mm: write_cache_pages cyclic fix
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
cf9a2ae8 35#include <linux/buffer_head.h>
811d736f 36#include <linux/pagevec.h>
1da177e4
LT
37
38/*
39 * The maximum number of pages to writeout in a single bdflush/kupdate
1c0eeaf5 40 * operation. We do this so we don't hold I_SYNC against an inode for
1da177e4
LT
41 * enormous amounts of time, which would block a userspace task which has
42 * been forced to throttle against that inode. Also, the code reevaluates
43 * the dirty each time it has written this many pages.
44 */
45#define MAX_WRITEBACK_PAGES 1024
46
47/*
48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49 * will look to see if it needs to force writeback or throttling.
50 */
51static long ratelimit_pages = 32;
52
1da177e4
LT
53/*
54 * When balance_dirty_pages decides that the caller needs to perform some
55 * non-background writeback, this is how many pages it will attempt to write.
56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57 * large amounts of I/O are submitted.
58 */
59static inline long sync_writeback_pages(void)
60{
61 return ratelimit_pages + ratelimit_pages / 2;
62}
63
64/* The following parameters are exported via /proc/sys/vm */
65
66/*
67 * Start background writeback (via pdflush) at this percentage
68 */
07db59bd 69int dirty_background_ratio = 5;
1da177e4 70
195cf453
BG
71/*
72 * free highmem will not be subtracted from the total free memory
73 * for calculating free ratios if vm_highmem_is_dirtyable is true
74 */
75int vm_highmem_is_dirtyable;
76
1da177e4
LT
77/*
78 * The generator of dirty data starts writeback at this percentage
79 */
07db59bd 80int vm_dirty_ratio = 10;
1da177e4
LT
81
82/*
fd5403c7 83 * The interval between `kupdate'-style writebacks, in jiffies
1da177e4 84 */
f6ef9438 85int dirty_writeback_interval = 5 * HZ;
1da177e4
LT
86
87/*
fd5403c7 88 * The longest number of jiffies for which data is allowed to remain dirty
1da177e4 89 */
f6ef9438 90int dirty_expire_interval = 30 * HZ;
1da177e4
LT
91
92/*
93 * Flag that makes the machine dump writes/reads and block dirtyings.
94 */
95int block_dump;
96
97/*
ed5b43f1
BS
98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
100 */
101int laptop_mode;
102
103EXPORT_SYMBOL(laptop_mode);
104
105/* End of sysctl-exported parameters */
106
107
108static void background_writeout(unsigned long _min_pages);
109
04fbfdc1
PZ
110/*
111 * Scale the writeback cache size proportional to the relative writeout speeds.
112 *
113 * We do this by keeping a floating proportion between BDIs, based on page
114 * writeback completions [end_page_writeback()]. Those devices that write out
115 * pages fastest will get the larger share, while the slower will get a smaller
116 * share.
117 *
118 * We use page writeout completions because we are interested in getting rid of
119 * dirty pages. Having them written out is the primary goal.
120 *
121 * We introduce a concept of time, a period over which we measure these events,
122 * because demand can/will vary over time. The length of this period itself is
123 * measured in page writeback completions.
124 *
125 */
126static struct prop_descriptor vm_completions;
3e26c149 127static struct prop_descriptor vm_dirties;
04fbfdc1 128
04fbfdc1
PZ
129/*
130 * couple the period to the dirty_ratio:
131 *
132 * period/2 ~ roundup_pow_of_two(dirty limit)
133 */
134static int calc_period_shift(void)
135{
136 unsigned long dirty_total;
137
138 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139 return 2 + ilog2(dirty_total - 1);
140}
141
142/*
143 * update the period when the dirty ratio changes.
144 */
145int dirty_ratio_handler(struct ctl_table *table, int write,
146 struct file *filp, void __user *buffer, size_t *lenp,
147 loff_t *ppos)
148{
149 int old_ratio = vm_dirty_ratio;
150 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152 int shift = calc_period_shift();
153 prop_change_shift(&vm_completions, shift);
3e26c149 154 prop_change_shift(&vm_dirties, shift);
04fbfdc1
PZ
155 }
156 return ret;
157}
158
159/*
160 * Increment the BDI's writeout completion count and the global writeout
161 * completion count. Called from test_clear_page_writeback().
162 */
163static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164{
a42dde04
PZ
165 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
166 bdi->max_prop_frac);
04fbfdc1
PZ
167}
168
dd5656e5
MS
169void bdi_writeout_inc(struct backing_dev_info *bdi)
170{
171 unsigned long flags;
172
173 local_irq_save(flags);
174 __bdi_writeout_inc(bdi);
175 local_irq_restore(flags);
176}
177EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178
3e26c149
PZ
179static inline void task_dirty_inc(struct task_struct *tsk)
180{
181 prop_inc_single(&vm_dirties, &tsk->dirties);
182}
183
04fbfdc1
PZ
184/*
185 * Obtain an accurate fraction of the BDI's portion.
186 */
187static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188 long *numerator, long *denominator)
189{
190 if (bdi_cap_writeback_dirty(bdi)) {
191 prop_fraction_percpu(&vm_completions, &bdi->completions,
192 numerator, denominator);
193 } else {
194 *numerator = 0;
195 *denominator = 1;
196 }
197}
198
199/*
200 * Clip the earned share of dirty pages to that which is actually available.
201 * This avoids exceeding the total dirty_limit when the floating averages
202 * fluctuate too quickly.
