 1337 writeback_set_ratelimit();
aa0f0303 1338 return NOTIFY_DONE;
1da177e4
LT
1339}
1340
74b85f37 1341static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1342 .notifier_call = ratelimit_handler,
1343 .next = NULL,
1344};
1345
1346/*
dc6e29da
LT
1347 * Called early on to tune the page writeback dirty limits.
1348 *
1349 * We used to scale dirty pages according to how total memory
1350 * related to pages that could be allocated for buffers (by
1351 * comparing nr_free_buffer_pages() to vm_total_pages.
1352 *
1353 * However, that was when we used "dirty_ratio" to scale with
1354 * all memory, and we don't do that any more. "dirty_ratio"
1355 * is now applied to total non-HIGHPAGE memory (by subtracting
1356 * totalhigh_pages from vm_total_pages), and as such we can't
1357 * get into the old insane situation any more where we had
1358 * large amounts of dirty pages compared to a small amount of
1359 * non-HIGHMEM memory.
1360 *
1361 * But we might still want to scale the dirty_ratio by how
1362 * much memory the box has..
1da177e4
LT
1363 */
1364void __init page_writeback_init(void)
1365{
04fbfdc1
PZ
1366 int shift;
1367
2d1d43f6 1368 writeback_set_ratelimit();
1da177e4 1369 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1370
1371 shift = calc_period_shift();
1372 prop_descriptor_init(&vm_completions, shift);
3e26c149 1373 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
1374}
1375
f446daae
JK
1376/**
1377 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1378 * @mapping: address space structure to write
1379 * @start: starting page index
1380 * @end: ending page index (inclusive)
1381 *
1382 * This function scans the page range from @start to @end (inclusive) and tags
1383 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1384 * that write_cache_pages (or whoever calls this function) will then use
1385 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1386 * used to avoid livelocking of writeback by a process steadily creating new
1387 * dirty pages in the file (thus it is important for this function to be quick
1388 * so that it can tag pages faster than a dirtying process can create them).
1389 */
1390/*
1391 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1392 */
f446daae
JK
1393void tag_pages_for_writeback(struct address_space *mapping,
1394 pgoff_t start, pgoff_t end)
1395{
3c111a07 1396#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1397 unsigned long tagged;
1398
1399 do {
1400 spin_lock_irq(&mapping->tree_lock);
1401 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1402 &start, end, WRITEBACK_TAG_BATCH,
1403 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1404 spin_unlock_irq(&mapping->tree_lock);
1405 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1406 cond_resched();
d5ed3a4a
JK
1407 /* We check 'start' to handle wrapping when end == ~0UL */
1408 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1409}
1410EXPORT_SYMBOL(tag_pages_for_writeback);
1411
811d736f 1412/**
0ea97180 1413 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1414 * @mapping: address space structure to write
1415 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1416 * @writepage: function called for each page
1417 * @data: data passed to writepage function
811d736f 1418 *
0ea97180 1419 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1420 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1421 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1422 * and msync() need to guarantee that all the data which was dirty at the time
1423 * the call was made get new I/O started against them. If wbc->sync_mode is
1424 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1425 * existing IO to complete.
f446daae
JK
1426 *
1427 * To avoid livelocks (when other process dirties new pages), we first tag
1428 * pages which should be written back with TOWRITE tag and only then start
1429 * writing them. For data-integrity sync we have to be careful so that we do
1430 * not miss some pages (e.g., because some other process has cleared TOWRITE
1431 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1432 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1433 */
0ea97180
MS
1434int write_cache_pages(struct address_space *mapping,
1435 struct writeback_control *wbc, writepage_t writepage,
1436 void *data)
811d736f 1437{
811d736f
DH
1438 int ret = 0;
1439 int done = 0;
811d736f
DH
1440 struct pagevec pvec;
1441 int nr_pages;
31a12666 1442 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1443 pgoff_t index;
1444 pgoff_t end; /* Inclusive */
bd19e012 1445 pgoff_t done_index;
31a12666 1446 int cycled;
811d736f 1447 int range_whole = 0;
f446daae 1448 int tag;
811d736f 1449
811d736f
DH
1450 pagevec_init(&pvec, 0);
1451 if (wbc->range_cyclic) {
31a12666
NP
1452 writeback_index = mapping->writeback_index; /* prev offset */
1453 index = writeback_index;
1454 if (index == 0)
1455 cycled = 1;
1456 else
1457 cycled = 0;
811d736f
DH
1458 end = -1;
1459 } else {
1460 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1461 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1462 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1463 range_whole = 1;
31a12666 1464 cycled = 1; /* ignore range_cyclic tests */
811d736f 1465 }
6e6938b6 1466 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1467 tag = PAGECACHE_TAG_TOWRITE;
1468 else
1469 tag = PAGECACHE_TAG_DIRTY;
811d736f 1470retry:
6e6938b6 1471 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1472 tag_pages_for_writeback(mapping, index, end);
bd19e012 1473 done_index = index;
5a3d5c98
NP
1474 while (!done && (index <= end)) {
1475 int i;
1476
f446daae 1477 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1478 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1479 if (nr_pages == 0)
1480 break;
811d736f 1481
811d736f
DH
1482 for (i = 0; i < nr_pages; i++) {
1483 struct page *page = pvec.pages[i];
1484
1485 /*
d5482cdf
NP
1486 * At this point, the page may be truncated or
1487 * invalidated (changing page->mapping to NULL), or
1488 * even swizzled back from swapper_space to tmpfs file
1489 * mapping. However, page->index will not change
1490 * because we have a reference on the page.
