writeback: do strict bdi dirty_exceeded
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
028c2dd1 37#include <trace/events/writeback.h>
1da177e4 38
ffd1f609
WF
39/*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42#define MAX_PAUSE max(HZ/5, 1)
43
5b9b3574
WF
44/*
45 * Try to keep balance_dirty_pages() call intervals higher than this many pages
46 * by raising pause time to max_pause when falls below it.
47 */
48#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
49
e98be2d5
WF
50/*
51 * Estimate write bandwidth at 200ms intervals.
52 */
53#define BANDWIDTH_INTERVAL max(HZ/5, 1)
54
6c14ae1e
WF
55#define RATELIMIT_CALC_SHIFT 10
56
1da177e4
LT
57/*
58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59 * will look to see if it needs to force writeback or throttling.
60 */
61static long ratelimit_pages = 32;
62
1da177e4
LT
63/* The following parameters are exported via /proc/sys/vm */
64
65/*
5b0830cb 66 * Start background writeback (via writeback threads) at this percentage
1da177e4 67 */
1b5e62b4 68int dirty_background_ratio = 10;
1da177e4 69
2da02997
DR
70/*
71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72 * dirty_background_ratio * the amount of dirtyable memory
73 */
74unsigned long dirty_background_bytes;
75
195cf453
BG
76/*
77 * free highmem will not be subtracted from the total free memory
78 * for calculating free ratios if vm_highmem_is_dirtyable is true
79 */
80int vm_highmem_is_dirtyable;
81
1da177e4
LT
82/*
83 * The generator of dirty data starts writeback at this percentage
84 */
1b5e62b4 85int vm_dirty_ratio = 20;
1da177e4 86
2da02997
DR
87/*
88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89 * vm_dirty_ratio * the amount of dirtyable memory
90 */
91unsigned long vm_dirty_bytes;
92
1da177e4 93/*
704503d8 94 * The interval between `kupdate'-style writebacks
1da177e4 95 */
22ef37ee 96unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4
LT
97
98/*
704503d8 99 * The longest time for which data is allowed to remain dirty
1da177e4 100 */
22ef37ee 101unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
102
103/*
104 * Flag that makes the machine dump writes/reads and block dirtyings.
105 */
106int block_dump;
107
108/*
ed5b43f1
BS
109 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
110 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
111 */
112int laptop_mode;
113
114EXPORT_SYMBOL(laptop_mode);
115
116/* End of sysctl-exported parameters */
117
c42843f2 118unsigned long global_dirty_limit;
1da177e4 119
04fbfdc1
PZ
120/*
121 * Scale the writeback cache size proportional to the relative writeout speeds.
122 *
123 * We do this by keeping a floating proportion between BDIs, based on page
124 * writeback completions [end_page_writeback()]. Those devices that write out
125 * pages fastest will get the larger share, while the slower will get a smaller
126 * share.
127 *
128 * We use page writeout completions because we are interested in getting rid of
129 * dirty pages. Having them written out is the primary goal.
130 *
131 * We introduce a concept of time, a period over which we measure these events,
132 * because demand can/will vary over time. The length of this period itself is
133 * measured in page writeback completions.
134 *
135 */
136static struct prop_descriptor vm_completions;
137
04fbfdc1
PZ
138/*
139 * couple the period to the dirty_ratio:
140 *
141 * period/2 ~ roundup_pow_of_two(dirty limit)
142 */
143static int calc_period_shift(void)
144{
145 unsigned long dirty_total;
146
2da02997
DR
147 if (vm_dirty_bytes)
148 dirty_total = vm_dirty_bytes / PAGE_SIZE;
149 else
150 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
151 100;
04fbfdc1
PZ
152 return 2 + ilog2(dirty_total - 1);
153}
154
155/*
2da02997 156 * update the period when the dirty threshold changes.
04fbfdc1 157 */
2da02997
DR
158static void update_completion_period(void)
159{
160 int shift = calc_period_shift();
161 prop_change_shift(&vm_completions, shift);
9d823e8f
WF
162
163 writeback_set_ratelimit();
2da02997
DR
164}
165
166int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 167 void __user *buffer, size_t *lenp,
2da02997
DR
168 loff_t *ppos)
169{
170 int ret;
171
8d65af78 172 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
173 if (ret == 0 && write)
174 dirty_background_bytes = 0;
175 return ret;
176}
177
178int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 179 void __user *buffer, size_t *lenp,
2da02997
DR
180 loff_t *ppos)
181{
182 int ret;
183
8d65af78 184 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
185 if (ret == 0 && write)
186 dirty_background_ratio = 0;
187 return ret;
188}
189
04fbfdc1 190int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 191 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
192 loff_t *ppos)
193{
194 int old_ratio = vm_dirty_ratio;
2da02997
DR
195 int ret;
196
8d65af78 197 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 198 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
2da02997
DR
199 update_completion_period();
200 vm_dirty_bytes = 0;
201 }
202 return ret;
203}
204
205
206int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 207 void __user *buffer, size_t *lenp,
2da02997
DR
208 loff_t *ppos)
209{
fc3501d4 210 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
211 int ret;
212
8d65af78 213 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
214 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
215 update_completion_period();
216 vm_dirty_ratio = 0;
04fbfdc1
PZ
217 }
218 return ret;
219}
220
221/*
222 * Increment the BDI's writeout completion count and the global writeout
223 * completion count. Called from test_clear_page_writeback().
224 */
225static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
226{
f7d2b1ec 227 __inc_bdi_stat(bdi, BDI_WRITTEN);
a42dde04
PZ
228 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
229 bdi->max_prop_frac);
04fbfdc1
PZ
230}
231
dd5656e5
MS
232void bdi_writeout_inc(struct backing_dev_info *bdi)
233{
234 unsigned long flags;
235
236 local_irq_save(flags);
237 __bdi_writeout_inc(bdi);
238 local_irq_restore(flags);
239}
240EXPORT_SYMBOL_GPL(bdi_writeout_inc);
241
04fbfdc1
PZ
242/*
243 * Obtain an accurate fraction of the BDI's portion.
244 */
245static void bdi_writeout_fraction(struct backing_dev_info *bdi,
246 long *numerator, long *denominator)
247{
3efaf0fa 248 prop_fraction_percpu(&vm_completions, &bdi->completions,
04fbfdc1 249 numerator, denominator);
04fbfdc1
PZ
250}
251
189d3c4a 252/*
d08c429b
JW
253 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
254 * registered backing devices, which, for obvious reasons, can not
255 * exceed 100%.
189d3c4a 256 */
189d3c4a
PZ
257static unsigned int bdi_min_ratio;
258
259int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
260{
261 int ret = 0;
189d3c4a 262
cfc4ba53 263 spin_lock_bh(&bdi_lock);
a42dde04 264 if (min_ratio > bdi->max_ratio) {
189d3c4a 265 ret = -EINVAL;
a42dde04
PZ
266 } else {
267 min_ratio -= bdi->min_ratio;
268 if (bdi_min_ratio + min_ratio < 100) {
269 bdi_min_ratio += min_ratio;
270 bdi->min_ratio += min_ratio;
271 } else {
272 ret = -EINVAL;
273 }
274 }
cfc4ba53 275 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
276
277 return ret;
278}
279
280int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
281{
a42dde04
PZ
282 int ret = 0;
283
284 if (max_ratio > 100)
285 return -EINVAL;
286
cfc4ba53 287 spin_lock_bh(&bdi_lock);
a42dde04
PZ
288 if (bdi->min_ratio > max_ratio) {
289 ret = -EINVAL;
290 } else {
291 bdi->max_ratio = max_ratio;
292 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
293 }
cfc4ba53 294 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
295
296 return ret;
297}
a42dde04 298EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 299
1da177e4
LT
300/*
301 * Work out the current dirty-memory clamping and background writeout
302 * thresholds.
303 *
304 * The main aim here is to lower them aggressively if there is a lot of mapped
305 * memory around. To avoid stressing page reclaim with lots of unreclaimable
306 * pages. It is better to clamp down on writers than to start swapping, and
307 * performing lots of scanning.
308 *
309 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
310 *
311 * We don't permit the clamping level to fall below 5% - that is getting rather
312 * excessive.
313 *
314 * We make sure that the background writeout level is below the adjusted
315 * clamping level.
316 */
1b424464
CL
317
318static unsigned long highmem_dirtyable_memory(unsigned long total)
319{
320#ifdef CONFIG_HIGHMEM
321 int node;
322 unsigned long x = 0;
323
37b07e41 324 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
325 struct zone *z =
326 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
327
adea02a1
WF
328 x += zone_page_state(z, NR_FREE_PAGES) +
329 zone_reclaimable_pages(z);
1b424464
CL
330 }
331 /*
332 * Make sure that the number of highmem pages is never larger
333 * than the number of the total dirtyable memory. This can only
334 * occur in very strange VM situations but we want to make sure
335 * that this does not occur.