203 */
204static void
205clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206{
207 long avail_dirty;
208
209 avail_dirty = dirty -
210 (global_page_state(NR_FILE_DIRTY) +
211 global_page_state(NR_WRITEBACK) +
fc3ba692
MS
212 global_page_state(NR_UNSTABLE_NFS) +
213 global_page_state(NR_WRITEBACK_TEMP));
04fbfdc1
PZ
214
215 if (avail_dirty < 0)
216 avail_dirty = 0;
217
218 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219 bdi_stat(bdi, BDI_WRITEBACK);
220
221 *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222}
223
3e26c149
PZ
224static inline void task_dirties_fraction(struct task_struct *tsk,
225 long *numerator, long *denominator)
226{
227 prop_fraction_single(&vm_dirties, &tsk->dirties,
228 numerator, denominator);
229}
230
231/*
232 * scale the dirty limit
233 *
234 * task specific dirty limit:
235 *
236 * dirty -= (dirty/8) * p_{t}
237 */
f61eaf9f 238static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
3e26c149
PZ
239{
240 long numerator, denominator;
241 long dirty = *pdirty;
242 u64 inv = dirty >> 3;
243
244 task_dirties_fraction(tsk, &numerator, &denominator);
245 inv *= numerator;
246 do_div(inv, denominator);
247
248 dirty -= inv;
249 if (dirty < *pdirty/2)
250 dirty = *pdirty/2;
251
252 *pdirty = dirty;
253}
254
189d3c4a
PZ
255/*
256 *
257 */
258static DEFINE_SPINLOCK(bdi_lock);
259static unsigned int bdi_min_ratio;
260
261int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262{
263 int ret = 0;
264 unsigned long flags;
265
266 spin_lock_irqsave(&bdi_lock, flags);
a42dde04 267 if (min_ratio > bdi->max_ratio) {
189d3c4a 268 ret = -EINVAL;
a42dde04
PZ
269 } else {
270 min_ratio -= bdi->min_ratio;
271 if (bdi_min_ratio + min_ratio < 100) {
272 bdi_min_ratio += min_ratio;
273 bdi->min_ratio += min_ratio;
274 } else {
275 ret = -EINVAL;
276 }
277 }
278 spin_unlock_irqrestore(&bdi_lock, flags);
279
280 return ret;
281}
282
283int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284{
285 unsigned long flags;
286 int ret = 0;
287
288 if (max_ratio > 100)
289 return -EINVAL;
290
291 spin_lock_irqsave(&bdi_lock, flags);
292 if (bdi->min_ratio > max_ratio) {
293 ret = -EINVAL;
294 } else {
295 bdi->max_ratio = max_ratio;
296 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297 }
189d3c4a
PZ
298 spin_unlock_irqrestore(&bdi_lock, flags);
299
300 return ret;
301}
a42dde04 302EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 303
1da177e4
LT
304/*
305 * Work out the current dirty-memory clamping and background writeout
306 * thresholds.
307 *
308 * The main aim here is to lower them aggressively if there is a lot of mapped
309 * memory around. To avoid stressing page reclaim with lots of unreclaimable
310 * pages. It is better to clamp down on writers than to start swapping, and
311 * performing lots of scanning.
312 *
313 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314 *
315 * We don't permit the clamping level to fall below 5% - that is getting rather
316 * excessive.
317 *
318 * We make sure that the background writeout level is below the adjusted
319 * clamping level.
320 */
1b424464
CL
321
322static unsigned long highmem_dirtyable_memory(unsigned long total)
323{
324#ifdef CONFIG_HIGHMEM
325 int node;
326 unsigned long x = 0;
327
37b07e41 328 for_each_node_state(node, N_HIGH_MEMORY) {
1b424464
CL
329 struct zone *z =
330 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331
4f98a2fe 332 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
1b424464
CL
333 }
334 /*
335 * Make sure that the number of highmem pages is never larger
336 * than the number of the total dirtyable memory. This can only
337 * occur in very strange VM situations but we want to make sure
338 * that this does not occur.
339 */
340 return min(x, total);
341#else
342 return 0;
343#endif
344}
345
3eefae99
SR
346/**
347 * determine_dirtyable_memory - amount of memory that may be used
348 *
349 * Returns the numebr of pages that can currently be freed and used
350 * by the kernel for direct mappings.
351 */
352unsigned long determine_dirtyable_memory(void)
1b424464
CL
353{
354 unsigned long x;
355
4f98a2fe 356 x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
195cf453
BG
357
358 if (!vm_highmem_is_dirtyable)
359 x -= highmem_dirtyable_memory(x);
360
1b424464
CL
361 return x + 1; /* Ensure that we never return 0 */
362}
363
cf0ca9fe 364void
04fbfdc1
PZ
365get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
366 struct backing_dev_info *bdi)
1da177e4
LT
367{
368 int background_ratio; /* Percentages */
369 int dirty_ratio;
1da177e4
LT
370 long background;
371 long dirty;
1b424464 372 unsigned long available_memory = determine_dirtyable_memory();
1da177e4
LT
373 struct task_struct *tsk;
374
1da177e4 375 dirty_ratio = vm_dirty_ratio;
1da177e4
LT
376 if (dirty_ratio < 5)
377 dirty_ratio = 5;
378
379 background_ratio = dirty_background_ratio;
380 if (background_ratio >= dirty_ratio)
381 background_ratio = dirty_ratio / 2;
382
383 background = (background_ratio * available_memory) / 100;
384 dirty = (dirty_ratio * available_memory) / 100;
385 tsk = current;
386 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
387 background += background / 4;
388 dirty += dirty / 4;
389 }
390 *pbackground = background;
391 *pdirty = dirty;
04fbfdc1
PZ
392
393 if (bdi) {
189d3c4a 394 u64 bdi_dirty;
04fbfdc1
PZ
395 long numerator, denominator;
396
397 /*
398 * Calculate this BDI's share of the dirty ratio.
