writeback: make __wb_calc_thresh() take dirty_throttle_control
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
dcc25ae7 125struct wb_domain global_wb_domain;
eb608e3a 126
2bc00aef
TH
127/* consolidated parameters for balance_dirty_pages() and its subroutines */
128struct dirty_throttle_control {
129 struct bdi_writeback *wb;
130
131 unsigned long dirty; /* file_dirty + write + nfs */
132 unsigned long thresh; /* dirty threshold */
133 unsigned long bg_thresh; /* dirty background threshold */
134
135 unsigned long wb_dirty; /* per-wb counterparts */
136 unsigned long wb_thresh;
970fb01a 137 unsigned long wb_bg_thresh;
2bc00aef
TH
138};
139
140#define GDTC_INIT(__wb) .wb = (__wb)
141
eb608e3a
JK
142/*
143 * Length of period for aging writeout fractions of bdis. This is an
144 * arbitrarily chosen number. The longer the period, the slower fractions will
145 * reflect changes in current writeout rate.
146 */
147#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 148
693108a8
TH
149#ifdef CONFIG_CGROUP_WRITEBACK
150
151static void wb_min_max_ratio(struct bdi_writeback *wb,
152 unsigned long *minp, unsigned long *maxp)
153{
154 unsigned long this_bw = wb->avg_write_bandwidth;
155 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
156 unsigned long long min = wb->bdi->min_ratio;
157 unsigned long long max = wb->bdi->max_ratio;
158
159 /*
160 * @wb may already be clean by the time control reaches here and
161 * the total may not include its bw.
162 */
163 if (this_bw < tot_bw) {
164 if (min) {
165 min *= this_bw;
166 do_div(min, tot_bw);
167 }
168 if (max < 100) {
169 max *= this_bw;
170 do_div(max, tot_bw);
171 }
172 }
173
174 *minp = min;
175 *maxp = max;
176}
177
178#else /* CONFIG_CGROUP_WRITEBACK */
179
180static void wb_min_max_ratio(struct bdi_writeback *wb,
181 unsigned long *minp, unsigned long *maxp)
182{
183 *minp = wb->bdi->min_ratio;
184 *maxp = wb->bdi->max_ratio;
185}
186
187#endif /* CONFIG_CGROUP_WRITEBACK */
188
a756cf59
JW
189/*
190 * In a memory zone, there is a certain amount of pages we consider
191 * available for the page cache, which is essentially the number of
192 * free and reclaimable pages, minus some zone reserves to protect
193 * lowmem and the ability to uphold the zone's watermarks without
194 * requiring writeback.
195 *
196 * This number of dirtyable pages is the base value of which the
197 * user-configurable dirty ratio is the effictive number of pages that
198 * are allowed to be actually dirtied. Per individual zone, or
199 * globally by using the sum of dirtyable pages over all zones.
200 *
201 * Because the user is allowed to specify the dirty limit globally as
202 * absolute number of bytes, calculating the per-zone dirty limit can
203 * require translating the configured limit into a percentage of
204 * global dirtyable memory first.
205 */
206
a804552b
JW
207/**
208 * zone_dirtyable_memory - number of dirtyable pages in a zone
209 * @zone: the zone
210 *
211 * Returns the zone's number of pages potentially available for dirty
212 * page cache. This is the base value for the per-zone dirty limits.
213 */
214static unsigned long zone_dirtyable_memory(struct zone *zone)
215{
216 unsigned long nr_pages;
217
218 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
219 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
220
a1c3bfb2
JW
221 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
222 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
223
224 return nr_pages;
225}
226
1edf2234
JW
227static unsigned long highmem_dirtyable_memory(unsigned long total)
228{
229#ifdef CONFIG_HIGHMEM
230 int node;
231 unsigned long x = 0;
232
233 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 234 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 235
a804552b 236 x += zone_dirtyable_memory(z);
1edf2234 237 }
c8b74c2f
SR
238 /*
239 * Unreclaimable memory (kernel memory or anonymous memory
240 * without swap) can bring down the dirtyable pages below
241 * the zone's dirty balance reserve and the above calculation
242 * will underflow. However we still want to add in nodes
243 * which are below threshold (negative values) to get a more
244 * accurate calculation but make sure that the total never
245 * underflows.
246 */
247 if ((long)x < 0)
248 x = 0;
249
1edf2234
JW
250 /*
251 * Make sure that the number of highmem pages is never larger
252 * than the number of the total dirtyable memory. This can only
253 * occur in very strange VM situations but we want to make sure
254 * that this does not occur.
255 */
256 return min(x, total);
257#else
258 return 0;
259#endif
260}
261
262/**
ccafa287 263 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 264 *
ccafa287
JW
265 * Returns the global number of pages potentially available for dirty
266 * page cache. This is the base value for the global dirty limits.
1edf2234 267 */
18cf8cf8 268static unsigned long global_dirtyable_memory(void)
1edf2234
JW
269{
270 unsigned long x;
271
a804552b 272 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 273 x -= min(x, dirty_balance_reserve);
1edf2234 274
a1c3bfb2
JW
275 x += global_page_state(NR_INACTIVE_FILE);
276 x += global_page_state(NR_ACTIVE_FILE);
a804552b 277
1edf2234
JW
278 if (!vm_highmem_is_dirtyable)
279 x -= highmem_dirtyable_memory(x);
280
281 return x + 1; /* Ensure that we never return 0 */
282}
283
ccafa287
JW
284/*
285 * global_dirty_limits - background-writeback and dirty-throttling thresholds
286 *
287 * Calculate the dirty thresholds based on sysctl parameters
288 * - vm.dirty_background_ratio or vm.dirty_background_bytes
289 * - vm.dirty_ratio or vm.dirty_bytes
290 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
291 * real-time tasks.
292 */
293void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
294{
9ef0a0ff 295 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
296 unsigned long background;
297 unsigned long dirty;
ccafa287
JW
298 struct task_struct *tsk;
299
ccafa287
JW
300 if (vm_dirty_bytes)
301 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
302 else
303 dirty = (vm_dirty_ratio * available_memory) / 100;
304
305 if (dirty_background_bytes)
306 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
307 else
308 background = (dirty_background_ratio * available_memory) / 100;
309
310 if (background >= dirty)
311 background = dirty / 2;
312 tsk = current;
313 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
314 background += background / 4;
315 dirty += dirty / 4;
316 }
317 *pbackground = background;
318 *pdirty = dirty;
319 trace_global_dirty_state(background, dirty);
320}
321
a756cf59
JW
322/**
323 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
324 * @zone: the zone
325 *
326 * Returns the maximum number of dirty pages allowed in a zone, based
327 * on the zone's dirtyable memory.
328 */
329static unsigned long zone_dirty_limit(struct zone *zone)
330{
331 unsigned long zone_memory = zone_dirtyable_memory(zone);
332 struct task_struct *tsk = current;
333 unsigned long dirty;
334
335 if (vm_dirty_bytes)
336 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
337 zone_memory / global_dirtyable_memory();
338 else
339 dirty = vm_dirty_ratio * zone_memory / 100;
340
341 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
342 dirty += dirty / 4;
343
344 return dirty;
345}
346
347/**
348 * zone_dirty_ok - tells whether a zone is within its dirty limits
349 * @zone: the zone to check
350 *
351 * Returns %true when the dirty pages in @zone are within the zone's
352 * dirty limit, %false if the limit is exceeded.
353 */
354bool zone_dirty_ok(struct zone *zone)
355{
356 unsigned long limit = zone_dirty_limit(zone);
357
358 return zone_page_state(zone, NR_FILE_DIRTY) +
359 zone_page_state(zone, NR_UNSTABLE_NFS) +
360 zone_page_state(zone, NR_WRITEBACK) <= limit;
361}
362
2da02997 363int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 364 void __user *buffer, size_t *lenp,
2da02997
DR
365 loff_t *ppos)
366{
367 int ret;
368
8d65af78 369 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
370 if (ret == 0 && write)
371 dirty_background_bytes = 0;
372 return ret;
373}
374
375int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 376 void __user *buffer, size_t *lenp,
2da02997
DR
377 loff_t *ppos)
378{
379 int ret;
380
8d65af78 381 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
382 if (ret == 0 && write)
383 dirty_background_ratio = 0;
384 return ret;
385}
386
04fbfdc1 387int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 388 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
389 loff_t *ppos)
390{
391 int old_ratio = vm_dirty_ratio;
2da02997
DR
392 int ret;
393
8d65af78 394 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 395 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 396 writeback_set_ratelimit();
2da02997
DR
397 vm_dirty_bytes = 0;
398 }
399 return ret;
400}
401
2da02997 402int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 403 void __user *buffer, size_t *lenp,
2da02997
DR
404 loff_t *ppos)
405{
fc3501d4 406 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
407 int ret;
408
8d65af78 409 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 410 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 411 writeback_set_ratelimit();
2da02997 412 vm_dirty_ratio = 0;
04fbfdc1
PZ
413 }
414 return ret;
415}
416
eb608e3a
JK
417static unsigned long wp_next_time(unsigned long cur_time)
418{
419 cur_time += VM_COMPLETIONS_PERIOD_LEN;
420 /* 0 has a special meaning... */
421 if (!cur_time)
422 return 1;
423 return cur_time;
424}
425
04fbfdc1 426/*
380c27ca 427 * Increment the wb's writeout completion count and the global writeout
04fbfdc1
PZ
428 * completion count. Called from test_clear_page_writeback().
429 */
93f78d88 430static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 431{
380c27ca
TH
432 struct wb_domain *dom = &global_wb_domain;
433
93f78d88 434 __inc_wb_stat(wb, WB_WRITTEN);
380c27ca 435 __fprop_inc_percpu_max(&dom->completions, &wb->completions,
93f78d88 436 wb->bdi->max_prop_frac);
eb608e3a 437 /* First event after period switching was turned off? */
380c27ca 438 if (!unlikely(dom->period_time)) {
eb608e3a
JK
439 /*
440 * We can race with other __bdi_writeout_inc calls here but
441 * it does not cause any harm since the resulting time when
442 * timer will fire and what is in writeout_period_time will be
443 * roughly the same.