336 */
337 return min(x, total);
338#else
339 return 0;
340#endif
341}
342
3eefae99
SR
343/**
344 * determine_dirtyable_memory - amount of memory that may be used
345 *
346 * Returns the numebr of pages that can currently be freed and used
347 * by the kernel for direct mappings.
348 */
349unsigned long determine_dirtyable_memory(void)
1b424464
CL
350{
351 unsigned long x;
352
adea02a1 353 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
195cf453
BG
354
355 if (!vm_highmem_is_dirtyable)
356 x -= highmem_dirtyable_memory(x);
357
1b424464
CL
358 return x + 1; /* Ensure that we never return 0 */
359}
360
6c14ae1e
WF
361static unsigned long dirty_freerun_ceiling(unsigned long thresh,
362 unsigned long bg_thresh)
363{
364 return (thresh + bg_thresh) / 2;
365}
366
ffd1f609
WF
367static unsigned long hard_dirty_limit(unsigned long thresh)
368{
369 return max(thresh, global_dirty_limit);
370}
371
03ab450f 372/*
1babe183
WF
373 * global_dirty_limits - background-writeback and dirty-throttling thresholds
374 *
375 * Calculate the dirty thresholds based on sysctl parameters
376 * - vm.dirty_background_ratio or vm.dirty_background_bytes
377 * - vm.dirty_ratio or vm.dirty_bytes
378 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ebd1373d 379 * real-time tasks.
1babe183 380 */
16c4042f 381void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
1da177e4 382{
364aeb28
DR
383 unsigned long background;
384 unsigned long dirty;
240c879f 385 unsigned long uninitialized_var(available_memory);
1da177e4
LT
386 struct task_struct *tsk;
387
240c879f
MK
388 if (!vm_dirty_bytes || !dirty_background_bytes)
389 available_memory = determine_dirtyable_memory();
390
2da02997
DR
391 if (vm_dirty_bytes)
392 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
4cbec4c8
WF
393 else
394 dirty = (vm_dirty_ratio * available_memory) / 100;
1da177e4 395
2da02997
DR
396 if (dirty_background_bytes)
397 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
398 else
399 background = (dirty_background_ratio * available_memory) / 100;
1da177e4 400
2da02997
DR
401 if (background >= dirty)
402 background = dirty / 2;
1da177e4
LT
403 tsk = current;
404 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
405 background += background / 4;
406 dirty += dirty / 4;
407 }
408 *pbackground = background;
409 *pdirty = dirty;
e1cbe236 410 trace_global_dirty_state(background, dirty);
16c4042f 411}
04fbfdc1 412
6f718656 413/**
1babe183 414 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
6f718656
WF
415 * @bdi: the backing_dev_info to query
416 * @dirty: global dirty limit in pages
1babe183 417 *
6f718656
WF
418 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
419 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
420 *
421 * Note that balance_dirty_pages() will only seriously take it as a hard limit
422 * when sleeping max_pause per page is not enough to keep the dirty pages under
423 * control. For example, when the device is completely stalled due to some error
424 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
425 * In the other normal situations, it acts more gently by throttling the tasks
426 * more (rather than completely block them) when the bdi dirty pages go high.
1babe183 427 *
6f718656 428 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
429 * - starving fast devices
430 * - piling up dirty pages (that will take long time to sync) on slow devices
431 *
432 * The bdi's share of dirty limit will be adapting to its throughput and
433 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
434 */
435unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
16c4042f
WF
436{
437 u64 bdi_dirty;
438 long numerator, denominator;
04fbfdc1 439
16c4042f
WF
440 /*
441 * Calculate this BDI's share of the dirty ratio.
442 */
443 bdi_writeout_fraction(bdi, &numerator, &denominator);
04fbfdc1 444
16c4042f
WF
445 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
446 bdi_dirty *= numerator;
447 do_div(bdi_dirty, denominator);
04fbfdc1 448
16c4042f
WF
449 bdi_dirty += (dirty * bdi->min_ratio) / 100;
450 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
451 bdi_dirty = dirty * bdi->max_ratio / 100;
452
453 return bdi_dirty;
1da177e4
LT
454}
455
6c14ae1e
WF
456/*
457 * Dirty position control.
458 *
459 * (o) global/bdi setpoints
460 *
461 * We want the dirty pages be balanced around the global/bdi setpoints.
462 * When the number of dirty pages is higher/lower than the setpoint, the
463 * dirty position control ratio (and hence task dirty ratelimit) will be
464 * decreased/increased to bring the dirty pages back to the setpoint.
465 *
466 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
467 *
468 * if (dirty < setpoint) scale up pos_ratio
469 * if (dirty > setpoint) scale down pos_ratio
470 *
471 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
472 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
473 *
474 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
475 *
476 * (o) global control line
477 *
478 * ^ pos_ratio
479 * |
480 * | |<===== global dirty control scope ======>|
481 * 2.0 .............*
482 * | .*
483 * | . *
484 * | . *
485 * | . *
486 * | . *
487 * | . *
488 * 1.0 ................................*
489 * | . . *
490 * | . . *
491 * | . . *
492 * | . . *
493 * | . . *
494 * 0 +------------.------------------.----------------------*------------->
495 * freerun^ setpoint^ limit^ dirty pages
496 *
497 * (o) bdi control line
498 *
499 * ^ pos_ratio
500 * |
501 * | *
502 * | *
503 * | *
504 * | *
505 * | * |<=========== span ============>|
506 * 1.0 .......................*
507 * | . *
508 * | . *
509 * | . *
510 * | . *
511 * | . *
512 * | . *
513 * | . *
514 * | . *
515 * | . *
516 * | . *
517 * | . *
518 * 1/4 ...............................................* * * * * * * * * * * *
519 * | . .
520 * | . .
521 * | . .
522 * 0 +----------------------.-------------------------------.------------->
523 * bdi_setpoint^ x_intercept^
524 *
525 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
526 * be smoothly throttled down to normal if it starts high in situations like
527 * - start writing to a slow SD card and a fast disk at the same time. The SD
528 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
529 * - the bdi dirty thresh drops quickly due to change of JBOD workload
530 */
531static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
532 unsigned long thresh,
533 unsigned long bg_thresh,
534 unsigned long dirty,
535 unsigned long bdi_thresh,
536 unsigned long bdi_dirty)
537{
538 unsigned long write_bw = bdi->avg_write_bandwidth;
539 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
540 unsigned long limit = hard_dirty_limit(thresh);
541 unsigned long x_intercept;
542 unsigned long setpoint; /* dirty pages' target balance point */
543 unsigned long bdi_setpoint;
544 unsigned long span;
545 long long pos_ratio; /* for scaling up/down the rate limit */
546 long x;
547
548 if (unlikely(dirty >= limit))
549 return 0;
550
551 /*
552 * global setpoint
553 *
554 * setpoint - dirty 3
555 * f(dirty) := 1.0 + (----------------)
556 * limit - setpoint
557 *
558 * it's a 3rd order polynomial that subjects to
559 *
560 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
561 * (2) f(setpoint) = 1.0 => the balance point
562 * (3) f(limit) = 0 => the hard limit
563 * (4) df/dx <= 0 => negative feedback control
564 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
565 * => fast response on large errors; small oscillation near setpoint
566 */
567 setpoint = (freerun + limit) / 2;
568 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
569 limit - setpoint + 1);
570 pos_ratio = x;
571 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
572 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
573 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
574
575 /*
576 * We have computed basic pos_ratio above based on global situation. If
577 * the bdi is over/under its share of dirty pages, we want to scale
578 * pos_ratio further down/up. That is done by the following mechanism.
579 */
580
581 /*
582 * bdi setpoint
583 *
584 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
585 *
586 * x_intercept - bdi_dirty
587 * := --------------------------
588 * x_intercept - bdi_setpoint
589 *
590 * The main bdi control line is a linear function that subjects to
591 *
592 * (1) f(bdi_setpoint) = 1.0
593 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
594 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
595 *
596 * For single bdi case, the dirty pages are observed to fluctuate
597 * regularly within range
598 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
599 * for various filesystems, where (2) can yield in a reasonable 12.5%
600 * fluctuation range for pos_ratio.
601 *
602 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
603 * own size, so move the slope over accordingly and choose a slope that
604 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
605 */
606 if (unlikely(bdi_thresh > thresh))
607 bdi_thresh = thresh;
aed21ad2
WF
608 /*
609 * It's very possible that bdi_thresh is close to 0 not because the
610 * device is slow, but that it has remained inactive for long time.
611 * Honour such devices a reasonable good (hopefully IO efficient)
612 * threshold, so that the occasional writes won't be blocked and active
613 * writes can rampup the threshold quickly.