399 */
400 bdi_writeout_fraction(bdi, &numerator, &denominator);
401
189d3c4a 402 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
04fbfdc1
PZ
403 bdi_dirty *= numerator;
404 do_div(bdi_dirty, denominator);
189d3c4a 405 bdi_dirty += (dirty * bdi->min_ratio) / 100;
a42dde04
PZ
406 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
407 bdi_dirty = dirty * bdi->max_ratio / 100;
04fbfdc1
PZ
408
409 *pbdi_dirty = bdi_dirty;
410 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
3e26c149 411 task_dirty_limit(current, pbdi_dirty);
04fbfdc1 412 }
1da177e4
LT
413}
414
415/*
416 * balance_dirty_pages() must be called by processes which are generating dirty
417 * data. It looks at the number of dirty pages in the machine and will force
418 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
419 * If we're over `background_thresh' then pdflush is woken to perform some
420 * writeout.
421 */
422static void balance_dirty_pages(struct address_space *mapping)
423{
5fce25a9
PZ
424 long nr_reclaimable, bdi_nr_reclaimable;
425 long nr_writeback, bdi_nr_writeback;
1da177e4
LT
426 long background_thresh;
427 long dirty_thresh;
04fbfdc1 428 long bdi_thresh;
1da177e4
LT
429 unsigned long pages_written = 0;
430 unsigned long write_chunk = sync_writeback_pages();
431
432 struct backing_dev_info *bdi = mapping->backing_dev_info;
433
434 for (;;) {
435 struct writeback_control wbc = {
436 .bdi = bdi,
437 .sync_mode = WB_SYNC_NONE,
438 .older_than_this = NULL,
439 .nr_to_write = write_chunk,
111ebb6e 440 .range_cyclic = 1,
1da177e4
LT
441 };
442
04fbfdc1
PZ
443 get_dirty_limits(&background_thresh, &dirty_thresh,
444 &bdi_thresh, bdi);
5fce25a9
PZ
445
446 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
447 global_page_state(NR_UNSTABLE_NFS);
448 nr_writeback = global_page_state(NR_WRITEBACK);
449
04fbfdc1
PZ
450 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
451 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
5fce25a9 452
04fbfdc1
PZ
453 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
454 break;
1da177e4 455
5fce25a9
PZ
456 /*
457 * Throttle it only when the background writeback cannot
458 * catch-up. This avoids (excessively) small writeouts
459 * when the bdi limits are ramping up.
460 */
461 if (nr_reclaimable + nr_writeback <
462 (background_thresh + dirty_thresh) / 2)
463 break;
464
04fbfdc1
PZ
465 if (!bdi->dirty_exceeded)
466 bdi->dirty_exceeded = 1;
1da177e4
LT
467
468 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
469 * Unstable writes are a feature of certain networked
470 * filesystems (i.e. NFS) in which data may have been
471 * written to the server's write cache, but has not yet
472 * been flushed to permanent storage.
473 */
04fbfdc1 474 if (bdi_nr_reclaimable) {
1da177e4 475 writeback_inodes(&wbc);
1da177e4 476 pages_written += write_chunk - wbc.nr_to_write;
04fbfdc1
PZ
477 get_dirty_limits(&background_thresh, &dirty_thresh,
478 &bdi_thresh, bdi);
479 }
480
481 /*
482 * In order to avoid the stacked BDI deadlock we need
483 * to ensure we accurately count the 'dirty' pages when
484 * the threshold is low.
485 *
486 * Otherwise it would be possible to get thresh+n pages
487 * reported dirty, even though there are thresh-m pages
488 * actually dirty; with m+n sitting in the percpu
489 * deltas.
490 */
491 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
492 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
493 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
494 } else if (bdi_nr_reclaimable) {
495 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
496 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
1da177e4 497 }
04fbfdc1
PZ
498
499 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
500 break;
501 if (pages_written >= write_chunk)
502 break; /* We've done our duty */
503
3fcfab16 504 congestion_wait(WRITE, HZ/10);
1da177e4
LT
505 }
506
04fbfdc1
PZ
507 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
508 bdi->dirty_exceeded)
509 bdi->dirty_exceeded = 0;
1da177e4
LT
510
511 if (writeback_in_progress(bdi))
512 return; /* pdflush is already working this queue */
513
514 /*
515 * In laptop mode, we wait until hitting the higher threshold before
516 * starting background writeout, and then write out all the way down
517 * to the lower threshold. So slow writers cause minimal disk activity.
518 *
519 * In normal mode, we start background writeout at the lower
520 * background_thresh, to keep the amount of dirty memory low.
521 */
522 if ((laptop_mode && pages_written) ||
04fbfdc1
PZ
523 (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
524 + global_page_state(NR_UNSTABLE_NFS)
525 > background_thresh)))
1da177e4
LT
526 pdflush_operation(background_writeout, 0);
527}
528
a200ee18 529void set_page_dirty_balance(struct page *page, int page_mkwrite)
edc79b2a 530{
a200ee18 531 if (set_page_dirty(page) || page_mkwrite) {
edc79b2a
PZ
532 struct address_space *mapping = page_mapping(page);
533
534 if (mapping)
535 balance_dirty_pages_ratelimited(mapping);
536 }
537}
538
1da177e4 539/**
fa5a734e 540 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
67be2dd1 541 * @mapping: address_space which was dirtied
a580290c 542 * @nr_pages_dirtied: number of pages which the caller has just dirtied
1da177e4
LT
543 *
544 * Processes which are dirtying memory should call in here once for each page
545 * which was newly dirtied. The function will periodically check the system's
546 * dirty state and will initiate writeback if needed.