811d736f 1491 */
d5482cdf
NP
1492 if (page->index > end) {
1493 /*
1494 * can't be range_cyclic (1st pass) because
1495 * end == -1 in that case.
1496 */
1497 done = 1;
1498 break;
1499 }
1500
cf15b07c 1501 done_index = page->index;
d5482cdf 1502
811d736f
DH
1503 lock_page(page);
1504
5a3d5c98
NP
1505 /*
1506 * Page truncated or invalidated. We can freely skip it
1507 * then, even for data integrity operations: the page
1508 * has disappeared concurrently, so there could be no
1509 * real expectation of this data interity operation
1510 * even if there is now a new, dirty page at the same
1511 * pagecache address.
1512 */
811d736f 1513 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1514continue_unlock:
811d736f
DH
1515 unlock_page(page);
1516 continue;
1517 }
1518
515f4a03
NP
1519 if (!PageDirty(page)) {
1520 /* someone wrote it for us */
1521 goto continue_unlock;
1522 }
1523
1524 if (PageWriteback(page)) {
1525 if (wbc->sync_mode != WB_SYNC_NONE)
1526 wait_on_page_writeback(page);
1527 else
1528 goto continue_unlock;
1529 }
811d736f 1530
515f4a03
NP
1531 BUG_ON(PageWriteback(page));
1532 if (!clear_page_dirty_for_io(page))
5a3d5c98 1533 goto continue_unlock;
811d736f 1534
9e094383 1535 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1536 ret = (*writepage)(page, wbc, data);
00266770
NP
1537 if (unlikely(ret)) {
1538 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1539 unlock_page(page);
1540 ret = 0;
1541 } else {
1542 /*
1543 * done_index is set past this page,
1544 * so media errors will not choke
1545 * background writeout for the entire
1546 * file. This has consequences for
1547 * range_cyclic semantics (ie. it may
1548 * not be suitable for data integrity
1549 * writeout).
1550 */
cf15b07c 1551 done_index = page->index + 1;
00266770
NP
1552 done = 1;
1553 break;
1554 }
0b564927 1555 }
00266770 1556
546a1924
DC
1557 /*
1558 * We stop writing back only if we are not doing
1559 * integrity sync. In case of integrity sync we have to
1560 * keep going until we have written all the pages
1561 * we tagged for writeback prior to entering this loop.
1562 */
1563 if (--wbc->nr_to_write <= 0 &&
1564 wbc->sync_mode == WB_SYNC_NONE) {
1565 done = 1;
1566 break;
05fe478d 1567 }
811d736f
DH
1568 }
1569 pagevec_release(&pvec);
1570 cond_resched();
1571 }
3a4c6800 1572 if (!cycled && !done) {
811d736f 1573 /*
31a12666 1574 * range_cyclic:
811d736f
DH
1575 * We hit the last page and there is more work to be done: wrap
1576 * back to the start of the file
1577 */
31a12666 1578 cycled = 1;
811d736f 1579 index = 0;
31a12666 1580 end = writeback_index - 1;
811d736f
DH
1581 goto retry;
1582 }
0b564927
DC
1583 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1584 mapping->writeback_index = done_index;
06d6cf69 1585
811d736f
DH
1586 return ret;
1587}
0ea97180
MS
1588EXPORT_SYMBOL(write_cache_pages);
1589
1590/*
1591 * Function used by generic_writepages to call the real writepage
1592 * function and set the mapping flags on error
1593 */
1594static int __writepage(struct page *page, struct writeback_control *wbc,
1595 void *data)
1596{
1597 struct address_space *mapping = data;
1598 int ret = mapping->a_ops->writepage(page, wbc);
1599 mapping_set_error(mapping, ret);
1600 return ret;
1601}
1602
1603/**
1604 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1605 * @mapping: address space structure to write
1606 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1607 *
1608 * This is a library function, which implements the writepages()
1609 * address_space_operation.