614 */
8927f66c 615 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
6c14ae1e
WF
616 /*
617 * scale global setpoint to bdi's:
618 * bdi_setpoint = setpoint * bdi_thresh / thresh
619 */
620 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
621 bdi_setpoint = setpoint * (u64)x >> 16;
622 /*
623 * Use span=(8*write_bw) in single bdi case as indicated by
624 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
625 *
626 * bdi_thresh thresh - bdi_thresh
627 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
628 * thresh thresh
629 */
630 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
631 x_intercept = bdi_setpoint + span;
632
633 if (bdi_dirty < x_intercept - span / 4) {
50657fc4
WF
634 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
635 x_intercept - bdi_setpoint + 1);
6c14ae1e
WF
636 } else
637 pos_ratio /= 4;
638
8927f66c
WF
639 /*
640 * bdi reserve area, safeguard against dirty pool underrun and disk idle
641 * It may push the desired control point of global dirty pages higher
642 * than setpoint.
643 */
644 x_intercept = bdi_thresh / 2;
645 if (bdi_dirty < x_intercept) {
50657fc4
WF
646 if (bdi_dirty > x_intercept / 8)
647 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
648 else
8927f66c
WF
649 pos_ratio *= 8;
650 }
651
6c14ae1e
WF
652 return pos_ratio;
653}
654
e98be2d5
WF
655static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
656 unsigned long elapsed,
657 unsigned long written)
658{
659 const unsigned long period = roundup_pow_of_two(3 * HZ);
660 unsigned long avg = bdi->avg_write_bandwidth;
661 unsigned long old = bdi->write_bandwidth;
662 u64 bw;
663
664 /*
665 * bw = written * HZ / elapsed
666 *
667 * bw * elapsed + write_bandwidth * (period - elapsed)
668 * write_bandwidth = ---------------------------------------------------
669 * period
670 */
671 bw = written - bdi->written_stamp;
672 bw *= HZ;
673 if (unlikely(elapsed > period)) {
674 do_div(bw, elapsed);
675 avg = bw;
676 goto out;
677 }
678 bw += (u64)bdi->write_bandwidth * (period - elapsed);
679 bw >>= ilog2(period);
680
681 /*
682 * one more level of smoothing, for filtering out sudden spikes
683 */
684 if (avg > old && old >= (unsigned long)bw)
685 avg -= (avg - old) >> 3;
686
687 if (avg < old && old <= (unsigned long)bw)
688 avg += (old - avg) >> 3;
689
690out:
691 bdi->write_bandwidth = bw;
692 bdi->avg_write_bandwidth = avg;
693}
694
c42843f2
WF
695/*
696 * The global dirtyable memory and dirty threshold could be suddenly knocked
697 * down by a large amount (eg. on the startup of KVM in a swapless system).
698 * This may throw the system into deep dirty exceeded state and throttle
699 * heavy/light dirtiers alike. To retain good responsiveness, maintain
700 * global_dirty_limit for tracking slowly down to the knocked down dirty
701 * threshold.
702 */
703static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
704{
705 unsigned long limit = global_dirty_limit;
706
707 /*
708 * Follow up in one step.
709 */
710 if (limit < thresh) {
711 limit = thresh;
712 goto update;
713 }
714
715 /*
716 * Follow down slowly. Use the higher one as the target, because thresh
717 * may drop below dirty. This is exactly the reason to introduce
718 * global_dirty_limit which is guaranteed to lie above the dirty pages.
719 */
720 thresh = max(thresh, dirty);
721 if (limit > thresh) {
722 limit -= (limit - thresh) >> 5;
723 goto update;
724 }
725 return;
726update:
727 global_dirty_limit = limit;
728}
729
730static void global_update_bandwidth(unsigned long thresh,
731 unsigned long dirty,
732 unsigned long now)
733{
734 static DEFINE_SPINLOCK(dirty_lock);
735 static unsigned long update_time;
736
737 /*
738 * check locklessly first to optimize away locking for the most time
739 */
740 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
741 return;
742
743 spin_lock(&dirty_lock);
744 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
745 update_dirty_limit(thresh, dirty);
746 update_time = now;
747 }
748 spin_unlock(&dirty_lock);
749}
750
be3ffa27
WF
751/*
752 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
753 *
754 * Normal bdi tasks will be curbed at or below it in long term.
755 * Obviously it should be around (write_bw / N) when there are N dd tasks.
756 */
757static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
758 unsigned long thresh,
759 unsigned long bg_thresh,
760 unsigned long dirty,
761 unsigned long bdi_thresh,
762 unsigned long bdi_dirty,
763 unsigned long dirtied,
764 unsigned long elapsed)
765{
7381131c
WF
766 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
767 unsigned long limit = hard_dirty_limit(thresh);
768 unsigned long setpoint = (freerun + limit) / 2;
be3ffa27
WF
769 unsigned long write_bw = bdi->avg_write_bandwidth;
770 unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
771 unsigned long dirty_rate;
772 unsigned long task_ratelimit;
773 unsigned long balanced_dirty_ratelimit;
774 unsigned long pos_ratio;
7381131c
WF
775 unsigned long step;
776 unsigned long x;
be3ffa27
WF
777
778 /*
779 * The dirty rate will match the writeout rate in long term, except
780 * when dirty pages are truncated by userspace or re-dirtied by FS.
781 */
782 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
783
784 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
785 bdi_thresh, bdi_dirty);
786 /*
787 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
788 */
789 task_ratelimit = (u64)dirty_ratelimit *
790 pos_ratio >> RATELIMIT_CALC_SHIFT;
791 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
792
793 /*
794 * A linear estimation of the "balanced" throttle rate. The theory is,
795 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
796 * dirty_rate will be measured to be (N * task_ratelimit). So the below
797 * formula will yield the balanced rate limit (write_bw / N).
798 *
799 * Note that the expanded form is not a pure rate feedback:
800 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
801 * but also takes pos_ratio into account:
802 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
803 *
804 * (1) is not realistic because pos_ratio also takes part in balancing
805 * the dirty rate. Consider the state
806 * pos_ratio = 0.5 (3)
807 * rate = 2 * (write_bw / N) (4)
808 * If (1) is used, it will stuck in that state! Because each dd will
809 * be throttled at
810 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
811 * yielding
812 * dirty_rate = N * task_ratelimit = write_bw (6)
813 * put (6) into (1) we get
814 * rate_(i+1) = rate_(i) (7)
815 *
816 * So we end up using (2) to always keep
817 * rate_(i+1) ~= (write_bw / N) (8)
818 * regardless of the value of pos_ratio. As long as (8) is satisfied,
819 * pos_ratio is able to drive itself to 1.0, which is not only where
820 * the dirty count meet the setpoint, but also where the slope of
821 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
822 */
823 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
824 dirty_rate | 1);
825
7381131c
WF
826 /*
827 * We could safely do this and return immediately:
828 *
829 * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
830 *
831 * However to get a more stable dirty_ratelimit, the below elaborated
832 * code makes use of task_ratelimit to filter out sigular points and
833 * limit the step size.
834 *
835 * The below code essentially only uses the relative value of
836 *
837 * task_ratelimit - dirty_ratelimit
838 * = (pos_ratio - 1) * dirty_ratelimit
839 *
840 * which reflects the direction and size of dirty position error.
841 */
842
843 /*
844 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
845 * task_ratelimit is on the same side of dirty_ratelimit, too.
846 * For example, when
847 * - dirty_ratelimit > balanced_dirty_ratelimit
848 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
849 * lowering dirty_ratelimit will help meet both the position and rate
850 * control targets. Otherwise, don't update dirty_ratelimit if it will
851 * only help meet the rate target. After all, what the users ultimately
852 * feel and care are stable dirty rate and small position error.
853 *
854 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
855 * and filter out the sigular points of balanced_dirty_ratelimit. Which
856 * keeps jumping around randomly and can even leap far away at times
857 * due to the small 200ms estimation period of dirty_rate (we want to
858 * keep that period small to reduce time lags).
859 */
860 step = 0;
861 if (dirty < setpoint) {
862 x = min(bdi->balanced_dirty_ratelimit,
863 min(balanced_dirty_ratelimit, task_ratelimit));
864 if (dirty_ratelimit < x)
865 step = x - dirty_ratelimit;
866 } else {
867 x = max(bdi->balanced_dirty_ratelimit,
868 max(balanced_dirty_ratelimit, task_ratelimit));
869 if (dirty_ratelimit > x)
870 step = dirty_ratelimit - x;
871 }
872
873 /*
874 * Don't pursue 100% rate matching. It's impossible since the balanced
875 * rate itself is constantly fluctuating. So decrease the track speed
876 * when it gets close to the target. Helps eliminate pointless tremors.
877 */
878 step >>= dirty_ratelimit / (2 * step + 1);
879 /*
880 * Limit the tracking speed to avoid overshooting.
881 */
882 step = (step + 7) / 8;
883
884 if (dirty_ratelimit < balanced_dirty_ratelimit)
885 dirty_ratelimit += step;
886 else
887 dirty_ratelimit -= step;
888
889 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
890 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d
WF
891
892 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
893}
894
e98be2d5 895void __bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 896 unsigned long thresh,
af6a3113 897 unsigned long bg_thresh,
c42843f2
WF
898 unsigned long dirty,
899 unsigned long bdi_thresh,
900 unsigned long bdi_dirty,
e98be2d5
WF
901 unsigned long start_time)
902{
903 unsigned long now = jiffies;
904 unsigned long elapsed = now - bdi->bw_time_stamp;
be3ffa27 905 unsigned long dirtied;
e98be2d5
WF
906 unsigned long written;
907
908 /*
909 * rate-limit, only update once every 200ms.