547 *
548 * On really big machines, get_writeback_state is expensive, so try to avoid
549 * calling it too often (ratelimiting). But once we're over the dirty memory
550 * limit we decrease the ratelimiting by a lot, to prevent individual processes
551 * from overshooting the limit by (ratelimit_pages) each.
552 */
fa5a734e
AM
553void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
554 unsigned long nr_pages_dirtied)
1da177e4 555{
fa5a734e
AM
556 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
557 unsigned long ratelimit;
558 unsigned long *p;
1da177e4
LT
559
560 ratelimit = ratelimit_pages;
04fbfdc1 561 if (mapping->backing_dev_info->dirty_exceeded)
1da177e4
LT
562 ratelimit = 8;
563
564 /*
565 * Check the rate limiting. Also, we do not want to throttle real-time
566 * tasks in balance_dirty_pages(). Period.
567 */
fa5a734e
AM
568 preempt_disable();
569 p = &__get_cpu_var(ratelimits);
570 *p += nr_pages_dirtied;
571 if (unlikely(*p >= ratelimit)) {
572 *p = 0;
573 preempt_enable();
1da177e4
LT
574 balance_dirty_pages(mapping);
575 return;
576 }
fa5a734e 577 preempt_enable();
1da177e4 578}
fa5a734e 579EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1da177e4 580
232ea4d6 581void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 582{
1da177e4
LT
583 long background_thresh;
584 long dirty_thresh;
585
586 for ( ; ; ) {
04fbfdc1 587 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
1da177e4
LT
588
589 /*
590 * Boost the allowable dirty threshold a bit for page
591 * allocators so they don't get DoS'ed by heavy writers
592 */
593 dirty_thresh += dirty_thresh / 10; /* wheeee... */
594
c24f21bd
CL
595 if (global_page_state(NR_UNSTABLE_NFS) +
596 global_page_state(NR_WRITEBACK) <= dirty_thresh)
597 break;
3fcfab16 598 congestion_wait(WRITE, HZ/10);
369f2389
FW
599
600 /*
601 * The caller might hold locks which can prevent IO completion
602 * or progress in the filesystem. So we cannot just sit here
603 * waiting for IO to complete.
604 */
605 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
606 break;
1da177e4
LT
607 }
608}
609
1da177e4
LT
610/*
611 * writeback at least _min_pages, and keep writing until the amount of dirty
612 * memory is less than the background threshold, or until we're all clean.
613 */
614static void background_writeout(unsigned long _min_pages)
615{
616 long min_pages = _min_pages;
617 struct writeback_control wbc = {
618 .bdi = NULL,
619 .sync_mode = WB_SYNC_NONE,
620 .older_than_this = NULL,
621 .nr_to_write = 0,
622 .nonblocking = 1,
111ebb6e 623 .range_cyclic = 1,
1da177e4
LT
624 };
625
626 for ( ; ; ) {
1da177e4
LT
627 long background_thresh;
628 long dirty_thresh;
629
04fbfdc1 630 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
c24f21bd
CL
631 if (global_page_state(NR_FILE_DIRTY) +
632 global_page_state(NR_UNSTABLE_NFS) < background_thresh
1da177e4
LT
633 && min_pages <= 0)
634 break;
8bc3be27 635 wbc.more_io = 0;
1da177e4
LT
636 wbc.encountered_congestion = 0;
637 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
638 wbc.pages_skipped = 0;
639 writeback_inodes(&wbc);
640 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
641 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
642 /* Wrote less than expected */
8bc3be27
FW
643 if (wbc.encountered_congestion || wbc.more_io)
644 congestion_wait(WRITE, HZ/10);
645 else
1da177e4
LT
646 break;
647 }
648 }
649}
650
651/*
652 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
653 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
654 * -1 if all pdflush threads were busy.
655 */
687a21ce 656int wakeup_pdflush(long nr_pages)
1da177e4 657{
c24f21bd
CL
658 if (nr_pages == 0)
659 nr_pages = global_page_state(NR_FILE_DIRTY) +
660 global_page_state(NR_UNSTABLE_NFS);
1da177e4
LT
661 return pdflush_operation(background_writeout, nr_pages);
662}
663
664static void wb_timer_fn(unsigned long unused);
665static void laptop_timer_fn(unsigned long unused);
666
8d06afab
IM
667static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
668static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
1da177e4
LT
669
670/*
671 * Periodic writeback of "old" data.
672 *
673 * Define "old": the first time one of an inode's pages is dirtied, we mark the
674 * dirtying-time in the inode's address_space. So this periodic writeback code
675 * just walks the superblock inode list, writing back any inodes which are
676 * older than a specific point in time.
677 *
f6ef9438
BS
678 * Try to run once per dirty_writeback_interval. But if a writeback event
679 * takes longer than a dirty_writeback_interval interval, then leave a
1da177e4
LT
680 * one-second gap.
681 *
682 * older_than_this takes precedence over nr_to_write. So we'll only write back
683 * all dirty pages if they are all attached to "old" mappings.