444 */
380c27ca
TH
445 dom->period_time = wp_next_time(jiffies);
446 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 447 }
04fbfdc1
PZ
448}
449
93f78d88 450void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
451{
452 unsigned long flags;
453
454 local_irq_save(flags);
93f78d88 455 __wb_writeout_inc(wb);
dd5656e5
MS
456 local_irq_restore(flags);
457}
93f78d88 458EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 459
eb608e3a
JK
460/*
461 * On idle system, we can be called long after we scheduled because we use
462 * deferred timers so count with missed periods.
463 */
464static void writeout_period(unsigned long t)
465{
380c27ca
TH
466 struct wb_domain *dom = (void *)t;
467 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
468 VM_COMPLETIONS_PERIOD_LEN;
469
380c27ca
TH
470 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
471 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 472 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 473 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
474 } else {
475 /*
476 * Aging has zeroed all fractions. Stop wasting CPU on period
477 * updates.
478 */
380c27ca 479 dom->period_time = 0;
eb608e3a
JK
480 }
481}
482
380c27ca
TH
483int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
484{
485 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
486
487 spin_lock_init(&dom->lock);
488
380c27ca
TH
489 init_timer_deferrable(&dom->period_timer);
490 dom->period_timer.function = writeout_period;
491 dom->period_timer.data = (unsigned long)dom;
dcc25ae7
TH
492
493 dom->dirty_limit_tstamp = jiffies;
494
380c27ca
TH
495 return fprop_global_init(&dom->completions, gfp);
496}
497
189d3c4a 498/*
d08c429b
JW
499 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
500 * registered backing devices, which, for obvious reasons, can not
501 * exceed 100%.
189d3c4a 502 */
189d3c4a
PZ
503static unsigned int bdi_min_ratio;
504
505int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
506{
507 int ret = 0;
189d3c4a 508
cfc4ba53 509 spin_lock_bh(&bdi_lock);
a42dde04 510 if (min_ratio > bdi->max_ratio) {
189d3c4a 511 ret = -EINVAL;
a42dde04
PZ
512 } else {
513 min_ratio -= bdi->min_ratio;
514 if (bdi_min_ratio + min_ratio < 100) {
515 bdi_min_ratio += min_ratio;
516 bdi->min_ratio += min_ratio;
517 } else {
518 ret = -EINVAL;
519 }
520 }
cfc4ba53 521 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
522
523 return ret;
524}
525
526int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
527{
a42dde04
PZ
528 int ret = 0;
529
530 if (max_ratio > 100)
531 return -EINVAL;
532
cfc4ba53 533 spin_lock_bh(&bdi_lock);
a42dde04
PZ
534 if (bdi->min_ratio > max_ratio) {
535 ret = -EINVAL;
536 } else {
537 bdi->max_ratio = max_ratio;
eb608e3a 538 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 539 }
cfc4ba53 540 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
541
542 return ret;
543}
a42dde04 544EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 545
6c14ae1e
WF
546static unsigned long dirty_freerun_ceiling(unsigned long thresh,
547 unsigned long bg_thresh)
548{
549 return (thresh + bg_thresh) / 2;
550}
551
ffd1f609
WF
552static unsigned long hard_dirty_limit(unsigned long thresh)
553{
dcc25ae7
TH
554 struct wb_domain *dom = &global_wb_domain;
555
556 return max(thresh, dom->dirty_limit);
ffd1f609
WF
557}
558
6f718656 559/**
b1cbc6d4
TH
560 * __wb_calc_thresh - @wb's share of dirty throttling threshold
561 * @dtc: dirty_throttle_context of interest
1babe183 562 *
a88a341a 563 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 564 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
565 *
566 * Note that balance_dirty_pages() will only seriously take it as a hard limit
567 * when sleeping max_pause per page is not enough to keep the dirty pages under
568 * control. For example, when the device is completely stalled due to some error
569 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
570 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 571 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 572 *
6f718656 573 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
574 * - starving fast devices
575 * - piling up dirty pages (that will take long time to sync) on slow devices
576 *
a88a341a 577 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
578 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
579 */
b1cbc6d4 580static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 581{
380c27ca 582 struct wb_domain *dom = &global_wb_domain;
b1cbc6d4 583 unsigned long thresh = dtc->thresh;
0d960a38 584 u64 wb_thresh;
16c4042f 585 long numerator, denominator;
693108a8 586 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 587
16c4042f 588 /*
0d960a38 589 * Calculate this BDI's share of the thresh ratio.
16c4042f 590 */
b1cbc6d4 591 fprop_fraction_percpu(&dom->completions, &dtc->wb->completions,
380c27ca 592 &numerator, &denominator);
04fbfdc1 593
0d960a38
TH
594 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
595 wb_thresh *= numerator;
596 do_div(wb_thresh, denominator);
04fbfdc1 597
b1cbc6d4 598 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
693108a8 599
0d960a38
TH
600 wb_thresh += (thresh * wb_min_ratio) / 100;
601 if (wb_thresh > (thresh * wb_max_ratio) / 100)
602 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 603
0d960a38 604 return wb_thresh;
1da177e4
LT
605}
606
b1cbc6d4
TH
607unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
608{
609 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
610 .thresh = thresh };
611 return __wb_calc_thresh(&gdtc);
612}
613
5a537485
MP
614/*
615 * setpoint - dirty 3
616 * f(dirty) := 1.0 + (----------------)
617 * limit - setpoint
618 *
619 * it's a 3rd order polynomial that subjects to
620 *
621 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
622 * (2) f(setpoint) = 1.0 => the balance point
623 * (3) f(limit) = 0 => the hard limit
624 * (4) df/dx <= 0 => negative feedback control
625 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
626 * => fast response on large errors; small oscillation near setpoint
627 */
d5c9fde3 628static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
629 unsigned long dirty,
630 unsigned long limit)
631{
632 long long pos_ratio;
633 long x;
634
d5c9fde3 635 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
636 limit - setpoint + 1);
637 pos_ratio = x;
638 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
639 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
640 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
641
642 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
643}
644
6c14ae1e
WF
645/*
646 * Dirty position control.
647 *
648 * (o) global/bdi setpoints
649 *
de1fff37 650 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
651 * When the number of dirty pages is higher/lower than the setpoint, the
652 * dirty position control ratio (and hence task dirty ratelimit) will be
653 * decreased/increased to bring the dirty pages back to the setpoint.
654 *
655 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
656 *
657 * if (dirty < setpoint) scale up pos_ratio
658 * if (dirty > setpoint) scale down pos_ratio
659 *
de1fff37
TH
660 * if (wb_dirty < wb_setpoint) scale up pos_ratio
661 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
662 *
663 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
664 *
665 * (o) global control line
666 *
667 * ^ pos_ratio
668 * |
669 * | |<===== global dirty control scope ======>|
670 * 2.0 .............*
671 * | .*
672 * | . *
673 * | . *
674 * | . *
675 * | . *
676 * | . *
677 * 1.0 ................................*
678 * | . . *
679 * | . . *
680 * | . . *
681 * | . . *
682 * | . . *
683 * 0 +------------.------------------.----------------------*------------->
684 * freerun^ setpoint^ limit^ dirty pages
685 *
de1fff37 686 * (o) wb control line
6c14ae1e
WF
687 *
688 * ^ pos_ratio
689 * |
690 * | *
691 * | *
692 * | *
693 * | *
694 * | * |<=========== span ============>|
695 * 1.0 .......................*
696 * | . *
697 * | . *
698 * | . *
699 * | . *
700 * | . *
701 * | . *
702 * | . *
703 * | . *
704 * | . *
705 * | . *
706 * | . *
707 * 1/4 ...............................................* * * * * * * * * * * *
708 * | . .
709 * | . .
710 * | . .
711 * 0 +----------------------.-------------------------------.------------->
de1fff37 712 * wb_setpoint^ x_intercept^
6c14ae1e 713 *
de1fff37 714 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
715 * be smoothly throttled down to normal if it starts high in situations like
716 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
717 * card's wb_dirty may rush to many times higher than wb_setpoint.
718 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 719 */
2bc00aef 720static unsigned long wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 721{
2bc00aef 722 struct bdi_writeback *wb = dtc->wb;
a88a341a 723 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef
TH
724 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
725 unsigned long limit = hard_dirty_limit(dtc->thresh);
726 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
727 unsigned long x_intercept;
728 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 729 unsigned long wb_setpoint;
6c14ae1e
WF
730 unsigned long span;
731 long long pos_ratio; /* for scaling up/down the rate limit */
732 long x;
733
2bc00aef 734 if (unlikely(dtc->dirty >= limit))
6c14ae1e
WF
735 return 0;
736
737 /*
738 * global setpoint
739 *
5a537485
MP
740 * See comment for pos_ratio_polynom().
741 */
742 setpoint = (freerun + limit) / 2;
2bc00aef 743 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
744
745 /*
746 * The strictlimit feature is a tool preventing mistrusted filesystems
747 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
748 * such filesystems balance_dirty_pages always checks wb counters
749 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
750 * This is especially important for fuse which sets bdi->max_ratio to
751 * 1% by default. Without strictlimit feature, fuse writeback may
752 * consume arbitrary amount of RAM because it is accounted in
753 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 754 *
a88a341a 755 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 756 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
757 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
758 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 759 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 760 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 761 * about ~6K pages (as the average of background and throttle wb
5a537485 762 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 763 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 764 *
5a537485 765 * Note, that we cannot use global counters in these calculations
de1fff37 766 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
767 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
768 * in the example above).