910 */
911 if (elapsed < BANDWIDTH_INTERVAL)
912 return;
913
be3ffa27 914 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
e98be2d5
WF
915 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
916
917 /*
918 * Skip quiet periods when disk bandwidth is under-utilized.
919 * (at least 1s idle time between two flusher runs)
920 */
921 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
922 goto snapshot;
923
be3ffa27 924 if (thresh) {
c42843f2 925 global_update_bandwidth(thresh, dirty, now);
be3ffa27
WF
926 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
927 bdi_thresh, bdi_dirty,
928 dirtied, elapsed);
929 }
e98be2d5
WF
930 bdi_update_write_bandwidth(bdi, elapsed, written);
931
932snapshot:
be3ffa27 933 bdi->dirtied_stamp = dirtied;
e98be2d5
WF
934 bdi->written_stamp = written;
935 bdi->bw_time_stamp = now;
936}
937
938static void bdi_update_bandwidth(struct backing_dev_info *bdi,
c42843f2 939 unsigned long thresh,
af6a3113 940 unsigned long bg_thresh,
c42843f2
WF
941 unsigned long dirty,
942 unsigned long bdi_thresh,
943 unsigned long bdi_dirty,
e98be2d5
WF
944 unsigned long start_time)
945{
946 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
947 return;
948 spin_lock(&bdi->wb.list_lock);
af6a3113
WF
949 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
950 bdi_thresh, bdi_dirty, start_time);
e98be2d5
WF
951 spin_unlock(&bdi->wb.list_lock);
952}
953
9d823e8f
WF
954/*
955 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
956 * will look to see if it needs to start dirty throttling.
957 *
958 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
959 * global_page_state() too often. So scale it near-sqrt to the safety margin
960 * (the number of pages we may dirty without exceeding the dirty limits).
961 */
962static unsigned long dirty_poll_interval(unsigned long dirty,
963 unsigned long thresh)
964{
965 if (thresh > dirty)
966 return 1UL << (ilog2(thresh - dirty) >> 1);
967
968 return 1;
969}
970
7ccb9ad5
WF
971static long bdi_max_pause(struct backing_dev_info *bdi,
972 unsigned long bdi_dirty)
c8462cc9 973{
7ccb9ad5
WF
974 long bw = bdi->avg_write_bandwidth;
975 long t;
c8462cc9 976
7ccb9ad5
WF
977 /*
978 * Limit pause time for small memory systems. If sleeping for too long
979 * time, a small pool of dirty/writeback pages may go empty and disk go
980 * idle.
981 *
982 * 8 serves as the safety ratio.
983 */
984 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
985 t++;
986
987 return min_t(long, t, MAX_PAUSE);
988}
989
990static long bdi_min_pause(struct backing_dev_info *bdi,
991 long max_pause,
992 unsigned long task_ratelimit,
993 unsigned long dirty_ratelimit,
994 int *nr_dirtied_pause)
995{
996 long hi = ilog2(bdi->avg_write_bandwidth);
997 long lo = ilog2(bdi->dirty_ratelimit);
998 long t; /* target pause */
999 long pause; /* estimated next pause */
1000 int pages; /* target nr_dirtied_pause */
1001
1002 /* target for 10ms pause on 1-dd case */
1003 t = max(1, HZ / 100);
c8462cc9
WF
1004
1005 /*
1006 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1007 * overheads.
1008 *
7ccb9ad5 1009 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1010 */
1011 if (hi > lo)
7ccb9ad5 1012 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1013
1014 /*
7ccb9ad5
WF
1015 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1016 * on the much more stable dirty_ratelimit. However the next pause time
1017 * will be computed based on task_ratelimit and the two rate limits may
1018 * depart considerably at some time. Especially if task_ratelimit goes
1019 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1020 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1021 * result task_ratelimit won't be executed faithfully, which could
1022 * eventually bring down dirty_ratelimit.
c8462cc9 1023 *
7ccb9ad5
WF
1024 * We apply two rules to fix it up:
1025 * 1) try to estimate the next pause time and if necessary, use a lower
1026 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1027 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1028 * 2) limit the target pause time to max_pause/2, so that the normal
1029 * small fluctuations of task_ratelimit won't trigger rule (1) and
1030 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1031 */
7ccb9ad5
WF
1032 t = min(t, 1 + max_pause / 2);
1033 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1034
5b9b3574
WF
1035 /*
1036 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1037 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1038 * When the 16 consecutive reads are often interrupted by some dirty
1039 * throttling pause during the async writes, cfq will go into idles
1040 * (deadline is fine). So push nr_dirtied_pause as high as possible
1041 * until reaches DIRTY_POLL_THRESH=32 pages.
1042 */
1043 if (pages < DIRTY_POLL_THRESH) {
1044 t = max_pause;
1045 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1046 if (pages > DIRTY_POLL_THRESH) {
1047 pages = DIRTY_POLL_THRESH;
1048 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1049 }
1050 }
1051
7ccb9ad5
WF
1052 pause = HZ * pages / (task_ratelimit + 1);
1053 if (pause > max_pause) {
1054 t = max_pause;
1055 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1056 }
c8462cc9 1057
7ccb9ad5 1058 *nr_dirtied_pause = pages;
c8462cc9 1059 /*
7ccb9ad5 1060 * The minimal pause time will normally be half the target pause time.
c8462cc9 1061 */
5b9b3574 1062 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1063}
1064
1da177e4
LT
1065/*
1066 * balance_dirty_pages() must be called by processes which are generating dirty
1067 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1068 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1069 * If we're over `background_thresh' then the writeback threads are woken to
1070 * perform some writeout.
1da177e4 1071 */
3a2e9a5a 1072static void balance_dirty_pages(struct address_space *mapping,
143dfe86 1073 unsigned long pages_dirtied)
1da177e4 1074{
143dfe86
WF
1075 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1076 unsigned long bdi_reclaimable;
7762741e
WF
1077 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
1078 unsigned long bdi_dirty;
6c14ae1e 1079 unsigned long freerun;
364aeb28
DR
1080 unsigned long background_thresh;
1081 unsigned long dirty_thresh;
1082 unsigned long bdi_thresh;
83712358 1083 long period;
7ccb9ad5
WF
1084 long pause;
1085 long max_pause;
1086 long min_pause;
1087 int nr_dirtied_pause;
e50e3720 1088 bool dirty_exceeded = false;
143dfe86 1089 unsigned long task_ratelimit;
7ccb9ad5 1090 unsigned long dirty_ratelimit;
143dfe86 1091 unsigned long pos_ratio;
1da177e4 1092 struct backing_dev_info *bdi = mapping->backing_dev_info;
e98be2d5 1093 unsigned long start_time = jiffies;
1da177e4
LT
1094
1095 for (;;) {
83712358
WF
1096 unsigned long now = jiffies;
1097
143dfe86
WF
1098 /*
1099 * Unstable writes are a feature of certain networked
1100 * filesystems (i.e. NFS) in which data may have been
1101 * written to the server's write cache, but has not yet
1102 * been flushed to permanent storage.
1103 */
5fce25a9
PZ
1104 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1105 global_page_state(NR_UNSTABLE_NFS);
7762741e 1106 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1107
16c4042f
WF
1108 global_dirty_limits(&background_thresh, &dirty_thresh);
1109
1110 /*
1111 * Throttle it only when the background writeback cannot
1112 * catch-up. This avoids (excessively) small writeouts
1113 * when the bdi limits are ramping up.
1114 */
6c14ae1e
WF
1115 freerun = dirty_freerun_ceiling(dirty_thresh,
1116 background_thresh);
83712358
WF
1117 if (nr_dirty <= freerun) {
1118 current->dirty_paused_when = now;
1119 current->nr_dirtied = 0;
7ccb9ad5
WF
1120 current->nr_dirtied_pause =
1121 dirty_poll_interval(nr_dirty, dirty_thresh);
16c4042f 1122 break;
83712358 1123 }
16c4042f 1124
143dfe86
WF
1125 if (unlikely(!writeback_in_progress(bdi)))
1126 bdi_start_background_writeback(bdi);
1127
1128 /*
1129 * bdi_thresh is not treated as some limiting factor as
1130 * dirty_thresh, due to reasons
1131 * - in JBOD setup, bdi_thresh can fluctuate a lot
1132 * - in a system with HDD and USB key, the USB key may somehow
1133 * go into state (bdi_dirty >> bdi_thresh) either because
1134 * bdi_dirty starts high, or because bdi_thresh drops low.
1135 * In this case we don't want to hard throttle the USB key
1136 * dirtiers for 100 seconds until bdi_dirty drops under
1137 * bdi_thresh. Instead the auxiliary bdi control line in
1138 * bdi_position_ratio() will let the dirtier task progress
1139 * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1140 */
16c4042f 1141 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
16c4042f 1142
e50e3720
WF
1143 /*
1144 * In order to avoid the stacked BDI deadlock we need
1145 * to ensure we accurately count the 'dirty' pages when
1146 * the threshold is low.