1610 */
1611int generic_writepages(struct address_space *mapping,
1612 struct writeback_control *wbc)
1613{
9b6096a6
SL
1614 struct blk_plug plug;
1615 int ret;
1616
0ea97180
MS
1617 /* deal with chardevs and other special file */
1618 if (!mapping->a_ops->writepage)
1619 return 0;
1620
9b6096a6
SL
1621 blk_start_plug(&plug);
1622 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1623 blk_finish_plug(&plug);
1624 return ret;
0ea97180 1625}
811d736f
DH
1626
1627EXPORT_SYMBOL(generic_writepages);
1628
1da177e4
LT
1629int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1630{
22905f77
AM
1631 int ret;
1632
1da177e4
LT
1633 if (wbc->nr_to_write <= 0)
1634 return 0;
1635 if (mapping->a_ops->writepages)
d08b3851 1636 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1637 else
1638 ret = generic_writepages(mapping, wbc);
22905f77 1639 return ret;
1da177e4
LT
1640}
1641
1642/**
1643 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1644 * @page: the page to write
1645 * @wait: if true, wait on writeout
1da177e4
LT
1646 *
1647 * The page must be locked by the caller and will be unlocked upon return.
1648 *
1649 * write_one_page() returns a negative error code if I/O failed.
1650 */
1651int write_one_page(struct page *page, int wait)
1652{
1653 struct address_space *mapping = page->mapping;
1654 int ret = 0;
1655 struct writeback_control wbc = {
1656 .sync_mode = WB_SYNC_ALL,
1657 .nr_to_write = 1,
1658 };
1659
1660 BUG_ON(!PageLocked(page));
1661
1662 if (wait)
1663 wait_on_page_writeback(page);
1664
1665 if (clear_page_dirty_for_io(page)) {
1666 page_cache_get(page);
1667 ret = mapping->a_ops->writepage(page, &wbc);
1668 if (ret == 0 && wait) {
1669 wait_on_page_writeback(page);
1670 if (PageError(page))
1671 ret = -EIO;
1672 }
1673 page_cache_release(page);
1674 } else {
1675 unlock_page(page);
1676 }
1677 return ret;
1678}
1679EXPORT_SYMBOL(write_one_page);
1680
76719325
KC
1681/*
1682 * For address_spaces which do not use buffers nor write back.
1683 */
1684int __set_page_dirty_no_writeback(struct page *page)
1685{
1686 if (!PageDirty(page))
c3f0da63 1687 return !TestSetPageDirty(page);
76719325
KC
1688 return 0;
1689}
1690
e3a7cca1
ES
1691/*
1692 * Helper function for set_page_dirty family.
1693 * NOTE: This relies on being atomic wrt interrupts.
1694 */
1695void account_page_dirtied(struct page *page, struct address_space *mapping)
1696{
1697 if (mapping_cap_account_dirty(mapping)) {
1698 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1699 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1700 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1701 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1
ES
1702 task_dirty_inc(current);
1703 task_io_account_write(PAGE_CACHE_SIZE);
1704 }
1705}
679ceace 1706EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1707
f629d1c9
MR
1708/*
1709 * Helper function for set_page_writeback family.
1710 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1711 * wrt interrupts.
1712 */
1713void account_page_writeback(struct page *page)
1714{
1715 inc_zone_page_state(page, NR_WRITEBACK);
1716}
1717EXPORT_SYMBOL(account_page_writeback);
1718
1da177e4
LT
1719/*
1720 * For address_spaces which do not use buffers. Just tag the page as dirty in
1721 * its radix tree.
1722 *
1723 * This is also used when a single buffer is being dirtied: we want to set the
1724 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1725 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1726 *
1727 * Most callers have locked the page, which pins the address_space in memory.
1728 * But zap_pte_range() does not lock the page, however in that case the
1729 * mapping is pinned by the vma's ->vm_file reference.