6c14ae1e 769 */
a88a341a 770 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 771 long long wb_pos_ratio;
5a537485 772
2bc00aef 773 if (dtc->wb_dirty < 8)
5a537485
MP
774 return min_t(long long, pos_ratio * 2,
775 2 << RATELIMIT_CALC_SHIFT);
776
2bc00aef 777 if (dtc->wb_dirty >= wb_thresh)
5a537485
MP
778 return 0;
779
970fb01a
TH
780 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
781 dtc->wb_bg_thresh);
5a537485 782
de1fff37 783 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
784 return 0;
785
2bc00aef 786 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 787 wb_thresh);
5a537485
MP
788
789 /*
de1fff37
TH
790 * Typically, for strictlimit case, wb_setpoint << setpoint
791 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 792 * state ("dirty") is not limiting factor and we have to
de1fff37 793 * make decision based on wb counters. But there is an
5a537485
MP
794 * important case when global pos_ratio should get precedence:
795 * global limits are exceeded (e.g. due to activities on other
de1fff37 796 * wb's) while given strictlimit wb is below limit.
5a537485 797 *
de1fff37 798 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 799 * but it would look too non-natural for the case of all
de1fff37 800 * activity in the system coming from a single strictlimit wb
5a537485
MP
801 * with bdi->max_ratio == 100%.
802 *
803 * Note that min() below somewhat changes the dynamics of the
804 * control system. Normally, pos_ratio value can be well over 3
de1fff37 805 * (when globally we are at freerun and wb is well below wb
5a537485
MP
806 * setpoint). Now the maximum pos_ratio in the same situation
807 * is 2. We might want to tweak this if we observe the control
808 * system is too slow to adapt.
809 */
de1fff37 810 return min(pos_ratio, wb_pos_ratio);
5a537485 811 }
6c14ae1e
WF
812
813 /*
814 * We have computed basic pos_ratio above based on global situation. If
de1fff37 815 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
816 * pos_ratio further down/up. That is done by the following mechanism.
817 */
818
819 /*
de1fff37 820 * wb setpoint
6c14ae1e 821 *
de1fff37 822 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 823 *
de1fff37 824 * x_intercept - wb_dirty
6c14ae1e 825 * := --------------------------
de1fff37 826 * x_intercept - wb_setpoint
6c14ae1e 827 *
de1fff37 828 * The main wb control line is a linear function that subjects to
6c14ae1e 829 *
de1fff37
TH
830 * (1) f(wb_setpoint) = 1.0
831 * (2) k = - 1 / (8 * write_bw) (in single wb case)
832 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 833 *
de1fff37 834 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 835 * regularly within range
de1fff37 836 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
837 * for various filesystems, where (2) can yield in a reasonable 12.5%
838 * fluctuation range for pos_ratio.
839 *
de1fff37 840 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 841 * own size, so move the slope over accordingly and choose a slope that
de1fff37 842 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 843 */
2bc00aef
TH
844 if (unlikely(wb_thresh > dtc->thresh))
845 wb_thresh = dtc->thresh;
aed21ad2 846 /*
de1fff37 847 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
848 * device is slow, but that it has remained inactive for long time.
849 * Honour such devices a reasonable good (hopefully IO efficient)
850 * threshold, so that the occasional writes won't be blocked and active
851 * writes can rampup the threshold quickly.
852 */
2bc00aef 853 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 854 /*
de1fff37
TH
855 * scale global setpoint to wb's:
856 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 857 */
2bc00aef 858 x = div_u64((u64)wb_thresh << 16, dtc->thresh + 1);
de1fff37 859 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 860 /*
de1fff37
TH
861 * Use span=(8*write_bw) in single wb case as indicated by
862 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 863 *
de1fff37
TH
864 * wb_thresh thresh - wb_thresh
865 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
866 * thresh thresh
6c14ae1e 867 */
2bc00aef 868 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 869 x_intercept = wb_setpoint + span;
6c14ae1e 870
2bc00aef
TH
871 if (dtc->wb_dirty < x_intercept - span / 4) {
872 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
873 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
874 } else
875 pos_ratio /= 4;
876
8927f66c 877 /*
de1fff37 878 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
879 * It may push the desired control point of global dirty pages higher
880 * than setpoint.
881 */
de1fff37 882 x_intercept = wb_thresh / 2;
2bc00aef
TH
883 if (dtc->wb_dirty < x_intercept) {
884 if (dtc->wb_dirty > x_intercept / 8)
885 pos_ratio = div_u64(pos_ratio * x_intercept,
886 dtc->wb_dirty);
50657fc4 887 else
8927f66c
WF
888 pos_ratio *= 8;
889 }
890
6c14ae1e
WF
891 return pos_ratio;
892}
893
a88a341a
TH
894static void wb_update_write_bandwidth(struct bdi_writeback *wb,
895 unsigned long elapsed,
896 unsigned long written)
e98be2d5
WF
897{
898 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
899 unsigned long avg = wb->avg_write_bandwidth;
900 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
901 u64 bw;
902
903 /*
904 * bw = written * HZ / elapsed
905 *
906 * bw * elapsed + write_bandwidth * (period - elapsed)
907 * write_bandwidth = ---------------------------------------------------
908 * period
c72efb65
TH
909 *
910 * @written may have decreased due to account_page_redirty().
911 * Avoid underflowing @bw calculation.
e98be2d5 912 */
a88a341a 913 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
914 bw *= HZ;
915 if (unlikely(elapsed > period)) {
916 do_div(bw, elapsed);
917 avg = bw;
918 goto out;
919 }
a88a341a 920 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
921 bw >>= ilog2(period);
922
923 /*
924 * one more level of smoothing, for filtering out sudden spikes
925 */
926 if (avg > old && old >= (unsigned long)bw)
927 avg -= (avg - old) >> 3;
928
929 if (avg < old && old <= (unsigned long)bw)
930 avg += (old - avg) >> 3;
931
932out:
95a46c65
TH
933 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
934 avg = max(avg, 1LU);
935 if (wb_has_dirty_io(wb)) {
936 long delta = avg - wb->avg_write_bandwidth;
937 WARN_ON_ONCE(atomic_long_add_return(delta,
938 &wb->bdi->tot_write_bandwidth) <= 0);
939 }
a88a341a
TH
940 wb->write_bandwidth = bw;
941 wb->avg_write_bandwidth = avg;
e98be2d5
WF
942}
943
2bc00aef 944static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 945{
dcc25ae7 946 struct wb_domain *dom = &global_wb_domain;
2bc00aef 947 unsigned long thresh = dtc->thresh;
dcc25ae7 948 unsigned long limit = dom->dirty_limit;
c42843f2
WF
949
950 /*
951 * Follow up in one step.
952 */
953 if (limit < thresh) {
954 limit = thresh;
955 goto update;
956 }
957
958 /*
959 * Follow down slowly. Use the higher one as the target, because thresh
960 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 961 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 962 */
2bc00aef 963 thresh = max(thresh, dtc->dirty);
c42843f2
WF
964 if (limit > thresh) {
965 limit -= (limit - thresh) >> 5;
966 goto update;
967 }
968 return;
969update:
dcc25ae7 970 dom->dirty_limit = limit;
c42843f2
WF
971}
972
2bc00aef 973static void global_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
974 unsigned long now)
975{
dcc25ae7 976 struct wb_domain *dom = &global_wb_domain;
c42843f2
WF
977
978 /*
979 * check locklessly first to optimize away locking for the most time
980 */
dcc25ae7 981 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
982 return;
983
dcc25ae7
TH
984 spin_lock(&dom->lock);
985 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 986 update_dirty_limit(dtc);
dcc25ae7 987 dom->dirty_limit_tstamp = now;
c42843f2 988 }
dcc25ae7 989 spin_unlock(&dom->lock);
c42843f2
WF
990}
991
be3ffa27 992/*
de1fff37 993 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 994 *
de1fff37 995 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
996 * Obviously it should be around (write_bw / N) when there are N dd tasks.
997 */
2bc00aef 998static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
999 unsigned long dirtied,
1000 unsigned long elapsed)
be3ffa27 1001{
2bc00aef
TH
1002 struct bdi_writeback *wb = dtc->wb;
1003 unsigned long dirty = dtc->dirty;
1004 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1005 unsigned long limit = hard_dirty_limit(dtc->thresh);
7381131c 1006 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1007 unsigned long write_bw = wb->avg_write_bandwidth;
1008 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1009 unsigned long dirty_rate;
1010 unsigned long task_ratelimit;
1011 unsigned long balanced_dirty_ratelimit;
1012 unsigned long pos_ratio;
7381131c
WF
1013 unsigned long step;
1014 unsigned long x;
be3ffa27
WF
1015
1016 /*
1017 * The dirty rate will match the writeout rate in long term, except
1018 * when dirty pages are truncated by userspace or re-dirtied by FS.
1019 */
a88a341a 1020 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1021
2bc00aef 1022 pos_ratio = wb_position_ratio(dtc);
be3ffa27
WF
1023 /*
1024 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1025 */
1026 task_ratelimit = (u64)dirty_ratelimit *
1027 pos_ratio >> RATELIMIT_CALC_SHIFT;
1028 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1029
1030 /*
1031 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1032 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1033 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1034 * formula will yield the balanced rate limit (write_bw / N).
1035 *
1036 * Note that the expanded form is not a pure rate feedback:
1037 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1038 * but also takes pos_ratio into account:
1039 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1040 *
1041 * (1) is not realistic because pos_ratio also takes part in balancing
1042 * the dirty rate. Consider the state
1043 * pos_ratio = 0.5 (3)
1044 * rate = 2 * (write_bw / N) (4)
1045 * If (1) is used, it will stuck in that state! Because each dd will
1046 * be throttled at
1047 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1048 * yielding
1049 * dirty_rate = N * task_ratelimit = write_bw (6)
1050 * put (6) into (1) we get
1051 * rate_(i+1) = rate_(i) (7)
1052 *
1053 * So we end up using (2) to always keep
1054 * rate_(i+1) ~= (write_bw / N) (8)
1055 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1056 * pos_ratio is able to drive itself to 1.0, which is not only where
1057 * the dirty count meet the setpoint, but also where the slope of
1058 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1059 */
1060 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1061 dirty_rate | 1);
bdaac490
WF
1062 /*
1063 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1064 */
1065 if (unlikely(balanced_dirty_ratelimit > write_bw))
1066 balanced_dirty_ratelimit = write_bw;
be3ffa27 1067
7381131c
WF
1068 /*
1069 * We could safely do this and return immediately:
1070 *
de1fff37 1071 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1072 *
1073 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1074 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1075 * limit the step size.