1147 *
1148 * Otherwise it would be possible to get thresh+n pages
1149 * reported dirty, even though there are thresh-m pages
1150 * actually dirty; with m+n sitting in the percpu
1151 * deltas.
1152 */
143dfe86
WF
1153 if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1154 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1155 bdi_dirty = bdi_reclaimable +
7762741e 1156 bdi_stat_sum(bdi, BDI_WRITEBACK);
e50e3720 1157 } else {
143dfe86
WF
1158 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1159 bdi_dirty = bdi_reclaimable +
7762741e 1160 bdi_stat(bdi, BDI_WRITEBACK);
e50e3720 1161 }
5fce25a9 1162
82791940 1163 dirty_exceeded = (bdi_dirty > bdi_thresh) &&
7762741e 1164 (nr_dirty > dirty_thresh);
143dfe86 1165 if (dirty_exceeded && !bdi->dirty_exceeded)
04fbfdc1 1166 bdi->dirty_exceeded = 1;
1da177e4 1167
af6a3113
WF
1168 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1169 nr_dirty, bdi_thresh, bdi_dirty,
1170 start_time);
e98be2d5 1171
143dfe86
WF
1172 dirty_ratelimit = bdi->dirty_ratelimit;
1173 pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1174 background_thresh, nr_dirty,
1175 bdi_thresh, bdi_dirty);
3a73dbbc
WF
1176 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1177 RATELIMIT_CALC_SHIFT;
7ccb9ad5
WF
1178 max_pause = bdi_max_pause(bdi, bdi_dirty);
1179 min_pause = bdi_min_pause(bdi, max_pause,
1180 task_ratelimit, dirty_ratelimit,
1181 &nr_dirtied_pause);
1182
3a73dbbc 1183 if (unlikely(task_ratelimit == 0)) {
83712358 1184 period = max_pause;
c8462cc9 1185 pause = max_pause;
143dfe86 1186 goto pause;
04fbfdc1 1187 }
83712358
WF
1188 period = HZ * pages_dirtied / task_ratelimit;
1189 pause = period;
1190 if (current->dirty_paused_when)
1191 pause -= now - current->dirty_paused_when;
1192 /*
1193 * For less than 1s think time (ext3/4 may block the dirtier
1194 * for up to 800ms from time to time on 1-HDD; so does xfs,
1195 * however at much less frequency), try to compensate it in
1196 * future periods by updating the virtual time; otherwise just
1197 * do a reset, as it may be a light dirtier.
1198 */
7ccb9ad5 1199 if (pause < min_pause) {
ece13ac3
WF
1200 trace_balance_dirty_pages(bdi,
1201 dirty_thresh,
1202 background_thresh,
1203 nr_dirty,
1204 bdi_thresh,
1205 bdi_dirty,
1206 dirty_ratelimit,
1207 task_ratelimit,
1208 pages_dirtied,
83712358 1209 period,
7ccb9ad5 1210 min(pause, 0L),
ece13ac3 1211 start_time);
83712358
WF
1212 if (pause < -HZ) {
1213 current->dirty_paused_when = now;
1214 current->nr_dirtied = 0;
1215 } else if (period) {
1216 current->dirty_paused_when += period;
1217 current->nr_dirtied = 0;
7ccb9ad5
WF
1218 } else if (current->nr_dirtied_pause <= pages_dirtied)
1219 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1220 break;
04fbfdc1 1221 }
7ccb9ad5
WF
1222 if (unlikely(pause > max_pause)) {
1223 /* for occasional dropped task_ratelimit */
1224 now += min(pause - max_pause, max_pause);
1225 pause = max_pause;
1226 }
143dfe86
WF
1227
1228pause:
ece13ac3
WF
1229 trace_balance_dirty_pages(bdi,
1230 dirty_thresh,
1231 background_thresh,
1232 nr_dirty,
1233 bdi_thresh,
1234 bdi_dirty,
1235 dirty_ratelimit,
1236 task_ratelimit,
1237 pages_dirtied,
83712358 1238 period,
ece13ac3
WF
1239 pause,
1240 start_time);
499d05ec 1241 __set_current_state(TASK_KILLABLE);
d25105e8 1242 io_schedule_timeout(pause);
87c6a9b2 1243
83712358
WF
1244 current->dirty_paused_when = now + pause;
1245 current->nr_dirtied = 0;
7ccb9ad5 1246 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1247
ffd1f609 1248 /*
1df64719
WF
1249 * This is typically equal to (nr_dirty < dirty_thresh) and can
1250 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1251 */
1df64719 1252 if (task_ratelimit)
ffd1f609 1253 break;
499d05ec 1254
c5c6343c
WF
1255 /*
1256 * In the case of an unresponding NFS server and the NFS dirty
1257 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1258 * to go through, so that tasks on them still remain responsive.
1259 *
1260 * In theory 1 page is enough to keep the comsumer-producer
1261 * pipe going: the flusher cleans 1 page => the task dirties 1
1262 * more page. However bdi_dirty has accounting errors. So use
1263 * the larger and more IO friendly bdi_stat_error.
1264 */
1265 if (bdi_dirty <= bdi_stat_error(bdi))
1266 break;
1267
499d05ec
JK
1268 if (fatal_signal_pending(current))
1269 break;
1da177e4
LT
1270 }
1271
143dfe86 1272 if (!dirty_exceeded && bdi->dirty_exceeded)
04fbfdc1 1273 bdi->dirty_exceeded = 0;
1da177e4
LT
1274
1275 if (writeback_in_progress(bdi))
5b0830cb 1276 return;
1da177e4
LT
1277
1278 /*
1279 * In laptop mode, we wait until hitting the higher threshold before
1280 * starting background writeout, and then write out all the way down
1281 * to the lower threshold. So slow writers cause minimal disk activity.
1282 *
1283 * In normal mode, we start background writeout at the lower
1284 * background_thresh, to keep the amount of dirty memory low.
1285 */
143dfe86
WF
1286 if (laptop_mode)
1287 return;
1288
1289 if (nr_reclaimable > background_thresh)
c5444198 1290 bdi_start_background_writeback(bdi);
1da177e4
LT
1291}
1292
a200ee18 1293void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 1294{
a200ee18 1295 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
1296 struct address_space *mapping = page_mapping(page);
1297
1298 if (mapping)
1299 balance_dirty_pages_ratelimited(mapping);
1300 }
1301}
1302
9d823e8f 1303static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1304
54848d73
WF
1305/*
1306 * Normal tasks are throttled by
1307 * loop {
1308 * dirty tsk->nr_dirtied_pause pages;
1309 * take a snap in balance_dirty_pages();
1310 * }
1311 * However there is a worst case. If every task exit immediately when dirtied
1312 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1313 * called to throttle the page dirties. The solution is to save the not yet
1314 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1315 * randomly into the running tasks. This works well for the above worst case,
1316 * as the new task will pick up and accumulate the old task's leaked dirty
1317 * count and eventually get throttled.
1318 */
1319DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1320
1da177e4 1321/**
fa5a734e 1322 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 1323 * @mapping: address_space which was dirtied
a580290c 1324 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
1325 *
1326 * Processes which are dirtying memory should call in here once for each page
1327 * which was newly dirtied. The function will periodically check the system's
1328 * dirty state and will initiate writeback if needed.
1329 *
1330 * On really big machines, get_writeback_state is expensive, so try to avoid
1331 * calling it too often (ratelimiting). But once we're over the dirty memory
1332 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1333 * from overshooting the limit by (ratelimit_pages) each.
1334 */
fa5a734e
AM
1335void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1336 unsigned long nr_pages_dirtied)
1da177e4 1337{
36715cef 1338 struct backing_dev_info *bdi = mapping->backing_dev_info;
9d823e8f
WF
1339 int ratelimit;
1340 int *p;
1da177e4 1341
36715cef
WF
1342 if (!bdi_cap_account_dirty(bdi))
1343 return;
1344
9d823e8f
WF
1345 ratelimit = current->nr_dirtied_pause;
1346 if (bdi->dirty_exceeded)
1347 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1348
9d823e8f 1349 preempt_disable();
1da177e4 1350 /*
9d823e8f
WF
1351 * This prevents one CPU to accumulate too many dirtied pages without
1352 * calling into balance_dirty_pages(), which can happen when there are
1353 * 1000+ tasks, all of them start dirtying pages at exactly the same
1354 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1355 */
245b2e70 1356 p = &__get_cpu_var(bdp_ratelimits);
9d823e8f 1357 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1358 *p = 0;
d3bc1fef
WF
1359 else if (unlikely(*p >= ratelimit_pages)) {
1360 *p = 0;
1361 ratelimit = 0;
1da177e4 1362 }
54848d73
WF
1363 /*
1364 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1365 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1366 * the dirty throttling and livelock other long-run dirtiers.