684 */
685static void wb_kupdate(unsigned long arg)
686{
687 unsigned long oldest_jif;
688 unsigned long start_jif;
689 unsigned long next_jif;
690 long nr_to_write;
1da177e4
LT
691 struct writeback_control wbc = {
692 .bdi = NULL,
693 .sync_mode = WB_SYNC_NONE,
694 .older_than_this = &oldest_jif,
695 .nr_to_write = 0,
696 .nonblocking = 1,
697 .for_kupdate = 1,
111ebb6e 698 .range_cyclic = 1,
1da177e4
LT
699 };
700
701 sync_supers();
702
f6ef9438 703 oldest_jif = jiffies - dirty_expire_interval;
1da177e4 704 start_jif = jiffies;
f6ef9438 705 next_jif = start_jif + dirty_writeback_interval;
c24f21bd
CL
706 nr_to_write = global_page_state(NR_FILE_DIRTY) +
707 global_page_state(NR_UNSTABLE_NFS) +
1da177e4
LT
708 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
709 while (nr_to_write > 0) {
8bc3be27 710 wbc.more_io = 0;
1da177e4
LT
711 wbc.encountered_congestion = 0;
712 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
713 writeback_inodes(&wbc);
714 if (wbc.nr_to_write > 0) {
8bc3be27 715 if (wbc.encountered_congestion || wbc.more_io)
3fcfab16 716 congestion_wait(WRITE, HZ/10);
1da177e4
LT
717 else
718 break; /* All the old data is written */
719 }
720 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
721 }
722 if (time_before(next_jif, jiffies + HZ))
723 next_jif = jiffies + HZ;
f6ef9438 724 if (dirty_writeback_interval)
1da177e4
LT
725 mod_timer(&wb_timer, next_jif);
726}
727
728/*
729 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
730 */
731int dirty_writeback_centisecs_handler(ctl_table *table, int write,
3e733f07 732 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 733{
f6ef9438 734 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
3e733f07
AM
735 if (dirty_writeback_interval)
736 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
737 else
1da177e4 738 del_timer(&wb_timer);
1da177e4
LT
739 return 0;
740}
741
742static void wb_timer_fn(unsigned long unused)
743{
744 if (pdflush_operation(wb_kupdate, 0) < 0)
745 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
746}
747
748static void laptop_flush(unsigned long unused)
749{
750 sys_sync();
751}
752
753static void laptop_timer_fn(unsigned long unused)
754{
755 pdflush_operation(laptop_flush, 0);
756}
757
758/*
759 * We've spun up the disk and we're in laptop mode: schedule writeback
760 * of all dirty data a few seconds from now. If the flush is already scheduled
761 * then push it back - the user is still using the disk.
762 */
763void laptop_io_completion(void)
764{
ed5b43f1 765 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
766}
767
768/*
769 * We're in laptop mode and we've just synced. The sync's writes will have
770 * caused another writeback to be scheduled by laptop_io_completion.
771 * Nothing needs to be written back anymore, so we unschedule the writeback.
772 */
773void laptop_sync_completion(void)
774{
775 del_timer(&laptop_mode_wb_timer);
776}
777
778/*
779 * If ratelimit_pages is too high then we can get into dirty-data overload
780 * if a large number of processes all perform writes at the same time.
781 * If it is too low then SMP machines will call the (expensive)
782 * get_writeback_state too often.
783 *
784 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
785 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
786 * thresholds before writeback cuts in.
787 *
788 * But the limit should not be set too high. Because it also controls the
789 * amount of memory which the balance_dirty_pages() caller has to write back.
790 * If this is too large then the caller will block on the IO queue all the
791 * time. So limit it to four megabytes - the balance_dirty_pages() caller
792 * will write six megabyte chunks, max.
793 */
794
2d1d43f6 795void writeback_set_ratelimit(void)
1da177e4 796{
40c99aae 797 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1da177e4
LT
798 if (ratelimit_pages < 16)
799 ratelimit_pages = 16;
800 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
801 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
802}
803
26c2143b 804static int __cpuinit
1da177e4
LT
805ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
806{
2d1d43f6 807 writeback_set_ratelimit();
aa0f0303 808 return NOTIFY_DONE;
1da177e4
LT
809}
810
74b85f37 811static struct notifier_block __cpuinitdata ratelimit_nb = {
1da177e4
LT
812 .notifier_call = ratelimit_handler,
813 .next = NULL,
814};
815
816/*
dc6e29da
LT
817 * Called early on to tune the page writeback dirty limits.
818 *
819 * We used to scale dirty pages according to how total memory
820 * related to pages that could be allocated for buffers (by
821 * comparing nr_free_buffer_pages() to vm_total_pages.
822 *
823 * However, that was when we used "dirty_ratio" to scale with
824 * all memory, and we don't do that any more. "dirty_ratio"
825 * is now applied to total non-HIGHPAGE memory (by subtracting
826 * totalhigh_pages from vm_total_pages), and as such we can't
827 * get into the old insane situation any more where we had
828 * large amounts of dirty pages compared to a small amount of
829 * non-HIGHMEM memory.
830 *
831 * But we might still want to scale the dirty_ratio by how
832 * much memory the box has..
1da177e4
LT
833 */
834void __init page_writeback_init(void)
835{
04fbfdc1
PZ
836 int shift;
837
f6ef9438 838 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
2d1d43f6 839 writeback_set_ratelimit();
1da177e4 840 register_cpu_notifier(&ratelimit_nb);
04fbfdc1
PZ
841
842 shift = calc_period_shift();
843 prop_descriptor_init(&vm_completions, shift);
3e26c149 844 prop_descriptor_init(&vm_dirties, shift);
1da177e4
LT
845}
846
811d736f 847/**
0ea97180 848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
849 * @mapping: address space structure to write
850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
851 * @writepage: function called for each page
852 * @data: data passed to writepage function
811d736f 853 *
0ea97180 854 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
857 * and msync() need to guarantee that all the data which was dirty at the time
858 * the call was made get new I/O started against them. If wbc->sync_mode is
859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
860 * existing IO to complete.