1730 *
1731 * We take care to handle the case where the page was truncated from the
183ff22b 1732 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1733 */
1734int __set_page_dirty_nobuffers(struct page *page)
1735{
1da177e4
LT
1736 if (!TestSetPageDirty(page)) {
1737 struct address_space *mapping = page_mapping(page);
1738 struct address_space *mapping2;
1739
8c08540f
AM
1740 if (!mapping)
1741 return 1;
1742
19fd6231 1743 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1744 mapping2 = page_mapping(page);
1745 if (mapping2) { /* Race with truncate? */
1746 BUG_ON(mapping2 != mapping);
787d2214 1747 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1748 account_page_dirtied(page, mapping);
8c08540f
AM
1749 radix_tree_tag_set(&mapping->page_tree,
1750 page_index(page), PAGECACHE_TAG_DIRTY);
1751 }
19fd6231 1752 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1753 if (mapping->host) {
1754 /* !PageAnon && !swapper_space */
1755 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1756 }
4741c9fd 1757 return 1;
1da177e4 1758 }
4741c9fd 1759 return 0;
1da177e4
LT
1760}
1761EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1762
1763/*
1764 * When a writepage implementation decides that it doesn't want to write this
1765 * page for some reason, it should redirty the locked page via
1766 * redirty_page_for_writepage() and it should then unlock the page and return 0
1767 */
1768int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1769{
1770 wbc->pages_skipped++;
1771 return __set_page_dirty_nobuffers(page);
1772}
1773EXPORT_SYMBOL(redirty_page_for_writepage);
1774
1775/*
6746aff7
WF
1776 * Dirty a page.
1777 *
1778 * For pages with a mapping this should be done under the page lock
1779 * for the benefit of asynchronous memory errors who prefer a consistent
1780 * dirty state. This rule can be broken in some special cases,
1781 * but should be better not to.
1782 *
1da177e4
LT
1783 * If the mapping doesn't provide a set_page_dirty a_op, then
1784 * just fall through and assume that it wants buffer_heads.
1785 */
1cf6e7d8 1786int set_page_dirty(struct page *page)
1da177e4
LT
1787{
1788 struct address_space *mapping = page_mapping(page);
1789
1790 if (likely(mapping)) {
1791 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1792 /*
1793 * readahead/lru_deactivate_page could remain
1794 * PG_readahead/PG_reclaim due to race with end_page_writeback
1795 * About readahead, if the page is written, the flags would be
1796 * reset. So no problem.
1797 * About lru_deactivate_page, if the page is redirty, the flag
1798 * will be reset. So no problem. but if the page is used by readahead
1799 * it will confuse readahead and make it restart the size rampup
1800 * process. But it's a trivial problem.
1801 */
1802 ClearPageReclaim(page);
9361401e
DH
1803#ifdef CONFIG_BLOCK
1804 if (!spd)
1805 spd = __set_page_dirty_buffers;
1806#endif
1807 return (*spd)(page);
1da177e4 1808 }
4741c9fd
AM
1809 if (!PageDirty(page)) {
1810 if (!TestSetPageDirty(page))
1811 return 1;
1812 }
1da177e4
LT
1813 return 0;
1814}
1815EXPORT_SYMBOL(set_page_dirty);
1816
1817/*
1818 * set_page_dirty() is racy if the caller has no reference against
1819 * page->mapping->host, and if the page is unlocked. This is because another
1820 * CPU could truncate the page off the mapping and then free the mapping.
1821 *
1822 * Usually, the page _is_ locked, or the caller is a user-space process which
1823 * holds a reference on the inode by having an open file.
1824 *
1825 * In other cases, the page should be locked before running set_page_dirty().
1826 */
1827int set_page_dirty_lock(struct page *page)
1828{
1829 int ret;
1830
7eaceacc 1831 lock_page(page);
1da177e4
LT
1832 ret = set_page_dirty(page);
1833 unlock_page(page);
1834 return ret;
1835}
1836EXPORT_SYMBOL(set_page_dirty_lock);
1837
1da177e4
LT
1838/*
1839 * Clear a page's dirty flag, while caring for dirty memory accounting.
1840 * Returns true if the page was previously dirty.
1841 *
1842 * This is for preparing to put the page under writeout. We leave the page
1843 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1844 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1845 * implementation will run either set_page_writeback() or set_page_dirty(),
1846 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1847 * back into sync.
1848 *
1849 * This incoherency between the page's dirty flag and radix-tree tag is
1850 * unfortunate, but it only exists while the page is locked.