1367 */
1368 p = &__get_cpu_var(dirty_throttle_leaks);
1369 if (*p > 0 && current->nr_dirtied < ratelimit) {
1370 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1371 *p -= nr_pages_dirtied;
1372 current->nr_dirtied += nr_pages_dirtied;
1373 }
fa5a734e 1374 preempt_enable();
9d823e8f
WF
1375
1376 if (unlikely(current->nr_dirtied >= ratelimit))
1377 balance_dirty_pages(mapping, current->nr_dirtied);
1da177e4 1378}
fa5a734e 1379EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 1380
232ea4d6 1381void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1382{
364aeb28
DR
1383 unsigned long background_thresh;
1384 unsigned long dirty_thresh;
1da177e4
LT
1385
1386 for ( ; ; ) {
16c4042f 1387 global_dirty_limits(&background_thresh, &dirty_thresh);
1da177e4
LT
1388
1389 /*
1390 * Boost the allowable dirty threshold a bit for page
1391 * allocators so they don't get DoS'ed by heavy writers
1392 */
1393 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1394
c24f21bd
CL
1395 if (global_page_state(NR_UNSTABLE_NFS) +
1396 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1397 break;
8aa7e847 1398 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1399
1400 /*
1401 * The caller might hold locks which can prevent IO completion
1402 * or progress in the filesystem. So we cannot just sit here
1403 * waiting for IO to complete.
1404 */
1405 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1406 break;
1da177e4
LT
1407 }
1408}
1409
1da177e4
LT
1410/*
1411 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1412 */
1413int dirty_writeback_centisecs_handler(ctl_table *table, int write,
8d65af78 1414 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1415{
8d65af78 1416 proc_dointvec(table, write, buffer, length, ppos);
6423104b 1417 bdi_arm_supers_timer();
1da177e4
LT
1418 return 0;
1419}
1420
c2c4986e 1421#ifdef CONFIG_BLOCK
31373d09 1422void laptop_mode_timer_fn(unsigned long data)
1da177e4 1423{
31373d09
MG
1424 struct request_queue *q = (struct request_queue *)data;
1425 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1426 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1427
31373d09
MG
1428 /*
1429 * We want to write everything out, not just down to the dirty
1430 * threshold
1431 */
31373d09 1432 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1433 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1434 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1435}
1436
1437/*
1438 * We've spun up the disk and we're in laptop mode: schedule writeback
1439 * of all dirty data a few seconds from now. If the flush is already scheduled
1440 * then push it back - the user is still using the disk.
1441 */
31373d09 1442void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1443{
31373d09 1444 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1445}
1446
1447/*
1448 * We're in laptop mode and we've just synced. The sync's writes will have
1449 * caused another writeback to be scheduled by laptop_io_completion.
1450 * Nothing needs to be written back anymore, so we unschedule the writeback.
1451 */
1452void laptop_sync_completion(void)
1453{
31373d09
MG
1454 struct backing_dev_info *bdi;
1455
1456 rcu_read_lock();
1457
1458 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1459 del_timer(&bdi->laptop_mode_wb_timer);
1460
1461 rcu_read_unlock();
1da177e4 1462}
c2c4986e 1463#endif
1da177e4
LT
1464
1465/*
1466 * If ratelimit_pages is too high then we can get into dirty-data overload
1467 * if a large number of processes all perform writes at the same time.
1468 * If it is too low then SMP machines will call the (expensive)
1469 * get_writeback_state too often.
1470 *
1471 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1472 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1473 * thresholds.
1da177e4
LT
1474 */
1475
2d1d43f6 1476void writeback_set_ratelimit(void)
1da177e4 1477{
9d823e8f
WF
1478 unsigned long background_thresh;
1479 unsigned long dirty_thresh;
1480 global_dirty_limits(&background_thresh, &dirty_thresh);
1481 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1482 if (ratelimit_pages < 16)
1483 ratelimit_pages = 16;
1da177e4
LT
1484}
1485
26c2143b 1486static int __cpuinit
1da177e4
LT
1487ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1488{
2d1d43f6 1489 writeback_set_ratelimit();
aa0f0303 1490 return NOTIFY_DONE;
1da177e4
LT
1491}
1492
74b85f37 1493static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
1494 .notifier_call = ratelimit_handler,
1495 .next = NULL,
1496};
1497
1498/*
dc6e29da
LT
1499 * Called early on to tune the page writeback dirty limits.
1500 *
1501 * We used to scale dirty pages according to how total memory
1502 * related to pages that could be allocated for buffers (by
1503 * comparing nr_free_buffer_pages() to vm_total_pages.
1504 *
1505 * However, that was when we used "dirty_ratio" to scale with
1506 * all memory, and we don't do that any more. "dirty_ratio"
1507 * is now applied to total non-HIGHPAGE memory (by subtracting
1508 * totalhigh_pages from vm_total_pages), and as such we can't
1509 * get into the old insane situation any more where we had
1510 * large amounts of dirty pages compared to a small amount of
1511 * non-HIGHMEM memory.
1512 *
1513 * But we might still want to scale the dirty_ratio by how
1514 * much memory the box has..
1da177e4
LT
1515 */
1516void __init page_writeback_init(void)
1517{
04fbfdc1
PZ
1518 int shift;
1519
2d1d43f6 1520 writeback_set_ratelimit();
1da177e4 1521 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
1522
1523 shift = calc_period_shift();
1524 prop_descriptor_init(&vm_completions, shift);
1da177e4
LT
1525}
1526
f446daae
JK
1527/**
1528 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1529 * @mapping: address space structure to write
1530 * @start: starting page index
1531 * @end: ending page index (inclusive)
1532 *
1533 * This function scans the page range from @start to @end (inclusive) and tags
1534 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1535 * that write_cache_pages (or whoever calls this function) will then use
1536 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1537 * used to avoid livelocking of writeback by a process steadily creating new
1538 * dirty pages in the file (thus it is important for this function to be quick
1539 * so that it can tag pages faster than a dirtying process can create them).
1540 */
1541/*
1542 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1543 */
f446daae
JK
1544void tag_pages_for_writeback(struct address_space *mapping,
1545 pgoff_t start, pgoff_t end)
1546{
3c111a07 1547#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1548 unsigned long tagged;
1549
1550 do {
1551 spin_lock_irq(&mapping->tree_lock);
1552 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1553 &start, end, WRITEBACK_TAG_BATCH,
1554 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1555 spin_unlock_irq(&mapping->tree_lock);
1556 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1557 cond_resched();
d5ed3a4a
JK
1558 /* We check 'start' to handle wrapping when end == ~0UL */
1559 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1560}
1561EXPORT_SYMBOL(tag_pages_for_writeback);
1562
811d736f 1563/**
0ea97180 1564 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1565 * @mapping: address space structure to write
1566 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1567 * @writepage: function called for each page
1568 * @data: data passed to writepage function
811d736f 1569 *
0ea97180 1570 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1571 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1572 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1573 * and msync() need to guarantee that all the data which was dirty at the time
1574 * the call was made get new I/O started against them. If wbc->sync_mode is
1575 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1576 * existing IO to complete.
f446daae
JK
1577 *
1578 * To avoid livelocks (when other process dirties new pages), we first tag
1579 * pages which should be written back with TOWRITE tag and only then start
1580 * writing them. For data-integrity sync we have to be careful so that we do
1581 * not miss some pages (e.g., because some other process has cleared TOWRITE
1582 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1583 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1584 */
0ea97180
MS
1585int write_cache_pages(struct address_space *mapping,
1586 struct writeback_control *wbc, writepage_t writepage,
1587 void *data)
811d736f 1588{
811d736f
DH
1589 int ret = 0;
1590 int done = 0;
811d736f
DH
1591 struct pagevec pvec;
1592 int nr_pages;
31a12666 1593 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1594 pgoff_t index;
1595 pgoff_t end; /* Inclusive */
bd19e012 1596 pgoff_t done_index;
31a12666 1597 int cycled;
811d736f 1598 int range_whole = 0;
f446daae 1599 int tag;
811d736f 1600
811d736f
DH
1601 pagevec_init(&pvec, 0);
1602 if (wbc->range_cyclic) {
31a12666
NP
1603 writeback_index = mapping->writeback_index; /* prev offset */
1604 index = writeback_index;
1605 if (index == 0)
1606 cycled = 1;
1607 else
1608 cycled = 0;
811d736f
DH
1609 end = -1;
1610 } else {
1611 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1612 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1613 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1614 range_whole = 1;
31a12666 1615 cycled = 1; /* ignore range_cyclic tests */
811d736f 1616 }
6e6938b6 1617 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1618 tag = PAGECACHE_TAG_TOWRITE;
1619 else
1620 tag = PAGECACHE_TAG_DIRTY;
811d736f 1621retry:
6e6938b6 1622 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1623 tag_pages_for_writeback(mapping, index, end);
bd19e012 1624 done_index = index;
5a3d5c98
NP
1625 while (!done && (index <= end)) {
1626 int i;
1627
f446daae 1628 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1629 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1630 if (nr_pages == 0)
1631 break;
811d736f 1632
811d736f
DH
1633 for (i = 0; i < nr_pages; i++) {
1634 struct page *page = pvec.pages[i];
1635
1636 /*
d5482cdf
NP
1637 * At this point, the page may be truncated or
1638 * invalidated (changing page->mapping to NULL), or
1639 * even swizzled back from swapper_space to tmpfs file
1640 * mapping. However, page->index will not change
1641 * because we have a reference on the page.