811d736f 861 */
0ea97180
MS
862int write_cache_pages(struct address_space *mapping,
863 struct writeback_control *wbc, writepage_t writepage,
864 void *data)
811d736f
DH
865{
866 struct backing_dev_info *bdi = mapping->backing_dev_info;
867 int ret = 0;
868 int done = 0;
811d736f
DH
869 struct pagevec pvec;
870 int nr_pages;
31a12666 871 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
872 pgoff_t index;
873 pgoff_t end; /* Inclusive */
31a12666 874 int cycled;
811d736f 875 int range_whole = 0;
17bc6c30 876 long nr_to_write = wbc->nr_to_write;
811d736f
DH
877
878 if (wbc->nonblocking && bdi_write_congested(bdi)) {
879 wbc->encountered_congestion = 1;
880 return 0;
881 }
882
811d736f
DH
883 pagevec_init(&pvec, 0);
884 if (wbc->range_cyclic) {
31a12666
NP
885 writeback_index = mapping->writeback_index; /* prev offset */
886 index = writeback_index;
887 if (index == 0)
888 cycled = 1;
889 else
890 cycled = 0;
811d736f
DH
891 end = -1;
892 } else {
893 index = wbc->range_start >> PAGE_CACHE_SHIFT;
894 end = wbc->range_end >> PAGE_CACHE_SHIFT;
895 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
896 range_whole = 1;
31a12666 897 cycled = 1; /* ignore range_cyclic tests */
811d736f
DH
898 }
899retry:
900 while (!done && (index <= end) &&
901 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
902 PAGECACHE_TAG_DIRTY,
903 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
904 unsigned i;
905
811d736f
DH
906 for (i = 0; i < nr_pages; i++) {
907 struct page *page = pvec.pages[i];
908
909 /*
910 * At this point we hold neither mapping->tree_lock nor
911 * lock on the page itself: the page may be truncated or
912 * invalidated (changing page->mapping to NULL), or even
913 * swizzled back from swapper_space to tmpfs file
914 * mapping
915 */
916 lock_page(page);
917
918 if (unlikely(page->mapping != mapping)) {
919 unlock_page(page);
920 continue;
921 }
922
31a12666
NP
923 if (page->index > end) {
924 /*
925 * can't be range_cyclic (1st pass) because
926 * end == -1 in that case.
927 */
811d736f
DH
928 done = 1;
929 unlock_page(page);
930 continue;
931 }
932
933 if (wbc->sync_mode != WB_SYNC_NONE)
934 wait_on_page_writeback(page);
935
936 if (PageWriteback(page) ||
937 !clear_page_dirty_for_io(page)) {
938 unlock_page(page);
939 continue;
940 }
941
0ea97180 942 ret = (*writepage)(page, wbc, data);
811d736f 943
e4230030 944 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
811d736f 945 unlock_page(page);
e4230030
AM
946 ret = 0;
947 }
17bc6c30 948 if (ret || (--nr_to_write <= 0))
811d736f
DH
949 done = 1;
950 if (wbc->nonblocking && bdi_write_congested(bdi)) {
951 wbc->encountered_congestion = 1;
952 done = 1;
953 }
954 }
955 pagevec_release(&pvec);
956 cond_resched();
957 }
31a12666 958 if (!cycled) {
811d736f 959 /*
31a12666 960 * range_cyclic:
811d736f
DH
961 * We hit the last page and there is more work to be done: wrap
962 * back to the start of the file
963 */
31a12666 964 cycled = 1;
811d736f 965 index = 0;
31a12666 966 end = writeback_index - 1;
811d736f
DH
967 goto retry;
968 }
17bc6c30
AK
969 if (!wbc->no_nrwrite_index_update) {
970 if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
971 mapping->writeback_index = index;
972 wbc->nr_to_write = nr_to_write;
973 }
06d6cf69 974
811d736f
DH
975 return ret;
976}
0ea97180
MS
977EXPORT_SYMBOL(write_cache_pages);
978
979/*
980 * Function used by generic_writepages to call the real writepage
981 * function and set the mapping flags on error
982 */
983static int __writepage(struct page *page, struct writeback_control *wbc,
984 void *data)
985{
986 struct address_space *mapping = data;
987 int ret = mapping->a_ops->writepage(page, wbc);
988 mapping_set_error(mapping, ret);
989 return ret;
990}
991
992/**
993 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
994 * @mapping: address space structure to write
995 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
996 *
997 * This is a library function, which implements the writepages()
998 * address_space_operation.
999 */
1000int generic_writepages(struct address_space *mapping,
1001 struct writeback_control *wbc)
1002{
1003 /* deal with chardevs and other special file */
1004 if (!mapping->a_ops->writepage)
1005 return 0;
1006
1007 return write_cache_pages(mapping, wbc, __writepage, mapping);
1008}
811d736f
DH
1009
1010EXPORT_SYMBOL(generic_writepages);
1011
1da177e4
LT
1012int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1013{
22905f77
AM
1014 int ret;
1015
1da177e4
LT
1016 if (wbc->nr_to_write <= 0)
1017 return 0;
22905f77 1018 wbc->for_writepages = 1;
1da177e4 1019 if (mapping->a_ops->writepages)
d08b3851 1020 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
1021 else
1022 ret = generic_writepages(mapping, wbc);
1023 wbc->for_writepages = 0;
1024 return ret;
1da177e4
LT
1025}
1026
1027/**
1028 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
1029 * @page: the page to write
1030 * @wait: if true, wait on writeout
1da177e4
LT
1031 *
1032 * The page must be locked by the caller and will be unlocked upon return.