1076 *
1077 * The below code essentially only uses the relative value of
1078 *
1079 * task_ratelimit - dirty_ratelimit
1080 * = (pos_ratio - 1) * dirty_ratelimit
1081 *
1082 * which reflects the direction and size of dirty position error.
1083 */
1084
1085 /*
1086 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1087 * task_ratelimit is on the same side of dirty_ratelimit, too.
1088 * For example, when
1089 * - dirty_ratelimit > balanced_dirty_ratelimit
1090 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1091 * lowering dirty_ratelimit will help meet both the position and rate
1092 * control targets. Otherwise, don't update dirty_ratelimit if it will
1093 * only help meet the rate target. After all, what the users ultimately
1094 * feel and care are stable dirty rate and small position error.
1095 *
1096 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1097 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1098 * keeps jumping around randomly and can even leap far away at times
1099 * due to the small 200ms estimation period of dirty_rate (we want to
1100 * keep that period small to reduce time lags).
1101 */
1102 step = 0;
5a537485
MP
1103
1104 /*
de1fff37 1105 * For strictlimit case, calculations above were based on wb counters
a88a341a 1106 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1107 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1108 * Hence, to calculate "step" properly, we have to use wb_dirty as
1109 * "dirty" and wb_setpoint as "setpoint".
5a537485 1110 *
de1fff37
TH
1111 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1112 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1113 * of backing device.
5a537485 1114 */
a88a341a 1115 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1116 dirty = dtc->wb_dirty;
1117 if (dtc->wb_dirty < 8)
1118 setpoint = dtc->wb_dirty + 1;
5a537485 1119 else
970fb01a 1120 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1121 }
1122
7381131c 1123 if (dirty < setpoint) {
a88a341a 1124 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1125 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1126 if (dirty_ratelimit < x)
1127 step = x - dirty_ratelimit;
1128 } else {
a88a341a 1129 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1130 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1131 if (dirty_ratelimit > x)
1132 step = dirty_ratelimit - x;
1133 }
1134
1135 /*
1136 * Don't pursue 100% rate matching. It's impossible since the balanced
1137 * rate itself is constantly fluctuating. So decrease the track speed
1138 * when it gets close to the target. Helps eliminate pointless tremors.
1139 */
1140 step >>= dirty_ratelimit / (2 * step + 1);
1141 /*
1142 * Limit the tracking speed to avoid overshooting.
1143 */
1144 step = (step + 7) / 8;
1145
1146 if (dirty_ratelimit < balanced_dirty_ratelimit)
1147 dirty_ratelimit += step;
1148 else
1149 dirty_ratelimit -= step;
1150
a88a341a
TH
1151 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1152 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1153
a88a341a 1154 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1155}
1156
2bc00aef 1157static void __wb_update_bandwidth(struct dirty_throttle_control *dtc,
8a731799
TH
1158 unsigned long start_time,
1159 bool update_ratelimit)
e98be2d5 1160{
2bc00aef 1161 struct bdi_writeback *wb = dtc->wb;
e98be2d5 1162 unsigned long now = jiffies;
a88a341a 1163 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1164 unsigned long dirtied;
e98be2d5
WF
1165 unsigned long written;
1166
8a731799
TH
1167 lockdep_assert_held(&wb->list_lock);
1168
e98be2d5
WF
1169 /*
1170 * rate-limit, only update once every 200ms.
1171 */
1172 if (elapsed < BANDWIDTH_INTERVAL)
1173 return;
1174
a88a341a
TH
1175 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1176 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1177
1178 /*
1179 * Skip quiet periods when disk bandwidth is under-utilized.
1180 * (at least 1s idle time between two flusher runs)
1181 */
a88a341a 1182 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1183 goto snapshot;
1184
8a731799 1185 if (update_ratelimit) {
2bc00aef
TH
1186 global_update_bandwidth(dtc, now);
1187 wb_update_dirty_ratelimit(dtc, dirtied, elapsed);
be3ffa27 1188 }
a88a341a 1189 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1190
1191snapshot:
a88a341a
TH
1192 wb->dirtied_stamp = dirtied;
1193 wb->written_stamp = written;
1194 wb->bw_time_stamp = now;
e98be2d5
WF
1195}
1196
8a731799 1197void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1198{
2bc00aef
TH
1199 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1200
1201 __wb_update_bandwidth(&gdtc, start_time, false);
e98be2d5
WF
1202}
1203
9d823e8f 1204/*
d0e1d66b 1205 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1206 * will look to see if it needs to start dirty throttling.
1207 *
1208 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1209 * global_page_state() too often. So scale it near-sqrt to the safety margin
1210 * (the number of pages we may dirty without exceeding the dirty limits).
1211 */
1212static unsigned long dirty_poll_interval(unsigned long dirty,
1213 unsigned long thresh)
1214{
1215 if (thresh > dirty)
1216 return 1UL << (ilog2(thresh - dirty) >> 1);
1217
1218 return 1;
1219}
1220
a88a341a 1221static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1222 unsigned long wb_dirty)
c8462cc9 1223{
a88a341a 1224 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1225 unsigned long t;
c8462cc9 1226
7ccb9ad5
WF
1227 /*
1228 * Limit pause time for small memory systems. If sleeping for too long
1229 * time, a small pool of dirty/writeback pages may go empty and disk go
1230 * idle.
1231 *
1232 * 8 serves as the safety ratio.
1233 */
de1fff37 1234 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1235 t++;
1236
e3b6c655 1237 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1238}
1239
a88a341a
TH
1240static long wb_min_pause(struct bdi_writeback *wb,
1241 long max_pause,
1242 unsigned long task_ratelimit,
1243 unsigned long dirty_ratelimit,
1244 int *nr_dirtied_pause)
c8462cc9 1245{
a88a341a
TH
1246 long hi = ilog2(wb->avg_write_bandwidth);
1247 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1248 long t; /* target pause */
1249 long pause; /* estimated next pause */
1250 int pages; /* target nr_dirtied_pause */
c8462cc9 1251
7ccb9ad5
WF
1252 /* target for 10ms pause on 1-dd case */
1253 t = max(1, HZ / 100);
c8462cc9
WF
1254
1255 /*
1256 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1257 * overheads.
1258 *
7ccb9ad5 1259 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1260 */
1261 if (hi > lo)
7ccb9ad5 1262 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1263
1264 /*
7ccb9ad5
WF
1265 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1266 * on the much more stable dirty_ratelimit. However the next pause time
1267 * will be computed based on task_ratelimit and the two rate limits may
1268 * depart considerably at some time. Especially if task_ratelimit goes
1269 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1270 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1271 * result task_ratelimit won't be executed faithfully, which could
1272 * eventually bring down dirty_ratelimit.
c8462cc9 1273 *
7ccb9ad5
WF
1274 * We apply two rules to fix it up:
1275 * 1) try to estimate the next pause time and if necessary, use a lower
1276 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1277 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1278 * 2) limit the target pause time to max_pause/2, so that the normal
1279 * small fluctuations of task_ratelimit won't trigger rule (1) and
1280 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1281 */
7ccb9ad5
WF
1282 t = min(t, 1 + max_pause / 2);
1283 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1284
1285 /*
5b9b3574
WF
1286 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1287 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1288 * When the 16 consecutive reads are often interrupted by some dirty
1289 * throttling pause during the async writes, cfq will go into idles
1290 * (deadline is fine). So push nr_dirtied_pause as high as possible
1291 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1292 */
5b9b3574
WF
1293 if (pages < DIRTY_POLL_THRESH) {
1294 t = max_pause;
1295 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1296 if (pages > DIRTY_POLL_THRESH) {
1297 pages = DIRTY_POLL_THRESH;
1298 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1299 }
1300 }
1301
7ccb9ad5
WF
1302 pause = HZ * pages / (task_ratelimit + 1);
1303 if (pause > max_pause) {
1304 t = max_pause;
1305 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1306 }
c8462cc9 1307
7ccb9ad5 1308 *nr_dirtied_pause = pages;
c8462cc9 1309 /*
7ccb9ad5 1310 * The minimal pause time will normally be half the target pause time.
c8462cc9 1311 */
5b9b3574 1312 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1313}
1314
970fb01a 1315static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1316{
2bc00aef 1317 struct bdi_writeback *wb = dtc->wb;
93f78d88 1318 unsigned long wb_reclaimable;
5a537485
MP
1319
1320 /*
de1fff37 1321 * wb_thresh is not treated as some limiting factor as
5a537485 1322 * dirty_thresh, due to reasons
de1fff37 1323 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1324 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1325 * go into state (wb_dirty >> wb_thresh) either because
1326 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1327 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1328 * dirtiers for 100 seconds until wb_dirty drops under
1329 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1330 * wb_position_ratio() will let the dirtier task progress
de1fff37 1331 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1332 */
b1cbc6d4 1333 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1334 dtc->wb_bg_thresh = dtc->thresh ?
1335 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1336
1337 /*
1338 * In order to avoid the stacked BDI deadlock we need
1339 * to ensure we accurately count the 'dirty' pages when
1340 * the threshold is low.
1341 *
1342 * Otherwise it would be possible to get thresh+n pages
1343 * reported dirty, even though there are thresh-m pages
1344 * actually dirty; with m+n sitting in the percpu
1345 * deltas.
1346 */
2bc00aef 1347 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1348 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1349 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1350 } else {
93f78d88 1351 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1352 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1353 }
1354}
1355
1da177e4
LT
1356/*
1357 * balance_dirty_pages() must be called by processes which are generating dirty
1358 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1359 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1360 * If we're over `background_thresh' then the writeback threads are woken to
1361 * perform some writeout.