811d736f 1642 */
d5482cdf
NP
1643 if (page->index > end) {
1644 /*
1645 * can't be range_cyclic (1st pass) because
1646 * end == -1 in that case.
1647 */
1648 done = 1;
1649 break;
1650 }
1651
cf15b07c 1652 done_index = page->index;
d5482cdf 1653
811d736f
DH
1654 lock_page(page);
1655
5a3d5c98
NP
1656 /*
1657 * Page truncated or invalidated. We can freely skip it
1658 * then, even for data integrity operations: the page
1659 * has disappeared concurrently, so there could be no
1660 * real expectation of this data interity operation
1661 * even if there is now a new, dirty page at the same
1662 * pagecache address.
1663 */
811d736f 1664 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1665continue_unlock:
811d736f
DH
1666 unlock_page(page);
1667 continue;
1668 }
1669
515f4a03
NP
1670 if (!PageDirty(page)) {
1671 /* someone wrote it for us */
1672 goto continue_unlock;
1673 }
1674
1675 if (PageWriteback(page)) {
1676 if (wbc->sync_mode != WB_SYNC_NONE)
1677 wait_on_page_writeback(page);
1678 else
1679 goto continue_unlock;
1680 }
811d736f 1681
515f4a03
NP
1682 BUG_ON(PageWriteback(page));
1683 if (!clear_page_dirty_for_io(page))
5a3d5c98 1684 goto continue_unlock;
811d736f 1685
9e094383 1686 trace_wbc_writepage(wbc, mapping->backing_dev_info);
0ea97180 1687 ret = (*writepage)(page, wbc, data);
00266770
NP
1688 if (unlikely(ret)) {
1689 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1690 unlock_page(page);
1691 ret = 0;
1692 } else {
1693 /*
1694 * done_index is set past this page,
1695 * so media errors will not choke
1696 * background writeout for the entire
1697 * file. This has consequences for
1698 * range_cyclic semantics (ie. it may
1699 * not be suitable for data integrity
1700 * writeout).
1701 */
cf15b07c 1702 done_index = page->index + 1;
00266770
NP
1703 done = 1;
1704 break;
1705 }
0b564927 1706 }
00266770 1707
546a1924
DC
1708 /*
1709 * We stop writing back only if we are not doing
1710 * integrity sync. In case of integrity sync we have to
1711 * keep going until we have written all the pages
1712 * we tagged for writeback prior to entering this loop.
1713 */
1714 if (--wbc->nr_to_write <= 0 &&
1715 wbc->sync_mode == WB_SYNC_NONE) {
1716 done = 1;
1717 break;
05fe478d 1718 }
811d736f
DH
1719 }
1720 pagevec_release(&pvec);
1721 cond_resched();
1722 }
3a4c6800 1723 if (!cycled && !done) {
811d736f 1724 /*
31a12666 1725 * range_cyclic:
811d736f
DH
1726 * We hit the last page and there is more work to be done: wrap
1727 * back to the start of the file
1728 */
31a12666 1729 cycled = 1;
811d736f 1730 index = 0;
31a12666 1731 end = writeback_index - 1;
811d736f
DH
1732 goto retry;
1733 }
0b564927
DC
1734 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1735 mapping->writeback_index = done_index;
06d6cf69 1736
811d736f
DH
1737 return ret;
1738}
0ea97180
MS
1739EXPORT_SYMBOL(write_cache_pages);
1740
1741/*
1742 * Function used by generic_writepages to call the real writepage
1743 * function and set the mapping flags on error
1744 */
1745static int __writepage(struct page *page, struct writeback_control *wbc,
1746 void *data)
1747{
1748 struct address_space *mapping = data;
1749 int ret = mapping->a_ops->writepage(page, wbc);
1750 mapping_set_error(mapping, ret);
1751 return ret;
1752}
1753
1754/**
1755 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1756 * @mapping: address space structure to write
1757 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1758 *
1759 * This is a library function, which implements the writepages()
1760 * address_space_operation.
1761 */
1762int generic_writepages(struct address_space *mapping,
1763 struct writeback_control *wbc)
1764{
9b6096a6
SL
1765 struct blk_plug plug;
1766 int ret;
1767
0ea97180
MS
1768 /* deal with chardevs and other special file */
1769 if (!mapping->a_ops->writepage)
1770 return 0;
1771
9b6096a6
SL
1772 blk_start_plug(&plug);
1773 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1774 blk_finish_plug(&plug);
1775 return ret;
0ea97180 1776}
811d736f
DH
1777
1778EXPORT_SYMBOL(generic_writepages);
1779
1da177e4
LT
1780int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1781{
22905f77
AM
1782 int ret;
1783
1da177e4
LT
1784 if (wbc->nr_to_write <= 0)
1785 return 0;
1786 if (mapping->a_ops->writepages)
d08b3851 1787 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1788 else
1789 ret = generic_writepages(mapping, wbc);
22905f77 1790 return ret;
1da177e4
LT
1791}
1792
1793/**
1794 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1795 * @page: the page to write
1796 * @wait: if true, wait on writeout
1da177e4
LT
1797 *
1798 * The page must be locked by the caller and will be unlocked upon return.
1799 *
1800 * write_one_page() returns a negative error code if I/O failed.
1801 */
1802int write_one_page(struct page *page, int wait)
1803{
1804 struct address_space *mapping = page->mapping;
1805 int ret = 0;
1806 struct writeback_control wbc = {
1807 .sync_mode = WB_SYNC_ALL,
1808 .nr_to_write = 1,
1809 };
1810
1811 BUG_ON(!PageLocked(page));
1812
1813 if (wait)
1814 wait_on_page_writeback(page);
1815
1816 if (clear_page_dirty_for_io(page)) {
1817 page_cache_get(page);
1818 ret = mapping->a_ops->writepage(page, &wbc);
1819 if (ret == 0 && wait) {
1820 wait_on_page_writeback(page);
1821 if (PageError(page))
1822 ret = -EIO;
1823 }
1824 page_cache_release(page);
1825 } else {
1826 unlock_page(page);
1827 }
1828 return ret;
1829}
1830EXPORT_SYMBOL(write_one_page);
1831
76719325
KC
1832/*
1833 * For address_spaces which do not use buffers nor write back.
1834 */
1835int __set_page_dirty_no_writeback(struct page *page)
1836{
1837 if (!PageDirty(page))
c3f0da63 1838 return !TestSetPageDirty(page);
76719325
KC
1839 return 0;
1840}
1841
e3a7cca1
ES
1842/*
1843 * Helper function for set_page_dirty family.
1844 * NOTE: This relies on being atomic wrt interrupts.
1845 */
1846void account_page_dirtied(struct page *page, struct address_space *mapping)
1847{
1848 if (mapping_cap_account_dirty(mapping)) {
1849 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 1850 __inc_zone_page_state(page, NR_DIRTIED);
e3a7cca1 1851 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
c8e28ce0 1852 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
e3a7cca1 1853 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
1854 current->nr_dirtied++;
1855 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
1856 }
1857}
679ceace 1858EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 1859
f629d1c9
MR
1860/*
1861 * Helper function for set_page_writeback family.
1862 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1863 * wrt interrupts.
1864 */
1865void account_page_writeback(struct page *page)
1866{
1867 inc_zone_page_state(page, NR_WRITEBACK);
1868}
1869EXPORT_SYMBOL(account_page_writeback);
1870
1da177e4
LT
1871/*
1872 * For address_spaces which do not use buffers. Just tag the page as dirty in
1873 * its radix tree.
1874 *
1875 * This is also used when a single buffer is being dirtied: we want to set the
1876 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1877 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1878 *
1879 * Most callers have locked the page, which pins the address_space in memory.
1880 * But zap_pte_range() does not lock the page, however in that case the
1881 * mapping is pinned by the vma's ->vm_file reference.
1882 *
1883 * We take care to handle the case where the page was truncated from the
183ff22b 1884 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1885 */
1886int __set_page_dirty_nobuffers(struct page *page)
1887{
1da177e4
LT
1888 if (!TestSetPageDirty(page)) {
1889 struct address_space *mapping = page_mapping(page);
1890 struct address_space *mapping2;
1891
8c08540f
AM
1892 if (!mapping)
1893 return 1;
1894
19fd6231 1895 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1896 mapping2 = page_mapping(page);
1897 if (mapping2) { /* Race with truncate? */
1898 BUG_ON(mapping2 != mapping);
787d2214 1899 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
e3a7cca1 1900 account_page_dirtied(page, mapping);
8c08540f
AM
1901 radix_tree_tag_set(&mapping->page_tree,
1902 page_index(page), PAGECACHE_TAG_DIRTY);
1903 }
19fd6231 1904 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1905 if (mapping->host) {
1906 /* !PageAnon && !swapper_space */
1907 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1908 }
4741c9fd 1909 return 1;
1da177e4 1910 }
4741c9fd 1911 return 0;
1da177e4
LT
1912}
1913EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1914
2f800fbd
WF
1915/*
1916 * Call this whenever redirtying a page, to de-account the dirty counters
1917 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
1918 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
1919 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
1920 * control.