1033 *
1034 * write_one_page() returns a negative error code if I/O failed.
1035 */
1036int write_one_page(struct page *page, int wait)
1037{
1038 struct address_space *mapping = page->mapping;
1039 int ret = 0;
1040 struct writeback_control wbc = {
1041 .sync_mode = WB_SYNC_ALL,
1042 .nr_to_write = 1,
1043 };
1044
1045 BUG_ON(!PageLocked(page));
1046
1047 if (wait)
1048 wait_on_page_writeback(page);
1049
1050 if (clear_page_dirty_for_io(page)) {
1051 page_cache_get(page);
1052 ret = mapping->a_ops->writepage(page, &wbc);
1053 if (ret == 0 && wait) {
1054 wait_on_page_writeback(page);
1055 if (PageError(page))
1056 ret = -EIO;
1057 }
1058 page_cache_release(page);
1059 } else {
1060 unlock_page(page);
1061 }
1062 return ret;
1063}
1064EXPORT_SYMBOL(write_one_page);
1065
76719325
KC
1066/*
1067 * For address_spaces which do not use buffers nor write back.
1068 */
1069int __set_page_dirty_no_writeback(struct page *page)
1070{
1071 if (!PageDirty(page))
1072 SetPageDirty(page);
1073 return 0;
1074}
1075
1da177e4
LT
1076/*
1077 * For address_spaces which do not use buffers. Just tag the page as dirty in
1078 * its radix tree.
1079 *
1080 * This is also used when a single buffer is being dirtied: we want to set the
1081 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1082 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1083 *
1084 * Most callers have locked the page, which pins the address_space in memory.
1085 * But zap_pte_range() does not lock the page, however in that case the
1086 * mapping is pinned by the vma's ->vm_file reference.
1087 *
1088 * We take care to handle the case where the page was truncated from the
183ff22b 1089 * mapping by re-checking page_mapping() inside tree_lock.
1da177e4
LT
1090 */
1091int __set_page_dirty_nobuffers(struct page *page)
1092{
1da177e4
LT
1093 if (!TestSetPageDirty(page)) {
1094 struct address_space *mapping = page_mapping(page);
1095 struct address_space *mapping2;
1096
8c08540f
AM
1097 if (!mapping)
1098 return 1;
1099
19fd6231 1100 spin_lock_irq(&mapping->tree_lock);
8c08540f
AM
1101 mapping2 = page_mapping(page);
1102 if (mapping2) { /* Race with truncate? */
1103 BUG_ON(mapping2 != mapping);
787d2214 1104 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
55e829af 1105 if (mapping_cap_account_dirty(mapping)) {
8c08540f 1106 __inc_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1107 __inc_bdi_stat(mapping->backing_dev_info,
1108 BDI_RECLAIMABLE);
55e829af
AM
1109 task_io_account_write(PAGE_CACHE_SIZE);
1110 }
8c08540f
AM
1111 radix_tree_tag_set(&mapping->page_tree,
1112 page_index(page), PAGECACHE_TAG_DIRTY);
1113 }
19fd6231 1114 spin_unlock_irq(&mapping->tree_lock);
8c08540f
AM
1115 if (mapping->host) {
1116 /* !PageAnon && !swapper_space */
1117 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 1118 }
4741c9fd 1119 return 1;
1da177e4 1120 }
4741c9fd 1121 return 0;
1da177e4
LT
1122}
1123EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1124
1125/*
1126 * When a writepage implementation decides that it doesn't want to write this
1127 * page for some reason, it should redirty the locked page via
1128 * redirty_page_for_writepage() and it should then unlock the page and return 0
1129 */
1130int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1131{
1132 wbc->pages_skipped++;
1133 return __set_page_dirty_nobuffers(page);
1134}
1135EXPORT_SYMBOL(redirty_page_for_writepage);
1136
1137/*
1138 * If the mapping doesn't provide a set_page_dirty a_op, then
1139 * just fall through and assume that it wants buffer_heads.
1140 */
3e26c149 1141static int __set_page_dirty(struct page *page)
1da177e4
LT
1142{
1143 struct address_space *mapping = page_mapping(page);
1144
1145 if (likely(mapping)) {
1146 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
9361401e
DH
1147#ifdef CONFIG_BLOCK
1148 if (!spd)
1149 spd = __set_page_dirty_buffers;
1150#endif
1151 return (*spd)(page);
1da177e4 1152 }
4741c9fd
AM
1153 if (!PageDirty(page)) {
1154 if (!TestSetPageDirty(page))
1155 return 1;
1156 }
1da177e4
LT
1157 return 0;
1158}
3e26c149 1159
920c7a5d 1160int set_page_dirty(struct page *page)
3e26c149
PZ
1161{
1162 int ret = __set_page_dirty(page);
1163 if (ret)
1164 task_dirty_inc(current);
1165 return ret;
1166}
1da177e4
LT
1167EXPORT_SYMBOL(set_page_dirty);
1168
1169/*
1170 * set_page_dirty() is racy if the caller has no reference against
1171 * page->mapping->host, and if the page is unlocked. This is because another
1172 * CPU could truncate the page off the mapping and then free the mapping.
1173 *
1174 * Usually, the page _is_ locked, or the caller is a user-space process which
1175 * holds a reference on the inode by having an open file.
1176 *
1177 * In other cases, the page should be locked before running set_page_dirty().
1178 */
1179int set_page_dirty_lock(struct page *page)
1180{
1181 int ret;
1182
db37648c 1183 lock_page_nosync(page);
1da177e4
LT
1184 ret = set_page_dirty(page);
1185 unlock_page(page);
1186 return ret;
1187}
1188EXPORT_SYMBOL(set_page_dirty_lock);
1189
1da177e4
LT
1190/*
1191 * Clear a page's dirty flag, while caring for dirty memory accounting.