1da177e4 1362 */
3a2e9a5a 1363static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1364 struct bdi_writeback *wb,
143dfe86 1365 unsigned long pages_dirtied)
1da177e4 1366{
2bc00aef
TH
1367 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1368 struct dirty_throttle_control * const gdtc = &gdtc_stor;
143dfe86 1369 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1370 long period;
7ccb9ad5
WF
1371 long pause;
1372 long max_pause;
1373 long min_pause;
1374 int nr_dirtied_pause;
e50e3720 1375 bool dirty_exceeded = false;
143dfe86 1376 unsigned long task_ratelimit;
7ccb9ad5 1377 unsigned long dirty_ratelimit;
143dfe86 1378 unsigned long pos_ratio;
dfb8ae56 1379 struct backing_dev_info *bdi = wb->bdi;
5a537485 1380 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1381 unsigned long start_time = jiffies;
1da177e4
LT
1382
1383 for (;;) {
83712358 1384 unsigned long now = jiffies;
2bc00aef 1385 unsigned long dirty, thresh, bg_thresh;
83712358 1386
143dfe86
WF
1387 /*
1388 * Unstable writes are a feature of certain networked
1389 * filesystems (i.e. NFS) in which data may have been
1390 * written to the server's write cache, but has not yet
1391 * been flushed to permanent storage.
1392 */
5fce25a9
PZ
1393 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1394 global_page_state(NR_UNSTABLE_NFS);
2bc00aef 1395 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1396
2bc00aef 1397 global_dirty_limits(&gdtc->bg_thresh, &gdtc->thresh);
16c4042f 1398
5a537485 1399 if (unlikely(strictlimit)) {
970fb01a 1400 wb_dirty_limits(gdtc);
5a537485 1401
2bc00aef
TH
1402 dirty = gdtc->wb_dirty;
1403 thresh = gdtc->wb_thresh;
970fb01a 1404 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1405 } else {
2bc00aef
TH
1406 dirty = gdtc->dirty;
1407 thresh = gdtc->thresh;
1408 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1409 }
1410
16c4042f
WF
1411 /*
1412 * Throttle it only when the background writeback cannot
1413 * catch-up. This avoids (excessively) small writeouts
de1fff37 1414 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1415 *
de1fff37
TH
1416 * In strictlimit case make decision based on the wb counters
1417 * and limits. Small writeouts when the wb limits are ramping
5a537485 1418 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1419 */
5a537485 1420 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1421 current->dirty_paused_when = now;
1422 current->nr_dirtied = 0;
7ccb9ad5 1423 current->nr_dirtied_pause =
5a537485 1424 dirty_poll_interval(dirty, thresh);
16c4042f 1425 break;
83712358 1426 }
16c4042f 1427
bc05873d 1428 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1429 wb_start_background_writeback(wb);
143dfe86 1430
5a537485 1431 if (!strictlimit)
970fb01a 1432 wb_dirty_limits(gdtc);
5fce25a9 1433
2bc00aef
TH
1434 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1435 ((gdtc->dirty > gdtc->thresh) || strictlimit);
a88a341a
TH
1436 if (dirty_exceeded && !wb->dirty_exceeded)
1437 wb->dirty_exceeded = 1;
1da177e4 1438
8a731799
TH
1439 if (time_is_before_jiffies(wb->bw_time_stamp +
1440 BANDWIDTH_INTERVAL)) {
1441 spin_lock(&wb->list_lock);
2bc00aef 1442 __wb_update_bandwidth(gdtc, start_time, true);
8a731799
TH
1443 spin_unlock(&wb->list_lock);
1444 }
e98be2d5 1445
a88a341a 1446 dirty_ratelimit = wb->dirty_ratelimit;
2bc00aef 1447 pos_ratio = wb_position_ratio(gdtc);
3a73dbbc
WF
1448 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1449 RATELIMIT_CALC_SHIFT;
2bc00aef 1450 max_pause = wb_max_pause(wb, gdtc->wb_dirty);
a88a341a
TH
1451 min_pause = wb_min_pause(wb, max_pause,
1452 task_ratelimit, dirty_ratelimit,
1453 &nr_dirtied_pause);
7ccb9ad5 1454
3a73dbbc 1455 if (unlikely(task_ratelimit == 0)) {
83712358 1456 period = max_pause;
c8462cc9 1457 pause = max_pause;
143dfe86 1458 goto pause;
04fbfdc1 1459 }
83712358
WF
1460 period = HZ * pages_dirtied / task_ratelimit;
1461 pause = period;
1462 if (current->dirty_paused_when)
1463 pause -= now - current->dirty_paused_when;
1464 /*
1465 * For less than 1s think time (ext3/4 may block the dirtier
1466 * for up to 800ms from time to time on 1-HDD; so does xfs,
1467 * however at much less frequency), try to compensate it in
1468 * future periods by updating the virtual time; otherwise just
1469 * do a reset, as it may be a light dirtier.
1470 */
7ccb9ad5 1471 if (pause < min_pause) {
ece13ac3 1472 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1473 gdtc->thresh,
1474 gdtc->bg_thresh,
1475 gdtc->dirty,
1476 gdtc->wb_thresh,
1477 gdtc->wb_dirty,
ece13ac3
WF
1478 dirty_ratelimit,
1479 task_ratelimit,
1480 pages_dirtied,
83712358 1481 period,
7ccb9ad5 1482 min(pause, 0L),
ece13ac3 1483 start_time);
83712358
WF
1484 if (pause < -HZ) {
1485 current->dirty_paused_when = now;
1486 current->nr_dirtied = 0;
1487 } else if (period) {
1488 current->dirty_paused_when += period;
1489 current->nr_dirtied = 0;
7ccb9ad5
WF
1490 } else if (current->nr_dirtied_pause <= pages_dirtied)
1491 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1492 break;
04fbfdc1 1493 }
7ccb9ad5
WF
1494 if (unlikely(pause > max_pause)) {
1495 /* for occasional dropped task_ratelimit */
1496 now += min(pause - max_pause, max_pause);
1497 pause = max_pause;
1498 }
143dfe86
WF
1499
1500pause:
ece13ac3 1501 trace_balance_dirty_pages(bdi,
2bc00aef
TH
1502 gdtc->thresh,
1503 gdtc->bg_thresh,
1504 gdtc->dirty,
1505 gdtc->wb_thresh,
1506 gdtc->wb_dirty,
ece13ac3
WF
1507 dirty_ratelimit,
1508 task_ratelimit,
1509 pages_dirtied,
83712358 1510 period,
ece13ac3
WF
1511 pause,
1512 start_time);
499d05ec 1513 __set_current_state(TASK_KILLABLE);
d25105e8 1514 io_schedule_timeout(pause);
87c6a9b2 1515
83712358
WF
1516 current->dirty_paused_when = now + pause;
1517 current->nr_dirtied = 0;
7ccb9ad5 1518 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1519
ffd1f609 1520 /*
2bc00aef
TH
1521 * This is typically equal to (dirty < thresh) and can also
1522 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1523 */
1df64719 1524 if (task_ratelimit)
ffd1f609 1525 break;
499d05ec 1526
c5c6343c
WF
1527 /*
1528 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1529 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1530 * to go through, so that tasks on them still remain responsive.
1531 *
1532 * In theory 1 page is enough to keep the comsumer-producer
1533 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1534 * more page. However wb_dirty has accounting errors. So use
93f78d88 1535 * the larger and more IO friendly wb_stat_error.
c5c6343c 1536 */
2bc00aef 1537 if (gdtc->wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1538 break;
1539
499d05ec
JK
1540 if (fatal_signal_pending(current))
1541 break;
1da177e4
LT
1542 }
1543
a88a341a
TH
1544 if (!dirty_exceeded && wb->dirty_exceeded)
1545 wb->dirty_exceeded = 0;
1da177e4 1546
bc05873d 1547 if (writeback_in_progress(wb))
5b0830cb 1548 return;
1da177e4
LT
1549
1550 /*
1551 * In laptop mode, we wait until hitting the higher threshold before
1552 * starting background writeout, and then write out all the way down
1553 * to the lower threshold. So slow writers cause minimal disk activity.
1554 *
1555 * In normal mode, we start background writeout at the lower
1556 * background_thresh, to keep the amount of dirty memory low.
1557 */
143dfe86
WF
1558 if (laptop_mode)
1559 return;
1560
2bc00aef 1561 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1562 wb_start_background_writeback(wb);
1da177e4
LT
1563}
1564
9d823e8f 1565static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1566
54848d73
WF
1567/*
1568 * Normal tasks are throttled by
1569 * loop {
1570 * dirty tsk->nr_dirtied_pause pages;
1571 * take a snap in balance_dirty_pages();
1572 * }
1573 * However there is a worst case. If every task exit immediately when dirtied
1574 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1575 * called to throttle the page dirties. The solution is to save the not yet
1576 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1577 * randomly into the running tasks. This works well for the above worst case,
1578 * as the new task will pick up and accumulate the old task's leaked dirty
1579 * count and eventually get throttled.
1580 */
1581DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1582
1da177e4 1583/**
d0e1d66b 1584 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1585 * @mapping: address_space which was dirtied
1da177e4
LT
1586 *
1587 * Processes which are dirtying memory should call in here once for each page
1588 * which was newly dirtied. The function will periodically check the system's
1589 * dirty state and will initiate writeback if needed.
1590 *
1591 * On really big machines, get_writeback_state is expensive, so try to avoid
1592 * calling it too often (ratelimiting). But once we're over the dirty memory
1593 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1594 * from overshooting the limit by (ratelimit_pages) each.
1595 */
d0e1d66b 1596void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1597{
dfb8ae56
TH
1598 struct inode *inode = mapping->host;
1599 struct backing_dev_info *bdi = inode_to_bdi(inode);
1600 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1601 int ratelimit;
1602 int *p;
1da177e4 1603
36715cef
WF
1604 if (!bdi_cap_account_dirty(bdi))
1605 return;
1606
dfb8ae56
TH
1607 if (inode_cgwb_enabled(inode))
1608 wb = wb_get_create_current(bdi, GFP_KERNEL);
1609 if (!wb)
1610 wb = &bdi->wb;
1611
9d823e8f 1612 ratelimit = current->nr_dirtied_pause;
a88a341a 1613 if (wb->dirty_exceeded)
9d823e8f
WF
1614 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1615
9d823e8f 1616 preempt_disable();
1da177e4 1617 /*
9d823e8f
WF
1618 * This prevents one CPU to accumulate too many dirtied pages without
1619 * calling into balance_dirty_pages(), which can happen when there are
1620 * 1000+ tasks, all of them start dirtying pages at exactly the same
1621 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1622 */
7c8e0181 1623 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1624 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1625 *p = 0;
d3bc1fef
WF
1626 else if (unlikely(*p >= ratelimit_pages)) {
1627 *p = 0;
1628 ratelimit = 0;
1da177e4 1629 }
54848d73
WF
1630 /*
1631 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1632 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1633 * the dirty throttling and livelock other long-run dirtiers.