1921 */
1922void account_page_redirty(struct page *page)
1923{
1924 struct address_space *mapping = page->mapping;
1925 if (mapping && mapping_cap_account_dirty(mapping)) {
1926 current->nr_dirtied--;
1927 dec_zone_page_state(page, NR_DIRTIED);
1928 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1929 }
1930}
1931EXPORT_SYMBOL(account_page_redirty);
1932
1da177e4
LT
1933/*
1934 * When a writepage implementation decides that it doesn't want to write this
1935 * page for some reason, it should redirty the locked page via
1936 * redirty_page_for_writepage() and it should then unlock the page and return 0
1937 */
1938int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1939{
1940 wbc->pages_skipped++;
2f800fbd 1941 account_page_redirty(page);
1da177e4
LT
1942 return __set_page_dirty_nobuffers(page);
1943}
1944EXPORT_SYMBOL(redirty_page_for_writepage);
1945
1946/*
6746aff7
WF
1947 * Dirty a page.
1948 *
1949 * For pages with a mapping this should be done under the page lock
1950 * for the benefit of asynchronous memory errors who prefer a consistent
1951 * dirty state. This rule can be broken in some special cases,
1952 * but should be better not to.
1953 *
1da177e4
LT
1954 * If the mapping doesn't provide a set_page_dirty a_op, then
1955 * just fall through and assume that it wants buffer_heads.
1956 */
1cf6e7d8 1957int set_page_dirty(struct page *page)
1da177e4
LT
1958{
1959 struct address_space *mapping = page_mapping(page);
1960
1961 if (likely(mapping)) {
1962 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
1963 /*
1964 * readahead/lru_deactivate_page could remain
1965 * PG_readahead/PG_reclaim due to race with end_page_writeback
1966 * About readahead, if the page is written, the flags would be
1967 * reset. So no problem.
1968 * About lru_deactivate_page, if the page is redirty, the flag
1969 * will be reset. So no problem. but if the page is used by readahead
1970 * it will confuse readahead and make it restart the size rampup
1971 * process. But it's a trivial problem.
1972 */
1973 ClearPageReclaim(page);
9361401e
DH
1974#ifdef CONFIG_BLOCK
1975 if (!spd)
1976 spd = __set_page_dirty_buffers;
1977#endif
1978 return (*spd)(page);
1da177e4 1979 }
4741c9fd
AM
1980 if (!PageDirty(page)) {
1981 if (!TestSetPageDirty(page))
1982 return 1;
1983 }
1da177e4
LT
1984 return 0;
1985}
1986EXPORT_SYMBOL(set_page_dirty);
1987
1988/*
1989 * set_page_dirty() is racy if the caller has no reference against
1990 * page->mapping->host, and if the page is unlocked. This is because another
1991 * CPU could truncate the page off the mapping and then free the mapping.
1992 *
1993 * Usually, the page _is_ locked, or the caller is a user-space process which
1994 * holds a reference on the inode by having an open file.
1995 *
1996 * In other cases, the page should be locked before running set_page_dirty().
1997 */
1998int set_page_dirty_lock(struct page *page)
1999{
2000 int ret;
2001
7eaceacc 2002 lock_page(page);
1da177e4
LT
2003 ret = set_page_dirty(page);
2004 unlock_page(page);
2005 return ret;
2006}
2007EXPORT_SYMBOL(set_page_dirty_lock);
2008
1da177e4
LT
2009/*
2010 * Clear a page's dirty flag, while caring for dirty memory accounting.
2011 * Returns true if the page was previously dirty.
2012 *
2013 * This is for preparing to put the page under writeout. We leave the page
2014 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2015 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2016 * implementation will run either set_page_writeback() or set_page_dirty(),
2017 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2018 * back into sync.
2019 *
2020 * This incoherency between the page's dirty flag and radix-tree tag is
2021 * unfortunate, but it only exists while the page is locked.
2022 */
2023int clear_page_dirty_for_io(struct page *page)
2024{
2025 struct address_space *mapping = page_mapping(page);
2026
79352894
NP
2027 BUG_ON(!PageLocked(page));
2028
7658cc28
LT
2029 if (mapping && mapping_cap_account_dirty(mapping)) {
2030 /*
2031 * Yes, Virginia, this is indeed insane.
2032 *
2033 * We use this sequence to make sure that
2034 * (a) we account for dirty stats properly
2035 * (b) we tell the low-level filesystem to
2036 * mark the whole page dirty if it was
2037 * dirty in a pagetable. Only to then
2038 * (c) clean the page again and return 1 to
2039 * cause the writeback.
2040 *
2041 * This way we avoid all nasty races with the
2042 * dirty bit in multiple places and clearing
2043 * them concurrently from different threads.
2044 *
2045 * Note! Normally the "set_page_dirty(page)"
2046 * has no effect on the actual dirty bit - since
2047 * that will already usually be set. But we
2048 * need the side effects, and it can help us
2049 * avoid races.
2050 *
2051 * We basically use the page "master dirty bit"
2052 * as a serialization point for all the different
2053 * threads doing their things.
7658cc28
LT
2054 */
2055 if (page_mkclean(page))
2056 set_page_dirty(page);
79352894
NP
2057 /*
2058 * We carefully synchronise fault handlers against
2059 * installing a dirty pte and marking the page dirty
2060 * at this point. We do this by having them hold the
2061 * page lock at some point after installing their
2062 * pte, but before marking the page dirty.
2063 * Pages are always locked coming in here, so we get
2064 * the desired exclusion. See mm/memory.c:do_wp_page()
2065 * for more comments.
2066 */
7658cc28 2067 if (TestClearPageDirty(page)) {
8c08540f 2068 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
2069 dec_bdi_stat(mapping->backing_dev_info,
2070 BDI_RECLAIMABLE);
7658cc28 2071 return 1;
1da177e4 2072 }
7658cc28 2073 return 0;
1da177e4 2074 }
7658cc28 2075 return TestClearPageDirty(page);
1da177e4 2076}
58bb01a9 2077EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2078
2079int test_clear_page_writeback(struct page *page)
2080{
2081 struct address_space *mapping = page_mapping(page);
2082 int ret;
2083
2084 if (mapping) {
69cb51d1 2085 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
2086 unsigned long flags;
2087
19fd6231 2088 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2089 ret = TestClearPageWriteback(page);
69cb51d1 2090 if (ret) {
1da177e4
LT
2091 radix_tree_tag_clear(&mapping->page_tree,
2092 page_index(page),
2093 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2094 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 2095 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
2096 __bdi_writeout_inc(bdi);
2097 }
69cb51d1 2098 }
19fd6231 2099 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2100 } else {
2101 ret = TestClearPageWriteback(page);
2102 }
99b12e3d 2103 if (ret) {
d688abf5 2104 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2105 inc_zone_page_state(page, NR_WRITTEN);
2106 }
1da177e4
LT
2107 return ret;
2108}
2109
2110int test_set_page_writeback(struct page *page)
2111{
2112 struct address_space *mapping = page_mapping(page);
2113 int ret;
2114
2115 if (mapping) {
69cb51d1 2116 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
2117 unsigned long flags;
2118
19fd6231 2119 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2120 ret = TestSetPageWriteback(page);
69cb51d1 2121 if (!ret) {
1da177e4
LT
2122 radix_tree_tag_set(&mapping->page_tree,
2123 page_index(page),
2124 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2125 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
2126 __inc_bdi_stat(bdi, BDI_WRITEBACK);
2127 }
1da177e4
LT
2128 if (!PageDirty(page))
2129 radix_tree_tag_clear(&mapping->page_tree,
2130 page_index(page),
2131 PAGECACHE_TAG_DIRTY);
f446daae
JK
2132 radix_tree_tag_clear(&mapping->page_tree,
2133 page_index(page),
2134 PAGECACHE_TAG_TOWRITE);
19fd6231 2135 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2136 } else {
2137 ret = TestSetPageWriteback(page);
2138 }
d688abf5 2139 if (!ret)
f629d1c9 2140 account_page_writeback(page);
1da177e4
LT
2141 return ret;
2142
2143}
2144EXPORT_SYMBOL(test_set_page_writeback);
2145
2146/*
00128188 2147 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2148 * passed tag.
2149 */
2150int mapping_tagged(struct address_space *mapping, int tag)
2151{
72c47832 2152 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2153}
2154EXPORT_SYMBOL(mapping_tagged);