1192 * Returns true if the page was previously dirty.
1193 *
1194 * This is for preparing to put the page under writeout. We leave the page
1195 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1196 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1197 * implementation will run either set_page_writeback() or set_page_dirty(),
1198 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1199 * back into sync.
1200 *
1201 * This incoherency between the page's dirty flag and radix-tree tag is
1202 * unfortunate, but it only exists while the page is locked.
1203 */
1204int clear_page_dirty_for_io(struct page *page)
1205{
1206 struct address_space *mapping = page_mapping(page);
1207
79352894
NP
1208 BUG_ON(!PageLocked(page));
1209
fe3cba17 1210 ClearPageReclaim(page);
7658cc28
LT
1211 if (mapping && mapping_cap_account_dirty(mapping)) {
1212 /*
1213 * Yes, Virginia, this is indeed insane.
1214 *
1215 * We use this sequence to make sure that
1216 * (a) we account for dirty stats properly
1217 * (b) we tell the low-level filesystem to
1218 * mark the whole page dirty if it was
1219 * dirty in a pagetable. Only to then
1220 * (c) clean the page again and return 1 to
1221 * cause the writeback.
1222 *
1223 * This way we avoid all nasty races with the
1224 * dirty bit in multiple places and clearing
1225 * them concurrently from different threads.
1226 *
1227 * Note! Normally the "set_page_dirty(page)"
1228 * has no effect on the actual dirty bit - since
1229 * that will already usually be set. But we
1230 * need the side effects, and it can help us
1231 * avoid races.
1232 *
1233 * We basically use the page "master dirty bit"
1234 * as a serialization point for all the different
1235 * threads doing their things.
7658cc28
LT
1236 */
1237 if (page_mkclean(page))
1238 set_page_dirty(page);
79352894
NP
1239 /*
1240 * We carefully synchronise fault handlers against
1241 * installing a dirty pte and marking the page dirty
1242 * at this point. We do this by having them hold the
1243 * page lock at some point after installing their
1244 * pte, but before marking the page dirty.
1245 * Pages are always locked coming in here, so we get
1246 * the desired exclusion. See mm/memory.c:do_wp_page()
1247 * for more comments.
1248 */
7658cc28 1249 if (TestClearPageDirty(page)) {
8c08540f 1250 dec_zone_page_state(page, NR_FILE_DIRTY);
c9e51e41
PZ
1251 dec_bdi_stat(mapping->backing_dev_info,
1252 BDI_RECLAIMABLE);
7658cc28 1253 return 1;
1da177e4 1254 }
7658cc28 1255 return 0;
1da177e4 1256 }
7658cc28 1257 return TestClearPageDirty(page);
1da177e4 1258}
58bb01a9 1259EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
1260
1261int test_clear_page_writeback(struct page *page)
1262{
1263 struct address_space *mapping = page_mapping(page);
1264 int ret;
1265
1266 if (mapping) {
69cb51d1 1267 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1268 unsigned long flags;
1269
19fd6231 1270 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1271 ret = TestClearPageWriteback(page);
69cb51d1 1272 if (ret) {
1da177e4
LT
1273 radix_tree_tag_clear(&mapping->page_tree,
1274 page_index(page),
1275 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1276 if (bdi_cap_account_writeback(bdi)) {
69cb51d1 1277 __dec_bdi_stat(bdi, BDI_WRITEBACK);
04fbfdc1
PZ
1278 __bdi_writeout_inc(bdi);
1279 }
69cb51d1 1280 }
19fd6231 1281 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1282 } else {
1283 ret = TestClearPageWriteback(page);
1284 }
d688abf5
AM
1285 if (ret)
1286 dec_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1287 return ret;
1288}
1289
1290int test_set_page_writeback(struct page *page)
1291{
1292 struct address_space *mapping = page_mapping(page);
1293 int ret;
1294
1295 if (mapping) {
69cb51d1 1296 struct backing_dev_info *bdi = mapping->backing_dev_info;
1da177e4
LT
1297 unsigned long flags;
1298
19fd6231 1299 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 1300 ret = TestSetPageWriteback(page);
69cb51d1 1301 if (!ret) {
1da177e4
LT
1302 radix_tree_tag_set(&mapping->page_tree,
1303 page_index(page),
1304 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 1305 if (bdi_cap_account_writeback(bdi))
69cb51d1
PZ
1306 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1307 }
1da177e4
LT
1308 if (!PageDirty(page))
1309 radix_tree_tag_clear(&mapping->page_tree,
1310 page_index(page),
1311 PAGECACHE_TAG_DIRTY);
19fd6231 1312 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
1313 } else {
1314 ret = TestSetPageWriteback(page);
1315 }
d688abf5
AM
1316 if (!ret)
1317 inc_zone_page_state(page, NR_WRITEBACK);
1da177e4
LT
1318 return ret;
1319
1320}
1321EXPORT_SYMBOL(test_set_page_writeback);
1322
1323/*
00128188 1324 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
1325 * passed tag.
1326 */
1327int mapping_tagged(struct address_space *mapping, int tag)
1328{
1da177e4 1329 int ret;
00128188 1330 rcu_read_lock();
1da177e4 1331 ret = radix_tree_tagged(&mapping->page_tree, tag);
00128188 1332 rcu_read_unlock();
1da177e4
LT
1333 return ret;
1334}
1335EXPORT_SYMBOL(mapping_tagged);