1634 */
7c8e0181 1635 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1636 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1637 unsigned long nr_pages_dirtied;
54848d73
WF
1638 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1639 *p -= nr_pages_dirtied;
1640 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1641 }
fa5a734e 1642 preempt_enable();
9d823e8f
WF
1643
1644 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1645 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1646
1647 wb_put(wb);
1da177e4 1648}
d0e1d66b 1649EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1650
232ea4d6 1651void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1652{
364aeb28
DR
1653 unsigned long background_thresh;
1654 unsigned long dirty_thresh;
1da177e4
LT
1655
1656 for ( ; ; ) {
16c4042f 1657 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1658 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1659
1660 /*
1661 * Boost the allowable dirty threshold a bit for page
1662 * allocators so they don't get DoS'ed by heavy writers
1663 */
1664 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1665
c24f21bd
CL
1666 if (global_page_state(NR_UNSTABLE_NFS) +
1667 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1668 break;
8aa7e847 1669 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1670
1671 /*
1672 * The caller might hold locks which can prevent IO completion
1673 * or progress in the filesystem. So we cannot just sit here
1674 * waiting for IO to complete.
1675 */
1676 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1677 break;
1da177e4
LT
1678 }
1679}
1680
1da177e4
LT
1681/*
1682 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1683 */
cccad5b9 1684int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1685 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1686{
8d65af78 1687 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1688 return 0;
1689}
1690
c2c4986e 1691#ifdef CONFIG_BLOCK
31373d09 1692void laptop_mode_timer_fn(unsigned long data)
1da177e4 1693{
31373d09
MG
1694 struct request_queue *q = (struct request_queue *)data;
1695 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1696 global_page_state(NR_UNSTABLE_NFS);
a06fd6b1
TH
1697 struct bdi_writeback *wb;
1698 struct wb_iter iter;
1da177e4 1699
31373d09
MG
1700 /*
1701 * We want to write everything out, not just down to the dirty
1702 * threshold
1703 */
a06fd6b1
TH
1704 if (!bdi_has_dirty_io(&q->backing_dev_info))
1705 return;
1706
1707 bdi_for_each_wb(wb, &q->backing_dev_info, &iter, 0)
1708 if (wb_has_dirty_io(wb))
1709 wb_start_writeback(wb, nr_pages, true,
1710 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1711}
1712
1713/*
1714 * We've spun up the disk and we're in laptop mode: schedule writeback
1715 * of all dirty data a few seconds from now. If the flush is already scheduled
1716 * then push it back - the user is still using the disk.
1717 */
31373d09 1718void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1719{
31373d09 1720 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1721}
1722
1723/*
1724 * We're in laptop mode and we've just synced. The sync's writes will have
1725 * caused another writeback to be scheduled by laptop_io_completion.
1726 * Nothing needs to be written back anymore, so we unschedule the writeback.
1727 */
1728void laptop_sync_completion(void)
1729{
31373d09
MG
1730 struct backing_dev_info *bdi;
1731
1732 rcu_read_lock();
1733
1734 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1735 del_timer(&bdi->laptop_mode_wb_timer);
1736
1737 rcu_read_unlock();
1da177e4 1738}
c2c4986e 1739#endif
1da177e4
LT
1740
1741/*
1742 * If ratelimit_pages is too high then we can get into dirty-data overload
1743 * if a large number of processes all perform writes at the same time.
1744 * If it is too low then SMP machines will call the (expensive)
1745 * get_writeback_state too often.
1746 *
1747 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1748 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1749 * thresholds.
1da177e4
LT
1750 */
1751
2d1d43f6 1752void writeback_set_ratelimit(void)
1da177e4 1753{
dcc25ae7 1754 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
1755 unsigned long background_thresh;
1756 unsigned long dirty_thresh;
dcc25ae7 1757
9d823e8f 1758 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 1759 dom->dirty_limit = dirty_thresh;
9d823e8f 1760 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1761 if (ratelimit_pages < 16)
1762 ratelimit_pages = 16;
1da177e4
LT
1763}
1764
0db0628d 1765static int
2f60d628
SB
1766ratelimit_handler(struct notifier_block *self, unsigned long action,
1767 void *hcpu)
1da177e4 1768{
2f60d628
SB
1769
1770 switch (action & ~CPU_TASKS_FROZEN) {
1771 case CPU_ONLINE:
1772 case CPU_DEAD:
1773 writeback_set_ratelimit();
1774 return NOTIFY_OK;
1775 default:
1776 return NOTIFY_DONE;
1777 }
1da177e4
LT
1778}
1779
0db0628d 1780static struct notifier_block ratelimit_nb = {
1da177e4
LT
1781 .notifier_call = ratelimit_handler,
1782 .next = NULL,
1783};
1784
1785/*
dc6e29da
LT
1786 * Called early on to tune the page writeback dirty limits.
1787 *
1788 * We used to scale dirty pages according to how total memory
1789 * related to pages that could be allocated for buffers (by
1790 * comparing nr_free_buffer_pages() to vm_total_pages.
1791 *
1792 * However, that was when we used "dirty_ratio" to scale with
1793 * all memory, and we don't do that any more. "dirty_ratio"
1794 * is now applied to total non-HIGHPAGE memory (by subtracting
1795 * totalhigh_pages from vm_total_pages), and as such we can't
1796 * get into the old insane situation any more where we had
1797 * large amounts of dirty pages compared to a small amount of
1798 * non-HIGHMEM memory.
1799 *
1800 * But we might still want to scale the dirty_ratio by how
1801 * much memory the box has..
1da177e4
LT
1802 */
1803void __init page_writeback_init(void)
1804{
2d1d43f6 1805 writeback_set_ratelimit();
1da177e4 1806 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1807
380c27ca 1808 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
1da177e4
LT
1809}
1810
f446daae
JK
1811/**
1812 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1813 * @mapping: address space structure to write
1814 * @start: starting page index
1815 * @end: ending page index (inclusive)
1816 *
1817 * This function scans the page range from @start to @end (inclusive) and tags
1818 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1819 * that write_cache_pages (or whoever calls this function) will then use
1820 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1821 * used to avoid livelocking of writeback by a process steadily creating new
1822 * dirty pages in the file (thus it is important for this function to be quick
1823 * so that it can tag pages faster than a dirtying process can create them).
1824 */
1825/*
1826 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1827 */
f446daae
JK
1828void tag_pages_for_writeback(struct address_space *mapping,
1829 pgoff_t start, pgoff_t end)
1830{
3c111a07 1831#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1832 unsigned long tagged;
1833
1834 do {
1835 spin_lock_irq(&mapping->tree_lock);
1836 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1837 &start, end, WRITEBACK_TAG_BATCH,
1838 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1839 spin_unlock_irq(&mapping->tree_lock);
1840 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1841 cond_resched();
d5ed3a4a
JK
1842 /* We check 'start' to handle wrapping when end == ~0UL */
1843 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1844}
1845EXPORT_SYMBOL(tag_pages_for_writeback);
1846
811d736f 1847/**
0ea97180 1848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1849 * @mapping: address space structure to write
1850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1851 * @writepage: function called for each page
1852 * @data: data passed to writepage function
811d736f 1853 *
0ea97180 1854 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1857 * and msync() need to guarantee that all the data which was dirty at the time
1858 * the call was made get new I/O started against them. If wbc->sync_mode is
1859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1860 * existing IO to complete.
f446daae
JK
1861 *
1862 * To avoid livelocks (when other process dirties new pages), we first tag
1863 * pages which should be written back with TOWRITE tag and only then start
1864 * writing them. For data-integrity sync we have to be careful so that we do
1865 * not miss some pages (e.g., because some other process has cleared TOWRITE
1866 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1867 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1868 */
0ea97180
MS
1869int write_cache_pages(struct address_space *mapping,
1870 struct writeback_control *wbc, writepage_t writepage,
1871 void *data)
811d736f 1872{
811d736f
DH
1873 int ret = 0;
1874 int done = 0;
811d736f
DH
1875 struct pagevec pvec;
1876 int nr_pages;
31a12666 1877 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1878 pgoff_t index;
1879 pgoff_t end; /* Inclusive */
bd19e012 1880 pgoff_t done_index;
31a12666 1881 int cycled;
811d736f 1882 int range_whole = 0;
f446daae 1883 int tag;
811d736f 1884
811d736f
DH
1885 pagevec_init(&pvec, 0);
1886 if (wbc->range_cyclic) {
31a12666
NP
1887 writeback_index = mapping->writeback_index; /* prev offset */
1888 index = writeback_index;
1889 if (index == 0)
1890 cycled = 1;
1891 else
1892 cycled = 0;
811d736f
DH
1893 end = -1;
1894 } else {
1895 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1896 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1897 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1898 range_whole = 1;
31a12666 1899 cycled = 1; /* ignore range_cyclic tests */
811d736f 1900 }
6e6938b6 1901 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1902 tag = PAGECACHE_TAG_TOWRITE;
1903 else
1904 tag = PAGECACHE_TAG_DIRTY;
811d736f 1905retry:
6e6938b6 1906 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1907 tag_pages_for_writeback(mapping, index, end);
bd19e012 1908 done_index = index;
5a3d5c98
NP
1909 while (!done && (index <= end)) {
1910 int i;
1911
f446daae 1912 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1913 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1914 if (nr_pages == 0)
1915 break;
811d736f 1916
811d736f
DH
1917 for (i = 0; i < nr_pages; i++) {
1918 struct page *page = pvec.pages[i];
1919
1920 /*
d5482cdf
NP
1921 * At this point, the page may be truncated or
1922 * invalidated (changing page->mapping to NULL), or
1923 * even swizzled back from swapper_space to tmpfs file
1924 * mapping. However, page->index will not change
1925 * because we have a reference on the page.