1851 */
1852int clear_page_dirty_for_io(struct page *page)
1853{
1854 struct address_space *mapping = page_mapping(page);
1855
79352894
NP
1856 BUG_ON(!PageLocked(page));
1857
7658cc28
LT
1858 if (mapping && mapping_cap_account_dirty(mapping)) {
1859 /*
1860 * Yes, Virginia, this is indeed insane.
1861 *
1862 * We use this sequence to make sure that
1863 * (a) we account for dirty stats properly
1864 * (b) we tell the low-level filesystem to
1865 * mark the whole page dirty if it was
1866 * dirty in a pagetable. Only to then
1867 * (c) clean the page again and return 1 to
1868 * cause the writeback.
1869 *
1870 * This way we avoid all nasty races with the
1871 * dirty bit in multiple places and clearing
1872 * them concurrently from different threads.
1873 *
1874 * Note! Normally the "set_page_dirty(page)"
1875 * has no effect on the actual dirty bit - since
1876 * that will already usually be set. But we
1877 * need the side effects, and it can help us
1878 * avoid races.
1879 *
1880 * We basically use the page "master dirty bit"
1881 * as a serialization point for all the different
1882 * threads doing their things.
7658cc28
LT
1883 */
1884 if (page_mkclean(page))
1885 set_page_dirty(page);
79352894
NP
1886 /*
1887 * We carefully synchronise fault handlers against
1888 * installing a dirty pte and marking the page dirty
1889 * at this point. We do this by having them hold the
1890 * page lock at some point after installing their
1891 * pte, but before marking the page dirty.
1892 * Pages are always locked coming in here, so we get
1893 * the desired exclusion. See mm/memory.c:do_wp_page()
1894 * for more comments.
1895 */
7658cc28 1896 if (TestClearPageDirty(page)) {
8c08540f 1897 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1898 dec_bdi_stat(mapping->backing_dev_info,
1899 BDI_RECLAIMABLE);
7658cc28 1900 return 1;
1da177e4 1901 }
7658cc28 1902 return 0;
1da177e4 1903 }
7658cc28 1904 return TestClearPageDirty(page);
1da177e4 1905}
58bb01a9 1906EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1907
1908int test_clear_page_writeback(struct page *page)
1909{
1910 struct address_space *mapping = page_mapping(page);
1911 int ret;
1912
1913 if (mapping) {
69cb51d1 1914 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1915 unsigned long flags;
1916
19fd6231 1917 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1918 ret = TestClearPageWriteback(page);
69cb51d1 1919 if (ret) {
1da177e4
LT
1920 radix_tree_tag_clear(&mapping->page_tree,
1921 page_index(page),
1922 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1923 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1924 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1925 __bdi_writeout_inc(bdi);
1926 }
69cb51d1 1927 }
19fd6231 1928 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1929 } else {
1930 ret = TestClearPageWriteback(page);
1931 }
99b12e3d 1932 if (ret) {
d688abf5 1933 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
1934 inc_zone_page_state(page, NR_WRITTEN);
1935 }
1da177e4
LT
1936 return ret;
1937}
1938
1939int test_set_page_writeback(struct page *page)
1940{
1941 struct address_space *mapping = page_mapping(page);
1942 int ret;
1943
1944 if (mapping) {
69cb51d1 1945 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1946 unsigned long flags;
1947
19fd6231 1948 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1949 ret = TestSetPageWriteback(page);
69cb51d1 1950 if (!ret) {
1da177e4
LT
1951 radix_tree_tag_set(&mapping->page_tree,
1952 page_index(page),
1953 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1954 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1955 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1956 }
1da177e4
LT
1957 if (!PageDirty(page))
1958 radix_tree_tag_clear(&mapping->page_tree,
1959 page_index(page),
1960 PAGECACHE_TAG_DIRTY);
f446daae
JK
1961 radix_tree_tag_clear(&mapping->page_tree,
1962 page_index(page),
1963 PAGECACHE_TAG_TOWRITE);
19fd6231 1964 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1965 } else {
1966 ret = TestSetPageWriteback(page);
1967 }
d688abf5 1968 if (!ret)
f629d1c9 1969 account_page_writeback(page);
1da177e4
LT
1970 return ret;
1971
1972}
1973EXPORT_SYMBOL(test_set_page_writeback);
1974
1975/*
00128188 1976 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1977 * passed tag.
1978 */
1979int mapping_tagged(struct address_space *mapping, int tag)
1980{
72c47832 1981 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
1982}
1983EXPORT_SYMBOL(mapping_tagged);