811d736f 1926 */
d5482cdf
NP
1927 if (page->index > end) {
1928 /*
1929 * can't be range_cyclic (1st pass) because
1930 * end == -1 in that case.
1931 */
1932 done = 1;
1933 break;
1934 }
1935
cf15b07c 1936 done_index = page->index;
d5482cdf 1937
811d736f
DH
1938 lock_page(page);
1939
5a3d5c98
NP
1940 /*
1941 * Page truncated or invalidated. We can freely skip it
1942 * then, even for data integrity operations: the page
1943 * has disappeared concurrently, so there could be no
1944 * real expectation of this data interity operation
1945 * even if there is now a new, dirty page at the same
1946 * pagecache address.
1947 */
811d736f 1948 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1949continue_unlock:
811d736f
DH
1950 unlock_page(page);
1951 continue;
1952 }
1953
515f4a03
NP
1954 if (!PageDirty(page)) {
1955 /* someone wrote it for us */
1956 goto continue_unlock;
1957 }
1958
1959 if (PageWriteback(page)) {
1960 if (wbc->sync_mode != WB_SYNC_NONE)
1961 wait_on_page_writeback(page);
1962 else
1963 goto continue_unlock;
1964 }
811d736f 1965
515f4a03
NP
1966 BUG_ON(PageWriteback(page));
1967 if (!clear_page_dirty_for_io(page))
5a3d5c98 1968 goto continue_unlock;
811d736f 1969
de1414a6 1970 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1971 ret = (*writepage)(page, wbc, data);
00266770
NP
1972 if (unlikely(ret)) {
1973 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1974 unlock_page(page);
1975 ret = 0;
1976 } else {
1977 /*
1978 * done_index is set past this page,
1979 * so media errors will not choke
1980 * background writeout for the entire
1981 * file. This has consequences for
1982 * range_cyclic semantics (ie. it may
1983 * not be suitable for data integrity
1984 * writeout).
1985 */
cf15b07c 1986 done_index = page->index + 1;
00266770
NP
1987 done = 1;
1988 break;
1989 }
0b564927 1990 }
00266770 1991
546a1924
DC
1992 /*
1993 * We stop writing back only if we are not doing
1994 * integrity sync. In case of integrity sync we have to
1995 * keep going until we have written all the pages
1996 * we tagged for writeback prior to entering this loop.
1997 */
1998 if (--wbc->nr_to_write <= 0 &&
1999 wbc->sync_mode == WB_SYNC_NONE) {
2000 done = 1;
2001 break;
05fe478d 2002 }
811d736f
DH
2003 }
2004 pagevec_release(&pvec);
2005 cond_resched();
2006 }
3a4c6800 2007 if (!cycled && !done) {
811d736f 2008 /*
31a12666 2009 * range_cyclic:
811d736f
DH
2010 * We hit the last page and there is more work to be done: wrap
2011 * back to the start of the file
2012 */
31a12666 2013 cycled = 1;
811d736f 2014 index = 0;
31a12666 2015 end = writeback_index - 1;
811d736f
DH
2016 goto retry;
2017 }
0b564927
DC
2018 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2019 mapping->writeback_index = done_index;
06d6cf69 2020
811d736f
DH
2021 return ret;
2022}
0ea97180
MS
2023EXPORT_SYMBOL(write_cache_pages);
2024
2025/*
2026 * Function used by generic_writepages to call the real writepage
2027 * function and set the mapping flags on error
2028 */
2029static int __writepage(struct page *page, struct writeback_control *wbc,
2030 void *data)
2031{
2032 struct address_space *mapping = data;
2033 int ret = mapping->a_ops->writepage(page, wbc);
2034 mapping_set_error(mapping, ret);
2035 return ret;
2036}
2037
2038/**
2039 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2040 * @mapping: address space structure to write
2041 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2042 *
2043 * This is a library function, which implements the writepages()
2044 * address_space_operation.
2045 */
2046int generic_writepages(struct address_space *mapping,
2047 struct writeback_control *wbc)
2048{
9b6096a6
SL
2049 struct blk_plug plug;
2050 int ret;
2051
0ea97180
MS
2052 /* deal with chardevs and other special file */
2053 if (!mapping->a_ops->writepage)
2054 return 0;
2055
9b6096a6
SL
2056 blk_start_plug(&plug);
2057 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2058 blk_finish_plug(&plug);
2059 return ret;
0ea97180 2060}
811d736f
DH
2061
2062EXPORT_SYMBOL(generic_writepages);
2063
1da177e4
LT
2064int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2065{
22905f77
AM
2066 int ret;
2067
1da177e4
LT
2068 if (wbc->nr_to_write <= 0)
2069 return 0;
2070 if (mapping->a_ops->writepages)
d08b3851 2071 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2072 else
2073 ret = generic_writepages(mapping, wbc);
22905f77 2074 return ret;
1da177e4
LT
2075}
2076
2077/**
2078 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2079 * @page: the page to write
2080 * @wait: if true, wait on writeout
1da177e4
LT
2081 *
2082 * The page must be locked by the caller and will be unlocked upon return.
2083 *
2084 * write_one_page() returns a negative error code if I/O failed.
2085 */
2086int write_one_page(struct page *page, int wait)
2087{
2088 struct address_space *mapping = page->mapping;
2089 int ret = 0;
2090 struct writeback_control wbc = {
2091 .sync_mode = WB_SYNC_ALL,
2092 .nr_to_write = 1,
2093 };
2094
2095 BUG_ON(!PageLocked(page));
2096
2097 if (wait)
2098 wait_on_page_writeback(page);
2099
2100 if (clear_page_dirty_for_io(page)) {
2101 page_cache_get(page);
2102 ret = mapping->a_ops->writepage(page, &wbc);
2103 if (ret == 0 && wait) {
2104 wait_on_page_writeback(page);
2105 if (PageError(page))
2106 ret = -EIO;
2107 }
2108 page_cache_release(page);
2109 } else {
2110 unlock_page(page);
2111 }
2112 return ret;
2113}
2114EXPORT_SYMBOL(write_one_page);
2115
76719325
KC
2116/*
2117 * For address_spaces which do not use buffers nor write back.
2118 */
2119int __set_page_dirty_no_writeback(struct page *page)
2120{
2121 if (!PageDirty(page))
c3f0da63 2122 return !TestSetPageDirty(page);
76719325
KC
2123 return 0;
2124}
2125
e3a7cca1
ES
2126/*
2127 * Helper function for set_page_dirty family.
c4843a75
GT
2128 *
2129 * Caller must hold mem_cgroup_begin_page_stat().
2130 *
e3a7cca1
ES
2131 * NOTE: This relies on being atomic wrt interrupts.
2132 */
c4843a75
GT
2133void account_page_dirtied(struct page *page, struct address_space *mapping,
2134 struct mem_cgroup *memcg)
e3a7cca1 2135{
52ebea74
TH
2136 struct inode *inode = mapping->host;
2137
9fb0a7da
TH
2138 trace_writeback_dirty_page(page, mapping);
2139
e3a7cca1 2140 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2141 struct bdi_writeback *wb;
2142
2143 inode_attach_wb(inode, page);
2144 wb = inode_to_wb(inode);
de1414a6 2145
c4843a75 2146 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2147 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2148 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2149 __inc_wb_stat(wb, WB_RECLAIMABLE);
2150 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2151 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2152 current->nr_dirtied++;
2153 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2154 }
2155}
679ceace 2156EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2157
b9ea2515
KK
2158/*
2159 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2160 *
2161 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2162 */
c4843a75
GT
2163void account_page_cleaned(struct page *page, struct address_space *mapping,
2164 struct mem_cgroup *memcg)
b9ea2515
KK
2165{
2166 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2167 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2168 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2169 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2170 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2171 }
2172}
b9ea2515 2173
1da177e4
LT
2174/*
2175 * For address_spaces which do not use buffers. Just tag the page as dirty in
2176 * its radix tree.
2177 *
2178 * This is also used when a single buffer is being dirtied: we want to set the
2179 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2180 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2181 *
2d6d7f98
JW
2182 * The caller must ensure this doesn't race with truncation. Most will simply
2183 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2184 * the pte lock held, which also locks out truncation.
1da177e4
LT
2185 */
2186int __set_page_dirty_nobuffers(struct page *page)
2187{
c4843a75
GT
2188 struct mem_cgroup *memcg;
2189
2190 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2191 if (!TestSetPageDirty(page)) {
2192 struct address_space *mapping = page_mapping(page);
a85d9df1 2193 unsigned long flags;
1da177e4 2194
c4843a75
GT
2195 if (!mapping) {
2196 mem_cgroup_end_page_stat(memcg);
8c08540f 2197 return 1;
c4843a75 2198 }
8c08540f 2199
a85d9df1 2200 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2201 BUG_ON(page_mapping(page) != mapping);
2202 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2203 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2204 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2205 PAGECACHE_TAG_DIRTY);
a85d9df1 2206 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2207 mem_cgroup_end_page_stat(memcg);
2208
8c08540f
AM
2209 if (mapping->host) {
2210 /* !PageAnon && !swapper_space */
2211 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2212 }
4741c9fd 2213 return 1;
1da177e4 2214 }
c4843a75 2215 mem_cgroup_end_page_stat(memcg);
4741c9fd 2216 return 0;
1da177e4
LT
2217}
2218EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2219
2f800fbd
WF
2220/*
2221 * Call this whenever redirtying a page, to de-account the dirty counters
2222 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2223 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2224 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2225 * control.
2226 */
2227void account_page_redirty(struct page *page)
2228{
2229 struct address_space *mapping = page->mapping;
91018134 2230
2f800fbd 2231 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2232 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2233
2f800fbd
WF
2234 current->nr_dirtied--;
2235 dec_zone_page_state(page, NR_DIRTIED);
91018134 2236 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2237 }
2238}
2239EXPORT_SYMBOL(account_page_redirty);
2240
1da177e4
LT
2241/*
2242 * When a writepage implementation decides that it doesn't want to write this
2243 * page for some reason, it should redirty the locked page via
2244 * redirty_page_for_writepage() and it should then unlock the page and return 0
2245 */
2246int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2247{
8d38633c
KK
2248 int ret;
2249
1da177e4 2250 wbc->pages_skipped++;
8d38633c 2251 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2252 account_page_redirty(page);
8d38633c 2253 return ret;
1da177e4
LT
2254}
2255EXPORT_SYMBOL(redirty_page_for_writepage);
2256
2257/*
6746aff7
WF
2258 * Dirty a page.
2259 *
2260 * For pages with a mapping this should be done under the page lock
2261 * for the benefit of asynchronous memory errors who prefer a consistent
2262 * dirty state. This rule can be broken in some special cases,
2263 * but should be better not to.
2264 *
1da177e4
LT
2265 * If the mapping doesn't provide a set_page_dirty a_op, then
2266 * just fall through and assume that it wants buffer_heads.
2267 */
1cf6e7d8 2268int set_page_dirty(struct page *page)
1da177e4
LT
2269{
2270 struct address_space *mapping = page_mapping(page);
2271
2272 if (likely(mapping)) {
2273 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2274 /*
2275 * readahead/lru_deactivate_page could remain
2276 * PG_readahead/PG_reclaim due to race with end_page_writeback
2277 * About readahead, if the page is written, the flags would be
2278 * reset. So no problem.
2279 * About lru_deactivate_page, if the page is redirty, the flag
2280 * will be reset. So no problem. but if the page is used by readahead
2281 * it will confuse readahead and make it restart the size rampup
2282 * process. But it's a trivial problem.
2283 */
a4bb3ecd
NH
2284 if (PageReclaim(page))
2285 ClearPageReclaim(page);
9361401e
DH
2286#ifdef CONFIG_BLOCK
2287 if (!spd)
2288 spd = __set_page_dirty_buffers;
2289#endif
2290 return (*spd)(page);
1da177e4 2291 }
4741c9fd
AM
2292 if (!PageDirty(page)) {
2293 if (!TestSetPageDirty(page))
2294 return 1;
2295 }
1da177e4
LT
2296 return 0;
2297}
2298EXPORT_SYMBOL(set_page_dirty);
2299
2300/*
2301 * set_page_dirty() is racy if the caller has no reference against
2302 * page->mapping->host, and if the page is unlocked. This is because another
2303 * CPU could truncate the page off the mapping and then free the mapping.
2304 *
2305 * Usually, the page _is_ locked, or the caller is a user-space process which
2306 * holds a reference on the inode by having an open file.
2307 *
2308 * In other cases, the page should be locked before running set_page_dirty().
2309 */
2310int set_page_dirty_lock(struct page *page)
2311{
2312 int ret;
2313
7eaceacc 2314 lock_page(page);
1da177e4
LT
2315 ret = set_page_dirty(page);
2316 unlock_page(page);
2317 return ret;
2318}
2319EXPORT_SYMBOL(set_page_dirty_lock);
2320
11f81bec
TH
2321/*
2322 * This cancels just the dirty bit on the kernel page itself, it does NOT
2323 * actually remove dirty bits on any mmap's that may be around. It also
2324 * leaves the page tagged dirty, so any sync activity will still find it on
2325 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2326 * look at the dirty bits in the VM.
2327 *
2328 * Doing this should *normally* only ever be done when a page is truncated,
2329 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2330 * this when it notices that somebody has cleaned out all the buffers on a
2331 * page without actually doing it through the VM. Can you say "ext3 is
2332 * horribly ugly"? Thought you could.
2333 */
2334void cancel_dirty_page(struct page *page)
2335{
c4843a75
GT
2336 struct address_space *mapping = page_mapping(page);
2337
2338 if (mapping_cap_account_dirty(mapping)) {
2339 struct mem_cgroup *memcg;
2340
2341 memcg = mem_cgroup_begin_page_stat(page);
2342
2343 if (TestClearPageDirty(page))
2344 account_page_cleaned(page, mapping, memcg);
2345
2346 mem_cgroup_end_page_stat(memcg);
2347 } else {
2348 ClearPageDirty(page);
2349 }
11f81bec
TH
2350}
2351EXPORT_SYMBOL(cancel_dirty_page);
2352
1da177e4
LT
2353/*
2354 * Clear a page's dirty flag, while caring for dirty memory accounting.
2355 * Returns true if the page was previously dirty.
2356 *
2357 * This is for preparing to put the page under writeout. We leave the page
2358 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2359 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2360 * implementation will run either set_page_writeback() or set_page_dirty(),
2361 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2362 * back into sync.
2363 *
2364 * This incoherency between the page's dirty flag and radix-tree tag is
2365 * unfortunate, but it only exists while the page is locked.
2366 */
2367int clear_page_dirty_for_io(struct page *page)
2368{
2369 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2370 struct mem_cgroup *memcg;
2371 int ret = 0;
1da177e4 2372
79352894
NP
2373 BUG_ON(!PageLocked(page));
2374
7658cc28
LT
2375 if (mapping && mapping_cap_account_dirty(mapping)) {
2376 /*
2377 * Yes, Virginia, this is indeed insane.
2378 *
2379 * We use this sequence to make sure that
2380 * (a) we account for dirty stats properly
2381 * (b) we tell the low-level filesystem to
2382 * mark the whole page dirty if it was
2383 * dirty in a pagetable. Only to then
2384 * (c) clean the page again and return 1 to
2385 * cause the writeback.
2386 *
2387 * This way we avoid all nasty races with the
2388 * dirty bit in multiple places and clearing
2389 * them concurrently from different threads.
2390 *
2391 * Note! Normally the "set_page_dirty(page)"
2392 * has no effect on the actual dirty bit - since
2393 * that will already usually be set. But we
2394 * need the side effects, and it can help us
2395 * avoid races.
2396 *
2397 * We basically use the page "master dirty bit"
2398 * as a serialization point for all the different
2399 * threads doing their things.
7658cc28
LT
2400 */
2401 if (page_mkclean(page))
2402 set_page_dirty(page);
79352894
NP
2403 /*
2404 * We carefully synchronise fault handlers against
2405 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2406 * at this point. We do this by having them hold the
2407 * page lock while dirtying the page, and pages are
2408 * always locked coming in here, so we get the desired
2409 * exclusion.
79352894 2410 */
c4843a75 2411 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2412 if (TestClearPageDirty(page)) {
c4843a75 2413 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2414 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2415 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2416 ret = 1;
1da177e4 2417 }
c4843a75
GT
2418 mem_cgroup_end_page_stat(memcg);
2419 return ret;
1da177e4 2420 }
7658cc28 2421 return TestClearPageDirty(page);
1da177e4 2422}
58bb01a9 2423EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2424
2425int test_clear_page_writeback(struct page *page)
2426{
2427 struct address_space *mapping = page_mapping(page);
d7365e78 2428 struct mem_cgroup *memcg;
d7365e78 2429 int ret;
1da177e4 2430
6de22619 2431 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2432 if (mapping) {
91018134
TH
2433 struct inode *inode = mapping->host;
2434 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2435 unsigned long flags;
2436
19fd6231 2437 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2438 ret = TestClearPageWriteback(page);
69cb51d1 2439 if (ret) {
1da177e4
LT
2440 radix_tree_tag_clear(&mapping->page_tree,
2441 page_index(page),
2442 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2443 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2444 struct bdi_writeback *wb = inode_to_wb(inode);
2445
2446 __dec_wb_stat(wb, WB_WRITEBACK);
2447 __wb_writeout_inc(wb);
04fbfdc1 2448 }
69cb51d1 2449 }
19fd6231 2450 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2451 } else {
2452 ret = TestClearPageWriteback(page);
2453 }
99b12e3d 2454 if (ret) {
d7365e78 2455 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2456 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2457 inc_zone_page_state(page, NR_WRITTEN);
2458 }
6de22619 2459 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2460 return ret;
2461}
2462
1c8349a1 2463int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2464{
2465 struct address_space *mapping = page_mapping(page);
d7365e78 2466 struct mem_cgroup *memcg;
d7365e78 2467 int ret;
1da177e4 2468
6de22619 2469 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2470 if (mapping) {
91018134
TH
2471 struct inode *inode = mapping->host;
2472 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2473 unsigned long flags;
2474
19fd6231 2475 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2476 ret = TestSetPageWriteback(page);
69cb51d1 2477 if (!ret) {
1da177e4
LT
2478 radix_tree_tag_set(&mapping->page_tree,
2479 page_index(page),
2480 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2481 if (bdi_cap_account_writeback(bdi))
91018134 2482 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2483 }
1da177e4
LT
2484 if (!PageDirty(page))
2485 radix_tree_tag_clear(&mapping->page_tree,
2486 page_index(page),
2487 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2488 if (!keep_write)
2489 radix_tree_tag_clear(&mapping->page_tree,
2490 page_index(page),
2491 PAGECACHE_TAG_TOWRITE);
19fd6231 2492 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2493 } else {
2494 ret = TestSetPageWriteback(page);
2495 }
3a3c02ec 2496 if (!ret) {
d7365e78 2497 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2498 inc_zone_page_state(page, NR_WRITEBACK);
2499 }
6de22619 2500 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2501 return ret;
2502
2503}
1c8349a1 2504EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2505
2506/*
00128188 2507 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2508 * passed tag.
2509 */
2510int mapping_tagged(struct address_space *mapping, int tag)
2511{
72c47832 2512 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2513}
2514EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2515
2516/**
2517 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2518 * @page: The page to wait on.
2519 *
2520 * This function determines if the given page is related to a backing device
2521 * that requires page contents to be held stable during writeback. If so, then
2522 * it will wait for any pending writeback to complete.
2523 */
2524void wait_for_stable_page(struct page *page)
2525{
de1414a6
CH
2526 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2527 wait_on_page_writeback(page);
1d1d1a76
DW
2528}
2529EXPORT_SYMBOL_GPL(wait_for_stable_page);